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Structure Preserving Discretization of
port-Hamiltonian Distributed Parameter Systems

B.C. van Huijgevoort

Abstract
Many methods in scientific computing disregard the underlying physical properties of the systems they simulate.
In this paper a new way of spatially discretizing distributed parameter systems is presented. This method is
applicable to port-Hamiltonian systems and preserves the Dirac structure and energy balance underlying these
kind of systems. The dynamics of the system is described for all of the elements in the mesh, which are inter-
connected to describe the behaviour over the whole geometry. This method leads to more accurate solutions and
gives full insight into the spatial distribution of energy.

1. Introduction

In this paper a specific class of dynamical systems,
which evolve both over time and space is considered.
These systems are typically described by partial differ-
ential equations and they have an infinite-dimensional
state space. Infinite-dimensional systems impose chal-
lenges in for example finding analytical solutions and
in the numerical simulation of these systems. To get
insight in these systems, and to analyze their proper-
ties, it is typically necessary to resort to numerical tools.
Then it is possible to compute their solutions, to de-
termine system responses and to test multiple scenarios
while varying parameters, initial conditions or apply-
ing different system excitations. Scientific computing
is the field that provides numerical methods to simu-
late infinite-dimensional systems. Most of these meth-
ods require discretization in the temporal and spatial do-
main. Since controlling an infinite-dimensional system
implies controlling an infinite number of states with a
finite number of control parameters, controlling these
systems usually requires discretization in the temporal
and spatial domain as well. The result of a discretiza-
tion will be a finite set of ordinary differential equa-
tions, which is easier to simulate than partial differen-
tial equations. Most conventional methods model the
behavior of infinite-dimensional systems by approxima-
tion, while disregarding the physical structure underly-
ing the system. Examples of such spatial discretiza-
tion methods are the finite difference method (FDM),
the finite volume method (FVM) and the finite element
method (FEM) [?]. However, partial differential equa-

tions are mostly inferred from first principle physical
laws that represent conservation laws, such as energy-,
momentum-, charge- and mass conservation. Some fa-
mous examples of distributed parameter systems are the
Burgers’s equation in 1D [?], the wave equation and
the Navier-Stokes equations in 2D or 3D [?, ?] and the
Maxwell equations in 3D [?, ?]. Most conventional dis-
cretization methods numerically solve partial differen-
tial equations and some incorporate adjustments a pos-
teriori to comply to physical laws, however, in princi-
ple they ignore these conservation laws. This is due
to the fact that most discretization methods in scientific
computing substitute the spatial derivative operator by
a discrete approximation on a set of sample points (the
mesh points). By doing so, the approximate operator
is a mathematical construct that does not take system
properties into account, since it disregards the system
and its properties completely.

In this paper only distributed parameter systems
that can be represented as a port-Hamiltonian system
will be considered, since they have specific structural
properties, such as stability and passivity. More pre-
cisely, port-Hamiltonian systems are suitable to model
systems, which have an inherent loss of energetic con-
tent (dissipation), when they are not excited by their en-
vironment. In addition, their energy level is fully de-
termined by the energy that is delivered to the system
through its external ports. These properties make them
very interesting for many applications, such as control
design in mechatronic systems, electrical engineering,
robotics, etc. The port-Hamiltonian framework is an ex-
tension of the Hamiltonian framework, where ports are

2



defined as the input and output variables whose prod-
uct is power. The Hamiltonian is a function that repre-
sents the total energy in the energy-storing elements of
a system and it plays a significant role in our new spa-
tial discretization approach. The behavior of a system
is defined by the Hamiltonian and a geometric structure,
i.e., a Dirac structure. For this specific structure power-
conservation holds, which guarantees passivity [?, ?].
This means that at any time interval the change of en-
ergy will never exceed the energy supplied through ex-
ternal ports. Many physical systems can be written as a
Hamiltonian system. Examples can be found in various
domains; LRC circuits and transmission lines from the
electrical domain [?, ?, ?], a magnetically levitated ball
[?] and Maxwell equations [?, ?, ?] from the electro-
magnetical domain, spring-damper systems, e.g. vibrat-
ing mechanical structures, from the mechanical domain
[?], fluid dynamics [?, ?], and many more.

By extending a Hamiltonian system to a port-
Hamiltonian system description, multiple (even infinite)
systems, can be interconnected using the ports. A port is
used to describe the interaction of the port-Hamiltonian
system with the environment. Besides that they can
be used to described the exchange of energy between
two systems. So, in general ports represent power ex-
changes and are very suitable to make interconnections
among multiple port-Hamiltonian systems. This is due
to the fact that any interconnection of multiple port-
Hamiltonian systems is port-Hamiltonian as well. The
modular behaviour of these models makes it easy to
guarantee important properties, such as stability, pas-
sivity and conservation of quantities. Conventional dis-
cretization methods destroy the port-Hamiltonian struc-
ture, while it is very beneficial to maintain it. The main
goal of this paper is to develop a discretization method
for infinite-dimensional port-Hamiltonian systems that
preserves the structure of port-Hamiltonian systems in
which the Hamiltonian function represents energy. Be-
sides that, passivity and modularity of interconnections
should also be preserved, with the highest accuracy of
the approximation possible.

Some simple examples of partial differential equa-
tions are the heat equation

∂w
∂ t

=−α∇
2w, (1)

and the wave equation

∂ 2w
∂ t2 =−c2

∇
2w, (2)

where w(z, t) represents temperature or position respec-
tively. Note that w(z, t) is a function of space z∈ Z⊂Rn

and time t ∈ T ⊆R. Here Z is the spatial domain and T

the temporal domain. Typically, Z is assumed bounded
and T is unilateral and unbounded. The parameters α

and c2 are physical constants and ∇ is the Laplace op-
erator which in a three-dimensional spatial domain is
given by

∇ =
∂

∂ z1
+

∂

∂ z2
+

∂

∂ z3
. (3)

Most partial differential equations can be written in
port-Hamiltonian form using physical relations. Con-
sider the displacement of a vibrating string/plate, which
is described by the wave equation (2). This can be writ-
ten in port-Hamiltonian form as[

ε̇

ρ̇

]
=

[
0 ∇

−∇ 0

][
σ

v

]
, (4)

where ε is strain, ρ is kinetic momentum, σ is stress
and v = ∂w

∂ t = ẇ is velocity. The derivation is given in
Appendix B. Note that this example illustrates that (2)
can be written in port-Hamiltonian form, where details
on the port-Hamiltonian form are given in the next sec-
tion. Therefore this example is continued in subsection
2.4. For now, notice that (2) and (4) are equivalent.

Structure preserving spatial discretization has al-
ready been carried out for one-dimensional systems
[?, ?, ?, ?], and two-dimensional systems [?, ?]. The
two-dimensional framework however, has not been ap-
plied to a model of a real system yet, nor is its con-
vergence proven. The extension to three-dimensional
systems has not been done either. In this paper, the
two-dimensional approach developed in [?] will be ex-
panded to three-dimensional geometries. There ex-
ist also some completely different approaches, that are
more mathematically oriented instead of engineering
oriented. They are developed for n-dimensional man-
ifolds [?, ?, ?].

The paper is organized as follows. The next section
gives some background of the port-Hamiltonian frame-
work. The problem definition of this project is given
in section 3. In section 4, the discretization approach
and its interconnection structure are described. Section
5 discusses the approach for three-dimensional mani-
folds. It shows that a mistake has been made in the ap-
proach and that there is not enough freedom to finalize
with a finite-dimensional port-Hamiltonian system. A
solution is designed for one-dimensional geometries in
section 6. This paper ends with the conclusion and rec-
ommendations that are given in section 7. Some impor-
tant mathematical concepts used in this paper are given
in Appendix A. A way to find expressions for the shape
functions for three- and one-dimensional manifolds is
given in Appendix F and J respectively. The remain-
ing appendices contain mathematical proofs or detailed
derivations.
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2. Port-Hamiltonian systems

Since this paper considers distributed parameter
systems that can be described in port-Hamiltonian
form, before formally describing the problem addressed
in this paper, some insight into the port-Hamiltonian
framework is necessary. First of all a distinction has to
be made between finite-dimensional port-Hamiltonian
systems and infinite-dimensional port-Hamiltonian sys-
tems. Infinite-dimensional port-Hamiltonian systems
admit equivalent descriptions as partial differential
equations, while finite-dimensional port-Hamiltonian
systems admit equivalent descriptions as ordinary dif-
ferential equations.

2.1. Finite-dimensional systems

Finite-dimensional port-Hamiltonian systems
without feedthrough are generally given by{

ẋ = (J−R) ∂H(x)
∂x +Bu

y = BT ∂H(x)
∂x ,

(5)

where x(t) ∈ RN is the N-dimensional state variable,
u(t) and y(t) the input and output variables, respectively
and H : RN → R is the Hamiltonian or energy function.
Every port consists of an input/output pair (u(t),y(t)),
with dim(u)=dim(y). Furthermore, J and R are real-
valued N × N matrices that are skew symmetric and
positive semi-definite, respectively. J represents the ex-
change of energy between the energy storing elements
and R represents the losses in the system [?, ?].

A property of (port-)Hamiltonian systems is that
they are dissipative, which means that they satisfy the
dissipation inequality

H(x(t1))≤ H(x(t0))+
∫ t1

t0
y(t)T u(t) dt (6)

for all t0 < t1 and all system trajectories (u,x,y) that
satisfy (5). The dissipation inequality shows that the to-
tal change of power in the system can never be bigger
than the power delivered through its ports. By taking an
infinitesimal time step between t0 and t1, (6) can equiv-
alently be written as

d
dt

H(x(t))≤ y(t)T u(t), (7)

for all time t ∈ T . This clearly shows that the variation
in internal stored energy never exceeds the power sup-
plied through the input and output. If (6) and (7) are
equalities, the system is conservative, which is the case
if there are no losses in the system (R = 0). Assume
a system with multiple inputs u and outputs y, where a

port of the system is defined as any pair (ui,yi), with its
product being power. Then each port delivers a power
of

Pi(t) = yT
i (t)ui(t) (8)

to the system. If the system has K ports, the total power
delivered to the system equals

P(t) =
K

∑
i=1

yT
i (t)ui(t). (9)

Effort and flow
Two important concepts in port-Hamiltonian sys-

tems are flow f and effort e. The flow variable can
be seen as the variable that establishes an equilibrium
and describes the rate of change of the energy variables.
Whereas the effort determines the equilibrium. Electri-
cal current is for example a flow variable and voltage an
effort variable [?].
The effort is chosen as:

e :=
∂H
∂x

. (10)

Besides that, the flows are chosen as the rate of change
of the state:

f = ẋ. (11)

These choices result in an equivalent representation of
a finite-dimensional port-Hamiltonian system (5) based
on the effort and flow given by{

f = (J−R)e+Bu
y = BT e.

(12)

Typically, the state of the system, consists of the en-
ergy variables p and q; x(t) = col(p(t),q(t)). The ef-
fort (10) can thus equivalently be written as the vector
of co-energy variables:

ep := ∂H(p,q)
∂ p , eq := ∂H(p,q)

∂q . (13)

Similarly, the flow (11) can equivalently be written as
the vector of the rate of change of the energy variables:

f p := d p
dt , f q := dq

dt . (14)

Power balance
The Hamiltonian represents the energy in the sys-

tem, so the derivative of the Hamiltonian with respect
to time represents the change of energy. Using the defi-
nition of e (10) and f (11), the following can be found

dH(x)
dt

=
∂H(x)

∂x
· dx

dt
= eT f . (15)
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Substituting the expression for the flow and for yT (12),
while exploiting the skew-symmetric property for J
leads to

eT f = yT u− eT Re. (16)

This can be seen as the power balance of a finite-
dimensional port-Hamiltonian system, where eT f is the
change of power in the system, yT u is power flowing
over the boundary and eT Re is the dissipated power.
This can be equivalently written as a finite-dimensional
bi-linear pairing

〈e | f 〉 := eT f − yT u+ eT Re, (17)

which by (12) always equals zero.

2.2. Infinite-dimensional systems

Some partial differential equations can be writ-
ten as an infinite-dimensional port-Hamiltonian system,
which on a n-dimensional manifold Z ⊂ Rn can gener-
ally be written as[

ṗ
q̇

]
= (J−R)

[
δpH
δqH

]
[

u
y

]
=

[
B
C

] [
δpH|∂Z

δqH|∂Z

]
.

(18)

In the infinite-dimensional case, p(z, t) and q(z, t) do
not only depend on time t but also depend on space
z ∈ Z. Similarly, J and R become operators on (Hilbert)
spaces of functions on Z. Furthermore, δp and δq
are the variational derivatives with respect to energy
variable p and q respectively. The variables u(t) and
y(t) are the input and output and are assumed to depend
only on time.

The Hamiltonian
The Hamiltonian H(p,q) or energy function de-

scribes the total energy in a physical system and is given
by [?, ?]

H(p,q) =
∫

Z
H (p,q), (19)

where H (p,q) is the energy density and Z is the man-
ifold. The energy density considered in this paper is
quadratic and is defined as

H (p,q) :=
1
2
[cp(p∧?p)+ cq(q∧?q)], (20)

where cp and cq are physical material properties;
cp,cq ∈ R. An explanation of the notation used in this
paper, such as the ∧- and ?-operator, is given in Ap-
pendix A. Substituting (20) into (19) shows that the
Hamiltonian is

H(p,q) =
1
2

∫
Z
[cp(p∧?p)+ cq(q∧?q)]. (21)

Effort and flow
The efforts are chosen as the vector of co-energy

variables:

ep := δpH = ∂H (p,q)
∂ p = cp ? p,

eq := δqH = ∂H (p,q)
∂q = cq ?q.

(22)

Since p and q depend on time t and space z, the ef-
forts are also functions of time and space. Besides that,
the flows are chosen as the rate of change of the energy
variables:

f p := ∂ p
∂ t , f q := ∂q

∂ t . (23)

Note that this is the same choice as for the finite-
dimensional case (14), however, now the partial deriva-
tive with respect to time is taken since the energy vari-
ables depend on time and space.

In (18), some terms in J can be the Laplace opera-
tor, as shown in the example of the wave equation (4).
This operator creates difficulties, however, an equiva-
lent representation exists that does not have this draw-
back. This representation is based on differential geom-
etry, where Appendix A explains its notation. Besides
that, using the definitions for effort and flow, the system
in (18) can equivalently be written as[

f p

f q

]
=

[
−σ? (−1)rd

d 0

][
ep

eq

]
[

f b

eb

]
=

[
1 0
0 −(−1)n−nq

][
ep|∂Z
eq|∂Z

]
.

(24)

Here np and nq define the form of p and q respectively
and r = npnq + 1. The term form refers to a differen-
tial form, which is the core of differential geometry and
is introduced in Appendix A. Furthermore, |∂Z denotes
restriction to the boundary of the n-dimensional mani-
fold Z. The dissipation in the system is represented by
σ . Here, σ can be a scalar if the dissipation is homoge-
neous in all directions, a diagonal matrix if the dissipa-
tion is inhomogenous and a non-symmetric matrix if the
dissipation is anisotropic. In (24) f p and f q represent
the flow of energy variable p and the flow of energy
variable q respectively. Similarly ep and eq represent
the effort of energy variable p and the effort of energy
variable q respectively. Furthermore, f b and eb model
the interaction of the system at the boundary of the spa-
tial domain, ∂Z. Comparing (24) with (18) shows that
the role of J is taken over by the exterior derivatives d
and the role of R is given by σ . Besides that the input
and output in (18) are given by the flow and effort over
the boundary, which are formally described as the eval-
uation of the variational derivative of H at the boundary

ep |∂Z= δpH |∂Z
eq |∂Z= δqH |∂Z .

(25)
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Power balance

Proposition 2.1. The power balance for an infinite-
dimensional port-Hamiltonian system is given by∫

Z [ f
p∧ ep + f q∧ eq] =

−∫
∂Z [e

b∧ f b]− ∫Z [e
p∧σ ? ep].

(26)

This expresses that the change of power on the man-
ifold Z equals the power flowing over the boundary
minus the losses in the system. This is derived by
using the derivative of the Hamiltonian with respect
to time. The proof can be found in Appendix C. The
resemblance between this energy balance and the one
of the finite-dimensional case (16), will be used later in
this approach.

2.3. Dirac structure

As mentioned in the introduction, the behaviour
of a system can be defined by the Hamiltonian and a
geometric structure, i.e. a Dirac structure. A finite-
dimensional Dirac structure is defined as follows [?]

Definition 1. A Dirac structure on F ×E is a subspace
D ⊂F ×E equipped with a bilinear-paring 〈· | ·〉 on
F ×E , such that

i 〈e | f 〉= 0, for all ( f ,e) ∈D ,
ii dimD = dimF .

Here, E and F are finite-dimensional subspaces
of a vector space. In line with (14) and (13), let F =
Rnp ×Rnq ×Rnb and let E = Rnp ×Rnq ×Rnb be the
spaces in which flows f = col( f p, f q, f b) and efforts
e = col(ep,eq,eb) assume their values. Here 〈e | f 〉 de-
notes the dual product of e and f . For e, f ∈ RN , this
is the same as eT f . This product of effort and flow rep-
resents power, so property i in the definition of a Dirac
structure corresponds to power conservation. Property
ii shows that a Dirac structure is a maximally dimen-
sional subspace. Details on this definition can be found
in [?].

Note that for the finite-dimensional case, (12) is a
Dirac structure;

D := {(ep,eq,eb),( f p, f q, f b) ∈ E ×F |[
f
y

]
=

[
J−R B
BT 0

][
e
u

]
}, (27)

with respect to the following bi-linear pairing

〈e | f 〉 := eT f − yT u+ eT Re. (28)

This can be proven to be a Dirac structure by defining a
new flow and effort as

f̂ =
[

f
−y

]
, ê =

[
e
u

]
. (29)

1D 2D 3D
np = 1 np = 2 np = 3
nq = 1 nq = 1 nq = 1

np = 1 np = 1
nq = 2 nq = 3

np = 2
nq = 2

Table 1: Possible forms of energy variables for one-
dimensional (1D), two dimensional (2D) and three-
dimensional (3D) geometries

These new flows and efforts can be used to rewrite (27)
to

D := {(ep,eq,eb),( f p, f q, f b) ∈ E ×F |
f̂ =

[
J−R B
−BT 0

]
ê}. (30)

Proposition 2.2. D as given in (30) is a finite-
dimensional Dirac structure if R = 0.

Proof. The proof is given in Appendix D. �

Infinite-dimensional Dirac structures
In the infinite-dimensional port-Hamiltonian

framework [?], the linear space of flows is defined as

Fp,q := Λ
np
(Z)×Λ

nq
(Z)×Λ

n−np
(∂Z) (31)

and the linear space of efforts is defined as

Ep,q := Λ
n−np

(Z)×Λ
n−nq

(Z)×Λ
n−nq

(∂Z). (32)

Here,
np +nq = n+1 (33)

should hold, [?, ?], where np and nq define the form of
p and q respectively and n is the dimension of the man-
ifold Z. The possible choices for np and nq for various
n are given in Table 1.

For infinite-dimensional systems the definition of a
Dirac structure can also be written as [?]

Definition 2. A (constant) Dirac structure on Fp,q×
Ep,q is a subspace D ⊂Fp,q×Ep,q such that

D = D⊥, (34)

where ⊥ denotes the orthogonal complement with re-
spect to the bi-linear pairing 〈· | ·〉.

An indefinite symmetric bi-linear pairing 〈· | ·〉 is de-
fined as

〈( f p,ep),( f q,eq)〉 := 〈ep | f q〉+ 〈eq | f p〉, (35)
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with ( f p,ep),( f q,eq) ∈ Fp,q × Ep,q. This bi-linear
pairing is also non-degenerate, meaning that if
〈( f p,ep),( f q,eq)〉 = 0 for all ( f q,eq), this implies that
( f p,ep) = 0 [?].

The Dirac structure corresponding to (24) is written
as [?]

D := {(ep,eq,eb),( f p, f q, f b) ∈ Ep,q×Fp,q |[
f p

f q

]
=

[−σ? (−1)rd
d 0

][
ep

eq

]
[

f b

eb

]
=

[
1 0
0 −(−1)n−nq

][
ep|∂Z

eq|∂Z

]
},

(36)

with respect to the following non-degenerate bi-linear
pairing 〈e | f 〉 ∈ R with e ∈ Ep,q and f ∈Fp,q:

〈(ep,eq,eb),( f p, f q, f b)〉 :=∫
Z [e

p∧ f p + eq∧ f q]+
∫

∂Z [e
b∧ f b]

+
∫

Z [e
p∧σ ? ep].

(37)

Proposition 2.3. D from (36) defines a (constant)
Dirac structure for the infinite dimensional port-
Hamiltonian system.

Proof. This Proposition is proven for (n,np,nq) =
(3,3,1) in Appendix E. �

2.4. Examples

This subsection discusses some examples of partial
differential equations or ordinary differential equations
written as infinite-dimensional port-Hamiltonian or
finite-dimensional port-Hamiltonian system respec-
tively.

The wave equation
The wave equation (without losses) written as (4)

can now be recognized to be in infinite-dimensional
port-Hamiltonian form with Hamiltonian

H(ε,ρ) = 1
2
∫

Z [ε ∧σ +ρ ∧ v]
= 1

2
∫

Z [ε ∧E ? ε +ρ ∧ 1
µ
?ρ],

(38)

which is of the same form as defined in (21). Its Dirac
structure can be written as

D := {(ep,eq,eb),( f p, f q, f b) ∈ Ep,q×Fp,q |[
f p

f q

]
=

[
0 (−1)rd
d 0

][
ep

eq

]
[

f b

eb

]
=

[
1 0
0 −(−1)n−nq

][
ep|∂Z

eq|∂Z

]
},

(39)

with
f p = ε̇ ep = σ

f q = ρ̇ eq = v. (40)

Lossless transmission line
A lossless transmission line of length L is repre-

sented by the telegraph equations [?]

∂φ

∂ t = − ∂V
∂ z

∂q
∂ t = − ∂ I

∂ z .
(41)

Here q(t,z) is the charge density and φ(t,z) is the flux
density. I(t,z) is the current and V (t,z) the voltage,
which equal

eq(t,z) =V (t,z) = q(t,z)
C(z)

eφ (t,z) = I(t,z) = φ(t,z)
L(z)

(42)

respectively. The total energy stored in the transmission
line at time t is equal to

H(φ ,q) =
1
2

∫ L

0
[
φ 2(t,z)

L(z)
+

q2(t,z)
C(z)

], (43)

which can be written in the same form as in (21) using
differential geometry. The result is

H(φ ,q) =
1
2

∫ L

0
[

1
C(z)

q∧?q+
1

L(z)
φ ∧?φ ]. (44)

Therefore according to (22), the efforts of the
infinite-dimensional port-Hamiltonian system are cur-
rent I and voltage V . Besides that, the energy variables
(p and q) are the flux density φ and the charge density q.
So, according to (23), the flows of the port-Hamiltonian
system are φ̇ and q̇. The partial differential equations
(41) can then be represented as an infinite-dimensional
port-Hamiltonian system as follows[

φ̇

q̇

]
=

[
0 −d
−d 0

][
I
V

]
. (45)

The input and output of a transmission line will be the
voltage at point 0 and the current at point L, or the other
way around. Without defining whether f b or eb is the
input, this can be written as[

f b

eb

]
=

[
1 0
0 −1

][
I |∂Z
V |∂Z

]
, (46)

with ∂Z = {0,L}. Together (45) and (46) complete
the infinite-dimensional port-Hamiltonian description
of the lossless transmission line. Note that this is the
exact same form as in (24), for (n,np,nq) = (1,1,1)
and σ = 0.

LC circuit
Previously a lossless transmission line was written

in infinite-dimensional port-Hamiltonian form. A
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Figure 1: Model of a transmission line

transmission line is typically modeled/approximated
by a finite number of LC-circuits in series, as shown
in Fig. 1. Here one LC circuit is given in the red box.
This LC-circuit can be written in finite-dimensional
port-Hamiltonian form.

The Hamiltonian of this circuit is similar as the
Hamiltonian for the transmission line and is given by

H(φ ,q) =
1
2
[
φ 2(t)

L
+

q2(t)
C

]. (47)

Therefore the energy variables are the flux of the induc-
tor (φ ) and the charge of the capacitor (q). The effort is
defined as in (13), so the efforts are the current of the
inductor IL and the voltage over the capacitor VC. Writ-
ing the circuit as a finite-dimensional port-Hamiltonian
system then boils down to writing φ̇ and q̇ as a function
of IL and VC. The distributed voltage and the distributed
current are given in (42). From these equations a similar
relation can be derived for the space-independent flux
through an inductor and the space-independent charge
through a capacitor. The result is

φ(t) = LIL(t)
q(t) =CVC(t).

(48)

Taking the time derivative and using Kirchoff’s laws
leads to the following description of this LC-circuit[

φ̇

q̇

]
=

[
0 −1
1 0

][
IL

VC

]
+

[
1
0

]
Vin

IC =
[
1 0

][ IL

VC

]
,

(49)

which is in finite-dimensional port-Hamiltonian form as
can be seen by comparing it with (12), where

f φ = dφ

dt , ep = ∂H
∂φ

= IL, u =Vin

f q = dq
dt , eq = ∂H

∂q =VC, y = IC.
(50)

3. Problem definition

The problem considered in this paper is the ap-
proximate modeling of distributed parameter systems

in port-Hamiltonian form. The goal is to find a
finite-dimensional Dirac structured approximation of
the infinite-dimensional Dirac structure, generally given
by (36). To do so, the Dirac structured approximation
contains multiple finite dimensional Dirac structures,
generally given in (27), interconnected in a power-
conserving way. Besides that, the conserved quantities
should also be preserved after the discretization in order
to obtain a physically realistic model. Besides inherit-
ing the physical structure of the original system, after
interconnection, the balance equations underlying the
original system should be satisfied and it is desired to
retain full insight in the spatial distribution of energy,
represented by the Hamiltonian, along the complete ge-
ometry. Some corresponding sub problems are: What
is a good 3D geometrical geometry for this method?
What is a good 3D shape to use for the elements in the
mesh? What is the minimal state dimension of such
an element? What is an appropriate way to mesh the
3D geometrical structure? Is it possible to infer a dis-
cretization method that results in a sparse finite dimen-
sional model? How should the elements be intercon-
nected, such that power is preserved? What is the ac-
curacy of the approximation? How can this method be
implemented on real systems? What is the accuracy of
this method compared to a conventional method?

The previously developed method [?] is designed
for an arbitrary two-dimensional geometry, in this paper
it will be expanded to three-dimensional geometries.

4. Discretization in 3D

This section describes an approach to discretize
three-dimensional port-Hamiltonian distributed param-
eter systems, generally given by (24). It is based on the
two-dimensional approach presented in [?]. In this case
the spatial domain is defined as a three-dimensional
manifold Z with a two-dimensional boundary ∂Z. Here
Z ⊂ R3 which is assumed to be bounded and closed as
a subset of R3.
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Figure 2: Tetrahedral mesh of a plate

4.1. Three-dimensional tetrahedral meshing

The three-dimensional geometry is meshed into
tetrahedra, which is the simplest three-dimensional
shape with non-zero volume [?]. This results in the
least complex derivation of the finite-dimensional port-
Hamiltonian systems, since the derivation only has to
be performed for one element instead of multiple. How-
ever, it also results in a large number of elements in the
geometry. After showing that this simple structure is
rich enough, other structures that may lead to a decrease
of the number of elements in the mesh, can be chosen
as well. The idea is that after interconnecting the tetra-
hedra in the mesh, the behavior on the whole spatial
domain Z is described in port-Hamiltonian form.

Tetrahedral meshing is used very often and as long
as the geometry is not too complicated the geometry
can be covered by a mesh of tetrahedral elements (of
different volumes) where neighboring tetrahedral share
full faces. [?, ?]. There exist geometries that can not be
covered exactly by finite meshes of tetrahedra. Spheres
and ellipsoids being examples of these. However, it is
possible for i.a. rectangles, L-shapes and pyramids [?].
A tetrahedral mesh of a three-dimensional plate is given
in Fig. 2.

A single tetrahedral element Zabcd is given in
Fig. 3. The external faces of the element are Zw, with
w ∈ {acb,abd,bcd,dca} and the external edges are Zi j,
with i j ∈ {ab,bc,ca,ad,bd,cd}. By defining a point
m in the interior of Zabcd , multiple internal faces and
edges are defined. The internal faces are Zlmn, with
lmn ∈ {abm,bcm,cam,adm,bdm,cdm} and the inter-
nal edges are Zk, with k ∈ {am,bm,cm,dm}. The point
m is added to the tetrahedral structure to create addi-
tional degrees of freedom in the spatial discretization
approach, such that it is possible to meet all require-
ments. [?].

a

b

c

d

m

Figure 3: Element Zabcd with m ∈ Zabcd

4.2. Three dimensional manifolds

Table 1 shows that for three-dimensional manifolds
both (np,nq) = (2,2) and (np,nq) = (3,1) are valid op-
tions. (np,nq) = (1,3) is also a valid option, how-
ever, these systems are equivalent to a system with
(np,nq) = (3,1) and will therefore not be considered
here. For now, it is chosen to focus only on systems
with (np,nq) = (3,1).

For three-dimensional manifolds with this choice
for np and nq, the space of flows and the space of efforts
can be derived from (31) and (32). They become

Fp,q := Λ3(Z)×Λ1(Z)×Λ0(∂Z)
Ep,q := Λ0(Z)×Λ2(Z)×Λ2(∂Z).

(51)

Since ( f p, f q, f b) ∈Fp,q and (ep,eq,eb) ∈ Ep,q, this is
equivalent to

f p ∈ Λ3(Z) ep ∈ Λ0(Z)
f q ∈ Λ1(Z) eq ∈ Λ2(Z)
f b ∈ Λ0(∂Z) eb ∈ Λ2(∂Z).

(52)

The infinite-dimensional port-Hamiltonian system
described in terms of effort and flow (24), for a three-
dimensional manifold with (np,nq) = (3,1) is a Dirac
structure

D := {(ep,eq,eb),( f p, f q, f b) ∈ Ep,q×Fp,q |[
f p

f q

]
=

[−σ? d
d 0

][
ep

eq

]
[

f b

eb

]
=

[
1 0
0 −1

][
ep|∂Z

eq|∂Z

]
},

(53)

with respect to the following non-degenerate bi-linear
pairing 〈e | f 〉 ∈ R on Ep,q ×Fp,q with e ∈ Ep,q and
f ∈Fp,q:

〈(ep,eq,eb),( f p, f q, f b)〉 :=∫
Z [e

p∧ f p + eq∧ f q]+
∫

∂Z [e
b∧ f b]

+
∫

Z [e
p∧σ ? ep].

(54)
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In (53) |∂Z denotes restriction to the boundary. This
means that this effort only exists on the boundary of
the geometry Z and not inside. Note that this does not
change its form. A proof that (53) subject to (54) is a
Dirac structure is given in Appendix E.

It is desired to obtain an approximate finite-
dimensional Dirac structure for D in (53) with the
following requirements.
Requirement 1:
The dynamics of the interconnection of the finite-
dimensional port-Hamiltonian systems approxi-
mates the dynamics of the infinite-dimensional
port-Hamiltonian system (53).
Requirement 2:
Every tetrahedral element satisfies a lossless power
balance with its neighboring elements.
Requirement 3:
The Hamiltonian of every tetrahedral element repre-
sents the Hamiltonian in the distribution when restricted
to (integrated over) the tetrahedron.
Requirement 4:
The interconnection structure should be power-
preserving.

The goal of the next sections is to give an approx-
imation of the behaviour of the system over one tetra-
hedron in port-Hamiltonian form (12), while satisfying
these requirements.

4.3. Requirement 1: Approximation of dynam-
ics

The spaces of the different flows are given in (51)
as f p ∈ Λ3(Z) and f q ∈ Λ1(Z), which means that f p

is a three-form and f q is a one-form. These flows are
approximated using spatial temporal expansions and are
defined as

f p(t,z):= f p
abdm(t)ω

p
abdm(z)+ f p

bcdm(t)ω
p
bcdm(z)

+ f p
dcam(t)ω

p
dcam(z)+ f p

acbm(t)ω
p
acbm(z)

f q(t,z):= f q
am(t)ω

q
am(z)+ f q

bm(t)ω
q
bm(z)

+ f q
cm(t)ω

q
cm(z)+ f q

dm(t)ω
q
dm(z).

(55)

Here the three-form shape functions satisfy∫
Zs1

ω
p
s2
=

{
1 for s1 = s2

0 for s1 6= s2,
(56)

where s1,s2 ∈ {abdm,bcdm,dcam,acbm} are tetrahe-
dra. Equivalently the one-form shape functions satisfy∫

Zk1

ω
q
k2
=

{
1 for k1 = k2

0 for k1 6= k2,
(57)

where k1,k2 ∈ {am,bm,cm,dm} are line segments in-
side the tetrahedron. This choice decouples the differ-

ent flows per internal tetrahedron ( f p) or per internal
line segment ( f q).

The efforts ep ∈ Λ0(Z) and eq ∈ Λ2(Z) are approx-
imated using the spatial temporal expansions

ep
abcd(t,z) := ep

a(t)ω
p
a (z)+ ep

b(t)ω
p
b (z)

+ep
c (t)ω

p
c (z)+ ep

d(t)ω
p
d (z)

eq
abcd(t,z) := eq

acb(t)ω
q
acb(z)+ eq

abd(t)ω
q
abd(z)

+eq
bcd(t)ω

q
bcd(z)+ eq

dca(t)ω
q
dca(z).

(58)

Here the zero-form shape functions satisfy

ω
p
l1
(l2) =

{
1 for l1 = l2
0 for l1 6= l2,

(59)

where l1, l2 ∈ {a,b,c,d} are points. The two-form
shape functions satisfy

∫
Zw1

ω
q
w2

=

{
1 for w1 = w2

0 for w1 6= w2,
(60)

where w1,w2 ∈ {acb,abd,bcd,dca} are triangles.
To satisfy the first Requirement, the approximate

flows (55) and efforts (58) should satisfy the original
partial differential equation (53). However, in general
this is not possible pointwise in (z, t)∈ Z×T , but it may
be possible after integration over the spatial geometry
Zabcd .

Proposition 4.1. The first Requirement is satisfied for
arbitrary shape functions satisfying (56), (57), (59),
(60) if

f p
abdm(t)

f p
bcdm(t)

f p
dcam(t)

f p
acbm(t)

=−M1


ep

a(t)
ep

b(t)
ep

c (t)
ep

d(t)

+M2


eq

acb(t)
eq

bcd(t)
eq

abd(t)
eq

dca(t)

 (61)

and 
f q
am(t)

f q
bm(t)

f q
cm(t)

f q
dm(t)

= M3


ep

a(t)
ep

b(t)
ep

c (t)
ep

d(t)

 , (62)

where

M1 =
∫

ZT1
σ ?ω

p
a

∫
ZT1

σ ?ω
p
b

∫
ZT1

σ ?ω
p
c

∫
ZT1

σ ?ω
p
d∫

ZT2
σ ?ω

p
a

∫
ZT2

σ ?ω
p
b

∫
ZT2

σ ?ω
p
c

∫
ZT2

σ ?ω
p
d∫

ZT3
σ ?ω

p
a

∫
ZT3

σ ?ω
p
b

∫
ZT3

σ ?ω
p
c

∫
ZT3

σ ?ω
p
d∫

ZT4
σ ?ω

p
a

∫
ZT4

σ ?ω
p
b

∫
ZT4

σ ?ω
p
c

∫
ZT4

σ ?ω
p
d


(63)
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and

M2 =
∫

∂ZT1
ω

q
acb

∫
∂ZT1

ω
q
bcd

∫
∂ZT1

ω
q
abd

∫
∂ZT1

ω
q
dca∫

∂ZT2
ω

q
acb

∫
∂ZT2

ω
q
bcd

∫
∂ZT2

ω
q
abd

∫
∂ZT2

ω
q
dca∫

∂ZT3
ω

q
acb

∫
∂ZT3

ω
q
bcd

∫
∂ZT3

ω
q
abd

∫
∂ZT3

ω
q
dca∫

∂ZT4
ω

q
acb

∫
∂ZT4

ω
p
bcd

∫
∂ZT4

ω
q
abd

∫
∂ZT4

ω
q
dca


(64)

with
ZT1 = Zabdm ZT3 = Zdcam
ZT2 = Zbcdm ZT4 = Zacbm.

(65)

Furthermore,

M3 =
∫

∂Zam
ω

p
a

∫
∂Zam

ω
p
b

∫
∂Zam

ω
p
c

∫
∂Zam

ω
p
d∫

∂Zbm
ω

p
a

∫
∂Zbm

ω
p
b

∫
∂Zbm

ω
p
c

∫
∂Zbm

ω
p
d∫

∂Zcm
ω

p
a

∫
∂Zcm

ω
p
b

∫
∂Zcm

ω
p
c

∫
∂Zcm

ω
p
d∫

∂Zdm
ω

p
a

∫
∂Zdm

ω
p
b

∫
∂Zdm

ω
p
c

∫
∂Zdm

ω
p
d

 .
(66)

Remark. The dependency of the shape functions ω on
the position z has been left out of these (and most of the
following) equations for compactness of notation.

Proof. Proposition 4.1 can be derived by substituting
the approximate flows (55) and efforts (58) into the
infinite-dimensional port-Hamiltonian system descrip-
tion (53). This gives an approximation of the dynamics
of the system on the element Zabcd . The substitution
results in

f p
abdm(t)ω

p
abdm(z)+ f p

bcdm(t)ω
p
bcdm(z)

+ f p
dcam(t)ω

p
dcam(z)+ f p

acbm(t)ω
p
acbm(z) =

−σ ? [ep
a(t)ω

p
a (z)+ ep

b(t)ω
p
b (z)

+ep
c (t)ω

p
c (z)+ ep

d(t)ω
p
d (z)]

+d[eq
acb(t)ω

q
acb(z)+ eq

abd(t)ω
q
abd(z)

+eq
bcd(t)ω

q
bcd(z)+ eq

dca(t)ω
q
dca(z)]

(67)

and
f q
am(t)ω

q
am(z)+ f q

bm(t)ω
q
bm(z)

+ f q
cm(t)ω

q
cm(z)+ f q

dm(t)ω
q
dm(z) =

d[ep
a(t)ω

p
a (z)+ ep

b(t)ω
p
b (z)

+ep
c (t)ω

p
c (z)+ ep

d(t)ω
p
d (z)].

(68)

Ideally (67) and (68) are satisfied exactly, however, this
is not possible, therefore (67) is integrated over the vol-
umes Zs for s ∈ {abdm,bcdm,dcam,acbm}. While us-
ing Stokes’ theorem (A.3) and (56) this yields (61) with
M1 given in (63) and M2 given in (64).

Similarly integration of (68) over the line segments
Zk, for k ∈ {am,bm,cm,dm} while using Stokes’ the-
orem (A.3) and (57) yields (62) where M3 is given in
(66). �

4.4. Requirement 2: Approximating the power
balance

The bi-linear pairing (54) holds for the whole sys-
tem, but it should also hold for each element Zabcd . This
is mentioned by Requirement 2. From the bi-linear pair-
ing (54) it can be seen that the power balance over one
element can be written as∫

Zabcd
[ep∧ f p + eq∧ f q] :=

−∫
∂Zabcd

[eb∧ f b]− ∫Zabcd
[ep∧σ ? ep].

(69)

Substituting the definition of f b and eb from (53) leads
to ∫

Zabcd
[ep∧ f p + eq∧ f q] :=∫

∂Zabcd
[eq |∂Z ∧ep |∂Z ]−

∫
Zabcd

[ep∧σ ? ep].
(70)

Therefore the power balance can also be written as

Pp(t)+Pq(t) = Pb(t)−Pσ (t), (71)

with

Pp(t) :=
∫

Zabcd
[ep∧ f p]

Pq(t) :=
∫

Zabcd
[eq∧ f q]

Pb(t) :=
∫

∂Zabcd
eq |∂Z ∧ep |∂Z

Pσ (t) :=
∫

Zabcd
ep∧σ ? ep.

(72)

Here Pp(t) and Pq(t) is the power corresponding to the
variables indexed with p and q respectively, Pb(t) is
the power supplied through the boundary of the element
and Pσ is the power dissipation over the element.

In (16) the power balance of a finite-dimensional
port-Hamiltonian system is shown, which equals

eT f = yT u− eT Re. (73)

This balance has the same form as the power balance of
the infinite-dimensional system given in (71) and will
be used in the following derivation.

Proposition 4.2 (Approximations of Pp and Pq). Let e
be defined as

e(t) =
[

ep(t)
eq(t)

]
(74)

with

ep(t) =


ep

abdm(t)
ep

bcdm(t)
ep

dcam(t)
ep

acbm(t)

 , eq(t) =


eq

am(t)
eq

bm(t)
eq

cm(t)
eq

dm(t)

 (75)

and f as

f (t) =
[

f p(t)
f q(t)

]
(76)
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with

f p(t) =


f p
abdm(t)

f p
bcdm(t)

f p
dcam(t)

f p
acbm(t)

 , f q(t) =


f q
am(t)

f q
bm(t)

f q
cm(t)

f q
dm(t)

 . (77)

Then

〈e, f 〉= 〈ep, f p〉+ 〈eq, f q〉= Pp
abcd +Pq

abcd , (78)

where Pp(t) ≈ Pp
abcd(t) and Pq(t) ≈ Pq

abcd(t), provided
that the efforts in (75) are defined for arbitrary shape
functions satisfying (56), (57), (59), (60) as

ep
abdm(t)

ep
bcdm(t)

ep
dcam(t)

ep
acbm(t)

 := M4


ep

a(t)
ep

b(t)
ep

c (t)
ep

d(t)

 (79)

and 
eq

am(t)
eq

bm(t)
eq

cm(t)
eq

dm(t)

 := M5


eq

acb(t)
eq

abd(t)
eq

bcd(t)
eq

dca(t)

 . (80)

Here

MT
4 =

∫
Zabcd


ω

p
a

ω
p
b

ω
p
c

ω
p
d

∧ [ω p
abdm ω

p
bcdm ω

p
dcam ω

p
acbm

] (81)

and

MT
5 =

∫
Zabcd


ω

q
acb

ω
q
abd

ω
q
bcd

ω
q
dca

∧ [ωq
am ω

q
bm ω

q
cm ω

q
dm

]
.

(82)

Note that the flows from (77) are already defined, either
in its original definition (55) or in (61) and (62).

Remark. In this Proposition and in Proposition 4.3,
the approximations denoted with ≈ are exact if f (t,z)
and e(t,z) satisfy the expansions in (55) and (58) re-
spectively, which is guaranteed by these constructions.
This also means that the accuracy of the local solutions
of the expansions are the same as the accuracy of the
power balance.

Proof. The expression for the approximation of Pp and
Pq can be derived by substituting the approximations of
the efforts (58) and flows (55) into (72). For Pp(t) this

results in

Pp(t) ≈ Pp
abcd(t)

:=
∫

Zabcd
ep∧ f p

=
[
ep

abdm(t) ep
bcdm(t) ep

dcam(t) ep
acbm(t)

]
·[

f p
abdm(t) f p

bcdm(t) f p
dcam(t) f p

acbm(t)
]T

,
(83)

where four new efforts are defined as (79).
Similarly Pq(t) is approximated as

Pq(t) ≈ Pq
abcd(t)

:=
∫

Zabcd
eq∧ f q

=
[
eq

am(t) eq
bm(t) eq

cm(t) eq
dm(t)

]
·[

f q
am(t) f q

bm(t) f q
cm(t) f q

dm(t)
]T

,

(84)

where four new efforts are defined as (80).
By defining the effort of the port-Hamiltonian system
(12) as

e(t) =
[

ep(t)
eq(t)

]
=



ep
abdm(t)

ep
bcdm(t)

ep
dcam(t)

ep
acbm(t)
eq

am(t)
eq

bm(t)
eq

cm(t)
eq

dm(t)


(85)

and the flow of the port-Hamiltonian system as

f (t) =
[

f p(t)
f q(t)

]
=



f p
abdm(t)

f p
bcdm(t)

f p
dcam(t)

f p
acbm(t)
f q
am(t)

f q
bm(t)

f q
cm(t)

f q
dm(t)


(86)

their multiplication, eT f , still represents the change of
energy in the system. However, it is now approximated
as (78). �

Proposition 4.3 (Approximation of Pb). Define four
new efforts at the boundary of Z as

ep
acb(t)

ep
abd(t)

ep
bcd(t)

ep
dca(t)

 := M6


ep

a(t)
ep

b(t)
ep

c (t)
ep

d(t)

 , (87)

with

M6 =

∫
∂Zabcd


ω

q
acb

ω
q
abd

ω
q
bcd

ω
q
dca

∧ [ω p
a ω

p
b ω

p
c ω

p
d

]
,

(88)

12



The power over the boundary Pb(t) is approximated as

Pb(t) ≈ yT u
= ep

acb(t)e
q
acb(t)+ ep

abd(t)e
q
abd(t)

+ep
bcd(t)e

q
bcd(t)+ ep

dca(t)e
q
dca(t),

(89)

where the input and output should be defined appropri-
ately.

Proof. Pb(t) can be approximated in a similar way as
Pp(t) and Pq(t). The approximations of the efforts (58)
and flows (55) are substituted into the definition of Pb(t)
(72). The results is

Pb(t) ≈ Pb
abcd(t)

:=
∫

∂Zabcd
[eq |∂Z ∧ep |∂Z ]

=
[
eq

acb(t) eq
abd(t) eq

bcd(t) eq
dca(t)

]
·[

ep
acb(t) ep

abd(t) ep
bcd(t) ep

dca(t)
]T

,
(90)

where four new efforts are defined as (87) with

M6 =

∫
∂Zabcd


ω

q
acb |∂Z

ω
q
abd |∂Z

ω
q
bcd |∂Z

ω
q
dca |∂Z

∧ [ω p
a |∂Z ω

p
b |∂Z ω

p
c |∂Z ω

p
d |∂Z

]
.

(91)
This expression for M6 is equivalent to the one in (88),
since Zw, with w ∈ {acb,abd,bcd,dca} are external
faces and Zl , with l ∈ {a,b,c,d} are external points and
therefore they all lie on the boundary of the geometry
∂Z. This means that the restriction to the boundary is
satisfied and does not impose any additional restrictions
on the shape functions.

The power over the boundary is approximated by
the multiplication of the input and output of the system,
so the input and output of the finite-dimensional system
are chosen such that yT u is given by (89).

However, the terms ep
w(t)e

q
w(t), with

w ∈ {acb,abd,bcd,dca} do not represent the en-
ergy flowing over boundary w, since

ep
w(t)e

q
w(t) 6=

∫
Zw

ep∧ eq, for w ∈ {acb,abd,bcd,dca}.
(92)

In [?, ?], this equality is assumed to hold and since this
assumption is useful for interconnecting the elements
and power-conservation still applies, it is assumed here
as well. This assumption acts as an approximation of
the power on the boundaries of the element Zabcd . The

approximation is defined as

ēp(t,z)|∂Zabcd
:=


ep

acb(t) for z ∈ Zacb\{ab,bc,ac,b,c}
ep

abd(t) for z ∈ Zabd\{bd,a,b}
ep

bcd(t) for z ∈ Zbcd\{cd,c,d}
ep

dca(t) for z ∈ Zdca\{ad,a,d}.
(93)

The power over the boundary is thus approximated by

Pb
abcd(t) :=

∫
∂Zabcd

ēp |∂Z ∧eq |∂Z

= ep
acb
∫

Zacb
eq + ep

abd
∫

Zabd
eq

+ep
bcd
∫

Zbcd
eq + ep

dca
∫

Zdca
eq

= ep
acb(t)e

q
acb(t)+ ep

abd(t)e
q
abd(t)

+ep
bcd(t)e

q
bcd(t)+ ep

dca(t)e
q
dca(t).

(94)

This shows that the total power over the boundary re-
mains the same, so power conservation still holds and
assumption (93) can be used. �

Furthermore, the dissipated power is approximated
by

Pσ (t)≈ Pσ
abcd(t) := e(t)T Re(t). (95)

An approximation for the power dissipation Pσ can be
derived from the resemblance between (71) and (73).
It can then be approximated by (95). Dissipation ma-
trix R will be defined later when setting up the finite-
dimensional model in port-Hamiltonian form. The ex-
pression for R can be found in equation (118) below.

4.5. Requirement 3: Approximating the
Hamiltonian

The flows are defined as (23), which means that the
approximated flows should satisfy

f p
abcd(t,z) := ∂ pabcd

∂ t
f q
abcd(t,z) := ∂qabcd

∂ t

(96)

The approximated energy variables can then be derived
from (55) as

pabcd(t,z) = pabdm(t)ω
p
abdm(z)+ pbcdm(t)ω

p
bcdm(z)

+pdcam(t)ω
p
dcam(z)+ pacbm(t)ω

p
acbm(z)

qabcd(t,z) = qam(t)ω
q
am(z)+qbm(t)ω

q
bm(z)

+qcm(t)ω
q
cm(z)+qdm(t)ω

q
dm(z),

(97)
where pabcd ∈ Λnp

= Λ3 and qabcd ∈ Λnq
= Λ1. From

(96) it is inferred that

f p
s (t) =

d ps(t)
dt for s ∈ {abdm,bcdm,dcam,acbm}

f q
k (t) =

dqs(t)
dt for k ∈ {am,bm,cm,dm}.

(98)
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Proposition 4.4. The third Requirement is met if the
Hamiltonian is approximated by

Habcd(p(t),q(t)) = H p
abcd(p(t))+Hq

abcd(q(t))

= 1
2 x(t)T

[
M7 0
0 M8

]
x(t),

(99)
where p(t) and q(t) are defined as

p(t) = col(pabdm, pbcdm, pdcam, pacbm)
q(t) = col(qam,qbm,qcm,qdm).

(100)

The state per element has dimension eight and is equal
to

x(t) = col(p(t),q(t)). (101)

Furthermore, the M-matrices are defined as

M7 =

∫
Zabcd

cp


ω

p
abdm

ω
p
bcdm

ω
p
dcam

ω
p
acbm

∧?[ω p
abdm ω

p
bcdm ω

p
dcam ω

p
acbm

]
(102)

and

M8 =

∫
Zabcd

cq


ω

q
am

ω
q
bm

ω
q
cm

ω
q
dm

∧?[ωq
am ω

q
bm ω

q
cm ω

q
dm

]
.

(103)

Remark. In subsection 4.2 it is chosen to only focus on
systems with (np,nq) = (3,1), even though systems with
(np,nq) = (2,2) also exist on three-dimensional man-
ifolds (See Table 1). The state is defined as x(t) :=
col(p(t),q(t)). If np = 3, p(t) is a three-form and will
be approximated by partitioning each element, i.e. a
tetrahedron abcd, into four smaller tetrehedra. This
eventually leads to p(t) in (100). If p is a three-form,
q is a one-form (nq = 1) and four internal edges are
identified, which leads to q(t) in (100). The state thus
has dimension eight. Similarly, if (np,nq) = (2,2), the
number of internal faces will determine the state di-
mension. There are six internal faces Zlmn with lmn ∈
{abm,bcm,cam,adm,bdm,cdm}, so the state dimen-
sion will be twelve in this case (six for p and six for
q).

Proof. The expression for the approximated Hamilto-
nian is derived by substituting the approximate energy
variables into (21). The result is

Habcd(x) =
1
2
∫

Zabcd
[cp(pabcd ∧?pabcd)+ cq(qabcd ∧?qabcd)],

(104)

which can be decomposed as Habcd(x) = H p
abcd(x) +

Hq
abcd(x). These two parts can be approximated by

H p
abcd(x) =

1
2
∫

Zabcd
cp(pabcd ∧?pabcd)

Hq
abcd(x) =

1
2
∫

Zabcd
cq(qabcd ∧?qabcd).

(105)

By substituting the approximate energy variables
(97), H p

abcd(x) can be written as

H p
abcd(x) =

1
2
∫

Zabcd
cp(pabcd ∧?pabcd)

= 1
2


pabdm(t)
pbcdm(t)
pdcam(t)
pacbm(t)


T

M7


pabdm(t)
pbcdm(t)
pdcam(t)
pacbm(t)

 , (106)

with M7 given in (102).
Similarly

Hq
abcd(x) = 1

2
∫

Zabcd
cq(qabcd ∧?qabcd)

= 1
2


qam(t)
qbm(t)
qcm(t)
qdm(t)


T

M8


qam(t)
qbm(t)
qcm(t)
qdm(t)

 , (107)

with M8 given in (103).
Adding these two approximations leads to the ex-

pression for the approximation of the Hamiltonian as
given in (99). �

The effort of the finite-dimensional model can be
calculated using the state x(t) by using the definition

e :=
∂Habcd(x)

∂x
. (108)

Since M7 and M8 are symmetrical, it holds that

e =
[

M7 0
0 M8

]
︸ ︷︷ ︸

Q

x, (109)

where Q is the energy density matrix. This expression
for the effort should equal the effort defined in (85),
which is enforced in the next subsection by (123). Here
the effort of the port-Hamiltonian system is defined as
in (111).

4.6. Finite-dimensional model

The goal of this section is to write a finite-
dimensional approximation of the system (53) in port-
Hamiltonian form. However, first it has to be written as
(an image representation of) a finite-dimensional Dirac
structure.
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For the derivation of this Dirac structure, a coeffi-
cient vector is defined as

v(t) :=



ep
a(t)

ep
b(t)

ep
c (t)

ep
d(t)

eq
acb(t)

eq
abd(t)

eq
bcd(t)

eq
dca(t)


∈ R8. (110)

Then the flow and effort can be expressed in terms of
v(t) using (61), (62) and (79), (80). The result is

f (t) =
[
−M1 M2
M3 0

]
v(t), e(t) =

[
M4 0
0 M5

]
v(t).

(111)
The input u and output y can also be expressed in terms
of v, because their coefficients can be expressed in terms
of v(t) using (87). This results in



ep
acb(t)

ep
abd(t)

ep
bcd(t)

ep
dca(t)

eq
acb(t)

eq
abd(t)

eq
bcd(t)

eq
dca(t)


=

[
M6 0
0 I4

]
v(t). (112)

In this equation I4 ∈R4×4 is the identity matrix. Similar
as in [?] u and y are then defined as,

u :=
[
U1 U2

][M6 0
0 I4

]
v(t),

y :=
[
U2 U1

][M6 0
0 I4

]
v(t),

(113)

where U1,U2 ∈ R4x4 are both diagonal matrices. The
same as in [?], ”if ep is causal on the ith face, the ith
diagonal element of U1 is set to 1 and the ith diagonal
element of U2 is set to 0. If eq is causal on the ith face,
the ith diagonal element of U1 is set to 0 and the ith
diagonal element of U2 is set to 1.” This construction
leads to

UT
1 U2 = 0. (114)

Note that this construction for u and y, makes sure that
yT u satisfies (89).

Proposition 4.5. Define ET and FT as

[
f
−y

]
=

 −M1 M2
M3 0
−U2M6 −U1


︸ ︷︷ ︸

ET∈R12×8

v = ET v

[
e
u

]
=

 M4 0
0 M5

U1M6 U2


︸ ︷︷ ︸

FT∈R12×8

v = FT v,

(115)

then

D := Im
[

ET

FT

]
(116)

is not a Dirac structure.

Proof. The proof is given in Appendix G. Here the sys-
tem is even expanded and reduced to get square matri-
ces E and F . However, this changes the dynamics of
the systems and therefore does not meet all the require-
ments. �

Remark. The fact that this is not a finite-dimensional
Dirac structure is a huge issue and means that some-
thing went wrong in this approach. More precisely, the
dimension of v is not high enough. The dimension of
v should be dim(v) =dim(u)+dim(e), which is twelve
in this case. Therefore there is not a sufficient num-
ber of degrees of freedom in the structure to meet all
requirements of a Dirac structure. However, it is as-
sumed that this is solvable and therefore the approach
will continue. The remainder of this approach gives
insight in writing a system in port-Hamiltonian form
and in the interconnection structure of multiple finite-
dimensional port-Hamiltonian systems. A detailed dis-
cussion on what went wrong here (and also in the two-
dimensional case from [?]) is discussed in the next sec-
tion.

Proposition 4.6. Assume that (116) is a finite-
dimensional Dirac structure, then the finite-
dimensional port-Hamiltonian system can be rep-
resented as {

ẋ = (J−R)Qx+Bu
y = BT Qx,

(117)

with J and R equal to

J =

[
0 V1,2

V2,1 0

]
∈ R8×8

R =

[
−V1,1 0

0 0

]
∈ R8×8

(118)
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where

V1,1 = −M1M−1
4

V1,2 = (M2−M−T
4 MT

6 UT
2 U2)M−1

5
V2,1 = (M3−M−T

5 UT
1 U1M6)M−1

4
V2,2 = 0.

(119)

In (117), Q equals (109), B equals

BT =
[
U2 U1

][M6 0
0 I4

][
M4 0
0 M5

]−1

, (120)

and the state is given in (101).

Proof. The finite-dimensional port-Hamiltonian sys-
tem can be described in terms of v(t) by substituting
(111) and (113) into (12). This results in[

−M1 M2
M3 0

]
v(t) = (J−R)

[
M4 0
0 M5

]
v(t)

+B
[
U1 U2

][M6 0
0 I4

]
v(t)

(121a)[
U2 U1

][M6 0
0 I4

]
v(t) = BT

[
M4 0
0 M5

]
v(t) (121b)

From the second equation an expression for B can be
derived as (120), provided M4 and M5 are invertible.
This can be guaranteed by choosing the shape functions
in M4 and M5 wisely.
From (121a), after substituting the expression for B, a
solution for J and R can be found as

(J−R) =
[
V1,1 V1,2
V2,1 V2,2,

]
(122)

where the components of V are given in (119).
However, it is preferred to have an expression for J and
R separately. An expression for R can be found by set-
ting the dissipation term σ to 0, since R will be the zero
matrix in that case. Setting σ to 0 leads to M1 becoming
the zero matrix, which means V1,1 will become zero as
well. Therefore the expressions for J and R are (118).

In Appendix H this proof is continued by proving
that J and R from (117) are skew-symmetric and posi-
tive semi-definite respectively. �

The coefficient vector v(t) can be computed from
the states using

v(t) =
[

M4 0
0 M5

]−1 [M7 0
0 M8

]
x(t). (123)

This relation quickly shows that the effort defined in
(109) indeed equals the effort of the port-Hamiltonian
system defined in (85).

4.7. Requirement 4: Interconnection structure

The dynamics over the different elements is now
described in port-Hamiltonian form by (117). By inter-
connecting the elements, the dynamics over the whole
spatial domain is described. An important part of the
interconnection structure has already been mentioned in
the previous subsection.

There are two different types of boundaries in
the system; internal boundaries on Z and external
boundaries on ∂Z. Internal boundaries connect two ele-
ments and external boundaries connect the system with
its environment or with a different port-Hamiltonian
system. On internal boundaries the causal directions
have to match, so the output of element i is the input
of element j and vice verse. This is guaranteed by
defining the matrices U1 and U2 as in subsection 4.6.
First interconnecting elements on internal boundaries
is explained in more detail, since this imposes more
challenges than on the external boundaries due to
power-conservation. Next it is explained why it is
always possible to satisfy the causal directions.

Internal boundaries
The elements are interconnected via the faces Zw,

with w ∈ {acb,abd,bcd,dca}. Two elements i and j
can be interconnected as shown in Fig. 4. By definition
efforts going out of the elements (outputs) are negative
and efforts going into the elements (inputs) are positive.
As illustrated by the circular arrows, the order of inte-
gration on element i and j is opposite. For any k-form
α(z), it holds that∫

Z
α(z) =−

∫
−Z

α(z), (124)

where −Z denotes the manifold with orientation oppo-
site to that of Z [?]. Therefore eq

i (t) and eq
j(t) have

opposite directions caused by integration over opposite
oriented manifolds. However, as seen in (93), this does
not automatically hold for ep

i (t) and ep
j (t), since there

is no integration involved anymore. This is solved by
adding a −1-term between ep

i (t) and ep
j (t), as can be

seen in Fig. 4.
The complete interconnection structure as given in

Fig. 4 is a 0-junction, which is a power-conserving ele-
ment [?], so power conservation through the intercon-
nection still holds. The power over the boundary of
element i is yT

i ui and over the boundary of element j
is yT

j u j. The total power through the interconnection
should be zero, so

yT
i ui + yT

j u j = 0 (125)

should hold. Since the output and input of the elements
are the effort and flow over the boundary, this can be
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i j

−eqi eqj

-1
−epjepi

Figure 4: Interconnection between element i and j

equivalently written as

−eq
i ep

i − ep
j eq

j = 0. (126)

The interconnection structure from Fig. 4 can be written
as the following two equalities.{

−eq
i (t) = eq

j(t)
ep

i (t) = ep
j (t)

(127)

Substituting these expressions into (126) shows that
power-conservation indeed holds, since (125) holds.

Causal directions
As mentioned before, either eb is the input of the

element and f b is the output or the other way around.
Assume there are N elements, then there are M = 4N
external faces. Define a vector x ∈ X ⊂ ZM , where each
element of the vector is either zero or one. If eb is causal
on the face, element xi = 1 and if f b is causal, element
xi = 0. There are two types of constraints; one for inter-
nal faces and one for external faces. For every internal
face connecting face i with face j, the following should
hold

xi + x j = 1. (128)

This guarantees that the causal directions match. For the
external faces the causal direction should be specified,
but it is less constrained. The causal direction can be
sk ∈ {0,1}, resulting in

xi = sk. (129)

These constraints define a solution space X , where ev-
ery x ∈ X . Every face is either an internal face or an
external face, so every face either has to satisfy (128)
or (129). Every internal face is connected to exactly
one other internal face, so for every pair i, j, (128) has
two possible solutions. Therefore a solution for (128)
can always be found. The choice of causality for the
external faces is completely free, so a solution to (129)
always exists. This means that solution space X is never
empty.

5. Discussion 3D approach

This section discusses two things. First it discusses
what goes wrong when setting up the finite-dimensional
port-Hamiltonian system is done as in subsection 4.6.
Next it discusses what causes the fact that (116) is not a
Dirac structure.

5.1. port-Hamiltonian system

Even tough taking the inverses lead to a port-
Hamiltonian system, the steps starting with writing the
port-Hamiltonian system in terms of v (121) makes a
compromise that eventually leads to an incorrect result.
More precisely, in (121) the port-Hamiltonian system
is split in two parts; the ẋ part (121a) and the y part
(121b). Next BT is computed from the second part and
substituted in the first part. This is where it goes wrong.
By doing so, the input u satisfying the requirements is
not free. This means that the port-Hamiltonian system
in (117) is different from the system described in terms
of v by (111) and (113), while the last system approx-
imates the dynamics of the infinite-dimensional port-
Hamiltonian system correctly.

This can be seen by looking more closely at the
underlying Dirac structure. The same derivation as in
subsection 4.6 can be done using the Dirac structure of
the system expressed in terms of v(t) as shown in Ap-
pendix G. Here it becomes clear that u(t) is not free,
but should be equal to

u(t) =
[
U1 U2

][M6 0
0 I4

][
M4 0
0 M5

]−1

e(t)

=
[
U1M6M−1

4 U2M−1
5

]
e(t).

(130)

In other words; u(t) given in (113) is not the same as
u(t) in (117) and therefore the port-Hamiltonian system
is different than the system described in terms of v(t).

Besides that, in (109) a relation between e(t) and
x(t) is stated, meaning that the input of the port-
Hamiltonian system (130) is not free, but depends on
the state. Therefore the system described in (111)
and (113) is an autonomous system and not a port-
Hamiltonian system. This also means that the inter-
connection structure from subsection 4.7 cannot be re-
alized, since there is no input port that can be used to
interconnect multiple elements.

This autonomous system can be represented as de-
picted in Fig. 5a, where

Mu =
[
U1 U2

][M6 0
0 I4

]
Me =

[
M4 0
0 M5

]
.

(131)
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ẋ(t) = (J −R)Qx(t) +Bu(t)
y(t) = BTQx(t)

MuM
−1
e Q

u(t) y(t)

x(t)

(a) Actual system

ẋ(t) = (J −R)Qx(t) +Bu(t)
y(t) = BTQx(t)

u(t) y(t)

(b) port-Hamiltonian system (117)

Figure 5: Difference between the port-Hamiltonian system (117) and the actual system

The port-Hamiltonian system (117) as depicted in Fig.
5b is the same as the actual system however, the relation
between the input u(t) and the state x(t) is omitted. The
matrices J, R, Q and B however, are the same. Therefore
the behavior of the simulated system is different than
the behavior of the actual system.

5.2. Dirac structure

The current derivation in the previous section leads
to a projection of e, f ,u and y onto coefficient vector v,
which is not of maximal dimension and therefore does
not satisfy the definition of a finite-dimensional Dirac
structure on E ×F according to Definition 1. This
means that with the current e, f ,u and y, v should be
of dimension twelve, leading to square matrices ET and
FT and a different derivation of the finite-dimensional
port-Hamiltonian system. Since there is not enough
freedom, the dimension of v is too small to guarantee
a free input u, which leads to a compromise, namely,
an autonomous port-Hamiltonian system as explained
before.

6. Discretization in 1D

The problems in the three-dimensional case are
caused by a lack of freedom in the free choices of
input and outputs over the boundary of the geome-
tries. This section illustrates a possible solution for
one-dimensional manifolds. The reason to go back to
one-dimensional manifolds is that it is desired to first
get a working method for, and full understanding of,
one-dimensional manifolds before even trying two- and
three- dimensional manifolds. This method can then
be expanded to two-dimensional manifolds and eventu-
ally to three-dimensional manifolds. The existing one-
dimensional methods either do not include the point
m [?, ?] or only use one fixed input u [?]. The ex-
isting two-dimensional methods also either do not use
the point m [?] or do not end with a suitable finite-
dimensional port-Hamiltonian system that after inter-
connection approximates the dynamics of the original
system [?]. Therefore it is really necessary to start with
developing a suitable one-dimensional method. For this

method, the proposed shape functions can be found in
Appendix J.

6.1. Meshing

In the one-dimensional case the spatial domain is
defined as a one-dimensional manifold Z with a zero-
dimensional boundary ∂Z. Here Z ⊂ R1 which is as-
sumed to be bounded and closed as a subset of R1. The
simplest finite covering of Z consists of line segments,
which are of the form Zab := [a,b], with a < b. Each
line segment is partitioned in two smaller line segments
using the intermediate point m, with a < m < b, so the
elements Zab look like the one given in Fig. 6.

6.2. One dimensional manifolds

From Table 1 it can be concluded that for one-
dimensional manifolds, (np,nq) = (1,1). The linear
space of flows can be derived from (31) and is defined
as

Fp,q := Λ
1(Z)×Λ

1(Z)×Λ
0(∂Z). (132)

The linear space of efforts can be derived from (32) and
is defined as

Ep,q := Λ
0(Z)×Λ

0(Z)×Λ
0(∂Z). (133)

For (np,nq) = (1,1), the infinite-dimensional port-
Hamiltonian system from (24) becomes[

f p

f q

]
=

[
−σ? d

d 0

][
ep

eq

]
[

f b

eb

]
=

[
1 0
0 −1

][
ep|∂Z
eq|∂Z

]
.

(134)

a m b

Figure 6: Element Zab with m ∈ Zab
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This is a Dirac structure

D := {(ep,eq,eb),( f p, f q, f b) ∈ Ep,q×Fp,q |[
f p

f q

]
=

[−σ? d
d 0

][
ep

eq

]
[

f b

eb

]
=

[
1 0
0 −1

][
ep|∂Z

eq|∂Z

]
},

(135)

with respect to the following non-degenerate bi-linear
pairing 〈e | f 〉 ∈ R with e ∈ Ep,q and f ∈Fp,q:

〈(ep,eq,eb),( f p, f q, f b)〉 :=∫
Z [e

p∧ f p + eq∧ f q]+
∫

∂Z [e
b∧ f b]

+
∫

Z [e
p∧σ ? ep].

(136)

The Hamiltonian is chosen quadratic and is defined
as in (21). The requirements for one-dimensional man-
ifolds are the same as for three-dimensional manifolds
and are given at the end of subsection 4.2.

6.3. Requirement 1: Approximation of the dy-
namics

The spaces of the different flows are given in (132)
as f p ∈ Λ1 and f q ∈ Λ1. These flows are approximated
using the following spatial temporal expansions

f p(t,z) := f p
am(t)ω

p
am(z)+ f p

mb(t)ω
p
mb(z)

f q(t,z) := f q
am(t)ω

q
am(z)+ f q

mb(t)ω
q
mb(z).

(137)

The one-form shape functions ω
p
s and ω

q
s for line seg-

ments s ∈ {am,mb} satisfy

∫
Zs1

ωs2 =

{
1 for s1 = s2

0 for s1 6= s2.
(138)

So far this approach is similar to the three-dimensional
approach, however, the point m will be included in the
approximation of the effort, such that the dimensions
in the end will be correct. The efforts ep ∈ Λ0(Z) and
eq ∈ Λ0(Z) are approximated using the spatial temporal
expansions

ep
ab(t,z)=ep

a(t)ω
p
a (z)+ ep

m(t)ω
p
m(z)+ ep

b(t)ω
p
b (z)

eq
ab(t,z)=eq

a(t)ω
q
a (z)+ eq

m(t)ω
q
m(z)+ eq

b(t)ω
q
b (z).

(139)
Here the zero-form shape functions satisfy

ωl1(l2) =

{
1 for l1 = l2
0 for l1 6= l2,

(140)

where l1, l2 ∈ {a,b} are points and

ωm(l) =

{
1 for l = m
0 for l 6= m

(141)

where l ∈ {a,m,b} are points.
To satisfy the first Requirement, the approximate

flows (137) and efforts (139) should satisfy the original
partial differential equation (135). However, in general
this is not possible pointwise in (z, t)∈ Z×T , but it may
be possible after integration over the spatial geometry
Zab.

Proposition 6.1. The first Requirement is satisfied for
arbitrary shape functions satisfying (138), (140), (141)
if

[
f p
am(t)

f p
mb(t)

]
=−M1

ep
a(t)

ep
m(t)

ep
b(t)

+M2

eq
a(t)

eq
m(t)

eq
b(t)

 (142)

and [
f q
am(t)

f q
mb(t)

]
= M3

ep
a(t)

ep
m(t)

ep
b(t)

 . (143)

Here

M1 =

[∫
Zam

σ ?ω
p
a

∫
Zam

σ ?ω
p
m

∫
Zam

σ ?ω
p
b∫

Zmb
σ ?ω

p
a

∫
Zmb

σ ?ω
p
m

∫
Zmb

σ ?ω
p
b

]
,

(144)

M2 =

[∫
∂Zam

ω
q
a

∫
∂Zam

ω
q
m

∫
∂Zam

ω
q
b∫

∂Zmb
ω

q
a

∫
∂Zmb

ω
q
m

∫
∂Zmb

ω
q
b

]
(145)

and

M3 =

[∫
∂Zam

ω
p
a

∫
∂Zam

ω
p
m

∫
∂Zam

ω
p
b∫

∂Zmb
ω

p
a

∫
∂Zmb

ω
p
m

∫
∂Zmb

ω
p
b

]
. (146)

Proof. This can be derived by substituting the approxi-
mate flows (137) and efforts (139) into the Dirac struc-
ture (135), which gives an approximation of the be-
haviour of the system on the element Zab. The result
is

f p
am(t)ω

p
am(z)+ f p

mb(t)ω
p
mb(z) =

−σ ? [ep
a(t)ω

p
a (z)+ ep

m(t)ω
p
m(z)+ ep

b(t)ω
p
b (z)]

+d[eq
a(t)ω

q
a (z)+ eq

m(t)ω
q
m(z)+ eq

b(t)ω
q
b (z)]

(147)
and

f q
am(t)ω

q
am(z)+ f q

mb(t)ω
q
mb(z) =

d[ep
a(t)ω

p
a (z)+ ep

m(t)ω
p
m(z)+ ep

b(t)ω
p
b (z)].

(148)

Integration of (147) over the line segments Zam and
Zmb while using Stokes’ theorem (A.3) and (138) yields
(142), where M1 and M2 are given in (144) and (145)
respectively.

Similarly integration of (148) over the lines Zk, for
k ∈ {am,mb} while using Stokes’ theorem (A.3) and
(138) yields (143), where M3 is given in (146). �
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6.4. Requirement 2: Approximating the power
balance

The power balance for infinite-dimensional port-
Hamiltonian systems is given in (26). This holds for the
whole system, but it should also hold for each element
Zabcd . Therefore, it can also be written as

Pp(t)+ pq(t) = Pb(t)−Pσ (t) (149)

with

Pp(t) :=
∫

Zab
[ep∧ f p]

Pq(t) :=
∫

Zab
[eq∧ f q]

Pb(t) :=
∫

∂Zab
eq |∂Z ∧ep |∂Z

Pσ (t) :=
∫

Zab
ep∧σ ? ep.

(150)

In (16) the power balance of a finite-dimensional
port-Hamiltonian system is shown, which equals

eT f = yT u− eT Re. (151)

This balance has the same form as the power balance of
the infinite-dimensional system given in (149) and will
be used in the following derivation.

Proposition 6.2 (Approximations of Pp and Pq). Let e
be defined as

e(t) =
[

ep(t)
eq(t)

]
(152)

with

ep(t) =
[

ep
am(t)

ep
mb(t)

]
, eq(t) =

[
eq

am(t)
eq

mb(t)

]
(153)

and f as

f (t) =
[

f p(t)
f q(t)

]
(154)

with

f p(t) =
[

f p
am(t)

f p
mb(t)

]
, f q(t) =

[
f q
am(t)

f q
mb(t)

]
. (155)

Then

〈e, f 〉= 〈ep, f p〉+ 〈eq, f q〉= Pp
ab +Pq

ab, (156)

where Pp(t) ≈ Pp
ab(t) and Pq(t) ≈ Pq

ab(t). The new ef-
forts in (153) are defined for arbitrary shape functions
satisfying (138), (140), (141) as[

ep
am(t)

ep
mb(t)

]
:= M4

ep
a(t)

ep
m(t)

ep
b(t)

 , (157)

and [
eq

am(t)
eq

mb(t)

]
:= M5

eq
a(t)

eq
m(t)

eq
b(t)

 . (158)

Here

M4 =∫
Zab

[
ω

p
a ∧ω

p
am ω

p
m∧ω

p
am ω

p
b ∧ω

p
am

ω
p
a ∧ω

p
mb ω

p
m∧ω

p
mb ω

p
b ∧ω

p
mb

]
(159)

and

M5 =∫
Zab

[
ω

q
a ∧ω

q
am ω

q
m∧ω

q
am ω

q
b ∧ω

q
am

ω
q
a ∧ω

q
mb ω

q
m∧ω

q
mb ω

q
b ∧ω

q
mb

]
.

(160)

Note that the flows from (155) are already defined, ei-
ther in its original definition (137) or in (142) and
(143).

Remark. In this Proposition and in Proposition 6.3 the
approximations denoted with ≈ are exact if f (t,z) and
e(t,z) satisfy the expansions in (137) and (139) respec-
tively, which is guaranteed by this construction.

Proof. The expressions for the approximations of Pp

and Pq can be derived by substituting the approxima-
tions of the flows (137) and the efforts (139) into (150),
which leads to an approximated power balance. For
Pp(t) this results in

Pp(t) ≈ Pp
ab(t)

:=
∫

Zab
ep∧ f p

=
[
ep

am(t) ep
mb(t)

]
·[

f p
am(t) f p

mb(t)
]T

,

(161)

where two new efforts are defined as (157).
Similarly Pq(t) is approximated as

Pq(t) ≈ Pq
ab(t)

:=
∫

Zab
eq∧ f q

=
[
eq

am(t) eq
mb(t)

]
·[

f q
am(t) f q

mb(t)
]T

,

(162)

where two new efforts are defined as (158).
By defining the effort and flow of the port-

Hamiltonian system as

e(t) =


ep

am(t)
ep

mb(t)
eq

am(t)
eq

mb(t)

 , f (t) =


f p
am(t)

f p
mb(t)

f q
am(t)

f q
mb(t)

 , (163)

their multiplication, eT f , still represents the change of
energy in the system. However, it is now approximated
as

eT f = Pp
ab +Pq

ab. (164)

�

20



Proposition 6.3 (Approximation of Pb). Define two
new efforts at the boundary of Z as

[
êp

a(t)
êp

b(t)

]
= M̂6

ep
a

ep
m

ep
b

 , (165)

with

M̂6 =
∫

∂Zab

[
ω

q
a

ω
q
b

]
∧
[
ω

p
a ω

p
m ω

p
b

]
. (166)

The power over the boundary Pb(t) is then approxi-
mated as

Pb(t) ≈ yT u
= êp

a(t)e
q
a(t)+ êp

b(t)e
q
b(t).

(167)

where the input and output should be defined appropri-
ately.

Proof. Pb(t) can be approximated in a similar way as
Pp(t) and Pq(t). The approximations of the efforts
(139) and flows (137) are substituted into the definition
of Pb in (150). This results in

Pb(t) ≈ Pb
ab(t)

=
∫

∂Zab
[eq |∂Z ∧ep |∂Z ]

=
[
eq

a(t) eq
m(t) eq

b(t)
]
·[

êp
a(t) êp

m(t) êp
b(t)
]T

,

(168)

where three new efforts are defined asêp
a(t)

êp
m(t)

êp
b(t)

= M6

ep
a

ep
m

ep
b

 , (169)

with

M6 =
∫

∂Zab

ω
q
a |∂Z

ω
q
m |∂Z

ω
q
b |∂Z

∧ [ω p
a |∂Z ω

p
m |∂Z ω

p
b |∂Z

]
.

(170)
Points a and b lie on the boundary of the ele-

ment, so ωa |∂Z= ωa and ωb |∂Z= ωb. On the other
hand, m does not lie on the boundary of the element,
so ωm |∂Z= 0, which is satisfied if ωm satisfies (141).
Combining (169) and (170), shows that (141) implies
that, êp

m always equals zero. Therefore Pb
ab(t) defined in

(168) implies that

Pb
ab(t) =

[
eq

a(t) eq
b(t)
]
·
[
êp

a(t) êp
b(t)
]T

, (171)

where two new efforts are defined as in (165). The
power over the boundary is approximated by the mul-
tiplication of the input and output of the system, so the

input and output of the finite-dimensional system are
chosen such that yT u is given by

Pb(t) ≈ yT u
= êp

a(t)e
q
a(t)+ êp

m(t)e
q
m(t)+ êp

b(t)e
q
b(t).

(172)
However, since êp

m(t) always equals 0, this is equivalent
to (167). �

This makes more sense, since now the input and output
are defined on the boundary of the element, instead of
also at the point m.

The terms ep
w(t)e

q
w(t), with w∈ {a,b} represent the

energy flowing over boundary w, since

ep
w(t)e

q
w(t) =

∫
Zw

ep∧ eq, for w ∈ {a,b}. (173)

An approximation for the power dissipation Pσ can
be derived from the resemblance between (71) and (73).
It can then be approximated by:

Pσ (t)≈ Pσ
ab(t) = e(t)T Re(t). (174)

6.5. Requirement 3: Approximating the
Hamiltonian

The flows are defined as (23), which means that the
approximated flows should satisfy

f p
ab(t,z) := ∂ pab

∂ t
f q
ab(t,z) := ∂qab

∂ t

(175)

for suitable definitions of pab and qab. The approxi-
mated energy variables can then be derived from (137)
as

pab(t,z) = pam(t)ω
p
am(z)+ pmb(t)ω

p
mb(z)

qab(t,z) = qam(t)ω
q
am(z)+qmb(t)ω

q
mb(z)

(176)

where pab ∈ Λnp
= Λ1 and qab ∈ Λnq

= Λ1. From (175)
it is inferred that

f p
s (t) =

d ps(t)
dt for s ∈ {am,mb}

f q
k (t) =

dqs(t)
dt for k ∈ {am,mb}.

(177)

Proposition 6.4. The third Requirement is met if the
Hamiltonian is approximated by

Hab(pab,qab) = H p
ab(pab)+Hq

ab(qab)

= 1
2 x(t)T

[
M7 0
0 M8

]
x(t),

(178)

where p(t) and q(t) are defined as

p(t) = col(pam, pmb)
q(t) = col(qam,qmb).

(179)
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The state per element has dimension four and is equal
to

x(t) = col(p(t),q(t)). (180)

Furthermore, the M-matrices are defined as

M7 =
∫

Zab
cp
[

ω
p
am

ω
p
mb

]
∧?
[
ω

p
am ω

p
mb

]
(181)

and

M8 =
∫

Zab
cq
[

ω
q
am

ω
q
mb

]
∧?
[
ω

q
am ω

q
mb

]
. (182)

Proof. The expression for the approximated Hamilto-
nian is derived by substituting the approximate energy
variables into (21). The result is

Hab(pab,qab) :=
1
2

∫
Zab

[cp(pab∧?pab)+cq(qab∧?qab)],

(183)
which can be decomposed as Hab(pab) = H p

ab(pab) +
Hq

ab(qab). These two parts can be approximated as

H p
ab(pab) =

1
2
∫

Zab
cp(pab∧?pab)

Hq
ab(qab) =

1
2
∫

Zab
cq(qab∧?qab).

(184)

By substituting the approximate energy variables,
H p

ab(x) can be written as

H p
ab(pab) = 1

2
∫

Zab
cp(pab∧?pab)

= 1
2

[
pam(t)
pmb(t)

]T

M7

[
pam(t)
pmb(t)

]
, (185)

with M7 given in (181).
Similarly

Hq
ab(qab) = 1

2
∫

Zab
cq(qab∧?qab)

= 1
2

[
qam(t)
qmb(t)

]T

M8

[
qam(t)
qmb(t)

]
, (186)

with M8 given in (182).
Adding these two approximations leads to the ex-

pression for the approximation of the Hamiltonian as in
(178). �

The effort of the finite-dimensional model can be calcu-
lated from the state x(t) using the definition

e :=
∂Hab(x)

∂x
. (187)

Since M7 and M8 are symmetrical, it holds that

e =
[

M7 0
0 M8

]
︸ ︷︷ ︸

Q

x, (188)

where Q is the energy density matrix. This expression
for the effort should equal the effort defined in (163),
which is enforced in the next subsection by (200). Here
the effort of the port-Hamiltonian system is defined as
in (190).

6.6. Finite-dimensional model

The goal of this section is to write a finite-
dimensional approximation of the system (135) in port-
Hamiltonian form. However, first it has to be written as
(an image representation of) a finite-dimensional Dirac
structure.

For the derivation of this Dirac structure, a coeffi-
cient vector is defined as

v(t) =


ep

a(t)
ep

m(t)
ep

b(t)
eq

a(t)
eq

m(t)
eq

b(t)

 ∈ R6. (189)

Then the flow and effort can be expressed in terms
of v(t) using (142), (143) and (157), (158):

f (t) =
[
−M1 M2
M3 0

]
v(t), e(t) =

[
M4 0
0 M5

]
v(t).

(190)
The coefficients from u and y can also be expressed in
terms of v(t): 

êp
a(t)

êp
b(t)

eq
a(t)

eq
b(t)

=

[
M̂6 0
0 Î

]
︸ ︷︷ ︸
Muy∈R4×6

v(t), (191)

so u and y can also be expressed in terms of v(t). In this
equation Î equals (198).
Define u and y similar as in [?],

u =
[
U1 U2

]
Muyv(t),

y =
[
U2 U1

]
Muyv(t),

(192)

where U1,U2 ∈ R2×2 are both diagonal matrices. The
same as in [?], ”if ep is causal on the ith edge, the ith
diagonal element of U1 is set to 1 and the ith diagonal
element of U2 is set to 0. If eq is causal on the ith edge,
the ith diagonal element of U1 is set to 0 and the ith
diagonal element of U2 is set to 1.” This construction
then always leads to

UT
1 U2 = 0. (193)

In the one-dimensional case, there are four possibilities
for U1 and U2, leading to the following inputs and out-
puts.

U1 =

[
1 0
0 1

]
, U2 =

[
0 0
0 0

]
u =

[
êp

a(t)
êp

b(t)

]
, y =

[
eq

a(t)
eq

b(t)

] (194a)
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Figure 7: Possible interconnection structures in 1D

or

U1 =

[
1 0
0 0

]
, U2 =

[
0 0
0 1

]
u =

[
êp

a(t)
eq

b(t)

]
, y =

[
eq

a(t)
êp

b(t)

] (194b)

or

U1 =

[
0 0
0 1

]
, U2 =

[
1 0
0 0

]
u =

[
eq

a(t)
êp

b(t)

]
, y =

[
êp

a(t)
eq

b(t)

] (194c)

or

U1 =

[
0 0
0 0

]
, U2 =

[
1 0
0 1

]
u =

[
eq

a(t)
eq

b(t)

]
, y =

[
êp

a(t)
êq

b(t)

] (194d)

Note that this defines all the partitions of (191) and that
this construction for u and y, makes sure that yT u satis-
fies (167).

Proposition 6.5. Define ET and FT as

[
f
y

]
=

−M1 M2
M3 0

U2M̂6 U1 Î


︸ ︷︷ ︸

ET∈R6×6

v = ET v

[
e
u

]
=

 M4 0
0 M5

U1M̂6 U2 Î


︸ ︷︷ ︸

FT∈R6×6

v = FT v,

(195)

then

D := Im
[

ET

FT

]
(196)

is a finite-dimensional Dirac structure in the sense of
Definition 1.

Proof. The proof is given in Appendix I. �

Proposition 6.6. The finite-dimensional port-
Hamiltonian system can now be represented by

[
f
y

]
=

−M1 M2
M3 0

U2M̂6 U1 Î


︸ ︷︷ ︸

ET

 M4 0
0 M5

U1M̂6 U2 Î

−1

︸ ︷︷ ︸
F−T

[
e
u

]
, (197)

where

Î =
[

1 0 0
0 0 1

]
. (198)

Proof. A finite-dimensional port-Hamiltonian system
(12) with feedthrough can be written as[

f
y

]
=

[
J−R B
BT D

][
e
u

]
. (199)

The same can be done for the system described in terms
of coefficient vector v ((190) and (192)) by eliminating
v. This results in (197). �

In order to make sure that (188) holds, v is com-
puted from the state using

v(t) =

M4 0
0 M5
[U1 U2]Muy

−1

︸ ︷︷ ︸
F−T

M7 0 0
0 M8 0
0 0 I2

[x
u

]
,

(200)
where I2 ∈ R2×2 denotes the identity matrix.

In (197) it is necessary for FT to be invertible. Ma-
trix FT is square; FT ∈ R6×6, so it is invertible iff it
has full rank. Since M4 ∈ R2×3, U1M̂6 should have one
non-zero columns for FT to be full rank. The same
holds for U2 Î, which is caused by M5 ∈ R2×3. There-
fore the only possible inputs and outputs are given in
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(194b) and (194c). In other words, there are two possi-
ble input/output pairs

(u,y) =

{
(col(êp

a ,e
q
b),col(eq

a, ê
p
b)) option a

(col(eq
a, ê

p
b),col(êp

a ,e
q
b)) option b.

(201)

6.7. Requirement 4: Interconnection structure

The elements will be interconnected in a similar
way as described in section 4.7. Similar as for three-
dimensional manifolds, a minus-sign is introduced to
guarantee power-conservation. The minus-sign acts on
the efforts of energy variable q. The two possibilities to
connect element i to its neighboring elements are given
in Fig. 7.

Proposition 6.7. Both interconnection structures given
in Fig.7 are power-preserving.

Proof. In order for an interconnection structure to be
power-preserving,

yT
i ui + yT

i+1ui+1 = 0 (202)

should be true. For option a, as depicted in 7a, this
means that

êp
bi

eq
bi
+ eq

ai+1
êp

ai+1
= 0 (203)

should hold. The interconnection structure from option
a is given by {

−eq
ai+1 = eq

bi

êp
ai+1 = êp

bi
.

(204)

Substituting these expression into (203) leads to

êp
bi

eq
bi
+ eq

ai+1
êp

ai+1
= êp

bi
eq

bi
− eq

bi
êp

bi
= 0, (205)

which shows that interconnection structure a indeed is
power-preserving. Interconnection structure option b
can be proven to be power-preserving in the exact same
way. �

Therefore, even though the inputs and outputs are
more restricted than in the three-dimensional case, there
is enough freedom for interconnection. However, this
interconnection structure restricts the choice of bound-
ary ports, as can also be seen in Fig. 7. The choice of
the boundary port at a0 determines the interconnection
structure for all of the other elements and therefore also
the boundary ports at bN , where the N-th element is the
last one in the mesh.

6.8. Conclusion

This approach for one-dimensional manifolds is
promising, since it solves the lack of freedom in the free
choices of input and outputs over the boundary of the
geometries. Besides that there is still enough freedom
to interconnect multiple elements.

7. Conclusions and recommendations

This paper addresses the problem of how to ap-
proximate distributed parameter systems in infinite-
dimensional port-Hamiltonian form, by interconnecting
a finite number of finite-dimensional port-Hamiltonian
systems. Using the underlying Dirac structure, the
research problem can be translated to finding a
finite-dimensional Dirac structure that approximates
the infinite dimensional Dirac structure. The finite-
dimensional port-Hamiltonian systems (the elements)
should satisfy four requirements. First of all they should
approximate the dynamics of the distributed parameter
system. Besides that they should approximate its power
balance and its energy distribution, which is given by
the Hamiltonian. After satisfying these requirements
they should be interconnected in a power-conserving
way.

The implications of each of these requirements are
developed in a differential-geometric setting and the
requirements are characterized separately as demands
on the spatial temporal expansion of the flow and ef-
fort. The first Requirement imposes conditions directly
on the coefficients of the expansion of the flow. For
the second Requirement the resemblance between the
power balance of an infinite-dimensional Dirac struc-
ture and a finite-dimensional Dirac structure is used to
define the effort and flow of the finite-dimensional port-
Hamiltonian system. Besides that, the power over the
boundary is also approximated, which defines the prod-
uct between the input and output. The power over the
boundary is not exact per external face, but per tetrahe-
dron. More precisely, the sum of the power over the four
external faces is exact, but the power per external face is
not. This is a compromise in this approach. The approx-
imations used in this construction are exact if the expan-
sions of the space-dependent flow and effort are exactly
satisfied, which is guaranteed in this approach. The
third Requirement approximates the energy distribution
per element and defines a relation between the approx-
imated energy variables, whose coefficients are defined
as the state of the finite-dimensional port-Hamiltonian
system. Proving a Dirac structure and setting up the
finite-dimensional model uses a coefficient vector and
shows that the flow, effort, input and output can all be
expressed in terms of these coefficients. Unfortunately
there is not enough freedom to satisfy all of the require-
ments and have a free input u.

For three-dimensional manifolds, the shape of the
elements is chosen as a tetrahedron. Even though this
is the simplest three-dimensional shape with non-zero
volume, it seems to be rich enough to satisfy all of the
requirements after adding a point m inside. This is not
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proven in this paper, however, it is assumed that the
shape of the element is not causing the problems faced
in the current approach. Further research is necessary
to verify this. Currently, the minimal state dimension
of the finite-dimensional system is eight. This holds
for (np,nq) = (3,1). Spatially discretizing a system
where (np,nq) = (2,2), leads to more states, namely a
state dimension of twelve. A possible interconnection
structure that preserves power is developed for three-
dimensional manifolds. Since the three-dimensional
approach is not correctly developed in this paper it is
impossible to conclude anything about the sparsity of
the finite-dimensional models and the implementation
of such a method on real systems.

In this approach shape functions are used for inter-
polation in the spatial domain. Multiple requirements
are specified for these shape functions and they are gen-
erally difficult to find.

In previous work [?], there were not sufficient de-
grees of freedom obtained to properly define the in-
put signals over the boundary of the geometric struc-
ture (line-segments in 1D, triangles in 2D, tetrahedron
in 3D). More precisely, the current derivation leads to
a projection of the effort, flow, input and output onto
a coefficient vector v, which is not of maximal dimen-
sion and does therefore not lead to a finite-dimensional
Dirac structure. This lack of freedom leads to a compro-
mise, namely an autonomous port-Hamiltonian system,
which cannot be connected to other port-Hamiltonian
systems.

Therefore the approach has been re-developed
for one-dimensional geometries. The main difference
is that the effort at the point m is included in the
expansion of the efforts. The result is a Dirac structure
with sufficient degrees of freedom, which leaves
sufficient freedom to interconnect elements. Similar as
for the three-dimensional approach, shape functions are
generally difficult to find.

The next step will be to verify that the approach in-
deed works for one-dimensional manifolds. This can
be done by simulating a partial differential equation,
e.g. the wave equation, using the approach mentioned
in section 6. When the dynamics are correctly approxi-
mated, the power balance has to be checked carefully
and it is wise to see whether the inputs and outputs
of neighboring elements are connected correctly. Next
the one-dimensional method can be expanded to two-
and three-dimensional manifolds. Finally these meth-
ods should be compared to conventional methods such
as FEM. They could be compared on e.g. accuracy and
time it takes to perform the discretization.

The method itself can be improved as well. In this

approach the shape function are determined immedi-
ately (at least their requirements are), however, the re-
quirements such as (59) and (60) make sense, but are
not necessary for the approach. They can be left out
and the freedom this creates can be used to satisfy the
invertibility of FT or the skew-symmetric property of J
for example. Besides that, the current approach makes a
compromise by approximating the energy flowing over
the boundary per face, while the total power over the
boundary is correct. However, it would be better if the
energy flowing over each external face of the tetrahedra
is exact as well. This can be imposed as a condition
on the shape functions, leading to a non-linear require-
ment. This cannot be satisfied with the proposed shape
functions, due to a lack of freedom, but may be pos-
sible for different shape functions or a different three-
dimensional approach.

Once the two- and three-dimensional method
are developed correctly, it is advised to design them
for a mesh with differently shaped elements, such as
a mesh containing both tetrahedra and boxes. This
could decrease the number of elements in the mesh,
which will speed up the spatial discretization. Besides
that, it is also interesting to develop this approach for
time-varying meshes.
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Appendices
A. Mathematical concepts

This appendix discusses the most important math-
ematical concepts of differential-geometry used in this
paper [?, ?].

On a three-dimensional manifold Z ⊂ R3, there
exist zero-forms Λ0(Z), one-forms Λ1(Z), two-forms
Λ2(Z) and three-forms Λ3(Z). A zero-form can be eval-
uated at points on the manifold z ∈ Z and behave as
functions f (z) ∈ Λ0(Z), assigning numbers to points
f (z) : Z → R. A one-form can be integrated over a
line segment on the manifold Z and consists of a func-
tion assigning numbers to line segments. Generally
a one-form g ∈ Λ1(Z) is given by g(z) = g1(z)dz1 +
g2(z)dz2 + g3(z)dz3, with functions g1(z),g2(z),g3(z) :
Z → R. A two-form h ∈ Λ2 can be integrated over a
surface inside the manifold and is generally given by
h(z) = h1dz1dz2 + h2dz2dz3 + h3dz3dz1, with functions
h1(z),h2(z),h3(z) : Z → R. A three-form k ∈ Λ3 can
be integrated over a sub-volume of the domain and is
generally given by k(z) = k1(z)dz1dz2dz3, with function
k1(z) : Z→ R.

In differential geometry, spatial differentation is
performed by the exterior derivative d, which maps a
k-form to a (k+1)-form;

d : Λ
k(Z)→ Λ

k+1(Z). (A.1)

On a three-dimensional manifold, the exterior derivative
is defined as

d =
∂

∂ z1
dz1 +

∂

∂ z2
dz2 +

∂

∂ z3
dz3. (A.2)

Besides that, the exterior derivative of all k-forms with
k > 2 are defined to be zero, so for ω ∈ Λ3(Z) the
exterior derivative equals zero: dω(z) = 0.

Stokes’ theorem is used in differential geometry
and makes a useful statement about integration of dif-
ferential forms on a manifold. It is given by∫

Z
dω =

∫
∂Z

ω, (A.3)

which holds for any k-form ω on any p-dimensional
manifold Z, with (p−1)-dimensional boundary ∂Z.

A different important concept in differential geom-
etry is the wedge product ∧. This operator combines a
k-form ω1 with a l-form ω2 into a (k+ l)-form ω1∧ω2.

The following properties hold for a wedge product:

ω1∧ω2 = (−1)kl
ω2∧ω1 (A.4a)

d(ω1∧ω2) = dω1∧ω2 +(−1)k
ω1∧dω2. (A.4b)

Besides that if c is a constant, the following holds
as well

(cω1)∧ω2 = c(ω1∧ω2) = ω1∧ (cω2). (A.5)

Very often the wedge product is denoted as a product,
for example dz1∧dz2 is usually denoted as the two-form
dz1dz2. Some properties of the exterior derivative com-
bined with the wedge product are

dzi∧dzi = 0, i ∈ {1,2,3}
ddω = 0, ω ∈ Λk(Z), ∀k ∈ N. (A.6)

Another import concept in differential geometry is
the Hodge star ?, which on a n-dimensional manifold
converts a k-form ω into a (n−k)-form ?ω . The Hodge
star is defined as

ω1∧?ω2 = 〈ω1,ω2〉dz1∧dz2∧dz3, (A.7)

where ω1 and ω2 are k-forms and 〈·, ·〉 is the Euclidean
inner product.
The behavior of the Hodge star in common situations is
given by

?1 = dz1∧dz2∧dz3 ?(dz1∧dz2∧dz3) = 1
?dz1 = dz2∧dz3 ?(dz2∧dz3) = dz1
?dz2 = dz3∧dz1 ?(dz3∧dz1) = dz2
?dz3 = dz1∧dz2 ?(dz1∧dz2) = dz3.

(A.8)
If a Hodge star is applied twice on ω ∈Λk, the following
holds:

??ω = (−1)k(n−k)
ω. (A.9)

This means that on a n-dimensional manifold where n
is odd, the inverse of the Hodge star ?−1 is the Hodge
star itself. Note that on a three-dimensional manifold
k(n−k) = k(3−k) can never be odd for k ∈ {0,1,2,3},
so

??ω = ω (A.10)

and
ω1 = ?ω2 (A.11)

is the same as

?ω1 = ??ω2 = ω2. (A.12)
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B. Wave equation in port-Hamiltonian
form

In order to write the wave equations (2) in port-
Hamiltonian form, Hooke’s law

σ = Eε (B.13)

is used, where E is the modules of elasticity. Besides
that, the formula for kinetic momentum is also used

ρ = mv = mẇ, (B.14)

where m is the mass of the string/plate. In the case of a
vibrating string/plate,

ε = ∇w (B.15)

and therefore ε̇ can be written as

ε̇ =
∂

∂ t
(∇w) = ∇

∂w
∂ t

= ∇v. (B.16)

The derivative of the kinetic momentum is given by

ρ̇ =
∂

∂ t
(mv) = m

∂v
∂ t

= m
∂ 2w
∂ t2 . (B.17)

Substituting the wave equation (2) leads to

ρ̇ =−mc2
∇

2w, (B.18)

which using Hooke’s law (B.13) and (B.15) can be writ-
ten as

ρ̇ =−mc2 1
E

∇σ . (B.19)

Constant c2 equals

c2 =
E
m
, (B.20)

so the derivative of the kinetic momentum actually
equals

ρ̇ =−∇σ . (B.21)

Combining (B.16) and (B.21) yields (4) and concludes
writing the wave equations in port-Hamiltonian form.

C. Proof of power balance

This appendix proves the expression for the power
balance of an infinite-dimensional port-Hamiltonian
system, which is given in (26). In order to achieve an
expression for the power balance similar as in (16), it is
desired to find an expression for the change of energy.
This is given by the derivative of the Hamiltonian with
respect to time. The Hamiltonian is given in (21), which
using the choices for the efforts (22) can be written as

H(p,q) =
1
2

∫
Z
[ep∧ p+ eq∧q] (C.22)

Using the choice for the flows from (23), the change of
energy is [?]

dH
dt

=
1
2

∫
Z
[ep∧ f p + eq∧ f q]. (C.23)

Substituting the expressions for f p and f q from (24)
leads to

1
2
∫

Z [e
p∧ f p + eq∧ f q] = 1

2
∫

Z [e
p∧−σ ? ep]+

1
2
∫

Z [e
p∧ (−1)rdeq + eq∧dep].

(C.24)

The last term can be rewritten using (A.4a):

ep∧deq = (−1)(n−np)(n−nq+1)deq∧ ep. (C.25)

By also using the homogeneity of the wedge product
(A.5) the last term in (C.24) can be rewritten to

1
2
∫

Z [e
p∧ (−1)rdeq + eq∧dep] =

1
2
∫

Z [(−1)r+(n−np)(n−nq+1)deq∧ ep + eq∧dep].
(C.26)

Since np+nq = n+1 and r = npnq+1, r+(n−np)(n−
nq + 1) = npnq + 1+(n− np)(np) = npnq + 1+(nq−
1)(np) = 2npnq+1−np = 2npnq+nq−n. So, the term
(−1)r+(n−np)(n−nq+1) equals (−1)2npnq+nq−n, which can
also be written as (−1)2npnq

(−1)nq−n. 2npnq is al-
ways even so (−1)2npnq

(−1)nq−n = (−1)nq−n. Since
(−1)−x = 1

(−1)x = (−1)x, (−1)nq−n = (−1)n−nq
. There-

fore the last term of (C.24) can be written as

1
2
∫

Z [e
p∧ (−1)rdeq + eq∧dep] =

1
2
∫

Z [(−1)n−nq
deq∧ ep + eq∧dep].

(C.27)

Now the following property of the wedge product will
be used, (A.4b):

d(eq∧ ep) = deq∧ ep +(−1)n−nq
eq∧dep. (C.28)

Multiplying (C.28) with (−1)n−nq
leads to

(−1)n−nq
d(eq∧ ep) =

(−1)n−nq
deq∧ ep +(−1)n−nq

(−1)n−nq
eq∧dep.

(C.29)
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This is equivalent to

(−1)n−nq
d(eq∧ ep) =

(−1)n−nq
deq∧ ep +(−1)2n−2nq

eq∧dep.
(C.30)

Since 2n−2nq is always even, (−1)2n−2nq
equals 1 and

(−1)n−nq
d(eq∧ ep) =

(−1)n−nq
deq∧ ep + eq∧dep.

(C.31)

Substituting this into (C.27) shows that the last term of
(C.24) can be written as

1
2
∫

Z [e
p∧ (−1)rdeq + eq∧dep] =

1
2
∫

Z [(−1)n−nq
d(eq∧ ep)].

(C.32)

Applying Stokes’ theorem (A.3) yields

1
2
∫

Z [e
p∧ (−1)rdeq + eq∧dep] =

1
2
∫

∂Z [(−1)n−nq
eq |∂Z ∧ep |∂Z ].

(C.33)

Substituting the expression for f b and eb from (24)
yields

1
2
∫

Z(−1)rdeq∧ ep +dep∧ eq] =
1
2
∫

∂Z [−eb∧ f b].
(C.34)

Substituting this expression for the last term in
(C.24) leads to the power balance given in (26).

D. Proof of finite-dimensional Dirac struc-
ture

This appendix proves Proposition 2.2. According
to Definition 1, this is a Dirac structure iff

i 〈e | f 〉= 0, for all ( f ,e) ∈D ,
ii dimD = dimF .

In order to prove a Dirac structure power should be con-
served, so a lossless system is assumed (R = 0). For
ê, f̂ ∈ RN , the first property is the same as êT f̂ = 0.
Substituting the expression for f̂ leads to

êT f̂ =
[

e
u

]T [ f
−y

]
=

[
e
u

]T [ J B
−BT 0

][
e
u

]
. (D.35)

In a port-Hamiltonian system J is skew symmetric, so[
J B
−BT 0

]
(D.36)

is also skew-symmetric. A property of a skew-
symmetric matrix A is that

vT Av =−vT AT v =−vT Av = 0 ∀v ∈ RN . (D.37)

Therefore
êT f̂ = 0 (D.38)

and the first property of a Dirac structure is satisfied.
The second property of a Dirac structure is satisfied

if [
J B
−BT 0

]
(D.39)

has full rank, which is true if B has full rank, which is
no loss of generality.
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E. Proof of infinite-dimensional Dirac
structure

This appendix proves that (53) with bi-linear pair-
ing (54) is a Dirac structure. The proof is based on the
proofs given in [?] and [?]. The first step is to proof that
D ⊂D⊥ and the second step is to proof that D⊥⊂D . If
both of these conditions are true, D is a Dirac structure
[?]. Besides that, the pairing given in (54) can be sym-
metrized, such that a symmetric bi-linear pairing 〈〈·, ·〉〉
is found for any (e1, f1),(e2, f2) ∈ E ×F , given by

〈〈(e1, f1),(e2, f2)〉〉 := 〈e1 | f2〉+ 〈e2 | f1〉. (E.1)

Step 1: Proof that D ⊂ D⊥. Let (e1, f1) ∈ D and
consider any (e2, f2) ∈ D . Substitution of (53) into the
first term of the symmetrization (E.1) of the bi-linear
pairing (54) results in

∫
Z [e

p
1 ∧ f p

2 + eq
1∧ f q

2 + ep
2 ∧ f p

1 + eq
2∧ f q

1 ] =∫
Z [e

p
1 ∧ (−σ ? ep

2 +deq
2)+ eq

1∧ (dep
2)

+ep
2 ∧ (−σ ? ep

1 +deq
1)+ eq

2∧ (dep
1)].

(E.2)

Using the properties (A.4a) and (A.4b) with (np,nq) =
(3,1):

eq∧dep = dep∧ eq

d(ep∧ eq) = dep∧ eq + ep∧deq (E.3)

and Stokes’ theorem (A.3), this term can be rewritten to

∫
Z [e

p
1 ∧ f p

2 + eq
1∧ f q

2 + ep
2 ∧ f p

1 + eq
2∧ f q

1 ] =∫
∂Z [e

p
1 ∧ eq

2 + ep
2 ∧ eq

1]

−∫Z [e
p
1 ∧σ ? ep

2 + ep
2 ∧σep

1 ].

(E.4)

Substitution of (53) into the second and last term of the
symmetrization (E.1) of the bi-linear pairing (54) results
in ∫

∂Z [e
b
1∧ f b

2 + eb
2∧ f b

1 ]
+
∫

Z [e
p
1 ∧σ ? ep

2 + ep
2 ∧σ ? ep

1 ] =∫
∂Z [−eq

1∧ ep
2 − eq

2∧ ep
1 ]

+
∫

Z [e
p
1 ∧σ ? ep

2 + ep
2 ∧σ ? ep

1 ].

(E.5)

Adding these terms to the first term (E.4) and
using the property eq ∧ ep = ep ∧ eq, shows that
〈〈(e1, f1),(e2, f2)〉〉= 0. Therefore, D ⊂D⊥.

Step 2: Proof that D⊥ ⊂ D . Let (e1, f1) ∈ D . As
shown before, the right hand side of the bi-linear form
(E.1) equals zero for any (e2, f2) ∈D .

Substituting (53) into the symmetrisation (E.1) of

the bi-linear pairing (54) for (e2, f2) results in∫
Z [e

p
1 ∧ f p

2 + eq
1∧ f q

2 + ep
2 ∧ f p

1 + eq
2∧ f q

1 ]
+
∫

∂Z [e
b
1∧ f b

2 + eb
2∧ f b

1 ]
+
∫

Z [e
p
1 ∧σ ? ep

2 + ep
2 ∧σ ? ep

1 ]

=
∫

Z [e
p
1 ∧ (−σ ? ep

2 +deq
2)+ eq

1∧dep
2 + ep

2 ∧ f p
1 + eq

2∧ f q
1 ]

+
∫

∂Z [e
b
1∧ ep

2 − eq
2∧ f b

1 ]
+
∫

Z [e
p
1 ∧σ ? ep

2 + ep
2 ∧σ ? ep

1 ]

= 0.
(E.6)

Using Stokes’ theorem, the boundary integral can be
rewritten and the expression becomes∫

Z [e
p
1 ∧ (−σ ? ep

2 +deq
2)+ eq

1∧dep
2 + ep

2 ∧ f p
1 + eq

2∧ f q
1 ]

+
∫

Z [+deb
1∧ ep

2 + eb
1∧dep

2 −deq
2∧ f b

1 − eq
2∧d f b

1 ]
+
∫

Z [e
p
1 ∧σ ? ep

2 + ep
2 ∧σ ? ep

1 ]

= 0.
(E.7)

All of the terms that are an element of D (the el-
ements with superscript 2) are brought to the left hand
side of the wedge product, resulting in∫

Z [e
p
2 ∧ ( f p

1 +deb
1 +σ ? ep

1)+dep
2 ∧ (e

q
1 + eb

1)]
+
∫

Z [e
q
2∧ ( f q

1 −d f b
1 )+deq

2∧ (e
p
1 − f b

1 )]
+
∫

Z [σ ? ep
2 ∧ (−ep

1 + ep
1)] = 0.

(E.8)

Next, Stokes’ theorem will be applied and (A.4b) with
(np,nq) = (3,1) will be used:

d(ω1∧ω2) = dω1∧ω2 +(−1)k
ω1∧dω2, (E.9)

where k is the order of the form of ω1, which is zero in
this case. This step removes the dep

2 and deq
2 terms and

leads to∫
Z [e

p
2 ∧ ( f p

1 +σ ? ep
1 −deq

1))]+
∫

∂Z [e
p
2 ∧ (e

q
1 + eb

1)]
+
∫

Z [e
q
2∧ ( f q

1 −dep
1)]+

∫
∂Z [e

q
2∧ (e

p
1 − f b

1 )]
= 0

(E.10)
for any (e2, f2)∈D . This yields the following equalities

f p
1 = −σ ? ep

1 +deq
1

f q
1 = dep

1
f b
1 = ep

1 |∂Z
eb

1 = −eq
1 |∂Z .

(E.11)

This means that since (53) holds, (e1, f1) ∈D also
holds and therefore D⊥ ⊂D .

Since D ⊂ D⊥ and D⊥ ⊂ D , D = D⊥ and there-
fore D is a Dirac structure.
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Figure 8: Dependencies

F. Shape functions

Throughout the discretization approach, shape
functions are used to interpolate the efforts and flows
on the spatial domain. Some properties of the shape
functions are already given in this paper, e.g. in equa-
tions (56) and (57). This section shows how to find
expressions for the different shape functions. Besides
satisfying the requirements already given, the physical
relations between the efforts and flows are maintained
as good as possible as well. Finding shape functions is
generally difficult and a solution is not always guaran-
teed, also in this approach one physical relation cannot
be met.

The efforts and flows depend on each other and
therefore the shape functions also depend on each other.
The dependencies between shape functions is derived
in the same way as explained in [?] and [?]. The re-
sult is shown in Fig. 8. This section will show how to
find shape functions that satisfy these relations, assum-
ing they exist. The relation shown under the dashed line
in Fig. 8 will not be met.

The shape functions will be chosen as (piecewise)
polynomials, since they are linear in their coefficients.
Therefore the shape functions can be found by solving
a set of linear equations, which is numerically efficient.

Similar as in [?] and [?], ω
p
s (z) for s ∈

{abdm,bcdm,dcam,acbm}will be chosen as piecewise
constant. The top left arrow in Fig. 8 implies choosing
ω

q
w(z) for w ∈ {acb,abd,bcd,dca} as affine two-forms.

The Hodge star above the dashed line implies choos-
ing ω

q
k (z) for k ∈ {am,bm,cm,dm} in the same class

as ω
q
w(z), however, they should be one-forms. There-

fore ω
q
k (z) for k ∈ {am,bm,cm,dm} are chosen affine

one-forms. Finally, the top right arrow implies choos-
ing ω

p
l (z) for l ∈ {a,b,c,d} as second order polynomi-

als. Clearly the bottom arrow is not satisfied by these
choices.

Define ω
p
s (z)

ω
p
s (z) for s ∈ {abdm,bcdm,dcam,acbm} should

satisfy the following four requirements

∫
Zs1

ω
p
s2
=

{
1 for s1 = s2

0 for s1 6= s2,
(F.1)

where s1,s2 ∈ {abdm,bcdm,dcam,acbm} are tetrahe-
dra.

It is chosen to be a piecewise constant and it should
be a three-form (ω p

s (z)∈Λ3(Z)). The following expres-
sion fulfills all of these conditions:

ω
p
s (z) =

{ dz1dz2dz3∫
Zs dz1dz2dz3

for z ∈ Zs

0 for z /∈ Zs
(F.2)

with s ∈ {abdm,bcdm,dcam,acbm}.
The volume of a tetrehedron is given by

Vabcd =
∫

Zabcd
dz1dz2dz3

= 1
6 |det

[
(a−d) (b−d) (c−d)

]
|.

(F.3)

The point m will be chosen as the center of the tetrahe-
dron, given by

m :=
1
4
(a+b+ c+d). (F.4)

This choice of m means that

Vabdm =Vbcdm =Vdcam =Vacbm =
1
4

Vabcd . (F.5)

Therefore, ω
p
s (z) (F.2) can be written as

ω
p
s (z) =

{
4

Vabcd
dz1dz2dz3 for z ∈ Zs

0 for z /∈ Zs
(F.6)

with s ∈ {abdm,bcdm,dcam,acbm} and Vabcd given in
(F.3).

Define ω
q
w(z)

ω
q
w(z) for w ∈ {acb,abd,bcd,dca} is chosen as

affine two-forms and they should satisfy the following
four requirements

∫
Zw1

ω
q
w2

=

{
1 for w1 = w2

0 for w1 6= w2,
(F.7)

where w1,w2 ∈ {acb,abd,bcd,dca}.
The general form of an affine two-form is

α(z) =
[
zT P+QT ]dz1dz2

dz2dz3
dz3dz1

 , (F.8)

with P∈R3×3 and Q∈R3. So there are twelve parame-
ters to be determined. Since there are twelve parameters
and four requirements, this system is underdetermined
and many solutions exist.
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Using (F.7) and Stokes’ theorem (A.3), the follow-
ing is found∫

Zabcd
dω

q
w =

∫
∂Zabcd

ω
q
w

=
∫

Zacb
ω

q
w +

∫
Zabd

ω
q
w +

∫
Zbcd

ω
q
w +

∫
Zdca

ω
q
w

= 1 ∀w ∈ {acb,abd,bcd,dca}.
(F.9)

The exterior derivative of ω
q
w(z) are constant three-

forms, so constants can be taken out of integral as fol-
lows

1 =
∫

Zabcd
dω

q
w

= ?dω
q
w
∫

Zabcd
dz1dz2dz3

= ?dω
q
wVabcd .

(F.10)

Therefore, the exterior derivative of ω
q
w(z) is given by

dω
q
w(z) = 1

Vabcd
dz1dz2dz3 ∀w ∈ {acb,abd,bcd,dca}.

(F.11)
The exterior derivative of the general form of an

affine two form (F.8) is given by

dα(z) = (P12 +P23 +P31)dz1dz2dz3. (F.12)

Setting {
P23 :=−P31

Q := 0
(F.13)

does not void (F.11) and leads to nine parameters and
five equations.

Define ω
q
k (z)

ω
q
k (z) for k ∈ {am,bm,cm,dm} is chosen as an

affine one-form and they should satisfy the following
four requirements∫

Zk1

ω
q
k2
=

{
1 for k1 = k2

0 for k1 6= k2,
(F.14)

where k1,k2 ∈ {am,bm,cm,dm} are line segments.
The general form of an affine one-form is

β (z) =
[
zT P+QT ]dz1

dz2
dz3

 , (F.15)

with P ∈ R3×3 and Q ∈ R3. So there are twelve param-
eters to be determined and four requirements. Thus this
system is underdetermined and many solutions exist.

ω
q
k (z) should however, also satisfy

dω
q
k =−ddω

p
l = 0. (F.16)

The exterior derivative of the general form of an affine
one form is

dβ (z)=(P21−P12)dz1dz2 +(P31−P13)dz1dz3
+(P32−P23)dz2dz3.

(F.17)

Adding additional requirements
Q := 0
P21 := P12

P31 := P13

P32 := P23

∀k ∈ {am,bm,cm,dm}

(F.18)
results in nine parameters and seven requirements and
guarantees that (F.16) is satisfied.

Define ω
p
l (z)

ω
p
l (z) for points l ∈ {a,b,c,d} are second order

polynomials and should satisfy

ω
p
l1
(l2) =

{
1 for l1 = l2
0 for l1 6= l2,

(F.19)

where l1, l2 ∈ {a,b,c,d}.
The general form of second order polynomial func-

tions is
γ(z) = zT Pz+QT z+R, (F.20)

where P = PT ∈R3×3, Q ∈R3 and R ∈R. So, there are
ten parameters to be determined. Since there are four
requirements, this system is underdetermined.
In addition to these four requirements, the following
choices are made{

ω
p
l (m) := 1

4 ∀l ∈ {a,b,c,d}
Q := 0

(F.21)

resulting in seven parameters and five equations.
Besides that, the property

ω
p
a (y)+ω

p
b (y)+ω

p
c (y)+ω

p
d (y)= 1 ∀y∈{a,b,c,d,m}

(F.22)
also holds.
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G. Proof Dirac structure 2

This section proves that the system expressed in
terms of v by (111) and (113) or by (116) is not a Dirac
structure.
In order to prove a Dirac structure, a lossless system
is assumed. In that case, the power balance from (73)
becomes

eT f = yT u, (G.1)

where e, f ,y and u are given in (111) and (113) respec-
tively. This power balance also gives a relation between
the different M-matrices. Substituting (111) and (113)
into (G.1) and using (114) leads to the following equal-
ity [

v1
v2

]T [ 0 MT
4 M2

MT
5 M3 0

][
v1
v2

]
=[

v1
v2

]T [ 0 MT
6 UT

2 U2
UT

1 U1M6 0

][
v1
v2

]
.

(G.2)

This is the same as

vT
1 MT

4 M2v2 + vT
2 MT

5 M3v1 =
vT

1 MT
6 UT

2 U2v2 + vT
2 UT

1 U1M6v1.
(G.3)

Next the parts with vT
2 in front and v1 at the back will be

transposed. Besides that the following relations can be
derived from the construction of U1 and U2:
• UT

1 U1 =UT
1 =U1

• UT
2 U2 =UT

2 =U2
• U2 = I4−U1.

These relations are used to derive that UT
1 U1 +UT

2 U2 =
U1 +U2 = I4. Therefore (G.3) can also be written as

vT
1 MT

4 M2v2 + vT
1 MT

3 M5v2 = vT
1 MT

6 v2. (G.4)

Since this should hold for any v1 and v2, this is the same
as

MT
4 M2 +MT

3 M5 = MT
6 . (G.5)

For a Dirac structure it is necessary to have
〈e | f 〉= 0, with R = 0, this equals (G.1). By defining a
new flow f̂ and a new effort ê as

f̂ =
[

f
−y

]
∈ R12×1, ê =

[
e
u

]
∈ R12×1, (G.6)

〈e | f 〉= êT f̂ .
For these new flows and efforts, êT f̂ = 0 holds. Us-
ing equations (111) and (113), this new effort and flow
can be written in terms of coefficient vector v (110) as

follows:

f̂ =
[

f
−y

]
=

 −M1 M2
M3 0
−U2M6 −U1


︸ ︷︷ ︸

ET∈R12×8

v

ê =
[

e
u

]
=

 M4 0
0 M5

U1M6 U2


︸ ︷︷ ︸

FT∈R12×8

v.

(G.7)

However, a Dirac structure is maximally dimen-
sional, so ET and FT should be square matrices and
the length of v should be the same as the length of f̂ [?].
Therefore this system is not a Dirac structure. However,
maybe this can be achieved by expanding v to v ∈ R12

or by reducing v to v ∈ R8.

Solution 1: Expansion

The first option is to expand the system in (G.7) to
a Dirac structure of dimension twelve. This means that
v should have length twelve as well. Since it is also
desired to keep u free, a new vector v̂ is chosen to be

v̂ =
[

v
u

]
=



ep
a

ep
b

ep
c

ep
d

eq
acb

eq
abd

eq
bcd

eq
dca
u


∈ R12. (G.8)

Next an expansion on (G.7) is made. In order to
prevent losing rank, f is described in terms of v and u.
Here a lossless system is assumed, so M1 equals zero.
This means that according to (G.7)

f =
[

0 M2
M3 0

]
v. (G.9)

From (G.7), an expression for v can be found equal to

v =
[

M−1
4 0
0 M−1

5

]
e. (G.10)

So

f =
[

0 M2
M3 0

][
M−1

4 0
0 M−1

5

]
e=
[

0 M2M−1
5

M3M−1
4 0

]
e.

(G.11)
Now f is described as a function of e, but it should
also be a function of u. Eventually this Dirac structure
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should be rewritten to port-Hamiltonian form, which
can be written as[

f
−y

]
=

[
J B
−BT 0

][
e
u

]
. (G.12)

From this equation matrix −BT can be calculated using
the expression for y and v from (G.7):

−y =
[
−U2M6 −U1

]
v

=
[
−U2M6 −U1

][M−1
4 0
0 M−1

5

]
e

=
[
−U2M6M−1

4 −U1M−1
5

]
e,

(G.13)

so

−BT =
[
−U2M6M−1

4 −U1M−1
5

]
. (G.14)

Besides that f can be written as

f =
[

0 M2M−1
5

M3M−1
4 0

]
e−Bu+Bu (G.15)

and u can be written as a function of e as follows

u =
[
U1M6 U2

]
v

=
[
U1M6 U2

][M−1
4 0
0 M−1

5

]
e

=
[
U1M6M−1

4 U2M−1
5

]
e

(G.16)

Substituting this expression for u into the first u in
(G.15), but not for the second u leads to

f =
[

0 V1,2
V2,1 0

]
e+Bu, (G.17)

with

V1,2 = (M2−M−T
4 MT

6 UT
2 U2)M−1

5
V2,1 = (M3−M−T

5 UT
1 U1M6)M−1

4 .
(G.18)

This can be written back into terms of v̂ using (G.7) and
leads to

f̃ =
[

fe
−y

]
=

 0 Jv1 M−T
4 MT

6 UT
2

Jv2 0 M−T
5 UT

1
U2M6 U1 0


︸ ︷︷ ︸

ÊT∈R12×12

v̂

ẽ =
[

e
ue

]
=

 M4 0 0
0 M5 0
0 0 I4


︸ ︷︷ ︸

F̂T∈R12×12

v̂

(G.19)
with

Jv1 = M2−M−T
4 MT

6 UT
2 U2

Jv2 = M3−M−T
5 UT

1 U1M6
(G.20)

An advantage of this expansion is that the input ue
can now be chosen freely, however, the dynamics of the
system are not the same anymore. This can be seen by
comparing f in (G.7) with fe in (G.19), while noticing
that u in (G.7) is not the same as ue in (G.19).

Then by choosing the Dirac structure to be the im-
age of the defined matrices ÊT and F̂T ;

D = Im
[

ÊT

F̂T

]
︸ ︷︷ ︸
∈R24×12

, (G.21)

the Dirac structure can be written in image representa-
tion [?];

D = {( f̃ , ẽ) ∈F ×F ∗ | f̃ = Ê∗v̂, ẽ = F̂∗v̂, v̂ ∈ R12}.
(G.22)

To prove that this is a Dirac structure, the following
two properties should hold [?]:
• F̂ÊT + ÊF̂T = 0
• dim D = dim F .

If there are no losses in the system, F̂ÊT + ÊF̂T equals

F̂ÊT + ÊF̂T = 0 MT
3 M5 +MT

4 M2−MT
6 0

MT
5 M3 +MT

2 M4−M6 0 0
0 0 0

 .
(G.23)

Substituting (G.5) and its transpose into (G.23) indeed
leads to

F̂ÊT + ÊF̂T = 0. (G.24)

However, a Dirac structure should also be of maxi-
mal dimension [?], meaning that

dim D = dim F . (G.25)

In this case dim D = 12 and dim F = 12. Therefore
this subspace is also of maximal dimension and the sys-
tem is a Dirac structure. However, the system dynamics
have changed, so this does not prove that the original
system as described in (116) is a Dirac structure.

Solution 2: Reduction

The previous expanded Dirac structure is useful for
proving a Dirac structure, however, not for simulating.
This is due to the fact that the input u has changed; ue
in (G.19) is a different u then in (G.7). Therefore the
Dirac structure in (G.7) will now be reduced to have
dimension eight.

For shortness of notation, system (G.7) is described
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by

f̂ =
[

f
−y

]
=

[
M f
My

]
︸ ︷︷ ︸

ET∈R12×8

v

ê =
[

e
u

]
=

[
Me
Mu

]
︸ ︷︷ ︸

FT∈R12×8

v.
(G.26)

A new vector ṽ is chosen to satisfy

v = Pṽ s.t. MuP =
[
I 0

]
(G.27)

with P invertible. This new vector ṽ will make sure that
one of the components of ṽ is equal to the input u, which
is necessary for this reduction method. Assuming M6 is
invertible, a suitable matrix P satisfying these require-
ments is

P =

[
M−1

6 U1 M−1
6 U2

U2 U1

]
. (G.28)

Matrix P can also be written as

P =

[
M−1

6 0
0 I

][
U1 U2
U2 U1

]
(G.29)

and its inverse equals

P−1 =

[
U1 U2
U2 U1

]−1 [M6 0
0 I

]
=

[
U1 U2
U2 U1

][
M6 0
0 I

]
(G.30)

In that case (G.26) can be described in terms of ṽ
in the following manner

f̂ =
[

f
−y

]
=

[
M f P
MyP

]
︸ ︷︷ ︸

ET∈R12×8

ṽ

ê =
[

e
u

]
=

[
MeP[
I 0

]]︸ ︷︷ ︸
FT∈R12×8

ṽ.
(G.31)

By using the P given in (G.28), ṽ equals

ṽ =
[

u
ṽ2

]
. (G.32)

Next a transformation matrix T will be chosen such
that

T MeP =

[
M̃1 0
0 M̃2

]
, (G.33)

where T should be invertible. A possible T is

T =

[
UT

1 M6M−1
4 UT

2 M−1
5

UT
2 M6M−1

4 UT
1 M−1

5

]
, (G.34)

where M6 is assumed to be invertible.

Define

ẽ = Te f̃ = T−T f , (G.35)

then
ẽT f̃ = eT T T T−T f = eT f . (G.36)

This product can be split up into

ẽT f̃ = ẽT
1 f̃1 + ẽT

2 f̃2, (G.37)

where
ẽT

1 f̃1 = uT M̃T
1 f1. (G.38)

This means that

eT f = ẽT f̃ = ẽT
1 f̃1 + ẽT

2 f̃2 = yT u (G.39)

can be rewritten to

ẽT
2 f̃2 = yT u−uT M̃1 f̃1. (G.40)

So the power balance (and therefore also FET +EFT =
0) is still satisfied if[

ẽ2
u

]
=

[
0 M̃2
I 0

]
ṽ (G.41)

and
ynew = y+ M̃T

1 f̃1 (G.42)

If P and T are chosen as in (G.28) and (G.34), then

ẽ = Te =
[

I 0
0 I

]
ṽ

f̃ = T−T f =
[

0 F1,2
F2,1 0

]
ṽ

(G.43)

where

F1,2 = UT
1 M−T

6 MT
4 M2U1 +UT

2 MT
5 M3M−1

6 U2
F2,1 = UT

2 M−T
6 MT

4 M2U2 +UT
1 MT

5 M3M−1
6 U1.

(G.44)
The new reduced Dirac structure of dimension eight is
then given by[

ẽ2
u

]
=

[
0 I
I 0

]
︸ ︷︷ ︸

FT

ṽ

[
f̃2
−ynew

]
=

[
F2,1 0

0 I +F1,2

]
︸ ︷︷ ︸

ET

ṽ.
(G.45)

This reduction is useful, however, not for simulat-
ing, since it has the disadvantage that it is impossible to
implement initial conditions on ẽ1. Therefore it cannot
capture the complete dynamics of the original system
and does not prove that (116) is a Dirac structure.
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H. Proof port-Hamiltonian structure

Equation (117) is a port-Hamiltonian system iff J
is skew symmetric; J = −JT and R is positive semi-
definite; R≥ 0.

J is skew symmetric

Equations (119) and (118) show that J is given by

J =

[
0 V1,2

V2,1 0

]
∈ R8x8, (H.1)

where

V1,2 = (M2−M−T
4 MT

6 UT
2 U2)M−1

5
V2,1 = (M3−M−T

5 UT
1 U1M6)M−1

4 .
(H.2)

J is skew-symmetric iff J+ JT = 0. In this case, J+ JT

equals

J+ JT =

[
0 V1,2 +V T

2,1
V2,1 +V T

1,2 0

]
. (H.3)

Here

V1,2 +V T
2,1 =

M2M−1
5 +M−T

4 MT
3 −

M−T
4 MT

6 UT
2 U2M−1

5 −M−T
4 MT

6 UT
1 U1M−1

5 ,

(H.4)

which should be equal to zero. Using the fact that
UT

2 U2 +UT
1 U1 = I4, it can be written as

M2M−1
5 +M−T

4 MT
3 −M−T

4 MT
6 M−1

5 = 0. (H.5)

Pre-multiplying with MT
4 and post-multiplying with M5

leads to
MT

4 M2 +MT
3 M5−MT

6 = 0. (H.6)

This is the same equality as in equation (G.23) and
using the equalities from (G.5) it can be proven to be
true. Since V2,1 +V T

1,2 = (V1,2 +V T
2,1)

T , (H.3) equals the
zero matrix and therefore J is skew-symmetric.

R is positive semi-definite

Combining equations (119) and (118) shows that R
is given by

R =

[
M1M−1

4 0
0 0

]
. (H.7)

M4 is given in (81) and equals

M4 =

∫
Zabcd


ω

p
a ∧ω

p
abdm . . . ω

p
d ∧ω

p
abdm

ω
p
a ∧ω

p
bcdm . . . ω

p
d ∧ω

p
bcdm

ω
p
a ∧ω

p
dcam . . . ω

p
d ∧ω

p
dcam

ω
p
a ∧ω

p
acbm . . . ω

p
d ∧ω

p
acbm

 , (H.8)

which can also be written as

M4 =
?ω

p
abdm

∫
Zabdm

?ω
p
a . . . ?ω

p
abdm

∫
Zabdm

?ω
p
d

?ω
p
bcdm

∫
Zbcdm

?ω
p
a . . . ?ω

p
bcdm

∫
Zbcdm

?ω
p
d

?ω
p
dcam

∫
Zdcam

?ω
p
a . . . ?ω

p
dcam

∫
Zdcam

?ω
p
d

?ω
p
acbm

∫
Zacbm

?ω
p
a . . . ?ω

p
acbm

∫
Zacbm

?ω
p
d

 ,
(H.9)

since wp
s , for tetrahedra s ∈ {abdm,bcdm,dcam,acbm}

is piecewise constant. Here the properties (A.4a) and
(A.7) are used. The inverse of M4 is easier to calculate
if M4 is written as

M4 =


?ω

p
abdm 0 0 0
0 ?ω

p
bcdm 0 0

0 0 ?ω
p
dcam 0

0 0 0 ?ω
p
acbm

G,

(H.10)
where

G =
∫

Zabdm
?ω

p
a

∫
Zabdm

?ω
p
b

∫
Zabdm

?ω
p
c

∫
Zabdm

?ω
p
d∫

Zbcdm
?ω

p
a

∫
Zbcdm

?ω
p
b

∫
Zbcdm

?ω
p
c

∫
Zbcdm

?ω
p
d∫

Zdcam
?ω

p
a

∫
Zdcam

?ω
p
b

∫
Zdcam

?ω
p
c

∫
Zdcam

?ω
p
d∫

Zacbm
?ω

p
a

∫
Zacbm

?ω
p
b

∫
Zacbm

?ω
p
c

∫
Zacbm

?ω
p
d

 .
(H.11)

Since the damping σ is constant on the tetrahedra Zs
with s ∈ {abdm,bcdm,dcam,acbm}, M1 (63) can also
be written as a function of matrix G:

M1 =


∫

Zabdm
σ ?ω

p
a . . .

∫
Zabdm

σ ?ω
p
d∫

Zbcdm
σ ?ω

p
a . . .

∫
Zbcdm

σ ?ω
p
d∫

Zdcam
σ ?ω

p
a . . .

∫
Zdcam

σ ?ω
p
d∫

Zacbm
σ ?ω

p
a . . .

∫
Zacbm

σ ?ω
p
d



=


σabdm 0 0 0

0 σbcdm 0 0
0 0 σdcam 0
0 0 0 σacbm


︸ ︷︷ ︸

σt

G

(H.12)

Note that σ on an element scale is chosen to be piece-
wise constant

σ(z) =

{
σs for z ∈ Zs

0 for z /∈ Zs,
(H.13)

with tetrahedra s ∈ {abdm,bcdm,dcam,acbm}.
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The product M1M−1
4 then becomes

M1M−1
4

= σtGG−1


1

?ω
p
abdm

0 0 0

0 1
?ω

p
bcdm

0 0

0 0 1
?ω

p
dcam

0

0 0 0 1
?ω

p
acbm



= σt


1

?ω
p
abdm

0 0 0

0 1
?ω

p
bcdm

0 0

0 0 1
?ω

p
dcam

0

0 0 0 1
?ω

p
acbm



=


σabdm
?ω

p
abdm

0 0 0

0 σbcdm
?ω

p
bcdm

0 0

0 0 σdcam
?ω

p
dcam

0

0 0 0 σacbm
?ω

p
acbm



=


σabdm

1
?ω

p
abdm

0

. . .
0 σacbm

1
?ω

p
acbm

 .
(H.14)

This means that R is a diagonal matrix, which
is positive semi-definite if all of the diagonal term
(its eigenvalues) are zero or positive. The damping
terms σs for tetrahedra s ∈ {abdm,bcdm,dcam,acbm}
are positive by definition. ω

p
s , for tetrahedra s ∈

{abdm,bcdm,dcam,acbm} is given by

ω
p
s (z) =

{
4

Vabcd
dz1dz2dz3 for z ∈ Zs

0 for z /∈ Zs
, (H.15)

so ?ω
p
s equals

?ω
p
s (z) =

4
Vabcd

for z ∈ Zs. (H.16)

Here, Vabcd is the volume of tetrahedron abcd, which
is always positive and therefore the eigenvalues of
M1M−1

4 are all positive. This means that the eigen-
values of R are all positive or zero and R is positive
semi-definite.

Since J is skew-symmetric and R is positive semi-
definite, (117) is a port-Hamiltonian system.

I. Dirac structure 1D

This section proves that the system described in
terms of v by (190) and (192) is an image representation
of a Dirac structure. In order to prove a Dirac structure,
a lossless system is assumed, so the power balance from
(73) becomes

eT f = yT u. (I.1)

By renaming the matrices, the system in terms of v can
be written as

f = M f v, e = Mev
y = Myv, u = Muv. (I.2)

Substituting this into the lossless power balance as
mentioned before leads to a relation between the M-
matrices. The result is

eT f − yT u = 0
vT MT

e M f v+ vT MT
y Muv = 0. (I.3)

For a Dirac structure it is necessary to have 〈e |
f 〉= 0, so a new effort and flow is defined as

f̂ =
[

f
−y

]
∈ R6×1, ê =

[
e
u

]
∈ R6×1. (I.4)

Now 〈e | f 〉= êT f̂ and it should be proven that êT f̂ = 0.
This new effort and flow still satisfy the power balance.
The system can then be described in terms of v (189) by

f̂ =
[

f
−y

]
=

[
M f
−My

]
︸ ︷︷ ︸
ET∈R6×6

v

ê =
[

e
u

]
=

[
Me
Mu

]
︸ ︷︷ ︸

FT∈R6×6

v.
(I.5)

This is an image representation of a Dirac structure
if it satisfies [?]
• FET +EFT = 0
• rank

[
F | E

]
= dim F .

The first requirement is satisfied since

FET +EFT =

vT
[
MT

e MT
u
][M f

My

]
v+ vT

[
MT

f MT
y
][Me

Mu

]
v

= vT MT
e M f v+ vT MT

u Myv+ vT MT
f Mev+ vT MT

y Muv
(I.6)

Substituting (I.3) and its transpose indeed shows that
FET +EFT = 0.

The second requirement is true iff F has full rank,
which is imposed by the fact that FT should be invert-
ible in order to rewrite the system to a port-Hamiltonian
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system. This means that the rank of
[
F | E

]
equals six

and the dimension of F equals six as well.
Both the requirements are met, so the system repre-

sented by (190) and (192) is a Dirac structure in image
representation.

ωp
s ωq

l ωq
k ωp

l

d d

?

?

Figure 9: Dependencies

J. Shape functions 1D

This section shows how to find expressions for
the different shape functions used in the 1D approach.
Besides satisfying the requirements already given, the
physical relations between the efforts and flows are
maintained as good as possible as well. Finding shape
functions is generally difficult and a solution is not al-
ways guaranteed, also in this approach one physical re-
lation cannot be met.

The efforts and flows depend on each other and
therefore the shape functions also depend on each other.
The dependencies between shape functions is derived
in the same way as explained in [?] and [?]. The re-
sult is shown in Fig. 9. This section will show how to
find shape functions that satisfy these relations, assum-
ing they exist. The relation shown under the dashed line
in Fig. 9 will not be met.

The shape functions will be chosen as (piecewise)
polynomials, since they are linear in their coefficients.
Therefore the shape functions can be found by solving
a set of linear equations, which is numerically efficient.

Similar as in [?], ω
p
s (z) for line segments

s ∈ {am,mb} will be chosen as piecewise constant.
The top left arrow in Fig. 9 implies choosing ω

q
l (z) for

points l ∈ {a,m,b} as affine zero-forms. The Hodge
star above the dashed line implies choosing ω

q
s (z) for

s ∈ {am,mb} in the same class as ω
q
l (z), however,

they should be one-forms. Therefore ω
q
s (z) for line

segments s ∈ {am,mb} are chosen affine one-forms.
Finally, the top right arrow implies choosing ω

p
l (z)

for points l ∈ {a,m,b} as second order polynomials.
Clearly the bottom arrow is not satisfied by these
choices.

Define ω
p
s (z)

ω
p
s (z) for line segments s ∈ {am,mb} should sat-

isfy the following requirements

∫
Zs1

ω
p
s2
=

{
1 for s1 = s2

0 for s1 6= s2,
. (J.1)

It is chosen to be a piecewise constant and it should
be a one-form (ω p

s (z) ∈ Λ1(Z)). The following expres-
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sion fulfills all of these conditions:

ω
p
s (z) =

{
dz1∫

Zs dz1
for z ∈ Zs

0 for z /∈ Zs,
(J.2)

where s ∈ {am,mb}. The length of a line is given by

Lab =
∫

Zab

dz1 = b−a. (J.3)

By choosing the point m in the middle of the element;
m := 1

2 (a+b),

Lam = Lmb =
1
2

Lab. (J.4)

Therefore, ω
p
s (z) from (J.2) can be written as

ω
p
s (z) =

{
2

b−a dz1 for z ∈ Zs

0 for z /∈ Zs,
(J.5)

where s ∈ {am,mb} are line segments.

Define ω
q
l (z)

ω
q
l (z) for points l ∈ {a,m,b} is chosen as affine

zero-forms and they should satisfy the following
requirements

ω
q
l1
(l2) =

{
1 for l1 = l2
0 for l1 6= l2,

(J.6)

where l1, l2 ∈ {a,b} and

ω
q
m(l) =

{
1 for l = m
0 for l 6= m

(J.7)

where l ∈ {a,m,b}.
The general form of an affine zero-form is

f (z) = αz+β (J.8)

There are two parameters to be determined; α and β .
ω

q
a and ω

q
b should each satisfy two requirements, so

they can be determined uniquely. However, ω
q
m should

satisfy three requirements. Therefore it is chosen to
be a non-smooth, or more precisely non-differentiable,
zero-form, which has a certain α and β on the interval
Zam, αam and βam, and a different α and β on the
interval Zmb, αmb and βmb. In that case, ω

q
m has four

parameters and four requirements leading to an unique
solution.

Define ω
q
s (z)

ω
q
s (z) for line segments s ∈ {am,mb} is chosen as an

affine one-form and they should satisfy the following
four requirements

∫
Zs1

ω
q
s2
=

{
1 for s1 = s2

0 for s1 6= s2,
(J.9)

where s1,s2 ∈ {am,mb}.
The general form of an affine one-form is

f (z) = αz+β dz1. (J.10)

There are two parameters to be determined and
two requirements, thus a solution can be uniquely
determined.

Define ω
p
l (z)

ω
p
l (z) for points l ∈ {a,m,b} are second order

polynomials and should satisfy

ω
p
l1
(l2) =

{
1 for l1 = l2
0 for l1 6= l2,

(J.11)

where l1, l2 ∈ {a,b} and

ω
p
m(l) =

{
1 for l = m
0 for l 6= 0,

(J.12)

where l ∈ {a,m,b}
The general form of second order polynomial func-

tions is
f (z) = αz2 +β z+ γ. (J.13)

There are three parameters to be determined; α , β

and γ . ω
q
a and ω

q
b should each satisfy two requirements,

so this is an underdetermined set of equations. In addi-
tion to the two requirements another requirement can be
added, such as

ω
p
l (m) :=

1
2
∀l ∈ {a,b}. (J.14)

However, it is also possible to set

β := 0, (J.15)

leading to a unique solution as well.
ω

p
m has to satisfy three requirements, so it is not

necessary to add an additional requirement or set one of
the parameters to zero.
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