
 Eindhoven University of Technology

MASTER

Onboard ship detection and pose estimation with deep learning

Liu, Z.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/49e6b018-5cd4-4c20-9713-1168a258a5bd


Onboard Ship Detection and
Pose Estimation with Deep

Learning

Master thesis

Zechen Liu

Department of Mechanical Engineering
System and Control

Research Group Control Systems

Supervisors:
dr.ir. R. Toth

ir. S. Rooijakkers

3rd version

Eindhoven, September 2018









Abstract

Perception is a crucial factor for intelligent robots as well as autonomous vehicles since it can
extract a wide range of sensory information from the surrounding environment. Among all the
perception methods, object detection is an essential component as it simultaneously predicts ob-
ject’s category and location. In this thesis, we propose a two-stage Convolutional Neural Network
based detection method along with sensor fusion technique which can estimate 2D and 3D bound-
ing box of ships separately. The method can predict useful information such as orientation and
location of ships. We first modify and implement well-known 2D detection Faster R-CNN [8]
model on different types of ships. Based on the 2D detection results, a state-of-art 3D bound-
ing box estimation [16] approach is added to predict orientation, dimensions, and locations for
different objects. Last, a Kalman Filter based sensor fusion method is implemented to refine 3D
information by fusing Lidar and vision information together.

Various datasets are used to test the performance of our method. The 2D detection performance
achieves 0.728 mean average precision on three specific types of ships from Damen shipyards. The
3D detection results in nearly 11◦ orientation estimation error on a toy ship. The sensor fusion
method largely reduces the prediction error from a single camera. Based on the results, we discuss
the limitations of our approaches and point out the possible future development directions.
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Chapter 1

Introduction

With the rapid development of science and technology, it is widely believed that automation will
revolutionize the world and improve the living standard of human beings in many aspects. In
maritime technology, many shipping companies hold the belief that autonomous shipping is the
future of the ship industry since it can significantly lower the cost of shipping, increase onboard
safety, and improve working conditions. Research has already been conducted on developing
autonomous vessels. An overview of the research direction and autonomy levels definition can be
found at [1, 2, 3]. Deep learning based computer vision to reach the aimed autonomy levels such as
ship classification and ship detection, has also been developed recently [3, 4]. At Damen shipyards,
many research projects on autonomous navigation and control vessels are being conducted and
pointing towards the realization of ships with fully autonomous system in the next few years.

Autonomous vehicles are equipped with intelligent autonomous systems which collect useful
information from the outside environment, process it and set target actions, and finally send com-
mands to the actuators to execute. The core competencies of such an intelligent autonomous
system on the software level can be broadly separated into three parts [5, 6]: perception, plan-
ning, and control. Perception refers to the ability of an intelligent system to receive information
and extract useful knowledge from it. Planning is the procedure of making purposeful decisions
to achieve higher order goals such as obstacle avoidance or path optimization. The control com-
petency is the ability of the system to execute the planned actions. In this project, we mainly
investigate and study the perception part for autonomous vessels.

Figure 1.1: Overview of a typical intelligent autonomous system overview on software level [5].

Onboard Ship Detection and Pose Estimation with Deep Learning 1



CHAPTER 1. INTRODUCTION

Object detection is a key aspect of autonomous vehicle perception since it can perceive the
surrounding environment with fitting bounding box on object instances and classifying of them
into categories. There has been extensive study and research conducted on visual detection and
many classical computer vision approaches exist [7, 8, 9]. Recently, with the development in deep
learning, especially in the filed of Convolutional Neural Network (ConvNet), object detection has
seen a significant progress [10, 11]. ConvNet based detection algorithm such as Faster R-CNN [12]
and SSD [13] has achieved promising results on both detection accuracy and speed. These methods
have been adopted in many practical applications. However, they only output 2D bounding box
on objects which is insufficient for autonomous vehicles.

3D object detection is of particular importance for intelligent autonomous systems because it
can output adequate information including pose and locations of different objects. Many research
work in recent years has focused on the development of accurate and robust 3D bounding box
estimation [14, 15, 16]. All these methods achieve decent and accurate detection results, but they
all require difficult obtainable training information such as Lidar point cloud or computational
preprocessing work.

In order to achieve a high accuracy of detection and pose estimation for autonomous vehicles,
additional sensors can be equipped to achieve multiple forms of perception. Sensors such as
LiDAR, radar and Inertial Measurement Unit (IMU) are always used onboard to provide helpful
information besides camera-based vision [17]. Therefore, combining information from multiple
sensors together is necessary and important for improving the perception capability of the system.

1.1 Problem Statement

In order to enhance ship navigation and development of autonomous ships, the goal of this pro-
ject is to develop a ConvNet based 3D object detection method with respect to ship detection,
implement and validate it on available datasets. Furthermore, we investigate if a monocular
camera-based detection can be used to obtain accurate 3D information. Additionally, we aim to
investigate how useful information from various sensors of the ship can be fused together with the
3D object detection to further increase the performance of localization and orientation estimation.

1.2 Proposed Solutions

In our approach, we develop a two-stage detection algorithm which predicts 2D bounding box
and 3D bounding box separately based on the state-of-art 2D and 3D object detection methods
[18, 19, 12, 20]. Each stage of the detection algorithm can be trained independently and easily
improved by attaching more advanced ConvNet on it to extract features. The predicted outputs
from the detection method are fused together with Lidar information by applying a linear time-
invariant Kalman Filter. As a result, we achieve 0.728 mean average precision (mAP) 2D ship
detection result on three specific types of ships from Damen shipyards. The 3D ship detection
method results in around 11◦ mean error on a toy ship dataset. The Kalman Filter based sensor
fusion method further improves the estimation accuracy of 3D information.

1.3 Overview

In the second chapter, a brief introduction into the theory of ConvNet is provided along with
related work in 2D and 3D object detection. In addition, we explain and motivate the algorithm
choice in detail. The next chapter describes the approach that is proposed and developed in our
work together with an overview of the resulting ConvNet structure. In chapter 4, the description
of the datasets and data representations used for training are discussed. To demonstrate the
properties of the developed method, the experiment settings, evaluation metrics and results are
reported at the end of this chapter. Finally, we summarize our work and give the possible directions
for further research in the last chapter.
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Chapter 2

Preliminaries

In this chapter, the fundamental concepts of deep learning are introduced together with a brief
introduction to Multi-layer Perception (MLP, or Artificial Neural Network), Convolutional Neural
Network (ConvNet), and their usage in object detection field.

2.1 Multi-layer Perceptions

In order to describe Neural Networks, we start with introducing the basic computation of a single
neuron unit in MLP. MLP was originally introduced by neurophysiologists inspired by biology,
see Hubel and Wiesel’s early work [21]. They were invented to mimic the visual cortex of a cat.
Based on the biological neuron model, the mathematical model of a neuron receives input and
sums these values up with weights and bias. If the sum exceeds a specific threshold function, the
signal will be activated and sent to the unit in the next layer.

Figure 2.1: Left: Cartoon model of a biological neuron. Right: The mathematical model [22].

As shown in Figure 2.1, a neuron accepts x = [x0 x1 · · · xn]> as inputs and outputs y =
f(
∑
i wixi + b), where weights wi and bias b are learning parameters in this neuron model. f is a

nonlinear activation function with one of the mathematical descriptions given in Table 2.1.

Name Equation

Sigmoid f(z) = 1
1+ez

Tanh f(z) = ez−e−z
ez+e−z

ReLu[23] f(z) = max(0, z)

LeakyReLu[24] f(z) =

{
0.1z, z < 0
z, z ≥ 0

Table 2.1: Choices of activation functions.

Onboard Ship Detection and Pose Estimation with Deep Learning 3
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The MLP structure is modeled as collections of neurons that are connected in an acyclic graph.
Neurons between two adjacent layers are pairwise connected, but neurons in a single layer share
no connections. The forward pass of one layer corresponds to a matrix multiplication followed by
a bias offset and an activation function. This can be expressed by the following equation:

y = fl(fl−1(fl−2(...(x))). (2.1)

Normally an MLP system contains one input layer, several hidden layers and one output layer.
A typical MLP system is shown in Figure 2.2.

Figure 2.2: A three-layer neural network with three inputs, two hidden layers of 4 neurons each
and one output layer [22].

Notice that a loss function is usually applied to the final layer of the Neural Network instead
of the activation function. This function is used to represent the performance of MLP. After con-
structing the MLP structure, it needs to be trained in order to function, which means appropriate
tuning of the weights w and bias b in the network. A useful method of training is using a gradient
descent optimization algorithm such as SGD [25] or Adam [26] to propagate error from output
units back to the weights and bias at each layer. This procedure is called back-propagation.

When a network using activation function σ is trained , the neuron unit j in layer l can be
described by the weight sum alj and activation output zlj as defined in Equation 2.2 and 2.4.

alj =
∑
i

wlijz
l−1
i , (2.2)

where wlij is the weight between neuron i at layer l− 1 and neuron j at layer l. For simplicity, the
bias b is ignored here.

zlj = σ(alj), (2.3)

L = L(aL). (2.4)

L is the output of the loss function L. aL is a vector that contains all output neuron units
[aL0 a

L
1 · · · aLn ]>. The partial derivatives of the loss function with respect to the weights can be

computed as follows:

∂L
∂wlij

=
∂L
∂alj

∂alj
∂wlij

,

= δljz
l−1
i .

(2.5)

The term δlj is back propagated during training. By using the chain rule of differentiation, δlj
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satisfies the following recursive equation:

δlj =
∂L
∂alj

,

=
∑
k

∂L
∂al+1

k

∂al+1
k

∂alj
,

=
∑
k

δl+1
k

∂

∂alj

∑
j

wl+1
jk zlj ,

=
∑
k

δl+1
k wl+1

jk σ′(alj).

(2.6)

The δ term in a certain hidden layer of Neural Networks can be derived by propagating δ from
a higher layer. Since the output value of the final layer is known, the error for units in the initial
layers can be obtained recursively. After computing the gradient, the updated weights can be
calculated with the learning rate γ.

wljk = wljk − γ
∂L
∂wljk

. (2.7)

The parameters in MLP can be iteratively updated by using Equation 2.7 until the model can
reach a certain target performance.

2.2 Convolutional Neural Networks

ConvNet is mainly used in visual data processing such as images and videos. Their application
has achieved significant results on tasks such as image recognition, object detection, semantic
segmentation, video understanding, etc. Almost all the state-of-art methods in these fields are
ConvNet based algorithms. The first ConvNet was introduced by Yann LeCun’s LeNet [27] which
was used to recognize various digits on envelopes. The structure of LeNet is shown in Figure
2.3. Different from MLP, the neurons in a layer will only be connected to a small region of the
layer before it, which results in local connectivity and weights sharing properties [28]. A simple
ConvNet contains three main types to build its structure: Convolutional Layer, Pooling Layer, and
Fully-Connected Layer. The structure and effect of these layers will be discussed in this section.

Figure 2.3: The Architecture of Lenet [27].

2.2.1 Input Layer

Unlike normal MLP, which receives a single vector as input and forward propagates it through a
series of hidden layers, ConvNet receives original images as input and generates data in terms of
3-dimensional shapes. An RGB image can be described as a structure of W ×H × C, where W

Onboard Ship Detection and Pose Estimation with Deep Learning 5
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and H are the number of pixels in width and height of the image, and C denotes the number of
channels. If the image is reshaped into a vector and an MLP architecture mentioned above is built
for classification, the number of trainable parameters will be extremely large. Hence, along with
computational problems, over-fitting is likely to happen. Furthermore, such a naive MLP model
would eliminate the 3D structure information of the input images.

Some data preprocessing methods have been implemented on the input layer to improve the
performance of ConvNet. The most commonly used approaches are mean subtraction and nor-
malization [29, 30].

2.2.2 Convolutional Layer

Convolutional layer contains a set of learnable filters. Each filter is small in width and height, but
extends through the full depth of the input volume. For example, in the typical ConvNet LeNet
[27], a first convolutional layer has size 5 × 5 × 3 (i.e. 5 pixels in width and height, 3 for RGB
image channels). In the forward pass, the filter slides across the width and height of the input
and compute dot product between the filter itself and the input at different positions. As a result,
each filter will produce a 2-dimensional activation map as output. Notice that each output neuron
is only connected to a local region in the previous layer. The resulting convolutional layer has the
following properties:

Local connectivity: Similar to input images, the hidden layers in ConvNet are also in three
dimensions: width, height, and channels. Furthermore, each neuron unit inside a layer only
connects to a certain region of the previous layer which is called the receptive field of the neuron.
Therefore, each neuron only has a connection with a sub-region in the previous layer instead of
the whole channel regions.

Spatial determination: The size of the output volume is decided by three hyper-parameters:
depth (K), stride (S), and zero-padding (P). The number of filters is the depth of the output
volume. Each filter learns to discover different information from the input. In LeNet [27], the
depth of the first batch of layers is 6. Each extracts information from the input images which
result in 6 output volumes. On the other hand, the stride value determines the width and height
of the output. When the stride is 1, the filter will only move 1 pixel at a time. A large stride will
results in smaller volumes spatially. Zero-padding is always used to extend the spatial size of the
input volume so that the output size can be controlled. The property of zero-padding enables the
size of input volume can be changed easily without adding other noisy information to it.

Weights sharing: Additionally, the connections between a neuron and its corresponding
receptive field refer to one filter. Each filter slides across the entire input volume, which means
that the neurons in the same depth slice share the same filter. In other words, each depth slice
reveals the responses of one filter applied to the previous layer. Normally a depth slice is referred
as a feature map, and thus a layer consists of several feature maps.

Figure 2.4: Illustration of the convolutional layer properties in one spatial dimension. The filter
is displayed in green color with size F = 3. The input volume is W = 5, zero-padding is set to 1.
Left: the filter slides with S = 1. Right: the filter slides with S = 2 [22].

To conclude, if multiple filters are given, the convolution operation will output a stack of
feature maps to form a new convolution layer in 3D. For example, one convolutional layer has size
W1 ×H1 × C1. K filters with size F × F × C1 slides across this layer and yields an output layer
with size W2 ×H2 × C2. These three values can be determined by the following equations:
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Figure 2.5: Explanation of how convolutional layer works on images. input layer: 5× 5× 3 with
1 zero padding, two filters: 3 × 3 × 3, stride: 2, output layer: 3 × 3 × 2. Each number in output
layer is computed by an element-wise multiplication between the filter and a certain region in the
input layer. The output values are summed up together with the bias [22].

W2 = (W1 − F + 2P )/S + 1,

H2 = (H1 − F + 2P )/S + 1,

C2 = K.

(2.8)

with weight sharing, this operation totally introduces (F ×F ×C1)×K weights and K biases. A
detailed illustration of how the convolutional layer works on images is shown in Figure 2.5.

2.2.3 Pooling Layer

Pooling layer (or downsampling) is inserted periodically between a sequence of convolution layers.
It is used to reduce the spatial size of feature maps hence reduce the number of parameters and
computation in training ConvNet and also control overfitting. The pooling layer operates on every
channel of feature maps independently. Common pooling methods include max pooling, average
pooling and l2 norm pooling. The most common form of the pooling layer includes filters with 2×2
size with a stride of 2. In ConvNet, a pooling layer accepts an input volume of size W1×H1×C1.
The spatial extent of a pooling layer is F and the stride is S. The output feature maps has size
W2 ×H2 × C2. These three parameters can be determined by:
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W2 = (W1 − F )/S + 1,

H2 = (H1 − F )/S + 1,

C2 = C1.

(2.9)

The most often used pooling operation now is max pooling due to the simplicity and high
performance. Figure 2.6 shows how max pooling works in ConvNet. However, some researchers
[31] suggest use convolutional layer with a large stride to reduce spatial size instead of adding a
pooling layer.

Figure 2.6: Max pooling layer downsamples each feature map spatially, regardless of the depth.
The displayed max pooling layer is with F = 2 and S = 2 [22].

2.2.4 Activation Layer

An activation function (in Table 2.1) is normally added after convolutional layer to increase non-
linearity representation of ConvNet. It is element-wise applied to each neuron. The input volume
and output feature maps share the same spatial structure. Notice that the mostly used activation
function is ReLu [23] in ConvNet because of its high-efficiency and large avoidance of gradient
vanishing problems [32, 33]. The ReLu activation layer has the following operation:

f(z) = max(0, z), (2.10)

where z represents each neuron. An overview of activation function and the advantage of ReLu
can be found in [11]. Furthermore, some researchers have claimed that more accurate results can
be achieved by using LeakyReLu [24] with a small slope at negative values. However, the results
of Leakyrelu are not always consistent.

2.2.5 Fully-connected Layer

The fully connected layer is usually inserted after the last pooling layer in ConvNet to reduce
the number of feature maps and create a vector-like representation. Each neuron in this layer is
fully-connected to all neurons in the last pooling layer like in MLP. It provides a form of dense
connectivity and loses the structural layout of the input image. In classification tasks, this layer
computes the final class scores where each class corresponds to a label in the training dataset.
Figure 2.7 shows the operation of fully-connected layer.

2.2.6 Other Layers

With the rapid development of the deep learning field, many other operations have been developed
to accelerate the training procedure, prevent ConvNet from overfitting, or avoid gradient vanishing
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Figure 2.7: The yellow volume in a 3D shape is reshaped in to a vector-like representation. Each
neuron is pairwise connected to neuron in the next layer as in MLP [34].

problems [32, 33]. Overfitting refers to that ConvNet reaches a high performance on the training
set, but outputs inaccurate result on the test set. Gradient vanishing corresponds to the problem
when the gradient function with respect to parameters in the first few layers becomes close to zero
during back-propagation. Among all the operations, the most commonly used two operations to
avoid these problems are Batch Normalization [35] and Dropout [36].

Batch Normalization: During training, the input images are preprocessed with mean sub-
traction and normalization as described in Section 2.2.1. ConvNet gains high performance and
fast training speed with this operation. As for hidden layers, they tend to work better with re-
ceived data consisting of features with zero mean and unit variance. However, the data in hidden
layers is different and varies at each step due to the parameter updating by back-propagation.
Batch normalization solves this problem by generating proper initialization for data in hidden
layers. It explicitly forces the output of a convolutional layer to have a unit Gaussian distribu-
tion before the activation operation. This enforcement is inserted between convolutional layer
(or fully-connected layer) and the connecting activation layer. Consider a mini-batch of feature
maps B = {x1, · · · , xm} after the convolutional layer operation, the mean µB ,variance σB and
normalized value x̂i are computed by the following equation:

µB =
1

m

m∑
i=1

xi,

σ2
B =

1

m

m∑
i=1

(xi − µB)2,

x̂i =
xi − µB√
σ2
B + ε

,

(2.11)

where ε is a small positive number. Batch normalization introduces another linear transformation
yi with two other learnable hyper-parameter scale γ and shift β. The number in x̂i meets Gaussian
distribution. Without this operation, most values are close to zero which could not be activated
through nonlinear activation layer. In real application, the batch size m is set to 256 or 512
[29, 30]. A large or small batch size can result in performance degradation problem [37, 38]. The
equation is:

yi = γx̂i + β. (2.12)

The two factors γ and β can be learned and updated by ConvNet during training. Batch nor-
malization makes ConvNet significantly more robust to bad initialization. Additionally, it can be
interpreted as preprocessing before every layer of networks.
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Figure 2.8: Image illustration of dropout. Left: A normal neural networks with 2 hidden layers.
Right: Dropout neural networks with crossed units dropped [36].

Dropout: This method is an effective, simple, and recently introduced a technique to prevent
overfitting. Figure 2.8 shows the idea of dropout. During training, dropout is implemented by
only keeping one neuron unit active with probability p. It can be treated as a sampled ConvNet
based on the original trained model and only parameters of the sampled ConvNet are updated
based on the input data. Consider an output neuron z during training, the expected output of
this neuron with dropout is:

ẑ = pz + (1− p)0, (2.13)

where p is the probability between 0 and 1. In the test procedure, this neuron z is always active.
However, the probability p must be multiplied on neuron z to keep the same expected output as in
training process. Since the test time is critical, inverted dropout is more preferable to implement
at training process. It performs scaling in training time and does not function at the testing
procedure. The inverted dropout is illustrated as:

ẑ = pz + (1− p)0,

ẑ =
z

p
.

(2.14)

2.3 Loss Function

ConvNet based object detection method is a supervised learning approach. The training data
consists of images with label information characterizing the ground truth. During training, the
loss function is used to measure the quality between predicted scores on training dataset and the
ground truth labels. The target of training ConvNet is to minimize the loss function by updating
weights and bias. The loss is computed by forward pass and the gradient of the network parameters
is computed by back-propagation. The total loss is computed as an average over each training
individual example:

L =
1

N

∑
i

Li, (2.15)

where N is the number of training data. Classification is to predict a discrete class label. Normally
it is assumed that one example in the dataset only has one single correct label. The most commonly
used loss function for classification is Softmax classifier with cross-entropy loss. Consider a training
dataset that consists of n different labels. The output neuron units in last fully-connected layer is
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in a vector like form [aL0 a
L
1 · · · aLn ]>. The Softmax function is first used to transform these scores

into a normalized vector:

pi =
ea
L
i∑n

j=1 e
aLj
. (2.16)

The cross-entropy loss for one training example has the following form:

Li = −log(pi). (2.17)

Regression is the objective of predicting continuous quantities such as the location of objects in
images. The L2 loss or L1 loss is always used to compute the loss between the predicted quantity
and the true label value. The L2 loss has the following form:

Li = ‖aLi − yi‖22. (2.18)

The L1 loss has the following equation:

Li = ‖aLi − yi‖, (2.19)

where yi is the true label value for i-th example. Note that L2 loss is more difficult to optimize
and less robust to outliers because it can introduce huge gradients. Also, regularization [39] is
always used to prevent ConvNet from overfitting.

2.4 Examples of ConvNet Structure

ConvNet saw heavy use in the 1990s, but then faded away because of the increasing problem
complexity and the limitation of computation capability. In 2012, AlexNet [11] brought ConvNet
back with a huge improvement on image classification accuracy on ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [10] and high parallel GPU implementation. Since then, every
year the winner of ImageNet has been a ConvNet. The most successful structures are VGG-16
[29], GoogLeNet [40], ResNet [30], DenseNet [41], etc. The most commonly used two architecture
are VGG-16 and ResNet. Both ConvNets are used in scientific research and industry development.
ResNet-50 takes less time to train and gain more accurate result than VGG-16 [42]. However, its
shortcut connection breaks the successive ConvNet structure which makes it difficult for transfer
learning.

2.4.1 VGG-16

VGG-16 was the runner-up ConvNet in ILSVRC 2014. Its main contribution was showing that the
depth of ConvNet is a critical component for better performance. The filter size in the convolution
layer is only 3 × 3 and the max pooling layer has size 2 × 2. The whole structure of VGG-16 is
shown in Figure 2.9.

As can be seen from the figure, the number of filters is doubled when the spatial size of feature
maps reduce half. Three fully-connected layers are stacked after the convolution layers with
dropout regularization for the first two fully-connected layers. VGG-16 achieved high performance
on image recognition problems with only 7.3% error. However, one downside of this ConvNet is
it contains nearly 138 million parameters to train. Most of these parameters are between the last
convolution layer and the first fully-connected layer. The last convolution net has 512 feature maps
with a dimension of 7 × 7 and each neuron unit is fully-connected with the first fully connected
layer with the width of 4096. This will introduce 512 × 7 × 7 × 4096 = 103 million parameters.
This transition makes about 74% of the parameters of the network. Researchers found these
fully-connected layers can be replaced by average pooling [44] without any significant performance
downgrade while largely reducing the number of parameters.
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Figure 2.9: Architecture of VGG-16 [43].

2.4.2 ResNet

ResNet, developed by Microsoft Asia, was the winner of ILSVRC 2015. It introduced residual
block (or shortcut connection) to improve classification accuracy on image recognition. The error
performance of the winner network ResNet-152 is only 3.6%, which is even better than the per-
formance of human beings. ResNet is currently the state-of-art ConvNet models according to its
performance.

Since batch normalization can successfully solve gradient vanishing and explosion problem, it
is logical that the ConvNet performance can be improved if more layers are stacked to it. However,
based on experiments [45, 46], deeper networks face heavy degradation problem which means the
accuracy of ConvNet degrades rapidly if the depth increases. For example, if we train the well
pre-trained VGG-16 model with more layers added performing identity mapping, the result of the
new deeper ConvNet will be worse than the original VGG-16 model. A residual block is introduced
to address this problem. The structure is shown in Figure 2.10.

Figure 2.10: Left: Two-layer standard network block. Right: Two layers residual network block
2.10.

The output of these two-layer networks is denoted as H(x). The original mapping of the left
figure is recast into H(x) = F(x)+x as shown in the right figure. With this short cut property, the
depth of ConvNet can be significantly increased. The central idea of ResNet is to learn the additive
residual function F with respect to the identity mapping of x. A more detailed explanation was
given in [47]. Consider a ResNet with loss function L, the back propagation to x is:
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∂L
∂x

=
∂L
∂H

∂H
∂x

,

=
∂L
∂H

(1 + F ′(x)).

(2.20)

This indicates that the gradient ∂L
∂x can be decomposed into two parts. The term ∂L

∂H can

be propagated without concerning any other weight layers and scale. Another term ∂L
∂HF

′(x)
propagates through the weight layers.

2.5 Deep Learning Framework

Recently many deep learning frameworks from companies or universities have been open sourced
for the public. Most famous among these are Caffe [48], Pytorch [49], Tensorflow [50], MxNet [51],
PaddlePaddle [52]. All these frameworks support GPU training with parallel computing and can
be easily adapted for different tasks such as visual recognition and natural language processing.

In this project, all the work was carried out on Tensorflow and Keras [53]. TensorFlow is an
open source software library for high performance numerical computation. It was originally de-
veloped by researchers and engineers from the Google Brain team within Googles AI organization.
Furthermore, it comes with strong support for machine learning and deep learning and the flexible
numerical computation core is used across many other scientific domains. In addition, Tensorflow
orders ’TensorFlow Model Zoo’ where people could get shared models and weights from Google
research department, thus allowing researchers to build on top of others work. Keras is the of-
ficial high-level application programming interface (API) of Tensorflow. It’s growing with large
adoption in the research community with its focus on user experience.

2.6 ConvNet Based Object Detection

While image classification focuses on recognizing candidate objects in images, object detection
deals with detecting instances of semantic objects belonging to a certain class by fitting a bounding
box on it. Object detection is a more challenging task since it also needs to identify the location
of a certain instance along with its size. Furthermore, object locations in the image plane are
insufficient for advanced tasks such as autonomous driving or robot navigation. In reality, 3D
object detection is important since it can output useful 3D information for decision making and
interaction. In this section, the recent advances ConvNet based approaches on object detection
will be discussed. The difference between image recognition, 2D object detection, and 3D object
detection are shown in Figure 2.11.

Figure 2.11: Left: Image classification. Middle: 2D object detection. Right: 3D object detection.

2.6.1 2D Object Detection

As described before, the most difficult problem by 2D object detection is finding object locations.
A typical detection pipeline generally starts from searching for possible regions and extracting
features region by region and then use classifiers to determine the object class for each region.
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Many region proposal methods have been developed to address this task such as Selective Search
[54], Edge boxes [55], and Region Proposal Networks (RPN) [12].

Region based Convolutional Neural Networks (R-CNN) [18] applies Selective Search to find
regional object proposals. Each proposed region is then cropped from the original image and
resized into 227× 227. It is then fed into a 4096-dimensional feature vector based Neural Network
feature extractor and then based on the extracted features, it is classified by a Support Vector
Machine (SVM). R-CNN achieves accurate detection results on dataset such as PASCAL VOC
[56]. However, it costs too much time to train because the Selective Search method is not efficient
and every proposed region needs to go through the ConvNet to perform object classification and
bounding box regression.

Fast R-CNN [19] speed up the computation of R-CNN largely. It only uses one single ConvNet
on the entire input image and finds proposed regions on feature maps instead of on the original
images. Also, the SVM on the region proposals are replaced by fully connected layers to predict
class probability and bounding box coordinates simultaneously. Furthermore, a new type of layer
called region of interest (RoI) pooling is introduced to connect feature maps and classifiers.

Instead of relying on an external object proposal method, Faster R-CNN [12] uses RPN which
slides over the last convolutional feature maps to generate candidate anchors as bounding boxes
in different scales and ration aspects. These proposals are then fed into Fast R-CNN to classify
objects. Faster R-CNN is around 10 times faster than Fast R-CNN and can achieve about 10fps
on a modern GPU.

In RetinaNet [57], a new region proposal method called Feature Pyramid Network (FPN) [58]
is used as the backbone to generate a rich, multi-scale convolutional feature pyramid based on
feature maps from different depth. Furthermore, it proposes a novel cross entropy loss to address
the foreground-background class imbalance encountered during training FPN. It achieves better
accuracy and speed than Faster R-CNN.

A novel approach called Mask R-CNN [59] can effectively detect objects in the image while
generating a high quality segmentation mask for each detected object. It extends Faster R-CNN
by adding another branch for predicting an object mask in parallel with the existing branch for
bounding box recognition. In addition, Mask R-CNN can achieve advanced level tasks such as key
point detection and human pose estimation. It can achieve around 5fps on a modern GPU.

Some other detection algorithms are proposal-free such as You Only Look Once (YOLO)
[60] and Single Shot Detector (SSD) [13]. Rather than generating candidate anchors on last
convolutional feature maps, they divide images into several grid cells. Within each of the grid
cell, a set of base bounding boxes are generated. These proposal-free methods run much faster
than region proposal based detection algorithm. However, their detection accuracy is around 10
percent lower than Faster R-CNN and RetinaNet.

2.6.2 3D Object Detection

Different from 2D object detection which only needs to estimate 4 parameters (x, y, w, h) for an
object, 3D object detection needs to find 9 parameters (x, y, z, φ, ψ, θ, w, h, l) to determine the
location of one object, where x, y, z describe coordinates of the object in 3D space, φ, ψ, θ mean
rotation of the object in terms of its body frame which are roll, pitch and yaw, w, h, l describe
width, height and length of the object. Many research work has focused on 3D object detection
these years.

3DOP [14] introduced a sophisticated detection framework. It uses the stereo information to
generate 3D point cloud and then it is used to find the ground plane and score 3D box proposals.
An energy function which encodes object size priors, ground plane and depth informed features
are designed. The best-generated proposals are selected by minimizing the energy function.

Mono3D [61] is a modification of 3DOP method. It was made to exclude the need for stereo
images. Although no point cloud is generated, the knowledge of the position for the ground plane
is assumed. Also, fully convolutional networks (FCNs) from external sources are used to propose
bounding boxes from object and class segmentation. Its performance is slightly worse than in the
stereo case and the pipeline is even more complicated.
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An interesting work called SubCNN [15] makes use of novel voxel-pattern-based representation,
which represents cars of different viewpoints, occlusions, and truncations. Groups of such patterns
represent subcategories, which are detected on the output of a SubCNN network. Interestingly,
since the voxel patterns define spatial models, 3D segmentation and bounding box is obtainable
from the prototype database. However, the net is still just a classifier, requiring a separating
region-proposal stage.

Deep3DBox [20] introduces another approach. Based on 2D bounding box detection, they
use ConvNet to regress the local orientation and object dimensions. After that, the estimated
parameters are combined with geometric constraints to project a final 3D bounding box on the
detected objects. Unlike previously described methods, during training only information provided
in KITTI [62] annotation labels is used. The training and estimation procedure just based on
monocular images. This is of particular interesting since in reality additional information such as
stereo images or point cloud is not easy to obtain.

A novel approach is given by DeepMANTA [16], which can predict part localization, visibility
characterization, and 3D dimension estimation simultaneously. The DeepMANTA network is able
to localize vehicle parts even if these parts are not visible. In the inference, the networks outputs
are used by a real-time robust pose estimation algorithm for fine orientation estimation and 3D
vehicle localization. However, they use an additional dataset including 3D shape and template of
different types of vehicles.

2.7 Comparision of Detection Algorithm Properties

A survey paper published by Google Research [63] investigated the trade-off between speed and
accuracy for 2D object detection. Two typical detectors Faster R-CNN [12] and SSD [13] are
compared and discussed. The result is shown in Figure 2.12.

Figure 2.12: Speed and accuracy trade-off of different detection methods by object size and feature
extractor [63].

In general, Faster R-CNN is more accurate while SSD is faster. Especially for the small object
in images, Faster R-CNN outperforms SSD largely. As can be seen from Figure. 2.12, Faster
R-CNN achieves more accurate detection result on all object sizes when a more complex ConvNet
structure such as ResNet is used [30]. Some paper also conducts research on ship detection with
different detection methods. In [4], Faster R-CNN is also used to detect 10 different categories of
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ships because of its accuracy. It achieves 0.947 mean average precision. In [64], SSD is implemented
as 2D detectors to detect different kinds of ships. Their best model reaches 0.84 mean average
precision. Though it is not fair to compare the performance of different models trained on a
different dataset, Faster R-CNN can reach better performance than SSD. According to COCO
dataset object [65] detection challenge, all 2D detection algorithm on the leaderboard is a Faster
R-CNN based method.

Deep3DBox achieves the second place on KITTI orientation estimation evaluation benchmark
among all non-anonymous methods. Compare with other 3D detection methods, SubCNN [15]
proposes a complicated region proposal network structure and Mono3D [61] requires heavy pre-
processing on input images. Although DeepMANTA [16] achieves a better result than Deep3DBox,
it needs a 3D CAD model to perform 2D to 3D key points matching. The 3D CAD model is difficult
to create. Deep3DBox does not have complex pre-processing and ConvNet structure. Furthermore,
the training data for it is easy to obtain with a recording platform. Thus, Deep3DBox is a better
choice for 3D information estimation of ships.
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Methodology

During the time of working on this project by our knowledge, there have been no publications
based on pose estimation of ships. We are the first to develop a ConvNet based 2D and 3D
detection method on ships. In this work, the Faster R-CNN model is first deployed and trained
on different categories of ships. Then the 3D bounding box estimation algorithm is attached to
the 2D detection result. Finally, a Kalman filter is designed to generate more accurate results.

In this chapter, we will discuss the methodological details behind all these approaches. An
overview of network architecture will be proposed at first. After that, the used methods in 2D
and 3D detection will be illustrated respectively. Finally, we will describe the Kalman filter and
the employed dynamic model.

3.1 Algorithm Choice

Based on the comparison in Section 2.7, we decide to choose Faster R-CNN as our meta-architecture
in this project. Consider the actual maritime traffic condition, the detection accuracy is much
more important than the detection rate. Maritime traffic is not complex and changeable as road
traffic, so high detection speed is not the key factor. Conversely, it is important to classify cat-
egories of different ships. Furthermore, vessels in the image captured by the autonomous ship
while sailing is likely to be small. If these vessels can be detected accurately, effective steps can
be made for navigation and decision making. Deep3DBox is chosen for 3D object detection.

3.2 Network Structure

The architecture of our ConvNet is illustrated in Figure 3.1. During training, each image is resized
to equal width and height initially. Pre-propossing techniques such as random flip can be used
to on images to make the ConvNet more robust. After that, modern ConvNet such as VGG-16
[29] or ResNet [30] are attached upon images to extract feature maps. In this project, the simple
VGG-16 is used because of its simple structure and high performance. On the output feature
maps produced by the last convolution layer, the region proposal network (RPN) runs spatially
to generate candidate regions and boxes that may contain objects. Among all the proposed
bounding boxes, a non-maximum suppression (NMS) algorithm is used to filter out all redundant
boxes. These regions are then pooled to a fixed size by using region of interest (ROI) pooling
introduced in [19]. Consequently, all selected regions are fed into a fully-connected network to
classify different objects. The 2D ship detection method ends here.

After obtaining the predicted 2D bounding boxes, they are fed into another ConvNet to project
3D bounding box. The cropped images run through several convolution layers and three fully-
connected layers to estimate orientation and dimensions. In order to predict the orientation
angle, the ConvNet first identifies if the angle lies in a certain discrete rotation angle range and
then regress the residual rotation with respect to the center of the angle range. After obtaining
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Figure 3.1: Overview of network structure. Our ConvNet based detection method can estimate
3D bounding boxes directly from monocular images.

accurate orientation and dimension from the ConvNet, a correspondence constraint is used to
compute translation values based on camera matrix and predicted parameters. Finally, a Kalman
Filter is designed to generate accurately predicted results by fusing information from different
sensors together.

3.3 2D Ship Detection

The 2D ship detection approach is illustrated in Stage 1 in Figure 3.1. It can be separated into
two sub-networks: RPN and a classification network. In this section, the used method for 2D
detection is discussed.

3.3.1 Region Proposal Network

RPN, in general, consists of additional convolutional layers added on the top of feature maps that
can simultaneously regress rectangular object regions and classify whether these regions belong
to the foreground or background at each location. It outputs several rectangular object proposals
with a score on each of it. Each score represents objectness of one proposal which means the
rectangular region is foreground or background. In order to generate candidate regions, a small
network with 3 × 3 spatial size slides over the obtained convolutional feature maps. This sliding
window network reduces feature maps to lower dimension and several anchors are generated at the
center of this sliding window. After that, two sibling fully connected layers are used to perform
two tasks: bounding box regression and objectness classification. Note that two sibling 1 × 1
convolutional layers are used here as fully-connected layers in order to reduce the number of
parameters. The RPN model is shown in Figure 3.2.
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Figure 3.2: Architecture of the used RPN.

Anchors Generation

As the sliding window slides spatially through all feature maps, anchors are generated with respect
to different size and ratio at the centre of each sliding window. In the original paper published
by Faster R-CNN, three anchor sizes [128, 256, 512] and three ratios [1:1, 1:2, 2:1] are used for
images. Note that not all anchors are used for objectness classification, anchors exceeding image
boundaries are excluded. Then, an intersection over union (IoU) method is used to compute
the overlap between anchors and ground truth bounding boxes in training process. The detailed
explanation of IoU can be found in Section 4.2.1. The ground truth objectness score p∗ is calculated
via:

p∗ =

 1, if IoU > 0.7
0, if IoU < 0.3
None, otherwise

, (3.1)

giving that the IoU over 0.7 is marked as foreground and less than 0.3 is marked as background.
This is because anchors have IoU larger than 0.7 with ground truth bounding box contains most
part of the object [19]. For IoU between 0.3 and 0.7, these anchor are excluded because they
are vague to identify their objectness. Note that during training if an object does not have any
anchor with IoU larger than 0.7, the anchor with highest IoU will be marked as foreground. As a
result, for each selected candidate anchor, the RPN outputs 2 scores to estimate probability of an
object and 4 values to represent the bounding box coordinate. An illustration of how anchors are
generated is given in Figure 3.3.

Figure 3.3: Illustration of anchors generated by RPN. At the center of each sliding window, 9
anchors in different ratios and scales are created [66].
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RPN Loss Function

Since the RPN performs objectness classification and bounding box regression, the loss function
for training it can also be separated into two parts. For objectness classification, the loss function
Lcls(pi, p

∗
i ) is defined exactly the same as Equation 2.17 described in Section 2.3. For a single

bounding box, it can be described by 4 parameters (x, y, w, h), where x, y are the center coordinate
of the bounding box and w, h are the width and height of each box. Normally, regressing these
4 values directly will not yield accurate results according to many experiments [67, 18]. The
offset values are regressed instead. Consider one ground truth bounding box (x, y, w, h) and a
selected anchor (xa, ya, wa, ha) by RPN, the transformation from anchors to bounding box can be
determined in these equations:

x = txwa + xa,

y = tyha + ya,

w = etwwa,

h = ethha.

(3.2)

The linear transformation is parameterized in 4 variables (tx, ty, tw, th). These are our learnable
parameters. During training, the RPN tries to minimize the difference between ground truth
(tx, ty, tw, th) and estimation (t∗x, t

∗
y, t
∗
w, t
∗
h):

{
tx = x−xa

wa
, ty = y−ya

ha

tw = log w
wa
, th = log h

ha

, (3.3)

{
t∗x = x∗−xa

wa
, t∗y = y∗−ya

ya

t∗w = logw
∗

wa
, t∗h = log h

∗

ha

, (3.4)

where x, xa, x∗ represents x coordinate of predict box, anchor box, and ground truth box respect-
ively (same for y, w, h). The loss function is defined as smooth L1 error:

Lreg(ti, t
∗
i ) =

∑
i∈(x,y,w,h)

smoothL1
(ti − t∗i ),

smoothL1
=

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

.

(3.5)

Although the L2 loss is more precise and better at prediction, it is more sensitive to outliers.
It require careful tuning of learning parameter in order to prevent gradient explosion through
back-propagation. In addition, normal L1 loss L1 = |x| is not differentiable at 0, it can influence
heavily on convergence of loss function. As a result, the smooth L1 loss is used for bounding box
regression. The total loss for RPN becomes:

LRPN (pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ1

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ). (3.6)

where Ncls means the number of total anchors in one batch size, i is the index of each anchor,
Lcls is defined as the softmax score with cross-entropy in Section 2.3, the ground truth label p∗ is
1 if the anchor is foreground, otherwise the value is 0, λ1 is a loss weighting parameter to ensure
both cls and reg are approximately equally weighted. It is also a tuning parameter to ensure
performance in both objectives. Nreg is the number of anchor locations. The term p∗Lreg means
the regression loss is activated only for anchor belongs to foreground (p∗ = 1) and disabled for
background anchors (p∗ = 0).
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3.3.2 Classification Network

The classification network is applied on the proposed feature maps from RPN and classifies them
to a specific category through fully connected layers and softmax classifier. The bounding box
regression is used again to obtain more accurate results.

Non-maximum suppression

After training RPN, it can successfully output rectangular proposals on images. However, many
anchors could be classified as foreground by RPN. Hence, NMS is used to reduce the number of
proposals. This method can be divided into the following steps:

1. Find the predicted proposal with highest score as foreground;

2. Compute the IoU between this bounding box and other predicted bounding boxes;

3. Eliminate all other bounding boxes with IoU larger than 0.7;

4. With all the left proposal regions, repeat from step one.

The NMS method can significantly reduce the number of proposal regions. In practical, we
set the number of rectangular boxes after NMS to be approximately 300. After that, all these
selected regions are feed into a classification network to perform the object classification task and
bounding box regression once again for better results.

ROI pooling

The RPN can successfully generate candidate regions that contain objects. However, these regions
are of different spatial sizes. The fully-connected requires uniform feature sizes to perform object
classification. The ROI pooling is introduced to make non-uniform sizes proposals into small
feature maps with a fixed size (normally 7 × 7). It firstly divides proposed regions into 7 × 7
different blocks. Among each block, a max pooling operation introduced in Section 2.2.3 is used
to output feature maps in equal size. Then, all these equal size feature maps are fed into two
fully-connected layers to perform classification.

Loss function

The loss function in the classification network is in principle the same as in RPN. However, instead
of classifying a proposed region to foreground and background, it classifies the region to a certain
object category. The loss function is chosen as follows:

LCLN (oi, ti) =
1

Nobj

∑
i

Lcls(oi, o
∗
i ) + λ2

1

Nobj

∑
i

Lreg(ti, t
∗
i ), (3.7)

where Nobj means the total number of objects in one batch size, o∗ is the ground truth value
for various objects, λ2 is the loss weighting parameter. The total loss for 2D ship detection is
computed by:

L = LRPN + LCLN . (3.8)

After constructing the model, the ConvNet can be trained from end to end to generate 2D
bounding boxes on images. The detail of the implementation is given in Section 4.3.1.

3.4 3D Ship Detection

After successfully detecting ships in the 2D case, the 3D ship detection ConvNet is developed.
Stage 2 shows the necessary steps needed to predict 3D bounding boxes on ships. In this section,
the detailed steps behind 3D detection are described.

Onboard Ship Detection and Pose Estimation with Deep Learning 21



CHAPTER 3. METHODOLOGY

3.4.1 Estimation of 3D Bounding Boxs

As described in Section 2.6.2, 9 variables (x, y, z, φ, ψ, θ, w, h, l) need to be determined in order to
fit a 3D bounding box on objects. Normally for autonomous vehicles, the object roll φ and pitch
ψ are assumed to be zero to simplify the problem. This further reduces the unknown variables to
7. Before exploring deeply into the methodology, we first need to know how to project 3D points
in real-world coordinate systems on images.

Camera Matrix

The camera matrix is a 3×4 matrix that describes the mapping of a camera from 3D points in the
world to 2D points in an image. The choice of reference frame will be detailed in the next section.
It can be decomposed into a product of extrinsic and intrinsic camera parameters. The extrinsic
camera matrix describes how to convert 3D points in world coordinate to camera coordinate. It
has two components: the rotation matrix R and a translation vector T . This matrix has the same
structure as a rigid body transformation. The transformation can be described in the following
way: 

Xc

Yc
Zc
1

 =

[
I T
0 1

] [
R 0
0 1

]
Xw

Yw
Zw
1

 ,

=

[
R T
0 1

]
Xw

Yw
Zw
1

 ,
(3.9)

where [Xc Yc Zc] describes the 3D point in camera coordinates and [Xw Yw Zw] describes it in world
coordinates. The homogeneous coordinates allow us to separate R and T in two matrices. The
intrinsic camera matrix transforms 3D camera coordinates to 2D homogeneous images coordinates.
This perspective projection is parameterized by Hartley and Zisserman in [68]. It can be described
by:

K =

f 0 cx
0 f cy
0 0 1

 , (3.10)

where f is the focal length, cx and cy are the coordiantes of the principal point offset which
describes the location of camera ray on images with respect to the image origin. By combining
intrinsic matrix K, rotation matrix R, and translation T , a 3D point in object coordinate reference
X = [Xw Yw Zw 1] can be projected into image plane x =

[
s · x s · y s

]
. s is a scale variable in

homogeneous coordinate:

s · xs · y
s

 = K

[
R T
0 1

]
Xw

Yw
Zw
1

 . (3.11)

Coordinate System, Orientation, and Translation

The coordinate system also needs to be chosen at first. We will choose a coordinate system that
corresponds to the KITTI dataset and its publication [69]. The detailed description of KITTI
can be found at Section 4.1.2. For an autonomous vehicle, it should be equipped with multiple
cameras to perceive the surrounding environment. Furthermore, the coordinate system should
be in a fixed condition so that the transformation can be conducted correctly. According to the
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publication [69, 62], for convenient use, the positive value of directions in both the camera frame
and body frame for objects are defined as:

x = right,

y = down,

z = forward.

(3.12)

However, the origin point of the camera frame and object frame are different. The center of
the camera frame is located at the top of the recording platform. In contrast, its body frame is
defined as the center of the bottom for each object. For example, if a ship model faces x positive
direction, its body frame is illustrated in Figure 3.6:

Figure 3.4: Left: Bird view of body frame for a single ship. Right: Front view of body frame.

After defining the coordinate system, the orientation yaw needs to be determined. There are
two types of orientation normally used to describe objects, namely global orientation and local
orientation. The global orientation describes the object rotation in world frame which remains
unchanged while the object is moving straight. Conversely, local orientation is defined in camera
coordinate which considers the ray from camera center through the cropped object center. A
figure illustration is shown in Figure 3.5.

Figure 3.5: Illustration of local orientation θl and global orientation θ. The local orientation also
considers the ray with respect to the camera.

In general, global orientation represents the object coordinate system with respect to the
camera coordinate system. local orientation also considers the direction of camera ray.
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If the intrinsic camera matrix is given, the global orientation can be obtained by combining
local orientation and the crop center of each object instance.

d =
√

(xo − cx)2 + (yo − cy)2,

θray = arctan(
d

f
),

θ = θl + θray,

(3.13)

where xo and yo are the centre point of an object on the image plane, d is the distance between ray
and object centre on the image plane, θl and θray are local orientation and ray angle respectively.

Figure 3.6: Illustration of how to compute θray.

3D Bounding Box Construction

Once the translation between object and camera [x, y, z] and the dimension of object [w, h, l]
are known. The eight coordinates of a 3D bounding box in body frame of one object X1∼8 =[
± l

2 [0, h] ±w2
]

can be transferred to image plane x1∼8 =
[
x1∼8, y1∼8

]
by using Equation

3.9. Note that only the rotation yaw R =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 is considered here because roll φ

and pitch ψ are considered close to 0. Some of the ground truth 3D bounding boxed are shown in
Section 4.1.2 and 4.1.3.

3.4.2 Multi-Bin Networks

After knowing how to construct 3D bounding boxes. We need to determine parameters to regress.
Orientation and dimensions are selected as the regression variables. Inspired by 2D object detection
algorithms such as Faster R-CNN [12] and SSD [13], we also use a similar network structure named
MultiBin to estimate 3D bounding boxes. The following sections will discuss this method.

Parameter Choices

Under the assumption that roll φ and pitch ψ are close to zero, we need to estimate 7 parameters
to determine one 3D bounding box. The most influential one among these variables is yaw θ. It
contains important 3D information and determines the heading of an object. Therefore, the local
orientation θl is chosen as a parameter to regress. The local orientation value can be different
even if the global orientation remains unchanged. As can be seen in Figure 3.7, the global rotation
of a car is constant, but the local orientation angle changes at different positions. Hence, it is
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Figure 3.7: Left: cropped images of a car. Right: Images of the whole scene. The local orientation
changes in different images while the global orientation remains the same [20].

reasonable and easy to regress local orientation based on camera images. Same for ships, normally
for a sailing ship its roll and pitch angle are very small and not considered as an important factor.
For ship navigation, the most influential factor is considered to be the yaw angle.

We choose to regress are dimensions [w h l] rather than translation [x y z]. This is because the
dimension values vary not much for a certain type of object in reality (e.g. tugs roughly have the
same size). Furthermore, dimension parameters heavily depend on a particular subcategory that
can most be recovered accurately if that subcategory can be classified correctly. In contrast, there
is no regular pattern can be observed in three translation values x, y, and z based on the cropped
object window. Consequently, dimensions and orientations are chosen as parameters to regress.

Multi-Bin Structure

Similarly to bounding box regression problem, estimate the orientation angle directly will not yield
accurate results. Instead, the orientation angle is firstly divided into n overlapping bins. We then
estimate both the confidence probability ci that the predicted angle is involved in ith bin and the
angle offset which needs to be added to the ray of that bin to obtain the final local orientation.
This approach divides the orientation regression problem into two sub-problems, namely bins
classification and angle offset regression. A simple two bins model is shown in Figure 3.8.

The angle offset is represented by the cosine and sine value of the angle instead of the orientation
value itself based on the loss function in next section. This results in 3 outputs for the orientation
estimation which are confidence, cosine and sine value respectively. The cosine and sine values
are obtained by applying L2 normalization layer at the output of fully-connect layers. The exact
network structure is shown in Figure 3.9. The fully-connected layers for regressing dimensions
have 256 units and 512 units for both orientation branches.

Loss Function

The loss function for orientation regression is defined as the Euclidean distance between the ground
truth angle offset ∆θi and the estimated offset ∆θ̂i. For a single bin, the loss function is as follows:

Onboard Ship Detection and Pose Estimation with Deep Learning 25



CHAPTER 3. METHODOLOGY

Figure 3.8: A simple MultiBin model in two bins and with 10 degree overlapping, the region with
green lines means the overlapping part, the red dotted line is the center ray of each bin, angles in
anti-clockwise are considered to be a positive offset and in clockwise to be a negative offset.

Figure 3.9: MultiBin architecture for orientation and dimension estimation.

Lo =
1

n

n∑
i

[cos(∆θi)− cos(∆θ̂i)]2 + [sin(∆θi)− sin(∆θ̂i)]
2,

= 2− 2

n

n∑
i

[cos(∆θi)cos(∆θ̂i) + sin(∆θi)sin(∆θ̂i)],

(3.14)

where n is the batch size. For multiple bins, the cos(∆θi)cos(∆θ̂i) + sin(∆θi)sin(∆θ̂i) value at
different bins nθ are added together. In that case, the loss function results in:

Lo = 2− 2

n

n∑
i

nθ∑
j

[cos(∆θi)cos(∆θ̂i) + sin(∆θi)sin(∆θ̂i)]j . (3.15)

The loss function for confidence is equal to the softmax score with cross-entropy (Section 2.3)
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of confidence in each bin. The eventual loss for local orientation θ is:

Lθ = Lconf + β × Lo, (3.16)

where Lconf is the loss for confidence and β is loss weight for angle offset. After determining the
orientation loss, we need to define the loss function for dimensions. The dimension loss is simply
defined as L2 loss for residual dimensions with respect to different training types in the dataset.
It is computed as follows:

Ldims =
1

n

n∑
i

(∆D − δ)2, (3.17)

where ∆D is equal to the ground truth dimensions of each object D minus the average dimension
D̄ over one particular category. δ is the residual dimension values estimated by the network. The
total loss for this ConvNet becomes:

L = α× Ldims + Lconf + β × Lo, (3.18)

where α is loss weight for dimensions. The loss weight is used to ensure different loss functions
converging during the training procedure. It is determined empirically.

3.4.3 Correspondence Constraint

The dimensions and orientations can be regressed accurately after training the ConvNet. However,
the translation value is still unknown which is essential to produce a 3D bounding box. An
approach called correspondence constraint which considers the constraints between 2D detection
box and 3D detection box is proposed to solve the translation problem analytically. Based on
Equation 3.11, the following constraint can be formulated:s · xs · y

s

 = K

[
I RXw

0 1

] [
T
1

]
, (3.19)

where I is identity matrix, Xw = [Xw Yw Zw] represents the eight coordinates of 3D bounding
boxes in the body frame of each object, and T = [Tx Ty Tz] is the unknown translation vector. The
methodology assumes that the projection at a 3D bounding box on image plane should fit tightly
into the 2D detection bounding box. This hypothesis means that the 2D bounding box parameters
[xmin xmax ymin ymax] can be the projection of any eight coordinates of the 3D bounding box in
the body frame of each object

[
±dx/2 [0, dy] ±dz/2

]
. This results in 84 = 4096 configurations.

For example, xmin can be the projection of any points in 3D bounding box which results in:s · xmin∗
s

 = K

[
I RXw

0 1

]
︸ ︷︷ ︸

Ma3×4

[
T
1

]
, (3.20)

where ∗ means in the case of computing xmin, y value is not interested and considered. Similar
for ymin part, the left part of Equation 3.20 will become [∗, s ·ymin, s]>. If the underbraced part is
denoted as Ma, the first and last row of this equation can be rewritten into the following equations
in Python code. 

Ma [0, :]

[
T
1

]
= s · xmin

Ma [2, :]

[
T
1

]
= s

, (3.21)

where : means all rows or columns are considered in the matrix. The above equation results in:
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Ma [0, :]

[
T
1

]
= Ma [2, :]

[
T
1

]
· xmin, (3.22)

{Ma [0, 0 : 3]−Ma [2, 0 : 3] · xmin}︸ ︷︷ ︸
Aa1×3

T = Ma [2, 3] · xmin −Ma [0, 3]︸ ︷︷ ︸
ba1×1

. (3.23)

For a specific configuration vector c = [a, b, c, d], where c can contain any 4 of the 4096
configurations (e.g. a =

[
dx/2 dy dz/2

]
). Two matrices Aa and ba in Equation 3.23 can be

expanded to 4 parameters [xmin xmax ymin ymax] of the 2D bounding box. This results in the
following equation:

A[r, :] = Mc[r][i, 0 : 3]−Mc[r][2, 0 : 3] · bbox[r],

b[r] = Mc[r][2, 3] · bbox[r]−Mc[r][i, 3],
(3.24)

where bbox represents the four bounding box coordinates for one object, i indicates the projection
is conducted in x or y coordinate, r is the row index. These parameters are listed in Table. 3.1.

c a b c d
bbox xmin ymin xmax ymax

i 0 1 0 1
r 0 1 2 3

Table 3.1: Parameters in Equation 3.24.

After computing matrix A and b, there are 4 different equations related to the 4 sides of the
2D bounding box. This results A in 4 × 3 matrix and b in 4 × 1 vector. The translation value
for each configuration vector c can be calculated by solving:

AT = b,

T = (A>A)−1A>b.
(3.25)

As described before, there are 4096 configurations in total to solve the translation values for
each object. This large number can be further reduced by some observations. Consider 3D and
2D bounding box in the figure below. In reality, ships are always upright, which means ymin and
ymax can only be the projection of [x2, x4, x6, x8] and [x1, x3, x5, x7] respectively. This reduces
the number of configurations to 1024. Furthermore, the roll and pitch angle for a sailing ship are
both close to zero which makes xmin and xmax can only be the projection of [x5, x6, x7, x8] and
[x1, x2, x3, x4], resulting in 44 = 256 configurations. The correct translation can be selected from
256 configurations. However, the method to select the correct translation needs to be developed.
In this project, we provide a sensor fusion technique to choose the right translation based on other
sensor information.

Figure 3.10: Left: 3D bounding box in body frame of an object. Right: 2D bounding box on
images.
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3.5 Sensor Fusion

After implementing 3D bounding box detection algorithm, the translation and orientation of
objects can be successfully estimated from a monocular camera. However, in real autonomous
shipping systems, multiple sensors are equipped onboard to obtain more robust and accurate
information for tasks such as navigation and decision making. Sensor fusion [70] is a technique
that combines sensory data derived from disparate sources such that the resulting information can
be much more accurate than each source used individually. Note that dynamic mothion motion
of real ships can be more complicated. In this project we focus on a generic method to show that
the perception ability can be improved by fusing information together.

3.5.1 Kalman Filter for Sensor Fusion

The task of a sensor is to provide relevant information about a process variable by measuring
the outside environment. Measurements from different sources can be noisy and inaccurate. A
Kalman Filter [71, 72] is often used to remove noise from sensor signals and fuse data together in
order to simultaneously estimate the smoothed values of position, orientation, and velocity [73].

Kalman Filtering: Due to the sampled nature of the information, we choose to consider
a discrete time formulation of our filtering and sensor fusion tasks. The standard discrete-time
Kalman Filter model is described by the following linear time-invariant state-space model:{

xk+1 = Axk +Buk + wk
yk = Cxk + vk

, (3.26)

where xk is a vector that contains the state variable at time k, uk describes the input to the
system at time k, A is a non-singular matrix and B is a matrix mapping input to state, w
is a random variable that represents the process noise, modeled as white noise with Gaussian
distribution N (0, Q). yk contains the sensor observation at time k, C is the extraction matrix
between state and measurement, and v is the measurement noise modeled as white noise with
Gaussian distribution N (0, R).

The Kalman filter can be separated into the following steps. A priori estimator x̂k+1|k of the
state x at time k + 1 is computed by using the mathematical model at time k:

x̂k+1|k = Ax̂k|k +Buk. (3.27)

Then, the predicted error covariance matrix P at time k+1 and the Kalman gainK is calculated
by:

Pk+1|k = APk|kA
> +Q, (3.28)

Kk+1 = Pk+1|kC
>(CPk+1|kC

> +R)−1. (3.29)

The estimated state can be updated by the measurment yk+1:

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Cx̂k+1|k). (3.30)

The new error covariace matrix Pk+1|k+1 is obtained by:

Pk+1|k+1 = (I −Kk+1C)Pk+1|k(I −Kk+1C)> +Kk+1RK
>
k+1. (3.31)

where I is the identity matrix. After calculation of Equation 3.31 the iteration restarts with
Equation 3.27 and k = k+ 1. The initial state x̂0 is often estimated by using linear least squares.
In case the initial measurement is not accurate or the noise assumptions are only approximate, it
can cost more time for the estimation error to converge.
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3.5.2 Dynamic Model

In order to perform sensor fusion, the state variables are constructed to represent a so-called meas-
urement model. We want to fuse information from different sensors to obtain accurate orientation
and translation in x and z coordinates of a certain object. Hence, the dynamic model of a moving
object with observed positions and pose can be described as follows:



θk+1 = θk + ∆tωk + 1
2∆t2aω

xk+1 = xk + ∆tuk + 1
2∆t2au

zk+1 = zk + ∆tvk + 1
2∆t2av

ωk+1 = ωk + ∆taω
uk+1 = uk + ∆tau
vk+1 = vk + ∆tav

, (3.32)

where θ, x, and z are orientation, translation in x and z direction. ω, u, and v are velocity of
orientation and translation. aω, au, and av are accelerations of ω, u, and v. ∆t is the time interval
of the observation.

Since accelerations are unknown and depend on external forces and disturbances, we can add
these variables to the process noise component. This gives the following state space model:

θk+1

xk+1

zk+1

ωk+1

uk+1

vk+1

 =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

A


θk
xk
zk
ωk
uk
vk

+



1
2∆t2aω
1
2∆t2au
1
2∆t2av
∆taω
∆tau
∆tav


︸ ︷︷ ︸

w

, (3.33)

where w is process noise with zero mean and covariance matrixQ. The vector w can be decomposed
into two matrices G and a. Matrix G only contains constant variable ∆t and matrix a contains
the random acceleration components:

w =



1
2∆t2 0 0

0 1
2∆t2 0

0 0 1
2∆t2

∆t 0 0
0 ∆t 0
0 0 ∆t


︸ ︷︷ ︸

G

aωau
av


︸ ︷︷ ︸

a

= Ga. (3.34)

Based on the noise vector w, the covariance matrix Q can be determined. It is defined in the
following equation:

Q = E[ww>] = E[Gaa>G>], (3.35)

where E corresponds to the expectation operator. Matrix G can be lifted out of the expectation
computation because it does not contain random variables:

Q = GE[aa>]G> = G

σ2
aω 0 0
0 σ2

au 0
0 0 σ2

av

G>, (3.36)

where σaω , σau , and σav are the variance of aw, au, and av respectively. aw, au, and av are
assumed to be uncorrelated.
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The covariance matrix Q results in:

Q =



1
4∆t4σ2

aω 0 0 1
2∆t3σ2

aω 0 0
0 1

4∆t4σ2
au 0 0 1

2∆t3σ2
au 0

0 0 1
4∆t4σ2

av 0 0 1
2∆t3σ2

av
1
2∆t3σ2

aω 0 0 ∆t2σ2
aω 0 0

0 1
2∆t3σ2

au 0 0 ∆t2σ2
au 0

0 0 1
2∆t3σ2

av 0 0 ∆t2σ2
av

 , (3.37)

The covariance matrix of the state variables also needs to be initialized. Normally the initial
value of is determined by the covariance of each variable which leads to:

P =


σ2
θ 0 0 0 0 0

0 σ2
x 0 0 0 0

0 0 σ2
y 0 0 0

0 0 0 σ2
ω 0 0

0 0 0 0 σ2
u 0

0 0 0 0 0 σ2
v

 , (3.38)

where σθ, σx, σy, σω, σu, σv are the variance of 6 state variables respectively commonly obtained
empirically. Note that the covariance value can also be determined based on the certainty of
different variables. More uncertainty results in a larger value.

After obtaining the covariance matrix P , the extraction matrix C needs to be decided. The
orientation and location are measured variables here. Thus matrix C for each sensor is as follows:

C1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , · · · , Cn =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

. (3.39)

By combining extraction matrices from different sensors together, the C matrix is equal to:

C =

C1

...
Cn

 . (3.40)

The final step is to determine the covariance matrix of measurement R for each interested
object. However, for each object and sensor the matrix R is different. The detail of how to
determine matrix R in a specific case is illustrated in Section 4.3.3.
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Implementation and Results

In this chapter, the implementation details and results evaluation are given. In order to train and
evaluate the performance of ConvNet, various datasets for 2D ship detection, 3D ship detection,
and sensor fusion are used and developed. After that, some evaluation metrics are provided
to measure the accuracy of detection and sensor fusion results. The steps of how to train the
constructed ConvNet are provided then. In the end, we present the results of our method on 2D
and 3D ship detection and the proposed sensor fusion technique.

4.1 Datasets

Since deep learning is a data-driven approach, datasets become one of the most important parts to
train and test a model. It can be broadly divided into two parts: training dataset and test dataset.
The training dataset is used to tune hyper-parameters. During training, the ground truth for each
example is given. The ConvNet tries to minimize loss function by updating parameters through
the optimization algorithm. The test dataset is used to evaluate the performance of ConvNet. In
test time, the input data goes through the model and the ConvNet will predict a series of relevant
numbers. It is then compared with the ground truth label to show the performance of ConvNet.
Due to the number of parameters in ConvNet can easily reach millions, a large number of dataset
is needed to optimize these parameters in the training process. The success of a deep Learning
project depends highly on the quality of dataset. Throughout this project, four datasets are used
to evaluate the performance of each methodology. Since the lack of dataset in real marine traffic
scene, we manually build a dataset for 2D and 3D ship detection. Furthermore, some open sourced
dataset from the Internet is also used in this project. We now describe the label information and
images in each dataset.

4.1.1 2D Ship Detection Dataset

For the purpose of autonomous sailing, there is no available dataset present. Annotate 2D bound-
ing box manually of a larger number of images can be extremely laboursome and time-costly.
Thus, we decided to create a small dataset that contains three different types of ships to train the
detector. Specifically, we downloaded 639 images from Damen shipyard media library and these
images were from three specific types of ships: ASD3212, FCS2610, and SPA4207. 570 images
have been separated into the training set and the rest have been used to form the test set. We
then used an open-sourced software labelImg [74] to annotate the locations of different kinds of
ships on the images. Some visualization of this dataset is shown in Figure 4.1.

4.1.2 KITTI

The KITTI dataset was created for autonomous driving case. It was first introduced by Karlsruhe
Institute of Technology in 2012 [75]. It contains images extracted from video sequences recorded
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Figure 4.1: Sample images in the constructed 2D ship dataset.

in the city of Karlsruhe. The object detection benchmark in KITTI consists of 7481 training
images and 7518 test images, with 80256 labeled objects in total. The images in KITTI dataset
have a relatively high resolution (1240 × 375). Only the labels for the training set are provided
as there is an active competition on the test dataset. Furthermore, the labels contain accurate
information such as orientation, bounding box, and dimensions. The label information is in the
following format:

type truncation occlusion alpha bbox dimensions location rotation y
where type illustrate the type of objects such as car, pedestrian, or cyclist, truncation refers to
the object leaving image boundaries, occlusion describes if the object is occluded by other objects,
alpha is the local orientation, bbox means the 4 coordinates for a 2D bounding box, dimensions are
the height, width, and length for objects in meters, location contains the 3 location parameters,
rotation y is the global orientation of an object.

Due to the lack of available similar dataset for autonomous sailing, the KITTI dataset is used
to train and evaluate the 3D detection part because of the full 3D information it contains. Only
cars, pedestrian, and cyclist are extracted from the labeled dataset. Some of the labels in KITTI
dataset and its ground truth 3D bounding box are illustrated in Figure 4.2.

4.1.3 3D Ship Detection Dataset

Based on the KITTI dataset, a similar dataset with a toy ship is built to evaluate the performance
of 3D detection. We first calibrated a web camera to obtain the camera intrinsic matrix. After
that, we measured the dimensions and locations of the toy ship with respect to the camera by
rulers. As a result, 88 images are recorded and labeled manually and 72 of them are used to train
the Convnet. Some pictures from the ground truth training dataset are shown in Figure 4.3.

4.1.4 Sensor Fusion Dataset

During the period of this research work, no dataset and information from other sensors are
provided. Thus, an imaginary dataset based on ground truth information is created in order to
evaluate the performance of sensor fusion method. It is more realistic to implement this method
on continuous frames so that the KITTI raw dataset [76] is used to perform sensor fusion. The
KITTI dataset uses Velodyne HDL-64E laser scanner to generate lidar information. It is a 3D
lidar sensor and has a 120m detection range. It also has ±2 detection accuracy. Based on this
information, an imaginary lidar data is created. We add 2◦ orientation error and 30cm location
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Figure 4.2: Sample images in the KITTI autonomous driving dataset.

Figure 4.3: Sample images in the 3D toy ship dataset.

Onboard Ship Detection and Pose Estimation with Deep Learning 35



CHAPTER 4. IMPLEMENTATION AND RESULTS

measurement error on the ground truth data to generate lidar data information with uniform
distribution. Consequently, each file in the sensor fusion dataset results in the following format:

Timestamp obj0 angle∗ x∗ z∗ obj0 angle1 x1 z1 obj0 angle2 x2 z 2 obj1 · · ·

where ∗ means data from ground truth, 1 and 2 means data from camera and lidar respectively.

4.2 Evaluation

In this section, the evaluation metrics for 2D detection and 3D detection will be discussed respect-
ively. Evaluation metrics are designed to measure the correctness of ConvNet’s performance. For
each of them, we are going to give the essential details and the method of computation.

4.2.1 2D Metrics

Intersection over Union

In the object detection field, intersection over union (IoU) measures the similarity of two bounding
boxes. Before computing the IoU, we first calculate the intersection and union part separately.
Consider there are two 2D bounding boxes b1 = (x1, y1, x2, y2) and b2 = (x3, y3, x4, y4). The
intersection and union are computed seperately:

w = min(x2, x4)−max(x1, x3),

h = min(y2, y4)−max(y1, y3),

I = wh.

(4.1)

The union is computed by:

aerab1 = (x2 − x1)(y2 − y1),

aerab2 = (x4 − x3)(y4 − y3),

U = aerab1 + aerab2 − I.
(4.2)

The IoU can be computed as:

IoU(b1, b2) =
I

U
, (4.3)

where A() represents area and b1, b2 are two bounding boxes. Normally for object detection,
people require IoU ≥ 0.5 to accept a detection as a correct one. Later we will show an evaluation
metric compares IoU from 0.5 to 0.95.

Precision and Recall

When evaluating models for binary classification on a dataset consisting of positive and negative
samples, usually four types of data are defined: true positive (TP), true negative (TN), false
positive (FP) and false negative (FN), whereas true and false refer to whether the positives or
negatives are correctly classified by the model, see Figure 4.4. The following image shows the
difference between these four parameters.

For multi-class classification, the negative samples of one category refer to all the other classes.
With the numbers of TP, TN, FP, and FN, we adopt the classic precision-recall metrics defined
as:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

(4.4)
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Figure 4.4: An image illustration of TP, TN, FP, and FN

In object detection, these parameters can be further explained in detail. A TP result means a
detected bounding box with IoU larger than the threshold while FP means the detected bounding
box with IoU smaller than a threshold (e.g. 0.5). FN means a ground truth bounding box is
not detected. The precision (P) means the ability of a model to identify the relevant objects. It
represents the percentage of correct positive predictions. The recall (R) is the ability of a model
to find all relevant cases. It is the true positive detected objects among all ground truth bounding
boxes. Equation 4.4 can be rewritten as:

precision =
TP

all detections
,

recall =
TP

all ground truths
.

(4.5)

Average Precision

Average precision (AP) is adopted and used in every dataset benchmarks such as KITTI, PASCAL
VOC [56], and COCO [65] to measure the accuracy of object detectors. It is the average of the
maximum precision at different recall values between 0 and 1. It is computed by:

AP =

∫ 1

0

p(r)dr, (4.6)

where p(r) is the precision at recall r. The normal way to calculate AP is to sample the precision
at 11 recall levels (0, 0.1, · · · , 1.0), interpolate it and compute the mean value.

AP =
1

11

∑
r∈(0,0.1,··· ,1)

p(r). (4.7)

To evaluate the performance of the 2D ship detector, the COCO evaluation metric is used
which measure 10 different AP from IoU at 0.5 to IoU at 0.95.

4.2.2 3D Metrics

In many open sourced dataset, the commonly used orientation evaluation metric is Average Orient-
ation Similarity (AOS), which is a multiplication of 2D detection AP and average cosine distance
similarity of orientation. Due to the lack of dataset, the 2D and 3D detection results are evaluated
separately in our case. The 2D detection precision is removed from the metric. Therefore, an
orientation Score (OS) is implemented to measure the performance of the orientation estimation
result. The definition of OS is as follows:

OS =
1

n

n∑
i

1 + cos(∆θi)

2
, (4.8)
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where n is the number of objects in the validation dataset, ∆θ is the difference between estimated
and ground truth orientation angle. To evaluate the estimation result of dimensions and transla-
tions, Mean Squared Error (MSE) metric is used. The evaluation equations for both parameters
are as follows:

MSEd =
1

n

n∑
i

∆2
w + ∆2

h + ∆2
l

3
,

MSEt =
1

n

n∑
i

∆2
Tx

+ ∆2
Ty

+ ∆2
Tz

3
,

(4.9)

where dimensions and translations are [w h l] and [Tx Ty Tz] respectively.

4.3 Implementation Details

4.3.1 2D Detection

For 2D detection, the VGG-16 structure is used as the ConvNet to extract feature maps from
images. The ConvNet takes full images as input and reshapes all of them to a fixed size (1024 ×
600). Consider that in real marine traffic, a ship in captured images can be very small. Another
anchor with size 64 is added to improve the detection accuracy for small ships in images. This
results in totally 12 anchors generated at one location on feature maps. The loss weights for
RPN and classification network are both set as 2 to make RPN loss function and classification
loss function approximately equal. The RPN and classification network are trained alternatively.
The foreground predicted by RPN needs to have an IoU over 0.7 compared with the ground truth
bounding box in order to successfully train classification network. The model is trained with
stochastic gradient descent (SGD) with a fixed learning rate 2e−3 and momentum of 0.9 is used
to accelerate the training process. The training batch size is set to 1 due to the limitation of
graphic card capability. In total we train 245 epochs for this model and the pre-trained model
from Tensorflow model zoo is used to initialize the model weights. The model is trained locally on
a GTX 960M graphic card with 2GB memory size. It takes about ten hours to train the model.

4.3.2 3D Detection

For 3D detection on KITTI, the ground truth 2D bounding box is used and each is cropped and
resized to 224× 224 based on the images in the ImageNet dataset [10]. The VGG-16 without its
fully-connected layers is implemented to extract features from all cropped images. The MultiBin
module is added to regress dimensions and orientations. The number of bins is set to 2 based
on the best result achieved in the paper [20]. The overlapping is chosen to be 10 percent. In
addition, Dropout [36] and LeakyReLU [24] are used instead to increase the network performance.
To simplify the procedure, only fully visible objects are utilized for training. All training images
are randomly flipped to make the network more robust. The network is trained with SGD and
momentum of 0.9. The learning rate is fixed to 1e−4. The training process is carried out on
Amazon Web Service (AWS) with a single NVIDIA K80 GPU. It ran for 25 epochs with a batch
size of 8 and the best model are chosen by minimal validation loss. In addition, the loss weight
are set to α = 4 and β = 10 respectively. This is because we found the orientation loss difficult
to minimize during training time. Since the ground truth annotations for KITTI test set are not
released, the training images are split into a training set (90 percent) and validation set.

For 3D detection for the toy ship, the trained weights on KITTI are used to initialize the model.
The batch size is changed to 1 and the training procedure running for 1 epoch. The remaining
settings are the same as 3D detection on KITTI.
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4.3.3 Parameter Choices in Kalman Filter

As described in Section 4.1.4, the KITTI raw dataset 2011 09 26 drive 0056 is chosen to validate
performance of Kalman Filter. We first ran 3D detection on this dataset with continuous frames.
After that, we fuse Lidar information and camera information together. The predicted error
covariance matrix P is determined at first. The value is determined based on the certainty of
different variables. The orientation and location have more certainty than the velocity value
since they can be measured directly from sensors. The initial covariance matrix P is determined
empirically as the following equation, its effect will diminish as time progresses:

P =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100

 . (4.10)

Note that increasing values in P will make the Kalman Filter trust the mathematical model
more. It will result in smoother and more linear estimation result since the model is linear in
our case. However, it may output inaccurate fusion result. Decrease values in P can cause the
Kalman Filter trust measurements more. It can output more accurate result, but the estimation
curve may fluctuate.

The three variance value σaω , σau , and σav in the process noise covariance matrix Q are all
determined as 0.1. The tuning effect of Q is the same as tuning P .

We find the estimation results for a certain car Car0 to be fairly accurate. However, the
result for Cyclist0 has been found below expectation. Therefore, the covariance matrix R for two
different objects are determined in the following way.

R1car =

1 0 0
0 1 0
0 0 1

 , R2car =

1 0 0
0 1 0
0 0 1

 ,
R1cyclist =

10 0 0
0 10 0
0 0 10

 , R2cyclist =

1 0 0
0 1 0
0 0 1

 ,
(4.11)

where R1 and R2 are covariance matrix for camera and lidar respectively. Due to the inaccuracy
of camera information for cyclist, the value in R1 is higher to penalize the detection result. By
combining R1 and R2 in the following way, we can follow from Equation 3.27 to update all
parameters.

R =

[
R1 0
0 R2

]
. (4.12)

4.4 Results

4.4.1 2D Detection Results

As illustrated before, we use the COCO evaluation metric to test our model’s performance. Tabel
4.1 and Figure 4.5 shows the 2D detection result on three types of ships. In the table, it can be
found that the AP from IoU 0.5 to 0.95 is 0.728. Hence, the 2D detection model achieves accurate
result. Specially for IoU at 0.5, the score for AP reaches 0.991. From the figure, we can see that
the value of AP is around 0.95 for IoU between 0.5 and 0.7. After IoU of 0.75, it drops rapidly.
This phenomenon is logical, since it is difficult to predict bounding box exactly the same as ground
truth bounding box.
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Average Precision (AP) [IoU = 0.50:0.95 | area = all | maxDets = 100] = 0.728
Average Precision (AP) [IoU = 0.50 | area = all | maxDets = 100] = 0.991
Average Precision (AP) [IoU = 0.75 | area = all | maxDets = 100] = 0.933

Table 4.1: Detection evaluation results use COCO dataset metrics.

Figure 4.5: An image illustration of 2D detection result.

4.4.2 3D Detection Results

The evaluation result of 3D detection on KITTI is summarized in Table 4.2. As can be seen from
the table, the MultiBin model can predict the orientation value accurately. The OS value can be
converted to orientation error (OE) by using arccos(2×OS−1) formula. This results in 2.7◦, 10.0◦,
and 18.0◦ angle errors on car, cyclist, and pedestrian respectively. Compare with other methods,
the original paper [20] achieves 3.4◦ angle error on car, SubCNN [15], Mono3D [61], and 3DOP
[14] results in 4.5◦, 13.7◦, and 15.1◦ angle error on car respectively. The MultiBin structure also
succeeds in the prediction of dimensions. The MSE of dimensions is in relatively small value. In
addition, the translation values selected from 256 configurations are also reasonable. The reason
why MSE value for translations are slightly higher is that it is calculated based on estimated
dimensions and orientation, which further increase in the error value.

Type OS MSEd MSEt OE
Car 0.9994 0.0078 1.8363 2.7◦

Cyclist 0.9924 0.0066 1.6258 10.0◦

Pedestrian 0.9754 0.0103 0.2409 18.0◦

Toy Ship 0.9899 / / 11.5◦

Table 4.2: 3D detection results on both the KITTI and toy ship datasets.

As we described before, we only evaluate the orientation estimation result on toy ship dataset.
The result is also shown in Table 4.2. As can be seen from the table, the orientation result is
slightly worse than it on the KITTI dataset. This is because the number of training images is not
enough and the measurement by hand in training dataset is not accurate enough.
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4.4.3 Sensor Fusion Results

We ran the sensor fusion method on car and cyclist for 18 and 12 frames respectively. The
orientation and location estimation results are shown in Table 4.3, Figure 4.6 and 4.7. As can
be seen from the table and plots, the Kalman Filter can significantly reduce the prediction result
by fusing information from camera and Lidar together. The estimation result for car has an
offset about 0.02 rad, the method managed to reduce the offset by fusing Lidar information with
visual estimation result together. Furthermore, the detection result for cyclist based on camera
has 11.46◦ angle error which is below expectations. As described in Section 4.3.3, we decide to
trust the information from Lidar more. As a result, the detection accuracy for cyclists is largely
improved especially for the orientation estimation error reducing from 11.5 degree to only 1.5
degree.

Car0 Cyclist
Sensor Angle Error MSEx MSEz Angle Error MSEx MSEz
Camera 1.42◦ 0.0073 0.10 11.46◦ 1.27 7.40
Fusion 0.63◦ 0.008 0.007 1.51◦ 0.02 0.095

Table 4.3: Sensor fusion results on KITTI raw dataset.

Figure 4.6: Sensor Fusion result for Car.
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Figure 4.7: Sensor Fusion result for Cyclist.

4.5 Visualization of Detection Results

The visualization of 2D and 3D detection results are shown in the following figures. As can be seen
from the figures, we achieve relatively accurate results on both cases. In Figure 4.9, we show some
failed detection results from our method. The most common failure case is redundant bounding
box detection on the same object. This is probably because the NMS described in Section 3.3.2
could not filter out all the irrelevant bounding boxes after RPN procedure.
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Figure 4.8: Selected successful examples of 2D ship detection results.
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Figure 4.9: Selected examples of 2D ship detection contains failed detection results.

Figure 4.10: Selected examples of 3D bounding box estimation results on KITTI dataset. Left:
ground truth 3D bounding box. Right: estimated 3D bounding box
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Figure 4.11: Selected examples of 3D bounding box estimation results on toy ship dataset. Left:
ground truth 3D bounding box. Right: estimated 3D bounding box.
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Conclusions

In this chapter, the work presented in this thesis is summarized first. After that, the limitations
of our proposed approaches will be described. And the last part will list the possible directions
for future work.

5.1 Summary

In this project, we achieved promising detection results on both 2D and 3D scenes by a single
RGB camera. Additionally, we created a small dataset on a toy ship to evaluate our ConvNet
performance. The 2D and 3D ship detection both present accurate results. Furthermore, the Con-
vNet show good running efficiency which means it is promising to be applied to real autonomous
ships in the future. The following paragraphs will show the major contributions of our work.

We first apply 2D object detection algorithm Faster R-CNN on a small ship dataset created
by ourselves. Besides generating 9 anchors on each location on feature maps, 3 more anchors with
smaller size are proposed additionally considering the real marine traffic condition. The result
shows a mean average precision of 0.728 for all three types of ships. The resulting 2D detection
algorithm need approximately 166ms to process one image on a modern graphic card.

Secondly, the main contribution of this project is successfully estimating 3D bounding box
from a monocular camera. The original ConvNet are modified with Dropout and LeakyRelu. Also,
random flip on images is added to make the ConvNet more robust. The new model can successfully
predict accurate and stable orientation angle along with dimensions for different objects. It outputs
accurate result on both KITTI and toy ship dataset. The orientation error for cars and toy ships
are 2.7◦ and 11◦ respectively. The translations can also be solved by using camera matrices and
some assumptions. Furthermore, this model needs 200ms time to process one image.

Finally, we propose a Kalman filter based sensor fusion technique to improve the detection
result. The information from Lidar and camera are fused together and more accurate results can
be obtained. By choosing which sensor information is more trustful, the angle error can reduce
significantly from 11.45◦ to 1.51◦ as shown in Section 4.4.3.

5.2 Limitations

There are also some limitations that can be observed in our approach. The first disadvantage
of our method is that we have two separate branches for 2D detection and 3D detection. These
two parts are also trained independently. Normally in a deep learning based 3D object detection
algorithm, single ConvNet which can predict 3D bounding box directly on images are constructed
and trained. Our method takes more time for prediction and the 3D bounding box depends heavily
on the 2D object detection precision. However, this modularity can be useful to subdivide the
tasks and retrain specific parts of the network efficiently if new dataset is available.
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The assumption that the 3D bounding box fits tightly in the estimated 2D bounding box does
not always work. For example, if one ship is leaving the image boundaries and only part of the
ship is visible, a problem with the given assumption occurs. Our approach can still predict the
orientation, but it will fail at constructing the 3D bounding box. This is because for an object which
is partly visible in the image, its ground truth 3D bounding box exceeds the image boundaries. In
addition, the translation computation depends heavily on the estimated orientation and dimension
values which results in relatively high estimation errors if any of the taken assumptions are violated.

5.3 Future Work

5.3.1 Dataset

Since deep learning is a data-driven approach. The dataset has a huge influence on the performance
of the algorithm. Without a proper dataset, it is difficult to conduct further research on any
perception tasks such as object detection and semantic segmentation. Thus, I recommend to first
create a large image based dataset which records the real marine traffic scenes. The two papers
published by KITTI dataset [62] and [69] would be nice references. In order to record such dataset,
an autonomous shipping platform should be built at first and it should be equipped with several
high-resolution video cameras, laser scanner, and other useful sensors such as GPS and IMU. The
recording platform should travel on river or sea for days or weeks to store real marine traffic
images and then all these images need to be labeled with full information. According to [62], all
the labelling work is done manually and the information is obtained by 3D point clouds from the
laser scanner. Therefore, such a dataset requires serious investment.

5.3.2 Detection Related

Various future application in detection related field can be applied once the dataset is prepared.
Firstly, the base ConvNet in 2D detection can be modified to a modern network structure such as
ResNet-152 [30] or ResNext [77] to increase the detection accuracy. Furthermore, RetinaNet [57]
which is a more advanced 2D object detection algorithm can be applied to compare its performance
with Faster R-CNN. Even instance segmentation approach such as Mask R-CNN [59] can be
applied to conduct per pixel classification for different objects.

For 3D ship detection, one possible direction is to find a reasonable way to predict the transla-
tion since the three values for translation are below expectancy in our approach. Another option
is to construct a sensory-fusion based network to combine Lidar images with camera images to
generate more accurate and sufficient result [78].

Instead of camera image-based detection, some research can be conducted on other related
fields such as object tracking and Lidar image-based detection. Object detection method can only
identify and localize different objects in a scene. It does not combine time series data together.
However, object tracking looks into different moving objects in real-time and can output continuous
information.

5.3.3 Application in Ship Industry

In order to build an autonomous ship successfully, camera image-based detection method alone
is not accurate to perceive the surrounding environment in marine traffic. It works poorly at
night or at poor weather condition such as foggy or cloudy weather. Multiple sensors are often
equipped onboard to detect and localize objects. Lidar could localize objects with better accuracy
and it can work at night. However, lidar also performs poorly in bad weather conditions and its
operating distance is only around 300 meters. Radar can achieve better detection results in cloudy
weather and it has longer detection distance. Nevertheless, its performance on small objects is
inadequate. A better way is to combine information from different sensors together in order to
achieve fully autonomous vessels. In that direction, our proposed methodology certainly represent
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a step. There are also other interesting problems to investigate such as the communication time
and time delay of different sensors.
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