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Abstract

A new trend in automation is to develop complex systems that involve networks of interconnected
subsystems which interact physically and exchange information though a communication network.
Uncertain factors could disrupt the interconnections producing unknown topology changes. Since
the operation of the complex system might rely on knowing the current topology, it is of interest
to investigate the possibility of recovering it from data. Two possible procedures for detecting the
topology are presented, one based on prediction error modeling and the other based on models
obtained though the stable-spline with exponential hyperprior method. The preference for using
stable-spline with exponential hyperprior for topology detection is provided through simulations
comparing and evaluating the two methods.
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Chapter 1

Introduction

1.1 Motivation

The presence of complex networks of dynamic systems in many fields of study such as econometrics,
neuroscience and automation, have lead to a raised interest in the use of measurement data for
determining the interconnections between the network components. For example, in neuroscience,
measurement records are used to identify key brain structures underlying the organization of a
given brain function, such as, determining the interactions that appear between different areas of
the motor cortex, involved in motor maintenance [14]. Another example would be in automation,
where measurements from a distributed configuration of sensors over a network of, e.g gas pipelines,
could be used to detect faulty areas, due to leakages, reducing in this way the maintenance and
downtime costs. Similarly, it could be applied in petrol industry, water distribution, in the power
grid, for sensor arrays, or in large scale manufacturing processes. The list of applications is not lim-
ited to those just mentioned, as dynamic networks are ubiquitous in natural and engineering sciences.

In practice, there are multiple possible benefits for knowing the topology of a network of dynamic
systems depending on the application. Knowledge of topology can help reduce maintenance and
downtime costs, and increase safety through fault detection capabilities. Another possible benefit is
that it provides an understanding of dynamic networks with fixed but unavailable switching rules.
In this regard, it could help extend the scientific knowledge of natural sciences, through empirical
studies of complex processes. It also helps in the design of new systems based on an already existing
network systems. Topology knowledge could also ease the automatic operation of a plant with a
network structure through an appropriate choice of a distributed control configuration. It could
also help, with the identification of a particular module in the network, for example, by choosing an
appropriate experiment design. It helps in achieving reliable operation of complex processes, or in
other words helps in achieving stability by implementing appropriate control actions. In this regard,
it could help with the control of hybrid dynamical systems, to make them resilient to unexpected
switches.

The importance of topology detection is also determined by the increasing number of engineering
systems that function as networks. In the modern society, we encounter many engineering systems
upon which its population is relying as it directly affects its welfare. Developing new systems is
always a challenge that must thus be confronted for improving the economic and social being of the
society. One way of developing new systems could involve a process through which multiple other
systems are combined together to realize emergent holistic behavior. As a result, the new complex
system could thus have a network structure, the management of which is crucial for the functioning
of the system. Related to our problem of interest, it may appear that the topology of engineer
developed networks should always be known by the system designer, with the exception of situation
when faults occur. The following example, of a three tank system, will reveal that in a engineer
developed network, we could have uncertain factors, other than spontaneous faults, that drive its
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Figure 1.1: Three tank system.

topology, making it unpredictable. Besides providing a concrete application of topology detection,
this example suggests the potential of topology detection for many other applications, which might
involve similar uncertainty sources.

Three tank system

The importance of topology detection for engineering systems will now be illustrated through an
example of a three tank system shown in Figure 1.1. The three tanks are interconnected through
pipes at the bottom as shown in the figure. Substance can be introduced in tank 1 and 2 through
actuated valves at the top of the two tanks, while at the bottom of each of the three tanks the
substance is leaking. Q1 and Q2 denote the inlet flow rate of substance in the tanks, hi , i ∈ {1, 2, 3}
represent the measured heights, and QLi, i ∈ {1, 2, 3} are the leakage flow rates. The control ob-
jective of such a system is to maintain the heights h1 and h2 at specific values. To that end, by
selecting Q1 −QL1 and Q2 −QL2 as controlled, input, variables, and h1, h2 as the process outputs,
we define the dynamic model as a system with two inputs and two outputs. To solve the control
problem, a multi-variable approach could be taken for controller design. Considerate study of the
process, though, would reveal an alternative control strategy. If the heights are to be maintained at
values such that h1 > h3 > h2, then the substance will flow only in one direction in the connecting
pipes, i.e. from tank 1 to 3 and from 3 to 2. Similarly, if h2 > h3 > h1, then the flow direction will
reverse. Also, if h1 > h3 and h2 > h3, then substance will pass from tank 1 to 3 and from 2 to 3. In
this last situation, if h3 is close to zero, we notice that tank 1 will not affect or be affected by tank
2. Thus, if we would be in this situation, we could apply two separate single input single output
controllers for tanks 1 and 2 and avoid the more involved multi-variable approach. There are two
ways of determining whether tank 1 is decoupled from 2, namely, through topology detection, or
by verifying the state values h1, h2, h3, and deducing from them the current operating structure.
The last approach has, though, the inconvenient of requiring access to the state variable h3, which
might not be measured. In that case, a state observer based on Kalman filtering might be used
to estimate the values of h3, if the state h3 is observable. In case it is not though, we would be
unable to determine the current operating topology, based on the state variables. On top of that,
since we don’t know if the two systems are interconnected and we also don’t have access to h3, a
full state feedback, multi-variable approach would have to be applied, but it would not be possible
since it would require the full state values. Thus, if we would have knowledge that the two tanks are
decoupled, from topology detection, we could apply individual single-input single-output controllers,
without the need of knowing h3. Generalizing, from this example, it might be beneficial to realize
that more complex dynamic networks could similarly benefit from topology detection.

The diversity of applications and multitude of possible benefits of utilizing topology detection,
as just presented, thus motivates us to investigate an effective procedure through which we could
determine the network topology from measurement data.
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Figure 1.2: Network example. The circles indicate summation nodes.

1.2 Thesis problem statement

In this thesis, we will consider interconnections of dynamical systems, from which we gather mea-
surements to be used for determining the topology of the considered network. The networks used
in this thesis, are interconnections of discrete-time, linear-time-invariant, single-input single-output,
dynamical systems called modules, along with a set of measurement points called nodes [4]. We de-
fine the nodes to be the signals that are inputs to at least one system. For illustration, an example
is given in Figure 1.2. Then, the topology is defined as the set of all existing direct links between
every pair of nodes.

An account of the main research question along with two other supportive ones, are given in dia-
gram 1.3. The two annexed questions are used to provide the background useful for motivating and
formulating the main question.

Given as an accepted fact that the topology is influencing the observed signals of the network
in consideration, a rational first question is, could the interconnection structure be restored from
the effect it has on these signals? To answer this question, we must ask ourselves beforehand, in
what manner is the topology affecting the observed signals, or how could we measure this effect?
Formulating the question for the simplest network, of two signals, we are interested in deriving a
condition on signal measurements, for when a system is present between the two signals, with one
of the signals being considered the input and the other the output. Then, extending, we would seek
the conditions under which an intricate interconnection exists between the signals of a more complex
network. This rational process is the subject of the first question in the diagram of Figure 1.3. In this
report, the solution to the previously stated problems is provided through the concept of Granger
causality [13], [14]. The key idea lies in the fact that for a two signal network, the presence or absence
of a system between the two signals is a problem of determining the causal relationship between the
respective signals. It is worth noting, that causality is referring to interconnections between signals,
whereas topology is referring to interconnections between systems, and that the two representations
are equivalent. The outcome of answering the first question in diagram 1.3 should be an effective
strategy of detecting the topology of a network of dynamic systems based on Granger causality.

The second question in diagram 1.3, makes the transition from the first to the third, and main,
question. It indicates the inconveniences of the topology detection procedure, suggested as an an-
swer to the first question. In this report, Granger causality is tested, through the construction of
predictive dynamic models meant to capture the signal transfer from one another. Hence, the prob-
lem of topology detection, or of testing causality, becomes a problem of dynamic modeling. In this
situation, every pairwise signal relationship has to be modeled. The links between signals that are
not present in the data generating network, should give dynamic models which would indicate very
little influence or none at all, between the signals in question. To make the discrimination between
present and absent connections plausible, we must express a relatively high confidence in our con-
structed models. Thus, topology detection through the suggested method, presents inconveniences
that come with estimating predictive dynamic models.
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First question:

How to determine the interconnection structure (topology) of a linear
dynamic network from measurement data obtained at different nodes?

prediction error modeling, Granger causality

Second question:

Is the topology of the network model a sufficiently good aproximation
of the topology of the data generating network?

model order selection, finite data, network overfit

Main question:

Is regularization helping in detecting the topology?

choice of regularization, topology detection evaluation

Figure 1.3: Thesis research questions.

Since the measured signals are affected by noise, the estimated module parameters will also be
affected by it. Moreover, in a practical situation, working with finite time data sets adds to the pa-
rameter variance compared to the situation when even more data points are available. The parameter
uncertainty, then, affects the predictions produced by our constructed models, thus decreasing our
belief in the causal inference between the signals of our network, based on the estimates. In this
regard, parsimonious model choices help in keeping low the noise effect on the estimates. How-
ever, model set specification, in dynamic networks, is an exhausting task as there are many module
models to choose, and each model has to be tunned individually to a specific order. At this point,
we understand the problem of model set selection for dynamic network models, as the problem of
deciding a model set for each modeled module in the network.

The standard method for model selection used in single-input single-output system identification
is to consider a model class and to tune the model order using a cross validation procedure based
on residual analysis, i.e. for each different model order we apply the residual test to validate the
model and we select the model with the lowest order that is still validated [1], [2]. Thus, in system
identification, the model selection problem is to choose a model structure and a model order in such
a way that we are able to capture all the relevant input-output relationships without fitting in the
noise realization. In cases where the system is not in the model set, a trade-off between noise fitting
and dynamics fitting has to be established. An example of this would be the case where we try to
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obtain an approximate linear model for a non-linear data generating system.

In this thesis we aim to formulate automated mechanisms for model selection, for the purpose
of obtaining low variance network models, which still capture all the important dynamics of the
system under consideration. One of the most familiar automated mechanisms for model selection,
in the literature, is based on information theoretic reasoning and uses Akaike’s information criterion
(AIC) [1], [2], [10]. These methods present the limitations of overfitting the models, and of increased
computational complexity when multiple model orders have to be determined. We, thus, pursue
another path to model order selection. An alternative and more recent procedure in the literature is
based on using prior information in a Bayesian context to overcome the presented inconveniences of
AIC methods. This brings us to the main research question, specified in diagram 1.3, which pushes
us to investigate how regularization methods could benefit topology detection.

Besides aiding the model order selection, using prior information through Bayesian statistics for
our network identification problem could also offer a leverage in the model quality even when the
best model structure is already specified. This is a result of including correct prior information into
our models which are stochastic in nature and might lead to a reduction of the uncertainty of our
model parameters. Through the Bayesian approach, in contrast with the classic prediction error
methods used in system identification, we could also trade bias for variance, reducing in this way
the difference between the true and estimated parameters, expressed using the root-mean-squared-
error [8]. Thus, increasing the model quality, through Bayesian statistics, by including additional
information besides that which is present in the measurement data, would help to better asses the
interconnections between the signals of our network. Using prior information to improve the esti-
mates, seems to be useful for practical applications as the estimation is carried out using finite data
sets which are affected by noise of a certain degree. For a given model structure, an estimation car-
ried with less data points will increase the effect of the noise on the estimated parameters compared
with an estimation done with a higher number of data points. Thus we shall try to reduce the noise
effect from our models, using the prior information to improve on the estimates in the practical
situation when the data sets are finite. The quality of our dynamic models is in their capability
to make good predictions, i.e. reproduce the behavior of the data generating system, and reducing
the uncertainty in the model will help making them better at prediction, which in turn will help to
discriminated between absent and present connections.

Another important aspect that will be treated using Bayesian statistics is what we call the problem
of network over-fit. This is the inconvenience of classic prediction error methods that they are not
able to select which of the input signals affects the prediction of a given output, by setting the corre-
sponding transfers to zero. In a Bayesian context, priors which produce sparse results ([9], [6], [16])
will be used to address this issue.

To answer the main question in diagram 1.3, we will analyze a choice of the Bayesian prior used
to improve topology detection, named stable-splines with exponential hyperprior, introduced in [9].
In this thesis, we will try to give answers to all three questions of diagram 1.3, with the aim of
developing an efficient topology detection procedure. To assess its performance we also provide a
comparison with the results obtained through classic prediction error methods, by evaluating each
topology detection procedure.

1.3 Thesis overview

The thesis will proceed as follows.

In chapter 2, we review the fundamentals of prediction error methods and we introduce the no-
tation that will be used in this report. We express the problem of over-fit as a model selection
problem that should be avoided to obtain models which are suited for prediction. The network
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setup is described and afterwards we express the problem of model selection for network identifica-
tion. Finally, we formulate our topology detection procedure based on Granger causality.

In chapter 3, we present the Bayesian alternative to single-input single-output system modeling,
and its connection to regularized prediction error methods. We evaluate the stable-spline method,
that we will apply for its automatic model order selection ability and good predictive performance.
The used Bayesian estimation procedure comes with its own difficulties, in that it requires the solu-
tion to a non-convex optimization problem. In this regard, we provide two choices of initialization
that help to successfully solve this issue.

In chapter 4, we provide our procedure of evaluating an estimator for its topology detection ca-
pabilities, and we firstly evaluate the classic prediction error method for a given data generating
network example. Afterwards, we present the multi-variable Bayesian estimate known as the stable-
spline with exponential hyperpriors. Similar to the single-input single-ouput case, a non-convex
optimization problem needs to be solved. Appropriate choices of initializations are discussed and
evaluated. A comparison of topology detection through classic prediction error methods, and stable-
splines with exponential hyperpriors is provided along with a confirmation of the improvements.
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Chapter 2

Topology detection of dynamic
networks

In this chapter we build up from the fundamental results in system identification to the problem of
topology detection. In the begining, we review the methodology and notations, behind prediction
error methods for single-input single-output systems, and indicate the concrete estimator we will
be using in the thesis. Thus, to define our choice of prediction error method, we specify the model
structure, the criterion for selecting the parameters, and the predictor choice. Then, we move on
to present the problem of over-fit when choosing the model orders. Afterwards, we introduce the
considered network setup and associated identification problem indicating the issue of over-fit for
networks. Finally, we reveal the topology detection approach and the use of network modeling in
its derivation.

2.1 Predition error methods

One of the most used tools for modeling dynamic systems from measurement data, for a control
systems engineer, is the prediction error method (PEM) [1], [2]. The underlying idea behind the
method lies in the concept of prediction, which is used to derive models that able to reproduce
closely the behavior of the true system. To illustrate the method, let us consider the discrete-time
linear-time-invariant (LTI) single-input single-output system

y[t] = G(q−1; θ0)u[t] + e[t] (2.1)

E{e[t]eT [s]} = Λ(θ0)δ(t− s), (2.2)

as our data generating system, with y[t] the measured output, u[t] the input and e[t] a station-
ary white noise signal, and denote by y∗[t] = G(q−1; θ0)u[t] the ”noise-free” system output of the
true system G(q−1; θ0) which needs to be identified. Also, q−1 denotes the unit delay operator,
u[t− 1] = q1u[t], and E denotes the expectation operator. Λ indicates the parameterized covariance
matrix of the noise e, and δ(t) is the Kronecker delta. The true plant G(q−1; θ0) is part of a param-
eterized class of plants G(q−1; θ) with parameters θ. Here, θ0 is indicating the parameters of the
true plant. Notice that, throughout the thesis, we will assume the noise affecting the measurements
to be white.

Given measurements of the inputs u[t] and the outputs y[t], we would like to model the data gen-
erating system using a parameterized general linear model structure of the same class as our data
generating system,

ȳ[t] = G(q−1; θ)u[t] + ē[t],

E{ē[t]ēT [s]} = Λ(θ)δ(t− s). (2.3)
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Then the choice of parameters θ should be made such that the resulting model G(q−1; θ) is ca-
pable to make good predictions, i.e. reproduce the behavior of the data generating system.

To select a set of parameters θ̂ that make the model G(q−1; θ̂) good at predicting the behavior
of the data generating systems, a predictor must first be defined. For this model structure, a pre-
dictor could generally be seen as a system able to reconstruct as good as possible the output y[t] of
our data generating system, using only the past measured values of the outputs and inputs, and the
present input value. It can be expressed as

ŷ[t|t− 1; θ] = F (q−1; θ)y[t] + L(q−1; θ)u[t] (2.4)

where F (q−1; θ) and L(q−1; θ) are parameterized filters in the parameter vector θ, used for speci-
fying the predictor, with F (q−1; θ) having no feed-though term. Then, to measure the predictive
performance of our model G(q−1; θ), we can define the prediction error as

ε[t; θ] = y[t]− ŷ[t|t− 1; θ]. (2.5)

The model parameters θ should be chosen as to give smallest prediction errors, without having access
to neither y[t] or e[t] at the current time step t. The most used predictor in the literature [1], [2],
and the one used in this thesis, is the one that minimizes the variance of the prediction error, out
of all possible predictor defined by {F (q−1; θ), L(q−1; θ)}, i.e.

θ̂opt = arg min
θ

E{εT (θ)ε(θ)}, (2.6)

and, for the considered situation of white output noise, is given by

ŷ[t|t− 1; θ] = G(q−1; θ̂)u[t]. (2.7)

The associated prediction error is given by

ε[t; θ] = y[t]−G(q−1; θ)u[t]. (2.8)

Notice that, in defining the predictor, use was made of the assumption that the noise affecting the
output is white, and in case it isn’t, a predictor with a different structure should be used [1], [2].

For practical reasons, instead of optimizing the variance of the prediction error, we could search
for the set of parameters θ̂ that minimize sample variance instead

θ̂ = arg min
θ

1

N

N∑
t=n0

ε2[t; θ]. (2.9)

where N is the number of input-output data samples and n0 is a chosen starting point for evaluating
the prediction error.

In this way, the resulting model G(q−1; θ̂) should be suitable for use in the recovery of the real-
ization of the noise term. In other words, ε[t; θ] in ((2.5)) should reproduce the noise realization e[t].
This resemblance could be quantified, for example, by the functional distance

N∑
t=n0

(ε[t; θ]− e[t])2 (2.10)

which is required to be as small as possible to make sure that we are not over-fitting. This ensures
that our model has good predictive capabilities, i.e. it can finely reproduce the response of the
system when tested against a new set of data.
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It is worth reminding that the prediction error method has some interesting asymptotic properties,
which makes it desirable as an estimator, namely consistency, asymptotic normality and statistical
efficiency [1], [2]. The reason for considering these properties is that, in practice, if we could obtain
sufficiently large data sets, we would have guarantees that the estimates should improve compared
to the estimates obtained with less measurement samples.

In order to find the model parameters θ̂ in (2.9), we need to specify the structure in which G(q−1; θ)
is parameterized in terms of θ. Two model classes will be used throughout the thesis, namely the
finite impulse response (FIR) and the output error (OE) model.

The nonparametric finite impulse response model is a discrete model for a truncation of the im-
pulse response. It can be represented as

y[t] = G(q−1)u[t− nk] + e[t], G(q−1) = g1 + g2q
−1 + · · ·+ gng

q−ng+1, (2.11)

where G(q−1)u[t] =
∑ng−1
i=0 g[t]u[t − i] is a convolution sum between the impulse response and

the input and ng is the order of the model, while nk is the input time delay. It is considered as
nonparametric since it is actually the discretization of the impulse response which is a continuous
function. The estimated parameters in (2.9), for FIR models, could be determined using an analytical
expression, since the predictor (2.7) is linear in the parameters and provides a cost function (2.9)
which has a unique minimal point. The FIR model could be expressed in the linear regression form

y[t] =ϕT [t]θ + e[t], θ =
(
g1 . . . gng

)T
, (2.12)

ϕ[t] =
(
u[t− nk] . . . u[t− nk − ng + 1]

)T
. (2.13)

Or, when using N ≥ ng + nk measurement samples, as

YN =ΦTNθ + ΛN , (2.14)

YN =
(
y[ng + nk] y[ng + nk + 1] . . . y[N ]

)T
, (2.15)

ΦN =
(
ϕ[ng + nk] ϕ[ng + nk + 1] . . . ϕ[N ]

)
, (2.16)

ΛN =
(
e[ng + nk] e[ng + nk + 1] . . . e[N ]

)T
. (2.17)

Then, the analytical solution is given by the least squares solution

θ̂N = (ΦNΦTN )−1ΦNYN (2.18)

for which efficient methods of solving it exist.

The output-error model, that will also be used in some instances in this thesis, is

y[t] = G(q−1)u[t− nk] + e[t], B(q−1) =b1 + b2q
−1 + · · ·+ bnb

q−nb+1, (2.19)

with G(q−1) =
B(q−1)

F (q−1)
, F (q−1) =1 + f1q

−1 + · · ·+ fnf
q−nf . (2.20)

with nb and nf the orders of the B(q−1) and F (q−1) polynomials, respectively, and nk the input
time delay. Differently from the estimates obtained when using the FIR model structure, the OE
estimates don’t have a closed form solution, therefore they have to be obtained by using search
methods to solve the optimization problem (2.9). Furthermore, the criterion in (2.9), for the OE
model, presents the difficulty of being non-convex, thus possibly leading to local optimal solutions.

We will be using prediction error methods to obtain models that are meant for prediction throughout
the thesis. To model the network modules we will utilize the FIR model structure as it gives a closed
form solution for which efficient methods for solving it exist. The choice of model orders needed for
obtaining the estimates is not a trivial problem and will be discussed in the next section.
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Figure 2.1: Data generating system and model candidates for Example 2.2.1.

2.2 Over-fit and model selection

In practical situations we deal with finite data obtained in an experiment which runs a finite time.
Sometimes the experiment time is costly and as such the number of samples acquired is relatively
small. Thus, is some situations, the asymptotic properties mentioned earlier are mere unreachable
ideal goals. If the model order is chosen too large it can happen that the residual ((2.5)) becomes
zero. In this case, the noise realization is completely modeled by the module dynamics and we
achieve a perfect fit of the model to the training data. The estimated model then is said to over-fit
the data and will have poor predictive capabilities since when tested against another data set, cor-
rupted by another noise realization, the model will offer a poor fit.

The model order thus should be kept small, and the model set should be chosen less flexible in
order to prevent modeling the noise realization. The use of simpler models is also supported by
”Principle of parsimony” because they are easier to use. On the other hand, we want a flexible
model set with a reasonable model order, since we want to be able to capture all the relevant dy-
namics due to the input-output behavior seen in the data, making thus our model good for prediction.

In practice, we don’t have access to the noise realization to verify whether it is reproduced by
the obtained prediction error (2.8). We will instead determine the predictive quality of our model
by using the fit measure

W =

(
1−

∑N
t=nb+1(y[t]− ŷ[t])∑N
t=nb+1(y[t]− ȳ)

)
100%, ȳ =

1

N

N∑
t=1

y[t], (2.21)

also known as the coefficient of determination, where ȳ is the sample mean of the output data
{y[t]}Nt=1. This measure expresses the amount of variance in the outputs predicted by the inputs.
When we identify the model we choose the parameters to improve the fit. If we obtain 100% fit to
the training data we usually will have a model that incorporates the noise realization. For this rea-
son, cross-validation offers a better assessment of the model quality. It supposes that we determine
the parameters on a training data set, then we validate the model by testing the fit on the model
using another data set, called a validation data set. In this way we test to what extent the noise
realization has affected the identified parameters.

In the following example, we will give an illustration of the connection between model selection
and parameter over-fit. We consider as a data generating system an FIR model (2.11) of order
1, and we compare in terms of prediction two models, obtained from using the prediction error
method (2.9) for two different parametrization choices, see figure (2.1). The first is an FIR model
of order 1, thus, having the same structure as the data generating system. The second is an FIR
model of order 2, thus representing an over-parameterized model for the data generating system.
The predictive ability of the two models is compared by evaluating which of the two offers a better
reproduction of the output noise e[t] in (2.1) through their corresponding prediction errors (2.8).
Actually, we will show that the first model reproduced better the realization of the noise e[t] by

demonstrating that
∑N
t=n0

(ε1[t; θ]− e[t])2 ≤
∑N
t=n0

(ε2[t; θ]− e[t])2, where ε1 is the prediction error
corresponding to the first model and ε2 corresponds to the second one.
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Example 2.2.1. Consider the gain system G0(q−1; θ0) = g01 with input u and measured output
y = g01u+ e, with e a white noise signal uncorrelated with u. Chose the FIR parameterization of the
system as G1(q−1; θ1) = g11 with θ1 = g11 . Then the PEM solution, based on N input-output data
samples, is (2.18)

θ̂1 = ĝ11 = (Φ1
NΦ1

N
T

)−1Φ1
NY

1
N , (2.22)

where Φ1
N =

(
u[1] u[2] . . . u[N ]

)
∈ R1×N and YN =

(
y[1] y[2] . . . y[N ]

)T ∈ RN×1. Replac-

ing YN = Φ1
N
T
θ0 +ΛN , with ΛN =

(
e[1] e[2] . . . e[N ]

)T ∈ RN×1 the unknown realization of the

noise, in the formula for θ̂1, the estimate can be expressed as

θ̂1 = θ0 + (Φ1
NΦ1

N
T

)−1Φ1
NΛN . (2.23)

For the rest of the presentation we will use the following notation U1 = Φ1
N
T ∈ RN×1, and in the

new notation we have

θ̂1 = θ0 + (U1U
T
1 )−1UT1 ΛN . (2.24)

If we compute the residual E1 = YN − Ŷ 1
N we will obtain

E1 =YN − Ŷ 1
N = [U1θ0 + ΛN ]− [U1(θ0 + (UT1 U1)−1UT1 ΛN )]

=ΛN − U1(UT1 U1)−1UT1 ΛN = ΛN −A1ΛN , (2.25)

with A1 = U1(UT1 U1)−1UT1 . Since e should be uncorrelated from u, if we pick N large enough, such
that the correlation of ΛN and U1 is negligible, i.e. the convolution ΛN ∗ U1 ≈ 0, we can consider
E1 ≈ ΛN , and thus we recover the output noise using the residual.

Consider again the same data generating system G0(q−1; θ0) = g01 , but now we choose an FIR

model G2(q−1; θ2) = g21 + g22q
−1 with parameters θ2 =

(
g21 g22

)T
. The PEM solution, given the

same data set, is in this case

θ̂2 = (Φ2
NΦ2

N
T

)−1Φ2
NYN , (2.26)

where Φ2
N = UT =

(
U1 U2

)T ∈ R2×N , where U2 =
(
0 u[1] . . . u[N − 1]

)T ∈ RN×1, and U1

and YN are the same as defined before. Again, replacing YN = Uθ̃0 + ΛN , with θ̃0 =
(
θ0 0

)T
, in

the formula for θ̂2, the estimate can be expressed as

θ̂2 = θ̃0 + (UTU)−1UTV. (2.27)

The residual E2 = YN − Ŷ 2
N will be

E2 =YN − Ŷ 2
N = [Uθ̃0 + ΛN ]− [U(θ̃0 + (UTU)−1UTΛN )]

=ΛN − U(UTU)−1UTΛN . (2.28)

And again, since e is uncorrelated with u, if we pick N such that the correlation of ΛN and U is
negligible, i.e. ||UTΛN ||2 ≈ 0, we can consider E2 ≈ ΛN , and thus we recover the output noise using
the residual.

We will make a comparison of the two cases by looking at the obtained residuals, E1 and E2. Notice
that the residual corresponding to the second case can be expressed as

E2 = ΛN −
(
U1 U2

)
(
(
U1 U2

)T (
U1 U2

)
)−1

(
U1 U2

)T
ΛN

= ΛN −
(
U1 U2

)(UT1 U1 UT1 U2

UT2 U1 UT2 U2

)−1(
UT1
UT2

)
ΛN (2.29)

= ΛN −
U1U

T
2 U2U

T
1 − U2U

T
2 U1U

T
1 − U1U

T
1 U2U

T
2 + U2U

T
1 U1U

T
2

UT1 U1UT2 U2 − UT1 U2UT2 U1
ΛN (2.30)

= ΛN −A2ΛN (2.31)
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if we partition U =
(
U1 U2

)
. Here A2 is a simple notation for the complicated fraction given above.

Notice that the inverted matrix is 2× 2, and each of its entries is a scalar. Now we will try to show
that

||E1 − ΛN ||2 ≤ ||E2 − ΛN ||2 (2.32)

where || · ||2 is the vector 2-norm. This reduces to showing

||A1ΛN ||2 ≤ ||A2ΛN ||2 (2.33)

Or using the definition of the vector 2-norm, the following condition will be sufficient

A2 −A1 ≥ 0 (2.34)

where ≥ 0, in this inequality, indicates matrix positive semidefiniteness, and A1 and A2 are idem-
potent matrices.

A2 −A1 =
U1U

T
2 U2U

T
1 − U2U

T
2 U1U

T
1 − U1U

T
1 U2U

T
2 + U2U

T
1 U1U

T
2

UT1 U1UT2 U2 − UT1 U2UT2 U1
− U1(UT1 U1)−1UT1 (2.35)

=
(UT1 U2)(UT2 U1)U1U

T
1 − (UT1 U1)(UT2 U1)U2U

T
1 − (UT1 U1)(UT1 U2)U1U

T
2 + (UT1 U1)(UT1 U1)U2U

T
2

(UT1 U1)[(UT1 U1)(UT2 U2)− (UT1 U2)(UT2 U1)]
(2.36)

Notice that since U1 and U2 are column vectors, the term UT1 U1 is an inner product, thus a scalar
and it commutes with the matrices.

To show inequality ((2.34)), we thus need to show that the numerator is a positive semidefinite
matrix, since the denominator, which is a scalar, is always positive because UT1 U1 is an inner prod-
uct and (UT1 U1)(UT2 U2) − (UT1 U2)(UT2 U1) ≥ 0 by Cauchy-Bunyakovsky-Schwarz inequality. The
numerator can be written as

(UT1 U1)

[
(UT1 U2)(UT2 U1)

UT1 U1
U1U

T
1 − (UT2 U1)U2U

T
1 − (UT1 U2)U1U

T
2 + (UT1 U1)U2U

T
2

]
(2.37)

= (UT1 U1)

[√
UT1 U1U

T
2 −

(UT1 U2)√
UT1 U1

UT1

]T[√
UT1 U1U

T
2 −

(UT1 U2)√
UT1 U1

UT1

]
(2.38)

Thus the numerator is positive semidefinite since it is the multiplication of a positive scalar and a
quadratic form. From this, we conclude that, indeed, inequality ((2.34)) holds. This implies that
inequality ((2.32)) also holds, and it shows that, for this example, adding more parameters than
needed has the effect of increasing the difference between the residual and the true noise term.

2.3 Network identification setup

Throughout the thesis, we consider a dynamic network to be an interconnection of single-input
single-output, discrete-time, linear-time-invariant systems also called modules, where the input to a
certain system could be a summation of the outputs from some of the other systems of the network.
A set of L scalar measured signals wj , j ∈ {1, . . . , L}, are taken at nodes such that each of these
signals represents either the input to at least one system. Then, every node signal could be expressed
as

wj [t] =
∑
k∈Nj

G0
jk(q−1)wk[t] + rj [t] + ej [t], (2.39)

with G0
jk(z) a proper rational transfer function and Nj the set of indices of signals wk, k 6= j, for

which G0
jk 6= 0. Also, ej is a white Gaussian noise of zero mean and variance σ2

e , which is not

12



measured and rj is a known excitation signal.

In this thesis, we will assume that our networks are stable and also that each system G0
jk(z−1)

is stable and has the following output-error structure

G0
jk(z−1) = z−1

B(z−1)

F (z−1)
= z−1

b0 + b1z
−1 + · · ·+ bnbz

−nb

1 + f1z−1 + · · ·+ fnaz−nf
, j, k ∈ {1, . . . , L}, j 6= k. (2.40)

Furthermore, it is assumed that the excitation signals rj , j ∈ {1, . . . , L}, are mutually uncorrelated,
white Gaussian noises of zero mean and variance σ2

r . The noise signals ej , j ∈ {1, . . . , L}, are also
assumed mutually uncorrelated, uncorrelated with the excitation signals and they are all considered
always present.

2.4 Considered network identification problem

From a network as presented earlier, we acquire measurements by sampling the signals at the nodes
with a sampling period of Ts. The measured signals are represented by the collection of samples
{wk[t]|1 ≤ t ≤ N}, ∀ k ∈ {1, . . . , L}, where N is the total number of samples.

Assuming the topology of the network is unknown, the network identification problem is then to
identify the transfer functions between each pair of signals, from the data points {wk[t]|1 ≤ t ≤ N},
∀ k ∈ {1, . . . , L}. Thus, we must choose a set of parameterized models for each possible intercon-
nection pair of signals {wj , wk}, j, k ∈ {1, . . . , L}, j 6= k. For each such pair we choose two module
models Gjk(q−1; θj) and Gkj(q

−1; θk) to capture both signal flow directions, i.e. wk → wj and
wj → wk. Therefore, the network model used is

wj [t] =
∑
k∈Xj

Gjk(q−1; θj)wk[t] + rj [t] + ej [t], j ∈ {1, . . . , L}, (2.41)

where Xj the set of indices of signals wk, k 6= j. Notice the difference between Xj and Nj de-
fined earlier. Xj is used in the model structure to select both present and absent systems in the
data generating system, whereas Nj selects only the present systems in the data generating sys-
tem (2.39). For each individual single-input single-output model Gjk(q−1; θj) we will use the FIR
model parametrization given by (2.11). To obtain our network model, we then have to search for
suitable model parameters θj , j ∈ {1, . . . , L}, from the data.

An issue with the estimation the model parameters is that the networks we consider may con-
tain closed-loops. We say that two signals wj and wk are in a closed-loop if there is a causal path,
that could possibly go though other nodes, both from wj to wk as well as from wk to wj . Systems in
closed-loops require additional attention since the input to the identified system gets correlated with
the output additive noise, which leads to having no guarantee on the consistency of the prediction
error method. To overcome this issue, we are going to identify our network modules through the
direct approach for general network topology presented in [4]. Therefore, for each separate measured
signal wj , j ∈ {1, . . . , L}, we will be using the the multi-input single-output predictor

ŵj(t|t− 1; θj) =
∑
k∈Xj

Gjk(q−1; θj)wk[t] + rj [t] (2.42)

to define the prediction error

εj [t] = wj [t]− ŵj(t|t− 1; θj). (2.43)

Then, we are going to estimate the parameters θ =
(
θ1
T · · · θL

T
)T

of the network model (2.41)

by minimizing separately, the sample variance of the prediction error (2.43),

θ̂j = arg min
θj

1

N

N∑
t=1

ε2j [t; θ
j ] = arg min

θj

1

N

N∑
t=1

(wj [t]−
∑
k∈Xj

Gjk(q−1; θjk)wk[t]− rj [t])2, (2.44)
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where

θj =
(
θjk1

T
θjk2

T
. . . θjkL−1

T
)T

, with ki = i if i < j and ki = i+ 1 if i > j. (2.45)

and when using the FIR model parameterization,

Gjk(q−1; θjk) =q−1gjk1 + q−2gjk2 + · · ·+ q−nggjkng
, θjk =

(
gjk1 gjk2 . . . gjkng

)T
. (2.46)

The separation for estimating the parameters is possible because we assumed that the noise terms
ej in (2.39) are mutually uncorrelated. Proposition 2 from [4] establishes that consistent estimates
are obtained directly from (2.44) if the following conditions are met:

1. The noise terms ej , j ∈ {1, . . . , L} are mutually uncorrelated, as well as uncorrelated with all
the excitation signals rk, k ∈ {1, . . . , L}.

2. For both the data generating system and the model, every loop through node j has a delay.

3. The predictor input signals wk in (2.42) are persistently exiting of sufficient order.

4. the system is in the model set, i.e. there exists a θ0j such that Gjk(z; θ0j) = G0
jk(z) for all

j, k ∈ {1, . . . , L}, j 6= k.

Through the assumptions that we made in the previous section, all of the conditions are satisfied in
our case except the last one. The modules of the data generating network (2.39) have an output-error
structure whereas we use the FIR structure to model them. The output-error models could be exactly
reproduced by using an infinite impulse response representation. Considering our assumption, that
the models are stable, FIR representations could be used to give approximations of the output-error
models for any accuracy, by using a suitable FIR model order. Thus, for a large enough FIR model
order ng we could say that there exists FIR parameters θ0j such that Gjk(z; θ0j) gives a sufficiently
accurate approximation of G0

jk(z). Then as the number of data points grows, we would want θj to

converge to θ0j . Furthermore, in any practical situation, the ”system in the model set” condition is
never satisfied exactly. For these reasons and the computational difficulty associated with deriving
output-error models, we consider that using FIR models in our case is appropriate.

2.5 Network over-fit problem

The network identification problem introduces an over-fit notion specifically for networks with un-
known topology. We will illustrate this through the following example.

Example 2.5.1. Consider the dynamic network

w1[t] =G12(q−1; θ0)w2[t] + e1[t] (2.47)

w2[t] =G23(q−1; θ0)w3[t] + e2[t] (2.48)

w3[t] =e3[t] (2.49)

where e1, e2, e3 are mutually independent white noise Gaussian processes. In what follows we will
examine only the multi-input single-output identification problem when w1 is considered as output,
and w2 and w3 are inputs. We wish to investigate two situations, one in which the true topology is
known and one in which the topology is not known.

When the true topology is known, we could parameterize only the systems that actually exist
w1 ← w2. Then the model set, corresponding to the identification problem with w1 as output,
would be composed of only one system

M1 = {G12(q−1; θ)|θ ∈ Rp} (2.50)

14



g
0

1

u y
e

(a) Data generating system.

g
1

1

u y
"1

(b) First model.

g
2

1

u y
"2

g
2

2

u2

(c) Second model.

Figure 2.2: Data generating system and model candidates for Example 2.5.2.

where p is the number of parameters used for modeling G12.

On the other hand, when the topology is unknown, we have to parameterize both interconnections
w1 ← w2 and w1 ← w3. In this case, the model set would be composed of two systems

M2 = {G12(q−1; θ1), G13(q−1; θ2)|θ1 ∈ Rp, θ2 ∈ Rp}. (2.51)

If we express the first model set as

M1 = {G12(q−1; θ1), G13(q−1; θ2)|θ1 ∈ Rp, θ2 = 0p×1}, (2.52)

we could say that

M1 ⊂M2, (2.53)

or that the model set M2 covers the model set M1. Thus, we conclude that, in case knowledge
on the topology is available, the model set could be reduced compared to the situation when such
information is not available.

The dynamic network model set could be specified by first providing the topology, and then providing
model orders for the links that are considered present. Then one model set is said to be included
into another if, the topology of the latter model set covers the topology of the first model set, and
the models orders of the first model set can be covered by their respective counterparts in the latter
model set.

Example 2.5.2. Consider the situation from Example 2.2.1, but now in the second identification
experiment, instead of choosing to increase the model order, we consider a MISO model with two
inputs and one output and each of its SISO models has order 1 and is modeled using the gains g21
and g22 , respectively, see Figure 2.2. Then U =

(
U1 U2

)
, is composed of two different signals U1

and U2, with U2 =
(
u2[1] u2[2] . . . u2[N ]

)
∈ RN×1. The rest of the derivations are the same as

in Example 2.2.1. Thus, when modeling modules that are not present in the MISO setup, we obtain
an increase in the difference between the residual and the actual noise compared to the situation
when the model order is chosen to match the true system order.

If we take an identification approach as presented in Section 2.4, where we try to model at the same
time both existing and non-existing connections between the measurement nodes, we could end up
with models for the absent connections that do not exactly give a zero transfer function. This will
affect the topology detection as will be presented in the following section.

2.6 Topology detection approach

In this chapter we revealed what is the used approach in the thesis for modeling dynamic networks
using the tools of system identification. We started by reviewing the PEM, and emphasized the
importance of prediction as the most important measure of the quality of our models, and showed,
through an example, the importance of model order selection for obtaining good predictors. We
have, also, redefined the notion of model set for dynamic network models by emphasizing the role
of the model topology. Next we wish to examine how can we determine the model topology from
the data.
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2.6.1 Granger causality approach to topology detection

Determining of the interconnection structure in the network could be expressed as checking if or-
dered pairs (wi, wj) of signals, for i, j = 1, nw, i 6= j, form causal relationships, i.e. wi causes wj .
Such a problem has been considered in [13]. The concept of Granger causality relies on the fact that
the cause should precede the effect and it states that signal wi causes signal wj if we can show/prove
that wi helps in making predictions of the future of wj , compared with the situation where wi would
not be used to make those predictions. This indicates that the cause embeds unique information use-
ful in the construction of the future effect, without which a decrease in prediction would be observed.

In this thesis the approach is to build predictive models, in order to determine the interconnec-
tion structure. Granger causality is determined by comparing the variance of the prediction error
for two model choices. For the first model, wi is not used to predict wj , whereas for the second
model, wi is used in the prediction of wj . Then the model that is best for prediction out of the two is
the one that indicates causality. For a single-input single-output system of the form (2.1), Granger
causality from the input to the output could be tested in one go by applying the prediction error
method (2.9) to determine an FIR model (2.11). Provided that we have selected appropriately the
model order, the prediction error method will select itself the most appropriate structure the gives
the best variance of the prediction error. Thus, if the input would help to predict the output then
the solver will give an FIR model indicating this. On the other hand, if the input is not connected
to the output then the solver should give an FIR model which has a very small gain. It is interesting
to notice that for our considered case, if the input is not connected to the output then the output
is white noise, thus the outputs own past will also not help to improve the predictions of its future
values.

By increasing the credibility in the predictive performance, for example by increasing the fit to
estimation/validation data, we can actually assess better the effect that the cause has on its out-
come, i.e. we can capture better and in more obvious way this effect. Since we capture more of
the input-output dynamics, we also make the relationship less sensitive in face of errors. Thus, the
better the model is in prediction the better we could assess the influence that the cause has on
the future predictions of the effect. A model which is worse at prediction, on the other hand, will
capture less from this influence. An important aspect for obtaining appropriate predictive models,
for determining causality, is the correct use of model structure, as was discussed in section 2.2. In
case the condition ”system in the model set” is satisfied, by selecting model orders lower than the
true system orders, we obtained biased estimates. Then the gain of the system will also be biased,
and this might lead to errors when taking classification decisions.

2.6.2 Hypothesis testing approach to topology detection

The problem of causality between two signals could also be approached from a statistical perspective,
which involves hypothesis testing [15]. We start from the assumption of the null hypothesis, that
the directed connection is absent, and decide whether to reject it or not. This is done through a
statistical test which should express the condition under which the null hypothesis will be rejected,
while accepting the alternative hypothesis.{

Null hypothesis: Connection from wi to wj is absent. W = 0.

Alternative hypothesis: Connection from wi to wj is present. W 6= 0.
(2.54)

W is the coeficient of determination introduced in equation (2.21), which indicates the predictive
power of the model. For linear regression models, with zero mean Gaussian noise, this can be tested
through the t-test statistic

tobs =

√
W (N − n)√

1−W
(2.55)
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where N is the number of samples, n is the number of regressors, and tobs has a Student t-
distribution [15]. Then the rejection of the null hypothesis is done when tobs > tN−n(α/2), where
tN−n(α/2) is the evaluation of the Student t-distribution of (N −n) degrees of freedom at the value
of α/2 which indicates the significance level (usually the 5% significance level). Notice that for
W = 0 then tobs = 0, and for W → 1 then tobs →∞. Thus, for models good at prediction, with W
close to 1, then possibly, tobs > tN−n(α/2).

This approach is useful in situations where there is an expectation of very accurate prediction
error modeling. In this thesis, we will not take this approach, and we will accept every model that
gives reasonable fit according to (2.21) to estimation and validation data.

2.6.3 Determining causality between multiple measured signals

In dynamic networks we usually have more than one causal direction to test. In this case, applying
the causality test to pairs of signals might lead to erroneous results as is illustrated in the following
([14]). Let there be three signals, wi, wj , wk, connected as follows

wj [t] = G0
jk(q−1)wk[t] + vj [t], wk[t] = G0

ki(q
−1)wi[t] + vk[t], wi[t] = vi[t]. (2.56)

vj , vk, vi are mutually uncorrelated, white noise, Gaussian processes of zero mean and fixed variance.
By testing pairwise Granger causality, we would end up deducing a direct interconnection from wi
to wj (Gji = G0

jkG
0
ki ), which is actually not present. The solution to this problem, is to consider

a multivariate prediction. So, if, in order to determine the connection from wi to wj we consider

the MISO identification from
(
wi wk

)T
to wj , then the estimate of G0

jk should model both the

transfer vk → wj and G0
kivi → wj , which would predict most of the wj signal power leaving no part

of it left to be explained through a direct connection wi → wj .

To detect the topology of the network, we will thus take a multi-input single-output approach
for modeling the relationships between the measured signals as was described in Section 2.4.

2.6.4 Approach taken in this report

Let us consider that a network model has been obtained as described in Section 2.4, thus the
estimated modules Gji(q

−1; θj), ∀j, i ∈ {1, . . . , L}, j 6= i, are available. The fit to estimation or
validation data could be calculated for a single multi-input single-output model (2.41), with the
formula (2.21). This measures the quality of prediction for the multi-input single-output model
as a whole, and does not provide any information on the quality of prediction for each individual
module involved. To determine which of the modules are effectively improving the total fit, the
topology of the network will then be determined from the gains of the network module models
||Gji||H2 =

∑∞
t=0 h

2
ji[t], where hji[t], t ∈ N, are the impulse response coefficients of Gji. Thus the

topology of the network is determined by the following discrimination rules{
if ||Gji||H2

< T then the connection from i to j is absent,

otherwise the connection from i to j is present.
(2.57)

where T is a selected threshold, which should indicate the significance level for the classification
rule [18].

A noticeable difference between the method of hypothesis testing to topology detection and the
one based on gain classification with a specific threshold is as follows. In hypothesis testing the
quality of prediction of our model is playing a direct role in the classification of the connection,
through the t-test statistic, where we would reject the null hypothesis if the model is sufficiently
predictive given the significance level. In gain classification, on the other hand, the quality of predic-
tion was not mention. There we build models of as best prediction quality as we can, by using model
order selection mechanisms. Then no matter the exact prediction quality obtained, we classify them
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using a fixed threshold. The hypothesis approach has the drawback that when good predictive mod-
els could not be obtained, according to the significance level, the classification might be misleading.
The gain test approach, on the other hand, has the drawback that it does not take the quality of
prediction into account. However, in this report we are going to take the gain classification approach
to topology detection. To improve this strategy, in the remainder of the report, we will address two
aspects. The first one is related to improving the predictive performance of our models. The second
one will be to treat the problem of network overfit introduced in section 2.5.

2.7 Summary and conclusions

In this chapter, we have provided our answer to the first research question presented in diagram 1.3
from Section 1.2, by presenting an effective topology detection procedure based on Granger causal-
ity. The key element of this procedure is the concept of Granger causality which could be tested
though the construction of dynamic models that are able to predict the values of the nodes from the
network. Therefore, we began the chapter by presenting how will a single module be modeled, in
this thesis, from input-output data through the PEM. In this regard we have indicated the type of
data generating system, the predictor, the model structure and parameterizations, and the criterion
for choosing the parameters used. We then established that the quality of our models is given by
their ability to make predictions of the output of the data generating system. Through Example
2.2.1. we have shown that the choice of model order influences the ability, of the models, to make
predictions. Thus, an appropriate choice of model order is also essential for determining the topol-
ogy through Granger causality. Afterwards, the types of data generating networks considered were
defined and the network identification procedure was expressed as multiple multi-input single-output
identification problems solved using the direct method for closed-loop systems. A new problem was
indicated in the network context differently from the single module case, which affects the ability in
making predictions, of the module models, which was called the network over-fit problem. The simi-
larity with the problem of model order selection was indicated through Example 2.5.2. The problem
addresses the choice of model structure for multi-input single-output system identification, which
as it turns out, is important for topology detection. The less is the noise affecting the models of
the null connections, the better it is for topology detection as the discrimination threshold could be
picked smaller. In this regard, the smaller the threshold could be picked, the easier is to discriminate
between present and absent connections. Once the prerequisites have been established, the topology
detection procedure based on Granger causality is stated. The approach uses the models obtained
through the multi-input single-output method presented in the previous sections to determine the
topology. Connections which are not present between signals, and are modeled, are affecting the
topology detection mechanism. As such a discrimination has to be made in order to select the true
connections. The use of model validation for discriminating between connections is not treated in
this report. In conclusion, the topology detection procedure presented has two major inconveniences,
that support the legitimacy of the second question in diagram 1.3. These are the choice of model
order for each connection of the network, and the network over-fit problem. Solutions to these, will
be addressed in the next two chapters.
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Chapter 3

System modeling using regularized
prediction error methods

3.1 Bayesian statistics

In this chapter, we will investigate the use of Bayesian estimation, as an alternative procedure, to
the prediction error methods, for modeling dynamic systems from measurement data for the purpose
of topology detection. The reason we would want to use a Bayesian approach to network modeling is
twofold. On one hand, in order to make our topology assessment more plausible, we want to improve
the predictive perfomance of our models, for which Bayesian methods have shown promising results
[8], [10]. The main problem with prediction error methods indicated in the previous chapter, which
affects their predictive capabilities, is that of choosing an appropriate model order. This problem
becomes even more complicated for networks of systems, because it involves deciding simultaneously
the model order of multiple modules. Recent developments in the literature [10], use a Bayesian
approach for selecting appropriate model orders. In this thesis, we are going to study the effect of
this new procedure on topology detection. The other reason for using a Bayesian approch to network
modeling is that we want to solve the problem of network over-fit, expressed in the previous chapter.
Doing so, would help us decide the causality between signals by selecting only the input signals that
are contributing for the prediction of the considered output signal. In this chapter we only treat
the approach to system modeling through Bayesian statistics, leaving the solution for the problem
of network over-fit to chapter 4.

In the prediction error methods framework, we treat the parameters of the model as determinis-
tic but unknown variables and we look for a tight confidence region inside which we believe that the
true parameters might be. On the other hand, in the Bayesian perspective we start from a proba-
bilistic model that expresses the intial belief we have about the system, then, using new observations
or evidence we update the model, to make it suitable in explaining those observations. A new model
is thus obtained which could, as well, be used as a prior for deriving a newer model based on newer
observations, and so on. Thus as data becomes available, we try to pull our model from the previous
belief to conform with the newly available evidence.

Formally, the Bayesian estimator is defined as the result of minimizing the Bayes risk, which is
usually taken as the mean-square-error between the estimated parameters and the true parameters,
i.e.

θ̂MMSE = arg min
θ

E{(θ(YN )− θ0)2}. (3.1)

For this choice of Bayes risk, it is also known the minimum-mean-squared-error estimator (MMSE).
In the formula, YN are the output observations which, along with the selected inputs UN , represents
the data used for estimation; θ0 represents the true parameters assuming the system is in the
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model set; and the expectation is taken over the joint distribution of YN and θ. The parameters
θ(YN ) implicitly depend also on the input data set UN which is considered fixed and deterministic
as opposed with YN . It can be shown, using manipulations of the conditional expectation, that
formula (3.1) is equivalent with

θ̂MMSE = E(θ|YN ). (3.2)

If this conditional expectation is taken over a probability distribution for which the expected value
corresponds also to its mode (i.e. the maximum value of the distribution), such as for symmetrical
unimodal distribution, e.g. the Gaussian distribution, the model parameters will be given by the
maximum a posteriori estimator (MAP)

θ̂apostN = arg max
θ
p(θ|YN ) = arg max

θ

p(YN |θ)p(θ)
p(YN )

. (3.3)

The second equality follows from Bayes rule, and p(YN ) could be neglected as it does not affect the
optimization since it does not depend on the θ. Here, p(θ) is called the prior and it is used to adjust
the preference for solutions in the solution space θ ∈ Rn, i.e. to influence the posterior probability
of the parameters given the data.

Let’s consider the linear regression model (given in equations (2.14), (2.16))

YN = ΦTNθ + ΛN , θ ∈ Rn, e[t] ∼ N (0, σ2), (3.4)

where the noise term is Gaussian distributed. Also, we will assume the prior on the parameters to
be Gaussian distributed

θ ∼ N (0, Pn). (3.5)

Notice that the prior is specified both by the distribution family, in this case Gaussian, but also
through its moments, i.e. its mean and covariance.

In this thesis, we will consider the FIR model structure given in (2.14), (2.16) also for Bayesian
estimation. Using the fact the logarithm is a strictly increasing function and thus does not affect
the optimization, the Gaussian assumption and the FIR model structure for the predictor (2.7), we
can write the posterior estimates as

θ̂apostN = arg max
θ

log(p(YN |θ)p(θ)) = arg max
θ

log((p(YN |θ)) + log(p(θ)) (3.6)

= arg min
θ

N∑
t=ng

(y[t]− ŷ[t|t− 1; θ])2 + θTP−1n θ (3.7)

= arg min
θ

N∑
t=ng

(y[t]− ϕT [t]θ)2 + θTP−1n θ (3.8)

where the first term in the last equality of equation (3.6) is the maximum likelihood estimate defined
as

θ̂ML = arg max
θ

log(p(YN |θ)) (3.9)

where for fixed YN , LYN
(θ) = p(YN |θ) represents the likelihood function. In the system identification

literature [1], [2], the prediction error methods are also called maximum likelihood methods because
of the equivalence between the two when the noise is Gaussian distributed and the data generating
system is in the model set. The first term of the cost function (3.7) corresponds to the cost function
used for prediction error methods. Thus the Bayes estimate could be seen as a penalized prediction
error method. In fact, a penalized prediction error method is called a regularized prediction error
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method [8], with Dn = P−1n being called a regularization matrix. This matrix could be seen as a
weighting matrix for the establishing the importance priority of the parameters when solving the
optimization problem (3.7). Sometimes the covariance matrix Pn is be called a kernel. This is
because the Bayes estimate, using a Gaussian prior, is shown to belong to a solution space which
has the structure of a so called reproducing-kernel-Hibert-space (RKHS) defined by its covariance
matrix/kernel Pn [12]. The RKHS is used in non-parameteric (function) estimation for obtaining
smooth solutions. In our case, the FIR model is considered a non-parametric model since it repre-
sents the impulse response through a function of time.

Returning to equations (3.4) and (3.5), since θ and YN are jointly Gaussian distributed as(
θ
YN

)
∼ N

((
0
0

)
,

(
Pn PnΦN

ΦTNPn ΦTNPnΦN + σ2IN−n

))
(3.10)

we deduce the posterior [8] to be

p(θ|YN ) ∼ N (θ̂apostN , P apostN ), (3.11)

θ̂apostN = (PnΦNΦTN + σ2IN−n)−1PnΦNYN , P apostN = Pn − PnΦN (ΦTNPnΦN + σ2IN−n)−1YN .
(3.12)

Notice that when the noise variance is zero the posterior mean of the parameters is given by the least
squares solution given in equation (2.18). Using the formula above for the posterior computation
leads to erroneous results when σ2 = 0, and doesn’t make use of the efficient numerical methods of
solving least squares problems, as the kernel is still affecting the numerical results. In this report,
we introduced and make use of another equivalent formula.

In the alternative formula

θ̂apostN = (RN + σ2P−1n )−1RN θ̂
LS
N , RN = ΦNΦTN , (3.13)

given in [8], with θ̂LSN given in equation (2.18), if we apply the matrix inversion lemma

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (3.14)

by making the following substitutions

A = RN , C = σ2P−1N , U = I, V = I, (3.15)

we obtain a new expression for the MAP estimator

θ̂apostN = θ̂LSN − σ2(PnRN + σ2I)−1θ̂LSN . (3.16)

In this new form the regularized estimates are computed as an update of the least squares solution.
When the noise variance is small we notice that the kernel matrix won’t be affecting the estimate.
Also when the noise variance is not small, the kernel matrix does not need to be inverted, which does
represent a benefit for the kernel matrices which could become numerically singular (even though
the kernel matrix should always be positive definite), such as the stable spline kernel presented in
the next section.

As just explained, the system models are obtained using the Bayesian estimates for the model
parameters given by the closed form solution (3.16). The covariance matrix Pn needed in calcu-
lations has to be determined though. The results in the literature [10] provide a choice for the
covariance matrix Pn which automatically selects the model orders for the chosen model structure
in an efficient manner. The procedure through which we can determine the Pn is provided in the
next section.
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3.1.1 Empirical Bayes

In the the previous section, we derived the solution for the Bayes estimate (3.1) when using Gaussian
priors (3.5), to be given by formula (3.16). Thus, in order to compute the model parameters, the
prior information has to be provided through the covariance Pn for the Gaussian distribution of the
parameters (3.5). In practice, most of the time, the information of where the true parameters might
be, expressed through a probabilistic model, is not readily available. One way of dealing with this
problem is to pick a covariance matrix that has very large elements. This will not help very much
the estimation though as we don’t provide useful information about the parameters. It could be
seen also from formula (3.7) that the regularization penalty will go to zero if the determinant of Pn
becomes large. Thus, procuring a beneficial prior is an important element to obtaining improved
estimation results.

In the literature [12], to overcome the inconvenience of not having a prior, the covariance ma-
trix is given a fixed structure P (ξ), parameterized in terms of a set of hyperparameters ξ. Then
these hyperparameters are determined from data. They should be adjusted to improve the predictive
ability of the model, by selecting the most appropriate covariance matrix from the parameterized
class. This method is called Empirical Bayes.

The derivation of the hyperparameters comes from a statistical consideration that leads to a choice
which is minimizing the original Bayes risk, i.e. the MSE, over the chosen class of priors. Since the
output observations are distributed as (see formula (3.10))

YN ∼ N (0,ΦTNPn(ξ)ΦN + σ2IN−n), (3.17)

we can build the marginal likelihood [8] of YN given ξ as

LYN
(ξ) = (

√
2π det(VN (ξ)))−1 exp(Y TN V

−1
N (ξ)YN/2) (3.18)

where VN (ξ) = ΦTNPn(ξ)ΦN +σ2IN−n. Then, to find the hyperparameters we solve the log marginal
likelihood optimization problem

ξ̂ = arg min
ξ
Y TN V

−1
N (ξ)YN + log(det(VN (ξ))). (3.19)

The term marginal comes from the fact that in the joint distribution (3.10), we marginalized out
the parameters θ, from the joint distribution, to get the distribution of YN .

As a result, the prior in the Empirical Bayes approach is given by

θ ∼ N (0, Pn(ξ̂)). (3.20)

with ξ̂ the solution to the marginal likelihood optimization problem (3.19).

3.1.2 System identification by stable splines

In the literature [8], [10], [12], there are different ways of choosing the covariance matrix (3.5),
or (3.20), for benefiting impulse response models. In identification, we could use time functions to
model the dynamics of a system through the impulse response in the convolution representation of
the system (2.11). Such an approach to modeling is called non-parameteric. A specific application
of regularization, in the literature [12], is for obtaining non-parametric models by requiring the
solutions to have a certain degree of smoothness. In this case, we look for a function from a
functional solution space. Regularization is used here to assign preference between the elements of
the solution space by using prior information on the expected smoothness of the sought solution.
The resulting restricted solution space forms a reproducing-kernel-Hilbert-space (RKHS) with a
particular structure given by the kernel matrix [12]. Typical estimators are the smoothing splines
such as the cubic smoothing splines, known to fit without bias linear functions [10]. However, because
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in system identification usual stable impulse responses have an exponential decay, and as such there
is an interest for obtaining estimators that are unbiased for exponential functions, the stable spline
kernel was introduced [10]. The kernel obtained, i.e. Pn in formula (3.8), is

Kss
ng

(k, j) =
λ2

σ2

(
e−β(k+j)e−βmax(k,j)

2
− e−3βmax(k,j)

6

)
, i, k ∈ {1, 2, . . . , ng}. (3.21)

where the σ2 is the output additive noise variance (see equation (3.4)), λ is a hyperparameter indi-
cating the strength of regularization and β is a hyperparameter which captures the exponential decay
of the stable impulse responses. Gathering together the hyperparameters, in the vector ξ =

(
λ β

)
,

we will be using the Empirical Bayes to find them, as explained earlier. Also, σ2 will be determined
from an initial PEM estimate without regularization.

Conceptually, the stable spline models are regularized FIR models using the stable-spline regu-
larization matrix (3.21). The exponential decay of the regularization matrix (3.21), provides an
exponential increase in the penalty (3.8) for the FIR parameters. The largest penalty is put on the
last FIR parameters corresponding to the tail of the impulse response, thus forcing them to zero, as
wanted from stable impulse responses. In this way, starting with an FIR model with a large enough
order, the effective model order could be seen as being selected automatically by setting the last
FIR parameters to zero.

In this report we are using the stable-spline kernels for impulse response models, which besides
improving the MSE for the estimates, also provide a way of automatically selecting the model order
for obtaining predictive models. In the literature [10], evidence based on improvements in predic-
tion is provided, favoring the use of stable-splines for avoiding model order selection in front of the
classic PEM with model orders chosen based on methods of Akaike’s information criterion type. It
could be said that the hyperpameter optimization problem in the Empirical Bayes method, is the
equivalent of model order selection for classic PEMs. Since the hyperparameters could be obtain
from optimizing the marginal likelihood (3.19) using search methods, the Empirical Bayes approach
to modeling could be seen as a method that automatically selects the model orders. Thus, to avoid
the problem of model order selection we will be using stable-spline modeling for the modules of our
networks.

3.2 Hyperparameter estimation for stable spline models

In this section, we are going to investigate how to obtain the hyperparameters for the stable-spline
kernel (3.21), i.e. ξ =

(
λ β

)
, needed for obtaining the model parameter estimates (3.16). We

have already established, that the hyperparameters will be estimated using the Empirical Bayes
method, i.e. by optimizing the marginal likelihood (3.19), for the stable-spline kernel (3.21). The
difficulty with this method is that the marginal likelihood (3.19) is not convex, no matter the choice
of covariance matrix used. Thus, there are no guarantees that, using convex optimization tools, we
would find the optimal hyperparameters, as the solver might give a local solution. We could ensure
that we would find the global solution, if we could initialize the optimization routine in the basin of
attraction of the global optimum. In general, such a step requires additional information that is not
readily available. In our situation though, we know that the β hyperparameter for the stable-spline
kernel (3.21) is meant to capture the rate decay of the impulse response of our stable system. We
thus speculate, that the β hyperparameter could be related to the dominant pole of our system and
therefore an initial guess of β could be derived from an estimate of the dominant pole. Consequently,
we are going to investigate the appropriateness of such a choice of an initial guess.

In [7] it was shown, through simulation, that for a simplified version of the stable spline kernel,
namely a diagonal exponential decaying kernel (see the diagonal kernel in [8]), the decay rate con-
verges, under suitable assumptions, to two times the absolute value of the dominant pole (or to the
square absolute value of the dominant pole, if a discrete version of the stable-spline kernel (3.21) is
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Figure 3.1: Pole location of the second order system in the s-plane (left), and the impulse response
with continuous line (right). The dashed exponential in the right figure is the response of a first
order system with pole at the dominant pole of the second order system.

used). A proof of the statement is not provided therein. We will try to show, through an example,
how does a rate decay chosen as such compare with the rate decay chosen as the absolute value of
the dominant pole.

Firstly, we define the dominant pole of a continuous time system to be the real part of the pole(s)
with closest real part to the origin and the dominant pole of a discrete time system to be the absolute
value of the pole with closest absolute value to the unit circle. For a first order system the dominant
pole is also the only pole of the system while for a second order underdamped system the dominant
pole of the system gives the envelope that bounds the impulse response as seen figure (3.1). Also
for a continuous time, second order, underdamped (0 < ζ < 1) system

G(s) =
ω2
n

s2 + 2ζωn + ω2
n

(3.22)

the dominant pole is given by −ζωn, as indicated in the left plot of figure (3.1).

Another argument for using the dominant pole in deriving the kernel rate decay is as follows. Every
transfer function can be expressed using partial fraction expansions as a sum of first or second order
transfer functions. By the linearity property of the system, the total impulse response is given by
the sumation of individual impulse responses corresponding to the partial fraction expansion com-
ponents. Then, the general decay trend of the systems is given by the dominant pole, if the impulse
response of the partial fraction expansion component corresponding to the dominant pole has a large
enough signal energy that would not make it insignificant to the total impulse response. The impli-
cation for regularization is that, on one hand, a kernel rate decay which is noticeably slower than
the dominant pole, will not provide an appropriate regularization penalty as the resulting weight
between the parameters, c.f. (3.8), will not force the tail of the impulse response to zero sufficiently
fast. On the other hand, a kernel rate decay which is noticeably faster than the dominant pole, will
not provide an appropriate regularization penalty as the resulting weight between the parameters
will force the tail of the impulse response to zero faster than needed. Thus, in general, the dominant
pole would be a good indicator of the kernel rate decay β, as it embeds information about the
weighting between the impulse response parameters.

We will try to investigate, through experiments, whether a kernel rate decay choice based on the
dominant pole of the system is truly providing the good results, in terms of maximizing the marginal
likelihood, for stable spline identification. In the next example, we will compare the hyperparameter
choice β = 2|p1| from [7] with β = |p1|, where p1 is the dominant pole of the system. Through
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this example, we also illustrate the appropriateness of using the dominant pole for determining the
stable-spline hyperparameters.

Example 3.2.1. Let’s consider a continuous time, first order system with the pole at p1 = −0.2,
i.e. G(s) = 1/(s+ 0.2). Input-ouput data is generated from a zero-order-hold discretization of G(s)
with a sampling time Ts = 2 and output additive noise. We have chosen to do the simulations in the
presence of output noise because this would resemble a practical application and because when the
noise variance is zero the MSE estimator would give the same results as the least squares estimate and
thus it does not make sense, in that case, to use regularization, as indicated also in formula (3.16).
For the choice of kernel rate decay β = 2|p1| = 0.4, and assumed known noise variance σ2 = 0.25,
we determine the regularization factor, by optimizing the marginal likelihood, to be λ2 = 65, giving
a marginal likelihood cost of Jβ=2|p1| = 169. Using a grid of 100 points between [0, 0.6], for the β,
we determine for each the corresponding optimal λ2 as before. The results obtained are shown in
Figure 3.2. There, we also indicate the point where β = |p1| giving λ2 = 4.2, Jβ=2|p1| = 160, for
comparison with β = 2|p1|. It appears that β = |p1| would be a better choice than β = 2|p1|. With
the optimal point over the grid at Jopt = 159.7, β = 0.224, the following ratios are obtained

1−
|Jβ=2|p1| − Jopt|

|Jopt|
= 0.944, 1−

|Jβ=|p1| − Jopt|
|Jopt|

= 0.998, (3.23)

which indicate the relative closeness to the optimal point in favor of β = |p1|. Notice that the
marginal likelihood cost for β = 2|p1| is the same as when β = 0.09, and lower in between (0.09, 0.4),
which might be considered a large interval for the expected choice of the kernel rate decay rate.

Another important aspect in choosing β is the corresponding optimal value for λ2. Comparing
the corresponding λ2 for the two choices of β, namely β = |p1| and β = 2|p1|, we see that λ2 is
smaller for β = |p1|, which is closer to the optimal β. A smaller λ2 corresponds to a stronger need for
regularization, indicating possibly a larger contribution of the prior in the derivation of the estimated
model. So, for this reason, a (β;λ2) pair with smaller values for λ2 will indicate a possibly better
hyperparameter pair in terms of regularization as it tries to use more the information from the prior
in constructing the estimated model, or in other words the smaller the λ2, the more effective the
regularization.

The lower graphs in Figure 3.2 show the marginal likelihood cost and the λ2 over a larger range of
β. These plots are suggestive for the limiting behavior, when β would be chosen large. Notice that
when β � βopt, then the marginal likelihood cost deteriorates even further, and the corresponding
optimally chosen λ2 also grows in amplitude. The irregular behavior in the λ2 when β ∈ (1, 3) can
be explained by the fact that for λ2 > 106 the regularization penalty is so small that the optimally
chosen λ2 by optimizing the marginal likelihood for the given β becomes dependent on the data
noise.

We repeat the same experiment for 50 realizations of the output noise and compute the 25−50−75
percentiles. The results are shown in Figure 3.3, were we see that even for multiple experiments the
choice of β = |p1| comes close to the global optimum. The shaded area represents the area between
the 25 and 75 percentile, while the thick middle line is indicating the 50 percentile. In Figure 3.4
we see the contour plot of the marginal likelihood as a function of (β, λ2) for one realization of the
noise and a grid over the space of (β, λ2). It appears that, in the region visible, we have only one
minima which is near our choice of β = |p1|.

The procedure for building Figure 3.2 reveals a reasoning useful in deciding the optimal regulariza-
tion parameters. The reasoning is that it is more revealing to grid over the β and optimize over the
λ2 for the chosen grid, than do the other way round. This is because the β hyperparameter is a static
parameter that does not change with the experimental conditions such as number of data points
and noise variance. Its role is to embed the structural properties of the data generating system, i.e.
the impulse response decay rate, into the prior. On the other hand the role of λ2 parameter is to

25



0 0.1 0.2 0.3 0.4 0.5 0.6
140

160

180

200

220

-(
m

ar
gi

na
l l

ik
el

ih
oo

d)

(a)

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

2    

(b)

0.5 1 1.5 2 2.5 3

200

300

400

500

600

-(
m

ar
gi

na
l l

ik
el

ih
oo

d)

(c)

0.5 1 1.5 2 2.5 3
100

102

104

106

108

2    

(d)

Figure 3.2: The marginal likelihood cost (left) for the (β;λ2) pair in the right figure. The circle
indicates the point where β = 2|p1|, while the cross indicates the point where β = |p1|. The upper
figures are zoomed in versions of the bottom ones.

Figure 3.3: Monte Carlo simulation for calculat-
ing the marginal likelihood for a grid of β points
and optimally chosen λ2, for different noise realiza-
tions. The shaded region indicates the 25−50−75
percentiles.
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assess the amount by which the prior should affect the estimate and it does depend on experimen-
tal factors such as the number of data points and noise variance. Since the β depends mostly on
the data generating system and should not change based on the experiments, it is much easier to
choose a set of possible candidates for it, from which the optimal β is part, i.e. it is more intuitive
to choose a griding over the β in the region we expect the optimal β to be, than to do the same for λ2.

The previous observation leads to the following optimization strategy based on the gradient de-
cent method.

Result: Find optimal hyperparameter values: (β, λ2)
Initialization: β0, λ0, k = 1;
while stopping condition is not satisfied do

make a gradient descent step: βk = βk−1 + γ∇J1(βk);
where J1(βk) = minλ2

k
J2(βk−1, λ

2
k), and γ is indicating here the step size;

k = k + 1;

end

We try to optimize over the β, by calculating the marginal likelihood point-wise using the optimal λ2

for that β. Notice that in the minimization of J2, βk−1 is fixed, while when evaluating J1 , λ2 is fixed
at the optimal value determined. The gradient could be calculated numerically by using the function
evaluation of J1(βk) near the point where the gradient needs to be evaluated. Now, if we happen
to always initialize the optimization in the basin of attraction where the global optimum is found,
then a direct application of the gradient methods could be done to obtain the global minimum.

In this example, we compared two β hyperparameter choices based on the dominant pole location
of the system, namely we choose β = 2|p1| as was suggested in paper [7] and β = |p1|. For the
simplest system of only one pole, we compared the two options through the value of the marginal
likelihood, revealing that β = |p1| gives a lower cost and thus a better result, actually the best result
of all possible choices as it gives the actual minus marginal likelihood minimum. From the procedure
used for the comparison, we have also noticed that the different roles of the hyperparameters λ and
β could be used when optimizing the marginal likelihood. In this regard, an algorithm based on
gradient descent was suggested, were the marginal likelihood is to be optimized with respect to β
by finding the optimal λ for each β evaluation. The β = |p1| initialization choice and this algorithm
might help in finding the global minimum of the non-convex marginal likelihood, as it did for our
example.

3.2.1 Estimation of the dominant pole

We have shown, in the previous section, though an example, that the dominant pole of the system
offers valuable insight in the location of the hyperparameter β. In practice, the location of the
dominant pole of a system is usually unknown and has to be determined from data as well. One
way of estimating the dominant pole from data is by modeling the data generating system, and
afterwards selecting the dominant pole from the obtained model. Thus, we can consider the output-
error model structure given by (2.19), (2.20) and use the prediction error method to obtain suitable
model parameters from data by solving (2.9). Then, the dominant pole estimate will be given by
the absolute value of the model pole(s) with closest absolute value to the unit circle, i.e.

p̂1 = min
p∈Sp

|1− |p||, (3.24)

where Sp is the set of all poles of the estimated output-error model. The limitation of this method is
that it requires the output-error model orders to be specified. Yet, the whole purpose of estimating
the dominant pole was for the its use in constructing stable-spline models, to avoid the problem of
model order selection. This, illustrates the difficulty that we have in estimating the dominant pole,
namely that we have to avoid the problem of model order selection. A solution to this inconvenience
is provided next.
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The approach that we take in this thesis, to estimate, from data, the dominant pole of a single-
input single-output system, follows from performing a combination of approximations and applying
realization theory to move from one representation to another. The method is summarized through
the next steps:

1. Derive from data an FIR model GFIR(q−1; θ̂) ((2.11)), calculating its parameters θ̂ using the
prediction error method, given through the closed form solution (2.18).

2. Reduce the order of the obtained FIR model GFIR(q−1; θ̂), by using the method of balanced
truncation [3], to obtain a new model Gred(q−1). Namely, we are going to truncate the state-

space representation in balanced form, of GFIR(q−1; θ̂), by choosing the truncation order based
on the Hankel singular values. We then transform back the state-space representation of the
reduced system to the transfer function form.

3. Select the dominant pole, according to (3.24), from the reduced model Gred(q−1).

The idea behind this procedure comes from the FIR model representation ((2.11)), which can be
expressed as

G(z) =
gng−1 + gng−2z

1 + · · ·+ g1z
ng−1

zng−1
(3.25)

where z is a complex variable. Such a representation has n poles at zero and n zeros given by the
impulse response coefficients. Notice that its dominant pole seems to be at zero even though such a
representation could be a good approximation of a first order system with any stable pole location.
To recover the original dominant pole of the system from the approximation, another approximation
could be made on the FIR model by using model reduction methods. Thus, we will try to find a
more simple model structure, in terms of number of poles and zeros, for the estimated FIR model,
that will move the poles of the system away from zero.

This method of obtaining the dominant pole of a system could also be considered as a method
of determining the model orders for a system. The results depend on choosing an appropriate trun-
cation order. It is a less rigorous method for this purpose though, as the FIR model is an estimate
affected by noise which might create difficulty in selecting the best model orders.

We will illustrate how the method performs on two practical examples: one in which all the poles
are real, and another in which complex poles are present.

Example 3.2.2. Let’s first consider a transfer functions with only real poles and zeros

G(s) =
1

s+ 0.2
+

1

s+ 0.3
+

1

s+ 0.4
+

1

s+ 1.7
+

1

s+ 2.3
(3.26)

which is discretized with sampling period Ts = 2. Input-output data is obtained from the discretized
system under the effect of output noise and FIR identification using PEM is done to obtain an esti-
mate of it. Then, balanced truncation is performed to obtain a reduced order model that captures
the dynamics due to the first most influential balanced states. Figure 3.5 shows the Hankel singular
values for the discrete system as well as for its FIR estimate. Even though the data generating
system has 5 poles, thus 5 minimal states, most of the state energy is concentrated in the first one.
The estimated FIR model presents additional state contributions because of the noise that affected
the estimate. A reduced first order model of the FIR estimate offers a good approximation of the
original system as is demonstrated in Figure 3.6 and in Figure 3.8. The frequency response function
indicates an small (possibly insignificant) bias in the low frequencies, where the dominant pole is,
while some more considerate bias is noticed at higher frequencies, where the faster poles are. In
practice, if there is distrust in the truncation order, we can use a cross-validation procedure to decide
whether the reduced order model can predict the validation data set.

28



0 5
State

0

1

2

3

4

5

6

7

8

S
ta

te
 E

ne
rg

y

Gd

0 5 10 15 20 25 30 35 40 45 50
State

0

1

2

3

4

5

6

7

8
Hankel Singular Values (State Contributions)

Stable modes

Figure 3.5: Hankel singular values of the data generating system (left) and of the FIR estimate
(right).
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Figure 3.6: Impulse responses of the FIR estimate (left) and of the reduced order model (right).
The impulse response of the true system is shown with dashed lines.

Inspecting the marginal likelihood cost in Figure 3.7 we notice that the estimated dominant pole
is close to the value of the true dominant pole but we also notice that the dominant pole is no
longer precisely indicating the minimum. This is due to the effect of the additional dynamics, thus
indicating that the additional dynamics also influences the location of the optimal rate decay.

The results in this example demonstrate that a reduced order model does offer good results in
estimating the dominant pole of the system and that a first order model is a good approximation in
this case. From more extensive simulations it was noticed that a large class of high order transfer
functions with real poles only can be finely approximated using first order models.

Example 3.2.3. In this example we consider a transfer function which has complex conjugate poles

G(s) =
1

s+ 0.2
+

0.32

s2 + 0.12s+ 0.16
+

0.72

s2 + 0.12s+ 0.36
(3.27)

and we are going to see how well is the dominant pole estimated by repeating the simulations done
in the preceding example. As before we use the discretized model as the data generating system
and we identify an FIR model from the input output data, from which a reduced order model is
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Figure 3.7: Marginal likelihood for a grid of
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Figure 3.9: Hankel singular values of the data generating system (left) and of the FIR estimate
(right).

obtained. In this case the data generating system has five significant states as the can be seen in
the Hankel singular value plots in Figure 3.9 and in the impulse response (see Figure 3.11), which
no longer can be approximated with sufficient accuracy by a first order model. The position of
the estimated dominant pole is close to the true dominant pole as illustrated in figure 3.10. In the
figure we notice the irregular shape of the marginal likelihood is present even for small values of
the rate decay β > 0.3, which is accompanied by large values for λ2 and a irregular shape as well.
Also at the optimal point of the marginal likelihood, seen in the figure, the corresponding optimal
λ2 is large. This could be due to the fact that the inpulse response does not have an exponential
decaying shape (c.f. see the Hankel singular values), and thus it would indicate that regularization
in this case would not be so effective. In fact, the Hankel singular values could be a first indicator
of the usefulness of the stable spline regularization. If the initial point of β would be chosen greater
than 0.3, the optimization might return a local optimum. On the other hand, if β is chosen very
small, because of the steep gradient, the optimization step performed might take the β outside of
the global region of attraction. Thus a good initialization as the one provided would be beneficial
to avoid such situations.
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Figure 3.11: Impulse responses of the FIR estimate (left) and of the reduced order model (right).
The impulse response of the true system is shown with dashed lines.

3.2.2 First order approximation of the kernel hyperparameter

An alternative way of choosing the kernel rate decay β could be to consider a first order output-
error approximation of the system. Thus, we try to model our the data generating system using the
output-error model structure GOE(q−1; θ̂) from formulas (2.19), (2.20) for which we fix the model

orders to nb = 1 and nf = 1. The model parameters θ̂ are estimated from data by minimizing the
prediction error as indicated in formula (2.9). Then, the kernel rate decay β is obtained from the

only pole of the estimated output-error model GOE(q−1; θ̂).

With respect to the chosen approach an interesting question would be whether a first order approx-
imation of the transfer function gives the minimal mean-square-error, with respect to the impulse re-
sponse, out of all first order models. In other words, we want to verify whether arg minθ

1
N

∑N
t=1(y[t]−

ŷ[t; θ])2 = arg minθ
1
N

∑N
t=1(h[t]− ĥ[t; θ])2, where ĥ[t; θ] is the impulse response of a first order model

with parameters θ , and the model structure, used to make predictions, comprises of first order OE
models.

Using the convolution representation of the output signals

y[t] = h[t] ∗ u[t] + e[t], ŷ[t; θ] = ĥ[t; θ] ∗ u[t], (3.28)
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and the distributivity of the convolution operation, we can write

arg min
θ

1

N

N∑
t=1

(y[t]− ŷ[t; θ])2 = arg min
θ

1

N

N∑
t=1

((h[t]− ĥ[t; θ]) ∗ u[t] + e[t])2. (3.29)

Notice that the input data u[t] acts here as a weight adjusting the relevance of the components of
the impulse response h[t] to the total cost. It is known that, asymptotically,

θ∗ = arg min
θ

Ēε2[t; θ] = arg min
θ

1

2π

∫ π

−π
Φε(ω)dω, (3.30)

where Ēε2[t; θ] = limN→∞
1
N

∑N
t=1 Eε2[t; θ] is the expectation of the quasi-stationary process ε2[t; θ],

and Φε(ω) is the power spectral density of ε[t; θ]. For our choice of first order OE model structure,
the above expression can be written as

θ∗ = arg min
θ

1

2π

∫ π

−π
|G0(eiω)− Ĝ(eiω; θ)|2Φu(ω)dω. (3.31)

Here, G0(eiω) is the frequency response function corresponding to the true impulse response h[t],
while Ĝ(eiω; θ) is the frequency response function corresponding to the impulse response of our first

order OE model ĥ[t; θ]. If u[t] is white noise then it has a flat spectrum and the estimated parameters
are chosen such that the sought first order OE model, or it’s impulse response, approximates the
best, in the frequency domain, the frequency response function of the data generating system. This
result increases our motivation in using the first order output-error approximation as the a means
for getting a initial kernel rate decay, since the pole of the estimated model captures the overall
decay trend in the impulse response.

In the following example, we investigate how is the rate decay, chosen based on a first order approx-
imation, performing in terms of maximizing the marginal likelihood (3.19).

Example 3.2.4. Consider the transfer function of a continuous time system

G(s) =
1

(s+ 0.2)(s2 + 0.2s+ 1)
(3.32)

from which we obtained the discretized data generating system using the zero-order hold discretiza-
tion with sampling time Ts = 2. Identification data is obtained from the system under output
additive noise of variance 0.09, using white noise input of variance 1. Based on 500 input-output
data points collected with a sampling time of Ts = 2, a first order output-error model is estimated,
the result being shown in figure (3.12). As before, a Monte Carlo simulation, depicted in figure (3.12),
shows how is the β, chosen based on the estimated model, comparing with other β’s over a grid, in
terms of marginal likelihood cost. As can be seen, the use of a first order model provides a β not
exactly at the optimum but very close to it.

3.2.3 Comparison between the methods

We saw earlier that both the dominant pole and the first order approximation are good candidates
for initializing the optimization of the marginal likelihood (3.19). It is questionable at this point
though, which of the two choices is better for use as a kernel rate decay. In the following example
we will try to compare the two choices through an example.

Example 3.2.5. Let’s consider the impulse responses studied in [7],

h1[t] = 0.7t + 3 · 0.3t, h2[t] = 0.7t − 3 · 0.3t, h1[t] = 0.7t cos(πt/3), t ∈ N. (3.33)

For comparison, shown in Figure 3.13 are the true impulse responses along with the first order
output-error approximation as well as the impulse response of first order models with the poles at
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Figure 3.12: a) The impulse response of the data generating system and of the first order OE
approximation (thick line). b) Monte Carlo simulation for different noise realizations, calculating
the marginal likelihood over a grid of β’s. The circle indicates the β selected through first order OE
modeling. The shaded region indicates the 25− 50− 75 percentiles.

the dominant poles of the true systems. The gain of the first order approximation with the pole at
the dominant pole of the system was choosen to match the gain of the dominant pole in the impulse
response representation, namely it was choosen 1 for all three cases. The Kronecker delta impulse,
used as input for calculating the impulse response, is of length Ts = 2 and height 1/Ts. From the
figure, we see that the first order output-error approximation offers a good indication of the rate
decay for the first impulse response, but performs slightly worse in capturing the decay of the second
and third systems. For the second system, the first order output-error approximation gives a faster
rate decay, while for the third system, which is second order with complex conjugate poles, it offers a
slower rate decay than that of the true impulse response. On the other hand, the first order impulse
responses using the dominant pole of the systems provides a rate decay that follows better tail of
the true impulse response in all three cases.
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Figure 3.13: Impulse responses of the true systems (stem), their first order OE approximations
(bottom plots, thick line) and the dominant pole (top plots, thick line). The p represents the
estimated pole location.
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Figure 3.14: 50 Monte Carlo simulations indicating the marginal likelihood cost comparison between
the two choices of β.

From these results we deduce that, apparently, the dominant pole of the system does give a slightly
better approximation of the impulse response decay than the first order output-error approximation.

Figure 3.14 shows box plots indicating the marginal likelihood for 50 Monte Carlo simulations
with different noise realizations for the three cases. For the first impulse response, we see that
the output-error approximation offers the better cost, while for the second case, the dominant pole
of the true system gives a better result. In the third situation, both give similar results. From
Figures 3.13, 3.14 we thus deduce that, overall, both choices of kernel decay rate perform well and
there is no definitive choice favoring one over the other. On the other hand, it has to be reminded
that finding a first order output-error approximation involves solving a non-convex optimization
problem, whereas estimating the dominant pole through the proposed method in this section, does
not. In fact, the estimated dominant pole could serve as an initialization in finding the first order
output-error approximation.

3.3 Summary and conclusions

In the present chapter, we have addressed the problem of model order selection, for a single-input
single-output system, through the use of a Bayesian approach to dynamic modeling. The problem
is essential for the topology detection approach expressed in the previous chapter. The solution
presented, which was introduced in [10], is to use stable-spline models which use as prior information
the decaying trend of the impulse response of stable systems, in an Empirical Bayes approach to
non-parameteric modeling. Whereas the modeled order selection is avoided in this way, the new
procedure comes with its own difficulty, namely in finding an appropriate prior, or more specifically,
appropriate hyperparameters. The solution is to optimize a marginal likelihood function which is
non-convex. To avoid obtaining local solutions, two initial choices for the kernel rate decay were
indicated, namely one through the estimate of the dominant pole of the system and the other
though a first order output-error estimate. The two options were evaluated and compared through
experiments. The different role of the hyperparameters λ and β indicated the strategy of evaluating
the two initial value options for β. The results revealed that both methods give accurate values of
the kernel rate decay, close to the global solution, and based on the cost evaluation no preference is
set for any of the two. The preference is mostly specified by the fact that the solution to a first-order
output-error estimate involves a non-convex problem whereas the other option does not.
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Chapter 4

Topology detection through
regularized network modeling

4.1 Topology detection evaluation

In this section we will explore how to evaluate whether an estimator is good at detecting the topol-
ogy of a dynamic network from measurement data. We will try to determine how to compare the
topology detection results of two estimators, or in other words, how do we measure which of the
two determined topologies is closer to the true topology and what would be measures of closeness
between topologies.

In the literature on evaluation of binary classifiers, a common method of measuring whether a
given result has been labeled correctly is through the confusion table [18]. By setting our topology
detection problem in a binary classification format we could use the following table to compare two
estimated topologies.

True topology
Connection present Connection absent

Estimated
topology

Connection
present
detected

True positive False positive

Connection
absent
detected

False negative True negative

Sensitivity Specificity

Table 4.1: Confusion table for topology detection.

True positive (TP) indicates the number of connections present in the data generating network that
were detected as being present. False negative (FN) is the number of connections actually present
but detected as absent. False positive (FP) indicates the number of connections absent in the data
generating network that were detected as being present, and True negative (TN) is the number of
absent connections in the true network that were determined as being present.

Two of the measures used to evaluate binary classifiers are the sensitivity and the specificity. The
sensitivity (or true positive rate) indicates the proportion of the actual present connections that are
detected correctly, while the specificity (or true negative rate) indicates the proportion of actual
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True topology
Connection present Connection absent

Estimated
topology

Connection
present
detected

TP = 4 FP = 1

Connection
absent
detected

FN = 0 TN = 15

Sensitivity = 1 Specificity = 0.94

Table 4.2: Confusion table for topology detection in example 4.1.1.

absent connections that are detected correctly. These two measure are calculated as

TPR = TP/P = TP/(TP + FN) TNR = TN/N = TN/(TN + FP ) (4.1)

where P is the total number of present connection of the data generating system, also called the
number of positives, while N is the total number of absent connections of the data generating system,
also called the number of negatives.

Example 4.1.1. We consider an example where the topology is determined from the gains of the
estimated dynamic models for the modules in a network using the PEM. The interconnectivity of
the network we are trying to identify is shown in Figure 4.1, along with the corresponding impulse
responses. The topology is chosen to have just a few interconnections. In this example, the system
G14 is not present in the data generating network. Each node signal wj , 1 ≤ j ≤ L, is perturbed by
a white noise signal vj of variance σ2

j = 0.09, which is mutually uncorrelated with the noise signals
that affect the other nodes. We also have measured exitation signals rj , at each node wj , which are
white noise of zero mean and variance σr = 1, mutually uncorrelated and uncorrelated with the noise
signals vj . Under these conditions, N = 500 data points are captured from each node of the network.

Estimating the dynamic models for each module and setting the threshold T to T = 0.02 we
evaluate the detection of the links through the following confusion matrix. The H2 system norm of
each identified module Ĝj,i represents the score and it is indicated in the matrix entry Kj,i. Based
on whether Kj,i > T or not we assign the label connection present or connection absent to the
respective module.

K =


0 0.016 0.131 0.017 0.02

0.107 0 0.019 0.018 0.021
0.017 0.044 0 0.017 0.015
0.014 0.014 0.013 0 0.015
0.016 0.017 0.017 0.072 0

 (4.2)

The topology assessment using the H2 -norm as score is dependent of the threshold choice. Fig-
ure 4.2a reveals the importance of it through a graph where the sensitivity and the false positive
rate (FPR = FP/N = 1 − TNR) are evaluated for different threshold choices. Note that such a
graphic cannot be used in deciding upon the right choice of T for an application since the measures
used, compare the detected topology with the actual true topology. Thus knowing the true topology,
from the figure, we see that the best choice of T is in the interval T ∈ [0.022; 0.043] where TPR = 1
and FPR = 0. There, all the links that are present in the data generating network are detected as
present as well as all the links that are absent in data generating network are detected as absent.

Example 4.1.2. Let’s consider the same dynamic network as before but with an additional weak
connection from w4 to w1. In this case, as can be seen in Figure 4.2b, where the TPR and FPR
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Figure 4.1: Data generating network in example 4.1.1.
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Figure 4.2: Sensitivity (solid line) and false positive rate (dashed line) as we vary the threshold.

are plotted over the threshold, that there is no value of T for which we can obtain at the same
time TPR = 1 and FPR = 0. So in this case, no matter which threshold value we choose, we
won’t obtain perfect topology detection as either some present links will be classified as being
absent or some absent link will be classified as being present. Figure 4.3 presents the estimated
impulse responses for some of the modules. Because of its relatively small gain, the added module
G14, is indistinguishable from the noise. Also, notice that the trade-off between TPR and FPR is
unbalanced because of the imbalance in the number of true connections present and the number of
true connections absent. Thus, we see that a decrease in TPR to 0.8 results in an increase in FPR
of only 0.06.

Example 4.1.3. Since FIR models require a large number of parameters, thus leading to increased
variance in their estimates, we will repeat the experiment in example 4.1.1, but now using output-
error models. We consider from the beginning the network with the module G14 present. First, we
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Figure 4.3: Impulse response estimates.
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Figure 4.4: Impulse responses of the first order OE models.

try to model the modules using a model set, which is unable to cover the data generating system,
by using output-error models

wj [t] =

L∑
i=1,i6=j

Bi(q
−1)

Fi(q−1)
wi[t− k] + ej [t] (4.3)

with orders

u1 u2 u3 u4
nb 1 1 1 1
nf 1 1 1 1
nk 1 1 1 1

The resulting impulse responses of some of the estimated models are shown in Figure 4.4. We see
that first order models are unable to capture correctly the dynamic behavior connecting the signals,
and because of that it offers a poor detection of the topology having a short interval where the
threshold offers the best results (see Figure 4.5a).

Better models are obtained if we consider a more flexible model set given by the OE models with
model orders

u1 u2 u3 u4
nb 5 5 5 5
nf 5 5 5 5
nk 1 1 1 1

The obtained models, shown in Figure 4.6, indicate better dynamic modeling than before, but the
absent connections are still affected by the noise. A consequence of using parametric OE models,
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(a) Under-fitted model.
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(b) Over-fitted model.

Figure 4.5: Sensitivity (solid line) and false positive rate (dashed line) as we vary the threshold.

Figure 4.6: Impulse responses of the fifth order OE models.

compared with the nonparametric FIR models, is the improvement in variance we see in the im-
pulse responses for higher lags. For lower lags the noise is still being present thus affecting topology
detection. The drawback of using parameteric models is that the model orders affect the quality
of the estimates. Despite the better modeling of the dynamics, the TPR, FPR characteristic in
Figure 4.5b actually indicate a much worse result in terms of topology detection, especially in the
detection of absent connections compared with the case in Figure 4.5a. It just might be that the
better topology detection for the network with a worser model does not indicate a general rule but
it just a particular result of this configuration. The bias due to undermodeling actually pushed the
parameters, incidentally, such that a better topology can be determined.

To decide the threshold, in practice, one must compare the detected topology to the data, or in
other words validate the topology. A way of doing so is to create a new network model based on the
identified network model by setting the absent detected links to zero. Then we will verify whether
the fit to validation data of the newly obtained model improves compared with the original identified
network. We can apply this strategy to test how does the threshold choice affects topology detection
without having access to the true topology.

4.2 Topology detection by stable splines with exponential
hyperpriors

The approach to topology detection in this thesis, presented in section 2.6, requires network module
modeling, which could be obtained using the PEM. In this section we take a Bayesian approach
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to prediction and consequently to topology detection. We will address two problems related to
the PEM, in the context of topology detection: the module model order selection problem and the
network overfit problem, and provide solutions to them through Bayesian methods. The solutions
provided for the two problems lead to the method for topology detection by stable splines with
exponential hyperpriors (SSEH), introduced in [9].

In order to obtain predictive models that maintain minimal over-fit of the noise realization, as
discussed in section 2.2, model orders have to be correctly specified. A typical solution to this
problem is to use cross validation methods. However, the issue with these methods is that in our
network context we will deal with MISO identification problems which require a more complex order
selection problem as the orders of multiple modules have to be determined at the same time. The
cross-validation procedure, in this case, would involve individually selecting the model orders for
each module and then testing how different structures, chosen as such, compare with one another.
Since this solution might be too complex to apply in practice, other automated solutions are prefer-
able. A widely used automated method for model order selection is through Akaike’s information
criterion (AIC, see [1], [2]). However, in this report we take a different path and choose stable
spline modeling for solving the model order selection problem, as it was shown in the literature
(see [10], [9]) to provide better results in term of prediction compared with models obtained using
PEM and AIC and to provide very close results to the ones using the PEM and the true model orders.

In section 2.5, the problem of network overfit was revealed, indicating a possible concern when
the topology is to be determined by the chosen method explained in section 2.6. Namely, when
network overfit occurs, the parameters of the connections that should be absent are different than
zero which might make it difficult to discern whether the connection is present or not. The network
overfit also makes the MISO estimates as a hole to be less predictive compared with the situation
when the true topology is known and would be used for identification. In section 4.1 a few numerical
examples were provided showing the mentioned issues related to the model order selection and the
network overfit problem, when using classic PEM. That is, the classification threshold has to be
chosen and it might be difficult to agree upon a suitable one. In the present section, we indicate a
way of handling this problem. We, thus, turn once again to Bayesian statistics to provide the solution.

Since in practice it is common to have networks of interconnected modules, with each of the modules
interconnected only with a few other modules, and since the network overfit problem is characteris-
tic for such networks, estimators which provide sparse results will represent a solution (estimators
which use the Bayesian framework to consider the sparsity structure as a prior will be tested). For
linear regression models, such estimators try to select only a subset of the regressors, instead of
using all of them, by setting the corresponding parameters to zero, in a way to improve prediction
and provide interpretability. In the literature the most commonly used estimator to work as such,
is the least-absolute-shrinkage-and-selection-operator (Lasso), introduced in [16].

For a linear regression model (c.f. equation (2.12))

y[t] =ϕT [t]θ + e[t], e[t] ∼ N (0, σ2), (4.4)

the Lasso estimate is given by

θ̂lasso = arg min
θ

1

N

N∑
t=nb+1

(y[t]− ϕT [t]θ)2 + λ||θ||1, (4.5)

where || · ||1 is the vector 1-norm. The effect of using the 1-norm for regularization is known to
provide sparse solutions ([16]). Here, the regularization parameter λ is a tunning parameter that
should be adjusted, and the usual way to do this is through cross-validation. An interesting fact
is that the Lasso solution could be interpreted as the convex relaxation of the l0-penalized linear
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regression problem

θ̂l0 = arg min
θ

1

N

N∑
t=nb+1

(y[t]− ϕT [t]θ)2 + λ||θ||0, (4.6)

where the 0-norm, which is defined as the number of non-zero elements of the vector θ, is used
to penalize the estimates [19]. The solution to this optimization problem, because of the 0-norm,
involves an exhaustive search through all possible parameter subsets, which makes it impractical.
Thus, the Lasso is instead used as an approximation to it and is solved using proximal gradient
methods.

Consider the network setup of section 2.3 given in (2.39), with a number of L measured signals
wj , 1 ≤ j ≤ L. Then the classic PEM estimates, for the FIR model structures (2.46), are given
by (2.44). Then, we would want to select the best subset of input signals wk, k ∈ Xj , that should
be used for predicting signal wj . This could be done by using the SSEH estimates introduced in [9],
given by

θ̂j = arg min
θj

1

N

N∑
t=1

(wj [t]−
∑
k∈Xj

Gjk(q−1; θjk)wk[t]− rj [t])2 +
∑
k∈Xj

σ2

λ2k
||θjk||2Kss

. (SSEH) (4.7)

where Kss is the stable-spline kernel from (3.21). In this setup, sparsity is introduced through the
individual regularization factors λk using a hierarchical model as will be explained. Intuitively, the
method works in the following way. When λk is close to zero or even zero, the penalty will be so
large that the optimization will push the corresponding parameters θjk to zero. When λk is not
close to zero, then the penalty term would allow for regularization using the stable spline kernel Kss.

To provide sparse estimates the SSEH assumes a probabilistic model for the λk parameters, namely
it assumes the λi’s to be independent exponentially distributed random variables

p(λk) = γ exp(−γλk)1(t) (4.8)

where γ is a positive parameter of the hyperprior which needs to be determined from data, and 1(t)
is the Heaviside step function, i.e. 1(t) = 1 for t ≥ 0 and 1(t) = 0, otherwise. It is also assumed
that the terms ||θji||Kss are independent and normally distributed random variables with mean zero
and variance λ2k, i.e.

p(||θjk||Kss
|λk) =

1√
2πλ2k

exp−
||θjk||2Kss

2λ2k
. (4.9)

Then the joint probability of all the terms ||θjk||Kss
, for k ∈ Xj follows from marginalizing out the

λk’s and the independence assumption,

p
(
||θjk1 ||Kss

. . . ||θjkL−1 ||Kss

)
=
∏
k∈Xj

∫
p(||θjk||Kss |λk)p(λk)dλk, (4.10)

with ki = i if k < j and ik = k + 1 if k ≥ j for i ∈ Xj . This representation is called a scale
mixture of normals and it is known (see [9]) that if p(λk) is exponentially distributed, then the joint
distribution p

(
||θjk1 ||Kss . . . ||θjkL−1 ||Kss

)
would be Laplace distributed. It is also a known fact

that the Lasso estimate can be interpreted as the Bayesian estimate under the Laplace distributed
prior [16]. Thus making the assumptions given through equations (4.8), (4.9), we give the sparse
nature of the SSEH estimates.

Now the solution to the optimization problem (4.7) fits the Bayesian context presented in sec-
tion 3.1, with the difference that there the results where provided for SISO systems, whilst here we
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have a MISO problem. The regression model for the multi-input single-output case is then

yj [t] =ϕT [t]θ + ej [t], θ =
(
θjk1

T
. . . θjkL−1

T
)T

, (4.11)

ϕ[t] =
(
ϕTjk1 [t] . . . ϕTjkL−1

[t]
)T
. (4.12)

with ki = i if k < j and ki = i+ 1 if k > j for i ∈ Xj . Or, when using N measurement samples, as

YN =ΦTNθ + ΛN , YN =
(
yj [ng + 1] yj [ng + 2] . . . yj [N ]

)T
(4.13)

ΦN =
(
ϕ[ng + 1] ϕ[ng + 2] . . . ϕ[N ]

)
ΛN =

(
ej [ng + 1] ej [ng + 2] . . . ej [N ]

)T
(4.14)

and the posterior estimate is given by

θ̂apostN =θ̂LSN − σ2(PnRN + σ2I)−1θ̂LSN , (4.15)

θ̂LSN =(ΦNΦTN )−1ΦNYN . (4.16)

The noise variance is determined from the least squares solution θ̂LSN .

4.2.1 Hyperparameter estimation for networks

In order to compute the posterior solution, the stable spline kernel matrix has to be provided. As
discussed in section 3.1, the hyperparameters for the stable spline kernel, namely

ξ =
(
λ1 . . . λL−1 β γ

)
, (4.17)

will be determined from the data, through the marginal likelihood estimation (Proposition 4 from [9]):

ξ̂ = arg min
ξ
J(D, ξ), J(D, ξ) =

1

2
Y TN V

−1
N YN +

1

2
log(det(2πVN )) + γ

L−1∑
i=1

λi, (4.18)

with VN = σ2I +
∑L−1
i=1 λ

2
iΦiKss(β)ΦTi , obtained from marginalizing out the parameters θ from the

joint distribution of YN and θ.

Since the marginal likelihood is not guaranteed to be convex, using convex optimization tools to
solve the problem at hand, might lead to local solutions. As discussed for the SISO identification
case, in section 3.2, appropriate initial values for the convex optimization routine, in the basin of
attraction of the global minimum, if possible, would allow for the finding of the global minimum.
Two ways for initializing the optimization routine for the SISO case were provided in section 3.2.
In the following, we aim at extending one of the presented SISO methods for obtain an initial value
for the rate decay β to the network setup.

To simplify the reasoning, we consider that the impulse responses of the modules in our network have
similar rate decays. In this case, the difference in hyperparameter estimation between the network
situation and the SISO situation is that multiple regularization gains λi, one for each module as
indicated in formula (4.17), have to be determined increasing the dimensions of the optimization
problem, see (4.18). As was pointed out in [9], because of the increased complexity of the optimiza-
tion problem, the choice of initial values provided to the optimization routine influences the success
of obtaining the global solution.

A Bayesian forward selection algorithm for choosing initial values for individual λi hyparameters
was presented in [9]. Because this algorithm will also be used in the simulations provided in this
report, for ease of reference, it is explained below:
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1. In a first stage, a solution to a simplified marginal likelihood cost is computed.(
λ̂1 . . . ˆλL−1 β̂

)
= arg min

ξ
J(D, ξ), s.t. β > 0, λ1 = λ2 = · · · = λL−1 ≥ 0. (4.19)

This simplified version considers a single, common λ for all of the modules, i.e. λ1 = λ2 =
· · · = λL = λ ≥ 0 and fixes γ = 0.

2. Then, in a second stage, a input selection procedure is employed. Let I denote the set of
indexes of selected inputs for prediction, i.e. I = {i|ui is selected, 1 ≤ i ≤ L− 1}. Associated

with this set, is the set of hyperparameters ξI =
(
λ̃1 . . . λ̃L−1 β̂ γ̂

)
, with fixed γ̂ = 1/λ̂

and λ̃i = λ̂ if i ∈ I, otherwise λ̃i = 0. Also, denote by J(D, ξI) the marginal likelihood cost
evaluated for the hyperparameter values ξI , associated with the set I. Initially, none of the
inputs are selected, I = ∅.

(a) For each input that has not been selected yet, i.e. k ∈ {1, . . . , L− 1}/I, construct a new
index set Ik = I ∪{k} with associated hyperparameters ξIk , and marginal likelihood cost
J(D, ξIk) as defined earlier.

(b) Choose, for k ∈ {1, . . . , L− 1}/I, one k∗ that gives the smallest value for J(D, ξIk).

(c) Check if the marginal likelihood cost becomes smaller when using hyperarameters ξIk∗ ,
compared with the cost when using ξI , i.e. see if J(D, ξIk∗ ) < J(D, ξI). If the condition
is satisfied, select k∗ by setting I = Ik∗ and repeat from a). If it is not, then it means
that none of the remaining inputs k ∈ {1, . . . , L − 1}/I can be individually selected to
give a smaller marginal likelihood cost. In this case we stop the iteration and the final
hyperparameters are given by the last obtained ξI .

In this report, we provide an addition to the just presented algorithm by looking for initial values
for the simplified marginal likelihood (4.19) from the first stage of the forward selection algorithm.

Effectively, the hyperparamter vector for the simplified problem (4.19) contains only two variables
ξ =

(
λ β

)
. An initial value for the β could be obtained from a first order OE model. Since the

impulse responses have similar rate decays, we will simplify the procedure by using a first order OE
model , that has the same pole, for every transfer function:

yj [t] =

L−1∑
i=1

bi,0
1 + f0q−1

ui[t− 1] + ej [t] =
1

1 + f0q−1

L−1∑
i=1

bi,0ui[t− 1] + ej [t]. (4.20)

Then the first order OE estimate for the MISO setup is

θ̂OE = arg min
θ

N∑
t=1

[
yj [t]−

L−1∑
i=1

bi,0
1 + f0q−1

ui[t− 1]

]2
, (4.21)

and the rate decay β will be derived as the pole of the first order OE approximation.

Different rate decays

In the above derivations, we considered that every module of the network has the same rate decay,
but we might come across networks which don’t have this structure. In such a situation, considering
individual rate decays for each module will lead to a further increase in complexity of marginal like-
lihood optimization problem. Based on the previous suggestion, for the simpler case with a common
rate decay, namely, of using a first order OE model to determine an initial β, we extend the procedure
to accommodate the new situation with different rate decays. We try to use a first order output error
model for each module of the network. To reduce the bias that might appear due to under-modeling,
we first estimate an FIR multi-input single-output model of our network without regularization.
Then we try to fit, individually, first order OE models over the previously determined FIR models.
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Hence, first, we define individual data sets Dji = {y = θ̂FIRj ;u =
(
0 1/Ts 0 · · · 0

)
} for each

module, where Ts is the sampling time and u is a unit impulse applied at time Ts. Then, we obtain
the output error estimates as

θ̂OE = arg min
θ

N∑
t=1

[
y[t]− b0

1 + f0q−1
u[t]

]2
, (4.22)

and, as before, we determine initial values for the rate decay hyperparameters from the poles of the
output error models. The complete strategy for hyperparameter estimation for different rate decays
is presented below.

1. Obtain individual hyperparameters βi for each module, as just presented.

2. Solve a simplified marginal likelihood over a common λ, only, with γ = 0 and individual β’s
fixed at the values determined in the previous step.

3. Do forward selection as presented before, with the only difference that β̂ used here should be
a vector β̂ =

(
β̂1 . . . β̂L−1

)
.

4. Solve a complete marginal likelihood for ξ =
(
λ1 . . . λL−1 β γ

)
, with β =

(
β1 . . . βL−1

)
and with initial conditions set at the values obtained in the last step.

In this subsection, we have presented two possible initial values for the kernel rate decays, to be
used for optimizing the marginal likelihood (4.18), one for the networks with systems that have the
same settling time, and the other for networks with systems that have different settling times. The
forward selection mechanism from [9], might appear to provide the topology of the network. In this
thesis, the approach to topology detection, as presented in Chapter 2, is through the use of dynamic
models and we do not determine the topology only based on the values of λi, i ∈ {1, . . . , L − 1}
obtained from the forward selection. In order to obtain the models through SSEH, we need to
determine the hyperparameters from the non-convex marginal likelihood optimization (4.18). The
hyperparameters that give the global minimum of the marginal likelihood will be used to construct
the sparse models. When a given λi is close to zero, then the regularization penalty becomes large
in (4.7) forcing the corresponding parameter values to zero. We will not make any deduction from
the values of the hyperparameters λi, i ∈ {1, . . . , L − 1}, about the topology of the network, and
we will determine the topology only based on the resulting models obtained, since the λ indicates
only the strength of regularization. Furthermore, the obtained λi, i ∈ {1, . . . , L − 1} from forward
selection, are only used as initial values for minimizing the marginal likelihood, since it might happen
that the optimal values of the marginal likelihood provide a different topology than the one deduced
from the initial values.

4.3 Simulations

We will now determine how does the topology detection method through SSEH perform by designing
different experiments. Let us denote this method by SSEH-TD.

As a reminder, for a given network, the topology is determined following the next steps:

1. Identify the modules using the chosen identification procedure, i.e. either the PEM or regu-
larization, to obtain models suitable for prediction.

(a) If regularization is chosen for modeling the network modules, then first determine the
needed hyperparameters, and afterwards compute the estimates.

(b) If the PEMs are used, then the order of each module has to be provided.

2. Evaluate the topology based on the estimated models.
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4.3.1 Simulation 1

A first experiment is to compare the SSEH-TD with topology detection through classic PEM as was
executed in section 4.1. The aim of the experiment is to investigate two aspects:

1. Whether the SSEH-TD improves the detection of the null connections, i.e. it improves the
FPR.

2. Whether the SSEH-TD improves the detection of the present connections, i.e. it improves the
TPR.

In both of the above cases, the referred improvement will be studied with respect to the topology
obtained using classic PEM for network modeling.

Experimental setup

Let us reconsider the setup from example 4.1.2. The data generating network has the topology
as in the graph 4.1a with connections represented by LTI systems with the impulse responses given
in Figure 4.1b. For reference, we also add below the exact transfer functions used.

G13(z−1) = z−1
0.01741 + 0.01523z−1

1− 1.572z−1 + 0.6703z−2
, G14(z−1) = 0.1z−1

0.01638 + 0.0134z−1

1− 1.459z−1 + 0.5488z−2
,

G21(z−1) = z−1
0.01638 + 0.0134z−1

1− 1.459z−1 + 0.5488z−2
, G32(z−1) = z−1

0.01609 + 0.01402z−1

1− 0.8573z−1 + 0.6703z−2
,

G54(z−1) = z−1
0.001067 + 0.003412z−1 + 0.00068z−2

1− 2.222z−1 + 1.646z−2 − 0.4066z−3
. (4.23)

Each node signal wj , j = 1, nw, is perturbed by a white noise signal vj of variance σ2
j = 0.09, which

is mutually uncorrelated with the noise signals that affect the other nodes. We also have measured
exitation signals rj , at each node wj , which are white noise of zero mean and variance σr = 1,
mutually uncorrelated and uncorrelated with the noise signals vj . Under these conditions, 500 data
points are captured from each node of the network.

The obtained data set, D = {(w1[t], r1[t], w2[t], r2[t], w3[t], r3[t], w4[t], r4[t], w5[t], r5[t]), 1 ≤ t ≤ 500},
will be used for topology detection. We thus aim to use the data set, first, to model the network,
and then, to determine the topology by using the discrimination rule (2.57) for a suitable threshold.
A discussion on the threshold choice will be provided.

PEM modeling

We begin with deriving the PEM models. The PEM models are obtained for the data set D,
following the procedure presented in section 2.1 and example 4.1.2, by minimizing the residual sum
of squares (2.44), using the predictor (2.42) and the OE model parametrization

Gjk(q−1; θjk) =
∑
k∈Xj

Bjk(q−1; θjk)

Fjk(q−1; θjk)
wk[t− 1] (4.24)

with orders (nb = 1, nf = 2) for each pair of Bjk, and Fjk polynomials respectively, along with a
unit delay. The model structure and order choice is made to match the data generating network
with module models given in the formulas in (4.23), were we notice that all the systems are of orders
(nb = 1, nf = 2) with the exeption of G54. Since G54 has an impulse response that resembles that
of a second order system (see Figure 4.1b), the choice of model orders as (nb = 1, nf = 2) seems a
reasonable one. The estimated models are displayed in Figure 4.8. We see that the estimated present
connections resemble remarkably the true impulse response in Figure 4.7b. Figure 4.8b displays the
estimated transfer functions for the first MISO identification problem with w1 considered as the out-
put signal, and it shows that the estimates of the null connections are affected by the noise present
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Figure 4.7: Data generating network in example 4.1.1.

in the data. Thus, from a modeling perspective it seems that the newly obtained models from the
data, capture most of the effects needed for prediction, while keeping the variance small, especially,
for the null connections parameters, making them have little effect on predictions. SSEH modeling

We perform next, the SSEH modeling of the same data generating network using the same data
set D as was used with the PEM. Differently from the PEM, we obtain the model parameters by
minimizing the regularized version of the residual sum of squares cost function presented in for-
mula (4.7).

{θ̂ji}nwi=1,i6=j = arg min
{θji}nw

i=1,i 6=j

||Yj −
nw∑

i=1,i6=j

ΦTjiθji||22 +

nw∑
i=1,i6=j

σ2

λ2i
||θji||2Kss

. (SSEH) (4.25)

using the same predictor as for the PEM, but with models having an FIR structure of order 60:

yj [t] =

L∑
i=1

Gi(q
−1)ui[t] + ej [t], G(q−1) = q−1g1 + q−2g2 + · · ·+ q−60g60. (4.26)

Hyperparameter estimation

Before solving (4.7), the hyperparameters ξ =
(
λ1 · · · λL β γ

)
have to be estimated from

the marginal likelihood problem (4.18). Following the procedure in section 3.2, we extend it to the
MISO case by modeling a first order OE model for each module.

A summary of the hyperparameter estimation steps used in the simulations is provided below:

1. Estimate a first order OE model with a common pole f0 for all transfer functions, different
gain bi,0, and a unit delay (see equation (4.21)). Deduce the hyperparameter from the obtained
model.

2. Solve a simplified marginal likelihood optimization problem with one β and one λ for all the
module priors. Initialize the optimization routine at the previously determined β and the
initialization for λ could be set at zero or a small number.
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y σ̂2 βoe β̂ λ̂
w1 0.0891 0.1414 0.1462 0.0398
w2 0.0889 0.1224 0.1775 0.0155
w3 0.0927 0.6405 0.2157 0.1369
w4 0.0966 13.3271 13.3271 0
w5 0.0866 0.0502 0.0944 0.0047

Table 4.3: Simplified marginal likelihood optimization. Each row indicates the βoe obtained from
a first order approximation along with the hyperparameter values (β̂, λ̂) obtained from a simplified
marginal likelihood using as initial values (βoe, 0). Each row indicates the results of a different MISO
case with the output indicated by wk in the first column.

λ1 λ2 λ3 λ4 β γ J(D, ξ)

w1
ξfwd 0 0.0398 0.0398 0 0.1462 0 277
ξfinal 1× 10−6 0.1312 3× 10−4 1× 10−5 0.1398 1× 10−6 249

w2
ξfwd 0.0155 0 0 0 0.1775 0 232
ξfinal 0.0488 1× 10−5 7× 10−10 1× 10−5 0.1705 8× 10−4 221

w3
ξfwd 0 0.1369 0 0 0.2157 0 252
ξfinal 4× 10−11 0.5619 2× 10−6 1× 10−5 0.1831 5× 10−7 236

w4
ξfwd 0 0 0 0 13.3271 0 177
ξfinal 0 0 0 0 13.3271 0 177

w5
ξfwd 0 0 0 0.0047 0.0944 0 205
ξfinal 6× 10−12 3× 10−12 6× 10−12 0.0128 0.0909 1× 10−5 199

Table 4.4: Hyperparameter values obtained from the forward selection ξfwd and the marginal like-
lihood optimization ξfinal with initial values provided by ξfwd. Each row indicates the results of a
different MISO case with the output indicated by wk in the first column. The shaded boxes indicate
the hyperparameters corresponding to the existing interconnections in the true network.

3. Do forward selection to select a different λi for each module prior.

4. Solve the complete marginal likelihood with the previously determined hyperparameters as
initial values.

Table 4.3 shows the estimated noise variance σ̂2, along with the first order OE estimate of the kernel
rate decay βoe, and the hyperparameters obtained from the simplified marginal likelihood optimiza-
tion, (λ̂, β̂), for each MISO problem of the network. The noise variance looks to be estimated close

to the true value of σ2 = 0.09. We also notice that the values of the β̂ from the simplified marginal
likelihood seems close to the value of the βoe estimated using the first order OE model, thus indicat-
ing that the first order OE provides the solution near the local optimum, which might as well be the
global one. Initializing the β in a sufficiently large region around the found optimum, which covers
a large band of candidate rate decays leads to the same results, suggesting that the found optimum
might be the right one for regularization.

The hyperparameters resulting from the application of the forward selection algorithm to the data
and the solutions from optimizing the marginal likelihood with the initialization provided by the for-
ward selection results are provided in Table 4.4. For our considered experiment, the forward selection
algorithm appears to select all of the true modules, and does not select any of the null connections,
thus achieving the best results. Inspecting the final hyperparameters resulting from the complete
marginal likelihood, i.e. ξfinal, we notice that the regularization parameters λi corresponding to the
null connections are made small but not zero, even though the initial conditions were set at zero.
Even though these results might contradict the data generating system, since the hyperparameters
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(a) Estimated impulse responses using PEM for all of the existing connections in the true network.
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(b) Estimated impulse responses for the models connected at the output to w1.

Figure 4.8: Impulse responses of the estimated transfer functions using PEM (black) and true impulse
responses (red) for different connections from the network.

λi for the null connections should be set at zero to obtain the best regularization, the marginal
likelihood value actually is smaller after running the complete optimization routine compared with
the cost of at the initial points, as is indicated also in Table 4.4, i.e. J(D, ξfwd) ≥ J(D, ξfinal). The
non-sparse hyperparameter results might also explain the low values of the γ.

SSEH modeling results.

Dynamic models for each module of the network are obtained as previously explained using the
determined hyperparameters ξfinal. The results are exposed in Figures 4.9. The first Figure 4.9a
shows the impulse reponses of the models for the modules present in the network. Comparing these
with the true impulse responses of the data generating system in Figure 4.1, we infer that the SSEH
provides accurate models, with almost unnoticeable differences. The second Figure 4.9b presents the
models when the signal w1 is considered as an output. In this figure, we notice the relatively small
gains of the null connections compared with those of the present modules. The impulse response
models of G12 and G15 are almost set to zero and thus have little contribution the prediction of
y = w1, showing that the SSEH works as intended, that is, it tries to eliminate the effect the noise
has on the estimation of the null connections. The corresponding values of the regularization gains
λi used in obtaining the models for G12 and G15 are given in Table 4.4, on the row of w1 and
ξfinal and columns denoted by λ1 and λ4. The values of these hyperparameters, close to zero corre-
spond to the strong regularization needed to push the model gains to zero as was seen in Figure 4.9b.

Model comparison

To better appreciate the choice of modeling method made for the purpose of topology detection,
a comparison between the PEM and SSEH models will now be made. Thus, we will compare the
predictive quality of the obtained models through both of the identification methods. First, a com-
parison in terms of the RMSE between the estimated (ĥ) and true (h0) impulse responses is provided

in Table 4.5, with RMSE(ĥ, h0) = ( 1
nb

∑nb
i=1(ĥ[i− 1]−h0[i− 1])2)1/2. The shaded cells indicate the
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(a) All the existing systems in the true network.
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(b) System that have outputs that connect directly to node w1.

Figure 4.9: Estimated impulse responses using SSEH (black) and the true impulse responses (red).

modules that are present in the data generating network. For reference the H2 norm calculated as
the RMSE between the system impulse response and 0, i.e. ||h0||H2

= ( 1
nb

∑nb
i=1(h0[i − 1])2)1/2, is

given for G13, the system with the largest effect, and for G14, the system with the smallest effect (c.f
Figure 4.1b). Thus, we notice that the errors obtained in Table 4.5 are small relative to the norm
of G13, both for modeling the present modules and the missing connections. It is worth mentioning
that it comes without surprise that the models obtained using PEM perform so well, since the chosen
model orders, for the present modules, were made to match that of the data generating network. It
is remarkable, on the other hand, that the SSEH offers models that are able to compete with the
PEM with optimal model order, given that SSEH does not require the specification of the model
orders.

Inspecting the RMSE table, we could also determine how do PEM compare with SSEH in terms of
topology detection. The best results are seen when using SSEH for y = w5. In that case, all the
models of the null connections are set to very small values, making clear the discrimination between
the links.

Topology detection comparison

Now that we have obtained dynamic models for each of the modules, the network topology is deter-
mined from the discrimination rule (2.57). As explained in section 4.1, the evaluation of the topology
detection for comparing the PEM and SSEH, is done through plots of the TPR, percentage of ac-
tual/present connections estimated correctly, and FPR, percentage of null connections estimated
wrongly, as the discrimination threshold is varied. The results are shown in Figure 4.10, where we
see that with SSEH we are able to detect the topology without missing any actual or null connec-
tions, i.e. we obtain TPR = 1, FPR = 0 concurrently, for a threshold 2 × 10−3 < T < 8 × 10−3,
whereas when using PEM there is no threshold for which we can obtain the same results. We fur-
ther notice that with SSEH we are able to detect all of the null connections correctly for a threshold
T > 2 × 10−3, whereas with PEM this is obtained for a much larger threshold T > 0.4 for which
all the actual connections are already set to zero by the discrimination rule. The reason for this

49



y u1 u2 u3 u4

w1
PEM 4.6 1.4 2 3.7
SSEH 0.5 4.3 2.7 2.9

w2
PEM 3.1 1.9 11.7 4.7
SSEH 4.5 1.8 ∝ 10−5 2.6

w3
PEM 1.8 0.9 382.5 2.1
SSEH ∝ 10−5 3.9 0.5 2.3

w4
PEM 3.8 2 3 2.5
SSEH ∝ 10−16 ∝ 10−16 ∝ 10−16 ∝ 10−16

w5
PEM 25.5 1.6 3.1 8
SSEH ∝ 10−7 ∝ 10−7 ∝ 10−6 3.9

Table 4.5: RMSE(×10−3) of the difference between the estimated and true impulse responses. For
reference ||G13||H2

= 128.5× 10−3 and ||G14||H2
= 10.5× 10−3.
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Figure 4.10: Sensitivity (solid line) and false positive rate (dashed line) as we vary the threshold.

happening is that, using PEM, the model of system G34 has been assigned two complex conjugate
poles on the unit circle making the system marginally stable resulting in an undamped resonating
impulse response of small magnitude. The exponentially decaying stable spline prior avoided this
situation by selecting only stable system models. The TPR curve for both of the cases seems iden-
tical, because as we have seen previously, both PEM and SSEH are able to model very accurately
the present connections.

Because the noise realization affecting the data might not be very representative of white noise,
several Monte Carlo simulations are executed. By repeating the above simulation for 50 different
data sets, each with a different noise and reference signal realization, we could make the evaluation of
our estimators less sensitive to inconvenient experimental situations and avoid drawing conclusions
based only on isolated results. Figure 4.11 shows TPR/FPR for various threshold values for 50
Monte Carlo simulations. Over the 50 simulations we calculated the 25, 50 and 75 percentiles for
both TPR and FPR. The x percentile of, for example, the TPR is the value of TPR under which
the evaluation of x percent of simulations fall. Comparing Figure 4.11 with 4.10a, we see that the
figures are alike, thus the conclusions that we have drawn earlier are not only valid for a specific
isolated experiment.

From the previously made observations, we conclude that SSEH offers better discrimination be-
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Figure 4.11: Sensitivity (solid line) and false positive rate (dashed line) as we vary the threshold,
for the SSEH. 50 Monte Carlo simulations. The area between the 25 and 75 percentiles is shaded.
The median is also shown in between the 25 and 75 percentile.

tween the links making it more suitable than PEM for topology detection. Even so, as we see in
Figure 4.10a, when T < 3 × 10−3 the FPR is no longer set to zero. This indicates that SSEH is
not entirely able to make automatic selection on the present connections since some of the models
of the null connections still produce small effects, thus an appropriate choice of threshold has to be
determined. The smaller the threshold for which the FPR is still zero, the better it is for topology
detection. Thus, SSEH is better than PEM for topology detection in what concerns the choice of
the discrimination threshold, but it does not eliminate the burden of having to choose one.

4.3.2 Heterogenous networks

Let us consider another simulation where the data generating network has modules with different
settling times. As explained in section 4.2.1, we might want to consider separate rate decay hyper-
parameters for each module, increasing the complexity of the marginal likelihood. In this simulation
we are going to evaluate how does the solution to this problem, introduced in section 4.2.1, perform
on a test example.

To keep it simple, we will use the network from the previous simulation, i.e the one given in Fig-
ure 4.1, but with a modification to accommodate the new situation. We add the fast first order
system G12 with impulse response which dies out in just over 10 seconds and transfer function

G12(z−1) = z−1
0.0583

1− 0.3012z−1
. (4.27)

From a newly collected data set D which includes the effect of the newly added module, first,
the hyperparameters, ξfinal =

(
λfinal βfinal γ

)
, with λfinal =

(
λ1 . . . λL

)
and βfinal =(

β1 . . . βL
)

now vectors of parameters, have been determined according to the strategy pre-
sented in section 4.3. The determined initialization values of the hyperameters are denoted by
λ2OE and βOE , where, first, βOE was determined from a first order output error model on data set

D̄ji = {y = θ̂FIRj ;u =
(
0 1/Ts 0 · · · 0

)
}, and λ2OE was determined by forward selection. For

comparison, we also estimated, from the same data set D, a hyperparameter vector with a common
βcmm and individual λ2cmm. The results are displayed in Table 4.6 from where we notice that the
marginal likelihood cost is the smallest when we use different β’s for each module, Jfinal < Jcmm.
Therefore, it seems that using individual rate decays for each module provides more accurate ker-
nels. Also, we see that βfinal has a larger value for the fast module G12 compared with that of G13,
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y = w1 βcmm βOE βfinal λ2cmm λ2OE λ2final Jcmm JOE Jfinal
u1 = w2

0.16

1.50 0.76

0.09

0.38 0.05

289 276 238
u2 = w3 0.19 0.13 0.38 0.14
u3 = w4 0.20 0.27 0.38 0.02
u4 = w5 0.49 7.22 0 7× 103

Table 4.6: Hyperparameter comparison for y = w1, with Jcmm, JOE and Jfinal marginal likelihood
costs for the corresponding hyperparameter set.
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Figure 4.12: Impulse responses of the module estimates using SSEH when w1 is considered the
output signal, with different β′s (top) and with a common β (bottom).

indicating the choice of a faster decay. The estimated impulse responses using SSEH shown at the
top of Figure 4.12 resemble very closely the true ones. The difference between the estimates using
different β’s and using a common β, could also be seen in Figure 4.12, where G12 seems to have
more variance in it’s tail in the second case, as a result of a inappropriate hyperparameter choice.
As we could see in table 4.6, the common βcmm is chosen towards the slower decay rate of the group
corresponding to G13. This is a result of G13 having a much larger H2 gain than the rest of the sys-
tems, thus dominating the effect that it has on the output y, and as such, also on the prediction of y.

W dif
est W cmm

est W dif
val W cmm

val

79.41 79.42 78.82 78.60

Table 4.7: Fit to estimation (West) and validation (Wval) data for the estimates obtained using
SSEH with a common β (W cmm) and individual β’s (W dif ).

A further comparison between the SSEH estimates using a common β and one that use individ-
ual β’s is made in Table 4.7, based on the fit to validation and estimation data. The table presents
the fit values calculated using (2.21) for two estimated models, namely a model which was obtained
by using SSEH with a common rate decay, and another model obtained from SSEH with seperate
rate decays for each module, both for estimation and validation data. The very small differences
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between the two estimates, both in terms of validation as well as estimation data, indicate that there
might not be a substantial need for using individual β’s, as the estimates with the common β are
as predictive as it’s competitor. It has to be mentioned that a limitation of the fit measure (2.21)
used, is that it could offer small fit values because of the noise affecting the data, even if the models
are accurate enough. To justify that the obtained results are not only representative for the data set
used, a Monte Carlo experiment is executed, consisting of generating the fit for 50 estimation and
50 validation data sets. The results are displayed in Figure 4.13. Since the difference W cmm−W dif

between the pair of fits (W cmm,W dif ) is small for both validation and estimation data, then, it
appears that there is no preference for using individual β’s compared with a common one. Further,
Figure 4.14 shows the fit to estimation data and the marginal likelihood cost over a grid of common
βcmm with the λ hyperparameters chosen through forward selection and optimizing afterwards a
complete marginal likelihood. We see that for 0.08 ≤ βcmm ≤ 1.3 the fit to estimation data is
maintained around 79%, c.f. Table 4.7. Whereas the marginal likelihood seems to have the optimal
value at the same point where the fit is maximized, it shows significant changes in the cost for the
same interval 0.08 ≤ βcmm ≤ 1.3. Hence, when choosing hyperparameters for SSEH models, it might
be helpful to consider, besides the marginal likelihood cost, also the fit measure, as it might reveal
that accurate hyperparameters are unnecessary. In conclusion, for this example, we deduce that
even though the data generating system is having modules with different settling times, considering
a common rate decay β for the module kernels gives network models with satisfactory predictive
quality.
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Figure 4.13: Box plot of the fit difference W cmm −W dif between the fit of SSEH models with a
common β and with different β for each module, both on estimation (left) and validation (right)
data.

4.4 Summary and conclusions

In this chapter, we have presented the topology detection procedure though modeling using stable-
splines with exponential hyperpriors and offered a comparison with the method of determining
the topology based on classic prediction error methods. First, we have explained how we could
evaluate a topology detection strategy based on the TPR,FPR over the discrimination threshold
plot. Based on it, we could decide whether a topology detection method is better than another
by comparing the TPR,FPR pair for corresponding threshold values. Another important aspect
of a topology detection procedure that could be determined from such a plot is the range of the
threshold values over which the method offers the best considered TPR,FPR pair. For a given
topology detection procedure it is desirable to have this range larger. The lower the threshold could
be picked the better it is, as the estimators used for modeling the dynamics, provide models for the
null connections with smaller gains. Thus, improving the discrimination. In the first section, the
evaluation method based on this plot, was used to indicate the problem of model order selection
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Figure 4.14: Fit to estimation data and marginal likelihood evaluated over a grid of β and optimally
chosen λ.

and network over-fit in an experiment setup for the topology detection procedure based on classic
prediction error methods. Afterwards, the approach to modeling using SSEH was presented along
with the strategy for determining initial values for the marginal likelihood optimization based on
first-order approximation of the rate decay. Simulations were provided showing a low RMSE between
the true and modeled FIR parameters estimated using the SSEH. The choice of initial values for
the hyperparameters, used in deriving the models, were close the optimal values, and thus helped
in finding suitable hyperparameter values indicated by the good modeling results in terms of the
RMSE. The comparison between the topology provided through SSEH modeling and through PEM,
showed a preference towards the first, because better TPR,FPR pairs could be obtained, which
could not be obtained for the second method, no matter the threshold value. Even though SSEH
performs better in topology detection, it is not able to automatically select all of the null connections,
by pushing their model gains to zero. We have also analyzed the choice of the kernel rate decay for
networks with multiple time constants, ending up with the conclusion that it might not be necessary
to individually model the rate decays for each module. All things considered, regularization did help
improve the topology detection, but it still could use some advancements in terms of automatically
selecting the modules through sparse model representations.
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Chapter 5

Conclusions and results

The objective of this thesis is to provide an efficient procedure for detecting the topology of a net-
work of dynamical systems, by using Bayesian methods. We have reached this goal by dividing
the work into several parts. First, we have investigated the use of dynamic system modeling as a
means towards detecting the topology of a network. As a result, we have formulated in Section
2.6 the approach to topology detection based on Granger causality, which relies on the concept of
prediction. Subsequently, we have investigated the difficulties of deriving the topology based on the
prediction error methods, thus recognizing as main difficulties the model order selection and the
problem of network over-fit. Afterwards, we have looked into the literature on Bayesian modeling
for solutions to our identified problems related to the use of prediction error methods for topology
detection, namely the problem of model order selection and network over-fit. To solve our problems
we chose to use the SSEH method for modeling networks of dynamical systems. The SSEH method
has its own difficulties, namely, in finding appropriate hyperparameters. In this regard, we have pro-
vided two ways of estimating appropriate initial kernel rate decays, namely though the estimation
of the dominant pole and though the estimation of a first order model. Simulations were provided,
showing that the results are satisfactory in both cases. The two methods for topology detection,
namely through the classic prediction error method and through SSEH modeling were compared and
analysed using practical examples. To compare and study the topology detection performance of the
two methods, we used the confusion table along with the sensitivity-specificity plots. The provided
simulations indicate that using SSEH gives a more accurate topology than the classic prediction
error method. They also indicate that the threshold used to discriminate between an absent and a
present connection is better defined when using the SSEH method. Even so, simulations revealed
that even when using SSEH we can get errors in estimating the null connections, because SSEH was
not able to automatically push to zero the parameter corresponding to the null connections. In the
end, we also tested the SSEH on heterogeneous networks, from which we concluded that obtained
models are relatively robust to inaccurate kernel decay rates.

Throughout the thesis, we have determined multiple factors influencing the topology detection,
such as, the choice of predictor, of model structure and parametrization, of model order, the use of
regularization methods, the procedure for validating a model.

The results presented on topology detection form a step towards the aspiration, stated in [17], of
transitioning ”from the traditional view of control systems as a single process with a single controller
to recognizing control systems as a heterogeneous collection of physical and information systems,
with intricate interconnections and interactions”.
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