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Model reduction for linear parameter varying
systems through parameter projection

Sil Schouten† (0821521)
Supervised by prof.dr. S. Weiland and ir. D. Lou

Abstract—This paper deals with parameter reduction of linear
parameter-varying systems as a means of reducing complex
models. First, the notion of system norms in parameter varying
systems is considered. The LPV norms are used to evaluate the
performance of the reduction methods. We provide two methods
to transform an affine LPV system into a parameter-ordered
form and reduce the parameter space. One method is based on
sensitivity functions of the transfer function and time evolution
equations. Another method achieves reduction by finding affine
upper bounds of the system gramians and is extended to time-
varying parameters. With the affine gramians, a Hankel-norm
approximation optimisation is formulated to find a parameter
projection matrix. Both methods are applied to a illustrative
example and a thermal model to show the achieved performance.

I. INTRODUCTION

In the past 30 years, the framework of Linear Parameter-
Varying (LPV) systems has been developed and approved
as a reliable and efficient alternative for characterizing
nonlinear/time-varying systems. The LPV framework has been
successfully applied in a wide range of fields, from very-
large-scale integration (VLSI) to aircraft [1]–[3]. However,
the inherent nature of complex physics often results in high
dimensional models in both state-space and parameter space.
Such models are often applied to evaluate system performance
over a range of the parameter values, such as the geometry
in circuits [4] and MEMS devices [5]. To have reasonable
computational complexity in terms of synthesis and simula-
tion, parametrised model order reduction (pMOR) is in many
circumstances required.

In the aforementioned applications, the high dimensional
state-space is introduced by the spatialisation of partial dif-
ferential equations (PDEs) to ordinary differential equations
(ODEs), while maintaining high precision. The physical con-
straints and design parameters of such high-fidelity models
lead to large parameter-space as well. Hence, we can categor-
ise the pMOR problem as the following problems:

1) find a low-rank state while the parameter space is
preserved. e.g., the projection-based parametric moment-
matching reduction [6]

2) reduce both the size of the state and parameter space,
e.g., two-step approach is introduced in [7], reduced rank
regression is applied to parameter space and moment-
matching is used to construct the reduced-order model.

3) only reduce the parameter space.

†Master thesis Systems and Control, Control systems group, the department
of electrical engineering, Eindhoven university of technology, 22nd October
2018

In most pMOR work, the primary goal has been solving sub-
problem one. A number of such methods have been proposed,
which mainly focus on sampling methods [8]–[10]. On this
topic, two survey papers [1], [11] are referred. However,
the curse of dimensionality emerges in the construction of
the parametrised reduced model. For example in [9], the
dimension of the reduced model increases exponentially as
the number of parameter interpolation points and moments
increase. Even though it is not always stated, simple sampling
schemes imply static dependence on the parameter. Techniques
which explicitly deal with time-varying parameters are difficult
to apply [12]. All these works are confined to state reduc-
tion without considering parameter reduction. The approaches
which consider parameter reduction either require typical
trajectories of the parameter [13] or lack interpretation and
are limited in application [14]. Development of more general
parameter reduction techniques can significantly improve the
efficiency of simulation, without loss of generality, as shown
in [7]. This leads to the second challenging topic, which has
been left without enough attention, combined reduction of the
dimension of the state and parameter spaces.

To our best knowledge, only a handful of research has
touched upon this subject. In [7] a two-step approach is intro-
duced. First, parameter reduction is employed to find a low-
dimensional parameter space. The second step is constructing
a reduced model via moment-matching. However, the reduced
rank regression used for parameter reduction only quantifies
the relation between the parameters and the outputs, which is
limited by the type of the input excitation. Furthermore, the
system dynamics of the parameters are not taken into account.

In this paper, the last sub-problem is addressed in two ways.
Firstly by exploring the relationship between the parameter
space and the system gramians, secondly by analysing the
sensitivity of the evolution equations to parameter changes. In
doing this a set definitions and naming convention for para-
metric system norms, aimed at characterising approximation
errors in a consistent manner, are proposed. The methods in
this paper are developed for time-invariant parameters, with an
extension of the gramian based approach to the time-varying
case. Especially with extension to time-varying parameters
these approaches will be applicable to a wide variety of
systems.

In section II the problem is formalised and the used notation
is introduced. Section III and IV show the methods to achieve
parameter reduction using Hankel-norm approximation and
sensitivity analysis respectively. Both methods are applied to
two systems and the results are analysed in section V.
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II. PRELIMINARIES AND NOTATION

Before developing techniques to achieve parameter reduc-
tion it is necessary to have a well defined system and notation.
In general, the state-space description of a continuous-time
linear parameter-varying (LPV) systems is given as

ẋ(t) = A(θ)x(t) +B(θ)u(t) (1a)
y(t) = C(θ)x(t) +D(θ)u(t) (1b)

where x ∈ Rnx are states, u ∈ Rnu inputs, y ∈ Rny outputs
and θ ∈ Θ ⊆ Rnθ parameters. The state space matrices
A(θ), B(θ), C(θ) and D(θ) may have any dependency on
the parameter vector. In this class of systems, a distinction is
to be made between systems where θ are time-varying or time-
invariant. If θ̇ = 0, the system can be viewed as a collection of
LTI systems. Whereas for θ̇ 6= 0, the dynamics of the system
change over time. In Fig. 1 the relation between LTI and time-
invariant LPV systems is illustrated.

Σ(1)

LTI

Σ(2)

LTI

Σ(3)

LTI

Σ(4)

LTI
Σ(5)

LTI

Σ(6)

LTI

LPV system: Σ(θ)

Figure 1: Relation between LPV systems and LTI systems for
θ̇ = 0.

In this work it is assumed that θ̇ = 0 unless stated otherwise.
Besides assuming θ̇ = 0, the state space matrices are assumed
to have affine dependency on θ. Furthermore the parameter
space Θ constitutes a convex hull, Co {ω1, ω2, . . . ωq}, well
representing the actual parameter space. Without loss of gen-
erality, the system is assumed to be normalised and scaled
such that all θ ∈ [0 1]. The final assumption is that a given
LPV system is quadratically stable, observable and reachable
∀θ ∈ Θ. This immediately results in the reduced models being
quadratically stable, observable and reachable as well. Which
holds because reduction is achieved by setting a parameter
equal to zero which is, by assumption, in Θ this holds.

The assumed affine nature of the system allows to write
the state-space equations using the tensor product (θ ⊗ In).
Using this notation the system matrices are expressed in the
following manner

Aθ =

[1 θ1 . . . θnθ
]︸ ︷︷ ︸

θ

⊗Inx



A0

A1

...
Anθ

 = θ̄nxĀ
θ. (2)

In the presented notation, subscript θ represents a parameter
dependency and superscript θ a stacked state space matrix. In
the remainder of this paper the short hand notation θ̄n• will

be used for the tensor product with an identity matrix, where
the subscript indicates the size of the identity matrix. Using
this short hand notation, the affine LPV system is rewritten as

ẋ(t) = θ̄nxĀ
θx(t) + θ̄nxB̄

θu(t) (3a)

y(t) = θ̄ny C̄
θx(t) + θ̄nyD̄

θu(t) (3b)

With the system defined, transformations of the system will
be defined next. The parameter reduction methods proposed in
this work are defined as linear transformations of the original
parameter space. To have a consistent transformation of the
parameters it needs to be invertible if nr = nθ. Furthermore an
ordering property is required such that the transformed system
parameters are in order of contribution to the system dynamics.
The measure of contribution depends on the method used. The
parameter transformation is defined in (4), where T satisfies
the orthonormality property (5). The parameter space is also
transformed using the same transformation matrix Θ̃ = ΘT .
In the case of having redundant parameters, T need not be full
rank and thus not satisfy (5). However, due to the redundancy
the original system can be reduced without loss, decreasing
nθ.

θ̃ := θ ·
[
T0 T1 T2 . . . Tnθ

]
= θT (4)

TTT = TTT = Inθ (5)

In this work we take T0 as being 1 in the first element and
0 elsewhere to keep the zero system equal. In general this is
not required but the transformed parameters may not include
0 and thus a different approach is needed to achieve reduction,
e.g. setting the removed parameters to the nominal value.

To keep input-output relation equivalent for nr = nθ, the
system matrices are transformed according to (6). The system
theoretic equivalence is easily shown as (θT ⊗ I)(TT ⊗ I) =
(θ⊗ I)(TTT ⊗ I), resulting in (θ⊗ I). Therefore it holds that
Ãθ = Aθ, and similar for the other matrices.

Ãθ =θ̃nxÃ
θ = (θT ⊗ Inx)(TT ⊗ Inx)Aθ (6a)

B̃θ =θ̃nxB̃
θ = (θT ⊗ Inx)(TT ⊗ Inx)Bθ (6b)

C̃θ =θ̃ny C̃
θ = (θT ⊗ Iny )(TT ⊗ Iny )Cθ (6c)

D̃θ =θ̃nyD̃
θ = (θT ⊗ Iny )(TT ⊗ Iny )Dθ (6d)

After transformation the system is in parameter ordered form.
Reduction to a parameter order nr is then achieved by setting
all parameters θr+1 . . . θnθ to zero. This results effectively
in a system with nr parameters. The effective parameters are
calculated as

θr := θ
[
T0 T1 T2 . . . Tnr

]
= θTr. (7)

To evaluate the performance of the reduced system, an error
system is defined (8), being the difference between the original
and reduced systems. The interconnection of the error system
is shown in Fig. 2. The resulting error system of two affine
systems will remain affinely dependent on the parameter.

Σe =

[
Aθ Bθ
Cθ Dθ

]
−
[
Aθr Bθr
Cθr Dθr

]
(8)
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Figure 2: Interconnection of the parameter reduced error
system. The blue area represents the error LFR.

In the LTI setting, error systems are evaluated in any of the
well established and computable norms. Of these, the H∞-,
H2- and Hankel-norm are commonly used in model reduction.
For LPV systems the framework of norms has not had a lot of
attention. In this paper we establish a notation and definition
which may be applied to extend LTI norms to LPV norms. We
define a notation convention for, average and peak parameter
norms. To keep notation similar with standard LTI norms, the
average is denoted as p2,• and the peak by p∞,•. The system
norm is then used as the second subscript, e.g. the average H2

norm over the parameter space is defined as the p2,2-norm. In
this work we define parametric norms of the H∞, H2 and H
(Hankel) LTI norms as follows

‖Σe(θ)‖p∞,∞ := max
θ∈Θ
‖Σe(θ)‖H∞ (9a)

‖Σe(θ)‖p∞,2 := max
θ∈Θ
‖Σe(θ)‖H2

(9b)

‖Σe(θ)‖p∞,H := max
θ∈Θ
‖Σe(θ)‖H (9c)

‖Σe(θ)‖p2,∞ :=

√(
1

VΘ

∫
Θ

‖Σe(θ)‖H∞ dθ
)2

(9d)

‖Σe(θ)‖p2,2 :=

√(
1

VΘ

∫
Θ

‖Σe(θ)‖H2
dθ

)2

(9e)

‖Σe(θ)‖p2,H :=

√(
1

VΘ

∫
Θ

‖Σe(θ)‖H dθ
)2

(9f)

The p∞,∞- and p∞,H -norm are of particular interest in this
work. The first results in the peak gain of the system over all
parameters and therefore may be used to express the worst-
case error of a reduced system. As stated in [16] the bounded
real lemma inequality can be evaluated on the vertices of Θ
for affine LPV systems with time-invariant θ. The p∞,∞-norm,
can therefore be evaluated over a finite number of points as

‖Σe(θ)‖p∞,∞ = max
wi
‖Σe(wi)‖H∞ (10)

In section III-A a detailed discussion of the p∞,H -norm is
given. The other norms will not be applied in this research and
no algorithm for the computation of such norms are given, as
they are not trivially found. Developing ways to evaluate such
norms may show to be useful, particularly the p2,2-norm as it
is closely related to the interpretation of the H2-norm, being
the average gain of the system.

III. HANKEL-NORM REDUCTION

In model reduction, gramian based approaches are widely
applied as they are well understood and error bounds are easily
obtained. For LTI systems the reachability P and observability
Q gramians are found as the positive definite solutions to

AP + PAT +BBT = 0 (11a)

ATQ+QA+ CTC = 0 (11b)

The system gramians are then used to find optimal Hankel-
norm approximations by balanced truncation. In the LPV
framework one may define similar notions to find Hankel-
norm approximations.

Theorem 1: For a time invariant LPV systems which is
reachable, observable and stable for all parameter realisations,
the reachability gramian is found as the solution P(θ) to the
Lyapunov equation

A(θ)P(θ) + P(θ)AT (θ) +B(θ)BT (θ) = 0 (12a)
P(θ) � 0 (12b)

Furthermore there exist a solution P (θ), from a family of
solutions, satisfying the Lyapunov inequality

A(θ)P (θ) + P (θ)AT (θ) +B(θ)BT (θ) = 0 (13a)
P (θ) � 0 (13b)

Moreover, all solutions of the inequality P (θ), constitute an
upper bound on the solution of the equality P(θ). That is,
P (θ) � P(θ) � 0.
The proof is included in Appendix A. �

The preceding theorem is required because finding an
exact solution to the Lyapunov equation is neither trivial nor
tractable. In other work the gramian is often replaced by a
static matrix [17]. This is possible since parameter dependence
is not a requirement for making statements on stability. For
parameter reduction, there must be parameter dependence,
expressing changes in the system due to parameter variations.
Therefore an affine dependence of the gramian (14) is pro-
posed, resulting in the Lyapunov equation as given in (15).

P(θ) � PT θ̄Tnx = θ̄nxP (14)

θ̄nx

[
ĀθPT + PĀθ

T
+ B̄θB̄θ

T
]
θ̄Tnx � 0 (15a)

θ̄nxP � 0 (15b)

Due to the assumed affine structure of the system, P(θ)
is a convex function. Therefore the proposed affine gramian
satisfies the inequality for all values of θ if and only if it
is satisfied at the vertices. A formal proof of which is given
in [18]. Note that this does not hold for general parametric
dependence of the system or of the gramian. Furthermore
we point out that an affine solution always exist. Proving
this is trivial as a there exists a static solution for stable
systems and static dependence is a subset of the proposed
affine dependence.

Finding a solution to this Lyapunov inequality is done using
linear matrix inequalities (LMI). Every vertex of the parameter
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space results in two LMIs, (15a) and (15b). In case of simple
bounding constraints on the parameters, the result is a total
of 2nθ+1 LMIs. Like many problems in the LPV setting, this
approach becomes intractable with growing parameter space.
The difference with other problems is that there is no tuning
involved in this process. Therefore there is a one time cost
of calculating the gramian where, for example, in control
synthesis multiple iterations are required to satisfy design
constraints.

The previously presented method assumed static parameter
dependence θ̇ = 0. In case the parameter is dynamic but has
limited rate of change, θ̇ < θ̇ < ˙̄θ, the Lyapunov inequality
may be adjusted according to (16). The resulting LMIs are
again quadratic in θ, now with a constant offset. For affine
LPV systems it still holds that the inequality is satisfied if it
is satisfied on the vertices of the parameter space. The formal
proof is again found in [18].

Ṗ(θ) + ĀθP(θ) + P(θ)ATθ + B̄θB̄
T
θ (16a)

Affinegramian ⇓ Affine gramian

P θ̇ + θ̄nx

[
ĀθPT + PĀθ

T
+ B̄θB̄θ

T
]
θ̄Tnx (16b)

Boundedparametervelocity ⇓ Bounded parameter velocity

P θ̇nx + θ̄nx

[
ĀθPT + PĀθ

T
+ B̄θB̄θ

T
]
θ̄Tnx (16c)

P ˙̄θnx + θ̄nx

[
ĀθPT + PĀθ

T
+ B̄θB̄θ

T
]
θ̄Tnx (16d)

Extending the approach to parameters bounded in velocity
increases the number of LMIs to 3nθ+1. By imposing an
additional constraint Pi � 0 results in (16c)≺(16d) and thus
(16c) can be dropped. This reduces the number of LMIs to
2nθ+1 + nθ. The previously presented methods to obtain an
affine reachability gramian can be applied for finding an affine
observability gramian Q as well.

A. Hankel-norm approximation

The gramians found using the method described in the
preceding, can be used to find Hankel-norm approximations
of an LPV system. Before going to the details of Hankel-norm
approximation for LPV systems, we briefly explain the Hankel
operator (convolution operator) for LTI systems and Hankel-
norm. The Hankel operator of a linear system Σ is defined
by

H : L2(Rnu− ) 7−→ L2(Rny+ ), u− 7−→ y+

where H(u−)(t) =

∫ 0

−∞
H(t− τ)u(τ)dτ, t ∈ R+, (17)

it maps the past inputs u− into future outputs y+. Here, H
is the impulse response of Σ. The `2-induced norm of H is
defined as

||H||L2−ind = sup
||u−||2<∞

||y+||2
||u−||2

= ||Σ||H . (18)

The quantity ||Σ||H is named the Hankel-norm of the
system Σ. Furthermore, the Hankel-norm is equal to the largest
Hankel singular-value of H, if Σ is stable: ||Σ||H = σmax(H).

Lemma 1: Given a reachable, observable and stable system
Σ of dimension n, the Hankel singular-values are equal to
positive square roots the eigenvalues of the product of PQ

σi(Σ) =
√
λi(PQ), i = 1, ..., n (19)

where P and Q are the infinite gramians of Σ.
For a time-invariant LPV system the Hankel operator may

be defined for every θ ∈ Θ. It now maps the past inputs and
parameters into future outputs.

Hθ : L2(Rnu− ×Θ) 7−→ L2(Rny+ ), u−, θ 7−→ y+

where (20)

Hθ(θ, u−)(t) =

∫ 0

−∞
H(θ, t− τ)u(τ)dτ, t ∈ R+, θ ∈ Θ,

It follows, because y+ is dependent on θ, that the `2-induced
norm of Hθ is now also parameter dependent. By assumption
Σ has been defined to be stable ∀θ ∈ Θ and therefore the
Hankel-norm can be expressed for every θ as

‖Σ(θ)‖H = σmax(Hθ) (21)

Theorem 2: Given a reachable, observable and stable linear
parameter-varying system Σ(θ) of dimension n and parameter
realisation θ, the Hankel singular-values are upper bounded by
the positive square roots of the eigenvalues of the product of
θ̄nxPQ

T θ̄Tnx

σi(Σ(θ)) ≤
√
λi(θ̄nxPQ

T θ̄Tnx), i = 1, ..., n (22)

where P and Q are the upper bounding affine gramians of
Σ(θ).
The proof is given in Appendix B. �

In [19] it has been shown that balanced truncation can
achieve optimal Hankel-norm approximation. The aim for
LPV Hankel-norm approximation remains, minimising the loss
between the full and reduced order models. To formalise this
into an optimisation problem we first note that P̃ = (TT⊗I)P
satisfies (15) for the transformed system (6). Therefore we can
state that the Hankel singular-values are upper bounded by
(23a), or equivalently (23b).

θ̃nx P̃ Q̃
T θ̃Tnx (23a)

θ̄nx(TTT ⊗ I)PQT (TTT ⊗ I)θ̄Tnx (23b)

Expressing the Hankel singular-values in terms of original
Gramians and parameter project matrix allows to derive a loss
function, quadratic in θ. This loss function is then used to give
a min-max optimisation as

min
T

max
θ∈Θ

∥∥θ̄nx [PQT − (TTT ⊗ I)PQT (TTT ⊗ I)
]
θ̄Tnx
∥∥2

2
(24)

Due to the quadratic θ-dependency, we evaluate the para-
meters on the vertices of Θ only. Changing the optimisation
to a finite optimisation over θ.

min
T

max
ωi

∥∥θ̄nx [PQT − (TTT ⊗ I)PQT (TTT ⊗ I)
]
θ̄Tnx
∥∥2

2
(25)

From this equation it is clear that for full order approxima-
tions any orthonormal T results in a zero loss approximation.
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For reduced models, where rank(TTT ) = nr < nθ, loss
occurs for systems that are observable, reachable and have
no redundant parameters.

In LTI approximation the loss function is related to the
energy of the error system since the Hankel singular-values
are a measure of energy in each state receptively. For the
proposed method the interpretation is more nuanced as the
affine gramians constitute an upper bound on the actual
gramians. If this upper bound is tight, the loss function is
a good indication of the error. The tightness of this upper
bound is heavily dependent on the system, and determining the
tightness is not trivial. The insight into the p∞,H-norm error
determined from the affine gramian approximation is therefore
questionable. For this reason we asses the approximation error
in the relative p∞,∞-norm (26) because it can be computed
exactly. ∥∥∥Σ(θ)− Σ̃r(θTr)

∥∥∥
p∞,∞

‖Σ(θ)‖p∞,∞
(26)

IV. SENSITIVITY ANALYSIS

Another method for parameter reduction is sensitivity ana-
lysis, which is similar to principal component analysis [20],
[21]. This method evaluates how sensitive the outputs are
to small changes in the parameter values. It can be viewed
as principal component analysis without the requirement of
needing a typical parameter trajectory. Evaluation can be done
in either the time or the frequency domain.

A. Frequency domain

Since it is assumed that θ̇ = 0 the notion of transfer
functions is still applicable, if θ̇ 6= 0 this approach is will not
be applicable. The transfer function of an affine static LPV
system is given in (27). Here q is either z for discrete-time
or s for continuous-time systems. The transfer sensitivity is
defined as the Jacobian of the transfer function towards the
parameters, as shown in (28).

H(θ, s) = Dθ + Cθ(Iq −Aθq)−1Bθ (27)

θH(θ, q) =
dDθ

dθ
+

dCθ

dθ
(Iq − Aθq)−1Bθ

+ Cθ
d(Iq−Aθq)

−1

dθ
Bθ (28)

+ Cθ(Iq − Aθq)−1 dBθ

dθ

The ith element of the Jacobian can be represented as the
system given in (29), where the colours correspond to separate
elements of the Jacobian as in (28). It is easily observed
that the resulting system again has affine dependency on the
parameters.

i
θH(q, θ) =


Aθ 0 0 0 Bθ
0 Aθ Ai 0 0
0 0 Aθ 0 Bθ
0 0 0 Aθ Bi
Ci Cθ 0 Cθ Di

 =

[
Aθ,i Bθ,i
Cθ,i Di

]
(29)

From the Jacobian an ordering of the parameters could be
determined from the p∞,∞-norm of each respective element.
However, the transfer-sensitivity function does not take into
account cross-correlations between parameters. Multiplying
the transfer-sensitivity by its complex conjugate will result in
a transfer-sensitivity covariance matrix (TSCM). The elements
of this matrix are defined as

Πij :=
∥∥∥iθH(θ, q)

∗j
θH(θ, q)

∥∥∥
p∞,∞

(30)

This product of systems gives element i, j of the TSCM,
and is equal to

Πi,j =

∥∥∥∥∥∥
 A∗θ,i C∗θ,iCθ,j C∗θ,iDj

0 Aθ,j Bθ,j
B∗θ,i D∗i Cθ,j D∗iDj

∥∥∥∥∥∥
p∞,∞

(31)

All elements of this system have affine dependency on θ,
except for C∗θ,iCθ,j which in general does not posses such a
property. Still the p∞,∞-norm can be evaluated over a finite
set of points. This can be shown by extending the parameter
space with all quadratic elements of θ. The system will then
have affine dependence on the extended parameter space and
thus can be evaluated over an extended convex hull. If the
extended convex hull is not properly chosen it may lead to
conservatism.

The resulting TSCM will be a symmetric nθ×nθ matrix. By
taking the singular value decomposition (SVD) of this matrix,
Π = TST ∗, the parameter transformation matrix is found.
This transformation orders the parameter directions in terms of
transfer sensitivity covariance and is orthonormal, constituting
a valid transformation as defined in (4).

B. Time domain

The second sensitivity analysis approach is based in the time
domains. The proposed time-domain approach, unlike prin-
cipal component analysis, does not require a typical trajectory
of the scheduling variables. Instead the solution is written as
time dependent equation. In discrete time the output evolution
equation is given as

y(k) = CθA
k
θx0 +

[∑k
i=1 CθA

i−1
θ Bθu(k − i)

]
+Dθu(k) (32)

The sensitivity function at time k is simply calculated as
the Jacobian of this equation towards θ. For affine parameter
dependency (33) can be calculated in terms of the stacked
matrices •θ and state space matrices •θ.

θy(k) =
dCθA

k
θ

dθ
x0 +

dDθ

dθ
u(k)+ (33)[

k∑
i=1

dCθA
i−1
θ Bθ
dθ

u(k − i)

]
In discrete time the sensitivity can be written as a row vector

multiplied by a column vector stacking all inputs. Stacking all
outputs, θy0, θy1 . . . θykmax , into a column vector Y =.
Taking the derivative of Y towards the ith parameter gives a
matrix multiplied by the input vector iM(θ)U . In general this
matrix is parameter dependent and difficult to evaluate.



6

In the particular case where Aθ = A0 and either Cθ = C0

or Bθ = B0, the matrix iM(θ) is parameter independent with
a similar structure to

iM(θ) =


Di 0 . . . 0

C0A0Bi Di . . . 0
...

...
. . .

...
C0A

kmax−1
0 Bi C0A

kmax−2
0 Bi . . . Di

 (34)

To take cross correlation into account iθY is pre multiplied
by j

θY
T , being equal to j

θY
T i
θY = UT jMT iMU . The largest

singular values of jMT iM result in the peak gain between
the sensitivity functions of the ith and jth parameter. The
collection matrix of all the maximum singular values σ̄ij gives
an np × np matrix, the sensitivity covariance matrix (SCM).

S̄ =


σ̄11 σ̄12 . . . σ̄1nθ

σ̄21 σ̄22 . . . σ̄2nθ
...

...
. . .

...
σ̄nθ1 σ̄nθ2 . . . σ̄nθnθ

 (35)

From the SCM a similar approach is taken to derive the
transformation matrix as with the TSCM, by taking the SVD.
One note on this approach is the choice of kmax which should
be chosen at least as large as the largest time constant of the
system. Choosing kmax small will exclude dynamics and may
lead to bad approximations.

V. RESULTS

In this paper, two ways of achieving model reduction
through parameter projections are proposed. In doing this a
notation is proposed to express LPV system norms. Off the
proposed norms, (36) are the most important for this work.

‖Σe(θ)‖p∞,∞ := max
θ∈Θ
‖Σe(θ)‖H∞ (36a)

‖Σe(θ)‖p∞,H := max
θ∈Θ
‖Σe(θ)‖H (36b)

The parametric Hankel-norm (36b) is used to find a Hankel-
norm approximation similar to LTI balanced truncation. It has
been shown that the parametric Hankel-norm can be upper
bounded by

σmax(Σ(θ)) ≤
√
λmax(θ̄nxPQ

T θ̄Tnx) (37)

Using this upper bound, a min-max optimisation is con-
structed to find an optimal Hankel-norm approximation as

min
T

max
ωi

∥∥θ̄nx [PQT − (TT ∗ ⊗ I)PQT (TT ∗ ⊗ I)
]
θ̄Tnx
∥∥2

2
(38)

The parametric H∞-norm (36a) is used for another para-
meter reduction method, sensitivity analysis as well as error
evaluation. In sensitivity analysis, the derivative towards the
parameters is used to identify parameter directions in which
the output is most sensitive to changes. In the frequency
domain it is expressed as the transfer-sensitivity covariance
matrix (TSCM), of which the elements are defined as

Πij :=

∥∥∥∥ d

dθi
H(θ, q)∗

d

dθj
H(θ, q)

∥∥∥∥
p∞,∞

(39)

To illustrate these methods of parameter reduction through
sensitivity analysis and Hankel-norm approximation, two ex-
amples systems are used. The first system is an illustrative
LPV system and the second a thermal model simulation.

A. Illustrative LPV system

For the illustrative system it is assumed that the parameters
are between zero and one. To ensure stability of the system, all
Ai are diagonal matrices having eigenvalues < 0. The nominal
system is generated such that it is reachable and observable.
The other matrices are generated randomly, which may lead
to loss of reachability and observability. In practice the latter
did not prove to be a problem. The generated system is of the
form

ẋ(t) = A0x(t) +B0u(t) +

5∑
i=1

Aix(t) +Biu(t) (40a)

y(t) = C0x(t) +D0u(t) +

5∑
i=1

Cix(t) +Diu(t) (40b)

Having generated a random system as specified above, a
Hankel-norm and TSCM approximation are determined. For
these approximations, Fig. 3 shows the output evolution for
inputs which is constant for t ∈ [0 25] and zero elsewhere.
The light blue lines are the full order model evolutions. To
illustrate the accuracy of the reduced models, the errors are
shown in Fig. 4. Determining the best approximation from
these figures is difficult as it will change for a different
parameter realisation. Fig. 5 shows the relative p∞,∞-error of
the reductions to be non-increasing with growing parameter
order for both methods. It also shows that for this example,
the sensitivity analysis outperforms the gramian based method.
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Figure 3: System evolution of the randomised LPV system, at
a random parameter realisation, for different reduction orders
and methods.
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Figure 4: Output error of the randomised LPV system, at a
random parameter realisation, for different reduction orders
and methods.
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Figure 5: Relative p∞,∞-error of the randomised LPV system
for different parameter orders and approximation methods.

B. Thermal simulation

The second system is a thermal simulation consisting of
five coupled blocks, all having parameter dependent heat
capacity. The system is illustrated in Fig. 6 and a state-
space representation is generated of the form (41) is generated
using COMSOL, having 45 states, 2 inputs & outputs and 5
parameters.

ẋ = A0x+B0u+

5∑
i=1

(Aiθix+Biθiu) (41a)

y = C0x (41b)

To evaluate the error of the reduced model, a simulation with
constant inputs from t ∈ [0 250] and zero afterwards. For
a particular realisation of the parameter, the error between
the reduced models and full order model is shown in Fig.
7. Clearly the non-parametric model nr = 0 performs the
worst of all models showing that the zero model is not a
good approximation of the system. The best performing model
is the nr = 4 model as the error is almost zero. However,
it cannot be concluded from one parameter realisation what
the performance of the reduction is. Therefore a global error
bound is used to conclude performance.

In Fig. 8 the relative p∞,∞-error is plotted for different
reduction orders. As a comparison subsystem Hankel-norm
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Figure 6: Thermal model with five different material blocks.
Orange and pink are heat inputs. Purple and blue are outputs.

approximation is used where reduction is based singular values
of PiQi. The np − nr parameters having the smallest ’sub-
system’ Hankel-norm are removed. This figure illustrates that
reducing the system using sensitivity analysis is comparable
to reduction in subsystem Hankel-norm. It is also clear that
approximation in the p∞,H-norm using transformation optim-
isation yields improved results for nr < 4. For approximation
of nr = 4 the Hankel-norm optimisation method performs
worse in p∞,∞ error. This is due to a combination of issues,
the non-convexity of the optimisation (25) and the approxim-
ation loss of affine gramian (14).
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Figure 7: Simulation error of the thermal system for different
parameter orders at a randomly selected parameter in the
parameter space.

For both systems computation of the gramians takes in
the order of 1000 seconds, on a dual core machine. This
indicates that the LMI implementation using YALMIP [22] is
not efficient but acceptable for small systems. As a practical
note, it should be taken care of to have A0, B0 and C0

of similar magnitude to avoid numerical trouble. Since the
optimisation in (24) has not shown to be convex, it is ran
using different initial condition to find a close approximation
of the Hankel singular-values. Because of this non-convexity,
the resulting transformation matrix might not be the global
optimal approximation.
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Figure 8: Relative p∞,∞-error of the thermal system for
different parameter orders and different reduction methods.

VI. CONCLUSION

The methods developed in this paper show that model
reduction for LPV systems using parameter reduction can
result in accurate models using a parameter space of lower
dimension. The first method of sensitivity analysis is simple to
apply but it is based on notions which may be difficult to apply
for systems which have time varying parameters. The more
general approach is to extend LTI Hankel-norm approximation,
which is well understood, to LPV systems. An affine upper
bound on the gramian is used to make it computationally
tractable while including parameter dependency. Using the
affine gramian to approximate the system in terms of maximal
Hankel-norm loss is made. Both methods achieve reduced
models well approximating example systems. From the results
it cannot be concluded which of the methods results in better
approximations, as it is dependent on the system

To evaluate the performance and error bounds of the models,
this work introduced multiple parametric norms. The question
which norm to use is dependent on the system and application,
but computation is not always trivial. The peak gain over
all parameters and frequencies (p∞,∞-norm) is used in the
developed methods as it shows worst case performance loss.

Although these methods are complete in the sense of
achieving parameter reduction, and evaluation thereof, there
are several improvements to be made. To apply the gramian
method to large scale systems the computation of the grami-
ans must be improved in terms of computational cost and
efficiency. For systems where computation of the gramians
is possible, it still remains to show the tightness of the bound
it imposes on the Hankel singular-values. The optimisation of
the parametric Hankel singular-value reduction remains open
for improvement due to the non-convexity of the problem.
Finally evaluation of other parametric norms yields interesting
questions to be answered.
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based PCA approach to model reduction of linear parameter-varying
systems,” IEEE Transactions on Control Systems Technology, vol. 24,
no. 5, pp. 1883–1891, 2016.

[14] C. Sun and J. Hahn, “Parameter reduction for stable dynamical systems
based on Hankel singular values and sensitivity analysis,” Chemical
Engineering Science, vol. 61, no. 16, pp. 5393–5403, 2006.

[15] B. Sharif, Linear parameter varying control of nonlinear systems. Msc,
Eindhoven University of Technology, 2018.

[16] P. Gahinet, P. Apkarian, and M. Chilali, “Affine parameter-dependent
Lyapunov functions and real parametric uncertainty,” IEEE Transactions
on Automatic Control, vol. 41, no. 3, pp. 436–442, 1996.

[17] C. W. Scherer and S. Weiland, “Linear Matrix Inequalities in Control,”
in Linear Matrix Inequalities in Control (S. Crsten and S. Weiland, eds.),
ch. 9, pp. 257–280, 2017.

[18] P. B. Cox, S. Weiland, and T. Roland, “Affine Parameter-Dependent
Lyapunov Functions for LPV Systems with Affine Dependence,” IEEE
Transactions on Automatic Control, pp. 1–8, 2018.

[19] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems.
SIAM, 2005.

[20] A. Kwiatkowski and H. Werner, “LPV control of a 2-DOF robot using
parameter reduction,” Proceedings of the 44th IEEE Conference on
Decision and Control, and the European Control Conference, CDC-ECC
’05, vol. 2005, pp. 3369–3374, 2005.

[21] A. Kwiatkowski and H. Werner, “Parameter reduction for LPV sys-
tems via pricipal components analysis,” in 16th IFAC World Congress,
pp. 596–601, IFAC, 2005.
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APPENDIX A
PROOF OF THE LYAPUNOV INEQUALITY AS AN UPPER

BOUND TO THE LYAPUNOV EQUALITY

Consider a stable LTI system with stable matrix A. Lya-
punov equation theorem shows that there is a unique solution
P � 0 to

AP + PAT +Q = 0 (42)

where Q = BBT � 0. The same system admits a solution
space P ∈ P̃ , being all solutions that satisfy

AP + PAT +Q � 0 (43)

The equality can be rewritten and substituted into the
inequality to give

A(P − P) + (P − P)AT � 0 (44)

From Lyapunov equation theorem and stable A, we have
P−P � 0 as the solution of the above inequality. Extending to
stable, observable and reachable time-invariant LPV systems,
it suffices to observe that for every θ ∈ Θ a solution can be
found to the Lyapunov (in)equality concluding the proof. �

APPENDIX B
PROOF OF THE UPPER BOUND ON THE HANKEL

SINGULAR-VALUES FROM THE UPPER BOUNDING
GRAMIANS

From [23] we take two properties of eigenvalue arithmetic
of symmetric matrices A,B ∈ Rnx×nx ,

λi(A+B) ≥ 0 if λi(A) ≥ 0 and λi(B) ≥ 0,

λi(AB) ≥ 0 if λi(A) ≥ 0 and λi(B) ≥ 0,
(45)

for i = 1, ..., n. For clarity we drop θ, and define a function
F below:

F := PQ− PQ,
= (P − P)(Q−Q) + P(Q−Q) + (P − P)Q. (46)

Given P (θ) � P(θ) � 0 and Q(θ) � Q(θ) � 0,
applying properties (45) and Theorem 1 to (46) yields λi(F ) ≥
0, i = 1, . . . , n. With the properties of Hankel matrix
PQ = Q

1
2PQ

1
2 , for the symmetric F = (Q1/2PQ1/2 −

Q1/2PQ1/2) = FT it is holds that the eigenvalues of F are
positive. Therefore, PQ � PQ is concluded. Next consider
the eigenvector x1 associated to the largest eigenvalue of PQ.
Then the following holds

xT1 PQx1 ≤ xT1 (PQ)x1 ⇒ λ1(PQ) ≤ xT1 (PQ)x1

||x1||22
. (47)

By the definition of eigenvalue decomposition, we have

xT1 (PQ)x1

||x1||22
≤ sup

y1

yT1 (PQ)y1

||y1||22
= λmax(PQ), (48)

here y1 is the eigenvector associated to the largest eigen-
value of PQ. Thus, the λmax(PQ) ≤ λmax(PQ) is proved.
�
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