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Preface 

This report is the third and final part of the graduation project “Viscous Damping in Adaptive Structures”. The 

overall process of the project is described and where necessary supported by calculations and dynamic analysis 

to a large extent. The study plan is considered the first part of this graduation project. The second part consists 

of the literature study, which is elaborated in a separate document. As for this graduation project, a large part 

consists of dynamic analysis, which is not considered in conventional structural design for buildings. Hence, 

background information on dynamic analysis, numerical approximation methods to differential equations and 

control theory is briefly described in the literature study. A number of examples here supports basic theory on 

these topics. This theory on dynamic behavior is then applied on the described problem in this report. This 

master thesis continues on the work done by Frits Rooyackers, whose topic also included dynamics and control 

theory. In his study, an experimental model was made in the Pieter van Musschenbroek laboratory at the 

University of Eindhoven. This model is used as a basis for numerical analysis and in the experimental part of this 

master study, experimental tests have been performed on this model as well. This master thesis is part of the 

unit innovative structural design (ISD) and is specialized into the unit adaptive structures at the University of 

Eindhoven. The unit adaptive structures focusses on a very wide range of different design solutions where 

material optimization and adaptivity to loading configurations are main concepts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Dynamic actions on structures could be considered a relatively unfamiliar field of expertise within the field of 

structural engineering. Although more and more lightweight structures are being built, the effect of dynamics 

often is simplified by using static equivalent load factors or does not seem to be included in structural 

engineering at all, sometimes leading to unexpected (expensive) design adjustments or even catastrophic 

failure. Hence, more knowledge on dynamic loads in structural applications could might lead to a better 

structural design, especially for the case of building lightweight.  

The purpose of this study is to investigate the effect of both viscous dampers and software-controlled actuators 

on the dynamic response of such a lightweight structure. An experimental model of a lightweight, small-scale 

pedestrian footbridge has been used as a basis for this study. In the first part, the approach to a numerical 

analysis is described, where the model of the bridge has been discretized to a multiple degree of freedom mass 

spring system. This mass spring system is then discretized in the time domain by means of a numerical 

approximation method. A number of numerical tests has been performed regarding different loading 

configurations for cases where the footbridge includes viscous dampers, actuators, both or none of these 

additional features.  

Results from numerical simulations are compared for a number of different models and were taken as a basis 

for experimental research.  As a second part of this thesis, experimental tests were set up, using comparable 

parameters for geometry and material properties. Here, both physical shock-absorbers and actuators are 

applied to the experimental model of the footbridge. Results are compared to the numerical simulations and 

(remarkable) differences and similarities are discussed.  

For both numerical simulations and experimental research it is found that the actuators perform fairly well on 

deformation control, whereas uncomfortable vibrations are damped out very difficult, sometimes even 

introducing more vibrations than the same bridge without actuators. On the other hand, it is obtained that 

viscous damping is an effective method for vibration control, whereas relatively large deformations must be 

allowed in this case. A combination of both methods is tested as well, resulting in a compromise between 

deformation and vibration control. As a result, a lightweight structure, sensitive to vibrations, is stabilized by 

means of additional features including viscous dampers and a control system. 
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1 List of symbols 
Symbol   unit  description 
𝐴  -  matrix of constants in numerical approximation 
𝐴  𝑚2  area 
𝐴𝑛  -   integration constant   

𝑎(𝑡)   
𝑚

𝑠2  acceleration 

𝐂  
𝑁𝑠

𝑚
  damping matrix of a multiple DOF system 

𝑐  
𝑁𝑠

𝑚
  damping coefficient 

𝑑𝑒𝑡  -  determinant of a matrix 
𝑑𝑥

𝑑𝑡
  -  derivative of 𝑥 

𝐸  𝑃𝑎  Young’s modulus 
𝐸(𝑠)   -   error function in the Laplace domain 
𝑒𝑥   -  exponent function (may also be written as 𝐸𝑥𝑝(𝑥)) 
𝐹  𝑁  force 
𝐹(𝑡)  𝑁  force as a function of time 
𝐅(𝑡)  𝑁  force in matrix notation  
𝐺𝑐    -  function of the controller in the Laplace domain 
𝐺𝑚    -  function of the model in the Laplace domain 
𝐺(𝑥(𝑡𝑛)) -  function for a numerical approximation 
ℎ(𝑡)  -  response function to an impulse load 
𝐼   -   identity matrix  
𝐼   𝑚4  moment of inertia 

𝑖   -  complex number (√−1) 

𝐊   
𝑁

𝑚
  spring stiffness matrix of a multiple DOF system 

𝐾𝐷  -   derivative gain in a PID control system  
𝐾𝐼   -   integral gain in a PID control system 
𝐾𝑃  -   proportional gain in a PID control system 

𝑘  
𝑁

𝑚
  spring stiffness 

𝐿(𝑓(𝑥)) -   Laplace transform function of the function 𝑓(𝑥) 

𝑙  𝑚  length 
𝑀   𝑁𝑚  moment  
𝐌   𝑘𝑔  mass matrix of a multiple DOF system 
𝑚  𝑘𝑔  mass 
𝑁(𝑠)  -  noise function in a control system in the Laplace domain 
𝑛  -  integer indicating a certain time increment 
𝑄  𝑁  shear force 
𝑝   𝑁𝑠  pulse 
𝑞𝑥   𝑃𝑎  internal axial beam force 
𝑞(𝑥)   𝑃𝑎  load along the span of a beam 
𝑆(𝑠)  -  sensitivity function in a control system 
𝑠   𝑚  distance 
𝑇   𝑠  one period of a system 
𝑇(𝑡)   -  temporal function 
𝑡   𝑠  time in seconds 
𝑡𝑛   𝑠  time at certain time increment 

𝑣  
𝑚

𝑠
  velocity 

𝑣(𝑡)  
𝑚

𝑠
  velocity as a function of time 

𝑣0  
𝑚

𝑠
  initial velocity  

𝑤  𝑚  displacement 
𝑋(𝑠)   -  function in the Laplace domain 
𝑋(𝑥)   -  spatial function 
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𝑥  𝑚  displacement 
𝑥(𝑡)  𝑚  displacement as a function of time 
𝑥0  𝑚  initial displacement 

𝑥̇(𝑡)   
𝑚

𝑠
  velocity as a function of time 

𝑥̈(𝑡)  
𝑚

𝑠2  acceleration as a function of time 

𝐱(𝑡)  𝑚  displacement matrix as a function of time 
𝛼   -  alpha damping in proportional damping 
𝛽   -   beta damping in proportional damping 

𝜀  
𝑚𝑚

𝑚
  strain 

∆𝑡  𝑠  time increment  
𝛿(𝑥)  -  Dirac delta function  
𝜁   -  damping ratio 
κ   -  curvature 

𝜌  
𝑘𝑔

𝑚3  density 

𝜎  𝑃𝑎  stress 
𝜏  𝑠  impact time 
Φ  -  Heaviside step function 
𝜑   𝑟𝑎𝑑  shift in phase 
𝜑   𝑟𝑎𝑑  angular displacement 

𝜔   
𝑟𝑎𝑑

𝑠
  natural frequency 

𝜖  𝑠  time of an impulse load 
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2 Introduction 
In the field of architectural design and engineering, there are multiple fields of expertise. One could think of for 

instance the urban designer, who investigates large-scale city plans. Then there is the architect, who has a job 

in which creativeness and ever-increasing innovative designs are pushing boundary conditions with respect to 

practical and economical beneficial solutions to their limits. MAD architects’ design for the Harbin Opera House 

(Figure 2.1a), for instance, is far from a conventional multistory building design and this definitely has led to 

many questions and uncertainties with respect to structural aspects. Finally, the structural engineer is required 

to solve structural problems that were found in these very creative, but also very complex building designs. One 

could say that the engineer is thus responsible for a practical and proper design of the architects dream. 

Innovative structural design, material optimization and computer technology are often pushed to their limits in 

order to find the right solutions for buildings and this has led to a tremendous development of the built 

environment in the last centuries in both architectural and structural aspects. For instance, the largest free span 

worldwide is currently almost two kilometers and is found in the Akashi Kaikyo Bridge in Japan (Figure 2.1b).  

      

Figure 2.1: MAD Architects, Harbin Opera House (a), Akashi Kaikyo Bridge with a remarkably free span of 1991 meters (b) 

Besides the growth of design freedom within structural boundaries, a number of trends can be observed within 

the built environment in the past few decades. Environment is a growing concept in the industry, which has 

become even more important in the last few decades, where the built environment is even proven to be the 

largest contributor to the CO2 footprint on a global scale (Mah et al, 2011). Either reducing the material usage 

or the energy demand for manufacturing these materials, such as concrete or steel, can lead to large 

improvements regarding environmental aspects. Due to increasing standards on environmental aspects, it is 

necessary for these concepts to develop continuously. In the field of structural engineering, these optimization 

processes have led to a completely new design field: lightweight structures. Here, the main aim is to create a 

structure that is (generally) lighter than the variable load it is designed for. As a matter of fact, these lightweight 

structures are nowadays found in many examples. Many structures include design on tension forces through 

steel cables and minimization of moment development in structural parts. 

2.1 Dynamic actions 
It is seen throughout history that the concept of lightweight structures comes with new challenges in the field 

of structural engineering. The development of new (stronger) materials is continuously evolving and smart 

optimization with regard to shape or structural efficiency has led to structures that are much lighter than the 

external loads that they are designed for. Consequently, the total mass of lightweight structures is often much 

smaller than the variable ultimate load applied on these structures. Although strength and deformation can be 

dealt with already in these kinds of structures, the concept of vibrations in lightweight structures is a relatively 

new, unknown type of response to external loading that is often not considered in conservative structural 

engineering. Conservatively, structures are much heavier and the difference in additional variable weight is 

much smaller, like for instance buildings erected out of stone and concrete. That dynamic loads can lead to 

unforeseen structural behavior can be seen already in multiple examples. The best-known example, however, is 

the collapse of the Tacoma Narrows Bridge in 1940. A critical wind load  gave rise to a self-excited vibration that 

a b 
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forced the whole bridge to vibrate until complete failure (Figure 2.2) of the bridge (Billah & Scanlan, 1990). The 

collapse happened already four months after the opening, as this particular design had almost no damping to 

resist dynamic response to wind loading due to its relative low mass compared to external loading. 

       

Figure 2.2: Tacoma Narrows Bridge in vibration (a) and after collapse (b) 

More examples of vibration and resonance problems can be found in lightweight structures, albeit with less 

severe consequences. The Millennium Bridge in London, for example, was considered very uncomfortable to 

walk over due to vibration issues caused by the variable loading of people crossing the bridge (Taylor, 2006) 

(Dallard et al., 2001) (Figure 2.3a). An example in another type of structure is found in the rollercoaster Lost 

Gravity, recently built in Biddinghuizen in the Netherlands (Figure 2.3b). A part of the track started vibrating 

heavily after the train has passed a certain point and started causing resonance in the track (Walibi heeft 

oplossing voor, 2016). Besides, much more examples can be found trough history proving that dynamic behavior 

often is very important and that a conventional static structural analysis does not suffice in a lightweight design 

in many cases. As a result, it could be concluded that research is necessary to gather more knowledge on 

dynamic responses to external loading configurations like wind or frequency loads on structures that have a 

much smaller self-weight. 

      

Figure 2.3: Millennium Bridge London (a), Lost Gravity Coaster Biddinghuizen (b) 

2.2 Adaptivity 
Conservative structures are designed on an ultimate load case. A certain load case, however, occurs only very 

occasionally and thus the structure is only utilized for a small part most of the time. Secondly, structures are 

often designed based on deflection limits in lightweight design. Deflection is governing over strength and 

therefore the structural properties are not fully utilized. Adaptivity comes with the concept that a structure 

should adapt to its loading configuration, and therefore could be designed on strength rather than deflection or 

strength could even be added to the structure at those very scarce moments of ultimate loading. This concept 

of adaptive structures is relatively new in the built environment, being very close related to designing 

lightweight. In addition, an adaptive system could even increase the variable to dead load ratio in a structural 

application. Hence, it can also be stated that adaptive structures will probably be very sensitive to the influence 

a  b 

a  b  
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of dynamic loads. On the other hand, an adaptive system always includes a certain control system to satisfy 

structural requirements to the constantly changing external conditions. Thus, responding on dynamic loading 

could also be included in this theory of adaptivity. 

Within the field of control theory, many developments have been done in the past few decades, where control 

theory is then often stated to be the use of computer technology to maintain or regulate a certain process 

(Ogata, 1970). Although control systems are applied in the built environment rarely, a few examples exist. For 

instance, climatic air systems in buildings in which temperature and air refreshment is regulated can be 

categorized as control systems within the field of architectural engineering. Control systems are much more 

seen in robotics and in the airplane and car industry, for instance (Dorf & Bishop, 2011), whereas they are not, 

or very limited used in structural applications. As stated before, this is because most calculations are nowadays 

still designed using static calculations and structures are mainly unchangeable in time after erection. Using 

control systems can, however, be very beneficial for structural design as a design could then adapt to its external 

conditions and can therefore be designed requiring much less material. One very recent example can be found 

in the ‘Adaptive Truss Prototype’ (Figure 2.4). The truss here responds to a certain deflection due to external 

loading and the result is a deformation almost equal to zero for every loading configuration (Senatore, 2015). 

Without applying the control system, the deformation would become far above the allowable limits, even for 

small external loads. 

       

Figure 2.4: Adaptive Truss Prototype under construction (a) and finished (b)  

Adaptive structural design and dynamics are two topics that are related to each other within the field of 

lightweight structures, where a number of uncertainties still need to be investigated in order to get more insight 

in the behavior of these optimized, material reduced structures. Very few examples can be found, where a 

structure can adapt to its external loading configuration and additionally, dynamic influences are never taken 

into account in this short list of adaptive systems. 

 

 

 

 

 

 

 

 

 

a  b  
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3 Problem description 
Producing lightweight structural elements does not only include benefits. One could conclude that lighter 

structures will inevitably result in larger deformations (Figure 3.1), which can be reduced by using adaptive 

structural elements such as control systems. Secondly, dynamic effects will occur faster and sometimes have 

even severe consequences, as was already seen in for instance the Millennium Bridge in London. Vibrations can 

be measured in every structure in the built environment, as each variable load on a structural element is in fact 

a load in time, which induces vibrations. However, in most cases these vibrations are so small that they are 

considered negligible. The span to thickness ratio in ordinary housing and offices does normally not exceed the 

limit for comfort criteria and vibrations are not noticed at all. In other words, the difference in the so called 

‘maximum overshoot’ and the steady state error remains very small and as a result, a static calculation is 

considered sufficient. This research, however, is in the topic of lightweight structures, where variable load is 

always larger than dead load of the structure itself and where span to thickness ratios are typically large. Solving 

dynamic problems in these structures is the main topic in this master study. 

 

Figure 3.1: Deformation of conservative and lightweight beam 

This master project continues on a previous project, where a control system was the main topic on reducing 

permanent deformation in a very lightweight footbridge design (Rooyackers, 2017). Hence, a slender structure 

was able to carry as much load as a conservative structure while having a much lower self-weight. A case study 

had been made for a bridge with an active cable system (Figure 3.2). The bridge consists out of two thin steel 

structural tubular profiles. Wooden elements are placed on top of the steel tubes to provide a walking deck 

(Figure 3.3). At mid span, the bridge is supported by steel wire ropes, which are connected to an external steel 

structure. In between the wires and the deck an actuator was placed in order to respond on deformations and 

vibrations. Although an actuator could theoretically damp out any vibration immediately by choosing the right 

control values, it was found that in practice this system did not perform as good as in a numerical simulation. 

Mainly the derivative gain factor (responsible for reducing overshoot and thus the actual vibration) in the chosen 

PID-control system appeared to be not as reliable as simulated and although the actuator performed really well 

on reducing deformations, small vibrations were measured continuously as a result from the actuator generated 

forces. A pedestrian crossing the bridge would notice these vibrations and would maybe consider the design 

uncomfortable to walk over, even if average deflection remained zero during this period. In this particular 

example, it might be concluded that the total deformation at mid span was reduced perfectly to zero using the 

actuators, whereas vibrations were still noticed. A reduction in these vibrations would probably lead to a more 
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comfortable design and therefore, structural (viscous) damping was applied as a method to reduce vibrations in 

the footbridge design.  

      

Figure 3.2: Pedestrian bridge in laboratory: without structural wires (a), loaded with active actuator and structural wires (b)   

               

Figure 3.3: Schematic model of the small-scale pedestrian bridge with structural steel wire ropes 

3.1 Structural damping 
Implementing damping into a structural system is a topic that is currently becoming more and more important 

when it comes to the built environment. Viscous damping has proven its benefits with regard to impulse loads 

in particular. Besides lightweight (foot)bridges, where loads will in practice be a number of impulses exited by 

crossing traffic, impulse loading is seen in for instance earthquake design or bomb blast resisting façades. In this 

particular case study, an actuator is considered necessary, as external loads can also consist out of long term 

loads if for example one decides to stop walking and enjoy the view for a while. Using only damping would 

theoretically result in a continuously increasing deformation of the bridge deck, until the damper would be fully 

suppressed. Earthquakes or bomb blasts, however, are not continuous loads and structural damping would 

probably be sufficient in these cases.  

      

Figure 3.4: Seismic dampers in the San Francisco Civic Centre (a) and damping in the Pacific Northwest Baseball Stadium in 
Oregon (b) 

a  b  

a  b  
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Seismic structural damping has already been applied in many examples, such as the San Francisco Civic Centre 

in San Francisco (Figure 3.4a). Another example is found in Oregon (USA), where dampers were applied to the 

Pacific Northwest Baseball Stadium in order to reduce vibrations as a result of wind loading (Figure 3.4b) (Taylor, 

1999). To that extent, structural viscous damping is important in the current development of structural 

engineering.  

3.2 Project goal 
Several examples have been described where structural damping was used in order to reduce vibrations in 

bridges. Hence, viscous damping seems to be a solution to vibration issues in structures. To that extent, a damper 

might could lead to better results in the above described case study of the footbridge design when it comes to 

certain uncomfortable vibrations resulting from the actuator forces. Besides adding damping, the PID control 

system could be enhanced to get better results in comfort criteria. The used PID controller consists roughly out 

of three parameters which can control the given force of the actuator. This system may be considered a very 

elementary control algorithm in control theory and enhancement of the control system would probably lead to 

better results for the actuator as well. Although it is probably possible to damp out vibrations much better by 

using a more sophisticated algorithm than the PID control theory, this solution methodology requires much 

more skills on control theory and does not fit very well in the master study structural design. Structural aspects 

would then become a very minor part of this graduation project. Going more into detail in control theory would 

be a very interesting research topic, however, would fit better in the field of mechanical engineering, for 

instance. Accordingly, the addition of damping to an instable (adaptive) structure is chosen as the main topic in 

this master study and enhancement of the control system is not part of this study at all. The viscous damper is 

then mainly used for damping out vibrations by means of energy dissipation, which is a direct result of impulse 

loading on the footbridge. The actuator should account for long-term deformations, which are a result of long-

term (static) loads. Hence, the structure should allow deformation at first, in order to activate the damper and 

after a certain time this deformation should be reduced by the actuator. Both numerical simulations and an 

experimental test setup are parts of this research topic and are mainly based on the case study of the small 

pedestrian bridge supported by steel wires. 

Using both viscous damping to control vibrations and a control system to control deflection, this would ideally 

result in a lightweight (dynamic sensitive) bridge that is fully stabilized and that does not have any noticeable 

deformations and is not sensitive to dynamic loads anymore. In other words, a footbridge where material usage 

is drastically reduced and where each person would consider the bridge very comfortable to walk over (Figure 

3.5). Of course, these results probably will not be realized as ideal as illustrated, as theoretically many 

assumptions, approximations and simplifications are made whereas reality is much more complex. However, 

performance should be as close as possible to the described ideal behavior, proving the concept of using 

additional features to stabilize (highly) unstable structures.   
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Figure 3.5: Schematic overview of expected results for damping and actuator 

 

 

 

 

 

 

 

 

 

 

 



 

12 

Viscous Damping in Adaptive Structures  4 Approach to the numerical model 
 

4 Approach to the numerical model 
Generally, structures are considered static and almost all calculations are based on values, which do not change 

over time. Many derivations in the spatial domain are already found in structural analysis, for instance the 

derivation of buckling modes of a continuous beam or derivations of deflection formulas over a beam length. In 

this project, all derivations are based on dynamic analysis, where all values do change over time. A thorough 

approach is discussed towards the dynamic model, which in this case represents a small, but lightweight 

pedestrian bridge design. In order to give a little more insight in the complexity of dynamics, the general solution 

to a continuous system is discussed. It was already shown in the literature study that dynamic analysis is often 

quite complex to solve algebraically and that numerical approximations are very powerful to approximate the 

exact solution. As the full dynamic analysis involves many derivations and simplifications, a summary is given of 

the most important steps in finding a solution regarding modelling dynamic behavior. For more background 

information or examples is here referred to the literature study and secondly, many examples can be found in 

literature on the basics of structural dynamics like for instance Engineering Vibrations (Inman, 2001). 

4.1 The analytical equation for a continuous system 
Structural elements like beams and columns are continuous structures, which are not divided into a finite 

number of elements like for instance a multiple degree of freedom mass spring system. As a result, a beam or 

column also includes a theoretical infinite number of eigenvalues, which are more commonly known in structural 

analysis as mode shapes. A simply supported beam for instance deforms in a half sine shape in its first mode 

shape. When it comes to dynamic analysis, the deformation is described in both space and time, rendering two 

independent variables time (𝑡) and space (𝑥).  

Multiple approaches to continuous systems have been discovered through history. However, the Euler-Bernoulli 

classical beam theory is generally applied in mechanical and structural engineering. The classical beam theory is 

based on the linear theory of elasticity, providing solutions for calculating deflection and load carrying capacity 

of beams and columns. The method may be used in many cases in structural engineer, although it is a simplified 

version of the Timoshenko beam theory, discovered by Stephen Timoshenko in the early 20th century. The 

Timoshenko beam theory takes into account rotational bending effects and shear deformation, whereas the 

classical beam theory does not (Nicholson & Simmunds, 1977). In practice, this implies that the Euler-Bernoulli 

beam theory may only be used if it is used for calculating small deflections and if forces are only applied 

perpendicular to the beam axis, resulting in negligible axial forces. Secondly, a beam must consist out of an 

isotropic material. The beam must be slender so that shear deformations may be neglected (Figure 4.1).  As in 

study, the beam model suffices to all conditions for the Euler-Bernoulli beam theory and as a result, it may be 

assumed that this theory is sufficient to use in this master study.  

     

Figure 4.1: Difference in Euler-Bernoulli and Timoshenko beam theory (a) and continuous beam model (b) 

From the classical beam theory, it can be found that moment is directly related to the curvature times the beam 

stiffness. Furthermore, curvature is equal to the derivative of the angular rotation of a beam, resulting in 

  𝑀(𝑥, 𝑡) = 𝐸𝐼(𝑥) 
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2         (4.1) 
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The stiffness of the beam does not change in time and therefore only depends on the spatial location (𝑥) over 

the beam. If now an infinitesimal element from the continuous beam is considered (Figure 4.2), moment 

equilibrium and force equilibrium in vertical direction may be derived, resulting in 

∑𝑀𝑦 = 0 → (𝑀 + ∆𝑀)(𝑥, 𝑡) − 𝑀(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)∆𝑥 ∗
∆𝑥

2
+ (𝑉 + ∆𝑉)(𝑥, 𝑡)∆𝑥 = 0  

 ∑𝐹𝑧 = 0 → (𝑉 + ∆𝑉)(𝑥, 𝑡) − 𝑉(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)∆𝑥 − 𝜌𝐴(𝑥)∆𝑥 
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 = 0   (4.2) 

In these equations, the increment is considered really small (i.e. ∆𝑥 → 0) and is therefore neglected. Secondly, 

the second derivative 𝜕2 is neglected, as the derivative is already small. Solving moment equilibrium, this results 

in 

 𝑉(𝑥, 𝑡) = −
𝜕𝑀(𝑥,𝑡)

𝜕𝑥
        (4.3) 

Substituting this equation back into the force equilibrium condition results in a fourth order partial differential 

equation, describing the beam in both the spatial and the temporal domain.   

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 + 𝑐2 𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 = 0  𝑤ℎ𝑒𝑟𝑒 𝑐 = √
𝐸𝐼

𝜌𝐴
      (4.4) 

In this equation, the geometrical properties do not change over time and no external force is acting on the 

system. 

  

Figure 4.2: Infinitesimal beam element from a continuous, slender beam 

4.2 The solution to the differential equation of a continuous system 
A partial differential equation in both the spatial and the temporal domain has been found by using the Euler-

Bernoulli beam theory and solving this for force equilibrium. The solution methodology to the dynamic beam 

equation is similar to the general solution of an initial value problem. Firstly, the boundary conditions in space 

and the initial conditions in time are formulated. In order to solve this system, four boundary conditions in space 

are needed, as the partial derivative in space is of the fourth order (𝜕𝑥4). Secondly, two initial conditions need 

to be known since the temporal part is of the second order (𝜕𝑡2). The boundary conditions in the spatial domain 

are similar to a static problem. In this case, the beam is considered simply supported and thus, the displacement 

and momentum at support locations will be equal to zero at every time. It is assumed that there is a certain 

initial displacement and velocity at 𝑡 = 0. In mathematical terms, this renders 

At 𝑥 = 0,𝑤 = 0 → 𝑤(0, 𝑡) = 0 

At 𝑥 = 𝑙, 𝑤 = 0 → 𝑤(𝑙, 𝑡) = 0 

At 𝑥 = 0,𝑀 = 0 → 𝑀(0) = 𝑤̈(0, 𝑡)𝐸𝐼 = 0 

At 𝑥 = 𝑙,𝑀 = 0 → 𝑀(𝑙) = 𝑤̈(𝑙, 𝑡)𝐸𝐼 = 0 

At 𝑡 = 0, 𝑤 = 𝑤0 → 𝑤(𝑥, 0) = 𝑤0(𝑥) 

At 𝑡 = 0, 𝑣 = 𝑣0 = 𝑤̇0 → 𝑤̇(𝑥, 0) = 𝑤̇0(𝑥)      (4.5) 
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In order to solve the differential equation, a separation of variables approach is used. In this case, that indicates 

that the partial differential equation is a product of one function depending on only the spatial location and one 

function only depending on time. The separated variables can then be substituted back into the fourth order 

partial differential equation that was found for a simple beam. 

 𝑤(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)        (4.6) 

 𝑋(𝑥)𝑇′′(𝑡) + 𝑐2𝑋′′′′(𝑥)𝑇(𝑡) = 0       (4.7) 

The derivatives here become total derivatives instead of partial derivatives, as they only depend on one variable. 

Rearranging of variables then gives 

 𝑐2 𝑋′′′′(𝑡)

𝑋(𝑡)
= −

𝑇′′(𝑡)

𝑇(𝑡)
        (4.8) 

Here, the part that depends on 𝑥 is the spatial equation and the part that depends on 𝑡 is the temporal equation. 

To solve the two differential equations separately, a separation constant must be used. This separation constant 

follows from a mathematical point of view that both fractions should be equal to a certain constant, as the left 

part (spatial) must be equal to the right part (temporal) for all 𝑥 and 𝑡. The temporal equation of this part is 

solved for the two initial conditions that were given and follows the same solution procedure as for a mass spring 

system.  

 𝑚𝑥̈(𝑡) + 𝑘𝑥(𝑡) = 0 → 𝑚𝑇′′(𝑡) + 𝑘𝑇(𝑡) = 0 

𝑇′′(𝑡) + 𝜔2𝑇(𝑡) = 0 where 𝜔 = √
𝑘

𝑚
      (4.9) 

Rearranging of variables gives the solution for the temporal equation. Where the right-hand term is the 

separation constant.  

 
𝑇′′(𝑡)

𝑇(𝑡)
= −𝜔2  

𝑋′′′′(𝑥) − (
𝜔

𝑐
)

2

𝑋(𝑥) = 0        (4.10) 

4.2.1 The spatial equation 
A fourth order differential equation is now derived where the derivative only depends on the spatial location 𝑥. 

This equation is called the spatial equation, where the term 
𝜔

𝑐
 is recalled to 𝛽2. The solution procedure to this 

equation is similar to the derivation of the general beam equation in static structural engineering. Each 

derivative term can be reformulated by using an exponential function 𝑒𝜆𝑥 and the equation can then be solved 

for arbitrary values of this exponential function. The fourth order differential equation results in four solutions, 

where it is stated that for linear problems an addition of all solutions is also a solution. It can then be found that 

𝑋(𝑥) = 𝐶1𝑒
𝛽𝑥 + 𝐶2𝑒

−𝛽𝑥 + 𝐶3𝑒
𝑖𝛽𝑥 + 𝐶4𝑒

−𝑖𝛽𝑥      (4.11) 

The real part of the solution is extracted by using trigonometric identities and the formula of Euler. After 

reformulating, the solution must then be in the form of 

𝑋(𝑥) = 𝐴1 sin(𝛽𝑥) + 𝐴2 cos(𝛽𝑥) + 𝐴3 sinh(𝛽𝑥) + 𝐴4 cosh(𝛽𝑥)    (4.12) 

Clearly, it is seen that there are four unknown variables, which are also known as constants if integration. These 

variables all can be expressed in terms of 𝛽𝑙, since four boundary conditions were formulated for the spatial 

part of the solution. The four boundary conditions can then be combined into one equation in matrix format, 

where each integration constant is multiplied by a certain factor in each equation. All equations need to be equal 

to zero. For the simply supported beam, one finds that 
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1) 𝑋(0) = 0 → 𝐴1 sin(0) + 𝐴2 cos(0) + 𝐴3 sinh(0) + 𝐴4 cosh(0) = 0 

2) 𝑋(𝑙) = 0 → 𝐴1 sin(𝛽𝑙) + 𝐴2 cos(𝛽𝑙) + 𝐴3 sinh(𝛽𝑙) + 𝐴4 cosh(𝛽𝑙) = 0 

3) 𝑀(0) = 𝐸𝐼𝑋′′(0) = 0 → 𝐸𝐼𝛽2 (−𝐴1 sin(0) − 𝐴2 cos(0) + 𝐴3 sinh(0) + 𝐴4 cosh(0)) = 0 

4) 𝑀(𝑙) = 𝐸𝐼𝑋′′(𝑙) = 0 → 𝐸𝐼𝛽2 (−𝐴1 sin(𝛽𝑙) − 𝐴2 cos(𝛽𝑙) + 𝐴3 sinh(𝛽𝑙) + 𝐴4 cosh(𝛽𝑙)) = 0 

         

 

   

          (4.13) 

Obviously, a solution can be found by simply make all integration constants equal to zero. However, the solution 

to the spatial equation is found for arbitrary values for the integration constants. The left hand matrix should 

then be equal to zero. This results in 

sin(𝛽𝑙) = 0 →  𝛽 =
𝑛𝜋

𝑙
 𝑉 𝛽 = 0       (4.14)  

Obviously, the only satisfactory solution is when 𝛽 ≠ 0, as otherwise the solution would always be equal to zero. 

Three constants can now be solved as well, resulting in the solution to the spatial part of the partial differential 

equation. 

𝑋(𝑥) = 𝐶𝑛 sin(
𝑛𝜋

𝑙
𝑥)         (4.15) 

4.2.2 The temporal equation 
In the temporal domain, there is always a certain form of energy dissipation as a result of movement of air or 

material deformation, for instance. Hence, a result without damping is not a good resemblance to reality, as a 

certain beam will not vibrate infinitely. Therefore, damping is included in the temporal domain. For inserting a 

certain amount of damping, the spatial equation will not change, as it is not dependent on any time variable. 

The temporal equation that was previously found is expanded with a damping term. This is similar to a mass 

spring damper system, where the damping term was chosen from mathematical convenience rather than a 

number with any physical meaning. The temporal equation is equal to 

𝑇𝑛
′′(𝑡) + 2𝜁𝜔𝑛 𝑇𝑛

′(𝑡) + 𝜔𝑛
2𝑇𝑛(𝑡) = 0       (4.16)  

The solution procedure for this equation is similar to that of a single degree of freedom mass spring system, 

which was elaborately described in the literature study. For the underdamped case, it can be shown that  

 𝑇𝑛(𝑡) = 𝐴𝑛𝑒−𝜁𝑛𝜔𝑛𝑡 sin(𝜔𝑑,𝑛𝑡) + 𝐵𝑛𝑒−𝜁𝑛𝜔𝑛𝑡 cos(𝜔𝑑,𝑛𝑡)   where   𝜔𝑑 = 𝜔√𝜁2 − 1 (4.17) 

4.2.3 The total solution 
The two solutions for both the spatial and the temporal domain are found and thus, these two solutions can be 

substituted back into the equation where the separation of variables technique was used. As a result of an 

infinite number of mode shapes, an infinite number of solutions is found for the analytical solution. Again, it is 

stated that the sum of all solutions is also a solution in linear problems. That finally renders the total solution for 

an underdamped beam. 

 𝑤(𝑥, 𝑡) = ∑ 𝐴𝑛𝑒−𝜁𝑛𝜔𝑛𝑡 sin( 𝜔𝑛𝑡) sin(
𝑛𝜋

𝑙
𝑥) + 𝐵𝑛𝑒−𝜁𝑛𝜔𝑛𝑡 cos(𝜔𝑛𝑡) sin(

𝑛𝜋

𝑙
𝑥)∞

𝑛=1   (4.18) 

𝑑𝑤(𝑥,𝑡)

𝑑𝑡
= ∑ 𝐴𝑛𝜔𝑛 sin(

𝑛𝜋

𝑙
𝑥) (𝑒−𝜁𝑛𝜔𝑛𝑡 cos(𝜔𝑛𝑡) − 𝜁𝑛𝑒−𝜁𝑛𝜔𝑛𝑡 sin(𝜔𝑛𝑡)) −∞

𝑛=1

𝐵𝑛𝜔𝑛 sin(
𝑛𝜋

𝑙
𝑥) (𝜁𝑛𝑒−𝜁𝑛𝜔𝑛𝑡 cos(𝜔𝑛𝑡) + sin(𝜔𝑛𝑡))       (4.19) 

This solution can now be solved for initial conditions, consisting out of a certain initial displacement 𝑤0(𝑥) and 

a certain initial velocity 𝑤̇0(𝑥). This implies that the solution that was found is equal to initial conditions at every 

location, so that 
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 𝑤(𝑥, 0) = ∑ 𝐵𝑛sin(
𝑛𝜋

𝑙
𝑥)∞

𝑛=1        (4.20)  

𝑤̇(𝑥, 0) = ∑ 𝐴𝑛𝜔𝑛 sin(
𝑛𝜋

𝑙
𝑥) − 𝐵𝑛𝜔𝑛 sin(

𝑛𝜋

𝑙
𝑥)∞

𝑛=1      (4.21) 

In order to solve the constant in terms of initial conditions, both sides are multiplied by ∫ sin (
𝑚𝜋

𝑙
𝑥)

𝑙

0
. 

∫ sin (
𝑚𝜋

𝑙
𝑥)

𝑙

0
𝑤(𝑥, 0)𝑑𝑥 = ∑ 𝐵𝑛 ∫ sin (

𝑚𝜋

𝑙
𝑥)

𝑙

0
sin(

𝑛𝜋

𝑙
𝑥)𝑑𝑥∞

𝑛=1      

∫ sin (
𝑚𝜋

𝑙
𝑥)

𝑙

0
𝑤̇(𝑥, 0)𝑑𝑥 = ∑ 𝐴𝑛𝜔𝑛 ∫ sin (

𝑚𝜋

𝑙
𝑥)

𝑙

0
sin(

𝑛𝜋

𝑙
𝑥)𝑑𝑥∞

𝑛=1 − 𝐵𝑛𝜔𝑛 ∫ sin (
𝑚𝜋

𝑙
𝑥)

𝑙

0
sin(

𝑛𝜋

𝑙
𝑥) 

           (4.22) 

Using the fact that mode shapes are orthogonal, this leads to  

∫ sin (
𝑚𝜋

𝑙
𝑥)

𝑙

0
𝑤(𝑥, 0)𝑑𝑥 = ∑ 𝐵𝑛 (0 + 0 + ⋯+

𝑙

2
) =∞

𝑛=1
𝐷𝑛𝑙

2
     (4.23) 

∫ sin (
𝑚𝜋

𝑙
𝑥)

𝑙

0
𝑤̇(𝑥, 0)𝑑𝑥 = ∑ 𝐴𝑛𝜔𝑛 (0 + 0 + ⋯+

𝑙

2
) − 𝐵𝑛𝜔𝑛 (0 + 0 + ⋯+

𝑙

2
) =  

(𝐶𝑛−𝐷𝑛)𝜔𝑛𝑙

2

∞
𝑛=1  

           (4.24) 

The constant 𝐵𝑛 can be directly expressed in terms of initial conditions. As for the other term, the derivation is 

slightly more elaborate. 

 𝐵𝑛 =
2

𝑙
∫ sin (

𝑛𝜋

𝑙
𝑥)

𝑙

0
𝑤(𝑥, 0)𝑑𝑥 

 𝐴𝑛 − 𝐵𝑛 = 
2

𝜔𝑛𝑙
∫ sin (

𝑛𝜋

𝑙
𝑥)

𝑙

0
𝑤̇(𝑥, 0)𝑑𝑥  

𝐴𝑛 =
2

𝜔𝑛𝑙
∫ sin (

𝑛𝜋

𝑙
𝑥)

𝑙

0
𝑤̇(𝑥, 0)𝑑𝑥 +

2

𝑙
∫ sin (

𝑛𝜋

𝑙
𝑥)

𝑙

0
𝑤(𝑥, 0)𝑑𝑥     (4.25) 

Substituting these values back into the total solution, this yields the result expressed in terms of boundary 

conditions and initial conditions. As this beam was given an initial deformation, only the first mode shape affects 

the deformation if a certain initial displacement is given to the beam at exactly mid span (Figure 4.3). 

𝑤(𝑥, 𝑡) = 𝑥0𝑒
−𝜁𝜔𝑡 sin(

𝜋

𝑙
𝑥)(sin(𝜔𝑡) + cos(𝜔𝑡))     (4.26) 

Similar to linear one-dimensional dynamics, a difference is made in an underdamped, an overdamped and a 

critically damped situation. The spatial equation will not change for the overdamped solution, however, the 

temporal equation is now solved for the overdamped case, similar to a one-dimensional problem. For the 

overdamped situation, the solution to the temporal equation then becomes 

 𝑇𝑛(𝑥) = 𝐴𝑛𝑒−𝜁𝑛𝜔𝑛𝑡+𝜔𝑑,𝑛∗𝑡 + 𝐵𝑛𝑒−𝜁𝑛𝜔𝑛𝑡−𝜔𝑑,𝑛∗𝑡   where    𝜔𝑑,𝑛 = 𝜔𝑛√𝜁𝑛
2 − 1   (4.27) 

Again, these terms can be expressed in terms of initial conditions in the temporal domain and boundary 

conditions in the spatial domain, resulting in the analytical solution for the overdamped case. 

4.3 Discretization of the continuous beam model 
Even a simply supported beam subjected to only an initial deformation results already in a complex solution, as 

one could conclude from the previous section in this part of the report. Furthermore, including the cable truss 

would render an even more complex analytical solution. Hence, the continuous beam system is approximated 

by discretizing it in the spatial domain. In contrast to the continuous beam, this approximation only has a limited 

number of degrees of freedom and although these approximations perform really well, the analytical solution 

can never be obtained exactly. There are multiple approximation methods available current such as the finite 

difference method, the finite element method or the discrete element method. Although the finite element 

method is the most popular one in structural engineering by far, in this case a so called lumped mass model is 
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used, where the beam is subdivided into three masses, resulting in three degrees of freedom and three natural 

frequencies for the bridge deck. 

 

Figure 4.3: Plot of the analytical solution to a continuous beam, underdamped (a and b: ζ=0.1, c and d: ζ=0.7) 

The discretized equation is now similar to one-dimensional linear dynamics, where the general solution is found 

by solving the second order differential equation in time. Each degree of freedom can have its own initial 

conditions, generally expressed in terms of an initial displacement 𝑥0 and an initial velocity 𝑣0 = 𝑥̇0. Initial 

conditions are in most situations equal to zero, as excitation of a dynamic system is often a result of external 

loading rather than initial conditions in mechanical engineering. As for this report, the external force acting on 

the system can be any arbitrary force, for instance an impulse load or a step load. The initial conditions are 

always taken equal to zero, indicating that the system is not in movement at 𝑡 = 0. Consequently, the 

differential equation is expanded with a force matrix. In matrix notation, the initial value problem is then equal 

to 

 𝐌𝐱̈(𝑡) + 𝐂𝐱̇(𝑡) + 𝐊𝐱(𝑡) = 𝐅(𝑡) 

 𝐱0 = 0, 𝐯0 = 0          (4.28) 

4.3.1 The mass matrix 
In this report, the beam model was discretized to five masses, where two masses are located directly above the 

restraints. It should be noted that rotational degrees of freedom are not included in this model, as this model 

only allows for vertical movement. As a result, these masses simply cannot move over time and a three degree 

of freedom model remains (Figure 4.4). Each mass should now be taken equal to one quarter of the mass of the 

total bridge, resulting in 

 𝑚𝑖 =
1

4
𝜌𝐴𝑙           (4.29) 

It should be noted that discretizing in more degrees of freedom obviously results in a better approximation to 

the exact solution. In this study, however, it can be shown that a discretization to five nodes already performs 

fairly accurate.  

a b 

c d 
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Figure 4.4: Discretization of a continuous system in the spatial domain 

4.3.2 The stiffness matrix 
Most load cases considered in conservative structural engineering are static loads, independent on time. When 

considering a pedestrian footbridge in this case, a static load cannot suffice and a moving point load is considered 

instead. This implies that a certain impulse load, generated by a walking pedestrian, will change over the span 

of the bridge in time. Again, the Euler-Bernoulli beam theory is used, as it was previously stated that the case 

study in this report suffices to the conditions of an Euler beam. A relation exists between the external force 

𝑞(𝑥), which can be any force, and the beam deflection. Here, the constitutive relation between moment (𝑀) 

and curvature (κ) must be considered as well. As a result, the beam deflection can be described by a fourth order 

differential equation (Figure 4.5). 

 𝑉(𝑥) = ∫ 𝑞(𝑥)𝑑𝑥    shear force 

 𝑀(𝑥) = ∫𝑉(𝑥)𝑑𝑥 = ∬𝑞(𝑥)𝑑𝑥   moment distribution 

 𝜑(𝑥) = ∫
1

𝐸𝐼
𝑀(𝑥) 𝑑𝑥 =

1

𝐸𝐼
∭𝑞(𝑥)𝑑𝑥  angular rotation 

 𝑤(𝑥) = ∫𝜑(𝑥)𝑑𝑥 =
1

𝐸𝐼
∬∬𝑞(𝑥)𝑑𝑥  beam deflection 

 𝑞(𝑥) = 𝐸𝐼
𝑑4𝑤(𝑥)

𝑑𝑥4          (4.30) 

In the case of a moving point load, the external force is taken equal to 𝑞(𝑥) = 𝛿(𝑥 − 𝑦). Here, a unit point load 

is located somewhere along the beam length at location 𝑦. For a simply supported beam, four boundary 

conditions can be described equal to the boundary conditions in the spatial domain stated previously (eq. 4.5).  

 𝑞(𝑥) = 𝛿(𝑥 − 𝑦) 

 𝑉(𝑥) =  ∫ 𝛿(𝑥 − 𝑦)𝑑𝑥 = 𝛷(𝑥 − 𝑦) + 𝑐1  

𝑀(𝑥) = ∫𝛷(𝑥 − 𝑦) + 𝑐1𝑑𝑥 = (𝑥 − 𝑦)𝛷(𝑥 − 𝑦) + 𝑐1𝑥 + 𝑐2    

𝐸𝐼𝜑(𝑥) = ∫(𝑥 − 𝑦)𝛷(𝑥 − 𝑦) + 𝑐1𝑥 + 𝑐2 𝑑𝑥 =
1

2
(𝑥 − 𝑦)2𝛷(𝑥 − 𝑦) +

1

2
𝑐1𝑥

2 + 𝑐2𝑥 + 𝑐3  
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𝐸𝐼𝑤(𝑥) = ∫
1

2
(𝑥 − 𝑦)2𝛷(𝑥 − 𝑦) +

1

2
𝑐1𝑥

2 + 𝑐2𝑥 + 𝑐3 =
1

6
(𝑥 − 𝑦)3𝛷(𝑥 − 𝑦) +

1

6
𝑐1𝑥

3 +
1

2
𝑐2𝑥

2 +

𝑐3𝑥 + 𝑐4           (4.31) 

Solving for initial conditions, an equation can be found for the deflection of the beam at any location for a point 

load at a location over the span of the beam. This equation is known as Green’s equation, named after the British 

mathematician George Green (Cabada et al., 2004). 

 𝑤(𝑥, 𝑦) = ((
𝑥−𝑦

𝑙
)

3

𝛷(𝑥 − 𝑦) +
𝑙−𝑦

𝑙
∙
𝑥

𝑙
∙ (1 − (

𝑙−𝑦

𝑙
)

2

− (
𝑥

𝑙
)

2

)) ∙
1

6

𝑙3

𝐸𝐼
    (4.32) 

 

Figure 4.5: Euler-Bernoulli beam theory for a simply supported beam 

In this case the beam was discretized into five nodal elements, rendering a three degree of freedom system. 

That implies that the external force can be applied at three locations over the span of the bridge and that for 

each applied force three deformations can be measured at the three discretized locations with respect to this 

applied force. This yields the flexibility matrix of the beam, which is in this case equal to 

 𝑤(𝑥, 𝑦) = 𝐅 =

[
 
 
 
 𝑤 (

𝑙

4
,
𝑙

4
) 𝑤 (

𝑙

2
,
𝑙

4
) 𝑤 (

3𝑙

4
,
𝑙

4
)

𝑤 (
𝑙

4
,
𝑙

2
) 𝑤 (

𝑙

2
,
𝑙

2
) 𝑤 (

3𝑙

4
,
𝑙

2
)

𝑤 (
𝑙

4
,
3𝑙

4
) 𝑤 (

𝑙

2
,
3𝑙

4
) 𝑤 (

3𝑙

4
,
3𝑙

4
)]
 
 
 
 

=
𝑙3

𝐸𝐼

[
 
 
 
 

3

256

11

768

7

768
11

768

1

48

11

768
7

768

11

768

3

256]
 
 
 
 

   (4.33) 

The stiffness matrix is then equal to the inverse of the flexibility matrix of the beam.  

𝐊 = 𝐅−𝟏 =
𝐸𝐼

𝑙3

[
 
 
 
 

4416

7
−

4224

7

1728

7

−
4224

7

6144

7
−

4224

7
1728

7
−

4224

7

4416

7 ]
 
 
 
 

       (4.34) 
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4.3.3 The damping matrix 
As for now, an undamped discretized model is found that represents a continuous system, which is a beam in 

this case. In practice, there is always some kind of energy dissipation present in a structure. Hence, an undamped 

system would not be a realistic representation of reality. Damping in discretized models differs from that of a 

continuous system and there are many models that can describe damping is such systems. The most common 

form of damping is viscous damping, which was also described extensively in one-dimensional linear dynamics 

in the literature study. Although it is known that viscous damping is based on mathematical convenience rather 

that physical meaning, this form of damping performs very well and is widely the most applied form of damping 

in problems that involve dynamic responses. Many other forms of damping like for instance Coulomb damping 

do have more physical meaning, however do often include non-linear terms. As for this problem, these forms of 

damping are not included, as damping is already considered a complex part in the dynamic problem. In the 

discretized dynamical model in this project, proportional damping is used, which is a special form of viscous 

damping. In proportional damping, also known as Rayleigh damping, the damping matrix is a linear combination 

of the mass and stiffness matrix, where two constants 𝛼 and 𝛽 are to be determined and can be related to the 

material property, for instance. The damping matrix is then equal to 

 𝐂 = 𝛼𝐌 + 𝛽𝐊         (4.35) 

As there are two coefficients, only two damping ratios can be chosen directly, although there is in fact a different 

damping ratio for each natural frequency. It seems rather straightforward to choose these factors for the first 

and second natural frequency, as these are the main contributors to the total behavior of the system. From one-

dimensional dynamics it was found that the damping coefficient can expressed in terms of the natural frequency 

as 𝑐 = 2𝜁𝑚𝜔 and that the natural frequency is equal to 𝜔 = √𝑘 𝑚⁄ . Using proportional damping, it can thus be 

shown that 

 2𝜁𝑖𝜔𝑖 = 𝛼 + 𝛽𝜔𝑖
2         (4.36) 

This expression can be solved for the first two natural frequencies to find proper values for 𝛼 and 𝛽 (Figure 4.6). 

Values for 𝜁 have been determined in a number of experimental studies. Structural steel, for instance, has values 

for 𝜁 around 0.01 − 0.1 (Bachmann, 1995). 

 

Figure 4.6: Proportional damping 

4.3.4 Natural frequencies 
The total solution for the three degree of freedom system can now be described in the general second order 

differential equation (eq. 4.28). In this equation, the force matrix consists of an external force acting on each 

mass of the system. This force may be any arbitrary force. Motion for the beam can now be described in the 

form of 
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𝜌𝐴𝑙
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[
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0 1 0
0 0 1
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[

𝑥̇1(𝑡)

𝑥̇2(𝑡)

𝑥̇3(𝑡)
] +

𝐸𝐼

𝑙3

[
 
 
 
 

4416

7
−

4224

7

1728

7

−
4224

7

6144

7
−

4224

7
1728

7
−

4224

7

4416

7 ]
 
 
 
 

[

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
] = [

𝐹1(𝑡)

𝐹2(𝑡)

𝐹3(𝑡)
]        (4.37) 

The solution that is found can also be described in the undamped case, if the damping coefficients are simply 

equal to zero. Evaluating the differential equation without any external force acting on the system, an eigenvalue 

problem can be formulated which approximates the natural frequencies of the exact solution. Solving for 

arbitrary values of 𝑥 (i.e. 𝑥𝑛(𝑡) ≠ 0) renders the first three natural frequencies of the three degree of freedom 

model in this case. The eigenvalue problem is then equal to 

 

(

 
 𝐸𝐼

𝑙3

[
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−
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1728
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−
4224

7

6144

7
−

4224

7
1728

7
−

4224

7

4416

7 ]
 
 
 
 

− 𝜔𝑛
2 𝜌𝐴𝑙

4
[
1 0 0
0 1 0
0 0 1

]

)

 
 

[

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
] = [

0
0
0
]   (4.38) 

The natural frequencies that are found by solving the eigenvalue problem can be compared to the natural 

frequencies found in the exact solution, by recalling that the exact natural frequency can be found by evaluating 

the eigenvalue problem that was found for the exact solution (eq. 6.14). In the exact case, an infinite number of 

eigen values is found from 

𝜔2 = 𝛽4 𝐸𝐼

𝜌𝐴
→ 𝜔 =

𝑛2𝜋2

𝑙2
√

𝐸𝐼

𝜌𝐴
         (4.39) 

As an example, a steel tube (120x60x4) has been evaluated for both the discretized solution, the analytical 

solution and a finite element model (Table 4.1). It should be noted that the first few natural frequencies are 

approximated better when the number of lumped masses increases. Although larger Eigen modes are not 

accurately predicted at all, it can still be concluded that the discretized models performs quit accurate, as these 

higher natural frequencies also have a negligible effect on the total deformation. The three degree of freedom 

model can only take into account the first three natural frequencies of the system where mode one and two are 

predicted fairly accurate. Although this model looks rather inaccurate by only using three degrees of freedom, 

it should be noted that the first Eigen mode affects the total deformation for roughly 67% , whereas the second 

respectively third mode shape affect the total deformation for around 17% and 7%. This implies that all other 

Eigen modes larger than the first three contribute to the total system for only 9%. It seems thus ratified to use 

a discretized model with three degrees of freedom.  

Natural 
frequency 

Analytical 
solution 

1 degree of 
freedom 

2 degrees of 
freedom 

3 degrees of 
freedom 

FE Model % of total 
deflection 

1𝑠𝑡 137.399 136.402 137.253 137.358 140.111 67% 

2𝑛𝑑  549.596 − 531.578 545.609 556.546 17% 

3𝑟𝑑  1236.592 − − 1158.446 1181.666 7% 

4𝑡ℎ 2198.386 − − − − <9% 

5𝑡ℎ 3434.977 − − − − 

𝑛𝑡ℎ ∞ − − − − 

Table 4.1: Natural frequencies from the discretized model compared to the analytical solution and a finite element model 
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Figure 4.7: Mode shapes 

4.4 Numerical approximations 
As for now, the continuous system was simplified insofar, that the differential equation is now second order and 

only has a full derivative in time. Furthermore, the freedom of each mass in the lumped mass model is restricted 

to only one direction and the limited number of degrees of freedom also results in a limited number of mode 

shapes, influencing the system. The remaining multiple degree of freedom system theoretically can be solved 

analytically, albeit in a complex fashion even for elementary systems. Moreover, it is not possible or at least 

highly complex to solve non-linearity’s in the analytic method. A non-linear force, like for instance step loading, 

could theoretically be approximated by using the so called Fourier Series (Dym, 1972). Unfortunately, this is very 

complex and time consuming to do in an analytical fashion. As non-linearity’s are an important factor in the 

numerical model, the lumped mass model is approximated numerically. Hence, the main principles that are used 

in this project regarding numerical approximations are described in this section. 

4.4.1 Explicit and implicit methods 
There are different strategies when it comes to numerical solving complex differential equations. Common 

known approximation methods include Euler’s methods or the Runge-Kutta algorithm, for instance. The basis, 

however, of these numerical approximations is always to essentially ‘undo’ calculus by presenting a small but 

finite difference instead of the derivative. That means that the procedure produces a set of discrete values that 

will approximate the actual solution. Creating a very small step, this approximation can become so close the 

actual solution that it is accepted in general (Zwillinger, 1989). In mathematical terms, this implies that 

 𝑥̇(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
= lim

∆𝑡→0

𝑥(𝑡𝑛+1)−𝑥(𝑡𝑛)

𝑡𝑛+1−𝑡𝑛
= lim

∆𝑡→0

𝑥(𝑡𝑛+1)−𝑥(𝑡𝑛)

∆𝑡
     (4.40) 

Rewriting in terms of the future state of the system renders 

 𝑥(𝑡𝑛+1) = 𝑥(𝑡𝑛) + 𝑥̇(𝑡)∆𝑡       (4.41) 

Two types of numerical approximation methods include explicit and implicit solving, where the former method 

calculates the future state 𝑓(𝐱(𝑡𝑛+1), 𝑡𝑛+1) of the system by evaluating the current state 𝑓(𝐱(𝑡𝑛), 𝑡𝑛) of the 

system (eq. 4.41). The explicit fourth order Runge-Kutta algorithm was used to numerically approximate the 

lumped mass model in this report. The second order differential equation is first rewritten in two differential 

equations, reducing this set of equations to the first order. This renders a displacement vector and a derivative 

of the displacement vector, which is equal to the velocity vector. Considering the general mass spring damper 

equation (eq. 4.28), this can be described as  

𝐱𝟏(𝑡) = 𝐱(𝑡)  
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𝐱𝟐(𝑡) = 𝐱̇(𝑡) = 𝐯(𝑡)         (4.42)  

Taking the derivative of these two vectors results in 

𝐱̇𝟏(𝑡) = 𝐱̇(𝑡) = 𝐱𝟐(𝑡)   

𝐱̇𝟐(𝑡) = 𝐱̈(𝑡)           (4.43) 

The second order differential equation, describing the dynamic discretized model, can then be rewritten in terms 

of 𝐱̇𝟏(𝑡) and 𝐱̇𝟐(𝑡).   

𝐱̇𝟐(𝑡) = −𝐌−1𝐊 𝐱𝟏(𝑡) − 𝐌−1𝐂 𝐱𝟐(𝑡) + 𝐌−1𝐅(𝑡)      (4.44) 

Rewriting this in matrix notation, one finds an expression for 𝐱̇(𝑡) = [𝐱̇𝟏(𝑡) 𝐱̇𝟐(𝑡)]
𝑇, which is equal to 

 𝐱̇(𝑡) = [
𝐱𝟐(𝑡)

−𝐌−1𝐊 𝐱𝟏(𝑡) − 𝐌−1𝐂 𝐱𝟐(𝑡) + 𝐅(𝑡)
] = 𝐀 [

𝐱𝟏(𝑡)

𝐱𝟐(𝑡)
] + [

𝟎
𝐌−1𝐅(𝑡)

]  

 𝐀 = [
𝟎 𝑰

−𝐌−1𝐊 −𝐌−1𝐂
]        (4.45) 

The derived solution for the derivative of the mass spring damper system is now inserted into the fourth order 

Runge-Kutta algorithm, which states that 

 𝐴𝑛,1 = 𝑓(𝐱(𝑡𝑛), 𝑡𝑛) = 𝐱̇(𝑡𝑛) = 𝐀𝐱(𝑡𝑛) + 𝐅(𝑡)   

𝐴𝑛,2 = 𝑓 (𝐱(𝑡𝑛) +
∆𝑡

2
𝐴𝑛,1, 𝑡𝑛 +

∆𝑡

2
) = 𝐴 (𝐱(𝑡𝑛) +

∆𝑡

2
𝐴𝑛,1)   

𝐴𝑛,3 = 𝑓 (𝐱(𝑡𝑛) +
∆𝑡

2
𝐴𝑛,3, 𝑡𝑛 +

∆𝑡

2
) = 𝐴 (𝐱(𝑡𝑛) +

∆𝑡

2
𝐴𝑛,2)    

𝐴𝑛,4 = 𝑓(𝐱(𝑡𝑛) + ∆𝑡𝐴𝑛,3, 𝑡𝑛 + ∆𝑡) = 𝐴(𝐱(𝑡𝑛) + ∆𝑡𝐴𝑛,3)      

𝐱(𝑡𝑛+1) = 𝐱(𝑡𝑛) +
1

6
(𝐴𝑛,1 + 2𝐴𝑛,2 + 2𝐴𝑛,3 + 𝐴𝑛,4)∆𝑡    (4.46) 

The main difference between an explicit approximation and an implicit approximation method is that the latter 

calculates the future state 𝑓(𝐱(𝑡𝑛+1), 𝑡𝑛+1) of the system by evaluating the future state of the system rather 

that the current state (eq. 4.47). 

 𝑥(𝑡𝑛+1) = 𝑥(𝑡𝑛) − 𝑥̇(𝑡𝑛+1)∆𝑡       (4.47) 

This type of approximation is more complex and sometimes requires iterations, however guarantees numerical 

stability. The most basic implicit method is used in this project, known as the first order Euler Backward Scheme. 

Numerical stability is then guaranteed for any time increment. It is stated that the derivative that was found for 

the dynamic model holds for all ∆𝑡, hence 

 𝐱(𝑡𝑛+1) = [
𝐱𝟏(𝑡𝑛)

𝐱𝟐(𝑡𝑛)
] − [

𝟎 𝑰
−𝐌−1𝐊 −𝐌−1𝐂

] [
𝐱𝟏(𝑡𝑛+1)

𝐱𝟐(𝑡𝑛+1)
] − [

𝟎
𝐌−1𝐅(𝑡𝑛+1)

]  (4.48) 

This equation can be rewritten in terms of 𝐱(𝑡𝑛+1), by stating that the external force acting on the system in the 

future state is known. This also implies that the force generated by the actuator must have a time delay that is 

at least as large as the time increment chosen, as otherwise this force cannot be predicted and the implicit 

method cannot be used without iterating. Rewriting the implicit method renders an approximation to the 

dynamic model. For a single degree of freedom system one can find that 

𝐱(𝑡𝑛) = 𝐱(𝑡𝑛+1) − 𝐀𝐱(𝑡𝑛+1)∆𝑡 = (𝐈 − ∆𝑡𝐀)𝐱(𝑡𝑛+1)∆𝑡  

𝐀 = [
0 1

−
𝑘

𝑚
−

𝑐

𝑚

]         (4.49)  
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𝐱(𝑡𝑛+1) = (𝐈 − ∆𝑡𝐀)−1𝐱(𝑡𝑛)       (4.50)  

Solving this equation leads to an expression for 𝐱(𝑡𝑛+1), which is equal to 

 𝐱(𝑡𝑛+1) = [

𝑐∆𝑡+𝑚

𝑘∆𝑡2+𝑐∆𝑡+𝑚

𝑚∆𝑡

𝑘∆𝑡2+𝑐∆𝑡+𝑚
𝑘∆𝑡

𝑘∆𝑡2+𝑐∆𝑡+𝑚

𝑚

𝑘∆𝑡2+𝑐∆𝑡+𝑚

] [
𝐱𝟏(𝑡𝑛)
𝐱𝟐(𝑡𝑛)

]     (4.51) 

It should be noted that for more than one degree of freedom each future state of mass 𝑚𝑖  also depends on the 

future state of all other masses in the system. As a result, 𝑛 expressions are found with 𝑛 unknowns and 

theoretically all expressions can be solved, albeit in a complex manner for more degrees of freedom. 

4.4.2 Stability 
The main benefit of the implicit method is numerical stability for all ∆𝑡 in the negative real part of the imaginary 

plane, resulting from the future state of the system, which is taken into account. In other words, all differential 

equations having a derivative converging to zero are implicit solved in a stable manner (Figure 4.8b). And indeed, 

this is true for all damped vibration problems. On the other hand, higher order approximation methods that are 

more precise will lead to very complex solutions and are better solved explicitly. The main disadvantage in 

explicit solving is that overshoot may result in unstable behavior in stiff equations (Figure 4.8a). Hence, it is 

chosen to solve the dynamic model explicitly where possible in this project. If unstable behavior starts to 

develop, the problem is solved implicitly.  

     

Figure 4.8: Implicit and explicit approximation (a), implicit stable region (b) 

The explicit and implicit method are compared for a typical mass spring damper system with its exact solution 

given for a certain initial velocity and displacement. The explicit method indeed performs much better in small 

time increments, however starts to develop unstable behavior at a certain increment (Figure 4.10). It must be 

noted that this transition point is found for smaller time increments if degrees of freedom are extended. 

4.5 Discretization of the cable truss  
A dynamic model of a simply supported beam can be analyzed numerically by means of a discretized mass spring 

model with multiple degrees of freedom. As a result, the response to any external force of this beam can be 

predicted in a numerical approximation. The case study, however, cannot be considered as a beam only, as it 

includes a cable truss that is placed under the bridge to provide extra stiffness (Figure 4.9).  

 

Figure 4.9: Bridge with and without cable truss 
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Figure 4.10: Unstable behavior of the explicit approximation 

The cable truss is loaded only in tension and in between the wire and the bridge deck, structural elements are 

added to provide better resistance to vibrations, as will be discussed later in this report. The cable truss is not 

connected to the bridge directly, but is supported at secondary support locations. In this section, the most 

important (dynamic) properties of structural steel wire rope are discussed and some steps in the discretization 

to this part of the bridge are shown. 

4.5.1 Stiffness 
The steel cable truss is converted into an equivalent spring and damping coefficient to be able to add the truss 

to the discretized beam model. Steel wire ropes are built from a core, where a number of strands are woven 

around where the core may be steel or a fiber material. The design tensile strength of a steel wire rope is often 

much larger than normal structural steelwork. Secondly, the elongation of the wire is non-linear in both the time 

and the spatial domain. The initial strain of a cable is relatively large for small external forces, whereas the strain 

decreases when the external force increases. Regarding strain, the strain diagram is different for loading and 

unloading of the cable and after a number of loading cycles, the stress strain diagram is different again. This also 

results in a non-linear modulus of elasticity (Feyrer, 2015). Since the cable truss is an important factor in the 

bridge model, the cable properties of the used wire rope have been determined in the laboratory of the 

University of Eindhoven. In order to do so, a tensile test was performed and the strain of a test specimen was 

measured for a number of cycles (Figure 4.11, Figure 4.12). After a number of cycles, the difference in strain 

converges to a certain σ-ε-diagram, which remains constant for each new load cycle. Using the strain values 

found from the nth cycle, the modulus of elasticity could be determined as a function of the tensile force in the 

steel wire, for both loading and unloading (Figure 4.13). 

The Young’s Modulus found from the experimental is described by a non-linear function with respect to tensile 

force, which is similar to several literature studies that have been performed. The total force in the steel wires 

can now be determined by stating that this is an addition of a certain amount of pretension, set by the user, and 

a force resulting from the external force on the bridge. Since the truss consists here out of four cables, the cable 

force is equal to 

 𝐹𝑤𝑖𝑟𝑒 = 𝐹𝑝 +
1

4

𝐹𝑒

sin(𝛼)
        (4.52) 
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Figure 4.11: Strain test of the wire rope 

     

Figure 4.12: Five cycles of loading and unloading (a) and a resulting stress strain diagram after a number of cycles (b) 

 

Figure 4.13: Modulus of elasticity for the structural steel wire ropes used in this project (6x7 single layer strand, fibre core) 
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In this equation, 𝛼 is the angle between the horizontal 𝑥-axis and the cable truss. The advantage of a numerical 

approximation method compared to an analytical solution is that non-linearity’s can be taken into account 

rather easy, as in each time step, all physical parameters can be updated. In this case, the external force is 

calculated after every iteration in time and as a result, the stiffness of the cable truss can be determined by using 

the correct E-modulus at this very time step. The equivalent stiffness is then calculated from the elongation of 

each wire in vertical direction. As the bridge is supported by four wires in total, this is then equal to 

 𝑘𝑤𝑖𝑟𝑒 =
4 sin(𝛼)𝐸𝐴

𝑙
         (4.53) 

4.5.2 Damping 
A structural steel wire can vibrate in the transverse direction and the longitudinal direction. Although in many 

applications the transverse direction is of importance (i.e. sound from stringed instruments), it was assumed 

that in this study the longitudinal direction only has noticeable influence on the system. From several studies 

(e.g. Feyrer, 2015) it can be shown that damping in longitudinal direction has a certain decay curve, which is 

similar to damping applied in a mass spring system by means of mathematical convenience rather than actual 

physical meaning. To that extent, a damping coefficient can be inserted directly into the mass spring model by 

using an equivalent value for this particular wire (Figure 4.14). As a result, the total discretized solution from 

(eq. 4.37) can be extended by the values from the cable truss for mass, spring stiffness and damping. The 

discretized solution is then equal to 
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Figure 4.14: Mass spring model of the bridge with cable truss 

4.6 Numerical simulation of stabilization methods 
The slender bridge design is highly unstable and this will result in a noticeable dynamic response to external 

loads. In this case, the bridge was designed to be sensitive to vibrations in order to demonstrate the principles 

of different solution methodologies to stabilization of lightweight structures. As the bridge deck structurally only 

consists out of two very slender steel tubes, unacceptable deformations and stresses already start to develop 

for small external loads and as a result, the cable truss was added to the bridge. Hence, the cable truss mainly 
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contributes to the stiffness of the structure rather than making the bridge more comfortable by reducing 

vibrations. Regarding the Eurocode, some comfort criteria are described, for instance that vertical mode shapes 

may not vibrate in a lower frequency than 5 𝐻𝑧, as most of the pedestrians walk around a frequency below this 

value. Of course, a natural frequency of the structure similar to the walking frequency of a pedestrian is 

undesirable, as this could cause resonance. Vertical accelerations may not exceed 0.7𝑚 𝑠2⁄  and horizontally 

these requirements are even stricter. It should be noted that these requirements are not met by far in the 

current case study and that additional measurements are necessary. In this case, both a passive damper and a 

control system were considered. Both systems were implemented in the numerical model in order to examine 

the influence of each system both separate and as a combination. 

4.6.1 Passive system: viscous damping 
Viscous damping is actually a form of energy dissipation, similar to all forms of damping. It was already seen that 

dampers are applied in a number of examples to resist loading configurations that cannot be assumed static, as 

for instance wind loading on large, relative lightweight stadiums or harmonic loading in area’s sensitive to 

earthquakes (Figure 4.15a). Although dampers are found in many fields of engineering, fluctuating from small 

to large-scale applications, the principle of each damper is approximately similar. A viscous damper usually 

consists out of a cylinder, which is filled with a high viscosity fluid, like oil. In this cylinder often two chambers 

exists, separated by a piston. This piston can then move from the start to the end of the chamber and while this 

movement occurs, the oil can pass through small openings of the piston (Symans, 1998). As a result, energy is 

absorbed when the damper deforms and as a result, this system works as an absorber of vibrating systems 

(Figure 4.15b). Implementing a viscous damper into a mass spring system usually results in negligible damping 

coefficients for the other elements in this system. 

 

Figure 4.15: Viscous damping 

The viscous damper is implemented in the numerical model of the bridge exactly in between the cable truss and 

the bridge deck at mid span. This implies that in between the spring representing the cable truss and the middle 

mass of the discretized beam an extra degree of freedom is added, consisting out of the damper with a certain 

damping coefficient and a certain mass. Adding spring stiffness, the damper turns into a shock absorber.  

 

Figure 4.16: Schematic model for a viscous damper 
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It is now assumed that half of the mass of the damper is included in the center mass of the bridge and that the 

other half is modeled as the new (fourth degree of freedom) mass, where the total mass is an addition of the 

damper and the cable truss. Furthermore, it is assumed that the damper must also have a certain spring stiffness, 

similar to the well-known shock absorbers. This spring stiffness is needed to provide resistance to loads that 

occur for a relative large period of time. As one could think, a constantly increasing deformation would be the 

result if no spring stiffness was added in the numerical model, as then no resistance would be present to resist 

deformation over a longer period of time. The differential equation is extended by the properties of the damper, 

indicated with …𝑑(Figure 4.16). 
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      (4.55) 

4.6.2 Active system: a PID controller 
In the last few decades, computer technology has evolved tremendously and this development can also be 

noticed in control engineering. As previously discussed, most of these developments are not found in the built 

environment. The car and airplane industry are much more developed with regard to control engineering, for 

instance. Besides viscous damping, a second method has been implemented in this project in the form of an 

active control system to minimize the response of the lightweight bridge model to external loading. Although 

much more sophisticated control algorithms exist by now, it should be noted that a very elementary PID-control 

system was used in this case. Since control engineering is not part of the study structural design at all, it was 

needed to develop some knowledge to this field of engineering beforehand. As a result, one could think that a 

more complex control system would require a lot more literature study and in fact, that was not considered the 

main aim of this project. It should, however, be said that implementing a better algorithm would probably lead 

to a better response to external loading and that this might be an interesting study in the field of mechanical 

engineering, for example. 

Referring to the literature study, a PID controller consists of three user-defined values, where the proportional 

gain factor 𝐾𝑃 is multiplied by the measured error. The derivative gain factor 𝐾𝐷 is then multiplied with the 

derivative of the error, reducing the amount of overshoot and the integral gain factor 𝐾𝐼  is multiplied by the 

integral of the error, reducing the steady-state error back to zero over time. The total actuator force is then 

equal to 

 𝐹𝐴(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡) 𝑑𝑡 + 𝐾𝐷
𝑑𝑒(𝑡)

𝑑𝑡
      (4.56) 

The actuator force is implemented into the mass spring system and solved in the Laplace frequency domain, 

which was already seen for a single degree of freedom mass spring system in the literature study. As a result, 

the derivative gain factor can be found back in the differential equation as an imaginary damper and the 

proportional gain factor as an imaginary spring. The actuator force is then found to be equal to 

 𝐹𝐴(𝑡) = 𝐾𝑃𝑒(𝑡) + ∑𝐾𝐼∆𝑡𝑒(𝑡) − ∑𝐾𝐼∆𝑡𝑥(𝑡)     (4.57) 

In this equation, 𝑥(𝑡) is the actual displacement where the actuator force is applied and 𝑒(𝑡) is the error at the 

measurement location. In contrast to the viscous damper, this system should be considered as an active system, 

resulting in some boundary conditions. First of all, a certain time delay is found in between the moment of actual 

occurrence of the error and the actuator applied force to this error. Regarding a schematic model of a PID-

control system, this error cannot be equal to zero as in practice some time is needed for the measurement device 

to actually measure the error. Secondly, time delay occurs as a result of the time needed to calculate and activate 
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the actuator force (Figure 4.17). Furthermore, the actuator can respond at a certain frequency, as a result of its 

physical boundaries. This implies that a certain minimum threshold in time increment holds. For instance, an 

actuator responding one hundred times per second (100 𝐻𝑧) simply cannot respond to a measurement device 

that can measure the error one thousand times per second (1 𝑘𝐻𝑧). Both phenomenon were implemented in 

the numerical model to describe a realistic response of the actuator to the measured error. Finally, a control 

system will not be able to create a force above its physical limit. Hence, a limit force is given to the actuator in 

the numerical model as well and if the calculated force exceeds this limit, the maximum force is applied.  

 

Figure 4.17: Control system: delay time 

The actuator was implemented into the discretized bridge model similar to the viscous damper. Again, the four 

degree of freedom differential equation is found, where the damper values are replaced by the actuator values 

and where an additional force is added in the force matrix, being equal to the calculated actuator force. This 

also implies that the damping coefficient from the actuator is equal to the derivative gain value and that the 

spring stiffness coefficient is equal to the proportional gain factor. Again, the actuator is applied in between the 

bridge deck and the cable truss, exactly at mid span of the bridge (Figure 4.18). 

 

Figure 4.18: Schematic model for the control system 

4.7 Software 
Discretization of a continuous structure seems to be a proper method to approximate the dynamic response to 

different external loading situations. Although even the numerically approximated model to the remaining set 

of differential equations was used, still a huge amount of calculations has to be performed. As a matter of course, 

this requires the computational power of computer technology. In this project, it has been decided to use the 

three-dimensional nurbs-modelling package Rhinoceros®, as this software package introduces the possibility of 

creating self-written scripts with the plugin Grasshopper®. As a result, this allows for an infinite number of 

∆𝑡 

∆𝑡 
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possibilities with regard to parametric design within the field of structural engineering. As Grasshopper has a 

huge library of standard operations in both drawing tools and mathematical computations, it is rather easy to 

create a numerical model such as a dynamic response analysis tool. In this project, the plugin Hoopsnake was 

used in particular as this plugin allows for creating an iteration procedure. As a result, a loop through the 

discretized time domain can be made. Although a large number of plugins and standard operators is already 

included, some calculations like the numerical approximation method were made in the programming language 

c# as custom Grasshopper components. To conclude, this software package includes the ability of both 

programming initial value problems and visualizing them. 

All input parameters that were described in the numerical approximation to a continuous structure are seen in 

the Grasshopper script as number sliders, making it easy to change input properties and updating the calculation 

real-time. Before iterating with Hoopsnake, all physical input parameters are converted into their equivalent 

mass spring damper values. Each iteration goes then through the blue circle, where the Hoopsnake plugin is 

located. After each iteration the numerical approximation to the next time increment is calculated and these 

values are stored in lists. Finally, all values are stored into a text file, which is saved in a folder according to the 

physical properties that were set for this calculation. A number of custom components that were used was also 

saved into a self-defined library. All components are found in one Grasshopper script (Figure 4.19, Appendix), 

which visualizes results real-time in the Rhinoceros viewport.  

 

 

 

 

Figure 4.19: Complete visual script in Grasshopper 
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5 Results from the numerical model 
The approach to a numerical simulation for describing the response of a dynamic system has been discussed in 

the previous chapter from this report. The complex exact solution was approximated by using a discretization in 

both the spatial and the temporal domain, where the spatial domain simply has been subdivided into a number 

of predefined locations and where the temporal domain has been divided into a predefined number of time 

steps. As a result, the response to any external loading configuration can be computed, even if there are non-

linearity’s in the model. The power of this numerical model thus lies in the approximation to any possible 

external loading configuration. Comparisons between different models, like for instance using the damper or 

the actuator, are now made rather easy as there is no need for a physical model. Furthermore, optimized 

physical input values can be determined, which can then be used in practice without the need for expensive 

experimental test setups. A number of numerical models and their response behavior is discussed in this part of 

the report. The main difference in these models is found in using the actuator, using the damper or using both 

these systems in a combination. 

Comparable values to the experimental test setup are used in the numerical approximation for both the bridge 

deck and the cable truss. To that extent, a realistic comparison to the actual behavior of the physical model in 

the laboratory is possible. Both the bridge and the steel wires are thus given physical properties for density, 

Young’s modulus and geometry, for instance (Table 5.1, Table 5.2, annex B). It should be noted that only the 

steel tube profiles are considered for the stiffness of the bridge deck. Some additional stiffness from the wooden 

walking deck is not considered. 

Further, it should be noted that all physical parameters can be adapted to different values, as the numerical 

model is parametric. This would imply that one could easily examine dynamic behavior for a bridge with a span 

twice as large, for example. Furthermore, any external loading configuration can be examined in this model, as 

the external load can theoretically change in each time increment. Loading configurations like walking or running 

over the actual model of the bridge can thus be simulated by creating multiple impulse loads at the discretized 

masses of the bridge. 

Physical properties bridge deck 

Description Symbol Unit Calculation Physical value 

Density (steel) 𝜌 [
𝑘𝑔

𝑚3⁄ ] − 7.85𝐸+3 

Young’s Modulus 𝐸 [𝑃𝑎] − 2.10𝐸+11 

Moment of inertia 𝐼 [𝑚4] 1
12⁄ 𝑏ℎ3 8.89𝐸−8 

Span 𝑙 [𝑚] − 5.00𝐸+0 

Mass (50%) 𝑚 [𝑘𝑔] 𝜌𝐴𝑙 9.08𝐸+1 

Alpha damping 𝛼 − − 5.00𝐸−1 

Beta damping 𝛽 − − 2.00𝐸−3 

Table 5.1: Physical properties for the bridge deck 

Physical properties cable truss 

Description Symbol Unit Calculation Physical value 

Young’s Modulus 𝐸 [𝑃𝑎] 𝐸 = 𝜎
𝜀⁄  var 

Cross section area 𝐴 [𝑚2] 0.369𝑑2 var 

Length 𝑙 [𝑚] 1
2⁄ 𝑙𝑏𝑟𝑖𝑑𝑔𝑒 cos (𝛼)⁄  2.66𝐸+0 

Equivalent mass (50%) 𝑚 [𝑘𝑔] 𝜌𝐴𝑙 var 

Stiffness 𝑘 [𝑁 𝑚⁄ ] 𝐸𝐴 sin(𝛼)
𝑙

⁄  var 

Damping coefficient 𝑐 [𝑁𝑠
𝑚⁄ ] − 4.00𝐸+1 

Table 5.2: Physical properties supporting steel wires 
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Figure 5.1: Three-dimensional model of the bridge with cable truss 

 

Figure 5.2: Side view of the bridge model 

5.1 Loading configurations and design criteria 
The case study in this master project consists of a footbridge design, which is loaded when one or more 

pedestrians are crossing this bridge. To that extent, either walking slowly or running over the bridge could be 

modelled as a number of impulse loads. Occasionally, it occurs that someone stops while crossing the bridge 

when one considers enjoying a nice view, for instance. Hence, an external load remaining at the same place for 

a larger timespan should be included as well in the structural model of the bridge. As a result, two types of 

(elementary) loading configurations are considered, where the first one is one single impulse load. Secondly, the 

external load over a longer period of time is considered, which is indicated as a step load in this report. For the 

impulse in this case, it is assumed that an average person walks with a frequency of 𝑓 ≈ 2𝐻𝑧, resulting in a 

period of 𝑡 ≈ 0.5𝑠 for each step. From this period, it is assumed that the actual force is applied for 0.3𝑠. In 

contrast to the impulse load, the step load is assumed to continue from the time of impact towards the end of 

the numerical simulation. In mathematical terms, the external force 𝐹(𝑡) can now be described as 

𝐹(𝑡) = {

0               𝑡 < 𝑡1
𝐹     𝑡1 ≤ 𝑡 ≤ 𝑡2
0               𝑡 > 𝑡2

          (5.1) 

𝑡2 − 𝑡1 = 0.3𝑠  for an impulse load 

𝑡2 − 𝑡1 > 10𝑠   for a step load       (5.2)  

For both loading configurations, the force is applied at the center mass of the discretized model for the bridge 

deck, which is thus equal to a load exactly halfway the bridge span (Figure 5.3). Applying a force on top of the 

bridge then results in a dynamic response of the bridge model (Figure 5.4, Figure 5.6). The dynamic response 

shows a decay in amplitude until the vibrations is damped out completely. At this certain time, the steady state 

error is reached, which is equal to the deformation that is calculated in conventional static structural design. 



 

34 

Viscous Damping in Adaptive Structures  5 Results from the numerical model 
 

Obviously, the steady state error is equal to zero for impulse loading, whereas for the step load a deflection 

remains in time. In order to compare different models from this master study, it is said that the steady state 

error is negligible if  

 𝑤𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒 <
𝐿

300
= 17𝑚𝑚        (5.3) 

It should be noted that this steady state error is taken from using an elementary rule of thumb from static 

structural engineering. Secondly, the maximum measured error in the total time domain may not exceed a 

certain value. For both impulse and step loading this value is taken into account. As this maximum value only 

occurs transiently, it is stated that this value may not exceed 

 𝑤𝑚𝑎𝑥 = 1.5𝑤𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒 = 25𝑚𝑚       (5.4) 

Besides the deformation in time, the vibration of the bridge is measured in terms of an acceleration value in 

time (Figure 5.5). In the Eurocode it is stated that for comfort criteria, vertical accelerations may not exceed  

 𝑎𝑚𝑎𝑥 = 0.7𝑚/𝑠2         (5.5) 

As a result, the response of the bridge can be measured in terms of actual physical values. To that extent, 

different models using the damper and/or the actuator can be compared. It should be noted here that these 

values are sometimes exceeded, as this particular bridge model is designed extremely lightweight to show 

dynamic effects. In that case, these values should be minimized as much as possible. In all calculations, 

downward deflections are taken as negative values, which renders a negative deformation in time in most cases. 

 

   

Figure 5.3: Two loading configurations: an impulse load and a step load both applied at 𝑡 = 0.5𝑠 and both equal to 20kg. 

 

   

Figure 5.4: Response of the bridge deck only (displacement as a function of time) 
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Figure 5.5: Acceleration as a function of time 

 

 

 

Figure 5.6: Response of the bridge in the spatial and temporal domain (left figure bridge: deformed state at t = 0.2s) 

5.2 Additional stiffness from the cable truss 
It is seen that the bridge deck already deforms heavily for a very small external load and as a result, the 

experimental bridge deck was thus stiffened by using a cable truss. As the stiffness of the cable truss depends 

on the cross section, the Young’s Modulus and the angle in between the horizontal line and the cable, all of 

these values can be adapted in order to increase or decrease the stiffness of the cable truss. The stiffness of the 

steel wires is considered non-linear according to the stress strain curve measured in the laboratory (Figure 5.7). 

The difference in loading and unloading is considered as well. For the measured cable in the experimental setup, 

it was found that  

 𝐸𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ≈ 3117.9𝐹0.3574 

 𝐸𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ≈ (4 ∗ 10−7)𝐹3 − 0.0044𝐹2 + 25.075𝐹 + 3900    (5.6) 
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Figure 5.7: Approximate equation for the Young's Modulus of the steel cables 

In the comparison of the bridge with and without cable truss, an external load being equal to the mass of one 

person was applied (i.e. 𝐹 = 750𝑁). It is seen that the cable truss is favorable in terms of both deformation and 

acceleration. Although the unprestressed cable truss already shows a tremendously improved model, the 

physical parameters of the cable truss can be modified to improve the response behavior even further. This is 

seen in different comparisons, where the angle of the cable, the amount of prestress and the diameter are 

adapted and compared to the standard values (Figure 5.8, Figure 5.11). The deformation compared to the exact 

same bridge without the cable truss is approximately reduced by a factor five and the steady state error is 

reached more than four times as fast when using the standard values for the cable truss (Figure 5.9, Figure 5.10). 

 

Figure 5.8: Standard values used for the cable truss 

 

   

Figure 5.9: Comparison bridge with and without cable truss (standard values) 
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Figure 5.10: Response of the bridge in the spatial and temporal domain (with and without cable truss, standard values) 

   

   

Figure 5.11: Modifying values for angle (α), diameter (d) and prestress (P) 
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maximum error (Table 5.3). Recalling eq. (4.53), this can be explained by the fact that the equivalent vertical 

spring stiffness increases linearly with regard to the cross sectional area, whereas it does not increase linearly 

with regard to the angle. Furthermore, the stiffness increases linearly regarding the modulus of elasticity, but 

this value does not increase linearly with regard to the prestress force in the cable. To that extent, one could 
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conclude that increasing the diameter of the steel cables improves the stiffness of the truss system, without 

introducing additional forces (prestress) or changing the geometry (angle). When increasing all physical values 

to their (approximate) practical maximum values, it is seen that the deformation reduces to only two percent of 

the standard bridge model. Using these ‘optimized’  parameters, one can see that the bridge starts to vibrate in 

its third mode shape, indicating that the stiffness of the bridge in between one end and mid span is becoming 

governing over the stiffness of the total system. Local deformation thus becomes larger at one and three quarter 

of the bridge, even if the external load is applied at mid span (Figure 5.12). It should be noted that increasing 

physical parameters seems reasonable in this relative small scale bridge design, but that this might not be 

possible in a larger scale design. In further models including the damper and the actuator, the standard physical 

parameters are used for the cable truss, unless indicated otherwise. This also holds for the physical properties 

of the bridge deck. 

 

Model Physical values 𝑤𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒  % 𝑤𝑚𝑎𝑥  % 

Standard 𝛼 = 12°, 𝑑 = 6𝑚𝑚, 𝑃 = 0𝑁 4.41𝑚𝑚 100 7.89𝑚𝑚 100 

Larger 𝛼 𝛼 = 20°, 𝑑 = 6𝑚𝑚, 𝑃 = 0𝑁 3.41𝑚𝑚 77 4.76𝑚𝑚 60 

Larger 𝛼 𝛼 = 30°, 𝑑 = 6𝑚𝑚, 𝑃 = 0𝑁 2.92𝑚𝑚 66 4.21𝑚𝑚 53 

Larger 𝑑 𝛼 = 12°, 𝑑 = 10𝑚𝑚, 𝑃 = 0𝑁 1.68𝑚𝑚 38 2.42𝑚𝑚 31 

Larger 𝑑 𝛼 = 12°, 𝑑 = 20𝑚𝑚, 𝑃 = 0𝑁 0.43𝑚𝑚 9 0.59𝑚𝑚 7 

Prestress 𝛼 = 12°, 𝑑 = 6𝑚𝑚,𝑃 = 1000𝑁 3.71𝑚𝑚 84 5.95𝑚𝑚 75 

Prestress 𝛼 = 12°, 𝑑 = 6𝑚𝑚,𝑃 = 5000𝑁 2.34𝑚𝑚 53 3.44𝑚𝑚 44 

Optimized 𝛼 = 30°, 𝑑 = 20𝑚𝑚, 𝑃 = 5000𝑁 0.11𝑚𝑚 2 0.17𝑚𝑚 2 

Table 5.3: Steady-state and maximum error for modifying the physical parameters 

 

 

 

Figure 5.12: Deformation in spatial and temporal domain 
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-- Standard, 500x scaled (𝛼 = 12°, 𝑑 = 6𝑚𝑚, 𝑃 = 0𝑁) 
-- Optimized, 5000x scaled (𝛼 = 30°, 𝑑 = 20𝑚𝑚,𝑃 = 5000𝑁) 
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5.3 Viscous damping 
As a passive improvement to uncomfortable vibrations, a viscous damper was modelled in between the bridge 

and the cable truss (Figure 5.13). It was assumed in the numerical models that the damper adds a certain mass 

to the system, which is assumed ten kilograms in this case. Initially, the spring stiffness for the cable truss was 

calculated using the standard values as described in the previous section. This also includes zero prestress force, 

leading to a relative low modulus of elasticity for the cables.  

 

Figure 5.13: Model of the bridge with two dampers, applied at mid-span 

5.3.1 Efficiency of the damper 
The damping coefficient is varied and is compared to the bridge without damping for impulse loading. As the 

cable provides a relative low stiffness, it is seen that the complete bridge easily starts to vibrate in a certain 

frequency, which converges to the vibration of the bridge with a rigid connection to the cable truss when the 

damping coefficient goes to infinity. As a result, just adding damping will not directly lead to a more comfortable 

structure. One could say on the one hand that a small amount of damping will result in large deformations, 

converging to the response of the bridge deck only for zero damping. On the other hand, a large amount of 

damping will result in a vibration almost equal to that of the bridge with cable truss only, where deformation is 

reduced but vibrations are damped out after a larger amount of time (Figure 5.14). In the case of using standard 

values, it could be concluded that a damping coefficient equal to 𝑐 ≈ 2000𝑁𝑠/𝑚 performs best on comfort 

criteria, whereas the maximum deflection is exceeded in this case (Table 5.4).  

Damping 

coefficient 

Standard values cables 

(𝛼 = 12°, 𝑑 = 6𝑚𝑚, 𝑃 =

0𝑁) 

Improved values cables 

(𝑑 = 10𝑚𝑚, 𝑃 = 1000𝑁) 

Spring added 

(𝑑 = 10𝑚𝑚, 𝑃 = 1000𝑁) 

 𝑤𝑚𝑎𝑥  𝑡𝑑𝑖𝑒−𝑜𝑢𝑡 𝑤𝑚𝑎𝑥  𝑡𝑑𝑖𝑒−𝑜𝑢𝑡 𝑤𝑚𝑎𝑥  𝑡𝑑𝑖𝑒−𝑜𝑢𝑡 

No cables 99.7𝑚𝑚 ≫ 3𝑠 99.7𝑚𝑚 ≫ 3𝑠 99.7𝑚𝑚 ≫ 3𝑠 

𝑐 = 500 74.4𝑚𝑚 1.8𝑠 74.5𝑚𝑚 2.2𝑠 35.1𝑚𝑚 2.3𝑠 

𝑐 = 1000 60.1𝑚𝑚 1.1𝑠 60.3𝑚𝑚 1.1𝑠 30.1𝑚𝑚 1.2𝑠 

𝑐 = 2000 44.6𝑚𝑚 0.8𝑠 44.8𝑚𝑚 0.7𝑠 24.2𝑚𝑚 0.8𝑠 

𝑐 = 5000 27.3𝑚𝑚 1.3𝑠 26.2𝑚𝑚 0.4𝑠 18.4𝑚𝑚 0.6𝑠 

𝑐 = 10000 12.2𝑚𝑚 1.4𝑠 15.9𝑚𝑚 0.6𝑠 13.0𝑚𝑚 0.8𝑠 

𝑐 = 20000 10.3𝑚𝑚 2.1𝑠 4.5𝑚𝑚 0.8𝑠 4.42𝑚𝑚 1.1𝑠 

No damping 8.3𝑚𝑚 > 3𝑠 2.1𝑚𝑚 > 3𝑠 2.1𝑚𝑚 > 3𝑠 

Table 5.4: Comparison of the maximum deflection and the time needed to die out the vibration for different values for both 
the damper and the cable truss  

Increasing the equivalent stiffness of the cable truss will lead to a more stiff connection of the mass that is 

modelled in between the viscous damper and the cable truss. As a result, it is obvious that the amount of 

damping can now be increased further, and that this transition point from damping to vibration of the total 

systems occurs for larger amounts of damping (Figure 5.17). In fact, this transition point will never be reached if 

the cables are assumed infinitely stiff. In the case of the improved values, the point where the vibration is died 
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out is found for a larger damping coefficient (𝑐 = 5000𝑁𝑠/𝑚) and moreover, this point is reached twice as fast 

(Figure 5.15, Figure 5.16). 

 

Figure 5.14: Response of the mid-point of the bridge to an impulse load for different damping coefficients 

 

 

Figure 5.15: Response of the mid-point of the bridge to an impulse load with increased values for the cable truss stiffness 
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Figure 5.16: The acceleration is reduced much faster in time when using a viscous damper 

 

Figure 5.17: Three-dimensional plot of the displacement of the bridge with and without damper 

 

 

Figure 5.18: Three dimensional plot of the displacement of each individual discretized mass 
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5.3.2 Steady-state error 
For impulse loading, adding more damping reduces the deformation, as the damping coefficient actually delays 

the response on the external force. As a result, a very small deformation can be obtained even if the impulse 

load is a relatively large force. Applying a step load on the structure, it can be shown that the deformation 

theoretically increases to infinity, as an external force now constantly acts on top of the damper, without any 

reaction force that can resist the ever-increasing deformation. This problem can be solved by adding a physical 

value for spring stiffness to the damper. In fact, the damper is then transformed into a shock absorber, including 

both a value for damping and spring stiffness coefficient (Figure 5.19). Again, similar values for the damping 

coefficient are applied and a spring is added (Table 5.4, Figure 5.20). As a result, it can be seen that the long-

term deformation from a step load decreases and that the maximum deformation from an impulse load 

decreases as well (Figure 5.21, Figure 5.22). It should be noted that the improvement of adding a spring is less 

noticeable for impulse loading than for step loading. Secondly, adding the spring reduces the deformation and 

hence, reduces the effectiveness of the damper. 

 

 

 

Figure 5.19: Schematic model of a viscous damper and a shock absorber 

 

 

Figure 5.20: Response of the mid-point of the bridge to an impulse load when a 'shock absorber' is applied (k=20000N/mm) 
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Figure 5.21: Difference in deformation when using a shock absorber for both step and impulse loading 

 

 

Figure 5.22: Three-dimensional plot of the displacement of the bridge for a step load 
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where the proportional, derivative and integral gain are varied. Here, it should be said that the actuator is not 

assumed infinitely stiff, sometimes resulting in a larger maximum deformation compared to the bridge without 

actuator. This phenomenon was also found in the physical model of the bridge that was built in the laboratory. 

On the other hand, the connection between the cable truss and the bridge deck is considered infinitely stiff 

when no actuator is included in the model, resulting in zero relative displacement between the cable truss and 

the bridge deck (Figure 5.23, Figure 5.24). In all models concerning the actuator, it is now assumed that the 

actuator is active, even if all actuator values are set to zero. The actuator force now must extend its own virtual 

spring, whereas in practice the actuator can deform ‘freely’. In the numerical model, the actual actuator force is 

thus calculated as 

 𝐹𝑎𝑐𝑡,𝑟𝑒𝑎𝑙 = 𝐹𝑎𝑐𝑡,𝑡𝑜𝑡𝑎𝑙 − 𝑘𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 ∗ (𝑢𝑏𝑟𝑖𝑑𝑔𝑒 − 𝑢𝑐𝑎𝑏𝑙𝑒 𝑡𝑟𝑢𝑠𝑠)    (7.7) 

 

Figure 5.23: Difference in bridge without actuator (a) and with actuator (b) 

   

Figure 5.24: Response without actuator (rigid connection) and with inactive actuator (spring connection) 

In the literature study, it was already stated that the proportional gain of a PID-controller is in fact an additional 

spring which is multiplied by the measured error to calculate the force to apply. This can now also be shown in 

the bridge model with actuator (Figure 5.25). It is seen that increasing the proportional gain value leads to a 

better reduction of the steady-state error, whereas this also leads to a larger overshoot. In addition, the 

derivative gain factor is added and this leads to a virtual damper added to the dynamic model, as well as an 

additional term to the actuator force, leading to a better dynamic response of the actuator (Figure 5.26). It 

should be noted that it was already found that this derivative gain factor is an uncertain factor in practice. As a 

result, comfort criteria are met in the numerical model relatively easy simply by increasing the derivative gain 

factor, whereas this is  not the case in the practical application. It should, therefore, be noted that this derivative 

gain value was taken relatively low compared to the other two values in most of the numerical analyses. Finally, 

the integral gain value is added and this results in a reduction of the steady-state error, which now converges to 

zero in time (Figure 5.27). In this case, the steady-state error is an actual error, as a step-load is applied as an 

external force. If one should model an impulse load, it is obvious that this steady-state error always converges 

to zero. It should be noted that in all numerical simulations a step load was implemented as external force, 

regarding the actuator. In this way, the deformation control of the actuator can best be simulated. Besides the 

user-defined PID-variables, the control system included some other parameters that have been implemented in 

the numerical model. As was stated already in the previous section, time delay must be included as it is simply 

impossible to respond on the measured error without losing some time in between the measurement and the 
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actual force application. To that extent, it can be seen that a larger time delay always results in incorrect actuator 

forces, which can even result in an increased vibration time compared to the bridge without actuator (Figure 

5.28). 

   

 

Figure 5.25: Increasing the KP value: external applied force (a), actuator force (b), displacement (c)  
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Figure 5.26: Using a KD value: actuator force (a), acceleration (b), displacement (c)  

 

   

 

Figure 5.27: Increasing the KI value: actuator force (a), acceleration (b), displacement (c) 
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It should be noted here, that the actuator in the practical model responds relative fast and that these extreme 

conditions will not occur in practical examples. A second limitation in hardware in the actuator was implemented 

as the maximum response time. This refers to the actual minimum time interval that is required in between two 

controlled actuator forces. Similar to the delay time, this time interval is quite small in present applications (i.e. 

> 20𝐻𝑧). Some values were computed and obviously, it is seen that a larger response time leads to worse 

actuator behaviour, which is seen in the displacement graph of the bridge deck (Figure 5.29). 

   

Figure 5.28: Different values for time delay in the PID-controller (KP=500, KI=5000, KD=50) 

   

Figure 5.29: Different values for response time of the actuator (KP=500, KI=5000, KD=50) 

   

Figure 5.30: Decreasing the limit force of the actuator (KP=500, KI=5000, KD=50) 
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actuator force to the model. It can be seen that a steady-state error remains if the actuator force is smaller than 

the external applied force (Figure 5.30).  
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To conclude, the actuator can perform quite well on deformation control if the described parameters are limited, 

but vibration control is guaranteed better when using a viscous damper (Figure 5.31). A number of limitations 

were discussed, which are dependent on the quality of the actuator that is used in a comparable application. It 

is seen that decreasing these limitation variables can lead to worse results in terms of both displacement and 

vibration control. 

 

 

Figure 5.31: Three-dimensional plot of the displacement of the bridge deck in time, with and without actuator (KP=500, 
KI=5000, KD=50, Flimit=10000N, tdelay=0.01s, tresp=0.01s) 

5.5 Damping in an active system 
It can be concluded from the numerical analysis that an actuator can provide deformation control, which means 

that the steady-state deformation converges to zero in time. On the other hand, it can be seen that vibrations 

are better controlled or in other words damped out much faster when using the damper. Furthermore, the 

damper is not sensitive to delay time, power independent and is probably cheaper than an expensive control 

system. After discussing the advantages and disadvantages of both methods, the main purpose is to combine 

the viscous damper and the PID-controller. As a result, the combination of both systems should lead to the 

elimination of the disadvantages of both methods. Two different models were considered, including a model 

where the damper and actuator are connected in series and a model where a top deck is introduced on top of 

the bridge. In this model, damping is implemented in between those two bridge decks (Figure 5.32). 

 

Figure 5.32: Damping combined with an actuator: two models 
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As a first combined model, the damper and actuator are connected in series. As indicated in the figure, the 
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         (5.8) 

 

The main benefit of this system is that heavy vibrations are damped out quite fast with the viscous damper, 

resulting in a steady-state error that is reached without observing one single harmonic vibration. As a result, the 

actuator starts to respond on the steady-state deformation rather than the vibration of the bridge. This then 

results in better performance of the actuator, as it was found from the previous model that the actuator 

performs quite well on deformation control. In the first numerical analysis, an impulse load was applied to the 

dynamic model, which results in a better dynamic response than the model with the actuator only. It should, 

however, be noted that using only the damper results in a slightly better dynamic response, as here no steady-

state deformation occurs at all. This implies that the actuator thus should not respond at all. On the other hand, 

it is seen that activating the actuator reduces the maximum error. Furthermore, the actuator is now much less 

sensitive to fluctuations in its input parameters, as results are shown for relatively extreme values for 

proportional and integral gain. It is seen that for impulse loading, there is only a small difference in using a shock 

absorber or a damper (Figure 5.33, Figure 5.34). 

Besides impulse loading, a step load was applied to the described dynamic model. Obviously, the steady-state 

error is not reduced if the viscous damper (without a spring stiffness) is used. It can be seen that adapting the 

actuator can improve the steady-state error at short-term, but in the end, the maximum deformation is reached, 

which is equal to the deformation of the bridge deck only. To that extent, it can again be concluded that using 

the shock absorber performs much better for step loading, as the error now reduces back to zero. It may thus 

be concluded that the positive effect of the shock absorber outweigh the slightly negative effects on vibration 

control (Figure 5.35, Figure 5.36).  

Finally, it can be obtained that even time delay does only have a minor influence on the behavior of the total 

system if one decides to use the shock absorber and the actuator in series (Figure 5.37). As a result, using the 

shock absorber in combination with the actuator results in a good compromise of vibration and deformation 

control, where the influence of fluctuating parameters is much less noticeable, especially for the actuator.  
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Figure 5.33: Different values for the actuator, when using the actuator in series with a viscous damper 

 

 

Figure 5.34: Different values for the actuator, when using the actuator in series with a shock absorber 
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Figure 5.35: Different values for the actuator, when using the actuator in series with a viscous damper 

 

 

Figure 5.36: Different values for the actuator, when using the actuator in series with a shock absorber 
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Figure 5.37: Influence of delay time on the behavior of the bridge model 

 

 

Figure 5.38: Three-dimensional plot of the displacement in time for a step load, with and without actuator (actuator: 
KP=500, KI=5000, KD=50, Flimit=10000N, tdelay=0.01s, tresp=0.01s, damper: c=3000Ns/m, k=20000N/mm) 

5.5.2 A damped top layer 
Another improvement that is investigated into more detail is a bridge deck with a damped top layer. In this 

model, the bridge deck consists out of two layers and within these layers viscous damping is added. The damped 

interlayer could for instance be a rubber layer which is loaded into shear when the two layers of the bridge deck 

start to deform. Because of shear deformation, the bridge deck is damped more than the original model of the 

bridge. This extra layer of damping was added to the model by simply increasing the 𝛽-value for Rayleigh 

damping. In case of a comparison between both models, the total amount of added Rayleigh damping should 

be approximately equal to the total amount of viscous damping in the shock absorber. Generally, adding more 

damping to the bridge deck results in better vibration control, when this model is compared to the bridge with 

actuator only. The actuator, however, is more sensitive to user-defined input for 𝐾𝑃, 𝐾𝐼  and 𝐾𝐷. Furthermore, 

physical values like time delay have more influence than in the previous model, where the damper and actuator 

were placed in series. As a positive side effect, it appears that relative large deformations are not found at all in 

this model. This could be explained by the fact that damping is now much better divided over the total span of 

the bridge. The viscous damper, which is not present in this case, mainly caused these deformations in previous 

models. The 𝛽-value was multiplied ten times and one hundred times and for both values the displacement and 

acceleration over time is shown (Figure 5.39). It should be noted here, that a multiplication of one hundred times 

the default 𝛽-coefficient is approximately equal to a viscous damping ratio of 𝑐 = 30000𝑁𝑠/𝑚 for the shock 
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absorber, whereas ten times the  𝛽-value approximates the used value for the shock absorber in the previous 

model.  

   

 

Figure 5.39: Response to a step load: acceleration (a), actuator force (b) and displacement (c) 

 

   

Figure 5.40: Sensitivity to time delay (development of instable behavior) for KP=500, KI=5000, KD=50 
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5.6 Performance 
A number of dynamic models concerning a small-scale pedestrian footbridge has been analyzed by means of a 

numerical tool for dynamic analysis. Because of many input variables, each model could be examined for 

different physical properties and the advantages and disadvantages of each model were described. In this 

section, all models are compared for a few loading configurations, with regard to different design criteria like 

deformation and vibration control (Figure 5.41). First, the comparison is made for both the impulse and step 

load and secondly, a realistic load case was simulated that could practically be expected on the case study. In all 

comparisons, the numerical simulation is still done for one pedestrian with a mass equal to 𝑚 = 75𝑘𝑔. 

Furthermore, it should be noted that the cable properties were assumed a little better than standard (i.e. 𝑑 =

10𝑚𝑚, 𝑃 = 1000𝑁), as the difference in behaviour between models is seen better when the cables provide a 

little more stiffness. This diameter was also used in the actual physical model of the bridge for experimental 

testing. 

 

Figure 5.41: All different models for the pedestrian bridge design 

5.6.1 Short and long-term loads 
As for all models, the dynamic response was simulated for both short and (relatively) long-term loading. As for 

now, these load cases are considered again for all models including the shock absorber, the actuator or both. It 

can now be stated that the best result for vibration control is found for the model with only a viscous damper 

(or a shock absorber), as the time needed to die out completely is smallest for this model. On the other hand, it 

is seen that this is the only model where a relatively large steady-state error remains and to that extent, this 

model performs poorly on deformation control. In addition, the steady-state error does not even meet the 

deflection criteria stated for this bridge design. Combining damping with an actuator seems a better overall 

solution, as vibrations are damped out faster to the one hand, and the actuator is less sensitive to user-defined 

input to the other hand. The main difference in these two combined models is that the first one seems to 

respond a little faster on vibrations, whereas deformations remain smaller in the total time domain for the 

second one. Furthermore, the viscous damper in model five seems to respond better on poor conditions for the 

actuator (i.e. large time delay, zero derivative gain and so on), whereas model six is a little more sensitive to 

these conditions. In general, it may be concluded that both combined models perform well, especially if they 

are compared to the second model without any stabilization improvements. This may be concluded for both 

deformation and vibration control. 
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 Load 𝑤𝑚𝑎𝑥  𝑤𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡 𝑡𝑑𝑖𝑒−𝑜𝑢𝑡 𝑡𝑎<0.7𝑚/𝑠2  

Model 2 Impulse load 2.2𝑚𝑚 0.0𝑚𝑚 > 3𝑠 2.3𝑠 

Step load 2.2𝑚𝑚 1.3𝑚𝑚 > 3𝑠 1.3𝑠 

Model 3 Impulse load 21.6𝑚𝑚 0.0𝑚𝑚 1.2𝑠 0.5𝑠 

Step load 21.9𝑚𝑚 21.9𝑚𝑚 0.6𝑠 0.2𝑠 

Model 4 Impulse load 13.0𝑚𝑚 0.0𝑚𝑚 > 3𝑠 0.8𝑠 

Step load 13.1𝑚𝑚 0.0𝑚𝑚 2.5𝑠 1.3𝑠 

Model 5 Impulse load 24.5𝑚𝑚 0.0𝑚𝑚 2.2𝑠 0.9𝑠 

Step load 24.5𝑚𝑚 0.0𝑚𝑚 1.5𝑠 0.6𝑠 

Model 6 Impulse load 11.7𝑚𝑚 0.0𝑚𝑚 1.8𝑠 0.7𝑠 

Step load 11.8𝑚𝑚 0.0𝑚𝑚 1.4𝑠 0.7𝑠 
Table 5.5: Comparison for all models (deformation and acceleration) 

 

Figure 5.42: Displacement over time for all models (KP=200, KI=2000, KD=1, tdelay=0.1s, tresp=0.01s, cd=3000Ns/m, 
kd=20000N/mm, Fimp=735N, timp=0.25s) 

 

   

Figure 5.43: Acceleration over time for all models (KP=200, KI=2000, KD=1, tdelay=0.1s, tresp=0.01s, cd=3000Ns/m, 
kd=20000N/mm, Fimp=735N, timp=0.25s) 
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Figure 5.44: Displacement over time for all models (KP=200, KI=2000, KD=1, tdelay=0.1s, tresp=0.01s, cd=3000Ns/m, 
kd=20000N/mm, Fimp=735N, tstep>3s) 

5.6.2 Realistic load cases 
Considering a structural bridge design, a realistic external load would not consist out of just one impulse load, 

as pedestrians are assumed to be constantly crossing a bridge, creating multiple impulse loads at different 

locations along the bridge span. Furthermore, it can be presumed that another typical case for a pedestrian 

bridge would be standing on the bridge for a while. All these types of loading configurations can be predicted by 

the numerical model, as the discretization in the time domain allows for non-linear terms for all input 

parameters, including the external load. Since all models are already compared for the standard loading 

conditions, only a few are shown for some typically expected load cases. Since the bridge deck is discretized by 

four elements, some assumptions are made for these load cases as well. Walking over the bridge is considered 

the first load case. Here, some typical values are assumed for walking frequency and span of each step. The span 

of each step was here taken equal to one eight of the total bridge span so that these steps correspond to the 

discretized mass locations. Running over the bridge was simulated as a second load case, where the step span 

and the frequency were taken twice as large. In mathematical terms, this can be written as 

 𝑓𝑤𝑎𝑙𝑘𝑖𝑛𝑔 = 2𝐻𝑧    𝑓𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 4𝐻𝑧 

𝑇𝑠𝑡𝑒𝑝,𝑤𝑎𝑙𝑘𝑖𝑛𝑔 = 0.5𝑠   𝑇𝑠𝑡𝑒𝑝,𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 0.25𝑠  

𝐿𝑤𝑎𝑙𝑘𝑖𝑛𝑔 = 0.625𝑚  𝐿𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 1.250𝑚    (5.9) 

As a third load case, it was said that the pedestrian stops for a while at mid-span, before crossing the bridge in 

total. The impulse time at mid span is here taken as a larger value. Finally, this results in three typical loading 

configurations (Figure 5.45). It should be noted here that a step in between two discretized masses was 

approximated as half the load to the left side and half the load to the right side. As a result of the moving point 

load in time, each of the three discretized masses concerning the bridge deck is loaded as a function of time. 

This implies that the first step is set on the first mass for running, whereas the first step is set in between the 

support point and the first mass for walking and so on. For standing, an extra time interval is added when the 
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pedestrian is standing on the second mass. For each load case, the external load can now be placed at the right 

mass for each time interval (Figure 5.46, Table 5.6). 

     

Figure 5.45: Typical load cases 

 

 Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 

Case 1: 
walking 

𝑡 = 0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 0.5 
𝐹1 = 𝐹 2⁄  
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 1.0 
𝐹1 = 𝐹 
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 1.5 
𝐹1 = 𝐹 2⁄  
𝐹2 = 𝐹 2⁄  
𝐹3 = 0 

𝑡 = 2.0 
𝐹1 = 0 
𝐹2 = 𝐹 
𝐹3 = 0 

𝑡 = 2.5 
𝐹1 = 0 

𝐹2 = 𝐹 2⁄  
𝐹3 = 𝐹 2⁄  

𝑡 = 3.0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 𝐹 

𝑡 = 3.5 
𝐹1 = 0 
𝐹2 = 0 

𝐹3 = 𝐹 2⁄  

𝑡 = 4.0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 0 

Case 2: 
running 

𝑡 = 0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 0.25 
𝐹1 = 2𝐹 
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 0.5 
𝐹1 = 0 
𝐹2 = 2𝐹 
𝐹3 = 0 

𝑡 = 0.75 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 2𝐹 

𝑡 = 1.0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 0 

− − − − 

Case 3: 
standing 

𝑡 = 0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 0.5 
𝐹1 = 𝐹 2⁄  
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 1.0 
𝐹1 = 𝐹 
𝐹2 = 0 
𝐹3 = 0 

𝑡 = 1.5 
𝐹1 = 𝐹 2⁄  
𝐹2 = 𝐹 2⁄  
𝐹3 = 0 

𝑡 = 2.0 
𝐹1 = 0 
𝐹2 = 𝐹 
𝐹3 = 0 

𝑡 = 5.5 
𝐹1 = 0 

𝐹2 = 𝐹 2⁄  
𝐹3 = 𝐹 2⁄  

𝑡 = 6.0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 𝐹 

𝑡 = 6.5 
𝐹1 = 0 
𝐹2 = 0 

𝐹3 = 𝐹 2⁄  

𝑡 = 7.0 
𝐹1 = 0 
𝐹2 = 0 
𝐹3 = 0 

Table 5.6: Load on each mass in time for different load cases 

 

 

Figure 5.46: Moving point load in time 

Again, it can be concluded that adding viscous damping only results in the best dynamic response for running, 

since the external applied load is most close to impulse loading. The amount of damping may be a little larger 

for best performance here, compared to other load cases like walking, as the impulse loads resulting from 

running are more powerful and thus more damping is needed to give a proper response. On the other hand, the 

model including both the actuator and the damper performs best for standing, as the steady-state error is 

important in this model as well. In the case of walking, it is seen that the actuator starts to respond on the overall 

error by simply increasing the actuator force. This results in a slightly positive deformation overall, which in turn 

results in deformations close to zero when the impulse load is active. It may be stated that this positive 

deformation can be judged peculiar, as it is against nature that something deforms in the opposite way of the 

external load direction. It can be seen that after a while, the actuator finds an equilibrium response over time 

(Figure 5.47, Figure 5.48, Figure 5.49). To conclude, the overall performance seems to be best for the model that 

combines the actuator with damping, concerning all load cases walking, running and standing. Here, mainly the 

integral gain value should be evaluated, as this value now seems to deform the bridge too much in positive 

direction during impulse loading. Reducing this value would lead to slower response to a step-load (in the case 

of standing). 
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Figure 5.47: Response to the first load case: walking (KP=10, KI=1000, KD=1, tdelay=0.1s, tresp=0.01s, cd=3000Ns/m, 
kd=20000N/mm) 

 

Figure 5.48: Response to the second load case: running (KP=10, KI=1000, KD=1, tdelay=0.1s, tresp=0.01s, cd=3000Ns/m, 
kd=20000N/mm) 

 

Figure 5.49: Response to the third load case: standing (KP=10, KI=1000, KD=1, tdelay=0.1s, tresp=0.01s, cd=3000Ns/m, 
kd=20000N/mm) 
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5.6.3 Adding more dampers 
In all previous models, the center mass of the bridge deck has been used to obtain and compare results and 

although damping results in a much better response to vibrations for this mass, the discretized masses located 

on one and three quarter of the bridge span still show uncomfortable vibrations in time. Obviously, the long-

term deformation of these masses remains small, as the relative span between the center mass and the support 

location is only half the span of the total bridge. As a result, one may assume that deformation is controlled 

adequately using one actuator. On the other hand, the dynamic response may be improved by adding more 

dampers.  In this case, damping was added in between the actuator and the two side masses of the bridge deck. 

A distinction was made between adding shock absorbers (Figure 5.50) or viscous dampers (Figure 5.51). It should 

be noted here, that the total amount of damping and spring stiffness was taken equal to the model with one 

shock absorber. However, these coefficients are now equally divided. For the model with three shock absorbers, 

this implies that each absorber has both a damping coefficient and a spring stiffness coefficient equal to one 

third of the standard model. For the other model, only the damping coefficient is divided, resulting in a spring 

stiffness for the middle absorber equal to the standard value.  

 

Figure 5.50: Adding more shock absorbers to the bridge 

 

Figure 5.51: Adding viscous dampers to the bridge 

Obviously, the model with only one shock absorber performs quite well for the center mass, which in the 

response graph is indicated as ‘Mass 2’ (Figure 5.46). On the other hand, the two other discretized masses (Mass 

1 and 3) still show vibration issues, which could be considered uncomfortable (Figure 5.52). Furthermore, it can 

be seen that these vibrations start to increase after a number of impulse loads have taken place. In other words, 

comfort is only found if a pedestrian is halfway the span, whereas walking at three quarter of the span of the 

bridge may be judged very uncomfortable. Adding two viscous dampers at each side, it can be concluded that 

now vibrations are damped out quite fast for each mass, resulting in a better overall comfort criterion (Figure 

5.53, Figure 5.54). Furthermore, it was found that the difference in using three shock absorber or two additional 

viscous dampers does only have a minor difference, where the model with three shock absorbers performs best 

in terms of comfort criteria. 

Clearly, using only damping at center span seems to damp out vibrations so well, that vibrations having a 

maximum at center span do not occur anymore. Nevertheless, this does not hold for any even frequency, as 

here always a point of zero deformation is found at exactly center span. Hence, applying damping at center span 

will never decrease these even vibrations. The second natural frequency is the most important here, because all 

higher frequencies have much less influence on the total deformation and this frequency is indeed observed in 

numerical models, and even in the experimental test, one can observe this second frequency whereas the first 

natural frequency is not observed at all anymore. 
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Figure 5.52: Response to load case: walking, for using only one shock absorber at each side (KP=100, KI=1000, KD, 
tdelay=0.01s, tresp=0.01s, cd=3000Ns/m, kd=20000N/mm) 

 

Figure 5.53: Response to load case: walking, for using one shock absorber and two dampers at each side (KP=100, KI=1000, 
KD=1, tdelay=0.01s, tresp=0.01s, cd=1/3cstand=1000Ns/m, kd=20000N/mm) 

 

Figure 5.54: Three-dimensional plot of the displacement in time for load case: walking 
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6 Experimental research 
This project contains a number of principles regarding dynamic analysis of structures, where some assumptions 

and simplifications had to be made in order to create a numerical approximation model for predicting the 

dynamic response of the pedestrian footbridge design on different external load cases. As a result, one may 

obtain that results from these numerical models should be verified by means of experimental testing. To that 

extent, a physical model was tested in the Pieter Van Musschenbroek Laboratory at the University of Eindhoven. 

In this part of the report, the main principles for the experimental setup are discussed and some results that 

were obtained during testing are compared to the numerical simulations. 

6.1 The footbridge design 
As a start for the footbridge design, a steel frame has been built already as seen in the problem description of 

this report. The steel frame provides the main supporting structure for both the steel bridge deck and the cable 

truss. A supporting location is provided by two steel columns, connected to a steel beam at a height of 

approximately one meter at each side. Another steel beam was provided between the supporting steel 

provisions in the longitudinal direction in order to provide both stability to the frame and to resist additional 

compression forces resulting from the cable truss. On top, hinged connections are seen, upon which two steel 

tubes are located, providing the main structure of the bridge deck. The span length of the bridge is equal to five 

meters (annex B). Finally, a walking deck was provided by means of timber elements in perpendicular direction 

to the steel tubes. So far, the experimental model of the pedestrian bridge was already built (Figure 6.1). As a 

result of the relative lightweight design it can be seen that deformation already is significant for only the dead 

weight of the bridge itself. This was also obtained in the numerical simulations, where the bridge deformed 

heavily under loading conditions for one pedestrian, for example. 

   

Figure 6.1: Experimental test setup (a) and support detail (b)  

Similar to the numerical approach, measurements on the experimental model were started by evaluating the 

bridge deck only. To do so, two measurement devices have been used, which can measure deformation in time 

at a speed of one kilohertz. Exactly at mid-span, the deformation of the bridge was measured at the left and 

right steel tube of the bridge deck. In this way, the averaged center deformation can be compared to the results 

that were found in numerical analysis and the main principles in using damping or a control system can be 

compared and verified. Before starting measurements, these devices were calibrated (Figure 6.2, annex C). 

As this bridge deck is very limited in strength properties regarding its cross section, only a small external load 

equal to twenty kilograms was applied exactly at mid-span and exactly in between the two steel tubes. It should 

be noted here, that for all other experimental tests the cable truss is added to the bridge and that much more 

load can be applied to the structure in these cases. Nevertheless, the start of this experimental research includes 

the bridge deck only, similar to the starting point in the numerical simulations. A harmonic motion was obtained 

by measuring the deformation of the bridge in time, which is a direct result of the step load that was applied on 

top. Only applying a small mass gave rise to a vibration that took more than twenty seconds to die out 

completely, resulting from the low Rayleigh Damping coefficient for the steel tubes. This motion was compared 

to the numerical model by applying a step load with equal mass at the center discretized mass. Comparing the 

dynamic response, it was found that the numerical model provides a fairly good agreement to the experimental 

setup (Figure 6.3). 

a b 
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Figure 6.2: Calibration of measurement device 

 

Figure 6.3: Comparison of the experimental model to the numerical simulation for an external load applied at center span 

Although the numerical simulation shows a fairly good agreement overall, some remarkable differences are 

obtained as well. For instance, the steady-state error is larger in the numerical model than in the experimental 

test. This could be explained by the fact that the bridge is not fully simply supported in practice, as these roller 

supports can transfer a small moment as well. Furthermore, only the stiffness of the steel beams was taken into 

account in the numerical analysis, whereas the walking deck is kept in place by wooden spacers, which also 

provides some additional stiffness to the structure. Regarding dynamics, a small difference in stiffness also 

accounts for a change in natural frequency, resulting in a slightly smaller or larger period. This also implies a 

constructive error during time, resulting in large errors at a specific time increment. For instance, the error at 

5.95s in the comparison is almost equal to a double amplitude. Although these errors are found when evaluating 

a comparison locally, it can be concluded that the overall comparison shows a good agreement after all. 

Eventually general agreement such as die-out time, maximum error and steady-state error are much more 

important than having an exact agreement at each point in the complete graph.  

6.2 The cable truss 
The main structure of the pedestrian footbridge comprises both a walking deck and a cable truss, where the 

latter was already seen in the initial pedestrian footbridge (Figure 3.2). Regarding the numerical results, the 

cable truss of the initial design was rebuilt using steel wires with a larger diameter (i.e. 10 mm instead of 6 mm). 

The equivalent stiffness of the cable truss in vertical direction is thus enlarged, so that overdamping of the 

system will not occur as fast as for the smaller cables. Hence, the effect of viscous damping will become much 

more visible. Similar to the smaller cables, a tensile test was performed in order to measure the modulus of 

elasticity. Again, it was assumed that the effect of cable stiffening is to be neglected after five loading cycles and 
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that a constant stress strain diagram can be used for each loading cycle after the fifth one. It should be noted 

that the effect of cable stiffening is larger if tensile stress in the cable is larger. If a cable was loaded initially to a 

certain value for an infinite number of cycles, the effect of cable stiffening is not found at all at each new loading 

cycle. However, loading this exact same cable to twice that certain value will again lead to cable stiffening in the 

first few loading cycles. Hence, the modulus of elasticity improves further, even for loads beneath the initial 

value. After a number of cycles, the stress strain diagram again remains constant. In this case, the pretension 

from the dead load of the bridge itself was measured and calculated. Furthermore, it was assumed that all 

measurements are taken with an external load equal to one person. This implies that the total cable force will 

not exceed 𝑃 = 3𝑘𝑁. Hence, the steel wire was loaded up to this value for five cycles and the resulting stress 

strain diagram was used for numerical simulations (Figure 6.4). Furthermore, the cable was also loaded in five 

cycles for different maximum loads (annex D). It can indeed be obtained from these tensile test results that the 

cable stiffening effect occurs every time the cable loaded up to larger values.  

   

Figure 6.4: Results for loading and unloading for P=3kN (including their approximate functions) 

Besides increasing the diameter of the cables, some adaptations were made in the connections too, so that 

failure is simply not possible in any of these connections (Figure 6.5, Figure 6.6). Furthermore, the pretension in 

the cables was measured by two additional force gauges, applied at one side of the bridge for each cable truss 

(Figure 6.7c). The results that were obtained from these force gauges showed good agreement to the hand 

calculations of the experimental bridge. As already described, the obtained tensile forces in the cables were 

used for estimating the modulus of elasticity, resulting in an accurate approximation of the stiffness of the cable 

truss in vertical direction. Using turnbuckles, the pretension in the cables can also be regulated to some extent. 

Applying zero pretension, an initial deformation of the bridge is found under its own dead load, whereas 

tightening the cable reduces this initial deformation back to zero (Figure 6.7a, Figure 6.7b). Two actuators are 

positioned in between the bridge deck and the cable truss, where each actuator is located exactly at half the 

span of the bridge. Initially, the actuators were inactive in order to measure the deformation (in time) of the 

bridge where only the cable truss was added. Similar to the numerical simulations, the bridge was evaluated 

with and without any pretension force in the cable truss. The pretension force that was measured in the 

experimental model was copied to the numerical simulation in order to compare the practical situation to the 

numerical analysis. 

   

Figure 6.5: Pedestrian bridge with cable truss ⌀ 10 steel wires (a) and measurement devices (b)  
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Figure 6.6: Connection details of the cable truss, including turnbuckles to provide user-defined pretension in the cables 

     

Figure 6.7: Bridge without (a) and with pretension in the cables (b) and measuring the cable pretension (c) 

A pretension force of 𝑃 ≈ 1.5𝑘𝑁 is necessary in each steel wire of the cable truss in order to reduce the 

deformation of the bridge under its own weight back to zero. This is in accordance with the hand calculations 

provided in annex B, where it was found that the pretension in the cables must be equal to 𝑃 = 1528𝑁. 

Furthermore, the additional tensile force in each cable is equal to  𝑃 ≈ 1.0𝑘𝑁 for the load from one person, 

which is also in agreement with calculations by hand. A measurement was taken from one person crossing the 

bridge halfway (Figure 6.8, Figure 6.9). It can be seen that the cable force is equal to the force of the dead weight 

only at starting position, whereas the tensile force is equal to the force of the dead weight and the additional 

pedestrian at the end of the measurement. In between, the additional force of the pedestrian generates more 

tension in the cable truss, which also implies that the modulus of elasticity improves and that the spring stiffness 

coefficient in vertical direction enlarges during a certain loading event. It should be noted that the cable force 

exceeds the force that is calculated in the steady-state error at some points, which is a direct result of (dynamic) 

impulse loading. Each new impulse load, equal to a new step during walking, is clearly seen in both graphs. 

 

Figure 6.8: Crossing the bridge (deformation in time) 
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Figure 6.9: Crossing the bridge (cable force as a result of the additional external force) 

Many experimental tests are performed by measuring the deformation resulting from one pedestrian. Although 

each test was visually performed by walking or standing in the middle of the two measurement devices (i.e. 

exactly in between the left and right steel tube of the bridge deck), is should be noted that small deviations are 

found when a test is performed multiple times. The difference in left and right measurement device is sometimes 

different, as external load is not always precisely centered and as a pedestrian is not guaranteed a load that will 

result in exactly the same graph for two equal tests. Regarding the previous measurement (Figure 6.8, Figure 

6.9), it should be noted that an extreme difference in left and right measurement device was obtained here and 

that it can be stated that this should be taken the upper limit in differences between the two measurement 

sides. Nevertheless, main differences regarding the principles of using damping or a control system are found in 

each test that is performed and it should thus be noted, that most of the results in this chapter are compared in 

this line of thought. Here, the averaged value of the left and right measurement device is then used. 

Furthermore, a controlled test is performed as a final test to compare all models in the final part of this report. 

The amount of pretension that was measured in the force gauges is a direct result of the dead weight of the 

bridge itself. The amount of pretension, however, can be adapted by tightening or loosening the turnbuckles. 

From an experimental point of view, the vibration of the bridge can thus also be compared for using zero or a 

large pretension force. The pretension in the cables was initially measured for the bridge being perfectly 

horizontal and the displacement over time was compared to the bridge where the cable truss was not 

pretensioned at all. In this case, the cables were tightened just as much to straighten them, so that in fact a small 

pretension is needed to lift the dead load of the cable truss itself. This pretension force, however, can be 

neglected. Furthermore, the zero point for this measurement was taken as the deformation of the bridge under 

its own dead load, without additional loading. It is now seen that tightening the steel cables indeed results in 

more stiffness of the total bridge, which is a direct result of the enlarged modulus of elasticity. Besides the 

steady-state error, the maximum error just after impact time has become smaller as well (Figure 6.10). 

Furthermore, the frequency becomes larger for the bridge with tightened cables. This can theoretically be 

explained by the larger spring stiffness in vertical direction for the case with pretension in the cables, as the 

natural frequency increases with the square root of the spring stiffness coefficient, as the mass remains equal. 

Both the reduction in deformation and the increased frequency ratio can thus already be obtained by adding a 

relatively small pretension force in the cable truss. It should be noted that both increasing the diameter of the 

cables and changing the cable truss angle also increases the stiffness of the bridge, which is similar as found in 

the numerical simulations. 
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Figure 6.10: Displacement as a function of time for the case without and with pretension in the cables 

The initial deformation of the pedestrian bridge under its dead load should always be equal to zero. Besides 

tightening the cables, this dead load deformation can also be cancelled by activating the actuators. As a result, 

one may assume that the dead load deformation will always be equal to zero and that the pretension in the 

cable truss will thus always be equivalent to the value that was found for the pretensioned case. Hence, all 

further measurements include the pretensioned cable truss, where 𝑃 ≈ 1.5𝑘𝑁. 

Different load cases were considered, which were taken equal to the numerical simulations. Both running and 

walking over the bridge were thus considered. Furthermore, walking over the bridge with a stop at center span 

was considered as well. Measuring the displacement over time, it can be seen that for walking the frequency is 

indeed around two hertz, which was assumed in the numerical simulations as well. Each impulse is clearly seen 

in the response graph, and the deformation resulting from this response increases as the pedestrian is half way 

(Figure 6.11). In the case of running, the impulses are shorter and faster, resulting in a frequency that is 

approximately half the frequency of walking. Furthermore, it is seen that each impulse is more powerful in the 

case of running. This results in a larger maximum deflection of the bridge (Figure 6.12). Again, the first and fourth 

impulse have less influence on the deformation at center span than the second and third impulse, as these are 

located more close to the center. Finally, walking over the bridge was combined with a stop at mid-span. Clearly, 

this results in a constant steady-state error, as there is no actuator active to reduce this error back to zero (Figure 

6.13). The response before and after the stop at center span is approximately equal to the load case where the 

pedestrian simply walks over the bridge without stopping in between. It should be noted in these averaged 

measurements, that a person could walk slowly and gentle over the bridge, whereas walking faster (and creating 

impulses that are more powerful) would result in a graph that will approach the case of running. Therefore, all 

load cases are taken into account when different experimental models are compared. In this way, the differences 

in using damping or a control system can be compared for all these load cases and it can be seen of these 

improvements actually result in better performance for all load cases and to what extent these improvements 

are better in specific loading configurations. 
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Figure 6.11: Walking over the bridge: experimental measurement at center span, averaged value 

 

Figure 6.12: Running over the bridge: experimental measurement at center span, averaged value 

 

Figure 6.13: Walking over the bridge with a stop at mid-span: experimental measurement at center span, averaged value 
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Several load cases like walking and running show an overall agreement to the numerical analysis. For instance, 

the theoretical walking frequency for both running and walking is in agreement with the experimental results. 

Moreover, a comparison to the numerical and experimental result is shown in one graph (Figure 6.14). Here, it 

can be seen that the comparison is not as good as for the bridge without cable truss. The total amount of 

damping of the system seems to be underestimated in the numerical model, as the experimental test shows a 

more heavily, but still underdamped response to each impulse load. Values for damping of the total system 

seem thus be larger than theoretical values found in various literature studies for separate structural parts such 

as the steel wires (Feyrer, 2015). This may be explained by the fact that not all other forms of damping in this 

structure are taken into account, especially damping through the structure to the ground. Secondly, it can be 

shown that the maximum deformation from an impulse load is larger in practice than was found in the numerical 

study. This value is also influenced by the intensity of a footstep in this case, which may vary from one person 

to another. A certain variation was not modelled in the numerical simulations. Regarding the numerical analysis, 

it is seen that positive values are found in the displacement analysis. In experimental tests, is appeared that 

values above zero were measured very rarely. This difference may be explained by the fact that impulse loads 

were simulated with a time duration shorter than the actual time needed to take one step. This implies that 

there is a small time of zero force at all locations in between each new step. This results in a steady-state error 

being equal to zero in these certain time steps, which will create a small upward shift of the vibration. In practice, 

it seems that the external load of the pedestrian is present at all time and that there is no such time interval 

where the bridge is unloaded completely. This leads to a response graph that better resembles a constant step 

load, however, still showing peak displacements resulting from impulses. 

 

Figure 6.14: Numerical and experimental result for the load case 'walking', with pretensioned cables 

6.3 Actuators 
The actuators that are used were already seen in the bridge model (Figure 6.5). One actuator is positioned at 

each side of the bridge, exactly halfway the span of the bridge. Both actuators are based on a small rotational 

controlled engine, which then induces a linear displacement of the actuator in vertical direction. Each actuator 

is controlled through a custom-made program in Labview®, which is here called a VI (virtual instrument). Each 

VI has its own home screen (Figure 6.16), which can be adapted by self-written visual code (Figure 6.15). In this 

case, an elementary PID control system was modelled to respond on the measured error. The input error is 

updated real time at a speed of one kilohertz, whereas the program only is executed once in fifty milliseconds. 

As a result, a prescribed displacement of the actuator is calculated each cycle, resulting in the actuator shifting 

to that prescribed position. Multiple input parameters such as proportional and integral gain or movement 

speed can be adapted real-time. It should be noted that one actuator is positioned at each side of the bridge 

and that each actuator has its own sensor. Hence, measurements relate to the averaged value, whereas each 

actuator responds on the correct measurement at each side, resulting in a correct actuator force for each side. 
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Figure 6.15: Sensor and PID-controller in Labview, visual programming 

 

Figure 6.16: Sensor and PID-controller in Labview, running the code 

6.3.1 Gain values 
Similar to the numerical simulations, a number of parameters determines the behavior of the actuator. For the 

PID-controller, this includes the three typical parameters proportional, integral and derivative gain, where the 

proportional gain value is simply multiplied by the measured error, which results in an external force to reduce 

this error. Comparing different values for proportional gain, one could obtain that the steady-state error reduces 

for larger values for KP, whereas an overshoot starts to develop as well (Figure 6.17). Hence, better performance 

is not guaranteed by simply increasing the proportional gain value. This was also found in numerical analysis. It 

should be noted here, that activating the actuator results in a slightly smaller coefficient for stiffness of the 

actuator. This can be seen in the figure for the case where the actuator is not activated, where the maximum 

error is smaller than for the activated actuator (for 𝐾𝑃 = 500). Of course, increasing the value for proportional 

gain again starts to reduce the maximum error. Similar conclusions were drawn from numerical analysis as well.   
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The problem regarding the steady-state error was solved by adding an integral gain term to the actuator in the 

numerical simulations and this integral gain term was thus included in the experimental model for the actuator 

as well, where this value leads to a converging error in time. Obviously, increasing the term for integral gain 

leads to a faster response to the steady-state error (Figure 6.18).  

 

Figure 6.17: Proportional gain values in the PID-controller, experimental results 

 

Figure 6.18: Integral gain values in the PID-controller, experimental results 

Derivative gain was included in the experimental model by stating that the derivative is equal to the difference 

in error in between each time step. Hence, the error measured at 𝑡𝑖−1 was subtracted from the error measured 

at 𝑡𝑖  and then multiplied by the derivative gain value times the time step. Although the derivative gain value was 

responsible for adding imaginary damping to the actuator in numerical analysis, this phenomenon does not 

occur at all in the experimental model. Increasing the KD-value only does have a negligible impact on the total 

behavior of the actuator. In other words, the PID controller acts more like a PI controller in practice. This is 

shown by comparing the control system with and without derivative gain, in the case that the actuator goes 

from its initial position to the given set point (Figure 6.19). This phenomenon also has led to the main problem 

regarding the actuators: vibration control seems to be very difficult with this elementary control system. Both 

in numerical analysis and in experimental research it is thus seen that vibrations remain problematic, where it 

should be noted that a more sophisticated control system might lead to a better response to vibrations. 
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Besides gain values, the velocity response of the actuator can be adapted. This variable is part of the actuator 

software and here, the response speed of the actuator is then calculated by using a control algorithm within the 

software of the actuator itself. Increasing the response velocity of the actuator leads to a faster response, 

however, it is seen that instable behavior starts to develop if this value is chosen too large, similar to the integral 

and proportional gain values (Figure 6.20). 

 

Figure 6.19: Derivative gain values in the PID-controller, experimental results 

 

Figure 6.20: Velocity values in the PID-controller (KP=2000, KI=1000, KD=0), experimental results 

6.3.2 Instable behavior 
In multiple numerical analysis, instable response of the actuator was found for certain gain values. This 

phenomenon was seen in the experimental model as well. Theoretically, the initial error is always exactly equal 

to zero, which means that all displacements in the mass spring model will be equal to zero at all time, regardless 

the chosen gain values. In practice, however, the measured error is never equal to exactly zero, as there is always 

some kind of noise present. As a result, large gain values will lead to unstable behavior even if the bridge is in its 

initial position (i.e. no external force is present). This unstable behavior can lead to an ever-increasing error 

because of the actuator responding to its own generated error (Figure 6.21).  
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Figure 6.21: Instable behavior of the actuator for large values for KP and/or KI 

Sudden unstable behavior is undesirable in the case where no external load is present at all. Thus, large gain 

values may not be used when the measured error only consists out of noise, even if large gain values are 

necessary to respond fast to external loading. Therefore, an additional case structure was added to the VI, where 

it was said that gain values are considerably reduced by a certain factor if the error is smaller than a certain value 

that is found from noise in the measurement, in most cases equal to one millimeter (Figure 6.22). The actuator 

now only responds much less aggressive to small errors, which implies that the self-exited vibrations without 

any external load are no longer observed. This does not mean, however, that instable behavior is excluded in 

case of external loads from a pedestrian for large gain values. In the programmed PID controller, the problem of 

instability remains if the actuator is prompted for a quick response, as deformations are much larger than a few 

millimeters. Again, it should be noted that this PID controller is relatively simple and that a more sophisticated 

algorithm for a control system would probably result in a better response, so that instability might play a smaller 

role. However, the main research question includes the improvement of vibration control by means of viscous 

damping, where the elementary PI-system remains and is supported by the viscous damper mainly for vibration 

control. 

 

Figure 6.22: Limiting the response to a minimum error 

6.3.3 Response to load cases 
Due to practical reasons, the pretension in the cable truss (and the force gauges) is released at all time, except 

for moments when measurement are taken. This implies that the bridge is deformed heavily in its initial position. 

The actuator starts to decrease this deformed situation when starting a measurement, according to the given 

gain values. For most measurements, the reference position (i.e. zero error) was taken equal to the height of 

the two support positions, creating a perfectly straight bridge deck. This reference position, which is also 

indicated as the set point, can also be adapted to different values, creating a more curved bridge deck (Figure 

6.23). Here, a higher set point leads to more pretension in the cable truss, which in turn leads to a larger stiffness 

coefficient of the truss itself. This can be compared to the measurements that were taken in the bridge with 
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cable truss only, where tightening the cable truss led to similar cases for the pedestrian bridge design. Using the 

actuator, however, provides a much faster adaptation of the pretension in the cables. Increasing the set point, 

it can be seen that the cable truss is much stiffer compared to the bridge deck itself, as the downward 

deformation of the cable truss is much smaller than the upward deformation of the bridge deck. More stiffness 

leads then again to less deformation and a larger frequency, which is favorable in terms of comfort criteria. 

Hence, it may be concluded that besides choosing actuator parameters, there are more adaptable variables in 

the bridge itself that may have a positive influence in the response to external loading. Nevertheless, a set point 

equal to zero was maintained for all measurements regarding the typical loading configurations like walking or 

running over the bridge. 

   

Figure 6.23: Changing the set point in the Labview script to generate different values for stiffness of the cable truss. 

The different load cases that are described already in the numerical analysis are also tested for the experimental 

part in the case of an activated actuator. Clearly, the influence of the actuator is visible for all different load 

cases. It is seen for all cases that deformation is reduced, especially in the case of standing (Figure 6.24, Figure 

6.25 and Figure 6.26). The more the gain values are increased, the smaller the deformation is for all cases. 

Furthermore, the ‘integral windup’ is seen for all cases, which means that the deformation of the bridge 

becomes positive over time, due to the integral term in the PID-controller. Initially, deformation is reduced to 

approximately zero for the case of walking over the bridge, with and without an intermediate stop. When the 

pedestrian crosses halfway, the deformation seems to become slightly larger than zero, resulting in a contrary 

deformation with respect to external loading. This creates the unreal feeling that a support has been added 

halfway through the span, although it is known that this is not the case. Differences in gain values do not stand 

out that much here, as the difference in for instance two or five millimeters deflection (resulting from each 

impulse) is not noticeable for a pedestrian at all. It is mainly the reaction speed of the actuator, which ensures 

that the deformation remains so small that it is thought that an extra support point is present. 

Besides the positive effect on deflection control, it should be noted that vibration control is not reached at all. 

Moreover, vibrations are sometimes even heavier and need more time to die out. In contrast to a maximum 

deflection of a few millimeters, a vibration of a few millimeters is clearly noticeable when crossing the bridge. 

Hence, this vibration causes a rather uncomfortable feeling and is therefore not desired. As a result, one may 

conclude that the actuator performs fairly well on deflection control. Even so well, that it seems like an extra 

support point has been added halfway through the span. However, vibrations are not damped out at all and the 

derivative gain value in the PID control system does have negligible influence on the total behavior of the 

actuator. Hence, one may conclude that the actuator in fact can be described as a PI-controller rather than a 

PID-controller. 
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Figure 6.24: Walking over the bridge: experimental measurement at center span 

 

Figure 6.25: Running over the bridge: experimental measurement at center span 

 

Figure 6.26: Walking over the bridge with a stop at mid-span: experimental measurement at center span 
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6.4 Viscous damping 
It was seen that using actuators results in a fairly good response to external loading, with regard to deformation 

control. Noticeable vibrations are not damped decently, though. Moreover, vibrations are even amplified if large 

gain values are used. Instead of using actuators, viscous damping is now applied in the footbridge in the fourth 

case of the experimental part. Two viscous dampers were ordered at the company ‘Intrax Suspension 

Technology’, located in Volkel in The Netherlands. Properties for the dampers were obtained from numerical 

simulations. An adjustable damping coefficient is included in the viscous damper, where the coefficient can be 

adjusted from approximately 𝑐 ≈ 600 to 1400 𝑁𝑠/𝑚 for each damper. To that extent, the total amount of 

damping is equal to minimal 1200 and maximal 2800 𝑁𝑠/𝑚. Numerical simulations showed that best 

performance was obtained when a damping coefficient in between this range was used. Besides the damping 

coefficient, an additional spring was supplied, which turns the viscous damper into a shock-absorber. The 

additional springs in the shock absorbers are essential for long-term external loading like for instance dead 

weight of the structure itself or variable load remaining at one position for a certain time. On the other hand, 

too many stiffness would lead to a very stiff structural element, allowing very little deflection, which in turn 

makes the viscous damper very inefficient. Theoretically, the additional spring should thus be as ‘weak’ as 

possible, allowing for large deformations, leading to much influence of the damper. However, a certain limit 

should be taken, limiting the steady-state deformation to a certain value (in this case 𝑘 = 20 𝑁/𝑚𝑚). The spring 

now will limit the maximal deformation within proper boundaries, while a noticeable difference is obtained 

when using the dampers in the experimental setup. The maximum deformation of the bridge resulting from 

impulse loading is here larger than the steady-state deformation and furthermore, the dampers are compressed 

a few millimeters already from the dead weight of the bridge deck. Hence, the total stroke of the dampers was 

taken equal to 𝑙 = 100 𝑚𝑚, so that the maximum total deformation would never exceed this value. This 

resulted in two shock absorbers with given properties, using symmetrical damping (i.e. similar damping in the 

bound and rebound direction) (Figure 6.27). It should be noted that the additional spring is easily removed from 

the damper, so that one can easily change from a viscous damper to a shock absorber. However, shock absorbers 

were used for all test cases here. The exact calibration of both dampers is given in annex F, where the damping 

speed is given for the external applied impulse load. 

Both dampers were applied in the experimental model of the bridge, similar to the case with actuators. The total 

length of the dampers is a little shorter than the total length of the actuators and furthermore, the upper and 

lower bolt holes are different from the actuators. Two additional provisions were made in order to create a 

decent connection from the bridge deck to the steel cable truss (Figure 6.29). At the top, an additional aluminum 

block was added, connecting the primary aluminum provision on the steel tube to the viscous damper. The 

height of this provision was taken equal to the resulting difference in damper and actuator length. Hereby, the 

total length from steel tube to cable truss is approximately similar, resulting in a similar angle between the 

horizontal and the cable truss. This also implies a comparable spring stiffness coefficient for the cable truss in 

vertical direction for all models including the bridge with cable truss, with and without damper or actuator. 

Hence, all parameters regarding the bridge model are equal and a reliable comparison can be made for the case 

with damper, actuator or none.  

Two aluminum plates were applied at each side of the bridge, connecting the dampers to the cable truss. The 

aluminum plates are bolted connected to the dampers and to the cable truss. Furthermore, the two bottom 

connections are strengthened in horizontal direction (out of plane) by means of a timber element placed on top 

of the aluminum plates. As a result, instability in the out of plane direction is reduced and sudden failure during 

testing is prevented. This out of plane instability was not found in the case for the actuators, as the top 

connection was wider and more close to the steel tubes. Finally, the experimental setup of the bridge now 

contains the two dampers with their additional provisions (Figure 6.28).  
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Figure 6.27: Viscous damper (a), spring (b), shock absorber (c) and application in bridge (d) 

 

Figure 6.28: Dampers applied in the experimental model of the footbridge 

   

Figure 6.29: Application of dampers in the bridge model: top detail (a) and bottom detail (b) 

 

a b c d 

a b 



 

77 

Viscous Damping in Adaptive Structures  6 Experimental research 
 

6.4.1 Adjustable damping coefficient 
The additional spring in the viscous damper was determined by stating that the steady-state deformation should 

remain within proper limits, whereas as much deflection as possible should be allowed in order to achieve the 

best possible results from the viscous damper. Hence, the stiffness of the shock absorbers is a fixed value, where 

it should be noted that the spring is easily replaced by another spring with different properties if necessary. The 

damping coefficient, however, is a variable value that can be adapted to different values. From numerical 

simulations, it was assumed that the minimum value should be around the point where the bridge starts to 

vibrate into its first natural frequency and that the cable truss does not deform at all. This phenomenon can be 

seen in the experimental test as well (Figure 6.30). The deformation of the bridge in time was measured for an 

external load (being equal to the load of one person) applied at center span. For the case of moderate damping 

(i.e. 𝑐 ≈ 2000 𝑁𝑠/𝑚), the first natural frequency of the bridge deck is found, being equal to approximately two 

sine waves per second. This frequency was also found in the experimental results for the bridge deck only. 

Nevertheless, it is now seen that the vibration is damped out after obtaining one sine wave. This implies that 

that the system may be categorized underdamped, being very close to critical damping. Furthermore, it was 

obtained that the cable truss showed no vibration at all for the case of minimal damping. It may thus be said 

that the amount of damping is small enough to ensure that the structure does not start to vibrate as a whole. 

This was seen in several numerical simulations for larger amounts of damping. Besides using moderate damping 

(i.e. dampers adjusted exactly in between the minimum and maximum value), the dampers can be adapted to 

their minimal and maximal values, resulting in a larger or smaller damping ratio. For maximal damping, it was 

obtained that the cable truss started to vibrate to some extent, proving the numerical symptom of the structure 

starting to vibrate as a whole for too large amounts of damping. Hence, it may be concluded that the damper 

performs fairly well in the experimental setup with its predetermined range concerning the damping coefficient.  

 

Figure 6.30: Response of the bridge (center span) for different values for the damping coefficient 

Although a clear improvement is seen regarding vibration control, it must be noted that an increased 

deformation remains when using the viscous dampers. Obviously, the additional springs have a negative 

influence on the stiffness of the bridge model and deformation control is not guaranteed for this particular 

setup. Although the steady-state deformation remains within the boundary of seventeen millimeters that were 

given at first, it should be said that this test includes the external load of only one person. Hence, more people 

crossing the bridge will definitely result in larger deformations, exceeding the limit regarding conventional static 

design. 
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6.4.2 Response to load cases 
Three different load cases were again considered for the case of viscous damping, where results are compared 

to the case with a rigid bar, representing the bridge with cable truss without actuator and without damper. For 

each case, values for damping are taken equal to previously discussed values for minimal, moderate and maximal 

damping. Clearly, the viscous damper has a large effect on vibration control, as vibrations are damped out for 

all load cases. For the case of walking it appears that moderate damping performs best. For this particular load 

case with a frequency of approximately two Hertz, it is seen that the response of the damper is best for a 

damping coefficient being equal to 𝑐 ≈ 2000 𝑁𝑠/𝑚. Vibrations are damped out fast, close to critical damping, 

while the damper is just below the value where the complete bridge starts to vibrate resulting from the system 

being damped too heavily (Figure 6.31). Vibrations are damped out fairly well, whereas the total deformation is 

much larger than for the case without damper.  Similar results are obtained for the case of standing, where the 

overall displacement is found to be much larger than when using a viscous damper. The steady-state 

deformation is more than doubled, compared to the case without damping during the three seconds standing 

at center span (Figure 6.33). It is thus again seen that the dampers do have a negative effect on deformation 

control, whereas vibrations are controlled fairly well. Nevertheless, the steady-state deformation remains within 

the given boundaries regarding the span of the bridge.  

In contrast to walking, it seems that maximal damping (𝑐 ≈ 2800 𝑁𝑠/𝑚 ) instead of moderate damping 

performs best when running over the bridge. A larger damping coefficient delays the response to an impulse 

more, which is favorable in this case. Impulses resulting from running are quite powerful, yet short-term. Here, 

the time needed for the damper to fully deform is larger than the total duration of each impulse. This implies 

that for a larger damping coefficient, the maximum error decreases. This phenomenon is clearly seen in 

experimental results. First, the maximum deformation increases quite a lot, when comparing the case of minimal 

damping (𝑐 ≈ 1200 𝑁𝑠/𝑚) to the case of no damping. Increasing the damping coefficient further, however, 

results in a decreasing maximum error, which is best seen for the case of maximal damping (Figure 6.32). 

Accordingly, best performance is found for maximal damping in the case of running and it might be said that a 

damping coefficient larger than the maximum physical value would lead to even better results. This is, however, 

only true for the case of running.  

Compared to the bridge with actuator, a clear distinction can be made regarding deformation and vibration 

control. Vibrations are controlled best using a viscous damper (with additional spring stiffness), whereas one 

must allow for larger deformations. On the other hand, the control system has proven to control deformations 

very well, whereas uncomfortable vibrations are found for large gain values. This difference in behavior is thus 

similar to the results regarding numerical simulations. 

 

Figure 6.31: Walking over the bridge: experimental measurement at center span 
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Figure 6.32: Running over the bridge: experimental measurement at center span 

 

Figure 6.33: Walking over the bridge with a stop at mid-span: experimental measurement at center span 

It is seen that the viscous dampers perform quite well in the experimental results, as clearly a reduction in 

vibrations is obtained from experimental testing. Vibration control is seen in graphs representing displacement 

versus time and secondly, one can notice the presence of the viscous dampers during a walk over the bridge. 

The bridge simply cannot possibly be set in vibration, at least, in the first natural frequency and all subsequent 

odd frequencies of the bridge deck following after the first one. Even jumping on top in the frequency  of the 

bridge does not lead to harmonic motion, as the dampers are slowing down the vibration immediately by 

dissipating energy. During testing, it was even obtained that the bridge often started to vibrate in its second 

frequency, while the viscous dampers, located at mid-span, do not have effect on mode shapes that have a dead 

point halfway the span.  

One load case (walking) is shown in a comparison to the initial numerical simulation using the discretized 

solution in Grasshopper (Figure 6.34). Clearly, the amount of damping seems to agree well. Both in the numerical 

and experimental result the vibration is damped out after the same amount of time, being approximately half a 

second. Here, moderate damping (i.e. 𝑐 = 2000𝑁𝑠/𝑚) is applied in both models. Numerically, the behavior is 

predicted fairly well, except for some remarkable differences. Firstly, a major movement in upward direction is 

found in the numerical analysis for each impulse load, whereas in practice this movement is not found at all. 

Similar to the bridge without damper, this phenomenon is explained by the fact that the total time of one 

impulse is not equal to the total time that the actual impulse force is applied in the numerical simulations. For 

each impulse load, it was stated that the total duration of impact is a little smaller and that in between each step 
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there is a certain time where no force is applied at all. During this time, it is assumed that the pedestrian has no 

contact with the bridge deck. In practice, it seems that the pedestrian is in contact with the bridge at all time 

and that this period in between those two impulses is of much less influence, in particular for the case of viscous 

damping where the dynamic response of the bridge is delayed at all time due to energy dissipation. Furthermore, 

it must be noted that ideally each impulse duration is equal to half a second in the numerical analysis, whereas 

in practice these exact moments of impact can differ for each person and even for each unique impulse. Hence, 

each experimental test gives slightly different results when looking at a specific time interval. Besides the large 

upward peaks, the experimental results correspond well to the numerical simulations and thus, the principle of 

viscous damping is found in every result graph. In addition, the viscous dampers are obviously present when 

walking over the bridge, because the delay time in vibration and the large amount of energy dissipation is 

noticeable above par. 

 

Figure 6.34: Comparison of experimental result with the numerical simulation (kdamper=40000 N/mm, cdamper=2000 Ns/m) 

6.5 Viscous damping in the adaptive footbridge 
It has been shown in practical tests that viscous damping can reduce the harmonic motion that was obtained in 

the bridge where dampers were not applied initially. However, an enlarged deflection was the disadvantageous 

consequence, especially in the case of staying at mid span for a longer period of time. Where this deflection 

seems acceptable at first sight, it must be noted that all tests included only one person. In the case of a load 

consisting of several people, the deflection will increase even further, exceeding the allowable values, especially 

if the bridge is crossed relatively slowly. It is thus desirable to decrease the deformation that arises over a larger 

timespan, which is also indicated as the steady-state deformation. Therefore, the last experimental setup 

comprises the actuator and damper placed in series, where the actuator should be responsible for these long-

term deformations.  

The total height in between the bridge deck and the cable truss is increased in the final model, as the total height 

of both the damper and actuator in series is much larger (Figure 6.35). Here, the height of the bridge deck was 

increased just enough that the angle between the horizontal and the cable truss remains similar to all other 

tests. To that extent, the stiffness of the cable truss in vertical direction remains similar to all previous tests. An 

additional aluminum part was provided to connect the actuator and damper rigidly, so that movement is only 

allowed in vertical direction (Figure 6.36a). As the height of the bridge has increased, stability in out-of-plane 

direction is not guaranteed as good as for the previous models. Hence, an additional steel support was provided 

(Figure 6.36b). Two steel plates prevent the actuators from a displacement in out-of-plane direction, whereas 

vertical movement is allowed as a small gap remains in between each plate and the actuator. In this case, sudden 

failure due to out-of-plane deflection is prevented. So far, the bridge now comprises the viscous damper and 

the control system, where the actuators can be regulated using the ‘virtual instrument’ that was discussed 

already. Of course, the damping coefficient can also be varied in this model.  
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Figure 6.35: Prototype of the footbridge: viscous damper and actuator in series 

   

Figure 6.36: Connection between viscous damper and actuator (a) and restraint in out-of-plane direction (b) 

6.5.1 Variation of parameters 
The final experimental model where damping and active control is combined into one single test setup is tested 

for several load cases comparable to the previous experimental models. Furthermore, a step load was applied 

for a wide variation in parameters for both the actuators and the dampers. As all parameters have been 

described elaborately in the sections regarding solely the actuator or the damper, some important differences 

are described in the final modal instead of discussing all possible combinations. Accordingly, the model of the 

damper with actuator is compared to the bridge without damper and without actuator to evaluate 

improvements. Firstly, it should be noted that the damper obviously reduces vibration issues in the footbridge, 

as in all cases a continuous harmonic vibrations are hardly noticed. Clearly, the difference is seen in using the 

minimal and maximal amount of damping (Figure 6.37). Applying more damping, it is seen that the energy 

dissipation in the viscous damper results in a delayed response, which gives the actuator more time to start 

responding on the measured error. Accordingly, the maximum deformation is reduced in the case of maximal 

damping.  

Besides an evident improvement in vibration control, one can conclude that the actuator improves control of 

deformation. Here, it is important to note that gain values should be chosen carefully. Large amounts of 

proportional or integral gain result in a relatively fast response of the actuator, whereas in practice, this is 

undesirable. A response of the actuator should be based on the steady-state error rather than the error during 
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vibration. Hence, a small amount of time is needed for the damper to die-out vibrations in the structure in order 

to ensure that the actuator does not respond on any vibrations in the structure at all. Increasing gain values can 

thus lead to additional vibrations from the actuator response. This phenomenon was clearly noticed during 

experimental testing (Figure 6.38).  As a result, one may conclude that it is desirable to choose a decent value 

for integral gain, as this value is mainly responsible for the error on longer duration, whereas a low value does 

not directly result in a vibration-sensitive reaction. Hence, proportional gain in the actuator should also remain 

small, as this factor does not respond in the steady-state error at all. To conclude, the combined model provides 

a fairly good agreement between vibration and deformation control, where overall results agree with numerical 

simulations and most importantly, the expected results of this model are indeed obtained.  As a proof of concept, 

it is seen that uncomfortable consequences from a lightweight structure can be (partially) improved using 

additional systems like dampers and actuators for vibration and deformation control. 

 

Figure 6.37: Variation in damping coefficient and integral gain value: experimental measurement at center span 

 

Figure 6.38: Variation in gain values for minimal viscous damping: experimental measurement at center span 
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6.5.2 Response to load cases 
Is has been shown in different models that the integral gain value from the actuator is most responsible for 

reducing the steady-state error of the adaptive footbridge. As derivative gain did not result in a noticeable 

difference, this value has not been evaluated in the final model. Furthermore, the proportional gain value has 

proven its negative side effect to vibration control, as a fast response of the actuator during the vibration time 

is not desirable. Hence, only the integral was included in the response graphs to different load cases, where it 

appeared that this value could be optimized to a certain value (Figure 6.39, Figure 6.40). Furthermore, it was 

already shown that the viscous dampers performed best when moderate damping was set for the case of 

walking, whereas the maximum amount of damping was needed for the case of running. Using these optimized 

values, each load case is evaluated for the bridge with the damper and actuator in series. Obviously, the 

maximum deflection that is obtained remains within the given boundaries that were given as a starting point 

(i.e. 𝑤𝑚𝑎𝑥 < 25𝑚𝑚 & 𝑤𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒 < 17𝑚𝑚). This is now true for all different load cases, whereas vibrations 

are hardly noticed. Hence, the improvement in both deflection and vibration control is also seen for different 

load cases as given below.  

 

Figure 6.39: Walking over the bridge: experimental measurement at center span, averaged value (KP=0, KI=1000, v=10000, 
moderate damping cd=2000) 

 

Figure 6.40: Running over the bridge: experimental measurement at center span, averaged value (KP=0, KI=1000, v=10000, 
maximal damping cd=2800) 
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In the case of standing, both a dynamic displacement due to walking and a steady-state displacement due to a 

stop at mid-span are included. Hence, both reducing deformation and reducing vibrations are important in this 

case. A comparison for all models was thus made for this case, where a clear distinction is seen in using the 

actuators or the dampers. Once again, it must be noted that all tests include walking over the bridge, which 

obviously results in ten different graphs if the exact same test is performed ten times. In other words, loads are 

not controlled perfectly as these tests include a pedestrian as an external loading configuration. This said, the 

overall differences in between all models become clear once again: vibrations that were found in the original 

bridge design are neatly damped out using passive damping, whereas deflection can be controlled very well with 

the PID controller. The connection in series provides a compromise between deflection and vibration control, 

leading to a deflection within the limits at all time, whereas vibrations are reduced as much as possible (Figure 

6.41). 

 

Figure 6.41: Comparison of all models for the case of standing 
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7 Conclusions 
This master thesis on viscous damping in adaptive structures may be considered quite a distinct project in the 

field of structural engineering. Apart from the use of dynamic analysis instead of conventional static simulations, 

adaptive structures are quite unique in this field of engineering as well. The vast majority of this project is based 

on the case study of the footbridge, a lightweight design being very sensitive to both vibrations and large 

deformations. Two principles were investigated and applied on the case study, where viscous dampers were 

considered in the first case and an active PID control system in the second case. As a result, a number of 

conclusions can be drawn from the numerical approach and the experimental setup. 

7.1 Experimental testing 
The influence of the additional dampers and actuators in the various models has been extensively discussed for 

both the numerical and experimental approach. Although numerical simulations can be fully controlled (i.e. 

running a numerical simulation for a number of times will give the exact same result every time), this is not 

guaranteed in experimental testing. Test results are often influenced by a number of factors such as noise in the 

measurement device or sudden settlements in the cable truss connections, for example. Moreover, a pedestrian 

will never walk with exactly the same frequency and step size, let alone that every footstep is placed exactly in 

the middle of the left and right measurement device. Although results between different models in the previous 

chapter showed agreement in general with regard to vibration and deformation control, these tests were mainly 

based on the external load of a person, which thus cannot be controlled as much as in a numerical simulation. 

Therefore, one final test setup was made to correctly compare the response of all experimental models for one 

external impact load as controlled as possible (Figure 7.1). A certain mass (𝑚 = 50.30 𝑘𝑔) was released above 

the bridge exactly at the center, where the height was controlled for each test as well (Figure 7.2). A release 

mechanism was used to ensure that the mass would be released in exactly the same way each time. The impact 

test was performed at least three times for each set of variables, regarding the damper and the actuator. It 

should be noted that the difference in measured response between two equal tests is minimal and that this test 

thus may be considered controlled (annex G). To clarify the difference between all four models, it was decided 

to use the same parameters in all tests. Hence, values for the PID control system are similar in the response 

graph, just like the damping coefficient. Furthermore, the averaged value between the left and right 

measurement device is shown in the result graphs, so that these results can be compared to the one-dimensional 

numerical analysis. 

 

Figure 7.1: Test setup for the controlled impact test at center span 
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Figure 7.2: Release mechanism (a) and controlled height of 150mm (b) 

Clearly, the influence of the damper is noticeable, regarding the comparison between all four models (Figure 

7.3). Although the displacement peak is seen for each model, it is seen that the vibration dies out within one 

harmonic motion using the damper. This harmonic motion is seen much longer when viscous damping is not 

used at all. Using the viscous damper, an increase in deformation is obtained, whereas the actuator reduces this 

deformation back to zero in the combined model. Once again, it can be stated that the PID control system has a 

positive influence on deformation control, whereas viscous damping helps decreasing vibrations by means of 

energy dissipation. The combined model shows a compromise between deflection and vibration control, where 

the steady state error is equal to zero and a harmonic motion is hardly found at all. Nevertheless, one relatively 

large peak in deformation is still obtained just after impact, as deformation is required for the damper to 

dissipate energy.  

 𝑤𝑚𝑎𝑥  𝑤𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒  𝑡𝑑𝑖𝑒−𝑜𝑢𝑡,5% 𝑡𝑎<0.7𝑚/𝑠2  (EC1) 

No actuator, no damper 21.3 𝑚𝑚 5.4 𝑚𝑚 2.7 𝑠 2.3 𝑠 

Actuator only 20.0 𝑚𝑚 0 𝑚𝑚 2.0 𝑠 1.7 𝑠 

Damper only 30.7 𝑚𝑚 10.5 𝑚𝑚 0.5 𝑠 0.5 𝑠 

Damper and actuator in series 29.6 𝑚𝑚 0 𝑚𝑚 0.6 𝑠 0.6 𝑠 
Table 7.1: Comparison between deformation and die-out time for all different models. Time is measured from the start of 
impact at t=1s. 

 

Figure 7.3: Response of all models for the controlled impact test (KP=0, KI=500, KD=0, v=15000, cdamper=1200) 
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7.2 Numerical simulations versus experimental testing 
Regarding the approach to the numerical analysis, one can conclude that a lot of approximations and 

assumptions were needed in order to keep the numerical analysis tool relatively simple. The response to any 

loading configuration can be computed with this tool, as discretization in the spatial and temporal domain allows 

for non-linear terms in the calculation. Besides, the numerical approach to analytical solutions simplifies 

calculus. In this case, it would not even have been possible to solve the response of the footbridge if an analytical 

approach was used. To conclude, this one-dimensional numerical tool can only be used to approximate the 

complex reality and although this leads to comparable conclusions in general, local differences are not excluded 

when comparing reality to computer simulations. Nevertheless, the final impact test that was performed in the 

experimental setup was also simulated with the numerical tool in Rhinoceros and Grasshopper. 

In contrast to all other simulations, the mass is now released from a certain height with regard to the bridge 

deck. This implies that the external force is not only a long-term load applied on the deck, which can simply be 

calculated by using Newton’s second law. To that extent, the impact of the generated pulse is included to create 

the correct external load in numerical analysis. First, the time from release to impact time is calculated, where 

the height between the mass and the bridge deck is similar for each impact test. This renders 

 𝑣 = √2𝑠𝑔          (7.1) 

Now, the pulse can be calculated. This is equal to the mass times its velocity at impact time. In mathematical 

terms 

 𝑝 = 𝑚𝑣          (7.2) 

Referring to several experimental tests, the time needed for this impulse can be found by the time that is needed 

to reach the maximum displacement. This is approximately equal to fifty milliseconds. In the first test (bridge 

only), the maximum displacement was found at 𝑡 = 1.046𝑠, whereas the moment of impact was found at 𝑡 =

0.993𝑠. Now, the impulse force can be calculated by  

 𝐹 =
𝑝

𝑡
          (7.3) 

This implies that the following loading conditions now hold for a simulation of the impact test (annex B). These 

conditions were applied in the numerical analysis tool.  

 𝐹 = {
0

3.5𝐹
𝐹

  
 𝑡 ≤ 1

1 < 𝑡 ≤ 1.05
𝑡 > 1.05

        (7.4) 

Some experimental tests were compared already for several load cases like walking and running over the bridge. 

These comparisons, however, showed differences in behavior for different practical reasons. As already said, 

walking cannot be considered a controlled loading configuration, as frequency and most important, step 

intensity, will be different for every walk along the span. Including the intensity of the mass by calculating the 

impact load and duration, a comparison to the numerical is much more trustworthy. As a result, a final 

comparison is shown for each model, according to the footbridge variables that were used in the experimental 

test for the impact load. General agreement between the numerical prediction model and experimental results 

is again found, except for local differences over time (Figure 7.4 up to Figure 7.7). The actuator response seems 

to differ slightly in experimental testing, which can be explained by the fact that the actuators also depend on 

other software than given in the program in Labview. Furthermore, it is seen that the exact amount of damping 

can differ in reality. As already stated in the literature study, damping is a quite complex phenomenon, making 

it very difficult to imply this correctly in mathematical models. An approximate mathematical convenience was 

used in the form of some damping coefficients, having no physical meaning at all. Having said this, it may be 

concluded that the numerical analysis tool provides a fairly good prediction to reality. Using viscous damping 

can indeed lead to better performance with regard to vibration control and the active PID control is very 

beneficial for regulating the deflection of a slender structure during loading events. This was predicted by a 

numerical analysis tool and is eventually also validated by means of experimental testing. 
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Figure 7.4: Experimental impact test compared to the numerical simulation, bridge with cable truss only 

 

Figure 7.5: Experimental impact test compared to the numerical simulation, bridge with actuator 

 

Figure 7.6: Experimental impact test compared to the numerical simulation, bridge with damper 

  

Figure 7.7: Experimental impact test compared to the numerical simulation, bridge with damper and actuator in series 
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7.3 Recommendations 
As a start for this master thesis, a comprehensive literature study was performed to gather some basic insights 

in the entirely unknown field of dynamics within structural applications. A relatively large amount of time was 

needed to understand the basic principles of one-dimensional dynamics, as static calculations still predominate 

the structural part of the built environment nowadays. Furthermore, it was needed to gain insight in common 

knowledge on elementary control theory, which in this case was based on a PID-control system. On top of that, 

additional mathematical knowledge was required to discretize complex analytical solutions to dynamic problems 

in both the spatial and temporal domain. Given this list of additional topics, it may be concluded that mainly the 

basic principles are implemented in this master study and that investigating each topic into more detail 

presumably will yield better performance in both the numerical and experimental part of this project. Having 

said this, it is demonstrated that dynamic behavior can be predicted for structural applications to a certain 

extent, even if these elementary principles are applied in a one-dimensional approach. General principles are 

then seen in experimental testing as well, in spite of all these assumptions and simplifications to reality. Perhaps, 

the results that were obtained may be considered promising for further research into this topic. A few interesting 

possibilities are delineated here. 

 The numerical analysis tool is based on a one-dimensional discretized mass spring system with multiple 

degrees of freedom. Although this one-dimensional model provides fairly good information on vertical 

displacement in time, it would be very interesting to increase the design space to two or even three 

degrees of freedom. Additional configurations could then be included in the dynamic analysis tool, like 

for instance the response on lateral wind loading or torsional vibrations resulting from asymmetric 

loading. 

 Discretization of both the spatial and temporal domain was needed in order to ‘undo’ the complexity 

of analytical algebra. A small introduction was given into explicit and implicit approximation methods, 

which both have their advantage and disadvantage. Many algorithms are superior to those elementary 

approximation methods and implementing a more sophisticated approximation would presumably 

reduce instability problems without decreasing its accuracy.  

 It was already seen that damping is nothing but energy dissipation and that each material has some 

form of damping, albeit negligible in some cases. Although every structural part of the footbridge can 

be given a decent value for energy dissipation, these values are all based on mathematical convenience 

rather than physical meaning. This resulted in large deviations between numerical modelling and 

experimental testing, with regard to damping properties of the footbridge structure. Therefore, viscous 

damping is an interesting topic to investigate in more detail, especially within the built environment 

where it has proven its value to vibration-controlled structures. 

 Two physical shock absorbers were ordered for experimental testing. It was chosen to maintain values 

for both energy dissipation and stiffness as variable as possible, so that these dampers can be used in 

other applications in future experiments as well. Given the development towards more lightweight 

structures in future, it can be recommended to include damping in more structural applications next to 

this footbridge. Obviously, this also holds for the actuators.  

 This project may be categorized quantitative research, especially with regard to the conclusions that 

were drawn from the impact test to compare numerical to experimental results. Obviously, dynamic 

behavior is improved regarding the maximum value for acceleration in the Eurocode. As the combined 

model comprises a compromise between deflection and vibration control, it may be interesting to add 

a qualitative part to this research. To that extent, parameters for both the dampers and the actuators 

could be optimized to the pedestrians needs. Given the physical prototype, it should not be that difficult 

to have such a study take place.  
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Annex B Calculations on experimental test setup 
The bridge model with its exact dimensions is used as input for the comparison to the numerical approximation 

model in Grasshopper. The bridge is simply supported and consists of two steel tubes. Wooden elements of 

160mm width are located on top of the steel tubes and provide only a walking deck for the pedestrian.  

 

The dead load of the bridge is calculated as 

 𝑞𝐷𝐿 = 𝑞𝑠𝑡𝑒𝑒𝑙 + 𝑞𝑤𝑜𝑜𝑑  

𝑞𝐷𝐿 = (2 ∗ 615 𝑚𝑚2 ∗ 5000 𝑚𝑚 ∗ 7850
𝑘𝑔

𝑚3) + (30 ∗ 3𝑘𝑔)  

𝑞𝐷𝐿 = 48.2775 + 90 = 138 𝑘𝑔  

𝑞𝐷𝐿 = 138 𝑘𝑔 ∗
9.81

5000
= 0.271 𝑁/𝑚𝑚  

 

For dead load, the truss model can be considered a beam on three supports. Hence, the vertical reaction in the 

centre and end supports are equal to 

 𝐹𝑣,𝑒𝑛𝑑 =
3

8
𝑞𝑙 =

3

8
∗ 0.271 ∗ 2500 = 254𝑁 

𝐹𝑣,𝑐𝑒𝑛𝑡𝑟𝑒 =
10

8
𝑞𝑙 =

10

8
∗ 0.271 ∗ 2500 = 847𝑁  

The moment of inertia of the two steel beams is equal to 

 𝐼 = 2 ∗
𝑏ℎ3

12
= 2 ∗

60∗303−52∗223

12
= 177717 𝑚𝑚4 

The Young’s Modulus of the steel is equal to  

𝐸𝑠𝑡𝑒𝑒𝑙 = 2.1 ∗ 105 𝑁

𝑚𝑚2  



 

 

The bridge without steel cable truss must resist bending moment due to dead load of both the steel and the 

timber walking deck. It can then be concluded that only 158kg extra weight could be allowed on the bridge. The 

deformation of the bridge itself due to its own weight can be calculated as 

 𝛿 =
5

384
∗

𝑞𝐿4

𝐸𝐼
=

5

384
∗

0.271∗50004

2.1∗105∗177717
= 59.1 𝑚𝑚 

The maximum allowable bending moment in the center of the bridge is equal to 

 𝑀𝑅𝑑 = 𝜎 ∗
𝐼

𝑧
= 235 ∗

177717

15
= 2784233 𝑁𝑚𝑚 

The bending moment in the center of the bridge due to dead load is equal to  

 𝑀𝐸𝑑 =
𝑞𝐿2

8
=

0.271∗50002

8
= 846875 𝑁𝑚𝑚 

The maximum allowable force in the center of the bridge may thus not exceed 

 𝐹𝑚𝑎𝑥 =
4(𝑀𝑅𝑑−𝑀𝐸𝑑,𝐷𝐿)

𝐿
=

4∗(2784233−846875)

5000
= 1550𝑁 = 158𝑘𝑔 

Taking into account the cable truss, the dead load in the center of the bridge can be much higher. However, the 

steel tubes still have to span 2.5m. The deformation of the bridge itself due to its own weight can now be 

calculated as 

 𝛿 =
5

384
∗

𝑞𝐿4

𝐸𝐼
=

5

384
∗

0.271∗25004

2.1∗105∗177717
= 3.7𝑚𝑚 

The maximum allowable bending moment in the center of the bridge is equal to 

 𝑀𝑅𝑑 = 𝜎 ∗
𝐼

𝑧
= 235 ∗

177717

15
= 2784233 𝑁𝑚𝑚 

The bending moment in the center of the bridge due to dead load is equal to  

 𝑀𝐸𝑑 =
𝑞𝐿2

8
=

0.271∗25002

8
= 211719 𝑁𝑚𝑚 

The maximum allowable force in the center of the bridge may thus not exceed 

 𝐹𝑚𝑎𝑥 =
4(𝑀𝑅𝑑−𝑀𝐸𝑑,𝐷𝐿)

𝐿
=

4∗(2784233−211719)

2500
= 4116𝑁 = 420𝑘𝑔 

The exact angle of the cable truss is equal to 

 𝛼 = tan−1 (
450

2500
) = 10,2°  

From here, the exact pretension in the cable can be calculated when the dead load of the bridge is lifted 

upwards to zero initial deflection. The load of the actuators was taken into account as well. 

 𝐹𝑣 =
847𝑁

4
+

12∗9.81

2
= 271𝑁 → 𝐹𝑝𝑟𝑒𝑡𝑒𝑛𝑠𝑖𝑜𝑛,𝑐𝑎𝑏𝑙𝑒 =

271𝑁

sin(𝛼)
= 1528𝑁 

For each extra pedestrian at mid-span, the extra cable force is equal to 

 𝐹𝑣 =
75𝑘𝑔∗9.81

4
= 184𝑁 → 𝐹 𝑐𝑎𝑏𝑙𝑒 =

184𝑁

sin(𝛼)
= 1039𝑁 

The pulse on the bridge is calculated using the following relations between distance (𝑠), mass (𝑚), velocity (𝑣) 

and time (𝑡). 

 𝑠 =
1

2
𝑔𝑡2 → 𝑡 = √

2𝑠

𝑔
 𝑣 = 𝑔𝑡 = √2𝑠𝑔 = √2 ∗ 0.15 ∗ 9.81 = 1.7155

𝑚

𝑠
 

 𝑝 = 𝑚𝑣 = 50.30 ∗ 1.7155 = 86.29𝑁𝑠 𝐹𝑒𝑞 =
𝑝

𝑡
=

86.29

0.05
= 1726𝑁 applied for 0.05𝑠 after impact 



 

 

Annex C Calibration of measurement device 
 

Calibration of channel ADC00 

 

 

Calibration of channel ADC01 

 

 

 

 

 

 



 

 

Annex D Tensile test results steel wire rope Ø-10mm 
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Annex E Example of an output file 
All input data 
1: Material properties bridge deck - Material = Steel S235 - Density = 7850kg/m3 - E-modulus = 210000000000Pa - Poissons ratio = 0.3 - Shear modulus = 80769230770Pa - Proof stress = 235000000Pa 
1: Material properties cable truss - Material = FeP1000 6x7 1-layer fibre core - Density = 7850kg/m3 - Poissons ratio = 0.3 - Shear modulus = 4846153847Pa - Proof stress = 500000000Pa 
2: Geometry properties bridge deck - Span = 5m - Height tube = 0.03m - Width tube = 0.06m - Tube thickness = 0.004m - Nr of tubes = 2 - Cross section area = 0.001312m^2 - Moment of inertia = 1.77717333333333E-07m^4 - Alpha damping = 0.3 - Beta damping = 0.0005 - 
Additional mass deck = 115kg 

2: Geometry properties cable truss - Length = 2.55585148716258m - Diameter = 0.01m - Total wires = 4 - Cross section = 0.0001476m - Angle = 12� - Pretension = 1000N - Damping coefficient = 40Ns/m 
3: Actuator properties - Mass = 16kg - Kp = 50000 - Ki = 500000 - Kd = 5000 - Limit force = 10000N - Response time = 0.01s - Delay time = 0.01s - Activated? True - Virtual spring stiffness = 100000N/mm 
4: Damper properties - Mass = 12kg - Damping coefficient = 3000Ns/m - Stiffness coefficient = 20000N/mm - Activated? True - Model type = 6 
5: External loading properties - Mass person = 75kg - Nr. of visitors = 1 - External load = -735.75N - Impact time = 0s - Load duration = 10s - Repetition? False - Period time = 0.5s - Walking? False - Step length = 0.625m 
6: Time step properties - Time increment = 0.003s - Last increment = 2.007s - Approximation type = explicit 
Name graph title: 
m(eq)=42kg, k(eq)=188352N/m, c(eq)=107Ns/m, model=6, pretension=1000N, damper: c=3000Ns/m, k=20000N/m 
Name series: 
Wire rope (m1) 
Intermediate (m2) 
Bridge (m3):  Kp=50000, Ki=500000, Kd=5000 
t F1 F2 F3 u1(t) u2(t) u3(t) u4(t) u5(t) v1(t) v2(t) v3(t) v4(t)
 v5(t) a1(t) a2(t) a3(t) a4(t) a5(t) F(Act) E(c) 
0 -735.75 -735.75 -735.75 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 46177.771854 
0.003 0 -735.75 0 -0.005009 -0.278271 -0.005009 -0.070798 -0.02509 -0.003032 -0.08639 -0.003032 -0.032361
 -0.011644 -1.010549 -28.796531 -1.010549 -10.786926 -3.881426 -0.49831 46177.771854 
0.006 0 -735.75 0 -0.021995 -0.58564 -0.021995 -0.191408 -0.082423 -0.008919 -0.116845 -0.008919 -0.051218
 -0.025351 -1.962585 -10.151831 -1.962585 -6.285686 -4.56904 -4.570763 46177.771854 
0.009 0 -735.75 0 -0.062668 -0.97207 -0.062668 -0.367422 -0.17928 -0.018903 -0.139267 -0.018903 -0.067728
 -0.037777 -3.3277 -7.474124 -3.3277 -5.503302 -4.141895 -10.89853 46177.771854 
0.012 0 -735.75 0 -0.139764 -1.414189 -0.139764 -0.587376 -0.306626 -0.033193 -0.154136 -0.033193 -0.079455
 -0.045571 -4.763438 -4.956216 -4.763438 -3.909148 -2.598128 -18.814152 46177.771854 
0.015 0 -735.75 0 -0.265857 -1.890363 -0.265857 -0.834178 -0.447832 -0.051472 -0.162162 -0.051472 -0.085003
 -0.047093 -6.093117 -2.675268 -6.093117 -1.849107 -0.507238 -28.074995 46177.771854 
0.018 0 -735.75 0 -0.451827 -2.38146 -0.451827 -1.084936 -0.58615 -0.072944 -0.164139 -0.072944 -0.08398
 -0.042926 -7.157145 -0.658905 -7.157145 0.340871 1.389079 -24.721028 46177.771854 
0.021 0 -735.75 0 -0.705553 -2.871503 -0.705553 -1.325368 -0.702848 -0.096421 -0.1618 -0.096421 -0.077393
 -0.033387 -7.825699 0.779411 -7.825699 2.195735 3.179725 -35.965036 46177.771854 
0.024 0 -735.75 0 -1.030927 -3.350028 -1.030927 -1.540638 -0.785288 -0.120457 -0.156815 -0.120457 -0.066909
 -0.02076 -8.012067 1.661697 -8.012067 3.494712 4.208888 -48.338442 46177.771854 
0.027 0 -735.75 0 -1.427302 -3.811511 -1.427302 -1.707716 -0.837714 -0.143494 -0.150058 -0.143494 -0.054033
 -0.009987 -7.679029 2.252534 -7.679029 4.291928 3.591054 -4.825564 46177.771854 
0.03 0 -735.75 0 -1.889366 -4.253968 -1.889366 -1.836468 -0.858545 -0.16401 -0.144452 -0.16401 -0.04141
 -0.000138 -6.83868 1.868408 -6.83868 4.207487 3.283074 2.612823 46177.771854 
0.033 0 -735.75 0 -2.407502 -4.683528 -2.407502 -1.935148 -0.850236 -0.180684 -0.141959 -0.180684 -0.031153
 0.00779 -5.557878 0.831118 -5.557878 3.418978 2.642618 -8.179189 46177.771854 
0.036 0 -735.75 0 -2.968624 -5.110901 -2.968624 -1.993419 -0.834243 -0.192538 -0.142383 -0.192538 -0.023895
 0.009018 -3.951421 -0.14122 -3.951421 2.419499 0.409424 53.987553 46177.771854 
0.039 0 -735.75 0 -3.557331 -5.546704 -3.557331 -2.044549 -0.814511 -0.199022 -0.14806 -0.199022 -0.021295
 0.007985 -2.161427 -1.892535 -2.161427 0.866462 -0.344502 46.56119 46177.771854 
0.042 0 -735.75 0 -4.157289 -6.006702 -4.157289 -2.100132 -0.799977 -0.200071 -0.158739 -0.200071 -0.023397
 0.004097 -0.349738 -3.559642 -0.349738 -0.700597 -1.29612 39.474983 46177.771854 
0.045 0 -735.75 0 -4.752719 -6.504495 -4.752719 -2.154657 -0.811386 -0.196109 -0.172395 -0.196109 -0.028891
 -0.005324 1.320719 -4.551928 1.320719 -1.831103 -3.140187 101.586503 46177.771854 
0.048 0 -735.75 0 -5.329747 -7.047993 -5.329747 -2.2383 -0.847559 -0.187971 -0.189391 -0.187971 -0.037469
 -0.014451 2.712801 -5.665445 2.712801 -2.859469 -3.04219 97.274938 46177.771854 
0.051 0 -735.75 0 -5.877509 -7.644681 -5.877509 -2.355455 -0.907843 -0.176812 -0.20784 -0.176812 -0.047573
 -0.022697 3.719459 -6.149621 3.719459 -3.367875 -2.748655 92.527932 46177.771854 
0.054 0 -735.75 0 -6.388953 -8.295608 -6.388953 -2.490432 -1.000037 -0.163987 -0.224591 -0.163987 -0.056848
 -0.03201 4.275216 -5.583493 4.275216 -3.091714 -3.10438 151.477618 46177.771854 
0.057 0 -735.75 0 -6.861157 -8.99351 -6.861157 -2.658423 -1.110691 -0.150875 -0.239267 -0.150875 -0.064466
 -0.037001 4.370695 -4.892224 4.370695 -2.539357 -1.66385 147.199342 46177.771854 
0.06 0 -735.75 0 -7.295205 -9.729057 -7.295205 -2.83354 -1.238756 -0.138741 -0.248876 -0.138741 -0.068269
 -0.040434 4.044726 -3.202871 4.044726 -1.267644 -1.144351 206.510549 46177.771854 
0.063 0 -735.75 0 -7.695629 -10.485194 -7.695629 -3.003754 -1.377135 -0.128596 -0.252322 -0.128596 -0.067193
 -0.04108 3.381383 -1.148678 3.381383 0.358578 -0.215066 276.869792 46177.771854 
0.066 0 -735.75 0 -8.069475 -11.242908 -8.069475 -3.175351 -1.501801 -0.121098 -0.250491 -0.121098 -0.061593
 -0.034765 2.499365 0.610344 2.499365 1.866836 2.104751 273.686429 46177.771854 
0.069 0 -735.75 0 -8.425182 -11.985868 -8.425182 -3.330992 -1.596689 -0.11652 -0.242946 -0.11652 -0.051615
 -0.023697 1.526246 2.514913 1.526246 3.325986 3.689483 268.993297 46177.771854 
0.072 0 -735.75 0 -8.771439 -12.696825 -8.771439 -3.431873 -1.668307 -0.114743 -0.228322 -0.114743 -0.037004
 -0.014195 0.59223 4.874826 0.59223 4.870303 3.167156 360.193841 46177.771854 
0.075 0 -735.75 0 -9.115984 -13.357088 -9.115984 -3.496123 -1.70119 -0.115269 -0.209984 -0.115269 -0.020123
 -0.001355 -0.175272 6.11263 -0.175272 5.626735 4.280072 357.267432 46177.771854 
0.078 0 -735.75 0 -9.464595 -13.957561 -9.464595 -3.515277 -1.690965 -0.117309 -0.189144 -0.117309 -0.002356
 0.012116 -0.679997 6.946486 -0.679997 5.92233 4.490372 354.13078 46177.771854 
0.081 0 -735.75 0 -9.820414 -14.492486 -9.820414 -3.458529 -1.659095 -0.119904 -0.165403 -0.119904 0.015999
 0.019297 -0.865051 7.913836 -0.865051 6.118568 2.393758 463.662816 46177.771854 
0.084 0 -735.75 0 -10.183553 -14.957027 -10.183553 -3.361585 -1.599842 -0.122019 -0.143173 -0.122019 0.03223
 0.026694 -0.705012 7.409947 -0.705012 5.410175 2.465699 466.150536 46177.771854 
0.087 0 -735.75 0 -10.551081 -15.357979 -10.551081 -3.228394 -1.517332 -0.122688 -0.12369 -0.122688 0.045305
 0.032324 -0.223036 6.494533 -0.223036 4.358463 1.876519 469.919676 46177.771854 
0.09 0 -735.75 0 -10.917454 -15.703789 -10.917454 -3.007241 -1.460147 -0.121129 -0.103782 -0.121129 0.057193
 0.024969 0.519769 6.636004 0.519769 3.96268 -2.451765 714.267633 46177.771854 
0.093 0 -735.75 0 -11.275062 -15.996951 -11.275062 -2.778838 -1.409668 -0.116774 -0.089891 -0.116774 0.064944
 0.021373 1.451465 4.63001 1.451465 2.583611 -1.19843 730.664472 46177.771854 
0.096 0 -735.75 0 -11.615045 -16.255469 -11.615045 -2.547495 -1.360957 -0.109374 -0.081477 -0.109374 0.069009
 0.019404 2.466713 2.804751 2.466713 1.355001 -0.656365 748.456818 46177.771854 
0.099 0 -735.75 0 -11.928379 -16.49449 -11.928379 -2.298957 -1.327108 -0.099056 -0.076306 -0.099056 0.070594
 0.014151 3.439238 1.723839 3.439238 0.528314 -1.751176 846.717082 46177.771854 
0.102 0 -735.75 0 -12.206904 -16.723356 -12.206904 -2.063021 -1.301034 -0.086266 -0.07526 -0.086266 0.069226
 0.010486 4.263516 0.348736 4.263516 -0.455854 -1.221656 868.185947 46177.771854 
0.105 0 -735.75 0 -12.444202 -16.952673 -12.444202 -1.843195 -1.281352 -0.071709 -0.076888 -0.071709 0.065643
 0.007418 4.852368 -0.542819 4.852368 -1.194482 -1.022726 889.172148 46177.771854 
0.108 0 -735.75 0 -12.636283 -17.188176 -12.636283 -1.629154 -1.276944 -0.056276 -0.078823 -0.056276 0.061222
 0.002346 5.144224 -0.645089 5.144224 -1.473725 -1.690403 961.182786 46177.771854 
0.111 0 -735.75 0 -12.781949 -17.429424 -12.781949 -1.437257 -1.281785 -0.040925 -0.080958 -0.040925 0.056259
 -0.000955 5.117108 -0.711536 5.117108 -1.654176 -1.100379 982.146039 46177.771854 
0.114 0 -735.75 0 -12.882853 -17.675176 -12.882853 -1.265043 -1.29195 -0.026582 -0.081948 -0.026582 0.051715
 -0.002665 4.781081 -0.330054 4.781081 -1.514845 -0.570217 1001.81975 46177.771854 
0.117 0 -735.75 0 -12.943276 -17.920267 -12.943276 -1.099249 -1.309584 -0.014055 -0.080118 -0.014055 0.048772
 -0.004358 4.175453 0.609894 4.175453 -0.981074 -0.564215 1056.377946 46177.771854 
0.12 0 -735.75 0 -12.969622 -18.154478 -12.969622 -0.902457 -1.354555 -0.00393 -0.072721 -0.00393 0.049601
 -0.010487 3.375166 2.465795 3.375166 0.276406 -2.042903 1244.247503 46177.771854 
0.123 0 -735.75 0 -12.96958 -18.362394 -12.96958 -0.716343 -1.399523 0.003514 -0.063491 0.003514 0.052799
 -0.009268 2.481233 3.076646 2.481233 1.06601 0.406396 1268.423814 46177.771854 
0.126 0 -735.75 0 -12.951256 -18.537971 -12.951256 -0.518819 -1.433891 0.008278 -0.051355 0.008278 0.059053
 -0.004381 1.588098 4.045419 1.588098 2.084605 1.628793 1326.835352 46177.771854 
0.129 0 -735.75 0 -12.922379 -18.673193 -12.922379 -0.309245 -1.442936 0.010608 -0.03725 0.010608 0.067441
 0.004393 0.776534 4.701676 0.776534 2.795993 2.924741 1350.024605 46177.771854 
0.132 0 -735.75 0 -12.88961 -18.763058 -12.88961 -0.079217 -1.420187 0.010962 -0.021646 0.010962 0.076986

 0.014565 0.117973 5.201186 0.117973 3.181692 3.390762 1371.886452 46177.771854 
0.135 0 -735.75 0 -12.857986 -18.804258 -12.857986 0.184187 -1.371724 0.009957 -0.004783 0.009957 0.086852
 0.022529 -0.334833 5.621013 -0.334833 3.288653 2.654641 1428.867076 46177.771854 
0.138 0 -735.75 0 -12.830525 -18.795166 -12.830525 0.469667 -1.298275 0.008306 0.011352 0.008306 0.095399
 0.029359 -0.550289 5.378344 -0.550289 2.849301 2.276579 1450.361176 46177.771854 
0.141 0 -735.75 0 -12.80808 -18.73972 -12.80808 0.773683 -1.206088 0.006725 0.025713 0.006725 0.101644
 0.033788 -0.527038 4.78713 -0.527038 2.081499 1.4765 1471.564305 46177.771854 
0.144 0 -735.75 0 -12.789468 -18.64464 -12.789468 1.095916 -1.108384 0.005845 0.037813 0.005845 0.105151
 0.03408 -0.293499 4.033294 -0.293499 1.168901 0.097104 1518.683044 46177.771854 
0.147 0 -735.75 0 -12.771818 -18.518182 -12.771818 1.419877 -1.011774 0.006147 0.046329 0.006147 0.10527
 0.032014 0.100696 2.838471 0.100696 0.039711 -0.688487 1541.135813 46177.771854 
0.15 0 -735.75 0 -12.751103 -18.370435 -12.751103 1.783773 -0.955214 0.007929 0.054273 0.007929 0.104312
 0.019932 0.594006 2.648197 0.594006 -0.319133 -4.027447 1751.913566 46177.771854 
0.153 0 -735.75 0 -12.72265 -18.205075 -12.72265 2.125877 -0.922863 0.011308 0.057299 0.011308 0.1008
 0.011645 1.126273 1.00862 1.126273 -1.170864 -2.762396 1788.745744 46177.771854 
0.156 0 -735.75 0 -12.681755 -18.035928 -12.681755 2.443535 -0.905699 0.016184 0.056291 0.016184 0.095667
 0.006497 1.625364 -0.336046 1.625364 -1.710896 -1.715898 1819.721094 46177.771854 
0.159 0 -735.75 0 -12.624379 -17.87367 -12.624379 2.73667 -0.897512 0.022223 0.052442 0.022223 0.089558
 0.003416 2.013096 -1.282852 2.013096 -2.036249 -1.027145 1849.770517 46177.771854 
0.162 0 -735.75 0 -12.547753 -17.725335 -12.547753 3.002098 -0.89216 0.028923 0.046714 0.028923 0.082761
 0.002128 2.233142 -1.909601 2.233142 -2.265805 -0.429102 1864.416101 46177.771854 
0.165 0 -735.75 0 -12.450781 -17.594872 -12.450781 3.244526 -0.889286 0.035685 0.040552 0.035685 0.075803
 0.001085 2.254002 -2.054012 2.254002 -2.319412 -0.347699 1890.423642 46177.771854 
0.168 0 -735.75 0 -12.334199 -17.482244 -12.334199 3.464745 -0.888733 0.041897 0.034864 0.041897 0.069033
 0.000158 2.070861 -1.895876 2.070861 -2.256524 -0.309155 1914.379093 46177.771854 
0.171 0 -735.75 0 -12.20051 -17.385123 -12.20051 3.658359 -0.886228 0.047005 0.029939 0.047005 0.062546
 0.00044 1.702631 -1.641738 1.702631 -2.16227 0.094022 1912.232996 46177.771854 
0.174 0 -735.75 0 -12.05373 -17.300214 -12.05373 3.834974 -0.883971 0.050562 0.026843 0.050562 0.056949
 0.00039 1.185628 -1.031853 1.185628 -1.865807 -0.016555 1931.343927 46177.771854 
0.177 0 -735.75 0 -11.898994 -17.22168 -11.898994 3.997214 -0.882144 0.052277 0.025746 0.052277 0.052471
 0.000437 0.571559 -0.365637 0.571559 -1.492694 0.015462 1948.779633 46177.771854 



 

 

0.18 0 -735.75 0 -11.742028 -17.142485 -11.742028 4.186998 -0.905564 0.052057 0.029283 0.052057 0.051114
 -0.00546 -0.073163 1.179038 -0.073163 -0.452273 -1.965368 2118.716867 46177.771854 
0.183 0 -735.75 0 -11.588478 -17.050668 -11.588478 4.363405 -0.933534 0.050039 0.033474 0.050039 0.051338
 -0.006005 -0.672679 1.396996 -0.672679 0.074675 -0.181677 2140.037346 46177.771854 
0.186 0 -735.75 0 -11.443304 -16.944491 -11.443304 4.535439 -0.953758 0.046533 0.038369 0.046533 0.053301
 -0.002699 -1.168729 1.631409 -1.168729 0.654155 1.101941 2160.475026 46177.771854 
0.189 0 -735.75 0 -11.310373 -16.822424 -11.310373 4.706606 -0.955816 0.041949 0.043504 0.041949 0.056361
 0.003369 -1.527833 1.711809 -1.527833 1.020201 2.022426 2164.967807 46177.771854 
0.192 0 -735.75 0 -11.192216 -16.684351 -11.192216 4.885553 -0.938276 0.036765 0.048803 0.036765 0.059859
 0.009504 -1.728136 1.766363 -1.728136 1.165796 2.045042 2182.290363 46177.771854 
0.195 0 -735.75 0 -11.089886 -16.530778 -11.089886 5.07292 -0.903155 0.03148 0.053633 0.03148 0.062848
 0.014498 -1.761514 1.609922 -1.761514 0.996412 1.664788 2198.43104 46177.771854 
0.198 0 -735.75 0 -11.002954 -16.364253 -11.002954 5.263301 -0.853305 0.026572 0.057107 0.026572 0.064367
 0.018069 -1.636008 1.158067 -1.636008 0.506385 1.19045 2201.178473 46177.771854 
0.201 0 -735.75 0 -10.929668 -16.189658 -10.929668 5.455769 -0.796878 0.02244 0.058939 0.02244 0.063974
 0.018953 -1.377588 0.610771 -1.377588 -0.130942 0.294401 2215.231444 46177.771854 
0.204 0 -735.75 0 -10.867249 -16.01264 -10.867249 5.643968 -0.741759 0.019363 0.05868 0.019363 0.061377
 0.017305 -1.025664 -0.086537 -1.025664 -0.865841 -0.549086 2228.835659 46177.771854 
0.207 0 -735.75 0 -10.812288 -15.839958 -10.812288 5.816631 -0.691789 0.017476 0.05581 0.017476 0.056407
 0.01437 -0.628851 -0.956471 -0.628851 -1.656505 -0.978513 2223.827835 46177.771854 
0.21 0 -735.75 0 -10.761206 -15.67807 -10.761206 6.014433 -0.682028 0.01677 0.053743 0.01677 0.051569
 0.002658 -0.235229 -0.689085 -0.235229 -1.612768 -3.904048 2401.404865 46177.771854 
0.213 0 -735.75 0 -10.7106 -15.525898 -10.7106 6.184075 -0.696213 0.017133 0.048764 0.017133 0.045695
 -0.004938 0.120952 -1.659653 0.120952 -1.957979 -2.531867 2420.208969 46177.771854 
0.216 0 -735.75 0 -10.657563 -15.391195 -10.657563 6.321816 -0.720407 0.018339 0.041466 0.018339 0.039502
 -0.00805 0.401982 -2.432559 0.401982 -2.064397 -1.037477 2413.857049 46177.771854 
0.219 0 -735.75 0 -10.600068 -15.27932 -10.600068 6.438322 -0.749581 0.020041 0.033491 0.020041 0.033813
 -0.009282 0.567103 -2.658426 0.567103 -1.896263 -0.410472 2430.050486 46177.771854 
0.222 0 -735.75 0 -10.53723 -15.191089 -10.53723 6.536598 -0.779437 0.021834 0.025697 0.021834 0.02886
 -0.009208 0.597806 -2.598166 0.597806 -1.650837 0.024618 2444.618515 46177.771854 
0.225 0 -735.75 0 -10.469372 -15.125118 -10.469372 6.613394 -0.802811 0.023323 0.018326 0.023323 0.024465
 -0.007232 0.496296 -2.457024 0.496296 -1.465193 0.65865 2431.852275 46177.771854 
0.228 0 -735.75 0 -10.397949 -15.079135 -10.397949 6.67932 -0.821075 0.02416 0.01248 0.02416 0.020945
 -0.005537 0.279124 -1.948573 0.279124 -1.173142 0.565116 2441.86932 46177.771854 
0.231 0 -735.75 0 -10.325326 -15.048207 -10.325326 6.736601 -0.834929 0.02409 0.008344 0.02409 0.018259
 -0.004098 -0.023257 -1.37862 -0.023257 -0.895582 0.479588 2450.28832 46177.771854 
0.234 0 -735.75 0 -10.25446 -15.027284 -10.25446 6.782492 -0.841566 0.022976 0.005564 0.022976 0.016148
 -0.001983 -0.37161 -0.926613 -0.37161 -0.703634 0.704878 2437.464251 46177.771854 
0.237 0 -735.75 0 -10.188544 -15.012287 -10.188544 6.825032 -0.843664 0.020797 0.004456 0.020797 0.014778
 -0.00052 -0.726219 -0.369244 -0.726219 -0.456434 0.487638 2442.717082 46177.771854 
0.24 0 -735.75 0 -10.130646 -14.997628 -10.130646 6.90353 -0.867846 0.017667 0.007306 0.017667 0.015831
 -0.005722 -1.043335 0.949962 -1.043335 0.350748 -1.733726 2598.432072 46177.771854 
0.243 0 -735.75 0 -10.083258 -14.973694 -10.083258 6.972814 -0.894464 0.013842 0.009846 0.013842 0.017511
 -0.006055 -1.275136 0.846641 -1.275136 0.559967 -0.111114 2598.690723 46177.771854 
0.246 0 -735.75 0 -10.047971 -14.941613 -10.047971 7.04199 -0.914877 0.009654 0.012324 0.009654 0.020047
 -0.003605 -1.395802 0.825924 -1.395802 0.845414 0.816601 2608.281005 46177.771854 
0.249 0 -735.75 0 -10.025362 -14.901951 -10.025362 7.115288 -0.923708 0.005445 0.014601 0.005445 0.023059
 0.000247 -1.403177 0.758959 -1.403177 1.004022 1.283894 2617.239875 46177.771854 
0.252 0 -735.75 0 -10.015002 -14.855802 -10.015002 7.19388 -0.918727 0.001539 0.016382 0.001539 0.025917
 0.004383 -1.302 0.5936 -1.302 0.952578 1.378832 2622.110452 46177.771854 
0.255 0 -735.75 0 -10.015541 -14.805137 -10.015541 7.278423 -0.901846 -0.00178 0.017459 -0.00178 0.028045
 0.00759 -1.106166 0.359142 -1.106166 0.709402 1.06901 2629.471418 46177.771854 
0.258 0 -735.75 0 -10.024872 -14.752559 -10.024872 7.366497 -0.877044 -0.004294 0.017547 -0.004294 0.028948
 0.009292 -0.838008 0.029237 -0.838008 0.301225 0.567399 2636.237722 46177.771854 
0.261 0 -735.75 0 -10.040364 -14.701432 -10.040364 7.453435 -0.848783 -0.005874 0.016375 -0.005874 0.028306
 0.009439 -0.526813 -0.390459 -0.526813 -0.214234 0.048816 2639.031231 46177.771854 
0.264 0 -735.75 0 -10.059149 -14.655674 -10.059149 7.535884 -0.822582 -0.006494 0.013952 -0.006494 0.026115
 0.007906 -0.206516 -0.807745 -0.206516 -0.730086 -0.511019 2644.898916 46177.771854 
0.267 0 -735.75 0 -10.078435 -14.618987 -10.078435 7.609493 -0.802946 -0.006229 0.010344 -0.006229 0.02256
 0.005103 0.088407 -1.202757 0.088407 -1.18518 -0.934327 2650.523686 46177.771854 
0.27 0 -735.75 0 -10.095793 -14.593672 -10.095793 7.706113 -0.816537 -0.005234 0.008242 -0.005234 0.019697
 -0.004272 0.331722 -0.700786 0.331722 -0.95422 -3.124799 2797.148619 46177.771854 
0.273 0 -735.75 0 -10.109303 -14.576201 -10.109303 7.78251 -0.847186 -0.003697 0.004582 -0.003697 0.016576
 -0.009421 0.512319 -1.219982 0.512319 -1.040501 -1.716494 2808.169728 46177.771854 
0.276 0 -735.75 0 -10.117662 -14.570263 -10.117662 7.842889 -0.884902 -0.001843 0.00024 -0.001843 0.013994
 -0.011161 0.617746 -1.447098 0.617746 -0.860455 -0.580054 2818.87432 46177.771854 
0.279 0 -735.75 0 -10.120319 -14.576963 -10.120319 7.890041 -0.920635 5.9E-05 -0.004126 5.9E-05 0.012207
 -0.010137 0.634256 -1.455351 0.634256 -0.595926 0.34153 2821.210569 46177.771854 
0.282 0 -735.75 0 -10.117526 -14.595483 -10.117526 7.930533 -0.950039 0.001748 -0.007726 0.001748 0.011333
 -0.007821 0.562925 -1.200142 0.562925 -0.291313 0.771866 2829.499047 46177.771854 
0.285 0 -735.75 0 -10.110273 -14.623003 -10.110273 7.96781 -0.970754 0.003002 -0.010194 0.003002 0.011229
 -0.004946 0.417901 -0.822779 0.417901 -0.034489 0.95852 2836.488804 46177.771854 
0.288 0 -735.75 0 -10.100109 -14.655934 -10.100109 8.003489 -0.981541 0.003669 -0.011451 0.003669 0.011647
 -0.001887 0.222488 -0.418952 0.222488 0.139104 1.019582 2838.31431 46177.771854 
0.291 0 -735.75 0 -10.08892 -14.69066 -10.08892 8.040506 -0.983571 0.003681 -0.011443 0.003681 0.012413
 0.000717 0.003933 0.002637 0.003933 0.255487 0.868009 2842.960841 46177.771854 
0.294 0 -735.75 0 -10.078671 -14.723678 -10.078671 8.079757 -0.978539 0.003051 -0.010376 0.003051 0.013325
 0.002717 -0.210025 0.355864 -0.210025 0.303944 0.666632 2846.865606 46177.771854 
0.297 0 -735.75 0 -10.071172 -14.752247 -10.071172 8.121773 -0.968527 0.001868 -0.008534 0.001868 0.014228
 0.004046 -0.394497 0.613828 -0.394497 0.301045 0.442883 2851.251568 46177.771854 
0.3 0 -735.75 0 -10.067871 -14.773593 -10.067871 8.202711 -0.97976 0.000291 -0.003739 0.000291 0.016728
 -0.001243 -0.525428 1.598542 -0.525428 0.833208 -1.762773 3000.68198 46177.771854 
0.303 0 -735.75 0 -10.069597 -14.780932 -10.069597 8.279586 -0.995771 -0.001441 0.00012 -0.001441 0.019232
 -0.00251 -0.577483 1.28635 -0.577483 0.834642 -0.422375 3009.899122 46177.771854 
0.306 0 -735.75 0 -10.076428 -14.777184 -10.076428 8.357844 -1.008821 -0.003074 0.00326 -0.003074 0.021999
 -0.001276 -0.544466 1.046679 -0.544466 0.922424 0.411076 3023.946513 46177.771854 
0.309 0 -735.75 0 -10.087736 -14.76466 -10.087736 8.439018 -1.013331 -0.004395 0.005643 -0.004395 0.024769
 0.001452 -0.440152 0.794234 -0.440152 0.923442 0.909605 3033.077381 46177.771854 
0.312 0 -735.75 0 -10.102322 -14.745748 -10.102322 8.52438 -1.007451 -0.005239 0.007293 -0.005239 0.027155
 0.004462 -0.281213 0.549965 -0.281213 0.795239 1.003063 3041.645712 46177.771854 
0.315 0 -735.75 0 -10.118584 -14.722759 -10.118584 8.614402 -0.992985 -0.0055 0.008258 -0.0055 0.028796
 0.006674 -0.08712 0.321792 -0.08712 0.547089 0.737546 3053.740633 46177.771854 
0.318 0 -735.75 0 -10.134695 -14.697922 -10.134695 8.705815 -0.972522 -0.005137 0.008404 -0.005137 0.029347
 0.007857 0.12103 0.048513 0.12103 0.183537 0.394108 3061.296156 46177.771854 
0.321 0 -735.75 0 -10.148802 -14.673755 -10.148802 8.79577 -0.949821 -0.004174 0.007738 -0.004174 0.028685
 0.007798 0.321042 -0.222023 0.321042 -0.220651 -0.019436 3068.39124 46177.771854 
0.324 0 -735.75 0 -10.159223 -14.652651 -10.159223 8.88099 -0.928637 -0.0027 0.00632 -0.0027 0.026862
 0.006609 0.491246 -0.472625 0.491246 -0.6077 -0.39655 3074.669961 46177.771854 
0.327 0 -735.75 0 -10.164633 -14.636693 -10.164633 8.95872 -0.912176 -0.000861 0.004303 -0.000861 0.024101
 0.004561 0.612948 -0.67221 0.612948 -0.920329 -0.682593 3081.073569 46177.771854 
0.33 0 -735.75 0 -10.164203 -14.626394 -10.164203 9.063687 -0.927111 0.001171 0.004471 0.001171 0.022496
 -0.004023 0.677455 0.056026 0.677455 -0.535033 -2.861099 3234.428075 46177.771854 
0.333 0 -735.75 0 -10.157578 -14.616401 -10.157578 9.151213 -0.955367 0.003245 0.003465 0.003245 0.020901
 -0.007916 0.691343 -0.335374 0.691343 -0.531635 -1.297838 3243.08133 46177.771854 
0.336 0 -735.75 0 -10.144845 -14.60943 -10.144845 9.227444 -0.986778 0.005216 0.002104 0.005216 0.020027
 -0.00838 0.657053 -0.453659 0.657053 -0.291312 -0.154732 3254.659591 46177.771854 
0.339 0 -735.75 0 -10.126544 -14.605847 -10.126544 9.297389 -1.01376 0.006932 0.00098 0.006932 0.020048
 -0.006532 0.571991 -0.37481 0.571991 0.00695 0.615992 3265.423733 46177.771854 
0.342 0 -735.75 0 -10.103642 -14.604476 -10.103642 9.364497 -1.031183 0.008265 0.000431 0.008265 0.0208
 -0.003311 0.444339 -0.182895 0.444339 0.250888 1.073598 3272.055003 46177.771854 
0.345 0 -735.75 0 -10.077424 -14.60334 -10.077424 9.432674 -1.037543 0.009133 0.000711 0.009133 0.022036
 0.000167 0.289273 0.093237 0.289273 0.411755 1.159395 3280.50807 46177.771854 
0.348 0 -735.75 0 -10.04934 -14.60001 -10.04934 9.503532 -1.033347 0.00951 0.001795 0.00951 0.023422
 0.003273 0.125632 0.361303 0.125632 0.462049 1.035473 3287.961731 46177.771854 
0.351 0 -735.75 0 -10.020829 -14.592349 -10.020829 9.577166 -1.020298 0.009427 0.003488 0.009427 0.024647
 0.005684 -0.02764 0.564553 -0.02764 0.408311 0.803661 3293.264865 46177.771854 
0.354 0 -735.75 0 -9.993163 -14.578919 -9.993163 9.653477 -1.001229 0.008963 0.005564 0.008963 0.0255
 0.007141 -0.154771 0.69179 -0.154771 0.284487 0.485622 3299.323344 46177.771854 
0.357 0 -735.75 0 -9.967325 -14.559035 -9.967325 9.731277 -0.979073 0.008228 0.007721 0.008228 0.025839
 0.007667 -0.244896 0.719099 -0.244896 0.112997 0.175312 3305.047631 46177.771854 
0.36 0 -735.75 0 -9.943933 -14.531912 -9.943933 9.845526 -0.980874 0.007364 0.01222 0.007364 0.027345
 0.001358 -0.287996 1.499626 -0.287996 0.502126 -2.102881 3456.340796 46177.771854 
0.363 0 -735.75 0 -9.923103 -14.492437 -9.923103 9.952274 -0.990756 0.00655 0.015297 0.00655 0.028544
 -0.001057 -0.271269 1.025773 -0.271269 0.399636 -0.805036 3467.945843 46177.771854 
0.366 0 -735.75 0 -9.904419 -14.444794 -9.904419 10.055033 -1.000352 0.005955 0.017241 0.005955 0.029779
 -0.000762 -0.198299 0.648061 -0.198299 0.4116 0.098322 3479.60884 46177.771854 
0.369 0 -735.75 0 -9.887046 -14.392231 -9.887046 10.15612 -1.004222 0.005688 0.018284 0.005688 0.030977
 0.001076 -0.089169 0.347602 -0.089169 0.399415 0.612679 3489.623274 46177.771854 
0.372 0 -735.75 0 -9.869911 -14.337297 -9.869911 10.257164 -1.000393 0.005801 0.018643 0.005801 0.031902
 0.003305 0.037692 0.119638 0.037692 0.308103 0.742995 3500.118999 46177.771854 
0.375 0 -735.75 0 -9.851856 -14.281952 -9.851856 10.358006 -0.98939 0.006298 0.018439 0.006298 0.032268
 0.005147 0.165712 -0.067926 0.165712 0.122137 0.613879 3509.840477 46177.771854 
0.378 0 -735.75 0 -9.831778 -14.227852 -9.831778 10.456284 -0.972719 0.007138 0.017678 0.007138 0.031819
 0.006325 0.280092 -0.253752 0.280092 -0.149566 0.392646 3514.5003 46177.771854 
0.381 0 -735.75 0 -9.80876 -14.176567 -9.80876 10.551306 -0.953938 0.008242 0.016533 0.008242 0.030526
 0.006379 0.367825 -0.381804 0.367825 -0.431246 0.01797 3522.66104 46177.771854 
0.384 0 -735.75 0 -9.782172 -14.129174 -9.782172 10.640804 -0.936346 0.009498 0.015071 0.009498 0.028446
 0.005451 0.418831 -0.487291 0.418831 -0.693271 -0.309227 3530.285134 46177.771854 
0.387 0 -735.75 0 -9.751745 -14.08655 -9.751745 10.720879 -0.921217 0.010778 0.013255 0.010778 0.025678
 0.004172 0.42643 -0.605299 0.42643 -0.922592 -0.426241 3529.718773 46177.771854 
0.39 0 -735.75 0 -9.717616 -14.048526 -9.717616 10.828266 -0.934905 0.011954 0.013897 0.011954 0.024281
 -0.003557 0.39219 0.214027 0.39219 -0.465613 -2.576494 3679.032806 46177.771854 



 

 

0.393 0 -735.75 0 -9.680217 -14.009039 -9.680217 10.920787 -0.960629 0.012948 0.013666 0.012948 0.023087
 -0.006972 0.331156 -0.076992 0.331156 -0.398141 -1.138115 3691.140346 46177.771854 
0.396 0 -735.75 0 -9.640177 -13.97021 -9.640177 11.001603 -0.987016 0.013704 0.012997 0.013704 0.022562
 -0.006732 0.252162 -0.22305 0.252162 -0.174838 0.079743 3694.928347 46177.771854 
0.399 0 -735.75 0 -9.598292 -13.93278 -9.598292 11.077955 -1.007779 0.014169 0.012529 0.014169 0.022875
 -0.004553 0.15491 -0.155855 0.15491 0.104289 0.726432 3705.648655 46177.771854 
0.402 0 -735.75 0 -9.555495 -13.895869 -9.555495 11.153455 -1.019222 0.014308 0.012504 0.014308 0.023803
 -0.001445 0.046434 -0.008373 0.046434 0.309342 1.036054 3715.36018 46177.771854 
0.405 0 -735.75 0 -9.512773 -13.858142 -9.512773 11.22878 -1.019176 0.014122 0.012873 0.014122 0.024933
 0.002023 -0.061966 0.122939 -0.061966 0.376625 1.155923 3717.652396 46177.771854 
0.408 0 -735.75 0 -9.471056 -13.818503 -9.471056 11.306713 -1.009364 0.013646 0.013707 0.013646 0.025982
 0.004791 -0.15885 0.277872 -0.15885 0.349693 0.92254 3725.180305 46177.771854 
0.411 0 -735.75 0 -9.431127 -13.775867 -9.431127 11.386781 -0.99248 0.012943 0.014801 0.012943 0.026647
 0.006571 -0.234284 0.36489 -0.234284 0.221647 0.593654 3731.992415 46177.771854 
0.414 0 -735.75 0 -9.393542 -13.729871 -9.393542 11.466231 -0.970725 0.012098 0.015811 0.012098 0.026668
 0.007544 -0.281726 0.336518 -0.281726 0.006853 0.324161 3732.523427 46177.771854 
0.417 0 -735.75 0 -9.358594 -13.68108 -9.358594 11.544984 -0.947881 0.011199 0.01664 0.011199 0.026025
 0.007396 -0.299727 0.27624 -0.299727 -0.214314 -0.04943 3738.292953 46177.771854 
0.42 0 -735.75 0 -9.326316 -13.629417 -9.326316 11.655677 -0.950096 0.01034 0.019501 0.01034 0.026382
 0.000648 -0.286287 0.953829 -0.286287 0.119148 -2.249196 3882.465347 46177.771854 
0.423 0 -735.75 0 -9.296411 -13.570499 -9.296411 11.754764 -0.961372 0.009636 0.020808 0.009636 0.026359
 -0.002134 -0.234576 0.435728 -0.234576 -0.007703 -0.927243 3888.042185 46177.771854 
0.426 0 -735.75 0 -9.268257 -13.508685 -9.268257 11.847251 -0.974184 0.009182 0.021079 0.009182 0.026437
 -0.002384 -0.151413 0.090388 -0.151413 0.025888 -0.083453 3899.078522 46177.771854 
0.429 0 -735.75 0 -9.241038 -13.446781 -9.241038 11.935745 -0.983411 0.009013 0.020644 0.009013 0.026637
 -0.001134 -0.056264 -0.145211 -0.056264 0.066671 0.416794 3909.608429 46177.771854 
0.432 0 -735.75 0 -9.213903 -13.386683 -9.213903 12.020147 -0.985432 0.009121 0.01964 0.009121 0.026712
 0.000983 0.035858 -0.334476 0.035858 0.025213 0.705659 3912.509373 46177.771854 
0.435 0 -735.75 0 -9.186083 -13.329823 -9.186083 12.102985 -0.980872 0.00946 0.018416 0.00946 0.026519
 0.00277 0.113257 -0.408029 0.113257 -0.06451 0.595459 3921.151655 46177.771854 
0.438 0 -735.75 0 -9.156977 -13.276755 -9.156977 12.183628 -0.971545 0.009964 0.017065 0.009964 0.025869
 0.003855 0.16801 -0.450383 0.16801 -0.216498 0.361599 3928.979461 46177.771854 
0.441 0 -735.75 0 -9.126214 -13.227859 -9.126214 12.258726 -0.958477 0.01055 0.015492 0.01055 0.024585
 0.004481 0.195295 -0.524527 0.195295 -0.428184 0.208944 3927.491357 46177.771854 
0.444 0 -735.75 0 -9.093685 -13.183668 -9.093685 12.329428 -0.945173 0.011126 0.013945 0.011126 0.02279
 0.004116 0.19208 -0.515508 0.19208 -0.598346 -0.121934 3933.694259 46177.771854 
0.447 0 -735.75 0 -9.059557 -13.144073 -9.059557 12.394264 -0.934155 0.011601 0.012442 0.011601 0.020595
 0.003057 0.158242 -0.500973 0.158242 -0.731554 -0.352786 3939.434152 46177.771854 
0.45 0 -735.75 0 -9.024258 -13.108049 -9.024258 12.483409 -0.947763 0.011904 0.013187 0.011904 0.019678
 -0.003492 0.100895 0.248341 0.100895 -0.30567 -2.183143 4069.171146 46177.771854 
0.453 0 -735.75 0 -8.98834 -13.070094 -8.98834 12.560432 -0.971111 0.012014 0.013217 0.012014 0.018991
 -0.006209 0.036575 0.009972 0.036575 -0.228876 -0.905615 4079.44635 46177.771854 
0.456 0 -735.75 0 -8.952373 -13.031973 -8.952373 12.629989 -0.995358 0.011936 0.012969 0.011936 0.018978
 -0.006021 -0.025918 -0.082536 -0.025918 -0.004412 0.062789 4089.483542 46177.771854 
0.459 0 -735.75 0 -8.916916 -12.994237 -8.916916 12.694497 -1.013004 0.011674 0.012646 0.011674 0.019572
 -0.00367 -0.087332 -0.107935 -0.087332 0.19786 0.783551 4091.556081 46177.771854 
0.462 0 -735.75 0 -8.882507 -12.956857 -8.882507 12.759274 -1.021484 0.01124 0.012606 0.01124 0.020618
 -0.00068 -0.144642 -0.013385 -0.144642 0.348607 0.996676 4099.771606 46177.771854 
0.465 0 -735.75 0 -8.849623 -12.918998 -8.849623 12.825911 -1.020376 0.010663 0.012864 0.010663 0.021765
 0.002197 -0.192294 0.086324 -0.192294 0.382521 0.958904 4107.09727 46177.771854 
0.468 0 -735.75 0 -8.818628 -12.879967 -8.818628 12.893286 -1.010111 0.009989 0.013229 0.009989 0.022617
 0.004682 -0.224549 0.121375 -0.224549 0.284004 0.828382 4107.971423 46177.771854 
0.471 0 -735.75 0 -8.789729 -12.83965 -8.789729 12.962304 -0.993872 0.009275 0.013676 0.009275 0.022981
 0.006095 -0.23821 0.148965 -0.23821 0.121433 0.471226 4113.682445 46177.771854 
0.474 0 -735.75 0 -8.762963 -12.798101 -8.762963 13.031316 -0.974957 0.008576 0.01401 0.008576 0.022704
 0.006436 -0.232798 0.111351 -0.232798 -0.092584 0.113663 4118.960339 46177.771854 
0.477 0 -735.75 0 -8.738203 -12.755965 -8.738203 13.096958 -0.955447 0.007944 0.013963 0.007944 0.021688
 0.006102 -0.21085 -0.015537 -0.21085 -0.338566 -0.111658 4118.308151 46177.771854 
0.48 0 -735.75 0 -8.715194 -12.713639 -8.715194 13.191351 -0.960041 0.007422 0.015816 0.007422 0.021609
 -0.000416 -0.173794 0.617609 -0.173794 -0.026188 -2.172501 4252.111386 46177.771854 
0.483 0 -735.75 0 -8.693508 -12.666888 -8.693508 13.275233 -0.974697 0.007072 0.016379 0.007072 0.021285
 -0.003434 -0.116764 0.187663 -0.116764 -0.108041 -1.005889 4262.010094 46177.771854 
0.486 0 -735.75 0 -8.672552 -12.619302 -8.672552 13.350407 -0.990594 0.006937 0.015961 0.006937 0.021084
 -0.003614 -0.045138 -0.139404 -0.045138 -0.067233 -0.060225 4266.003427 46177.771854 
0.489 0 -735.75 0 -8.651681 -12.573392 -8.651681 13.421484 -1.003046 0.007011 0.015072 0.007011 0.021132
 -0.002361 0.0247 -0.296068 0.0247 0.015996 0.417853 4275.11065 46177.771854 
0.492 0 -735.75 0 -8.630317 -12.530268 -8.630317 13.490312 -1.009579 0.007257 0.01398 0.007257 0.021283
 -0.000511 0.081979 -0.364205 0.081979 0.050397 0.616727 4283.463521 46177.771854 
0.495 0 -735.75 0 -8.608025 -12.490384 -8.608025 13.556186 -1.008729 0.007619 0.012746 0.007619 0.021261
 0.001552 0.120678 -0.411401 0.120678 -0.00717 0.687571 4284.699097 46177.771854 
0.498 0 -735.75 0 -8.584554 -12.453997 -8.584554 13.620945 -1.002336 0.008032 0.011614 0.008032 0.020958
 0.00296 0.137687 -0.377079 0.137687 -0.101101 0.469233 4291.201507 46177.771854 
0.501 0 -735.75 0 -8.55985 -12.420785 -8.55985 13.683769 -0.992699 0.00843 0.0106 0.00843 0.020259
 0.003587 0.132743 -0.338019 0.132743 -0.232919 0.209207 4297.038096 46177.771854 
0.504 0 -735.75 0 -8.53405 -12.390477 -8.53405 13.741826 -0.980989 0.008753 0.009567 0.008753 0.019072
 0.003789 0.107503 -0.344513 0.107503 -0.395882 0.067063 4295.34439 46177.771854 
0.507 0 -735.75 0 -8.507465 -12.363096 -8.507465 13.796129 -0.970011 0.008945 0.008663 0.008945 0.017542
 0.003241 0.064142 -0.301168 0.064142 -0.509976 -0.182558 4299.979058 46177.771854 
0.51 0 -735.75 0 -8.480549 -12.337451 -8.480549 13.876985 -0.982419 0.008976 0.010036 0.008976 0.017277
 -0.002928 0.010347 0.457654 0.010347 -0.088196 -2.056239 4429.215432 46177.771854 
0.513 0 -735.75 0 -8.453765 -12.308096 -8.453765 13.946113 -1.002623 0.008863 0.010539 0.008863 0.01709
 -0.005141 -0.037709 0.167655 -0.037709 -0.062241 -0.737623 4432.572091 46177.771854 
0.516 0 -735.75 0 -8.427487 -12.277282 -8.427487 14.009572 -1.022917 0.008642 0.0107 0.008642 0.017441
 -0.004776 -0.073539 0.053582 -0.073539 0.11679 0.121559 4441.505265 46177.771854 
0.519 0 -735.75 0 -8.401999 -12.245779 -8.401999 14.070974 -1.037865 0.00834 0.01079 0.00834 0.018311
 -0.002823 -0.100836 0.030186 -0.100836 0.290252 0.651132 4449.880625 46177.771854 
0.522 0 -735.75 0 -8.377508 -12.213695 -8.377508 14.131738 -1.043891 0.007981 0.010882 0.007981 0.01942
 -1.1E-05 -0.119592 0.030555 -0.119592 0.369426 0.937058 4452.970482 46177.771854 
0.525 0 -735.75 0 -8.354142 -12.180982 -8.354142 14.194474 -1.041075 0.007595 0.011118 0.007595 0.020504
 0.002588 -0.12865 0.07861 -0.12865 0.36132 0.866531 4459.649483 46177.771854 
0.528 0 -735.75 0 -8.331934 -12.147342 -8.331934 14.259107 -1.031 0.007215 0.011426 0.007215 0.021263
 0.004513 -0.126711 0.102721 -0.126711 0.25318 0.641628 4465.641487 46177.771854 
0.531 0 -735.75 0 -8.310814 -12.11279 -8.310814 14.323558 -1.015489 0.006874 0.011611 0.006874 0.021438
 0.005721 -0.113648 0.06174 -0.113648 0.058144 0.402544 4466.806616 46177.771854 
0.534 0 -735.75 0 -8.290623 -12.077861 -8.290623 14.387504 -0.997907 0.006599 0.01165 0.006599 0.020973
 0.005888 -0.09173 0.012768 -0.09173 -0.154978 0.055885 4471.700664 46177.771854 
0.537 0 -735.75 0 -8.271139 -12.043183 -8.271139 14.449029 -0.981146 0.006404 0.011426 0.006404 0.01987
 0.005197 -0.064952 -0.074602 -0.064952 -0.367591 -0.230396 4476.337096 46177.771854 
0.54 0 -735.75 0 -8.252113 -12.008862 -8.252113 14.535677 -0.986976 0.006301 0.012918 0.006301 0.019629
 -0.00093 -0.034395 0.497551 -0.034395 -0.080363 -2.04239 4597.808228 46177.771854 
0.543 0 -735.75 0 -8.233225 -11.971008 -8.233225 14.612128 -1.002261 0.006317 0.01329 0.006317 0.019224
 -0.003738 0.005235 0.123716 0.005235 -0.134966 -0.936014 4607.056085 46177.771854 
0.546 0 -735.75 0 -8.214084 -11.932642 -8.214084 14.681646 -1.019521 0.006468 0.012951 0.006468 0.019077
 -0.004071 0.050656 -0.113029 0.050656 -0.049074 -0.110843 4616.229741 46177.771854 
0.549 0 -735.75 0 -8.194301 -11.89556 -8.194301 14.745894 -1.032678 0.006737 0.012169 0.006737 0.019194
 -0.002631 0.089655 -0.260365 0.089655 0.039113 0.48001 4619.751451 46177.771854 
0.552 0 -735.75 0 -8.173586 -11.860736 -8.173586 14.808526 -1.039546 0.007082 0.011335 0.007082 0.019499
 -0.000633 0.114938 -0.278158 0.114938 0.10171 0.665855 4627.491844 46177.771854 
0.555 0 -735.75 0 -8.151784 -11.828164 -8.151784 14.870552 -1.03975 0.007454 0.01059 0.007454 0.019777
 0.001302 0.123812 -0.248189 0.123812 0.092662 0.645128 4634.441927 46177.771854 
0.558 0 -735.75 0 -8.128887 -11.797554 -8.128887 14.930764 -1.033449 0.007804 0.009898 0.007804 0.019775
 0.002998 0.11676 -0.230948 0.11676 -0.000885 0.565258 4635.322295 46177.771854 
0.561 0 -735.75 0 -8.105025 -11.768726 -8.105025 14.990199 -1.023153 0.00809 0.009379 0.00809 0.019423
 0.003884 0.095486 -0.173014 0.095486 -0.117036 0.295223 4640.71335 46177.771854 
0.564 0 -735.75 0 -8.080443 -11.74125 -8.080443 15.047802 -1.011302 0.008279 0.008975 0.008279 0.018672
 0.004004 0.062741 -0.134445 0.062741 -0.250366 0.0399 4645.627299 46177.771854 
0.567 0 -735.75 0 -8.055477 -11.714917 -8.055477 15.101089 -0.999065 0.008343 0.008528 0.008343 0.017494
 0.003754 0.021608 -0.149193 0.021608 -0.392945 -0.08306 4644.688876 46177.771854 
0.57 0 -735.75 0 -8.030519 -11.689086 -8.030519 15.180383 -1.008397 0.008279 0.010184 0.008279 0.017455
 -0.001937 -0.02148 0.551995 -0.02148 -0.01269 -1.897155 4767.075556 46177.771854 
0.573 0 -735.75 0 -8.005909 -11.658762 -8.005909 15.250584 -1.025825 0.00812 0.011031 0.00812 0.017471
 -0.004238 -0.052921 0.28258 -0.052921 0.005193 -0.766985 4775.938088 46177.771854 
0.576 0 -735.75 0 -7.98185 -11.626151 -7.98185 15.314321 -1.042922 0.007916 0.011333 0.007916 0.017849
 -0.003842 -0.068135 0.100469 -0.068135 0.126143 0.132134 4780.100518 46177.771854 
0.579 0 -735.75 0 -7.958434 -11.592603 -7.958434 15.376226 -1.055007 0.007696 0.011466 0.007696 0.018635
 -0.002047 -0.073345 0.044573 -0.073345 0.261886 0.598236 4788.183913 46177.771854 
0.582 0 -735.75 0 -7.935673 -11.558484 -7.935673 15.438426 -1.059693 0.007482 0.011579 0.007482 0.019612
 0.000295 -0.071406 0.037681 -0.071406 0.325578 0.780765 4795.582864 46177.771854 
0.585 0 -735.75 0 -7.913522 -11.523868 -7.913522 15.500888 -1.056064 0.007292 0.011648 0.007292 0.020455
 0.002679 -0.063239 0.022889 -0.063239 0.281153 0.794458 4798.289526 46177.771854 
0.588 0 -735.75 0 -7.891882 -11.488926 -7.891882 15.564655 -1.045931 0.007143 0.011738 0.007143 0.020956
 0.00437 -0.04979 0.029805 -0.04979 0.166754 0.563836 4804.172798 46177.771854 
0.591 0 -735.75 0 -7.870615 -11.453744 -7.870615 15.628657 -1.031799 0.007045 0.011761 0.007045 0.020933
 0.005191 -0.032413 0.007743 -0.032413 -0.007593 0.273699 4809.536252 46177.771854 
0.594 0 -735.75 0 -7.849553 -11.418712 -7.849553 15.690157 -1.015554 0.007005 0.011541 0.007005 0.020261
 0.005361 -0.013436 -0.073307 -0.013436 -0.223886 0.056532 4809.699028 46177.771854 



 

 

Annex F Specification of dampers in experimental setup 
Damping velocity versus external applied force is given in the graph. Here, the pink graph indicates minimal 

damping and the blue graph indicates maximal damping. Damping can be adapted within these values. 

 

 

 

 

 



 

 

Annex G Test results from controlled experimental testing 
Part 1: bridge with cable truss only, no actuator and no damper applied. 

 

*settlement of connection between cable and steel main structure, larger permanent deformation 

 

Part 2: bridge with actuator (KP=0, KI=500, KD=0, v=15000), no damper applied. 
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Part 3: bridge with damper (c=1200), no actuator applied. 

 

 

Part 4: bridge with actuator (KP=0, KI=500, KD=0, v=15000) and damper (c=1200) in series. 
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