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Preface 

This report presents my master thesis “Energy performance optimization of buildings using data 

mining techniques”. This thesis is written as graduation project for the master Building Physics 

and Services at Eindhoven University of Technology. The reason for the study was the energy 

performance gap between the design and the operational phase of buildings. Therefore, the 

aim was to provide insights into the optimization of the building energy performance, taking into 

account the indoor climate. This study was conducted in collaboration with Huygen Ingenieurs 

& Adviseurs BV. 

 

During my graduation project, I have gained a lot of knowledge. Despite it was sometimes a 

hard process, it was very interesting. Especially the combination of my background in the 

building field with data analysis contained major challenges. This was because I had no 

experience as data analyst before this study. Nevertheless, my research goal was finally 

achieved and the research questions could be answered, partly by the assistance of my 

supervisors and colleagues. 

 

Therefore, I want to thank my graduation committee for their excellent guidance and support. 

My first supervisor from the university was professor Wim Zeiler. Wim, I want to thank you for 

our instructive conversations, where you gave me valuable feedback for obtaining a well-

founded research. In addition, I want to thank my second supervisor from the university, Shalika 

Walker. Shalika helped me to improve the quality of the study. A special thanks goes to my third 

supervisor, Eric Willems from Huygen Ingenieurs & Adviseurs. Eric, thank you for offering me a 

great internship at your company and for always being available to give advice. 

 

Besides my supervisors, I want to thank all my colleagues at Huygen Ingenieurs & Adviseurs 

for the pleasant working atmosphere. Especially, I want to thank Pegah Zolfaghari for learning 

me the basic skills of data analysis. Finally, I want to thank my family for their unconditional 

support during the study. 

 

I hope that this report will contribute to improve the energy performance of buildings towards a 

low-carbon society. 

 

Enjoy reading. 

 

 
Maastricht, October 10, 2018, 
 
Kai Corten 
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Abstract 

In order to achieve the European Union climate and energy targets, existing energy-intensive 

buildings are renovated and replaced by high-performance nearly Zero Energy Buildings 

(nZEB). However, the operational energy performance of these buildings often does not match 

with the design. The most dominant causes for these so-called performance gaps are 

uncertainty in modeling, occupant behavior and poor operational practices of building 

installations. Due to the low renovation and replacement rate of buildings, the improvement of 

the energy performance of operating buildings is of significant importance. Therefore, the main 

objective of this study is to provide recommendations in order to optimize the energy 

performance of operating buildings by a systematic assessment.  

 

Nowadays, non-residential buildings are equipped with a building management system (BMS) 

which collects and stores large quantities of operational data. This data can be used to control 

and improve the operational performance. However, the BMS can only perform simple data 

analysis and visualizations based on a short period of historical data. This is the reason why 

the building sector urgently needs advanced tools. Literature presents data mining (DM) as a 

promising approach for extracting useful insights from the massive data sets. This technology 

is largely applied in various research fields, but is still in an initial phase in the building sector. 

 

The study can be divided into three main steps, namely (i) a Pareto analysis, (ii) a performance 

analysis and (iii) a LEAN energy analysis. This study is conducted at two case study buildings: 

a care center and an office building located in the Netherlands. First, the Pareto analysis is 

performed to identify the performance indicators of the Heating, Ventilation and Air Conditioning 

(HVAC) system and the occupant behavior. Focused on these obtained performance indicators, 

the designed and measured performance is subsequently analyzed by means of top-down 

approach. This leads to identifying systems inefficiencies of which the energy saving potential 

is finally modeled by using regression as the DM technique. 

 

In general, it can be concluded that the HVAC system of especially the care center is 

underperforming according to the design. By means of regression it is shown that the energy 

performance can be significantly optimized by improving the faults in the regulation of the 

systems. Additional measurements on component level are necessary to effectively optimize 

the energy performance. Moreover, this will lead to the improvement of the indoor climate and 

the reduction of the operating costs.  
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Terminology 

List of abbreviations 

AHU  Air Handling Unit 

ATES  Aquifer Thermal Energy Storage  

BES  Building Energy Simulation 

BMS  Building Management System 

CCA  Concrete Core Activation 

CCx  Continuous Commissioning 

CRISP-DM Cross-industry Standard Process for Data Mining 

Cx  Commissioning 

DHW  Domestic Hot Water 

DM  Data Mining 

EED  Energy Efficiency Directive  

EIS  Energy Information System 

EPBD  Energy Performance of Buildings Directive 

EU  European Union 

GDPR  General Data Protection Regulation 

GHG  Greenhouse Gas 

HEX  Heat exchanger 

HVAC  Heating, Ventilation and Air Conditioning 

KDD  Knowledge Discovery in Databases 

LEA  LEAN Energy Analysis 

MBCx  Monitoring Based Commissioning 

nZEB  Nearly Zero Energy Buildings 

RCx  Retro-Commissioning 

SEMMA Sample, Explore, Modify, Model, Assess 

TU/e  Eindhoven University of Technology 

 

List of symbols 

cp  Specific heat capacity       [kJ/kgK]  

CO2  Carbon Dioxide       [ppm] 

COP  Coefficient Of Performance     [-] 

EER  Energy Efficiency Ratio      [-] 

EPC  Energy Performance Coefficient     [-] 

GFA  Gross Floor Area      [m²] 

P  Thermal power       [kW] 

Q  Thermal energy       [kWh] 

R-value  Thermal resistance       [m²K/W] 

RH  Relative Humidity      [%] 

t  Time        [s] or [h] 

Te  Exterior temperature      [°C] 

Ti  Interior temperature      [°C]  

U-value  Heat transfer coefficient      [W/m2K] 

V  Volume        [m³] 

Φ  Flow        [m³/s] 

λ-value  Thermal conductivity      [W/mK] 

  Density        [kg/m³]  
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1 Introduction 

1.1 Background and motivation 

The threat of climate change is one of the greatest challenges of the modern age. This is mainly 

caused by the drastic increase of greenhouse gas (GHG) emissions in the last half century [1]. 

In order to become more climate-friendly and less energy-consuming, the European Union (EU) 

leaders strive for a low-carbon society in 2050 and have therefore set up climate and energy 

targets. By 2020, the EU aims to have at least 20% reduction in GHG emissions, 20% increase 

in renewable energy production and 20% improvement in energy efficiency compared to 1990 

levels (20-20-20 targets) [2]. By 2030, the EU aspires to have at least 40% reduction in GHG 

emissions, 27% increase in renewable energy production and 27% improvement in energy 

efficiency compared to 1990 levels [3]. This will lead to 80-95% reduction in GHG emissions by 

2050 [4]. 

 

The built environment is a major contributor to the climate change. In the EU, the building sector 

is responsible for nearly 40% of the final energy consumption and 36% of the GHG emissions 

[5]. Nevertheless, the sector has huge potential for energy savings by using the currently 

available advanced technologies [6]. In order to promote the improvement of the energy 

performance of buildings within the EU, the Energy Performance of Buildings Directive (EPBD) 

and the Energy Efficiency Directive (EED) were launched by the European Parliament and 

Council. These directives are the EU's main legislative instruments and need to be converted 

by Member States into national legislation [7]. 

 

Despite the above-mentioned initiatives and efforts of the EU, the current rate of building energy 

efficiency increases at a relative slow pace. This is typically due to the low renovation rates 

(1.4% per year on average per country) and low replacement rates of buildings [8]. In addition, 

globally empirical evidence is emerging of discrepancies between the predicted (design phase) 

and the actual measured (operational phase) energy performance of operational buildings. This 

phenomenon has been termed as the “performance gap” [9] [10] [11]. Understanding this gap 

and at the same time reducing it, will improve the energy performance of operating buildings 

and therefore significantly contribute to the EU climate and energy targets. 

1.2 Problem definition and scientific relevance 

1.2.1 Energy performance gap 

The energy consumption of buildings during the operational phase normally accounts for 80-

90% of their life cycle energy demand [12]. Studies have shown that this consumption is on 

average 1.5 to 2.5 times higher than predicted during the design phase [13]. The underlying 

causes for this energy performance gap are presented in Figure 1.1. The most dominant causes 

are uncertainty in modeling during the design phase, occupant behavior and poor operational 

practice of HVAC systems [14]. This variety of reasons, caused in different phases of the 

building life cycle, makes it a great challenge to reduce the energy performance gap of 

operational and future buildings. 
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Figure 1.1: Underlying causes for performance gaps during all phases of the building life cycle [14] 

 

This is also the case in the Netherlands, where energy can be saved at more than 70% of the 

existing non-residential buildings by better operation of the heating, ventilation and air 

conditioning (HVAC) systems. The energy consumption of these buildings is on average 25% 

higher than expected based on the available technology and processes [15]. This accounts for 

nearly 191 PJ, which is about five times larger than the total national generated solar and wind 

energy in 2016 [16]. Therefore, the underperforming HVAC systems offer high potential to 

optimize the energy performance of buildings and, consequently could improve the indoor 

climate and reduce the running costs. These challenges are the main reasons for this study. 

1.2.2 Current situation 

Nowadays, modern non-residential buildings are mostly equipped with an advanced building 

management system (BMS). Besides its control function, this system can monitor, collect and 

store, massive amounts of building data [6] [17]. In fact, the data represents the operational 

performance of the HVAC system. The process of maintaining and improving the performance 

during the building life cycle is grouped under the label Commissioning (Cx) [18]. This is defined 

as: “a quality-oriented process for achieving, verifying, and documenting that the performance 

of facility systems and assemblies meet defined objectives and criteria” [19].  

 

Literature provides three steps of energy saving by Monitoring Based Commissioning (MBCx), 

shown in Figure 1.2 [20]. The first step involves the implementation of energy information 

systems (EIS) and diagnostic tools. The next step includes savings based on the obtained 

information from these tools. The final step is continually identifying new measures which is 

called Continuous Commissioning (CCx). There is growing attention for this ongoing process 

due to the reduction in yearly energy costs combined with low investment costs of most CCx 

measures. As a result, a short pay-back period of the investment costs is 1 to 5 years [18]. 

 

 
Figure 1.2: The three steps of additional energy savings by Monitoring Based Commissioning (MBCx) [20]  
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If the operational performance of HVAC systems is periodically controlled, e.g. once a year, it 

is called periodic re-commissioning (RCx). But the reality of today is that in most of the buildings 

the settings of the system are in general only checked or adjusted to solve complaints of 

occupants, sometimes in combination with a limited number of measurements. Other indicators 

such as energy efficiency and operational excellence are not taken into account. Therefore, 

system inefficiencies are principally caused by controllable parameters [15]. In order to solve 

these problems, a CCx process should be implemented that will result in a significant 

optimization of the energy performance. 

1.2.3 Performance indicators 

The key to develop efficient strategies to reduce the energy performance gap of operational 

buildings is the identification of the root causes of the underperformance of HVAC systems and 

the influences of the occupant behavior. These root causes, called performance indicators, 

have to be assessed by comparing the predicted performance with the actual measured 

performance. The performance indicators can be used to provide aggregated information about 

the performance in a clear and efficient way.  

 

The purpose of a performance indicator is: “to provide a measure of current performance, a 

clear statement of what might be achieved in terms of future performance targets and a 

yardstick for measurement of progress along the way’’ [21]. The use of performance indicators 

and benchmarking is fundamental to any improvement strategy as indicators reflect the goals 

of a project and provide means for the measurement and management of the progress towards 

those goals for further learning and improvement [22]. This is necessary to obtain financially 

attractive business cases. 

1.2.4 Data mining 

When the performance indicators are identified, building operational data regarding these 

indicators can be analyzed. Nevertheless, building data are far from being fully used, mainly 

due to the lack of methods and tools for handling those big data [6]. The BMS can only perform 

simple data analysis and visualizations based on a short period of historical data [12]. In 

addition, the quality of the data analysis is dependent on the knowledge and experience of the 

particular investigator. Therefore, there is an urgent need for systematically analyzing the 

operational data in order to understand, control and improve the building energy performance. 

In fact, a good energy and environmental design, by itself, cannot guarantee predicted 

performance levels during the whole building life cycle without proper commissioning and 

technical management [17].  

 

Data mining (DM) technology is a promising approach for extracting useful insights from large 

data sets [6]. It is the process of turning data into information and gaining knowledge from 

information [23]. DM techniques are already successfully applied in various research fields. 

However, the application of a DM framework for building energy consumption and operational 

data is still in an elementary phase [24].  

 

In order to guide the implementation of DM on big data, Fayyad et al. considered DM as one of 

the steps of the knowledge discovery in databases (KDD) process [25]. This traditional process 

is the basis for other developed process models, such as Cross-industry Standard Process for 

Data Mining (CRISP-DM) and Sample, Explore, Modify, Model, Assess (SEMMA) [26]. The 

KDD process contains five main steps, presented in Figure 1.3.  
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First, a target data set has to be selected on which knowledge discovery is performed. Second, 

the cleaning and preprocessing of the target data in order to get complete and consistent data. 

This step resolves data conflicts, removes outliers and checks for and solves problems, like 

noise and missing values [27]. Third, the transformation of the data into such forms so that DM 

techniques, such as classification, regression and clustering, can be implemented. This means, 

for example, the transformation of the measured data to the same timescale. Fourth, the 

appropriate DM technique is chosen and implemented for searching different patterns from 

data. Fifth, the mining patterns are interpreted and evaluated by means of visualization. This 

leads to the use of the discovered knowledge for different purposes [26].  

 

 
Figure 1.3: The traditional KDD process for obtaining knowledge from data using DM techniques (modified from [28]) 

1.2.5 Pareto analysis and LEAN energy analysis 

In order to control and improve the building energy performance, the combination of the Pareto 

analysis and LEAN energy analysis seems to be an effective way [29]. The Pareto analysis is 

a systematic approach to identify the major causes of problems [30]. In addition, the LEAN 

energy analysis is a useful method to assess the building energy performance [31] [32].  

 

Pareto analysis 

The Pareto analysis enables to solve the majority of problems by assessing only a few causes, 

called performance indicators. The analysis assumes that roughly 80% of the problems can be 

identified by 20% of the major causes, or roughly 80% of the problems can be solved by 20% 

of the effort, visualized in Figure 1.4 [30]. This principle is often used in decision-making issues 

or in solving complex problems [33].  

 

 
Figure 1.4: Principle of the Pareto analysis 

 

 

Step 3: 
Transformation 

Step 2: 
Preprocessing 

Step 1: 
Selection 

Step 4: 
Data Mining 

Step 5: 
Interpretation/ 

Evaluation 
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The Pareto analysis can be divided into the following four main steps [29] [34]: 

 

1. Identification of the problems 

The building is modeled and the simulated energy consumption is compared with the 

measured energy consumption, to identify the energy performance gap. 

2. Identify root causes of each problem 

Since the behavior of the energy consumption depends on a large amount of 

parameters, only the main parameters are selected. 

3. Rank, score and group problems & causes 

The impact of the main parameters on the annual energy consumption is assessed by 

a sensitivity analysis to identify the performance indicators of the energy performance 

gap. 

4. Assessment energy gap by selected critical parameters 

The investigation whether the energy performance gap can be explained by the 

selected performance indicators.  

 

LEAN energy analysis 

The LEAN energy analysis is used to predict energy use, to estimate savings and to assess 

building energy performance trends. The analysis is derived from the general LEAN 

management philosophy. This means that the analysis aims to avoid a complex and time-

consuming process by developing regression models of annual energy consumption from 

readily available utility and weather data [31] [32].  

 

The LEAN energy analysis can be divided into the following four main steps [29] [34]: 

 

1. Collect weather & utility data 

The collection of the measured data for a comparison with the simulation energy 

consumption. 

2. Create baseline/benchmark models 

The identification of characteristic correlations in energy performance of the building 

and the creation of benchmark models, which can be used to assess the measured 

energy efficiency. 

3. Identify energy gaps with regression coefficients of benchmark regression 

models 

The identification of the energy performance gap by the assessment with the 

coefficients of multi-parameterized regression models. 

4. Assessment of remaining energy gaps 

The results are used to assess the energy performance gap, additionally to the earlier 

results of the Pareto analysis. 

1.3 Scope 

The study is conducted to support decision-making regarding the improvement of 

underperforming HVAC systems of operational non-residential buildings by focusing on the 

controllable parameters. This provides insights how to reduce the energy performance gap, 

taking into account the indoor climate. The building-related parameters have been left out of 

consideration in this study due to the low renovation and replacement rates of buildings in the 

EU.  

 

 



 Eindhoven University of Technology 

 

Energy performance optimization of buildings using data mining techniques  Page | 6 

The research is based on two case study buildings, namely the modern care center Larisa 

located in Maastricht (NL) and the traditional office building Kropman located in Breda (NL). The 

operational performance of these buildings is analyzed using data measured by the BMS. By 

comparing the actual measured performance with the predicted performance based on the 

design and settings, the system inefficiencies are discovered. This leads to energy saving 

potential which is investigated by using regression.  

1.4 Hypothesis and objective 

The hypothesis for this study is: “The improvement of an underperforming HVAC system leads 

to significant optimization of the building energy performance”. This is investigated by means of 

both case study buildings. 

 

The main objective of this study is to provide recommendations in order to optimize the energy 

performance of operational buildings by a systematic assessment. Achieving this objective will 

contribute to: 

 

 focus on the most important performance indicators of the HVAC system and the 

occupant behavior; 

 efficiently control and improvement of the energy performance of operational buildings 

which is necessary to achieve the EU climate and energy targets. 

1.5 Research questions 

This report answers the following main research question: 

 

“Which effective strategies can be used to improve underperforming HVAC systems  

of operational buildings using data mining techniques?” 

 

In order to answer the main research question, the following three sub-questions are 

formulated: 

 

I. What are the performance indicators of the case study buildings regarding the HVAC 

system and the occupant behavior? 

II. Which parts of the HVAC system of the case study buildings are underperforming based 

on the performance indicators?  

III. To which extent can data mining contribute to improving the overall energy performance 

of the case study buildings? 

1.6 Outline 

This research is executed according to the phases presented in Figure 1.5.  

 

Chapter 2 elaborates on the literature which is relevant for the study. Chapter 3 describes the 

methodology of the study. Chapter 4 introduces the two case study buildings. 
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Chapters 5 (Larisa) and 6 (Kropman Breda) discuss the conducted research at both case study 

buildings. This research consists of the following three main steps, which are described in detail 

in chapter 3: 

 

 First, the performance indicators of the buildings are identified according to the Pareto 

analysis by performing a sensitivity analysis using the building energy simulation (BES) 

program EnergyPlus.  

 Second, the designed and measured performance are analyzed regarding the 

performance indicators by means of top-down approach. This leads to the system 

inefficiencies.  

 Third, the potential energy performance of both buildings is investigated based on the 

LEAN energy analysis. For the visualization of the building performance, the program 

RStudio is used. 

 

Chapters 7, 8 and 9 provide the discussion, conclusion and recommendations of the performed 

research. 

 

 
Figure 1.5: Schematic overview of the research method  
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2 Literature study 

This chapter discusses the most relevant literature with regards to the building energy 

performance, the potential of the BMS and the need to use DM techniques in order to control 

and improve the building energy performance. Hereafter, the different DM techniques are 

described. 

2.1 Building energy performance 

The building energy performance is not only related to the amount of energy consumption during 

the building operation. There is a clear difference between a building which uses low energy 

inefficiently and a building which uses much energy efficiently to provide a higher level of service 

[35]. Therefore, a good building energy performance includes three elements according to a 

study by Borgstein et al. (2016). The building must: 

 

1. be energy efficient, through its design, systems and technologies; 

2. supply amenities and features typical for its typology; 

3. be low in energy consumption, in other words, it must be operated in such a manner as 

to be efficient. 

2.2 Building management system 

Nowadays, modern non-residential buildings are equipped with a BMS which collects and 

stores operating data, such as temperature, flow rate, pressure, control signals and states of 

equipment in the HVAC system. This data can be used to control and improve the building 

performance. However, the BMS can only perform simple data analysis and visualizations 

based on a short period of historical data, such as historical data tracking, moving averages 

and alarming of simple abnormalities. The system is not capable to systematically analyze the 

large data sets in their database. Therefore, the operational data are rarely completely 

interpreted and used [12] [36].  

 

The building sector urgently needs advanced methods and tools to analyze the massive data 

to obtain knowledge for controlling and improving the operational building performance. DM is 

an emerging powerful technology with great potential for discovering hidden knowledge in 

massive data sets. Last years, various research fields have gained increasing interest in DM, 

such as healthcare, marketing and social science. The use of DM techniques in the building 

field also yields encouraging results in energy saving and improvement of the indoor climate 

[12] [36]. 

2.3 Data mining techniques 

In 2001, DM was defined as: “The analysis of large observation data sets to find unsuspected 

relationships and to summarize the data in novel ways so that owners can fully understand and 

make use of the data” [37]. In general, it can be divided into two main categories, namely 

supervised and unsupervised learning [38]. Additionally, these two categories can also be 

combined which is called semi-supervised learning. 
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2.3.1 Supervised learning 

Supervised learning is powerful in predictive modeling. In the building field, supervised DM is 

generally applied for predictive modeling of the energy consumption, system performance and 

indoor climate [36]. In supervised learning, an algorithm is used to learn the quantitative and 

qualitative relationship between input variables and output variables. Supervised learning 

algorithms can be further grouped into regression and classification. The acceptable level of 

performance of this systematic computational analysis is dependent on two factors, namely 

domain expertise and training data.  

 

For the development of functional models where the model architecture, model inputs and 

model parameters are specified and tuned, domain expertise is vital. Nevertheless, involvement 

of domain expertise decreases the number of variables used to develop the model. Therefore, 

the added value of big data can be get diminished. Training data is a set of already available 

input and output data used to fit the model parameters. The model iteratively makes predictions 

and finds the best fit for the model parameters using the training data set. Training data set has 

a direct and major impact on the quality and reliability of the model [38].  

 

Classification 

In classification, the output variable represents a data class or category. The model learns from 

the input and training data sets and classifies the new observations. Decision trees, support 

vector machines and linear classifiers are some of the classification algorithms used in 

supervised learning [39]. 

 

Regression 

Regression analysis is often used for numeric prediction and/or for predicting outputs that are 

continuous. In regression, the output can be determined by the inputs of the model without 

being confined to a set of labels/categories as is the case in classification. Regression problems 

with time-ordered inputs such as seasonal energy demand patterns of buildings are called time-

series forecasting problems. Linear regression is the most used example of regression 

algorithms which involves finding the best line to fit two attributes (or variables) so that one 

attribute can be used to predict the other [39]. 

2.3.2 Unsupervised learning 

Unsupervised learning is more practical in discovering new knowledge given limited prior 

knowledge from test data that has not been already classified/labeled. The knowledge obtained 

by unsupervised learning is usually identified commonalities in the data set represented as data 

clusters, association rules, and anomalies.  

 

In contrast with supervised learning, instead of responding to labeled training data and focuses 

on discovering the intrinsic correlations, unsupervised learning reacts based on the presence 

and absence of identified commonalities/features in the data sets. Besides, the non-necessity 

to explicitly pre-define a problem or target makes unsupervised learning less dependent on 

expertise knowledge. Other than that, the realization of unsupervised analytics is not subjected 

to obtainability of high-quality training data [38]. These facts make unsupervised learning 

favorable in discovering new knowledge in real applications [40]. In data mining, the most 

commonly used unsupervised learning algorithms, clustering and association are discussed 

below. 
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Clustering 

Clustering is the process of generating class labels for a group of data. The objects in the same 

cluster or group inhabit maximized similarities while the similarities in-between clusters are 

minimized. The cluster can be analyzed by viewing it as a class of objects, from which rules can 

be derived [39].  

 

Association 

Association has the ability to discover relations among variables and express this knowledge in 

a rule format. Typically, association rules require to satisfy a user-specified minimum support 

and a user-specified minimum confidence threshold [39]. The associations are discarded as 

uninteresting if they do not satisfy both these requirements at the same time.  

2.3.3 Conclusion 

DM makes it possible to successfully use BMS data. However, it is complex to apply DM 

techniques in the building field. DM delivers enormous amounts of varied knowledge and 

therefore requires sufficient domain knowledge to use this in practice. Furthermore, the DM 

technology is constantly being improved. This makes it a difficult task for building professionals 

to follow these developments. Therefore, it is necessary to know how to choose the most 

suitable DM technique and how to select valuable knowledge. It would be a major breakthrough 

if the entire building sector could benefit from the advantages of applying DM techniques. For 

this purpose, a generic method is needed for knowledge discovery in massive BMS data using 

DM techniques [41].  
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3 Methodology 

This chapter describes the methodology of the study which is conducted at two case study 

buildings. 

 

Underperforming HVAC systems are a major problem in the built environment. The most 

inefficiencies are related to controllable parameters. This study provides an efficient method to 

control and optimize the energy performance of operational buildings by a better operation of 

the HVAC system. The two case study buildings are analyzed by the next three main steps: 

 

1. Pareto analysis 

2. Performance analysis 

3. LEAN energy analysis 

3.1 Pareto analysis 

Since modern non-residential buildings have large data sets, it is important to find out which 

data is the most important to analyze. Therefore, the first step of the study is the identification 

of the performance indicators by means of the Pareto analysis with the BES program 

EnergyPlus. This worldwide recognized program can be used to model both energy 

consumption (heating, cooling, ventilation, lighting and plug and process loads) and water use 

in buildings. It is funded by the U.S. Department of Energy’s Building Technologies Office [42]. 

For the simulations with EnergyPlus, a 3D model of both case study buildings is created by 

means of the OpenStudio SketchUp Plug-in. 

 

When both case study buildings are modeled according to the design, the sensitivity analysis is 

started following the schematic overview presented in Figure 3.1. First, the main parameters 

regarding the HVAC system and occupant behavior are selected. In this analysis, the building-

related parameters are not taken into account because the most buildings in Europe will not be 

renovated or replaced in the coming years. The impact of each selected parameter on the 

heating, cooling and electricity consumption is determined by simulating 10% higher and lower 

values than designed. This 10% deviation is determined in order to compare realistic possible 

values.  

 

After the simulations, the parameters are ranked, scored and grouped based on the size of the 

impact. According to the Pareto analysis, roughly 20% of the selected parameters with the 

largest impact causes 80% of the energy performance gap. The challenge is to identify the 20% 

of parameters which are responsible for the underperformance of the building system. These 

major parameters are presented as performance indicators. Finally, it can be concluded 

whether the “80/20 rule” also applies to this study. 

 

 
Figure 3.1: Schematic overview of the Pareto analysis 
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3.2 Performance analysis 

The second step consists of the performance analysis following the schematic overview shown 

in Figure 3.2. The performance analysis is divided into the designed and measured performance 

analysis.  

 

The designed performance of the HVAC system is analyzed using the technical documents of 

the case study buildings. This includes the specifications and operation of the installations which 

is necessary to understand the controllable parameters. Based on this analysis, the measured 

performance of the installations can be properly assessed.  

 

From both buildings operational data regarding the installations was logged, measured by 

sensors of the BMS. When the obtained data is sufficient, the measured performance regarding 

the performance indicators is analyzed by means of a top-down approach and assessed based 

on the design and settings. This implies that the performance is analyzed first on building level, 

then on system level and finally on component level. For the visualization of the building 

performance, the program RStudio is used which is developed for statistical computing and 

graphics [43].  

 

For the performance on building level the electricity and gas consumption including the indoor 

climate are analyzed. Since the indoor climate related parameters are often not measured by 

the BMS, a questionnaire has been drawn up to determine possible problems. In the case that 

occupants have explicit complaints, additional measurements are necessary. Subsequently, the 

performance of the installations of the HVAC system is analyzed. Research has shown that this 

can be done quickly by means of energy profiles which provides insight into energy waste. 

These energy profiles primarily show the dependency of the outdoor temperature on the energy 

consumption [15]. When the general system performance is clear, the components of the 

underperforming installations are analyzed in detail. This will provide insights into the system 

inefficiencies.  

 

 
Figure 3.2: Schematic overview of the performance analysis 

3.3 LEAN energy analysis 

At the third step, the potential energy performance of both case study buildings is modeled 

based on the LEAN energy analysis. The schematic overview of this performance modeling is 

shown in Figure 3.3. First, a framework is determined with the needed variables. Then, the 

modeling consist of a benchmark model and empirical data. The benchmark model that uses 

regression can be obtained in various ways. In this study, historical data from both buildings is 

used to create the benchmark model. When the model is validated, the performance is predicted 

and compared with empirical data. The difference between the predicted energy consumption 

by the benchmark model and the actual measured energy consumption represents an indication 

of the energy saving potential. This will lead to a conclusion about the potential energy 

performance. 
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Figure 3.3: Schematic overview of the LEAN energy analysis  
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4 Case study buildings 

This chapter introduces the two case study buildings: Larisa and Kropman Breda. 

4.1 Larisa 

Building description 

The care center Larisa is located in the southwest of the city center of Maastricht, see Figure 

4.1. The five-story building is constructed in 2016 and has a gross floor area (GFA) of 7,070 m². 

In contrast to the developments in the last decade in which small-scale group homes have been 

designed, larger living groups are accommodated in this building. The care center has 90 

housing units of about 28 m², mainly for people who suffer from dementia. In addition to the 

private rooms there is a restaurant on the ground floor, a small cinema, a beauty salon, a library 

and a music room [44]. The general building properties are presented in Table 4.1. Appendix 

A.1 provides the floor plans (Figures A.1 to A.5).  

 

   
Figure 4.1: Impression (left) and location (right) of Larisa 

 

Table 4.1: Building properties of Larisa 

General information 

Name 

Location 

Year of construction 

Year of renovation 

Building function 

Gross floor area 

Number of floors 

EPC 

Building envelope 

External windows 

Larisa 

Maastricht, the Netherlands 

2016 

- 

Healthcare 

7,070 m² 

5 

0.933 

Floor: R = 4.5 m²·K/W, wall: R = 3.5 m²·K/W, roof: R = 3.5 m²·K/W 

U = 1.7 W/m²·K  

 

System description 

The building contains modern installations, shown in Figure 4.2. The heating and cooling 

demand of the building is generated by an ATES system with a heat pump. For heating peaks, 

the building is equipped with two gas boilers. The cold is generally provided directly by the 

ATES system without heat pump. The heat and cold is subsequently supplied by three air 

handling units (AHUs) and by three concrete core activation (CCA) systems which use the 

thermal mass. On floor level, the supplied air is reheated by electrical duct heaters.  
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Figure 4.2: Flowchart principle of Larisa 

4.2 Kropman Breda 

Building description 

The office building Kropman is located in the west of the city Breda, see Figure 4.3. Kropman 

is a large building services company in the Netherlands with experience in the field of design, 

realization, management and operation of HVAC systems. The building is built in 1993 and 

renovated in 2009. The three-story high building has a GFA of 1,650 m². This makes it a 

representative office building for the Dutch building stock. The building contains 59 workplaces, 

a storage and a restaurant. The general building properties are presented in Table 4.2. The 

floor plans of the building can be found in appendix B.1 (Figures B.1 to B.3). 

 

   
Figure 4.3: Impression (left) and location (right) of Kropman Breda 
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Table 4.2: Building properties of Kropman Breda 

General information 

Name 

Location 

Year of construction 

Year of renovation 

Building function 

Gross floor area 

Number of floors 

EPC 

Building envelope 

External windows 

Kropman Breda 

Breda, the Netherlands 

1993 

2009 

Office 

1,650 m² 

3 

Unknown 

Floor: R = 2.5 m²·K/W, wall: R = 2.5 m²·K/W, roof :R = 2.5 m²·K/W 

U = 3.2 W/m²·K 

 

System description 

Currently, the office building is equipped with quite traditional installations, shown in Figure 4.4.  

The heating demand is generated by a gas boiler which provides heat to the AHU and the 

radiators. The cooling demand is produced by a cooling machine. The building is ventilated by 

the AHU which contains a heat recovery wheel and an electric steam humidifier. On room level, 

the air is supplied by ventilation vents. In addition, the building is equipped with PV-panels on 

the roof in order to provide a part of the electricity demand. 

 

 
Figure 4.4: Flowchart principle of Kropman 
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5 Case study 1: Larisa 

This chapter presents the first case study of the research, care center Larisa. First, the 

performance indicators are identified by means of the Pareto analysis. Subsequently, the 

designed performance is analyzed. Then, the measured performance is analyzed which leads 

to the system inefficiencies. Finally, the energy saving potential is investigated based on the 

LEAN energy analysis.  

5.1 Pareto analysis 

For the sensitivity analysis, the impact of various main parameters on the electricity, heating 

and cooling consumption of Larisa is simulated by using EnergyPlus. The created 3D model in 

SketchUp can be seen in Appendix A.2 (Figure A.6). 

5.1.1 Parameters 

Ten main parameters are selected related to the HVAC system and the occupant behavior (see 

Table 5.1). The number of occupants is based on 90 patients and 81 employees. The impact of 

each parameter is determined by simulating the 10% higher and lower values compared to the 

design. According to the Pareto analysis, roughly 80% of the performance gap can be identified 

by 20% of the major selected parameters. This means that the two parameters with the highest 

impact will be presented as the performance indicators of the case study building. 

 

Table 5.1: Selected main parameters 

Parameters Unit Design +10% -10% 

 

1 

2 

3 

4 

5 

 

 

6 

 

 

7 

8 

9 

10 

HVAC system 

Set-point heating temp. 

Set-point cooling temp. 

Max. heating supply temp. 

Min. cooling supply temp. 

Ventilation flow rate: 

- AHU intake 

- AHU exhaust  

Heat recovery 

 

Occupant behavior 

Occupant presence 

Internal heat occupants 

Internal heat lighting 

Internal heat equipment 

 

˚C 

˚C 

˚C 

˚C 

 

m³/s 

m³/s 

% 

 

 

n 

W/pers. 

W/m² 

W/m² 

 

21.0 

23.5 

22.0 

17.0 

 

3.34 / 4.12 / 3.30 

3.16 / 4.13 / 2.36 

80 

 

 

171 

85.0 

8.0 

5.4 

 

23.1 

25.8 

24.2 

18.7 

 

3.67 / 4.53 / 3.63 

3.48 / 4.54 / 2.60 

88 

 

 

188 

76.5 

8.8 

5.9 

 

18.9 

21.2 

19.8 

15.3 

 

3.01 / 3.71 / 2.97 

2.84 / 3.72 / 2.12 

72 

 

 

154 

93.5 

7.2 

4.9 

5.1.2 Performance Indicators 

The impact of the selected parameters on the annual electricity, heating and cooling 

consumption is presented in Figure 5.1. By stimulating 10% higher and lower values than 

designed, the energy consumption can increase or decrease. 
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Figure 5.1: Impact on the electricity (green), heating (red) and cooling (blue) consumption when the parameters are 

10% higher or lower than designed 

 

In order to determine the performance indicators, the maximum impact (positive or negative) of 

each parameter on the total impact of all parameters is ranked, scored and grouped. The impact 

on the annual electricity, heating and cooling consumption is shown in Figures 5.2 to 5.4. As 

mentioned before, the two parameters with the highest impact are the performance indicators 

of the case study building. 

 

On the electricity consumption, the maximum heating supply temperature (46%) and the set-

point heating temperature (20%) have the highest impact. For the heating consumption, the 

most important parameters are the maximum heating supply temperature (41%) and efficiency 

of heat recovery (23%). On the cooling consumption, the set-point cooling temperature (59%) 

and the minimum cooling supply temperature (23%) have the largest impact. This means that 

the performance indicators are only related to the parameters of the HVAC system. 
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Figure 5.2: Ranking of the maximum impact on the electricity consumption 

 

 
Figure 5.3: Ranking of the maximum impact on the heating consumption  

 

 
Figure 5.4: Ranking of the maximum impact on the cooling consumption  
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5.1.3 Discussion 

Since energy performance gaps are caused by many reasons, it is hard to identify the 20% 

most important parameters which are accounted for 80% of these gaps. Based on the sensitivity 

analysis, the two parameters with the highest impact on the electricity consumption are 

responsible for 66% of the total impact. On the heating consumption of the building, the two 

major parameters are accounted for 64%. On the cooling consumption, the two parameters are 

responsible for 82%. This means that only the parameters of the cooling consumption comply 

with the principle of Pareto analysis. 

 

Nevertheless, the Pareto analysis is a systematic way to identify performance indicators. At the 

first case study building, the set-points for heating and cooling and the related supply 

temperatures are the most important parameters. Although the selected parameters not always 

identify the 80% of the performance gap, it contributes to focus on the major parameters of the 

HVAC system during the designed and measured performance analysis.  

5.2 Designed performance analysis 

To provide a pleasant indoor climate the building contains a state of art HVAC system 

summarized in Table 5.2. 

 

Table 5.2: HVAC system of Larisa 

HVAC system Energy conversion Distribution Supply Recovery 

Heating - ATES + heat pump 

(base load) 

- Gas-fired boiler 

(peak load + DHW) 

- Air 

- Water 

- Balanced ventilation 

- Concrete Core Activation 

- Radiators 

- Local duct heaters 

- Heat recovery wheel 

Cooling - ATES + heat pump 

in cooling mode 

- Air 

- Water 

- Balanced ventilation 

- Concrete Core Activation 

- Night ventilation 

- Heat recovery wheel 

Ventilation 

 

- Air handling unit - Air - Balanced ventilation - Heat recovery wheel 

Humidification 

 

- Not applied -  -  -  

5.2.1 Energy conversion 

ATES with heat pump 

The ATES system consists of a warm and a cold well on a depth of 60 m (Figure 5.5). The 

system has two operation modes: a heating mode and a cooling mode. The pumps of the wells 

are limited at a maximum flow rate of 30 m³/h. Appendix A.3 provides the installation principle 

of the ATES system including heat pump and two stratified thermal buffers (Figure A.7). 

 

During the heating mode, groundwater is extracted from the warm well and transferred to the 

condenser of the heat pump. The heat pump increases the extracted temperature in order to 

make it useful to warm up the building. The cold of the building is subsequently injected into the 

cold well with a temperature of about 7˚C. The heat pump has a theoretical coefficient of 

performance (COP) of 5.25 at full load condition according to the technical specifications of the 

manufacturer. This document can be found in Appendix A.3 (Figure A.8).  
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When the system switches to cooling mode, the direction of the groundwater flow is reversed. 

Groundwater is extracted from the cold well which has been cooled down during the heating 

mode. In general, the extracted temperature corresponds to the desired supply temperature of 

the building. This means that the building is directly cooled by groundwater, without assistance 

of the heat pump (passive cooling). When the cooling power is not sufficient or the extracted 

temperature is too high, the heat pump will be used as cooling machine to assist (active cooling). 

The heat of the building during this mode is injected with a temperature about 18˚C into the 

warm well. The energy efficiency ratio (EER) of the heat pump during cooling mode is shown in 

the technical specifications (Figure A.8 of Appendix A.3).  

 

 
Figure 5.5: ATES system during heating mode 

5.2.2 Supply 

Air handling units 

The building is equipped with three AHUs: one for the low-rise part (AHU-1), one for the high-

rise part (AHU-2) and one for the restaurant (AHU-3). Because the building is 24/7 in operation, 

AHU-1 and AHU-2 continuously ventilate the rooms. AHU-3 is not operating during the night, 

since then the restaurant is not used then. The AHUs contain a heat recovery wheel and a 

central heating and cooling coil.  
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The supply temperature of the ventilation air is centrally controlled by means of heating curves 

which are based on the outdoor temperature (Te) (Figure 5.6). The heating curve of AHU-1 

deviates from AHU-2 and AHU-3. On room level, the air is supplied to the room by ventilation 

vents and if necessary reheated by electrical duct heaters. The air is extracted by the AHUs 

again and leaves the building by passing the heat recovery wheel. During summer nights, night 

ventilation is used to passively cool down the building with outside air. The building does not 

provide humidification of the supplied air.  

 

 
Figure 5.6: Heating curve of the three AHUs (AHU-1 for low-rise, AHU-2 for high-rise and AHU-3 for restaurant) 

 

Concrete core activation 

The three CCA systems use the thermal mass of the building in order to contribute to the desired 

indoor temperature. Due to the high insulated outer walls combined with concrete floors, a 

thermal buffer between the indoor and outdoor climate is created. The systems slowly increase 

or decrease the indoor temperature by 1˚C in about five hours. The heating and cooling mode 

is determined by a heating curve depending on the outdoor temperature of the last three days 

(Figure 5.7). Between these modes, a neutral zone is set between an outdoor temperature of 

18˚C and 22˚C. The minimum supply temperature of 18˚C is determined in order to prevent 

condensation on the floors. All three systems have similar heating curves. 

 

 
Figure 5.7: Heating and cooling curve of the three CCA systems (CCA-1 for low-rise, CCA-2 and CCA-3 for high-rise 

and restaurant) 

5.2.3 Discussion 

The best way to analyze and assess the operational performance of the ATES system is by 

means of the measured amount of thermal energy extraction in combination with the extraction 

and injection temperatures. The performance of the heat pump can be determined by the COP.  
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The operational performance of the supply installations can be analyzed and assessed by 

means of the designed and set heating and cooling curves. When measurements deviate 

strongly from these curves, this indicates inefficiencies of the system. Therefore, these 

underperforming parts of the system must subsequently be analyzed on component level. 

5.3 Measured performance analysis 

The performance analysis is conducted following a top-down approach. First, the total 

measured energy consumption is compared with the designed energy consumption. 

Subsequently, the analysis of the electricity and gas consumption on building level including the 

indoor climate is discussed. Then, the HVAC system is analyzed, divided into energy conversion 

and supply installations. Finally, the underperforming installations are analyzed on component 

level.  

 

The analysis is based on data derived in different reading levels and time steps (see Table 5.3). 

The data is measured in the period August 2017 up to and including July 2018. However, data 

related to the HVAC system has not been logged in April 2018 due to a technical failure. A 

detailed overview of specific sensors of the BMS can be found in Appendix A.4 (Table A.1). 

Moreover, Appendix A.4. given the heat maps of the energy consumption including the outdoor 

temperature (Figures A.9 to A.11) 

 

Table 5.3: Available data of the building 

Data Source Reading level Interval Period 

Electricity 

Gas 

HVAC system 

Smart meter 

Smart meter 

BMS 

Building level 

Building level 

System level 

15-minute 

Hourly 

32-minute 

August 2017 - July 2018  

August 2017 - July 2018  

August 2017 - July 2018[1]  

[1]: Data not logged in April 2018 

5.3.1 Energy consumption 

Energy performance gap 

During the design of the building, an Energy Performance Coefficient (EPC) of 0.933 and a total 

primairy energy consumption of 756 MJ/m²/year was calculated. This is only based on the 

building-related energy consumption. To compare the measured with the designed energy 

consumption, the expected user-related energy consumption is added to the designed energy 

consumption. In additon, the measured energy consumption has to be converted to the primary 

energy, by multiplying the measured electricty consumption with 2.5 and the measured gas 

consumption with 1.0 [45].  

 

The results of the comparison are presented in Figure 5.8. In the period August 2017 up to and 

including July 2018, the measured primary energy consumption is 1.26 times higher than 

designed. This leads to a theoretically energy saving potential of about 21% when the EPC 

calculation is correctly performed. Nevertheless, the measured energy consumption is lower 

than the average energy consumption of care centers in the Netherlands [46].  
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Figure 5.8: Comparison between the designed and measured annual primary energy consumption of care center Larisa 

including the average in the Netherlands 

 

Electricity consumption 

The electricity consumption is only obtained on building level by means of a smart meter. Figure 

5.9 shows the hourly electricity consumption during the year and related to the outdoor 

temperature (Te), where the density of the measured points is indicated. The base load of the 

electricity consumption is nealy 7 Wh/m²/h. Based on a calculation it can be concluded that the 

fans are accounted for about 70% (5 Wh/m²) of this base load. This is because the building is 

24/7 in operation.  

 

The increase in electricity consumption is very dependent on the outdoor temperature. The 

outliers only occur relatively few hours per year. At outdoor temperatures lower than about 15˚C 

the consumption rises significantly, while the consumption is relatively low at higher outdoor 

temperatures. This is due to the increasing demand of the AHUs and to a lesser extent due to 

the heat pump. The maximum electricity consumption is approximately 20 Wh/m²/h.  

 

 
Figure 5.9: Hourly electricity consumption during the year (left) and in relation to the outdoor temperature including the 

density of the measured points (right) 

 

The mean hourly electricty consumption during the seasons is presented in Figure 5.10. As 

expected, the patterns during the weekdays and the weekend are very similar to each other. 

Most days start with a peak during the morning, in order to obtain a pleasant indoor climate. 

This is followed by a decrease in the afternoon and a small peak in the late afternoon. Only the 

base load of the electricity consumption varies between the seasons, with the lowest load during 

the summer and the highest load during the winter. 
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Figure 5.10: Mean hourly electricity consumption and outdoor temperature during the seasons 

 

Gas consumption 

Gas is used by the two boilers and in the kitchen of the restaurant. Figure 5.11 shows the gas 

consumption during the year and related to the outdoor temperature. During the measured 

period, the bandwidth fairly remains relatively low and constant, also at a low outdoor 

temperature. Only when the outdoor temperature is below 2˚C, the consumption increases 

during some hours.  

 

In the Netherlands, a heat pump normally provides about 70% of the total heating demand and 

a secondary installation (gas boiler) is used for peak heating loads. Based on the 

measurements, it can be concluded that the gas is generally used for domestic hot water 

(DHW). This means that the heat pump of this building is larger dimensioned than normally 

financially attractive. However, this system could be appealing in the long run due to the gas 

free transition. 

 

 
Figure 5.11: Hourly gas consumption during the year (left) and in relation to the outdoor temperature including the 

density of the measured points (right) 
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The mean hourly gas consumption during the seasons is presented in Figure 5.12. As usual, 

the gas consumption is the highest in the winter. On every day of the week there are peaks to 

generate heat for the building. During the other seasons, the consumption is quite constant. 

The small peaks are particularly caused by occupant behavior. The base load between all 

seasons is about the same.  

 

 
Figure 5.12: Mean hourly gas consumption and outdoor temperature during the seasons 

5.3.2 Indoor climate 

In order to properly assess the performance of the HVAC system, the indoor climate has to be 

taken into account. These results are very important, since they determine the well-being and 

productivity of the patients and employees. However, the BMS of Larisa does not measure any 

of the parameters related to the indoor climate. Therefore, the exhaust temperature by the three 

AHUs is used as indication for the indoor temperature.  

 

During day and night, the minimum required indoor temperature is 21˚C and the maximum 

required indoor temperature is 24˚C. These requirements are compared with the measured 

exhaust temperature, see Table 5.4. It shows that the exhaust temperature is sometimes higher 

than the required indoor temperature. Nevertheless, in Figure 5.13 can be seen that the mean 

air temperature in the low-rise, the high-rise and the restaurant meets the requirements. 

 

Table 5.4: Required and measured indoor temperature 

Air temperature Unit Required Measured 

Min. Max. Min. Max. Avg. 

AHU-1 (low-rise) 

AHU-2 (high-rise) 

AHU-3 (restaurant) 

˚C 

˚C 

˚C 

21.0 

21.0 

21.0 

24.0 

24.0 

24.0 

21.6 

22.3 

21.5 

24.3 

25.2 

24.9 

22.5 

23.6 

23.1 
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Figure 5.13: Mean hourly indoor and outdoor temperature during the seasons  

 

To obtain a good impression about the other aspects of the indoor climate, five employees have 

filled out a questionnaire (see Figures 5.14 to 5.16). In general, the employees of the building 

are satisfied about the performance, except for a few complaints. In the winter, they sometimes 

find the indoor temperature too high and the air too dry. In the summer, the employees 

sometimes suffer from drafts and dry air in the building. Since these complaints do not occur 

very often, no additional measurements regarding the indoor climate are needed. 

 

 
Figure 5.14: Experience of the employees during the winter, where 1=never (positive), 2=very rarely, 3=rarely, 

4=sometimes, 5=often, 6=very often, 7=always (negative) 
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Figure 5.15: Experience of the employees during the summer, where 1=never (positive), 2=very rarely, 3=rarely, 

4=sometimes, 5=often, 6=very often, 7=always (negative) 

 

 
Figure 5.16: Experience of the employees regarding health, where 1=never (positive), 2=very rarely, 3=rarely, 

4=sometimes, 5=often, 6=very often, 7=always (negative) 

5.3.3 Energy conversion 

ATES system with heat pump 

The thermal energy extraction (Q) is calculated by multiplying the power of the ATES system 

(equation 5.1) with time. However, whether the power is related to heat or cold is unknown 

because the direction of the flow is not measured. Therefore, this is determined based on 

several criteria, explained in Appendix A.4. This appendix also provides the heat maps (Figures 

A.16 to A.18) and the related R-script. 

 
𝑃 =  · 𝑐𝑝 ·  · 𝛥𝑇                                                                                                                (5.1) 

 

With: 

𝑃  : Thermal power     [kW] 

   : Density of water (constant)    [kg/m³] 

 𝑐𝑝  : Specific heat capacity of water (constant)  [kJ/kgK] 

   : Water flow in the circuit    [m³/s] 

 𝛥𝑇  : Temperature difference between warm and cold water  [˚C] 
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The results of the calculation during the year and related to the outdoor temperature are 

presented in Figure 5.17. It clearly shows that the extracted amount of energy is very dependent 

on the outdoor temperature. Only at some high outdoor temperatures, the extracted cooling is 

significantly high. Since the pattern is very linear, the density of the measured points is not 

analyzed. The heating process starts at outdoor temperatures lower than 19˚C and the cooling 

process starts at outdoor temperatures higher than 10˚C. The slope of the points is a function 

of the building envelope, ventilation and infiltration air, and the efficiency of the heating or 

cooling system [32]. The less the slope, the more energy-efficient the building.  

 

 
Figure 5.17: Hourly thermal energy extraction during the year (left) and in relation to the outdoor temperature (right) 

 

In order not to disturb nature, it has been laid down by Dutch law that the ATES systems must 

not disturb the thermal balance in the subsoil. Since the heat and cold demand is dependent on 

weather conditions and building use, which both change every year, the government requires 

an equilibrium energy supply over a period of five years [47]. For this reason it is important to 

determine the thermal balance. This can be calculated by using equation 5.2 [48].  

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐴𝑇𝐸𝑆 =
𝑄𝑐𝑜𝑙𝑑 − 𝑄ℎ𝑒𝑎𝑡

𝑄𝑐𝑜𝑙𝑑 + 𝑄ℎ𝑒𝑎𝑡

                                                                                          (5.2) 

  

With: 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐴𝑇𝐸𝑆 : Balance of the ATES     [%] 

𝑄  : Thermal energy extraction     [kWh] 

 

The monthly thermal energy extraction including the thermal balance is shown in Figure 5.18. 

During the whole measured period, the thermal balance is negative. This means that more heat 

than cold is extracted, which leads to a total cold surplus of 38%. This is partly inherent to the 

Dutch climate. Research has shown that the average thermal unbalance of ATES systems in 

the Netherlands is 22% (positive or negative) [49].   

 

To solve the unbalanced situation, the amount of extracted heat by the system must be reduced. 

This can be achieved by producing more heat with a secondary installation. However, the 

generation of more heat by the gas-fired boilers is not sustainable. A more suitable solution is 

to provide more heat to the warm well durng the summer by means of a dry cooler [50]. This 

principle is called regeneration. 
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Figure 5.18: Monthly thermal energy extraction by means of the ATES system which results to a total cold surplus of 

38% 

 

The mean hourly heat and cold extraction during the seasons is presented in Figure 5.19. Since 

the building is 24/7 in operation, the daily patterns are similar during each season. As mentioned 

earlier, the thermal energy extraction  is dependent on the outdoor temperature. That is why the 

extraction varies greatly per season. 

 

 
Figure 5.19: Mean hourly thermal energy extraction and outdoor temperature during the seasons 

 

The warm and cold well extraction and injection temperatures are shown in Figure 5.20. The 

temperature of the ATES varies throughout the year due to the influence of heat losses to the 

surroundings and the amount of injection and extraction of heat and cold to and from the ground 

[51].  
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During heating mode, heat between 13˚C and 18˚C is extracted from the warm well and injected 

into the cold well with a temperature between 9˚C and 15˚C. In the winter, a clear trend of a 

decreasing extraction temperature from the warm well is shown. This is because the available 

heat in the warm well decreases during this season.  

 

During cooling mode, cold between 9˚C and 15˚C is extracted from the cold well and injected 

with a temperature between 13˚C and 18˚C into the warm well. According to the design, the 

injection temperature into the cold well is too high and the injection temperature into the warm 

well is too low. This is caused by the unbalanced situation.  

 

 
Figure 5.20: Daily mean extraction (left) and injection (right) temperature of groundwater in the warm and cold well 

during the year  

 

Figures 5.21 and 5.22 presents the hourly extraction and injection temperature during May 2018 

up to including August 2018. It clearly shows the deviation in groundwater temperature when 

the system does not operate continuously in heating mode. This deviating groundwater 

temperature in both wells leads to a higher energy consumption. This is due to the fact that 

more groundwater needs to be extracted by the pumps. In addition, it is necessary to increase 

the capacity of the extracted thermal energy by the heat pump which uses electricity. In order 

to prevent the depletion of the wells in the future and to comply with the Dutch law, the 

unbalanced situation has to be solved. 

 

 
Figure 5.21: Hourly extraction temperature of groundwater in the warm and cold well from May 2018 up to and including 

July 2018 
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Figure 5.22: Hourly injection temperature of groundwater in the warm and cold well from May 2018 up to and including 

July 2018 

 

The efficiency of the heat pump is determined by the Coefficient of Performance (COP) during 

heating and cooling mode. This is the ratio between the transported heat or cold and the 

difference between the net transported heat and cold (equation 5.3).  

 

𝐶𝑂𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =
𝑄ℎ𝑒𝑎𝑡

𝑄ℎ𝑒𝑎𝑡 − 𝑄𝑐𝑜𝑙𝑑

, 𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =
𝑄𝑐𝑜𝑙𝑑

𝑄ℎ𝑒𝑎𝑡 − 𝑄𝑐𝑜𝑙𝑑

                                        (5.3) 

  

With: 

𝐶𝑂𝑃  : Coefficient of Performance     [-] 

𝑄  : Transported thermal energy at the heat pump  [kWh] 

 

The COP during heating and cooling mode are presented in Figure 5.23. When the heat pump 

operates as a cooling machine, the daily mean COPcooling is 2.4. However, most of the time 

(75%), the building is directly cooled by groundwater, without assistance of the heat pump 

(passive cooling). The remaining part (25%) is provided using the condenser of the heat pump 

(active cooling). During heating mode, the daily mean COPheating is 2.3. Therefore, the measured 

COP is considerably lower than the designed COP of 5.25.  

 

When the thermal unbalance continues, the COPheating will decrease and the COPcooling will 

increase. This is due to the decreasing groundwater temperature which is caused by the higher 

heating than cooling load [52]. This leads to more thermal energy extraction in combination with 

a higher electricity and gas consumption. 

 

 
Figure 5.23: Daily mean COP of the heat pump, divided into heating and cooling mode, during the year (left) and in 

relation to the outdoor temperature (right) 
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The measured COP is more fluctuating when the outdoor temperature increases. This can be 

explained by the capacity of the heat pump, shown in Figure 5.24. The heat pump generally 

operates in part load. From November until April the heat pump runs almost all the time with a 

capacity larger than 25%. This leads to a COP which slowly decreases due to depletion of the 

warm well. During the other months, the heat pump runs particularly with a capacity below 25%, 

resulting in a fluctuating COP. More data is needed to obtain more information regarding the 

regulation of the operating modes of the system.  

 

 
Figure 5.24: Daily mean capacity of the heat pump, divided into heating and cooling mode, during the year (left) and in 

relation to the outdoor temperature (right) 

5.3.4 Supply 

Air handling units 

The performance of the three AHUs can be assessed by comparing the measured supply 

temperature with the designed and set heating curve. Figures 5.25 to 5.27 show the supply 

temperature of the AHUs during the year and related to the outdoor temperature, where the 

density of the measured points is indicated.  

 

The supply temperature of AHU-1 fluctuated during the whole measured period. Besides, a 

clear pattern can be seen that the supply temperature is not according to the heating curve. 

Therefore, the performance of AHU-1 has to be analyzed more in detail. In comparison with 

AHU-1, the supply temperature of AHU-2 and AHU-3 is much more in line with the heating 

curve. This is especially the case when the outdoor temperature is lower than about 8˚C and 

higher than about 30˚C. For the temperatures in between, the outliers only occur relatively few 

hours per year. Since this is quite acceptable, AHU-2 and AHU-3 are not analyzed on 

component level. 
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Figure 5.25: Supply temperature in the low-rise (AHU-1) during the year (left) and in relation to the outdoor temperature 

including the density of the measured points (right)   

 

 
Figure 5.26: Supply temperature in the high-rise (AHU-2) during the year (left) and in relation to the outdoor temperature 

including the density of the measured points (right)   

 

 
Figure 5.27: Supply temperature in the restaurant (AHU-3) during the year (left) and in relation to the outdoor 

temperature including the density of the measured points (right) 

 

The supply and exhaust temperature during one typical week is presented in Figure 5.28. The 

supply temperature increases sometimes due to unknown reasons. This is also necessary to 

obtain a constant exhaust temperature. Nevertheless, the regulation of AHU-1 can be improved 

to reduce the peak demands. To determine the exact reason for these peaks, this part of the 

HVAC system has to be analyzed on component level. However, due to the lack of sensors, 

only the pressure drop across the filters can be analyzed in more detail. This has no influence 

on the supply temperature. 
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Figure 5.28: Supply and exhaust temperature of AHU-1 (left) and the outdoor temperature (right) from 2nd October of 

2017 up to and including 8th of October 2017 (week 40) 

 

Figure 5.29 presents the supply pressure drop across the filters of the AHUs. However, the 

sensor of AHU-2 is defect and the sensor of AHU-3 is not working properly due to the unlikely 

low measured pressure. Therefore, only AHU-1 can be analyzed. According to the design, the 

maximum pressure drop across the filter may be 200 Pa. Nevertheless, the data shows higher 

values until the filter was replaced in October 2017. After the replacement of the filter, the 

pressure increases over time. This will continue until the filter will be replaced again.  

 

When the filters become dirty, the pressure drop increases and the airflow rate drops. This leads 

to a higher electricity consumption [53]. Therefore, a more frequent replacement of the filter 

could be an opportunity for energy saving. However, sometimes it is financially more attractive 

to combine the replacement with yearly maintenance.  

 

 
Figure 5.29: Supply pressure drop during the year across the filter of AHU-1 (left) and AHU-3 (right) 

 

Concrete core activation 

Figures 5.30 to 5.32 show the supply temperature of the three CCA systems during the year 

and in relation to the outdoor temperature, where the density of the measured points is 

indicated. During heating mode, CCA-1 provides a lower supply temperature compared to the 

heating curve. This could be related to the higher supply temperature of AHU-1, which supplies 

air in the same part of the building. Besides, the supply temperature of CCA-2 is predominantly 

higher than set and CCA-3 performs the best according to the heating curve.   

 

During cooling mode, all three systems supply most of the time higher temperatures than 

expected. However, this is also not needed based on the results of the questionnaires. In 

addition, when the Relative Humidity (RH) in the building is between 75% and 100%, a floor 

temperature of 18˚C can cause condensation on the floors according to the Mollier diagram. 
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Figure 5.30: Supply temperature in the low-rise (CCA-1) during the year (left) and in relation to the outdoor temperature 

including the density of the measured points (right)   

 

 
Figure 5.31: Supply temperature in the high-rise (CCA-2) during the year (left) and in relation to the outdoor temperature 

including the density of the measured points (right)   

 

 
Figure 5.32: Supply temperature in the high-rise (CCA-3) during the year (left) and in relation to the outdoor temperature 

including the density of the measured points (right)  

5.3.5 Discussion 

In general, the performance analysis has shown that the HVAC system of the case study 

building is underperforming according to the design. Especially the thermal unbalance of the 

ATES system and the relatively high supply temperature of AHU-1 are major problems. To save 

more energy, both problems need to be solved.  
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When the supply temperature of AHU-1 is lowered, the heating and electricity consumption of 

the AHU will decrease. This improvement will also have a positive impact on the thermal 

unbalance of the ATES system. In addition, the energy consumption of the ATES system, heat 

pump, boilers and AHUs will be reduced due to the lower heating demand. However, the 

measured exhaust temperature of AHU-1 and the results of the questionnaire show that the 

indoor temperature in fact meets the requirements. Therefore, a reduced supply temperature 

can cause a too low indoor temperature. In order to keep the required pleasant indoor climate, 

the best solution is to reduce the supply temperature of AHU-1 in combination with increasing 

the supply temperature of CCA-1. 

 

However, the small difference between the measured supply temperature of the three CCA 

systems can be caused by the associated temperature sensors. Therefore, the accuracy and 

reliability of the BMS sensors must be questioned. Accuracy describes the relationship between 

the measured value by the sensor related to the actual value. The smaller this difference, the 

higher the accuracy. Reliability is the reproducibility of the measurement. When the values 

during the same conditions are grouped together, the reliability is high. In order to improve the 

accuracy and reliability of measurements, calibration and maintenance are necessary [54]. In 

addition, the measurements can deviate when the position of the sensor in each system is not 

the same. That is why a correct placement of the sensors is needed. 

5.4 LEAN energy analysis 

The energy saving potential of the HVAC system is investigated based on the LEAN energy 

analysis. The performance modeling is conducted by comparing thermal energy benchmark 

models with historical data. These models can also be used to control the operational energy 

performance.  

5.4.1 Benchmark model 

The main function of the thermal energy extraction is to bridge the difference between the 

outdoor temperature and the required indoor temperature and to provide hot water for hygiene 

purposes. Therefore, as a first attempt the relation between the thermal energy extraction and 

the outdoor temperature is determined using regression. The results are evaluated by means 

of the coefficient of determination (R²) which indicates to which extent the dependent variable 

(thermal energy extraction) is predictable. The closer the value is to 1, the better the correlation 

of the parameters.  

 

In order to reduce the impact of time-dependent parameters (such as internal heat, solar 

irradiance and stored energy in the thermal mass), the daily mean thermal energy extraction is 

used. Moreover, it is investigated whether multi-parameter regression improves the correlation 

of the models.  

 

The results are shown in Figure 5.33. The extracted heat correlates linear with the outdoor 

temperature. This relationship is strong since the R² is 0.930. The cold extraction correlates 

non-linear with the outdoor temperature. This leads to a still acceptable relationship with a R² 

of 0.758. Therefore, these models can be used as benchmark models. 
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Figure 5.33: Regression for the daily mean heat (left) and cold (right) extraction as function of the outdoor temperature 

 

The benchmark models are tested to determine the deviation of the residuals (predicted minus 

measured heat extraction) . This is done by using 75% of the data set for training the model. To 

validate the model, the other 25% of the data set is used for testing. The R-script for training 

and testing of the models can be found in Appendix A.5.  

 

The results related to the heat extraction are presented in Figure 5.34. The deviation of the 

residuals is almost normally distributed (positive and negative). Figure 5.35 shows the results 

of the cold extraction. In this case, the deviation of the residuals is negatively distributed to a 

larger extent. 

 

 
Figure 5.34: Deviation between the predicted and measured heat extraction (left), the deviation of the residuals (middle) 

and distribution of the residuals (right) 

 

 
Figure 5.35: Deviation between the predicted and measured cold extraction (left), the deviation of the residuals (middle) 

and distribution of the residuals (right) 
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5.4.2 Energy saving potential 

The predicted energy extraction by benchmark models based on historical data and actual 

measured energy extraction are compared in order to provide an indication of energy saving 

potential. These models can also be used to assess the energy performance trends. The 

difference between the predicted and measured heat extraction from October 2017 up to and 

including December 2017 is shown in Figure 5.36. Figure 5.37 presents the difference between 

the predicted and measured cold extraction from May 2018 up to and including July 2018. 

Based on the figures, the most energy can be saved at the cold extraction. 

 

 
Figure 5.36: Difference between the predicted and measured heat extraction from October 2017 up to and including 

December 2017  

 

 
Figure 5.37: Difference between the predicted and measured cold extraction from May 2018 up to and including July 

2018 

 

The indication of the energy saving potential is calculated by using equation 5.4.  

 

𝑄𝑠𝑎𝑣𝑖𝑛𝑔 = ∑(𝑄𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑗 − 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑗)

𝑚

𝑗=1

                                                                      (5.4) 

 

With: 
𝑄𝑠𝑎𝑣𝑖𝑛𝑔  : Energy saving potential    [kWh] 

𝑄𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  : Predicted thermal energy extraction   [kWh] 

𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  : Measured thermal energy extraction   [kWh] 
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The results of this calculation are shown in Table 5.5. The yearly energy saving potential of the 

heat extraction is 7%, while the energy saving potential of the cold extraction is 70%. However,  

the uncertainty of the models has to be taken into account, especially with regard to cooling 

because it has a lower R² than heating. The high amount of saving on the cold extraction can 

be explained by the CCA systems which are rarely in cooling mode during high outdoor 

temperatures. Therefore, the model is mainly based on data when the systems are not cooling 

mode. As a result, the effect on the predicted cold extraction is large when the system is 

operating in cooling mode.  

 

Table 5.5: Indication of the yearly energy saving potential 

 Measured 

[kWh/m²] 

Energy saving potential 

[kWh/m²] 

Energy saving 

[%] 

Heat extraction 

Cold extraction 

44.9 

22.9 

3.0 

16.0 

7 

70 

5.4.3 Discussion 

Benchmark models using regression are useful to give an indication of the energy saving 

potential. However, the results are dependent on the accuracy of the models. In addition, the 

models can be valuable to control the energy performance. Regular check-up of data can 

ensure that the energy consumption does not increase unexpectedly. The LEAN energy 

analysis normally uses data of buildings with similar type, use, age, and other characteristics 

as benchmark model. However, this data is not available in this study. Therefore, the benchmark 

models are created by the historical building operational data.  
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6 Case study 2: Kropman Breda 

This chapter presents the second case study of the research, office building Kropman Breda. 

First, the performance indicators are identified by means of the Pareto analysis. Subsequently, 

the designed performance is analyzed. Then, the measured performance is analyzed which 

leads to the system inefficiencies. Finally, the energy saving potential is investigated based on 

the LEAN energy analysis.  

6.1 Pareto analysis 

For the sensitivity analysis, the impact of different parameters on the electricity, heating and 

cooling consumption of Kropman Breda is simulated by using EnergyPlus. The created 3D 

model in SketchUp can be seen in Appendix B.2 (Figure B.4). 

6.1.1 Parameters 

Ten main parameters are selected related to the HVAC system and the occupant behavior (see 

Table 6.1). The impact of each parameter is determined by simulating the 10% higher and lower 

values compared to the design. According to the Pareto analysis, roughly 80% of the 

performance gap can be identified by 20% of the major selected parameters. This means that 

the two parameters with the highest impact will be presented as the performance indicators of 

the case study building. 

 

Table 6.1: Selected main parameters 

Parameters Unit Design +10% -10% 

 

1 

2 

3 

4 

5 

6 

 

 

7 

8 

9 

10 

HVAC system 

Set-point heating temp. 

Set-point cooling temp. 

Max. heating supply temp. 

Min. cooling supply temp. 

Ventilation flow rate 

Heat recovery 

 

Occupant behavior 

Occupant presence 

Internal heat occupants 

Internal heat lighting 

Internal heat equipment 

 

˚C 

˚C 

˚C 

˚C 

m³/s 

% 

 

 

n 

W/pers. 

W/m² 

W/m² 

 

21.5 

24.0 

25.0 

16.5 

4.35 

70 

 

 

45 

110 

9.0 

10.0 

 

23.7 

26.4 

27.5 

18.2 

4.79 

77 

 

 

50 

121 

9.9 

11.0 

 

19.4 

21.6 

22.5 

14.9 

3.92 

63 

 

 

40 

99 

8.1 

9.0 

6.1.2 Performance Indicators 

The impact of the selected parameters on the annual electricity, heating and cooling 

consumption is presented in Figure 6.1. By stimulating 10% higher and lower values than 

designed, the energy consumption can increase or decrease. 
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Figure 6.1: Impact on the electricity (green), heating (red) and cooling (blue) consumption when the parameters are 

10% higher or lower than designed 

 

In order to determine the performance indicators, the maximum impact (positive or negative) of 

each parameter on the total impact of all parameters is ranked, scored and grouped. The impact 

on the annual electricity, heating and cooling consumption is shown in Figures 6.2 to 6.4. As 

mentioned before, the two parameters with the highest impact are the performance indicators 

of the case study building.  

 

On the electricity consumption, the internal heat of equipment (65%) and the internal heat of 

lighting (35%) have the highest impact. For heating, the most important parameters are the set-

point heating temperature (35%) and the maximum heating supply temperature (23%). On the 

cooling consumption, the set-point cooling temperature (89%) and the set-point heating 

temperature (4%) have the largest impact.  
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Figure 6.2: Ranking of the maximum impact on the electricity consumption  

 

 
Figure 6.3: Ranking of the maximum impact on the heating consumption  

 

 
Figure 6.4: Ranking of the maximum impact on the cooling consumption   
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6.1.3 Discussion 

The sensitivity analysis of this building also shows that the 20% most important parameters not 

exactly account for 80% of the gap. The two parameters with the highest impact on the electricity 

are responsible for 100% of the total impact. On the heating consumption of the building, the 

two major parameters are accounted for 58%. On the cooling consumption, the two parameters 

are responsible for 93%. This means that the performance indicators of the electricity and 

cooling consumption meet the principle of the Pareto analysis. 

 

At the second case study building, also the set-points for heating and cooling and the related 

supply temperatures are the most important parameters. Despite the selected parameters not 

always identify the 80% of the performance gap, it contributes to focus on the major parameters 

of the HVAC system during the designed and measured performance analysis. 

6.2 Designed performance analysis 

To provide a pleasant indoor climate the building contains a quite common used HVAC system 

summarized in Table 6.2. 

 

Table 6.2: HVAC system of Kropman Breda 

HVAC system Energy conversion Distribution Release Recovery 

Heating - Gas-fired boiler - Air 

- Water 

- Balanced ventilation 

- Radiators 

- Heat recovery wheel 

Cooling - Cooling machine - Air 

 

- Balanced ventilation 

- Night ventilation 

- Heat recovery wheel 

Ventilation 

 

- Air handling unit - Air - Balanced ventilation - Heat recovery wheel 

Humidification - Electric steam     

   humidifier 

- Air 

 

- Balanced ventilation 

 

-  

6.2.1 Energy conversion 

Boiler and Cooling machine 

The building is equipped with a central boiler which generates the heating demand of the 

building. The cooling demand is provided to the distribution system by a central cooling 

machine. Appendix B.3 presents the installation principle of the heating (Figure B.5) and cooling 

(Figure B.6) systems. 

6.2.2 Supply 

Air handling unit 

The AHU supplies and exhausts air in three different parts of the building. It contains a heat 

recovery wheel and a central heating coil. The supply temperature of the ventilation air is 

centrally controlled by means of heating curves which are based on the outdoor temperature. 

(Figure 6.5). On room level, the air is supplied to the room by ventilation vents. The air is 

extracted by the AHU again and leaves the building by passing the heat recovery wheel. During 

summer nights, night ventilation is used to passively cool down the building with outside air. 

When the relative humidity of the supplied air becomes too low, the air is humidified. 
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Figure 6.5. Heating curve of the AHU 

6.2.3 Discussion 

The operational performance of the AHU can be analyzed and assessed by means of the 

designed and set heating curve. When measurements deviate strongly from this curve, this 

indicates inefficiencies of the system. Therefore, these underperforming parts of the system 

must subsequently be analyzed on component level.  

6.3 Measured performance analysis 

The performance analysis is conducted following a top-down approach. First, the analysis of 

the electricity and gas consumption on building level including the indoor climate is discussed. 

Subsequently, the HVAC system is analyzed, divided into energy conversion and supply 

installations. Finally, the underperforming installations are analyzed on component level.  

 

The analysis is based on data derived in different reading levels and time steps (see Table 6.3). 

The data is measured in the period January 2017 up to and including December 2018. A 

detailed overview of specific sensors of the BMS is provided in Appendix B.4 (Table B.1). This 

Appendix gives also the heat maps of the energy consumption including the outdoor 

temperature (Figures B.7 to B.11). 

 

Table 6.3: Available data of the building 

Data Source Reading level Interval Period 

Electricity 

Gas 

HVAC system 

Smart meter 

Smart meter 

BMS 

Building + system level 

Building level 

System level 

1-minute 

Hourly 

8-minute, hourly 

January 2017 - December 2017 

January 2017 - December 2017 

January 2017 - December 2017 

6.3.1 Energy consumption 

Electricity consumption 

Figure 6.6 shows the hourly electricity consumption during the year and related to the outdoor 

temperature, where the density of the measured points is indicated. The clear constant pattern 

in density represents the base load of the building during unoccupied hours. The minumum 

electricity consumption is about 2 Wh/m²/h, while the maximum consumption is approximately 

28 Wh/m²/h. At low outdoor temperatures the consumption rises significalty due to the 

increasing demand of the fans.  
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Figure 6.6: Hourly electricity consumption during the year (left) and in relation to the outdoor temperature including the 

density of the measured points (right) 

 

The mean hourly electricity consumption per week is presented in Figure 6.7. The patterns of 

each workday generally start with the highest peak caused by the HVAC system that begins to 

heat or cool the building. This is followed by a decrease in the afternoon and a small peak in 

the late afternoon. As expected, during the night and in the weekend the electricity consumption 

is quite low.  

 

The electricity consumption measured by the smart meter represents not the actual total 

electricity consumption. When electricity is generated by the PV-panels and directly used, this 

is not measured by the smart meter. At these moments, the actual total electricity consumption 

is higher. In addition, the measured electricity consumption is sometimes negative, especially 

during the weekend. This is when the generated electricity is supplied to the grid.  

 

 
Figure 6.7: Mean hourly electricity consumption and outdoor temperature during the seasons 
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Gas consumption 

Gas is used by one boiler to generate heat and in the kitchen of the restaurant. Figure 6.8 shows 

the hourly gas consumption during the year and related to the outdoor temperature, where the 

density of the measured points is indicated. The smart meter that measures the gas 

consumption only gives whole numbers which results in less accurate values. As usual, the gas 

consumption of the boiler increases as the outdoor temperature decreases. The large 

bandwidth is in principle caused by peaks at the beginning of each workday in order to heat the 

building.  

 

 
Figure 6.8: Hourly gas consumption during the year (left) and in relation to the outdoor temperature including the density 

of the measured points (right) 

 

The average hourly gas consumption per week is presented in Figure 6.9. Most weekday starts 

with a peak in order to heat the building. When the indoor temperature reaches the desired 

temperature, the consumption slowly decreases. As expected, during the night and in the 

weekend the gas consumption is low.  

 

 
Figure 6.9: Mean hourly gas consumption and outdoor temperature during the seasons 
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6.3.2 Indoor climate 

Based on one office room (room 1.05), the indoor climate of the building is analyzed. This room 

is occupied by twelve employees. The measured indoor climate is compared with the required 

indoor climate, see Table 6.4.  

 

Table 6.4: Required and measured indoor climate in room 1.05 during occupation (weekdays between 09.00-17.00h) 

Indoor climate Unit Required Measured 

Min. Max. Min. Max. Avg. 

Air temperature 

CO2-concentration 

RH 

˚C 

ppm 

% 

21.0 

400 

30 

24.0 

700 

70 

19.9 

355 

28 

24.4 

629 

70 

22.5 

499 

49 

 

The mean hourly indoor air temperature in relation to the mean outdoor air temperature per 

season is shown in Figure 6.10. While the office building is in use, the average indoor air 

temperature is 22.5˚C. Figure 6.11 presents the mean hourly CO2-concentration in the room. In 

the room the average CO2-concentration is 499 ppm. This is quite low since the outdoor CO2-

concentration in the Netherlands is about 400 ppm. The mean hourly RH is shown in Figure 

6.12. During the whole year average RH is 49%. Based on the requirements, the HVAC system 

provides most of the time a pleasant indoor climate.  

 

 
Figure 6.10. Mean hourly air temperature in room 1.05 during the seasons 
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Figure 6.11. Mean hourly CO2-concentration in room 1.05 during the seasons 

 

 
Figure 6.12. Mean hourly relative humidity in room 1.05 during the seasons 
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6.3.3 Energy conversion 

Boiler and cooling machine 

The heating and cooling consumption during the year and related to the outdoor temperature is 

shown in Figure 6.13. It clearly shows that the heating process starts at temperatures lower 

than about 21˚C and the cooling process starts at temperatures higher than about 17˚C. The 

large bandwidth of especially the heating consumption is generally caused during unoccupied 

hours, when the system starts heating the building.  

 

 
Figure 6.13: Hourly heating and cooling consumption during the year (left) and in relation to the outdoor temperature 

(right) 

 

Therefore, the thermal energy consumption is divided into two periods, presented in Figure 

6.14. The first period relates to the hours when the building is occupied, namely on weekdays 

between 09:00-17:00h. The second period is related to the hours that the building is not 

occupied. This results in a linear correlation between the thermal energy consumption and the 

outdoor temperature during occupied hours. Outside these hours, the consumption is very 

fluctuating. Since this could be energy waste, this is analyzed by means of the heat supply. 

 

 
Figure 6.14: Hourly heating and cooling consumption in relation to the outdoor temperature between 09:00-17:00h (left) 

and 18:00-08:00h (right) 

 

The mean hourly heating and cooling consumption during the seasons is presented in Figure 

6.15. During the Spring, Fall and Winter, every workday starts with a heating peak, followed by 

a decrease until the end of the day. During the Summer, there is a cooling peak on every 

workday in the late afternoon. During the night and in the weekend the consumption is low.  
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Figure 6.15: Mean hourly heating and cooling consumption during the seasons 

6.3.4 Supply 

Air handling unit 

Figures 6.16 to 6.18 show the measured supply temperature of the AHU in three building parts 

during the year and related to the outdoor temperature, where the density of the measured 

points is indicated. It can be seen that the supply temperature in all parts is most of the time 

higher than the heating curve. Therefore, the performance of the AHU has to be analyzed in 

more detail. 

 

 
Figure 6.16: Supply temperature in room 1.05 during the year (left) and in relation to the outdoor temperature including 

the density of the measured points (right) 
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Figure 6.17: Supply temperature in the NE rooms during the year (left) and in relation to the outdoor temperature 

including the density of the measured points (right) 

 

 
Figure 6.18: Supply temperature in the SW rooms during the year (left) and in relation to the outdoor temperature 

including the density of the measured points (right) 

 

The supply and indoor temperature in room 1.05 during one typical week is presented in Figure 

6.19. The temperature changes sometimes due to settings in regulation. However, the indoor 

temperature remains within the required range of 21-24˚C during occupancy. Besides, the 

supply and indoor temperature are relatively high during the night and weekend. This explained 

the heating consumption of the boiler during unoccupied hours. Therefore, the regulation of the 

system can be adjusted while taking into account the indoor climate and the larger energy peaks 

that arise at the beginning of workday. 

 

 
Figure 6.19: Supply and indoor temperature of the AHU at room 1.05 (left) and the mean outdoor temperature (right) 

from 2nd of October 2017 up to and including 8th of October 2017 (week 40) 
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6.3.5 Discussion 

Overall, the analysis has shown that this case study building also performs fairly according to 

the design. Only the supply temperature of the AHU is higher than predicted during occupied 

and unoccupied hours. When this temperature is lower, the electricity and heating consumption 

will decrease. However, the measured indoor temperature meets the requirements. Therefore, 

a lower supply temperature of the AHU leads a higher energy consumption of the radiators in 

order to maintain a pleasant indoor climate. 

6.4 LEAN energy analysis 

The energy saving potential of the HVAC system is investigated based on the LEAN energy 

analysis. The performance modeling is conducted by comparing thermal energy benchmark 

models with historical data. These models can also be used to control the operational energy 

performance.  

6.4.1 Benchmark model 

As mentioned before, the main function of the thermal energy consumption is to bridge the 

difference between the outdoor temperature and the required indoor temperature and to provide 

hot water for hygiene purposes. The relation between the thermal energy consumption and the 

outdoor temperature is determined using linear regression. The results are evaluated by means 

of the R² which indicates to which extent the dependent variable (thermal energy consumption) 

is predictable. The closer the value is to 1, the better the correlation of the parameters. 

 

The heating and cooling consumption differs during the day due to time-dependent parameters, 

such as internal heat (occupants, equipment and lighting), solar irradiance, day and night set-

points and stored energy in the thermal mass. Therefore, the regression is based on data of 

weekdays between 09:00-17:00h in order only to involve data with occupants. Besides, the daily 

mean consumption during these hours is used in order to better include the dynamic behavior 

of the HVAC system. The results of the regression are shown in Figure 6.20. The heating 

consumption correlates strongly with the outdoor temperature, since the R² is 0.863. For the 

cooling consumption this relationship is reasonably acceptable, namely 0.662. Therefore, these 

models can be used as benchmark models.  

 

 
Figure 6.20: Regression for the daily mean heating (left) and cooling (right) consumption during weekdays between 

09:00-17:00h as function of the outdoor temperature 
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The benchmark models are tested to determine the deviation of the residuals (predicted minus 

measured heat extraction). This is done by using 75% of the data set for training the model. To 

validate the model, the other 25% of the data set is used for testing. The R-script of both 

benchmark models can be found in Appendix B.5. 

 

The results related to the heating consumption are presented in Figure 6.21. The deviation of 

the residuals is almost normally distributed (positive and negative). Figure 6.22 shows the 

results of the cooling consumption. In this case, the deviation of the residuals is also almost 

normally distributed. 

 

 
Figure 6.21: Deviation between the predicted and measured heating consumption (left), the deviation of the residuals 

(middle) and distribution of the residuals (right) 

 

 
Figure 6.22: Deviation between the predicted and measured cooling consumption (left), the deviation of the residuals 

(middle) and distribution of the residuals (right) 

6.4.2 Energy saving potential 

The predicted energy extraction by benchmark models based on historical data and actual 

measured energy extraction are compared in order to provide an indication of energy saving 

potential. These models can also be used to assess the energy performance trends. The 

difference between the predicted and measured heating consumption from October 2017 up to 

and including December 2017 is shown in Figure 6.23. Figure 6.24 presents the difference 

between the predicted and measured cooling consumption from May 2017 up to and including 

July 2017.  
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Figure 6.23: Difference between the predicted and measured heating consumption including an acceptable deviation 

from October 2017 up to and including December 2017  

 

 
Figure 6.24: Difference between the predicted and measured cooling consumption including an acceptable deviation 

from May 2017 up to and including July 2017  

 

The indication of the energy saving potential is calculated by using equation 5.4. The results of 

this calculation are shown in Table 6.5. The yearly energy saving potential of the heating 

consumption is 13%, while the energy saving potential of the cooling consumption is 41%. This 

is particularly caused by fluctuating supply temperature of the AHU.  

 

Table 6.5: Indication of the yearly energy saving potential during occupancy (weekdays between 09:00-17:00h) 

 Measured 

[kWh/m²] 

Energy saving potential 

[kWh/m²] 

Energy saving 

[%] 

Heat consumption 

Cold consumption 

24.9 

6.2 

3.3 

2.6 

13 

41 

6.4.3 Discussion 

As discussed before, benchmark models using regression are useful to investigate the energy 

saving potential. However, the results are dependent on the accuracy of the models. 

Nevertheless, the models can ensure that the energy consumption does not increase 

unexpectedly. In this case study, the benchmark models are also created by the historical 

operational data of the HVAC system.  
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7 Discussion 

The study of this report has the following limitations with regard to the results.  

 

Pareto analysis 

According to the Pareto analysis, 20% of the main parameters with highest impact on the energy 

consumption account for roughly 80% of the energy performance gap. However, in this study 

not all cases meet this condition. The main reason for this is that the building-related parameters 

have been left out of consideration in order to remain in line with the scope of the study. Besides, 

when more parameters are selected for the sensitivity analysis, more parameters belong to the 

20%. Although both case study buildings have the same performance indicators in this study, 

more buildings need to be investigated in order to conclude under which conditions the applied 

indicators in this study are generally applicable. Nevertheless, the Pareto analysis contributes 

to stay focused on the most important parameters of buildings.  

 

Performance analysis 

This study is performed by only using existing sensors of the BMS of both case study buildings 

including electricity and gas sensors, so that the method is directly applicable in other similar 

non-residential buildings. As expected, these sensors are sufficient for drawing conclusions 

about the overall measured HVAC performance. However, in order to draw more detailed 

conclusions about parts of the system, the number of sensors needs to be extended. 

Sometimes, the limited number of sensors can be compensated by calculations. An example of 

this, is the calculation of the amount of thermal energy extraction by the ATES system of Larisa. 

But real measurements are preferred for accuracy.  

 

For the preprocessing and cleaning of the target data, it is necessary to obtain information about 

the time of use of the building and maintenance of the HVAC system, for example adjustment 

in settings. This is necessary to properly assess deviations in historical building data. Besides, 

the data has to be considered as realistic, since it has found that the sensors of the BMS can 

be inaccurate or unreliable. An example of this is the quite low measured pressure drop across 

the filter of an AHU of Larisa. Despite the fact that the data has been critically analyzed, some 

inaccuracies are not visible because calibration and maintenance of sensors and BMS are not 

considered in this study. 

 

LEAN energy analysis 

In this study, the energy saving potential is investigated based on the LEAN energy analysis. 

According to the LEAN energy analysis, benchmark models are created using data of other 

buildings with similar type, use, and other characteristics if available. Another possibility is to 

compare data before and after a large retrofit. However, collecting this data was not an objective 

of this study. So in line with the LEAN approach, the benchmark models are created by using 

historical data in both case studies. The performance modeling is conducted by comparing 

these benchmark models with empirical data. This shows deviations from the regression line 

which gives an indication of the energy saving potential. However, the results are dependent 

on the accuracy of the created models. 

 

The benchmark models are developed using regression in order to avoid a complex and time-

consuming process. However, regression reduces the added value of large data sets because 

only a small amount of variables is used to develop the model. This leads to a limitation of the 

discovered knowledge for practical application. Therefore, in future research other techniques 

such as clustering and association can be used to discover more insights. 
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8 Conclusion 

This study was performed to provide recommendations in order to optimize the energy 

performance of operational buildings by a systematic assessment. In this chapter the results of 

the research are evaluated by answering the formulated research questions. 

8.1 Sub-questions 

First the sub-questions are answered. 
 
I. “What are the performance indicators of the case study buildings regarding the HVAC 

system and the occupant behavior?” 
 

Based on the Pareto analysis, the set-points for heating and cooling and the related supply 

temperatures are the most important parameters for the heating, cooling and electricity 

consumption. Both case study buildings have the same performance indicators which makes it 

more applicable to other non-residential buildings. However, the 20% major parameters are not 

always responsible for 80% of the performance gap in order to fully comply with the Pareto 

analysis. This is due to the fact that the building-related parameters have been left out of 

consideration in this study. Nevertheless, the analysis is very suitable to remain focused on the 

most important performance indicators when analyzing the performance of the building. This is 

necessary to obtain financially attractive business cases. 

 
II. “Which parts of the HVAC system of the case study buildings are underperforming 

based on the performance indicators?” 

 

In general, especially the HVAC system of care center Larisa is underperforming compared to 

the design and settings. The ATES system of Larisa is in unbalance and the AHUs of both 

buildings supply higher temperatures than predicted. However, this is also needed to provide 

the required indoor climate. The unbalanced situation of the ATES system is caused by the 

higher heating than cooling demand, leading to a cold surplus of 38%. This has to be solved in 

order to prevent the depletion of the wells in the future and to comply with the Dutch law. 

Therefore, the amount of the heat injection has to be increased. In order to determine the exact 

cause of the high supply temperature of the AHUs, additional measurements on component 

level are needed. However, this is not possible with the current sensors of the BMS. 

Nevertheless, it can be concluded that this is caused by the system regulations. 

 
III. “To which extent can data mining contribute to improving the overall energy 

performance of the case study buildings?” 
 

Building operational data is in fact the reflection of the actual building performance. This study 

shows that DM techniques are valuable for knowledge discovery in this data, since the BMS 

can only perform simple data analysis and visualizations based on a short period of historical 

data. Regression provides an indication of the energy saving potential of both case study 

buildings. The energy saving potential of Larisa is 7% on the heat extraction and 70% on the 

cold extraction by the ATES system. In addition, the energy saving potential of Kropman Breda 

is 13% on the heating consumption and 41% on the cooling consumption. However, these 

predictions are dependent on the accuracy of the created models. 
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For the interpretation of the discovered knowledge, solid domain knowledge is still needed. This 

results to insights that can lead to high energy savings with a short payback time due to low 

investment costs. Therefore, DM is very suitable in order to control and optimize the energy 

performance of operational buildings.  

8.2 Main research question 

After answering the sub-questions, the main research question is answered. 
 

“Which effective strategies can be used to improve underperforming HVAC systems 
of buildings using data mining techniques?” 

 
The process of building performance optimization starts after the order of the building owner. 
Therefore, is it very important that building owners become more aware of how energy efficient 
their buildings can operate by controlling and improving controllable parameters. In order to 
increase the interest of building owners, a short pay-back time is important. That is the reason 
why the considered strategies contribute to reduce the energy costs combined with low 
investment costs. The investment costs are twofold, namely related to the performance analysis 
process and to the actual improvement of the system by the building service company.  
 
Nowadays, the HVAC performance is generally periodically controlled based on simple data 
analysis and visualizations of the BMS (mostly with a history of two weeks) and is heavily 
depending on the knowledge and experience of the particular investigator. Therefore, three 
main steps are necessary in order to systematically improve the underperforming HVAC 
systems.  
 
The first step to improve the complex underperforming HVAC systems is the identification of 
the major performance indicators. Since the BMS in buildings contains massive data sets which 
can be unlimited stored in a database, the performance indicators ensure to remain focused on 
the most important parameters of the underperforming installations. This leads to an effective 
building performance analysis. In this study these indicators are obtained by the Pareto analysis 
which has proved to be an efficient approach. 
 
The second step is the analysis of operational data regarding these indicators. It is advisable to 
make a plan about sensors which are needed. If the sensors of the BMS do not measure the 
data related to the indicators, additional measurements are needed. In addition, if the history of 
the logged data is too short, the dataset is not suitable to see trends and obtain knowledge 
about the operational building performance. Therefore, it is necessary to log the data for at least 
a few months, preferably over years. By means of the logged data, the operational energy 
performance can be analyzed. It is recommended to analyze the building system by means of 
a top-down approach. This leads to an efficient process to execute. Only when there is a specific 
complaint from the building users, a bottom-up approach can be more appropriate. To interpret 
the data analysis, the data measured by the sensors has to be assessed for accuracy and 
reliability. Due to sensor quality and false measurements the results can deviate considerably 
from the real operational conditions. This requires domain knowledge of the data analyst. 
 
The third step is to investigate the energy saving potential. For this, DM techniques have shown 
to be very valuable. In this study regression is used to create the benchmark models. 
Regression is used in order to avoid a complex and time-consuming process by developing 
data models based on more advanced algorithms e.g. decision tree, artificial neural network 
and support vector machine. These models can be made in different ways. The models created 
in this study are based on historical data of the relevant building. Comparing the benchmark 
models with empirical data leads to an indication of the potential reduction of the energy 
performance gap. In addition, these models can be used to control the energy consumption. 
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9 Recommendations 

In order to optimize the energy performance of future buildings, the next activities in the design 
and operational phase are recommended: 
 

 First, it is recommended to make a plan about sensors which are needed. Nowadays, 
the sensors which are already part of the BMS can be used for the performance 
analysis. However, it seems that they are not always sufficient. For example, in order 
to determine inefficiencies of the specific installations, more sub energy meters are 
needed. In addition, the main function of a building is to provide a pleasant and healthy 
indoor climate. Therefore, a number of related sensors are advisable which can be used 
as a starting point for the analysis. 
 

 When selecting sensors, attention must be paid to the specifications. The accuracy and 
reliability of the BMS sensors are essential for the success of control and optimization 
strategies of the HVAC system. In addition, the rounding of the measurements by the 
sensors must be taken into account. This is because all actions and decisions are made 
based on the measurements. Therefore, the consequences of faulty sensor signals 
could be erroneous. Building professionals can check the operational data. However, 
small differences between real and measured values cannot be traced. In case of doubt 
about the measured values, calibration is necessary.  

 

 In order to analyze multiply buildings in a more efficient way, it is advisable to use 
generic names for the sensors. This enables that the created scripts can easily be 
applied to other buildings. Project Haystack aims to streamline working with data by 
pragmatic use of naming conventions and taxonomies. This open source initiative can 
be used as a guide for defining the sensor names. 

 

 Besides, it is advisable to fill in a logbook about maintenance of the building system for 
the correct assessment and cleaning of the building operational data. This is very useful 
to clarify outliers in historical trends and to avoid inaccurate conclusions. 

 

 State of art software tools such as RStudio and Matlab can be connected to database 
environments to perform analysis in a more automated and cost effective way. The 
created scripts that are used for these analyzes can easily be applied to other buildings. 

 

 More data is needed to create benchmark models using data of buildings with similar 
type, use, and other characteristics. This means at least the energy consumption of the 
building in combination with the indoor and outdoor temperature and the time of use. In 
addition, the conditioned floor area is needed to normalize the energy consumption.  

 

 The underperforming building installations can be improved by the building service 
company. When this is finished, a CCx process of the HVAC performance is advised. 
The use of a dashboard with the actual construction performance is very suitable for 
this process. This ensures that system inefficiencies are continuously detected and can 
be improved by the maintainer. In addition, this process results in a pleasant indoor 
climate combined with limited running costs. 

 

 Finally, the building owners could be made more aware of the power they have to 
control their HVAC systems by a data driven approach. In fact, according to the General 
Data Protection Regulation (GDPR) they are the owner of the data and can request 
independent parties to check the performance by data analysis. 
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A  Case study 1: Larisa 

A.1  Building design 

The floor plans of care center Larisa are presented in Figures A.1 to A.5. 

 

 

 
Figure A.1: Ground floor of Larisa (1:500) 

 

 

 
Figure A.2: First floor of Larisa (1:500) 
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Figure A.3: Second floor of Larisa (1:500) 

 

 

 
Figure A.4: Third floor of Larisa (1:500) 
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Figure A.5: Fourth floor of Larisa (1:500) 
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A.2  Pareto analysis 

The 3D model of Larisa is shown in Figure A.6. This model is used for the sensitivity analysis 

with EnergyPlus. 

 

 

 
Figure A.6: Created 3D model of Larisa in SketchUp 
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A.3  Designed performance analysis 

ATES system with heat pump 
The installation principle of the ATES system including the heat pump is presented in Figure 
A.7. 
 

 
Figure A.7: Installation principle of the ATES system with heat pump 
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The technical specifications of the heat pump is shown in Figure A.8. 

 

 
Figure A.8: Technical specifications of the heat pump 
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A.4  Measured performance analysis 

Sensors 

The sensors of the BMS are presented in Table A.1. These sensors are installed for monitoring 

and controlling the operational performance. 

 

Table A.1. Sensors of the BMS  
ID Description Unit  ID Description Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

Condensor temperatuur uit 
Temperatuur TSA uit 
Condensor temperatuur in 
Verdamper temperatuur in 
Capaciteit 
Verdamper temperatuur in 
Verdamper regelklep terugmelding 
Temperatuur voor GKW verdeler TSA1 uit 
Temperatuur tussen TSA’s 
Temperatuur voor GKW verdeler TSA1 in 
Flowmeter bronsysteem 
Temperatuur warme bron 
Temperatuur naar condensor 
CV druk 
CV aanvoer afnemer 
Gew. centrale aanvoertemperatuur 
Temperatuur warmte buffer hoog 
Temperatuur warmte buffer midden 1 
Temperatuur warmte buffer midden 2 
Temperatuur warmte buffer laag 
Druksensor koude bron 
Temperatuur koude bron 
Druksensor warme bron 
GKW druk 
Temperatuur koude bron hoog 
Temperatuur koude buffer midden 1 
Temperatuur koude buffer midden 2 
Temperatuur koude buffer laag 
GKW retour afnemer 
Temperatuur naar verdamper 
Filter afzuigkanaal 
Condensatietemperatuur 
Buitentemperatuur 
Filter aanzuigkanaal 
Retourtemperatuur verdamper 
Druk afzuigkanaal 
Retourluchttemperatuur 
Omloopklep toev. plaatw. 
Aanvoertemperatuur transp. BKA 
Retourtemperatuur transp. BKA 
Aanvoertemperatuur transp. LBK 
Retourtemperatuur transp. LBK 
Retourtemperatuur 
Aanvoertemperatuur 
SP aanvoertemperatuur GKW 
SP aanvoertemperatuur CV 
Inblaastemperatuur 
Druk toevoerkanaal 
Vloertemperatuur 
Ruimtetemperatuur 
Gew. aanvoertemperatuur 
Buitentemperatuur 
Retourtemperatuur 

˚C 
˚C 
˚C 
˚C 
% 
˚C 
% 
˚C 
˚C 
˚C 
m³/h 
˚C 
˚C 
bar 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
bar 
˚C 
bar 
bar 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
Pa 
˚C 
˚C 
Pa 
˚C 
Pa 
˚C 
% 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
Pa 
˚C 
˚C 
˚C 
˚C 
˚C 

 54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 

Aanvoertemperatuur 
Ruimtetemperatuur verdieping 4 
Ruimtetemperatuur LB 2e Noord (defect) 
Ruimtetemperatuur LB 2e Zuid (defect) 
Ruimtetemperatuur verdieping 3 
Relatief buitenvocht 
Buitentemperatuur meting (defect) 
Condensatietemperatuur 
Filter afzuigkanaal 
Retourluchttemperatuur 
Inblaastemperatuur 
SP aanvoertemperatuur CV (defect) 
SP aanvoertemperatuur GKW (defect) 
Aanvoertemperatuur 
Retourtemperatuur 
Vloertemperatuur 
Retourtemperatuur verwarming 
Niveau koude bron 
Niveau warme bron 
Gewenste aanvoertemperatuur 
Centrale aanvoertemperatuur 
Buitentemperatuur (daggemiddelde 3 dagen) 
Bedrijfssituatie 
Gew. aanvoertemperatuur 
Filter aanzuigkanaal 
Omloopklep toev. Plaatw. 
Druk toevoerkanaal 
Druk afzuigkanaal 
Ber. Aanvoertemperatuur ketelregeling 
Centrale toevoertemperatuur 
Gewenste aanvoertemperatuur 
Centrale retourtemperatuur 
Aanvoertemperatuur transportgr. 
Retourtemperatuur transportgr. 
Retourtemperatuur tapwater boiler 1 
Centrale retourtemperatuur tapwater 
Centrale aanvoertemperatuur tapwater 
Aanvoertemperatuur tapwater boiler 1 
Retourtemperatuur tapwater boiler 2 
Boiler 1 
Aanvoertemperatuur tapwater boiler 2 
Retourtemperatuur verwarmer 
Vloertemperatuur 
Condensatietemperatuur 
Omloopklep toev. plaatw. 
Filter aanzuigkanaal 
Druk toevoerkanaal 
Inblaastemperatuur 
Retourluchttemperatuur 
Druk afzuigkanaal 
Filter afzuigkanaal 
Aanvoertemperatuur convectoren 
Retourluchttemperatuur convectoren 

˚C 
˚C 
˚C 
˚C 
˚C 
% 
˚C 
˚C 
Pa 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
mH2O 
mH2O 
˚C 
˚C 
˚C 
1, 2, 3 
˚C 
Pa 
% 
Pa 
Pa 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
status 
˚C 
˚C 
˚C 
˚C 
% 
Pa 
˚C 
˚C 
˚C 
Pa 
Pa 
˚C 
˚C 
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Energy consumption 

The heat maps of the measured outdoor temperature and the energy consumption are shown 

in Figures A.9 to A.11. 

 
 

 
Figure A.9: Heat map of the measured outdoor temperature 

 

 
Figure A.10: Heat map of the measured electricity consumption 

 

 
Figure A.11: Heat map of the measured gas consumption 
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ATES system with heat pump 

The extracted heat and cold by the ATES system is calculated by multiplying the used power 

(equation 5.1) with time. Due to the direction of the flow is not measured, the determination of 

the thermal extraction is assumed, following the decision tree shown in Figure A.12. When a 

flow is measured, heat or cold is extracted from the wells (Figure A.13). For heating, the heat 

pump should always have a capacity (Figure A.14). For cooling, the heat pump is only running 

when the directly extracted cold is not sufficient. Therefore, the forward and return temperatures 

of the condenser and evaporator of the heat pump are analyzed (Figure A.15). The maximum 

forward temperature of the evaporator during only heating months is 12.4˚C. Based on this fact, 

the cooling mode of the heat pump is determined; when the forward temperature of the 

evaporator is above this value, the heat pump is in cooling mode.  

 

 
Figure A.12: Decision tree for the determination whether the extracted energy is related to heating or cooling 

 

 
Figure A.13: Flow between the wells of the ATES system 

 

 
Figure A.14: Capacity of the heat pump 
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Figure A.15: Temperatures of the condenser and the evaporator of the heat pump 

 

The results are validated with real measured data obtained by an energy service company 

(Table A.2). There can be concluded that the deviation is acceptable. 

 

Table A.2: Difference between the measured and calculated thermal energy extraction 

 Measured energy extraction Calculated energy extraction Deviation energy extraction 

 Heat 

[MWh] 

Cold 

[MWh] 

Heat 

[MWh] 

Cold 

[MWh] 

Heat 

[%] 

Cold 

[%] 

August 

September 

October 

November 

December 

0 

8 

17 

54 

67 

25 

1 

2 

0 

0 

1 

7 

14 

54 

68 

22 

2 

2 

0 

0 

- 

-12 

-18 

0 

1 

-12 

100 

0 

0 

0 

Total 146 28 144 26 -1 -7 

 

The thermal balance can be calculated with equation 5.2. The results per month are shown in 

Table A.3. During the whole measurement period, the thermal balance is negative which leads 

to a cold surplus of 38%. Hereby the note that the system was not in operation during two weeks 

of March and the data of April was not logged. Since there is a higher heating than cooling 

demand during these months, the thermal unbalance is in fact still larger. In order to comply 

with Dutch law, this unbalance must be solved. 

 

Table A.3: Heat and cold extraction of the ATES 

Month/year Heat extraction 

[MWh] 

Cold extraction 

[MWh] 

Thermal unbalance 

[%] 

08/2017 

09/2017 

10/2017 

11/2017 

12/2017 

01/2018 

02/2018 

03/2018 [1] 

04/2018 [2] 

05/2018 

06/2018 

07/2018 

1 

7 

14 

54 

68 

60 

75 

25 

- 

6 

1 

4 

22 

2 

2 

0 

0 

0 

0 

0 

- 

24 

22 

68 

94 

-53 

-72 

-100 

-100 

-100 

-100 

-100 

- 

61 

90 

88 

[1]: System two weeks not in operation 

[2]: Data not logged 
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The heat maps of the measured outdoor temperature and thermal extraction by the ATES are 
presented in Figures A.16 to A.18. 

 

 
Figure A.16: Heat map of the measured outdoor temperature 

 

 
Figure A.17: Heat map of the heat extraction 

 

 
Figure A.18: Heat map of the cold extraction  
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R-script 

 

# Constants 

rho  <- 999 

cp  <- 4.18 

 

   

# Extracted thermal energy ATES 

ATES_HP    <- filter(Server, Flow > 0 & Capacity > 0) 

 

ATES_HP$Extracted_Heating <- ATES_HP$Flow / 3600 * rho * cp * (ATES_HP$Warm_well - 

ATES_HP$Cold_well) 

 

ATES_HP$Extracted_Heating <- ifelse(ATES_HP$HP_Evaporator_Tin > 13, 0, 

ATES_HP$Extracted_Heating) 

 

ATES_HP$Extracted_Cooling  <- ATES_HP$Flow / 3600 * rho * cp * (ATES_HP$Cold_well - 

ATES_HP$Warm_well) * -1 

 

ATES_HP$Extracted_Cooling  <- ifelse(ATES_HP$HP_Evaporator_Tin > 13, 

ATES_HP$Extracted_Cooling, 0) 

 

ATES_Direct  <- filter(Server, Flow > 0 & Capacity == 0) 

 

ATES_Direct$Extracted_Heating <- 0 

 

ATES_Direct$Extracted_Cooling <- ATES_Direct$Flow / 3600 * rho * cp * 

(ATES_Direct$Cold_well - ATES_Direct$Warm_well) * -1 

 

ATES <- rbind(ATES_HP, ATES_Direct) 

 

 

# Extracted temperatures ATES 

ATES$Warm_well_Tin  <- ifelse(ATES$Extracted_Cooling > 0, ATES$Warm_well, 0) 

 

ATES$Warm_well_Tout  <- ifelse(ATES$Extracted_Heating > 0, ATES$Warm_well, 0) 

 

ATES$Cold_well_Tin  <- ifelse(ATES$Extracted_Heating > 0, ATES$Cold_well, 0) 

 

ATES$Cold_well_Tout  <- ifelse(ATES$Extracted_Cooling > 0, ATES$Cold_well, 0) 

 

 

# COP heat pump 

HP <- ATES 

 

HP$Heating  <- HP$Flow / 3600 * rho * cp * (HP$HP_Condenser_T.out - 

HP$HP_Condenser_T.in)  

 

HP$Cooling <- HP$Flow / 3600 * rho * cp * (HP$HP_Evaporator_T.in - 

HP$HP_Evaporator_T.out) 
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HP$COP_Heating  <- ifelse(HP$Extracted_Heating > 0, (HP$HP_Heating / 

(HP$HP_Heating - HP$HP_Cooling)), 0) 

 

HP$COP_Cooling  <- ifelse(HP$Extracted_Cooling > 0, (HP$HP_Cooling / 

(HP$HP_Heating - HP$HP_Cooling)), 0) 
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A.5  LEAN performance analysis 

R-script 

 

# Sampling of train and test dataset 

smp_size  <- floor(0.75 * nrow(ATES)) 

 

set.seed(123) 

train_data  <- sample(seq_len(nrow(ATES)), size = smp_size) 

 

 

# Heating 

Heating_train  <- ATES[train_data, ] 

Heating_test  <- ATES[-train_data, ] 

 

## Linear model 

Heating_fit  <- lm(Extracted_Heating ~ Outdoor_Temperature, data = 

Heating_train) 

 

## Prediction 

Heating_test$prediction  <- predict(Heating_fit, Heating_test) 

Heating_test  <- filter(Heating_test, prediction >= 0)  

 

## Calculation RMSE 

Heating_test$residuals  <- Heating_test$Extracted_Heating - 

Heating_test$prediction 

Heating_test$prediction  <-  predict(Heating_fit, Heating_test) 

 

 

# Cooling 

Cooling_train  <- ATES[train_data, ] 

Cooling_test  <- ATES[-train_data, ] 

 

## Linear model 

Cooling_fit  <- lm(Extracted_Cooling ~ Outdoor_Temperature, data = 

Cooling_train) 

 

## Prediction 

Cooling_test$prediction  <- predict(Cooling_fit, Cooling_test) 

Cooling_test  <- filter(Cooling_test, prediction >= 0)  

 

 

## Calculation RMSE 

Cooling_test$residuals  <- Cooling_test$Extracted_Cooling - 

Cooling_test$prediction 

Cooling_test$prediction  <-  predict(Cooling_fit, Cooling_test)  
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B  Case study 2: Kropman Breda 

B.1  Building design 

Floor plans 

The floor plans of office building Kropman Breda are shown in Figures B.1 to B.3. 

 

 

 
Figure B.1: Ground floor of Kropman Breda (1:500) 

 

 

 
Figure B.2: First floor of Kropman Breda(1:500) 

 

 

.  

Figure B.3: Second floor of Kropman Breda (1:500) 

 
  

ROOM 1.05 
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B.2  Pareto analysis 

The 3D model of Kropman Breda is presented in Figure B.4. This model is used for the 

sensitivity analysis with EnergyPlus. 

 

 

 
Figure B.4: Created 3D model of Kropman Breda in SketchUp 
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B.3  Designed performance analysis 

Heating system 
The installation principle of the heating system is shown in Figure B.5. 

 

 
Figure B.5: Installation principle of the heating system 
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Cooling system 
The installation principle of the cooling system is shown in Figure B.6. 

 

 
Figure B.6: Installation principle of the cooling system 
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B.4  Measured performance analysis 

Sensors 

The sensors of the BMS are presented in Table B.1. These sensors are installed for monitoring 

and controlling the operational performance. 

 

Table B.1. sensors of the BMS 
ID Description Unit  ID Description Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

Buitentemperatuur NO [Weerstation] 
Buitentemperatuur ZW [Weerstation] 
Aanvoertemperatuur [C.V. ketel] 
Retourtemperatuur [C.V. ketel] 
Ber. aanvoertemperatuur Ketel [C.V. ketel] 
Aanvoertemperatuur Radiatoren NO [C.V. verdeler] 
Ber. aanvoertemperatuur Radiatoren NO [C.V. verdeler] 
Retourtemperatuur Radiatoren NO [C.V. verdeler] 
Regelafsluiter Radiatoren NO [C.V. verdeler] 
Aanvoertemperatuur Radiatoren ZW [C.V. verdeler] 
Ber. Aanvoertemperatuur Radiatoren ZW (C.V. verdeler] 
Retourtemperatuur Radiatoren ZW [C.V. verdeler] 
Regelafsluiter Radiatoren ZW [C.V. verdeler] 
Uittredetemperatuur [Koelmachine] 
Intredetempoeratuur [Koelmachine] 
Regelafsluiter Nakoeler ZW [Koelmachine] 
Regelafsluiter Nakoeler NO [Koelmachine] 
Gew. Uittredetemperatuur [Koelmachine] 
Regelafsluiter Nakoeler E-afd. [Koelmachine] 
Ber. Inblaastemperatuur NO [Overzicht lucht] 
Ber. Inblaastemperatuur ZW [Overzicht lucht] 
Ber. Inblaastemperatuur E-afdeling [Overzicht lucht] 
Inblaastemperatuur E-afdeling [Overzicht lucht] 
Ruimtetemperatuur E-afdeling [Overzicht lucht]  
Ber. Afzuigtemperatuur NO [Overzicht lucht] 
Ber. Afzuigtemperatuur ZW [Overzicht lucht]  
Inblaastemperatuur noord oost 
Afzuigtemperatuur NO & kantine 
Afzuigtemperatuur ZW  
Inblaastemperatuur zuid west  
Inblaastemperatuur LBK [Overzicht lucht] 
Ber. Ruimtetemperatuur e. afd. [Overzicht lucht]  
Regelafsluiter Radiatoren Kantine [Naregeling kantine]  
Setpoint Ruimtetemperatuur [Naregeling kantine]  
Toevoerluchtklep [Naregeling kantine] 
Ruimtetemperatuur kantine  
Setpoint Ruimtetemperatuur [Naregeling spreekkamer]  
Regelafsluiter Radiotoren [Naregeling spreekkamer] 
Ruimtetemperatuur spreekkamer 
Instelling Setpoint [Recirculatieventilatie magazijn]  
Ruimtetemp. Magazijn  
Relatief Inblaasluchtvocht [Luchtbehandelingskast]  
Gem. Druk Toevoerkanaal [Luchtbehandelingskast]  
Druk over afvoerfilter [Luchtbehandelingskast] 
Absoluut Inblaasvocht [Luchtbehandeling - LBK]  
Ber. Aanvoerwatertemperatuur [Luchtbehandelingskast]  
Bevochtiger [Luchtbehandelingskast]  
Toevoervent. Toerental  
Afzuigvent. Toerental  
Aanvoertemp. verwarmer  
Ber. inblaastemperatuur [Luchtbehandelingskast]  
Regelafsluiter verwarmer [Luchtbehandelingskast]  
Ber. inblaastemperatuur [Luchtbehandelingskast]  
Gewogen gemiddelde ruimtetemperatuur [Overzicht lucht]  
Koelmachine [Koelmachine]  
ROR-sturing warmtewiel [LBK Kantoren]  
Gemeten vermogen Ketel [Warmteopwekking - C.V. installatie]  
Aanvoertemperatuur ketel [Warmteopwekking - C.V. installatie] 
Retourtemperatuur ketel [Warmteopwekking - C.V. installatie]  
kWh-verbr. puls - koelm. per uur [Energieregistratie]  
kWh-verbr. puls - stoombev. per uur [Energieregistratie]  
kWh-verbr. puls - regelkast per uur [Energieregistratie]  
Gasverbruik puls - uur [Energieregistratie]  
Verl. 5a Ruimte F [Plugwise]  
Verl. 6b Ruimte F [Plugwise] 
Verl. Split Unit Ruimte G [Plugwise] 
Verl. 5a en 6b Ruimte G [Plugwise]  
Netw. 4 Hal H [Plugwise]  
Netw. 3 Hal K [Plugwise] 
Netw. 3 Hal K [Plugwise] 
Verl. 6b Ruimte C [Plugwise]  
Verl. 5a Ruimte D [Plugwise] 
Verl. 6b Ruimte D [Plugwise]  
Verl. 6a Ruimte E [Plugwise]  
Verl. 6b Ruimte E [Plugwise] 
Verl. 5c Ruimte E [Plugwise]  
Verl. 5a Ruimte A [Plugwise]  
Verl. 6b Ruimte A [Plugwise]  
Verl. 5a Ruimte C [Plugwise]  
Verl. 6b Ruimte B [Plugwise]  
Verl. 5a Ruimte B [Plugwise]  
Verl. 6b Ruimte B [Plugwise]  
Verl. 5a Ruimte B [Plugwise]  
Ruimtetemperatuur No [Plattegrond 2e verdieping] 
Stoombevochtiger kWh meting per uur [Energie meters] 
Koelmachine kWh meting per uur [Energie meters]  
Kwh meter modbus koelmach. per dag [Kwh Meters]  
Regelkast HVAC kWh meting per uur [Energie meters]  
Verl. 5a Ruimte B  
Verl. 6b Ruimte B  
Verl. 5a Ruimte B  
Verl. 6b Ruimte B  
Verl. 5a Ruimte C  
Verl. 6b Ruimte C  
Verl. 5a Ruimte D 
Verl. 6b Ruimte D 
Verl. 6a Ruimte E 
Verl. 6b Ruimte E  
Verl. 5c Ruimte E  
Verl. 5c Ruimte E  
Verl. 6b Ruimte F  

˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
% 
% 
˚C 
˚C 
% 
% 
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˚C 
% 
% 
˚C 
% 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
˚C 
% 
˚C 
% 
˚C 
˚C 
% 
˚C 
˚C 
˚C 
% 
Pa 
Pa 
g/kg 
˚C 
% 
O/min 
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˚C 
˚C 
% 
˚C 
˚C 
 
% 
KW 
˚C 
˚C 
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kWh 
m³ 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
˚C 
kWh 
kWh 
kWh 
kWh 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 
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 102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
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114 
115 
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117 
118 
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120 
121 
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125 
126 
127 
128 
129 
130 
131 
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150 
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157 
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160 
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164 
165 
166 
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169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 

Verl. 5a Ruimte G 
Verl. 6b Ruimte G  
Netw. 4  
Netw. 3 
WCD Ruimte E  
Verl. 6b Ruimte A  
Verl. 5a Ruimte A 
Bedrijfsuren per dag \ maand [Warmtewiel vervolg]  
Geleverd vermogen ketel per uur 
Geleverd vermogen koelmachine per uur 
Mom. Koelvermogen [Koudeopwekking - Koelmachine]  
Mom. Cv Vermogen [Warmteopwekking - C.V. installatie]  
Koelmachine kWh meting per dag [Energie meters] 
Hoofdverdeler Licht kWh meting per uur [Energie meters] 
Hoofdverdeler Kracht kWh meting per uur [Energie meters]  
HV Kracht Lijnstroom L2 [Energie Meters]  
HV Licht Lijnstroom L2 [Energie Meters]  
HV Licht Lijnstroom L3 [Energie Meters]  
HV Licht Lijnstroom L1 [Energie Meters]  
HV Kracht Lijnstroom L3 [Energie Meters]  
HV Kracht Lijnstroom L1 [Energie Meters]  
HV Kracht Lijnstroom L1 [Energie Meters]  
HV Kracht Lijnstroom L1 [Energie Meters]  
HV Kracht Fasespanning L3-N [Energie Meters]  
HV Kracht Fasespanning L2-N [Energie Meters]  
HV Licht Fasespanning L1-N [Energie Meters]  
HV Kracht Fasespanning L1-N [Energie Meters]  
HV Licht Vermogen Schijnbaar [Energie Meters]  
HV Licht Vermogen Werkelijk [Energie Meters] 
HV Kracht Vermogen Schijnbaar [Energie Meters]  
HV Kracht Vermogen Werkelijk [Energie Meters]  
HV Kracht Vermogen Blind [Energie Meters] 
HV Licht Vermogen Blind [Energie Meters] 
Koelmachine Lijnstroom L1 [Energie Meters]  
Regelkast HVAC Lijnstroom L2 [Energie Meters]  
Stoombevochtiger Lijnstroom L2 [Energie Meters]  
Stoombevochtiger Vermogen Blind [Energie Meters] 
Regelkast HVAC Vermogen Schijnbaar [Energie Meters] 
Regelkast HVAC Vermogen Werkelijk [Energie Meters]  
Koelmachine Vermogen Werkelijk [Energie Meters] 
Koelmachine Vermogen Schijnbaar [Energie Meters]  
Stoombevochtiger Vermogen Werkelijk [Energie Meters]  
Stoombevochtiger Vermogen Werkelijk [Energie Meters]  
Regelkast HVAC Vermogen Blind [Energie Meters] 
Koelmachine Vermogen Blind [Energie Meters]  
Regelkast HVAC Fasespanning L1-N [Energie Meters]  
Koelmachine Fasespanning L1-N [Energie Meters]  
Stoombevochtiger Fasespanning L1-N [Energie Meters]  
Regelkast HVAC Fasespanning L2-N [Energie Meters]  
Regelkast HVAC Lijnstroom L3 [Energie Meters]  
Regelkast HVAC Lijnstroom L1 [Energie Meters]  
Koelmachine Fasespanning L3-N [Energie Meters] 
Koelmachine Lijnstroom L2 [Energie Meters]  
Stoombevochtiger Fasespanning L3-N [Energie Meters]  
Stoombevochtiger Fasespanning L2-N [Energie Meters] 
Stoombevochtiger Lijnstroom L3 [Energie Meters]  
Stoombevochtiger Lijnstroom L1 [Energie Meters]  
Regelkast HVAC Fasespanning L3-N [Energie Meters]  
Koelmachine Fasespanning L2-N [Energie Meters]  
Koelmachine Lijnstroom L3 [Energie Meters] 
Zonnehoek  
Zonnehoogte 
Druk over toevoerfilter [Luchtbehandeling - LBK]  
Regelkast HVAC Wh meting per uur [Energie meters]  
Koelmachine Wh meting per uur [Energie meters]   
Stoombevochtiger Wh meting per uur [Energie meters]  
Hoofdverdeler Licht Wh meting per uur [Energie meters]  
Hoofdverdeler Kracht Wh meting per uur [Energie meters] 
Reg. waarde panelen per uur 
Temperatuur TT-2.8 [PV algemeen]  
Temperatuur TT-2.19 [PV algemeen]  
Temperatuur TT-2.21 [PV algemeen]  
Temperatuur TT-2.30 [PV algemeen]  
Temperatuur TT-1.5 [PV algemeen]  
Temperatuur TT-1.21 [PV algemeen]  
PV-panelen Lijnstroom L1 [Energie Meters]  
PV-panelen Lijnstroom L2 [Energie Meters]  
PV-panelen Lijnstroom L3 [Energie Meters] 
PV-panelen Fasespanning L1-N [Energie Meters]  
PV-panelen Fasespanning L2-N [Energie Meters]  
PV-panelen Fasespanning L3-N [Energie Meters]  
PV-panelen Vermogen Werkelijk [Energie Meters]  
PV-panelen Vermogen Blind [Energie Meters]  
PV-panelen Vermogen Schijnbaar [Energie Meters]  
Accusysteem Lijnstroom L1 [Energie Meters]  
Accusysteem Lijnstroom L3 [Energie Meters]  
Accusysteem Fasespanning L1-N [Energie Meters] 
Accusysteem Fasespanning L2-N [Energie Meters]  
Accusysteem Fasespanning L3-N [Energie Meters] 
Accusysteem Vermogen Werkelijk [Energie Meters] 
Accusysteem Vermogen Blind [Energie Meters]  
Accusysteem Vermogen Schijnbaar [Energie Meters]  
Battery Pack Reg.waarde Per Uur [PV algemeen]  
Battery Pack Reg.waarde Per Dag [PV algemeen]  
Pyranometer [PV algemeen]  
Windrichting [PV algemeen]  
Windsnelheid [PV algemeen]  
Relatief vocht [PV algemeen] 
Buitentemperatuur [PV algemeen]  
State_of_charge [Battery pack] 
Actual Dc Current [Battery pack]  
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Table B.1. sensors of the building system (continued) 
ID Description Unit  ID Description Unit 

203 
204 
205 
206 
207 
208 
209 
210 
211 
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213 
214 
215 
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217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
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244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
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265 
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267 
268 
269 
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273 
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277 
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285 
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289 
290 
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292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 

Actual Ac Current [Battery pack]  
Actual Dc Voltage [Battery pack]  
Actual Ac Voltage [Battery pack]  
Apparent Ac Current [Battery pack] 
Freq. Ac-side [Battery pack]  
Actual Dc Power [Battery pack]  
Max. Charge Current [Battery pack]  
Max. Discharge Current [Battery pack] 
Highest Temp. [Battery pack]  
Request Current [Battery pack] 
Request Re Current [Battery pack]  
Ruimtetemperatuur technische ruimte [PV algemeen]  
Absoluut vocht [PV algemeen]  
Totaal werkelijk vermogen [Energie Meters]  
Intbatterycurrent A7 [Overzicht Accu Strings]  
Intbatterytempscaled E7 [Overzicht Accu Strings]  
Intbatterytempscaled D7 [Overzicht Accu Strings]  
Intbatterytempscaled C7 [Overzicht Accu Strings]  
Intbatterytempscaled B7 [Overzicht Accu Strings]  
Intbatterytempscaled A7 [Overzicht Accu Strings]  
Intbatterypressure E7 [Overzicht Accu Strings]  
Intbatterypressure D7 [Overzicht Accu Strings]  
Intbatterypressure C7 [Overzicht Accu Strings]  
Intbatterypressure B7 [Overzicht Accu Strings]  
Intbatterypressure A7 [Overzicht Accu Strings]  
Intbatteryvoltage E7 [Overzicht Accu Strings] 
Intbatteryvoltage D7 [Overzicht Accu Strings] 
Intbatteryvoltage C7 [Overzicht Accu Strings] 
Intbatteryvoltage B7 [Overzicht Accu Strings] 
Intbatteryvoltage A7 [Overzicht Accu Strings] 
Intbatterycurrent A6 [Overzicht Accu Strings]  
Intbatterytempscaled E6 [Overzicht Accu Strings]  
Intbatterytempscaled D6 [Overzicht Accu Strings]  
Intbatterytempscaled C6 [Overzicht Accu Strings]  
Intbatterytempscaled B6 [Overzicht Accu Strings]  
Intbatterytempscaled A6 [Overzicht Accu Strings]  
Intbatterypressure E6 [Overzicht Accu Strings] 
Intbatterypressure D6 [Overzicht Accu Strings]  
Intbatterypressure C6 [Overzicht Accu Strings]  
Intbatterypressure B6 [Overzicht Accu Strings] 
Intbatterypressure A6 [Overzicht Accu Strings]  
Intbatteryvoltage E6 [Overzicht Accu Strings]  
Intbatteryvoltage D6 [Overzicht Accu Strings] 
Intbatteryvoltage C6 [Overzicht Accu Strings]  
Intbatteryvoltage B6 [Overzicht Accu Strings]  
Intbatteryvoltage A6 [Overzicht Accu Strings]  
Intbatterycurrent A5 [Overzicht Accu Strings] 
Intbatterytempscaled E5 [Overzicht Accu Strings]  
Intbatterytempscaled D5 [Overzicht Accu Strings]  
Intbatterytempscaled C5 [Overzicht Accu Strings]  
Intbatterytempscaled B5 [Overzicht Accu Strings]  
Intbatterytempscaled A5 [Overzicht Accu Strings]  
Intbatterypressure E5 [Overzicht Accu Strings]  
Intbatterypressure D5 [Overzicht Accu Strings] 
Intbatterypressure C5 [Overzicht Accu Strings] 
Intbatterypressure B5 [Overzicht Accu Strings] 
Intbatterypressure A5 [Overzicht Accu Strings 
Intbatteryvoltage E6 [Overzicht Accu Strings]  
Intbatteryvoltage D5 [Overzicht Accu Strings] 
Intbatteryvoltage C5 [Overzicht Accu Strings]  
Intbatteryvoltage B5 [Overzicht Accu Strings]  
Intbatteryvoltage A5 [Overzicht Accu Strings]  
Intbatterycurrent A4 [Overzicht Accu Strings]  
Intbatterytempscaled E4 [Overzicht Accu Strings]  
Intbatterytempscaled D4 [Overzicht Accu Strings]  
Intbatterytempscaled C4 [Overzicht Accu Strings]  
Intbatterytempscaled B4 [Overzicht Accu Strings]  
Intbatterytempscaled A4 [Overzicht Accu Strings]  
Intbatterypressure E4 [Overzicht Accu Strings]  
Intbatterypressure D4 [Overzicht Accu Strings]  
Intbatterypressure C4 [Overzicht Accu Strings]  
Intbatterypressure B4 [Overzicht Accu Strings]  
Intbatterypressure A4 [Overzicht Accu Strings]  
Intbatteryvoltage E4 [Overzicht Accu Strings] 
Intbatteryvoltage D4 [Overzicht Accu Strings] 
Intbatteryvoltage C4 [Overzicht Accu Strings] 
Intbatteryvoltage B4 [Overzicht Accu Strings] 
Intbatteryvoltage A4 [Overzicht Accu Strings] 
Intbatterycurrent A3 [Overzicht Accu Strings]  
Intbatterytempscaled E3 [Overzicht Accu Strings]  
Intbatterytempscaled D3 [Overzicht Accu Strings]  
Intbatterytempscaled C3 [Overzicht Accu Strings]  
Intbatterytempscaled B3 [Overzicht Accu Strings]  
Intbatterytempscaled A3 [Overzicht Accu Strings]  
Intbatterypressure E3 [Overzicht Accu Strings]  
Intbatterypressure D3 [Overzicht Accu Strings]    
Intbatterypressure E5 [Overzicht Accu Strings]  
Intbatterypressure D5 [Overzicht Accu Strings] 
Intbatterypressure C5 [Overzicht Accu Strings] 
Intbatterypressure B5 [Overzicht Accu Strings] 
Intbatterypressure A5 [Overzicht Accu Strings 
Intbatteryvoltage E6 [Overzicht Accu Strings]  
Intbatteryvoltage D5 [Overzicht Accu Strings] 
Intbatteryvoltage C5 [Overzicht Accu Strings]  
Intbatteryvoltage B5 [Overzicht Accu Strings]  
Intbatteryvoltage A5 [Overzicht Accu Strings]  
Intbatterycurrent A4 [Overzicht Accu Strings]  
Intbatterytempscaled E4 [Overzicht Accu Strings]  
Intbatterytempscaled D4 [Overzicht Accu Strings]  
Intbatterytempscaled C4 [Overzicht Accu Strings]  
Intbatterytempscaled B4 [Overzicht Accu Strings]  
Intbatterytempscaled A4 [Overzicht Accu Strings]  
Intbatterypressure E4 [Overzicht Accu Strings]  
Intbatterypressure D4 [Overzicht Accu Strings]  
Intbatterypressure C4 [Overzicht Accu Strings]  
Intbatterypressure B4 [Overzicht Accu Strings]  
Intbatterypressure A4 [Overzicht Accu Strings]  
Intbatteryvoltage E4 [Overzicht Accu Strings] 
Intbatteryvoltage D4 [Overzicht Accu Strings] 
Intbatteryvoltage C4 [Overzicht Accu Strings] 
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389 
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Intbatteryvoltage B4 [Overzicht Accu Strings] 
Intbatteryvoltage A4 [Overzicht Accu Strings] 
Intbatterycurrent A3 [Overzicht Accu Strings]  
Intbatterytempscaled E3 [Overzicht Accu Strings]  
Intbatterytempscaled D3 [Overzicht Accu Strings]  
Intbatterytempscaled C3 [Overzicht Accu Strings]  
Intbatterytempscaled B3 [Overzicht Accu Strings]  
Intbatterytempscaled A3 [Overzicht Accu Strings]  
Intbatterypressure E3 [Overzicht Accu Strings]  
Intbatterypressure D3 [Overzicht Accu Strings]  
Intbatterypressure C3 [Overzicht Accu Strings]  
Intbatterypressure B3 [Overzicht Accu Strings]  
Intbatterypressure A3 [Overzicht Accu Strings]  
Intbatteryvoltage E3 [Overzicht Accu Strings] 
Intbatteryvoltage D3 [Overzicht Accu Strings] 
Intbatteryvoltage C3 [Overzicht Accu Strings] 
Intbatteryvoltage B3 [Overzicht Accu Strings] 
Intbatteryvoltage A3 [Overzicht Accu Strings] 
Intbatterycurrent A2 [Overzicht Accu Strings]  
Intbatterytempscaled E2 [Overzicht Accu Strings]  
Intbatterytempscaled D2 [Overzicht Accu Strings]  
Intbatterytempscaled C2 [Overzicht Accu Strings]  
Intbatterytempscaled B2 [Overzicht Accu Strings]  
Intbatterytempscaled A2 [Overzicht Accu Strings]  
Intbatterypressure E2 [Overzicht Accu Strings]  
Intbatterypressure D2 [Overzicht Accu Strings]  
Intbatterypressure C2 [Overzicht Accu Strings]  
Intbatterypressure B2 [Overzicht Accu Strings]  
Intbatterypressure A2 [Overzicht Accu Strings]  
Intbatteryvoltage E2 [Overzicht Accu Strings] 
Intbatteryvoltage D2 [Overzicht Accu Strings] 
Intbatteryvoltage C2 [Overzicht Accu Strings] 
Intbatteryvoltage B2 [Overzicht Accu Strings] 
Intbatteryvoltage A2 [Overzicht Accu Strings] 
Intbatterycurrent A1 [Overzicht Accu Strings]  
Intbatterytempscaled E1 [Overzicht Accu Strings]  
Intbatterytempscaled D1 [Overzicht Accu Strings]  
Intbatterytempscaled C1 [Overzicht Accu Strings]  
Intbatterytempscaled B1 [Overzicht Accu Strings]  
Intbatterytempscaled A1 [Overzicht Accu Strings]  
Intbatterypressure E1 [Overzicht Accu Strings]  
Intbatterypressure D1 [Overzicht Accu Strings]  
Intbatterypressure C1 [Overzicht Accu Strings]  
Intbatterypressure B1 [Overzicht Accu Strings]  
Intbatterypressure A1 [Overzicht Accu Strings]  
Intbatteryvoltage E1 [Overzicht Accu Strings] 
Intbatteryvoltage D1 [Overzicht Accu Strings] 
Intbatteryvoltage C1 [Overzicht Accu Strings] 
Intbatteryvoltage B1 [Overzicht Accu Strings] 
Intbatteryvoltage A1 [Overzicht Accu Strings] 
Lichtintensiteit West LS4  
Lichtintensiteit Zuid LS3 [Parkeerplaats Kropman] 
Lichtintensiteit Oost LS2 [Begraafplaats zijde]  
Lichtintensiteit Noord LS1 [Mercedes dealer zijde]  
Temperatuur TT-1.21 [PV algemeen]  
Temperatuur TT-2.21 [PV algemeen]  
Temperatuur TT-1.5 [PV algemeen]  
Temperatuur TT-2.30 [PV algemeen]  
Temperatuur TT-2.8 [PV algemeen]  
Temperatuur TT-2.19 [PV algemeen]  
Lux 1 [IvNext Dali Lon Module] 
Lux 2 [IvNext Dali Lon Module] 
Lux 3 [IvNext Dali Lon Module] 
Lux 4 [IvNext Dali Lon Module] 
Lux 5 [IvNext Dali Lon Module] 
Lux 6 [IvNext Dali Lon Module] 
Lux 7 [IvNext Dali Lon Module] 
Lux 8 [IvNext Dali Lon Module] 
Lux 9 [IvNext Dali Lon Module] 
Lux 10 [IvNext Dali Lon Module] 
Lux 11 [IvNext Dali Lon Module] 
Lux 12 [IvNext Dali Lon Module] 
Lux 13 [IvNext Dali Lon Module] 
Lux 14 [IvNext Dali Lon Module] 
Accusysteem Lijnstroom L2 [Energie Meters]  
Frequentie [Algemeen]  
Aanwezigheid werkplek 1 [Verlichting E-afdeling]  
Aanwezigheid werkplek 2 [Verlichting E-afdeling]  
Aanwezigheid werkplek 3 [Verlichting E-afdeling]  
Aanwezigheid werkplek 4 [Verlichting E-afdeling]  
Aanwezigheid werkplek 5 [Verlichting E-afdeling]  
Aanwezigheid werkplek 6 [Verlichting E-afdeling]  
Aanwezigheid werkplek 7 [Verlichting E-afdeling]  
Aanwezigheid werkplek 8 [Verlichting E-afdeling]  
Aanwezigheid werkplek 9 [Verlichting E-afdeling]  
Aanwezigheid werkplek 10 [Verlichting E-afdeling]  
Aanwezigheid werkplek 11 [Verlichting E-afdeling]  
Aanwezigheid werkplek 12 [Verlichting E-afdeling]  
Aanwezigheid werkplek 13 [Verlichting E-afdeling]  
Aanwezigheid werkplek 14 [Verlichting E-afdeling]  
Luchtkwaliteit Retourkanaal [Naregelingen - Ruimte 1.05] 
Verlichting ruimte 1.05 – per uur [Energieregistratie] 
kWh-verbr. - Split-unit - per uur [Energieregistratie]  
Voc Retourkanaal 1.05 [Naregelingen - Ruimte 1.05]  
Kp [Pid] 
Ki [Pid] 
Kd [Pid] 
Relatieve ruimtevocht 1.05 [Overzicht lucht]  
Tijdprogramma [Naregelingen - Ruimte 1.05]  
Toerenreg. Toevoervent. Regelaar Percent [LBK Kantoren]  
Toerenreg. Afzuigvent. Regelaar Percenta [LBK Kantoren]  
Occupancy  
Occupancy 8 
Occupancy 12 
Overwerk kantine [Tijdprogramma's]  
Overwerk algemeen [Tijdprogramma's] 
Sturing VAV-regelaar [Naregelingen - Ruimte 1.05] 
PID-sturing nuttig verwarmer warmtewiel [LBK Kantoren]  
PID-sturing nuttig koeler warmtewiel [LBK Kantoren]  
Tijdprogramma Comfortlevering  
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Energy consumption 

The heat maps of the measured outdoor temperature and the energy consumption are shown 

in Figures B.7 to B.11. 

 

 
Figure B.7: Heat map of the measured outdoor temperature 

 

 
Figure B.8: Heat map of the measured electricity consumption 

 

 
Figure B.9: Heat map of the measured gas consumption 
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Figure B.10: Heat map of the measured heating consumption 

 

 
Figure B.11: Heat map of the measured cooling consumption 
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B.5  LEAN performance analysis 

R-script 

 

# Sampling of train and test dataset 

smp_size  <- floor(0.75 * nrow(Thermal_Consumption)) 

 

set.seed(123) 

train_data  <- sample(seq_len(nrow(Thermal_Consumption)), size = 

smp_size) 

 

 

# Heating 

Heating_train  <- Thermal_Consumption[train_data, ] 

Heating_test  <- Thermal_Consumption[-train_data, ] 

 

## Linear model 

Heating_fit  <- lm(Heating_Consumption ~ Outdoor_Temperature, data = 

Heating_train) 

 

## Prediction 

Heating_test$Prediction  <- predict(Heating_fit, Heating_test) 

Heating_test  <- filter(Heating_test, prediction >= 0)  

 

## Calculation RMSE 

Heating_test$Residuals  <- Heating_test$Heating_Consumption - 

Heating_test$prediction 

Heating_test$Prediction  <-  predict(Heating_fit, Heating_test) 

 

 

# Cooling 

Cooling_train  <- Thermal_Consumption[train_data, ] 

Cooling_test  <- Thermal_Consumption[-train_data, ] 

 

## Linear model 

Cooling_fit  <- lm(Cooling_Consumption ~ Outdoor_Temperature, data = 

Cooling_train) 

 

## Prediction 

Cooling_test$Prediction  <- predict(Cooling_fit, Cooling_test) 

Cooling_test  <- filter(Cooling_test, prediction >= 0)  

 

 

## Calculation RMSE 

Cooling_test$Residuals  <- Cooling_test$Cooling_Consumption - 

Cooling_test$prediction 

Cooling_test$Prediction  <-  predict(Cooling_fit, Cooling_test) 


