
 Eindhoven University of Technology

MASTER

Data-driven tool for the implementation of condition-based maintenance

Mrait, M.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/71cdd44c-2122-4fb6-93f8-7400e29234ab

Data-driven tool for the
implementation of condition-based

maintenance

Master Thesis

by Marwan Mrait BSc

Department of Industrial Engineering and Innovation Sciences

In partial fulfillment of the requirements for the degree of Master of
Science, in Manufacturing Systems Engineering

Supervisors:
dr.ir. H. (Rik) Eshuis TU/e, IS

dr. W.L. van Jaarsveld TU/e, OPAC

Wouter van Dis Fokker Services B.V.

ir. Ahmet Taspinar Fokker Services B.V.

Monday 11th February, 2019

Abstract

The main research objective of this thesis is to explore the possibilities that prescriptive data
analysis can provide, to support the maintenance decision making process at a Dutch aerospace
company. A thorough description of the current maintenance policy and processes, and the po-
tential savings of implementing a condition-based maintenance (CBM) policy are presented. This
research stipulates the development, evaluation and deployment of a modeling tool, that can
predict the remaining useful life of an elektro-mechanical component.

Data-driven tool for the implementation of condition-based maintenance iii

Executive Summary

Background information
Fokker Services is a global aerospace specialist, and is one of the four business units of Fokker
Technologies. Fokker Services is the unit that focuses on aviation component maintenance, repair
and overhaul (MRO) services. Fokker Services is continuously aiming to adapt and optimize its
maintenance policies, either as way to connect to its customers by providing higher maintenance
quality or as a way to lower operations cost. As a part of its long term strategy to uphold their level
op reliability and availability, Fokker Services has the intention to invest in the implementation of
a condition based maintenance policy for company wide use. Fokker has reason to believe that the
implementation of condition based maintenance (CBM) will help them improve their maintenance
practices. The Advanced Analytics department has been tasked with the development of this
policy by launching a series of projects that aim to adopt emerging techniques in the field of
machine learning and business intelligence.

CBM is a preventive maintenance policy, which bases replacement actions not on time or usage,
but on the health of the system that is monitored. By monitoring measurable parameters in the
system, e.g temperature or vibration, decision on when to perform maintenance actions can be
made. As Geitner and Bloch (2012) state, 99% of all machine failures are preceded by detectable
indicators.

Research questions
Based on the problem context and discussion with the advanced analytics department and the
maintenance engineers from the Schiphol shop, the following main research question is formulated:

“How can we accurately predict the condition of a specific elektro-mechanical component
based on available data?”

This research questions captures two aspects; a data analysis of failure and component specific
data, and a linkage to condition based preventive maintenance.

Method of gathering data and analysis
The objective is to choose a prognostics tool based on the comparison of several classifiers. This
tool is created on a computational modeling environment called Python. This language is used
because it is the standard programming language of the advanced analytics department at Fokker
Services. To get to an answer of the research question I followed the widely used cross-industry
standard process for data mining; CRISP-DM (Shearer C., 2000). This is a process used to tackle
problems in the field of data analytics. CRISP-DM breaks the process of data mining into six
major phases. During the first phases a great amount of time is spent on making the data suitable
for analysis. Figure 5.1 shows the schematic overview of the data collection procedure.

The analysis is performed by writing and comparing three commonly used machine learning
techniques in Python: XGBoost, random forest, and logistic regression. The choice for these tech-
niques is based on a ranking of different supervised learning algorithms on criteria as: prediction
accuracy, interpretability, performance with small data sets, and other criteria.

iv Data-driven tool for the implementation of condition-based maintenance

Figure 1: A schematic overview of the data gathering procedure.

Overview of main findings
The models have an average accuracy (0.56− 0.73). XGBoost and Random Forest score signific-
antly higher than the Logistic Regression estimator.This is because the aforementioned classifiers
are ensemble tree learners that select important features automatically. What is striking is that
the performance for the class; TSR = 4000 is lower than the other two classes. The models are
less able to make the classification at the separation line of 4000 flight hours, see Table 1.

Comparing results from the three classifiers I draw the following conclusions:

• The performance of the XGBoost model is slightly better than those obtained for random
forest and logistic regression, both exhibiting quite similar results.

• XGBoost model is able to reach good precision (p) values for both ”low TSR”(p = 0.83) and
”high TSR” (p = 0.75) values.

• On the other hand, the recall (r) for the XGBoost model is very low (r = 0.56 and f1 = 0.63);
this means that the probability of false alarm for this classifier is quite high (in 1−0.56 = 44%
of the cases, the classifier raises a false alarm.

Classifier Evaluation metric
Precision Recall F1-score

TSR = 2000 0.69 0.63 0.65
Random Forest TSR = 4000 0.50 0.58 0.53

TSR = 6000 0.63 0.65 0.66
TSR = 2000 0.83 0.74 0.75

XGBoost TSR = 4000 0.63 0.56 0.66
TSR = 6000 0.75 0.77 0.77
TSR = 2000 0.62 0.61 0.60

Logistic Regression TSR = 4000 0.56 0.56 0.56
TSR = 6000 0.65 0.63 0.61

Table 1: Classifier performance after parameter optimization

At the end of the evaluation phase, it was concluded that the tool is not ready for effective
deployment in the repair shop. The tool and the results of the Evaluation phase will be used
as input for a follow-up study on CBM application at Fokker. The feature importance ranking
however, does provide unique insights on the underlying failure mechanism and will be used to
improve the test procedures.

Data-driven tool for the implementation of condition-based maintenance v

Suggestions for future research
For future research there are several areas were additional research can lead to insights to improve
results in terms of predictive maintenance, prediction accuracy and cost savings. These areas are
as follows.

The first step that is necessary to implement CBM is to decide on which data to collect, i.e.
what should be considered as input data in the CBM program. In this step it is important to
get a thorough understanding of the system in question and decide whether the current collection
procedure specified in the CMM manual is sufficient for remaining lifetime estimation or if new
test readings need to be logged. This can be seen in my analysis of the correlation of the features
with the component condition, where I could not find any correlations with the TSR. In this case
it might be needed to install additional hardware to be able to log other signals that are currently
not available. The current situation at hand in the analytics department is the availability of a
lot of data for analysis, but a lack of knowledge about how to interpret the data. This could be
called “data rich – information poor”.

During my conversations and research at the Schiphol repair shop, it became clear that the use
of text and notes is widespread in maintenance documents. These notes often contain important
information about the failure mode and the repair tasks that have been taken. Using modern
techniques, this information can be converted into useful input data to predicting future failures.
Text mining is a well-known technique that can be used to detect patterns and tendencies. Con-
cretely, texts will be automatically structured, dissected, transformed, and subsequently inserted
into databases where it can be evaluated and interpreted. In my opinion, investing in text mining
can generate a large amount of important data for the application of CBM.

A cost-benefit analysis on the trade-off between false alarms and false negatives should be
conducted. Finding the optimum balance between these two classification errors that results in
minimum costs can provide future developers of the tool information to set certain parameters
of the model in such a way that this balance is reached. In order to make this analysis, the
different costs and prices for making the errors along with their respective probabilities should be
investigated.

vi Data-driven tool for the implementation of condition-based maintenance

Contents

Contents vii

1 Introduction 1

1.1 Problem Definition . 1

1.2 Report structure . 2

2 Literature 4

2.1 Maintenance policies . 4

2.1.1 Corrective (breakdown) maintenance . 5

2.1.2 Planned maintenance (PM) . 6

2.1.3 Condition based maintenance . 7

2.2 CBM in the aviation industry . 7

2.3 Implementation process of a CBM program . 9

2.3.1 Data acquisition . 9

2.3.2 Data processing . 10

2.3.3 Maintenance decision making . 10

2.4 Conclusion . 11

3 Research Methodology 12

3.1 Research question . 12

3.2 Scope . 12

3.2.1 Business relevance . 12

3.2.2 Scientific relevance . 13

3.3 Project assignment . 13

3.4 Project approach: CRISP-DM . 14

3.4.1 Business understanding . 15

3.4.2 Data understanding . 16

3.4.3 Data preparation . 17

3.4.4 Modeling . 17

3.4.5 Evaluation and Deployment . 18

3.4.6 Project outline . 19

4 Business Understanding 20

4.1 Fokker Services . 20

4.1.1 Advanced Analytics . 20

4.1.2 Electro-mechanical component . 21

4.2 Business Objectives and Success Criteria . 21

4.3 Data Mining Goals . 22

4.3.1 Classification . 22

4.3.2 Performance measures . 23

4.3.3 Initial Assessment Tools and Techniques . 24

Data-driven tool for the implementation of condition-based maintenance vii

CONTENTS

5 Data Understanding 25
5.1 Data Collection . 25

5.1.1 Data Sources . 25
5.1.2 Collection Procedure . 25

5.2 Data Description . 26
5.2.1 Summary . 27
5.2.2 Initial Insights . 27

5.3 Data Quality . 29
5.3.1 Accuracy . 29
5.3.2 Completeness . 29
5.3.3 Timeliness . 29

6 Data Preparation 31
6.1 Feature Selection . 31
6.2 Data Cleaning . 31

6.2.1 Work order duplicates . 31
6.2.2 Missing values . 32
6.2.3 Encoding of categorical variables . 32

6.3 Data Integration . 33

7 Modeling 35
7.1 Modeling Assumptions . 35
7.2 Model Selection . 35
7.3 Test Design . 36
7.4 Neural Network . 37
7.5 Decision Trees . 40

7.5.1 XGBoost . 40
7.5.2 Random Forest . 43

7.6 Logistic Regression . 45
7.7 Model Assessment . 46

7.7.1 Revised Parameter Settings . 48

8 Results 50
8.1 Main Findings . 50
8.2 Feature Importance . 52

9 Conclusions and Recommendations 55

10 References 57

Appendix 59

A Fokker organigram 60

B Slip test 61

C Python Models 62
C.1 Neural Network . 62
C.2 XGBoost . 63
C.3 Random Forest . 64
C.4 Logistic Regression . 65

D Scikit-learn flowchart: model selection guide 66

E XGBoost Classification Trees 67

viii Data-driven tool for the implementation of condition-based maintenance

Chapter 1

Introduction

The research of this thesis is conducted at both the Fokker’s component Maintenance, Overhaul
and Repair department (CMRO) located at Schiphol and the Fokker Services headquarters at
Hoofddorp. CMRO functions as a repair shop and is responsible for ensuring a certain service level
in terms of availability and reliability of individual components for all kinds of aircrafts; Boeing,
Airbus, Bombardier, but also of its own Fokker series. CMRO consists of three distinct repair
shops, based on the category of the components; avionics (electronic systems used on aircrafts),
hydraulics and power generation. All the financial, sales and marketing functions are performed
at the Hoofddorp headquarters. The advanced analytics department, that focuses on using data
intelligence and insights, is also located in Hoofddorp.

Fokker Technologies (FT) has four business units; Fokker Aero structures, Fokker ELMO, Fok-
ker Landing Gear and Fokker Services. Fokker Services focuses on providing availability services
with an emphasis on reliability and maintenance operations of its components. These operations
include repairing, testing and overhauling (MRO) services. Fokker has the ambition of being the
world’s most innovative aerospace service provider by increasing their technical dispatch reliab-
ility while reducing direct operating costs. To attain this goal, Fokker Services must ensure its
maintenance policy is up-to-date with the ever-increasing expectations of their customers and the
seemingly growing benefit and relevance of data science and big data.

figures/component.jpg

Figure 1.1: Integrated Drive Generator (component)

1.1 Problem Definition

Fokker Services distinguishes two customer categories; ABCACUS and commercial customers.
ABACUS is a lease service program where Fokker is responsible for the maintenance operations
and decisions of the components. This includes the decisions on when a component needs to be
brought in for overhaul in the shop. In return, Fokker invoices the customer on a power-by-the-
hour basis and promises a certain level of reliability and availability. This promise does not only
rely on performing maintenance actions on the components, but also on the readily available pool
of spare parts that can be used when needed. The benefit for ABACUS customers is the ability to
limit their inventory on location and have access to a wide selection of components in the exchange
pool. The commercial customers bring in their components for repair or overhaul themselves and
expect a certain level of reliability on the repaired parts.

The preventive maintenance procedures of Fokker have a big impact on the total cost of own-
ership. A sub-optimal or bad maintenance strategy will either lead to conducting preventive

Data-driven tool for the implementation of condition-based maintenance 1

CHAPTER 1. INTRODUCTION

maintenance too early or too late. In both cases, Fokker pays for the extra maintenance costs.
Therefore, there is an incentive to continuously improve maintenance policies by gathering and
analyzing data on the component to avoid unnecessary and costly maintenance actions. This is
where condition-based maintenance (CBM) and data analytics come into play.

The current maintenance policy for the component is a usage-based policy. A limit to the
number of flying hours (soft time) is set, and the components are preventively sent to the
repair shop in Schiphol when it reaches this threshold. The soft time is chosen based on
historical failure data of the component and may be adjusted to fit the operational schedule.
A difference with hard time, where the component requires a specific action (overhaul, repair,
test, etc.) at a specific interval, is that soft time is a recommendation by the service provider.
In this case Fokker Services. The component may or may not be sent to the shop when it
reaches the threshold usage. However, as shown in the master thesis of (Claessens, 2017),
a large portion of components is sent to the shop for inspection after an unscheduled down
(failure), see Figure 1.2. Claessens calls this phenomenon ‘early failures’ and ascribes this to
the poor maintenance quality and the burn-in failure phenomenon. This phenomenon has
many possible causes. But the result is the same, corrosion and wear of the mechanical parts
in the gearbox which will eventually lead to failure of the component. In this research, we
are interested in finding the drivers for these failure and possible predictors that can signal
an early failure. One can state that the main cause of this problem is that the soft time
rule, as it is applied in the current maintenance strategy, does not seem to work for every
component. A model that can more accurately determine whether an individual component
will fly a certain number of hours could enable Fokker to make data-driven decisions on
when to send a component to the repair shop and distinguish between the component’s in
the pool based on their ‘observed condition’. This model can improve the current situation
by decreasing unnecessary costs that are made when using a soft overhaul time instead of a
predicted lifetime.

Problem statement

Figure 1.2: Distribution of the Time Since Inspection’s (TSI) for the component

1.2 Report structure

The remainder of this report is structured as follows; Chapter 2 covers the literature on different
maintenance policies and the position of CBM in the aviation industry. It also covers the various
steps of the theoretical CBM program implementation framework. In Chapter 3 the research
methodology is presented. The CRISP-DM framework that was used as a baseline for this project
is discussed extensively in Chapter 3. The project outline and the various deliverables of each step
are also reported in Chapter 3. Business Understanding, which is the first phase of the CRISP-DM

2 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 1. INTRODUCTION

is covered in Chapter 4. Followed by Data Understanding and Data Preparation in Chapters 5 and
6 respectively. The various modeling techniques that were used in this project are explained and
discussed in Chapter 7. This Chapter also includes the test design and the final parameter settings
for the various models. In Chapter 8 the results of the prediction models are presented, along with
an overview of the important features and a comparison of the chosen models. Finally, in Chapter
9 the conclusion of this project and the recommendations for future research are presented.

Data-driven tool for the implementation of condition-based maintenance 3

Chapter 2

Literature

In this chapter I will discuss the different maintenance policies by citing scientific publications. An
important note: the literature on maintenance optimization is vast, both theoretical research as
practical case studies are a hot topic at the moment. Therefore I will try to limit our discussion on
the research conducted on the aviation industry. In section 2.1 I will start with a brief summary
on the existing maintenance policies and provide examples from literature. This is followed by
a substantiated reasoning on the merits of CBM and its applicability in different industries. In
section 2.2 I will extend the discussion on its application in the aviation industry. This entails
recent practices, terminology used in the aviation industry, and the feasibility framework of CBM.
In section 2.3 I discuss the implementation process of a CBM program, followed by a conclusion
on the findings in section 2.4.

2.1 Maintenance policies

Maintenance operations consist largely of replacing parts of equipment. Maintenance strategies
determine when parts or equipment need to be replaced or maintained. In this section I investigate
the existing literature on maintenance policies and its development over time. The focus is on
data driven maintenance for soft failures. In contrast to hard failures, soft failures lead to systems
that will not stop working but will continue to operate at lower performance (Taghipour and Ban-
jevic). This kind of failure is very common in the aviation industry because of the use of backup
systems and spare systems. Therefore, it is usually discovered during inspections. Soft failures
can however, lead to hard failures if left unaddressed. That is why preventive maintenance is
performed; to restore the condition of a system to a satisfactory level and thereby preventing hard
failures in the system. Several maintenance policies were introduced and have been implemented
in the industry. Corrective or breakdown maintenance is the earliest and simplest maintenance
policy. According to this policy, the user of a system only acts after the system or component
breaks down (Jardine., Lin, and Banjevic). With the rise of complexity of systems due to the
technological advancements, reactive maintenance policies became very costly. Machine availabil-
ity is of increasingly high priority, therefore long downtimes had to be dealt with. Moreover, some
systems that are not allowed to breakdown because of hazardous and deadly situations must have
a preventive maintenance plan to ensure 100 percent system availability. And this is especially the
case if we look at the high quality and safety standards and regulations set by the aviation industry.

That is why a new branch of maintenance policies was introduced, called preventive mainten-
ance (PM). There are two famous examples from this group of policies that are well documented
in maintenance literature; usage, or age-based maintenance and more recently condition-based
maintenance (CBM). Figure 2.1 gives an overview of the different maintenance policies and sub-
policies. I will briefly discuss each branch separately. Traditional preventive maintenance policies
have become unsuitable and inefficient for modern cases (Lin et al., 2012).

4 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 2. LITERATURE

Figure 2.1: Overview of maintenance policies

2.1.1 Corrective (breakdown) maintenance

Corrective Maintenance is equivalent to Breakdown Maintenance. Other common terms for this
maintenance policy include Reactive Maintenance and Run-to-Failure Maintenance. Corrective
(breakdown) maintenance consists of repairing equipment or assets once it has already failed. A
failure of a system can be defined as the inability of a system to meet a specified performance
standard. This is called a functional failure (Corrosionpedia, 2018). Functional failures can be
apparent or hidden. Hidden failures are functional failures that share two very important char-
acteristics. Firstly, they can’t be seen by the operators during normal operation of the system.
Secondly, they are usually in items that protect people from severe injury or death, or protect
equipment from severe damage. The combination of those two characteristics, and the fact that
the corrective maintenance policy stipulates maintenance action after a certain failure is detected,
means that there must be some sort of hidden failure-finding task in place (sensors, monitors
etc). This is not the case with apparent failures where the consequences of the failure is observed
immediately and corrective maintenance action can take place at each observation.

It is the simplest form of maintenance and requires the least planning. However, the resources
that it saves in planning and day-to-day operations are often considerably strained due to un-
predictable, frequent, and severe breakdowns. Breakdown corrective maintenance is an attractive
option for components that do not wear, such as electronics. These type of components have a
decreasing- or constant failure rate (DFR or CFR). The failure based policy is optimal for these
type of components because performing preventive maintenance does not actually improve the
reliability of a component. However, even if a system or component has an increasing failure rate
(IFR), the failure based policy can be attractive if the failure rate does not grow without bound
and the difference between the corrective and preventive maintenance costs is sufficiently small.
Corrective maintenance can be a beneficial strategy when the system or component that is being
maintained is:

• Not critical to daily operations

• Not very expensive to repair

• Not very likely to fail

Data-driven tool for the implementation of condition-based maintenance 5

CHAPTER 2. LITERATURE

2.1.2 Planned maintenance (PM)

In complex systems, where component damage is too costly or machine availability is vital, cor-
rective breakdown policy is not the optimal policy. Especially in the aviation industry, where
functional failures can be catastrophic. Proactive maintenance is the historical successor of cor-
rective maintenance, and also in terms of advantages and drawbacks, PM is the next step following
corrective maintenance (Davies, 1990). Usage of PM gives maintenance engineers the possibility
to implement maintenance planning and control. PM will ultimately result in reduced downtime,
which is the biggest drawback of corrective maintenance. The disadvantages of PM are the oppos-
ite of the corrective maintenance advantages; the operating costs for a PM policy are relatively
high since a lot of maintenance is unnecessary (called over-maintenance). Next to that, compon-
ent life is not fully utilized in PM, whilst for corrective maintenance it is fully exploited. Finally,
and not unimportant, PM does not remove all random breakdowns as they can happen before a
planned preventive maintenance action is executed (Martin, 1994).

Maintenance operations are subject to considerable uncertainty. For a particular mainten-
ance action there can be uncertainty both with respect to its timing (When will we perform a
maintenance action?) and content (What maintenance will we do during a maintenance action?).
The different maintenance strategies including the corrective (breakdown) policy, are organized
according to these two uncertainty dimensions in Table 4.1

Timing known Timing unknown
Content known Usage- or age based Condition based maintenance

maintenance (Condition monitoring)
Content unknown Condition based maintenance Breakdown corrective

(Periodic inspections) maintenance

Table 2.1: Maintenance strategies organized by timing and content

The breakdown corrective maintenance policy has been discussed. In this policy, both the
timing and the content of the maintenance actions are unknown variables. Under usage based
maintenance, the total usage of a part is measured and maintenance is conducted when a certain
threshold level had been reached. The usage of parts can be measured in many ways depending
on the nature of the equipment or part at hand. The amount of time (hours, days or weeks) in
the field is perhaps the most common way to measure usage. That is why it is also referred to as
age based maintenance. Other examples are the mileage of vehicles, and the number of landings
for the landing gear of an aircraft.

Martin (1994) proposed a more in-depth method of condition monitoring of machines. He used
two relationships in his model, see Figure 2.2. The first relationship is between the usage of the
equipment and the internal loads that cause degradation. The second relationship is between the
(accumulated) loads and the machine condition and ultimately, remaining life. Since the usage of
equipment is usually scheduled, it is possible to plan when this thresh-hold is reached. This predic-
tion is used to plan the moment of maintenance actions. The drawback of using these relationships
are the uncertainties that are implied. The technicalities between usage-to-load have to be un-
derstood, similarly for the model estimating load-to-life. This means a thorough understanding
of the system and the underlying failure mechanism in relation to load have to be obtained. This
comes down to the creation of accurate physics models, which is a time consuming and difficult
task. A very common, and widely discussed practice when implementing predictive maintenance
policies, is the possibility to interchange or repair several parts simultaneously (block replace-
ment/overhaul). This is beneficial when there is a large set-up cost associated with maintenance
(Tinga, 2010). Usage based policies can be planned ahead of time, whereas breakdown corrective
maintenance cannot be planned at all. As a consequence of this, the resources needed for usage
based maintenance can be utilized more fully than resources needed for corrective maintenance.

6 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 2. LITERATURE

Figure 2.2: Representation of the relation between usage, loads, condition and remaining life
(Tinga, 2010).

2.1.3 Condition based maintenance

CBM is a hybrid policy not based on failures or times as its predecessors, but purely based on
the health of the system being monitored. It differs from other policies in the PM category in
the sense that its predictions are based on the condition or ‘health’ of the system, and not time.
Geitner and Bloch (2012) state that almost all mechanical failures in machinery are preceded by
a detectable indicator. There is a trade-off in applying CBM policies; if the threshold to perform
maintenance action is too high (c.q. the control limit is close to the failure threshold), then there
is a chance that the failure is not detected and this increases the chance of an expensive corrective
maintenance action. On the other hand, if the control limit is too low, the policy will trigger
maintenance action much earlier then necessary. Which is also expensive. Finding an optimal
control limit is crucial to minimize the maintenance cost and benefit from the advantages of CBM.
Zhu, (2015) has an extensive review on the statistical methods of determining the optimal control
limit.

CBM also has some drawbacks, which is one of the reasons that CBM is not adopted globally
by companies. The set-up of a CBM program is technologically challenging and very costly. Com-
plex system monitoring systems have to be installed, that are operated by trained maintenance
engineers. These high initial investments are the main reason companies still choose other main-
tenance policies over CBM (Martin, 1994).

2.2 CBM in the aviation industry

Commercial air transport has long been seen as the most safest mode of transportation. Research
by Savage (2013) shows a fatality rate of 0,07 per a billion passenger miles. This is very low if
we compare it with the most popular mode of transportation, which has a rate of 7,28 fatalities
per a billion passengers miles. The research also shows a slow but steady decrease of fatalities
in commercial aviation since 1970. It is no surprise then, that safety was and still remains a key
factor in the aviation industry. The annual report by the European Commission (2017) shows a

Data-driven tool for the implementation of condition-based maintenance 7

CHAPTER 2. LITERATURE

continued growth of costs in the aviation industry, largely driven by fluctuating oil prices. With
labour (i.e. salaries, wages, and benefits) and fuel costs being more challenging to control, airlines
focus significant attention on maintenance. The expenditure in MRO activities in 2015 was 3.5%
higher compared to 2014 (Michaels, 2016).

One of the emerging topics in the aviation industry, is the discussion of how technological
advances are expected to impact the MRO industry. Wyman (2016) says that the emergence
of Big Data and the global trend of using data science tools, will drive significant changes in
maintenance frequencies as well as in maintenance methodologies. This growth is extra driven
by the introduction of new generation aircraft. In the next decade the fleet of new generation
aircraft will grow by approximately 530% to nearly 19.000 globally, according to the annual ICF
International report of 2017. Aircraft with new technology challenge traditional MRO sourcing
strategies. According to Michaels (2016), there is a cost saving due to fewer routine air-frame
maintenance, compared to the (older) Boeing 767 aircraft. The new generation Boeing aircraft
also has a higher asset utilization: an additional 90 days of available flying hours. Figure 2.3 shows
the 12-year heavy maintenance schedule of both generations.

Figure 2.3: 12-Year heavy maintenance schedule of the Boeing 767 and 787 aircraft. Source:
Michaels (2016)

A literature study by Van den Bergh et al. (2013) stated that the majority of the operations
research in the aviation industry is focused on flight and crew scheduling and not so much on
maintenance optimization. From the 102 papers reviewed, only 8 papers mention CBM in some
case. However, contributions to the field of aircraft maintenance and component usage optimiza-
tion are growing. Most literature on the application of CBM can be divided into two categories.
One category focuses mainly on the quality of CBM policy implementation in the aviation context,
and does not actually add to the research in this area to prove CBM usefulness. These articles
propose to enhance the quality of CBM programs and try to give guidelines for better CBM exe-
cution. An analysis on the application of prognostics and health management, a term similar to
CBM, was proposed by Wen and Liu (2011). Another article by Zhao et al. (2012) proposed a so
called binary decision diagram (BDD) to enhance maintenance decision making of aircraft engine
components. By applying the BDD, sensor data from the aircraft monitoring network is sent to
the control center located on the earth’s surface. Other articles in this category discuss methods of
improving the reliability of the monitoring network and promote satisfying CBM implementation
within the aviation industry.

The other category is more about the process om implementing a CBM program for aircraft
components. A prominent contributor on this subject is Carl Byington, with four articles on CBM
implementation on aircraft components. In one article, Byington and Stoelting (2004) developed a
prognostic-based model to predict the degradation on a flight connector actuator. In the same year
another article was published in which the remaining life was predicted using data-driven neural
networks (Byington et al. 2004). Both papers are a good example of how data-driven prediction
models are used on aircraft components. Sun et al. (2012) presented a state space model (SSM)
for prognostics on a gas turbine subject to degradation. A time-to-failure distribution was found
by fitting a curve using Bayesian state estimation.

8 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 2. LITERATURE

It is notable, that prognostic-based models that predict the time to certain failure states and
the degradation process, are often disregarded in conventional machines and systems. These
models that need large investments and have high technological requirements are used more often
in the aviation industry. Philips et al. (2010) state that this is due to the fact that knowledge
on the fault propagation and system failure mechanics is required by aviation authorities. This
guides the choice to implement the more sophisticated model-based approach. This is not always
the case. Knowledge on the underlying failure propagation is lacking for certain components, as
will be shown with the component used by Fokker. Other studies on CBM implementation in the
aviation industry are: Jianhui Luo et al. (2008), Philips and Diston (2011) and Roemer et al.
(2001).

2.3 Implementation process of a CBM program

Various authors in the field of CBM propose to use a systematic approach by using a framework
that entails all necessary steps for a CBM program. The most prominent framework that is cited
and used by researchers is the framework of Jardine et al. (2006). It consists of three main
steps; data acquisition, data processing and maintenance decision making. There are some slight
deviations found in other works. Peng et al. (2010) for example, states that the prognostics
during the maintenance decision making process can only be done after diagnostics. Jardine et al.
(2006) acknowledge that both diagnostics and prognostics are part of the last steps, but they are
not necessarily dependent of each other. A systematic overview of the different (sub)steps- and
components of the implementation process of a CBM program are shown in Figure 2.4

Figure 2.4: Standard CBM program implementation framework

2.3.1 Data acquisition

The first step of each CBM program is collecting relevant data that can be used to asses system
health. Data collection can be done by numerous means and the data can originate from various
sources. The technological developments in the last decade in the field of sensors, advanced signal
processing, and early detection techniques have made condition monitoring and CBM more and
more affordable (Engel et al., 2000). The most common sensors used to collect information on the
condition of systems are; thermal sensors, humidity sensors, electrical voltage and current sensors,
mechanical vibration sensors, chemical sensors and optical sensors (Pecht, 2000). These sensors
provide different types of data that have to be analyzed and processed accordingly.

The data collected for a CBM program can be roughly divided into two types; event data,
and condition monitoring data. Event data is all the data that contains information related to
a specific maintenance action, or event. These events can be repairs, overhauls or inspections.

Data-driven tool for the implementation of condition-based maintenance 9

CHAPTER 2. LITERATURE

The data collection process has also been automated by computerized maintenance management
systems (CMMS) or already existing enterprise resource planning systems (ERP). These systems
have been developed to automate data storage and handling, and are less time consuming and
less prone to errors compared to manually entering the data. This is especially beneficial when
keeping track of data sets with large amounts of data. One important statement made by Jardine
et al. (2006) is that event data is equally important as condition monitoring data. It is a widely
held, incorrect belief, that condition monitoring data is superior and makes event data redundant
for CBM processes. This is untrue, because event data does provide feedback to system designers
on how to redesign the system and improve the condition indicators. Wang and Chirster (2000)
state that the combination of event- and condition monitoring data is what makes CBM more
worthwhile.

2.3.2 Data processing

There are a number of different data processing techniques discussed in the literature. All of which
are associated with different data categories (or types). I have already mentioned the division
between event data and condition monitoring data. Jardine et al. (2006) does not differentiate in
the treatment of both data types, but Heng et al. (2009) does, and he also states the advantages
and disadvantages of analyzing both types separately. Analyzing event data is the traditional way
of obtaining reliability models. A time-to-failure distribution is often generated using a parametric
estimation. This approach is widely used to this day, because its simple,does not require the need
of collecting condition monitoring data, and can be used for longer range predictions (Heng et al.,
2009).

In the context of data processing, condition monitoring data can be further dived into three
categories:

• Value type data: This is data from a single value within a specific time epoch. Examples
are temperature and humidity. In CBM, value type data can be extracted directly as raw
data from sensors, but it can also be acquired from waveform or image data. A widely used
technique to process value type data with a large number of variables is principal component
analysis (PCA). The main function of this technique is to retain the most important features
from multivariate data sets in order to reduce the dimensions and make it more suitable for
modeling purposes (Peng et al., 2010).

• Waveform type data: This is data collected during a specific time epoch, also called ’time
series’. Vibration of acoustic data is an example of waveform type data. Analysis of waveform
type data in the time-domain covers the signal in the original form. Unlike the analysis
of waveform type data in the frequency-domain which is done through spectrum analysis.
Moving from the time-domain to the frequency domain is achieved by applying fast Fourier
Transform (FFT). Details of this application can be found in the recently added article by
Yang et al. (2016), who applies FFT in order to use condition monitoring data from engine
turbines. Trending techniques like ARMA (a combination of auto-regression and a moving
average) are also used to analyze waveform type data (Pham and Yang, 2010). Since trending
techniques are used to estimate future values, they can be very useful for prognostics in a
CBM program.

2.3.3 Maintenance decision making

In order to maximize the effectiveness of a CBM program, there has to be an integrated decision
making mechanism that makes the appropriate choices based on the diagnostics and prognostics
results. The most researched prognostic is the estimation of remaining useful life (RUL) (Jardine
et al., 2006). But the usage RUL alone is not sufficient for decision making, because it does
not incorporate other criteria like risks and costs. RUL estimation can be divided into three
main categories: experience-based prognostics, evolutionary or trending models, and model-based
prognostics. Experience based prognostics often use a statistical approach to fit a time-to-failure

10 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 2. LITERATURE

distribution. Trending models are more data-driven and use predictive models, like neural networks
(ANN), or fuzzy logic. Finally model-based prognostics is the most complex approach, because it
uses physical models that accurately describe the underlying failure mechanism of the component.
These decision making approaches are increasing in accuracy and complexity, but also in costs and
technical difficulty. A model-based approach is also very component specific and can therefore not
be used as a company wide model. Research in prognostics for different failure mechanisms has
brought up models for fatigue, creep, corrosion and wear damage (Tinga, 2010). However, these
models are created in controlled environments, and do not include external loads and stresses that
may happen in real-life situations.

2.4 Conclusion

In this section I discussed the various maintenance policies, the role of CBM in the aviation
industry, and its implementation process. Data processing and analysis of the component test
data is covered in Chapter 6. For this end I used processing techniques for value type data,
because no waveform data are present in the data set. Also, in Chapter 7 I make use of the
model-based prognostics described in 2.3.3. These prognostics give a more interpretable view on
the underlying physical failure mechanism of the component, which was one of the requirements
of this project.

Data-driven tool for the implementation of condition-based maintenance 11

Chapter 3

Research Methodology

3.1 Research question

Based on the problem context and discussion with the advanced analytics department and the
maintenance engineers from the Schiphol shop, the following main research question is formulated:

“How can we accurately predict the condition of a specific component based on available
data?”

This research questions captures two aspects; a data analysis of failure and component specific
data, and a linkage to condition based preventive maintenance.

3.2 Scope

3.2.1 Business relevance

The findings of this research will be used to the benefit of Fokker Services in a broad sense. The
current maintenance policy is based on a rule-based preventive maintenance strategy. Multiple
studies have shown that data-driven maintenance policies have a better performance in terms of;
costs, quality (Lawrence, Anuj, and Gerald, 1995), (Rosmaini and Shahrul, 2012), and inventory
management (Srinivasan and Lee, 1996). Competitors in the aviation industry are investing more
in big data analytics (McAfee and Brynjolfsson, 2012). This justifies exploring the utility of test
data, that has been gathered at Fokker Services since 2010. With the findings of this study, Fokker
Services can decide to switch over to a dynamic data-driven maintenance policy, that considers
a separate analysis of individual components. Given a certain level of prediction accuracy, sales
personnel from Fokker Services can be provided with indicators that can measure the degradation
of a component. The output of this study can be used to create a database that assigns each
component to a record of historical data, and a prediction of the remaining lifetime. With this
extra information, sales agents can allocate certain component’s to certain customers based on the
customer requirements and preferences. The result of this research can also be rolled out to other
Fokker products with similar testing procedures.

The findings also provide significant benefits to the managers and planners of the Fokker
Schiphol repair shop. The final model provides a list of features that are important or significant in
measuring the condition or degradation state of a component. These features correspond to specific
tests that are conducted consecutively during a test run. Given the importance of these tests,
management can decide to pay more attention on the execution of these tests. Fokker is trying
to slowly move towards condition-based maintenance with real-time gathering of (sensor)data
during test runs. To implement this strategy, there must be scientific evidence in the form of an
accurate model that shows the applicability (in terms of reliability, validity and other measures)

12 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 3. RESEARCH METHODOLOGY

of predictive modeling on maintenance policies. The findings of this study may help uncover these
important predictors.

3.2.2 Scientific relevance

The application and implementation of condition-based maintenance is a widely discussed topic in
scientific literature. Noman et al. (2017) presented an overview of the most influential researches
conducted in this field, using bibliometric indicators. These indicators measure the size and impact
of research papers and other publications based on the number of citations received. One of the
conclusions from his survey was that most papers on condition-based maintenance tend to focus on
data-driven approaches. This data can be historically observed failure data, so called event data.
This is a widely used source of data in reliability research and it is extensively analyzed for systems
with vibrating components by Jardine et al. (2006). However, some systems or components are
not able to provide this kind of data as they are not allowed to run until failure for example. This
is the case for critical components, the failure of which could have a catastrophic effect upon the
system. In the avionics industry, the critical parts are defined as;

“A part identified as critical by the design approval holder. Typically, such components
include parts of which a replacement time, inspection interval, or related procedure is
specified in the Airworthiness Limitations sections.”-(EASA, 2011)

For these type of parts failure data maybe scarce. Therefore, another data source is widely used;
condition-maintenance data or CM data. This type of data is defined as any type of information
that may have a connection with the degradation or the estimation of the remaining useful life-
time (RUL). Such as monitored sensor data, performance data and degradation signals (Wang,
Chu, and Mao, 2008). Examples of CM data are; vibration data, temperature, oil analysis data,
pressure, humidity, moisture, speed, load, etc. The data can be both objective and subjective,
based on the nature and the collection method of the data.

Over the last few decades, there have been a number of review papers on data driven approaches
in CBM, see for example (Cho and Parlar, 1991) (Reinertsen, 1996) and (Scarf, 1997). According
to the literature study there is an increase of studies to the field of aircraft maintenance (Van
den Bergh J. , De Bruecker, Beliën, and Peeters, 2013). This growth evolves mainly around three
topics, where the concept of condition-based modeling is addressed in some way. These topics are
‘aircraft maintenance scheduling’, ‘task/job allocation’ and ‘optimization of specific components
usage’. However, despite the increase of interest in this field, there is only a fraction of articles that
discuss the practice of CBM in the aviation industry. Only 8 of the 102 papers in the literature
review of Van den Bergh et al. (2013) mention the CBM policy in some sense. The research of
this master thesis will serve as a contribution to the list of CBM practices in the aviation industry.

3.3 Project assignment

Based on the defined outline of the project’s objective and purpose, I can formulate the assignment
of the project as follow;

“Create a data driven and generic tool that predicts the remaining useful lifetime of
the component as accurately as possible.”

Because Fokker Services has the wish to roll out any predictive models to other products in the
future, the tool must be as generic as possible. Meaning that it must be able to handle different
data sets and perform the same analysis without much modifications. To answer the main research
question in a structured manner, I subdivide it in the following sub-questions. The output of each
sub-question leads to a result that is used as intermediate milestones of the project;

Data-driven tool for the implementation of condition-based maintenance 13

CHAPTER 3. RESEARCH METHODOLOGY

1. What are the objectives of the tool?

• What are the business success criteria?

2. What are the available sources and types of data that are suitable to predict the remaining
useful life of a component?

• What is the format of the existing data (discrete, event/failure, text, categorical)?

• Is the available data content-wise suited to perform predictive modeling?

• What are the required pre-processing steps (imputing missing-values, checking data
quality and consistency, data cleaning, etc.)?

3. Which models are appropriate for the prediction analysis?

• Literature study of relevant data analysis models (Logistic regression, Decision tree,
Fuzzy Logic, Neural Networks and other machine learning techniques)?

• Elaboration on the applicability and feasibility of the models for the problem at hand
(dependent and independent variables).

4. Which models are appropriate for the prediction analysis?

• Assessment of different models with several performance measures; goodness of fit,
accuracy, recall, model validation.

• Evaluation of the prediction error (magnitude, significance) for different values of the
‘soft time’.

• Analysis on the feature importance.

• Measure the uncertainty and robustness of the model output by way of a sensitivity
analysis.

• Exploration of an appropriate set of features by conducting a confirmatory factor ana-
lysis.

5. How can the model outcome be used to improve maintenance decisions?

• What is the relation between predicted lifetime and the condition of the component?

• What are the thresholds, in terms of flying hours, of early failures?

• Exploration of different new data sources; data mining of operator texts, sensor data,
event data etc.

3.4 Project approach: CRISP-DM

The nature of this project and the research questions at hand form a good foundation to use data
analysis approaches. The main objective of this project was to design a tool that can predict
a target variable that represents the condition of the component. This tool was created on a
computational modeling environment called Python. This language was used because it is the
standard programming language of the advanced analytics department at Fokker Services. Some
data analysis tasks however, were performed in R. This is a software package and programming
language that is better suited for statistical data analysis. R is an object-oriented language, like
Python. Its source code is freely accessible and can be used in a variety of applications, including
Alteryx. To answer the questions of section 3.3 I followed the widely used cross-industry standard
process for data mining; CRISP-DM (Shearer C., 2000). This is a process used to tackle problems
in the field of data analytics. CRISP-DM breaks the process of data mining into six major phases,
see Figure 3.1. The diagram in Figure 3.1 also shows the possible iteration points of the CRISP-
DM framework. In this project I have performed four iterations from the Modeling phase back

14 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 3. RESEARCH METHODOLOGY

to the Data Preparation phase. This was necessary in order to prepare the data set for other
modeling techniques. At the end of the evaluation phase, it was concluded that the tool was not
ready for effective deployment in the repair shop. The tool and the results of the Evaluation phase
will be used as input for a follow-up research on CBM application at Fokker. For the remainder
of this section I will discuss the contents of the CRISP-DM phases, and how the output of these
phases led to an answer to each of the research questions stated in section 3.3.

Figure 3.1: Diagram of the CRIPS-DM phases

3.4.1 Business understanding

The first step in the process of building a prediction model for the lifetime of the component
was to understand the project objectives and requirements from a business perspective and then
convert this into a formal data mining problem statement. This statement was essential and was
agreed upon by the supervisors. An agreed upon choice in this project was to make a classification
model, rather than a regression model. The reason for this is because it aligns better with the
objective of the project; having an accurate indicator of the condition or degradation. The way
the remaining lifetime is classified is also a variable; the number of classes, the boundaries of the
classes, etc. The business understanding phase consists of four steps.

The first step was to determine the business objectives of this project. This was achieved by
conducting interviews with several stakeholders to obtain a thorough understanding of the prob-
lem at hand. The business success criteria were also clearly defined during this step. A situation
assessment was the next step in the business understanding phase. This step resulted in several
deliverables; an assessment of the available resources, model requirements, assumptions and con-
straints, risk and contingencies, and finally the costs and benefits.

The third step was agreeing upon the data mining goals. Here, the business objectives were
translated in tangible and measurable data mining goals. Success criteria were used to evaluate
the output of the final tool and compare different solution designs.

The final step of the business understanding phase was the project plan. The project plan
consists of an overview of the business objectives and the intermediate deliverables of the project.
This project plan was used to monitor the progress during this eight months project. The time line
of this project, along with an initial assessment of the different tools and techniques are discussed
in the next section. Figure 3.2 displays an overview of the above-mentioned steps.

Data-driven tool for the implementation of condition-based maintenance 15

CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.2: Business understanding steps

3.4.2 Data understanding

The process of data collection was not within the scope of this project, because an initial data
set was already provided. This data was gathered manually from the Fokker Services database.
Historical test data dating back to 2009 was extracted and then exported to separate excel files.
The steps and the deliverables of this phase are displayed in Figure 3.3.

The first step in this phase was to describe the available data sources and the procedures
of collecting this data. After that we dived into the data and identified data quality problems
(missing values, inconsistencies, repetitiveness, typo’s, etc.). In this phase I also performed a
descriptive analysis of the data to discover first insights and get familiar with the structure of the
data. Incompleteness of the data or serious issues regarding the quality of the data were solved
in this phase before I proceeded to the next step. The provided excel files contained test data
of approximately 300 component work orders. Each work order has a unique serial number and
several non-test data variables. In this phase, only the data quality was considered. Issues with
usability of the data where dealt with in the next phase.

Figure 3.3: Data understanding steps

16 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 3. RESEARCH METHODOLOGY

3.4.3 Data preparation

Preparing the data is an important step in the CRISP-DM methodology. It is also the most
time-consuming part of a data analysis project. The following steps describe the tasks during this
phase, but it should be noted that these steps were not performed sequentially. These steps do
however cover all activities that were needed to construct the final data set, that was in return fed
into the modeling tool. The deliverables of this step were to convert the provided raw data into
a structured data set in a workable tabular format, see Figure 3.4. This format contained only
those variables that are considered useful for the prediction model.

The first step was data selection. The available data was provided with a lot of non-test
data. It was important to investigate the usability of this type of data, and why certain data
was not suitable to work with. Next, a thorough cleaning process of the data was performed.
Missing values were imputed, duplicates were removed, and categorical variables were encoded.
It was important to the end-user of the tool to understand why certain cleaning procedures were
conducted. Therefore, a detailed documentation of the different steps were made (log file). In the
final steps, the data was integrated from different sources into one final data set. After that, the
data was also formatted to suit the needs of the modeling tool. The component test data were
extracted in separate excel files per work order, the deliverable of in this phase was a merged data
set of all (unique) work orders.

Figure 3.4: Data preparation steps

3.4.4 Modeling

In this phase, classification models were built in Python by means of various modeling techniques.
Each model had specific requirements on the form of the input data. Therefore, stepping back
to the data preparation phase was needed four times. The deliverable of this step were several
executable Python scripts, see Figure 3.5.

First, an assessment of the different modeling techniques was conducted. The data mining
techniques were arranged based on the specific data mining goal: multi-class classification. Al-
though there is a wide variety of machine learning techniques to choose from, I will focus on the
following data mining techniques

• Neural Networks

• Gradient Boost trees

• Forest Classification trees

The rationale behind the choice of these specific techniques was based on a comparison of all
the available models by a set of modeling criteria, see section 7.2.

Data-driven tool for the implementation of condition-based maintenance 17

CHAPTER 3. RESEARCH METHODOLOGY

In the next step, a test design was generated. The data was split into a train set, and a test set.
A description was given on the sampling technique and how the model was built and evaluated.
After that, the actual models were built. This was where the mining takes place. The deliverables
for this step were the parameter settings, which listed the parameters chosen for the modeling tool,
the models, and the model descriptions which describe and interpret the modeling mechanisms.

The final step in the modeling phase was the assessment of the model. The models were
assessed from a technical point of view. Did the model do what it was supposed to do? A number
of revisions to the parameter settings were performed during this step.

Figure 3.5: Modeling steps

3.4.5 Evaluation and Deployment

At this stage the best fitting model was selected. This was based, not only on model performance
(accuracy), but also on the applicability to solve the business problem at hand. Some models
appeared to have high quality from a data analytics perspective, but I made sure that the output
of the model gave us a valid insight that can be used to take preventive maintenance decisions.
Evaluation of the results was done with domain experts; supervisor and maintenance engineers.

The final phase of the CRISP-DM methodology is the model deployment. Creation of the
model was generally not the end of a data mining problem. pre-deployment of the tool was on a
theoretical new test set. The performance of the tool on this test set, and the costs and benefits
of the model predictions ultimately led to a recommendation to Fokker on the implementation of
a data driven maintenance policy. A deployment of the tool in the future, could be in the form of
a repeatable generic classification tool, that can classify component’s in different classes based on
the prediction of the remaining useful lifetime. Where each component entering the shop is given
a score and a classification label (reaching a certain soft time or not).

The deployment phase also encompassed monitoring and maintaining the tool, to make sure
the models worked correctly on new products and data. A final report and presentation were also
components of this phase. The report contained a detailed description of all CRISP-DM phases,
the rationale of all the decision made, and a visualization of the final data mining results. Finally,
a reflection step was made on what went right and what could be improved.

18 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.6: Deployment steps

3.4.6 Project outline

The sequence of the phases was not strict and moving back and forth between different phases
was sometimes required in the duration of the project. According to literature (Franks, 2007),
about 80 percent of the CRISP-DM cycle is data preparation. Especially data cleaning is very
time-consuming depending on the quality and the of the data set. Table 3.1 presents an overview
of the relation between the research questions stated in section 3.3, and the CRISP-DM phases.
Also the required deliverables of each phase is listed.

CRISP-DM Framework

Research question Deliverables

Business understanding 1 Business objectives and success criteria
Data understanding 2a, b Data summary and initial insights report
Data preparation 2c Formatted (cleaned) data
Modeling 3 Model descriptions, test design, parameter settings
Evaluation 4 Main findings, feature importance
Deployment 5 Final report

Table 3.1: Relation of CRISP-DM with the research questions

Data-driven tool for the implementation of condition-based maintenance 19

Chapter 4

Business Understanding

This chapter serves as the business understanding step in the CRISP-DM approach. This thesis
was conducted at the Hoofddorp site of Fokker Services with a number, in addition to a number of
visits to the MRO shop in Schiphol. An introduction of the company is given in section 4.1.1. Next
the business success criteria of the project are given in section 4.1.2. Based on these agreed upon
criteria, a list of data mining goals is presented along with their respective tool success criteria.
These criteria are measurable and are used to judge the feasibility of the final tool. Finally, in
section 4.3, the project plan and an initial assessment of the models, tools and techniques are
presented.

4.1 Fokker Services

Fokker Technologies (FT) has four business units, one of which is Fokker Services. This unit
focuses mainly on the providing availability services with an emphasis on the maintenance, repair
and overhaul services (MRO). The other business units of FT are Fokker Aerostructures, Fokker
ELMO and Fokker Landing Gear. FT has a total of 19 sites worldwide, of which 5 sites are
operated by Fokker Services. At a global level Fokker makes a distinction in three areas. Europa,
Middle East and Africa (EMEA) are serviced by the locations in the Netherlands in Hoofddorp,
Schiphol and Woensdrecht. The Americas are serviced through the Atlanta site, and Asia/Oceania
through the Singapore site. (Fokker Technologies, 2015).

This research is mainly conducted at the component MRO (CMRO) department of the Hoofd-
dorp site. CMRO handles all incoming and scheduled parts for maintenance, overhaul and repair
operations. The maintenance actions for the EMEA region are conducted at the Schiphol site.
Fokker Services provides CMRO activities for all kind of aircraft types, e.g. Boeing, Airbus,
Bombardier and also Fokker’s own aircraft components. Zooming-in even further in the MRO
department, I see that the are distinct repair shops; avionics (electronic systems used on air-
craft), hydraulics and power generation. These are further divided into work centres, based on
certain specializations. A (partial) organization chart of the Fokker organization can be found in
Appendix A.1

4.1.1 Advanced Analytics

To deal with the growing need of data-driven solutions, Fokker Services launched a new department
in the beginning of the year 2017. This department was primarily tasked to forecast future events
and behaviors and allowing business to conduct what-if analyses to predict the effects of potential
changes in business strategies. This resulted in a series of projects with other business partners
and universities, including this thesis. The current manager of the advanced analytics department
is responsible for the inception of new projects and facilitating project teams with all the necessary
requirements in terms of data and other resources. Working in or with the advanced analytics

20 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 4. BUSINESS UNDERSTANDING

department are two engineers that also play a role in this project. The first supervisor is a
data scientist within the Advanced Analytics department, and also a company supervisor for this
project. The second supervisor is responsible for the development of automated test equipment
and in circuit test solutions at the Schiphol shop. Each project starts with an informal conceptual
briefing of the problem at hand. And a set of measurable success criteria are agreed upon, see
section 4.1.3.

4.1.2 Electro-mechanical component

I already noted that Fokker Services has three distinct repair shops. One of which is the Power
Generating (PG) shop, where all power generating components of an aircraft are handled. These
are actual generators, as well as auxiliary components assisting in power generation. In the thesis
of Claessens (2017) it was concluded that these components were the most suitable candidate for
the CBM pilot at Fokker. This was due to a number of reasons:

• Increasing failure rate. During interviews with Fokker engineers it became apparent that
components in the PG shop experienced more wear and tear due to moving and vibrating
parts. Metal friction was also a key contributor to the increasing failure rate. The component
also suffered from so-called early failures. This indicates that there is a certain potential for
improvement using preventive maintenance policies.

• Financial feasibility. Failures in components from other shops (avionics and hydraulics)
where mainly occurring in circuit boards and less often in sensors. These kind of failure
are less easy to detect compared to the component. Monitoring techniques that measure
relevant data on these failures are non existent and very costly to develop. However, due to
moving parts and larger size, has a wide range of available condition monitoring techniques.
Another point that confirms the selection of this particular component, is the fact that the
PG shop maintains much less unique components. This means that the initial investment of
a CBM policy (in time and resources) will be much lower than the other shops. It is more
cost-effective and technologically less challenging to implement a CBM model on a group of
components that are less diverse.

• Asset criticality According to expert opinions of Fokker engineers, PG shop components
have the highest score in terms of asset criticality. The particular component in question
is indispensable for the aircraft’s power supply during a flight. Components in the other
shops have a lower score because of redundancy and no immediate consequences in case of
a in-flight failure. This makes it a more favourable candidate for a CBM program.

Currently, Fokker Services applies an age-based maintenance policy for this electro-mechanical
component. It has soft time overhaul time for each component at 8000 flying hours. The compon-
ent that fails before this threshold are repaired or overhauled correctively. The cost of performing
a maintenance action on this component is very high, so with the unnecessary maintenance actions
that come along with this policy, there is a great potential for cost saving using a CBM tool. A
slight majority (64%) of Fokker’s customers are part of the ABACUS program. This is a lease
service program, which invoices the customers on a power-by-the-hour basis. Fokker owns and
maintains a pool of components and pays for the maintenance actions itself. Therefore an incentive
to improve the reliability and maintenance practices, and avoid costly overhauls is present. This
is where the CBM tool comes in.

4.2 Business Objectives and Success Criteria

To acquire the business objectives of this project, several people are involved in the MRO activities
of Fokker where interviewed. First, a meeting with the department manager was planned where
the current situation was explained. The ultimate goal from his point of view, was to create a
model that can run by repair shop employees during test runs. This model should use the test

Data-driven tool for the implementation of condition-based maintenance 21

CHAPTER 4. BUSINESS UNDERSTANDING

data that comes from the component as input, and the output should be some sort of an indicator
on the condition and, if possible, an estimation on the remaining useful life of the component.
With the outcome of this indicator, employees should be able to make a more informed decision
on what maintenance action to perform. For example if the indicator shows a low chance that
the component will reach 4000 flying hours, the repair shop can decide to overhaul the component
instead of repairing it. Fokker can also use this indicator to give the component a valuation
that is based on the condition of the component. This prevents over- and undervaluation, and
with this information they can give clients a better price offering. Because, as stated earlier,
unnecessary maintenance action can lead to extra costs that, according to the contract of the
ABACUS program, come at the expense of Fokker Services. Another objective of this project is
to find out whether it is possible to gain more insights on the underlying failure mechanism of
the component. The question is whether certain features in the test data are more relevant that
others when predicting the remaining life. From a quality control perspective, this information
can then be used to improve the repair and overhaul procedures.

The most important criterion for Fokker Services from the business perspective, is that the
model provides a reliable outcome that can be used on the work floor. For example, a model
accuracy of 30% on the remaining life is insufficient for practical use. Also, the model should be
as generic as possible, in order for a possible integration on other components of the PG shop.
The complexity (running time) should therefore be taken into account.

4.3 Data Mining Goals

Now that the business goals are clear, it is time to translate them into a data mining reality. These
data mining goals can then be used by Fokker Services to support their maintenance decision
making process and reduce their MRO expenditure. These goals are summarized in the following
bullet points:

• Build a model using the available test data to classify the remaining useful
lifetime (RUL) for each component.

• Identify relevant test variables of the component based on historic test data
(feature selection).

4.3.1 Classification

There are several data mining techniques that can be used to predict a target variable. Some
examples are of these techniques are clustering, association rules and sequence analysis. Classific-
ation technique is a supervised machine learning technique, capable of processing a wider variety
of data than regression and is growing in popularity (Phyu, 2009). Supervised meaning that the
value of the target variable is known before hand and is used to build the model. Because the
goal of this project is to predict the remaining useful lifetime of an component and the unit by
which this is measured is the amount of flying hours, I have to divide the flying hours in groups
(or classes). The classification algorithm can then find relationships between the values of the
predictors (test data) and the values of the target (remaining flying hours). Different classification
algorithms use different techniques for finding relationships. These relationships are summarized
in a model, which can then be applied to a different data set in which the class assignments are
unknown.

The reason I do this is because we still lack information on the distribution of the RUL values
in the data set. It is therefore a logical first step to divide this into classes. The simplest method
is a binary classification of the data. Here, the data set is split into two groups based on a chosen
value (e.g. 4000 flying hours). The data instances that score lower than the chosen value are
assigned a 0, otherwise a 1. It is also possible to create several classes. An interesting point to
investigate is what the optimal number of classes are, in which the model scores best. Figure 4.1
shows a schematic overview of the classification process.

22 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 4. BUSINESS UNDERSTANDING

Figure 4.1: A schematic overview of the classification process.

4.3.2 Performance measures

After doing the feature selection, and of course, implementing the model and getting the output
in forms of a probability to a class, the next step is to find out how effective the model is based
on some metric using test data sets. Different performance metrics are used to evaluate different
machine learning algorithms. Choice of metrics influences how the performance of machine learning
algorithms is measured and compared. For classification models I make use of the well-known
confusion matrix. This matrix provides us with the accuracy, precision and recall of the model.
Other performance metrics are: log-Loss, accuracy, AUC (Area Under Curve) etc. For this project,
the confusion matrix metrics are used to rank and compare the different models with each other.
Before looking at the importance of each metric to our model, it is important to note the differences
between the two classifying errors that can occur when the model makes a wrong prediction:

• False Positives (FP): False positives are the cases when the actual class of the data
point was 0 (False) and the predicted is 1 (True). False is because the model has predicted
incorrectly and positive because the class predicted was a positive one.

• False Negatives (FN): False negatives are the cases when the actual class of the data
point was 1 (True) and the predicted is 0 (False). False is because the model has predicted
incorrectly and negative because the class predicted was a negative one.

In our model, a false positive would mean that a component that did not reach a certain
threshold (in flying hours) was wrongly classified in a class above this threshold. This means
the model overestimated the condition or health of the component. And a false negative would
mean the opposite (the model underestimates the condition of the component) The associated
penalty or costs are not the same for both errors as one would imagine. A false positive would
mean that a component that was going to have an early failure was not detected by the model.
This would not have a major implication, but is still undesirable. A false negative would mean
that the model predicts an early failure, while this is not the case. Such an outcome would
require maintenance personnel to follow the model and perform (unnecessary) maintenance action.
Therefore, minimization of false negatives has a higher priority than minimizing false positives.
This can be realized by putting an extra penalty on false negatives mis-classifications. This is
discussed in detail in Section 7.6.

Some of the performance metrics that are associated with the confusion matrix were mentioned
earlier. Using only the model’s accuracy would not be suitable for this project. This is because
accuracy is a good measure when the target variable classes in the data are nearly balanced, which
is not the case with the component data. Therefore the models will be evaluated according to
their precision and recall values as well. Precision is about being precise. So even if the model
managed to only predict one component instance as being below the threshold, and it captured
it correctly, then the model would be 100% precise. Recall (also called positive predictive value)
is not so much about capturing cases correctly but more about capturing all cases that are below
that threshold correctly. So if the model simply always says; every case is “below the threshold”,
it would have 100% recall.

In our case, I want to focus more on minimizing False Negatives. That means I would want our
Recall to be as close to 100% as possible without precision being too bad. A metric that combines

Data-driven tool for the implementation of condition-based maintenance 23

CHAPTER 4. BUSINESS UNDERSTANDING

both metric to one value is called the F1-score. This performance measure will be used for the
final models. The expressions used to calculate the precision (p), recall (r) and F1- score are:

p =
TP

TP + FN

r =
TP

TP + FP

F1− score = 2 · p · r
p + r

4.3.3 Initial Assessment Tools and Techniques

The main risk for this project is that the needed data is unavailable or insufficient. The contingency
for this risk of unavailable data is that the recommendation can be made on what data should
be acquired to perform the data mining techniques. If, for example, it turns out that the data is
insufficient, then alternative data sources can be looked up to supplement the set. This is done in
accordance with the project team. A shortage of historical test data can lead to a less than suitable
predictive model (in many cases). It may have missing values that will skew the results and/or
suggest unrepresentative results due to working with data that is not a representative sample of
the population. This can cause even more challenges in data usefulness, predictive accuracy and
variable interaction effects. However, limited data does not have to be a major roadblock in the
modeling process. Because there are a number of data mining techniques that deal with this
challenge.

The automation process in which test data records from historical component work orders are
converted to horizontal excel rows has already been done. A TSR (Time Since Repair) value is
given for each work order. This value indicates how long that component was in the field, before
being sent back for repair. It may happen that one work order has different test data records.
This is because some component’s have multiple test runs before they are checked out. This can
be problematic for determining the correct test data. This challenge will be tackled in the next
chapter.

The software system with which the data streams are integrated is called Alteryx. This is
a data analytics platform used to combine large streams of raw data from different sources, and
apply data science techniques in order to get useful insights. Alteryx is compatible with a variety
of other platforms and programming languages, like: tableau, R and Python. As a result, there
is great freedom of choice in choosing the right programming language for the model.

24 Data-driven tool for the implementation of condition-based maintenance

Chapter 5

Data Understanding

This chapter is the result of the second phase of the CRISP-DM methodology. This has been
executed as described in the methodology section 3.4.2. The objective of the data understanding
phase is to discover which data is available, to get familiar with this data, to examine the quality
of the data, and detect interesting characteristics in the data.

5.1 Data Collection

5.1.1 Data Sources

Collecting the data was not part of the objectives of this project. A data set containing test
data records from component test runs was already available. These test data records stem from
historic work orders that have been stored in the Fokker Services data base. On the test stands
of the component shop located at the Fokker Schiphol site, several tests are performed on a daily
basis to evaluate the condition of the components. Here, the test values of the component are
measured and it is checked whether they fall within the permissible limit values required by flight
regulations. Appendix E.3 shows an example of these test limits for the slip test. If this is the
case for all tests, the component is allowed to be shipped back to the client. The acquired data
is then linked to the work order and serial number of the specific component to create a unique
test data record. There are a total of 18 tests for the component that have a total duration of
approximately 4 to 8 hours depending on the amount of fails during the run. A list of the first
9 steps of the component test procedure, with a short description per step is shown in Table 6.1.
The procedure and conditions of these tests are stipulated in a detailed component maintenance
manual (CMM).

Other sources of data are the ERP system of Fokker Services called PENTAGON. This system
keeps track of the components used during the MRO activities of each work order. It handles all
materials management, supply chain management, trace-ability, maintenance and quality assur-
ance. Additionally, the software also supports outside repairs, exchanges, consigned inventory and
lot purchases. It also interfaces with leading third-party networks and services such as ILS, Aviall,
SPEC2000 and AeroXchange. Information about the component type (mechanical, electrical or
hydraulic), size and cost are found in an excel file called the Part Number (PN) master. PENTAGON
also stores the amount of working hours and lists the employees that worked on a specific work
order. Employees are identified using a unique employee-id, this is done for confidentiality reasons.

5.1.2 Collection Procedure

The test data was collected using an SQL query. SQL is a domain-specific language used in pro-
gramming and designed for managing data held in a relational database management system
(RDBMS). It is particularly useful in handling structured data where there are relations between
different entities/variables of the data. The query generates an excel file by reading the test data

Data-driven tool for the implementation of condition-based maintenance 25

CHAPTER 5. DATA UNDERSTANDING

Test Description

STEP 1: Resistance Check
Resistance check for the governor servo valve,
permanent magnet generator, exciter field and main stator.
Test may be performed before mounting the component on the test stand.

STEP 2: Insulation Resistance Check Voltage test at uniform rate of 250 to 500 volts per second.

STEP 3:
Permanent Magnet Generator
Voltage Check

Permanent magnet generator voltage adjustment and check
by applying a 3-phase, wye-connected resistive load.

STEP 4: Open Circuit Saturation Check
Circuit saturation curve check by adjusting the voltage
power supply

STEP 5:
Current Transformer
Phasing Check

Optional CT current check

STEP 6: Optional Patch Filter Check
A check of the path filter on chunks of metal and other
nonmagnetic particles

STEP 7: Slip Test
A slip test with a load of 3kW, by adjusting the input
speed and load steps to 40kW

STEP 8: a) Generation Rated Load Test
Generator load test, can be performed either Line-to-Neutral
Voltage 120 or 115 V

b) Generator Two Per
Unit Load Test

Same as STEP 8, but increasing the load in one step to
60 kVA and decreasing the load to 40kVA within 5 seconds

STEP 9: Short Circuit Check
Short circuit test by applying a 3-phase symmetrical circuit
for a maximum of 5 seconds

Table 5.1: component test stand procedure. Source: Component Maintenance Manual (CMM)

records and systematically adding them to an Excel file. See Figure 5.1 for a schematic overview
of this process. Each test data record contains a work order number and a serial number, based
on these identification the test values are added. Several test data records can exist for a single
work order. In that case, they are added in chronological order. The next step in the query is to
add the used parts, the number of hours worked and the employees who have worked on them as
separate columns in the file. Finally, I look at the moment the component returns to the shop
for the first time. The amount of flying hours the component made since its last visit is called
the time-since-repair (TSR) value of the component. This is not a indicator of physical time
spent in the field, but more about the actual usage of the generator in terms of flying hours in
an aircraft. If the component has comes in for an overhaul (complete repair), this is indicated as
time-since-overhaul (TSO). The final data sets contains test data records up to 2016, more recent
data is not usable, because these components are still in the field and the TSR/TSO values are
therefore not yet known. During the collection of the data, a problem arose when extracting data
from 2010 onward, this was due to a bug in the source code of the software system with which the
data records can be read. This was remedied in time, by manually extracting the data.

Figure 5.1: A schematic overview of the data collection procedure.

5.2 Data Description

This section contains a descriptive analysis of the final data set. This analysis is split into a
summary of the data, followed by a brief introduction to the insights found in the data. This

26 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 5. DATA UNDERSTANDING

Feature type Variable count Class type

Test data readings 212 numeric
Administrative data 15 composite
Client data 3 composite
Maintenance performed 2 boolean
Hours worked 1 numeric
Parts used 1 string
Identifiers 5 composite

Table 5.2: Data set summary

analysis has been conducted using various tools and software; Python, R, Excel and Tableau.

5.2.1 Summary

The size of the final data set was 398 test data records of 278 work orders, and an initial count
of 268 features. Table 6.2 gives an overviews of these features. The bulk of the input data are
numerical test data readings, but the data also includes other relevant features like: account-
number (this specifies which client uses the component), warranty description, type of inspection
(repair/overhaul), hours worked, parts used and employee and serial ID’s.

5.2.2 Initial Insights

The first thing I notice when looking at the data, is the amount of missing values in the test
readings. Data can have missing values for a number of reasons such as observations that were
not recorded and data corruption. Handling missing data is important as many machine learning
algorithms do not support data with missing values. Fortunately there a number of techniques in
Python that can be used to handle and impute missing values, more on this in Chapter 7.

Figure 5.2: A scatter-plot of the TSR values in the final test data. (mean = 3200 flying hours)

Another interesting point is that the values of TSR are spread between 0 and 8000 flying hours
with a slight skew at 8000 hours limit. This is correct with the initial observation that many
components are sent back prematurely. Ideally, a large majority of components would have a
TSR value of 6000 flying hours or more. The scatter plot of the TSR values in Figure 5.2 shows
this sparsity and the early failures well. The figure clearly shows that many components are
experiencing an early failure. The average TSR values is at 3200 flying hours.

Data-driven tool for the implementation of condition-based maintenance 27

CHAPTER 5. DATA UNDERSTANDING

It is also clear that many of the variables in the final test data are not relevant for the prediction
of the TSR values. These variables will be removed at the data cleaning step. Examples of these
variables are; serial number and several customer reference numbers. Another observation is that
the test data readings follow different distributions. Of the 212 variables, 168 are variables have a
normal distribution, and 44 variables assume 1 or 2 specific values. See Figure 5.3 for an example
of both types. The readings with a normal distribution can be explained by continuous physical
quantities that can deviate naturally from a certain average. The other type variables, which only
have 1 to 2 (in rare cases 3) values, are usually frequency readings.

(a) Test reading with a continuous normal distribution

(b) Frequency reading

Figure 5.3: Two examples of different variable types in the data set

28 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 5. DATA UNDERSTANDING

5.3 Data Quality

Data quality refers to the condition of a data set containing a set of values of qualitative or
quantitative variables. There are many definitions of data quality but data is generally considered
high quality if it is ”fit for (its) intended uses in operations, decision making and planning”
(Thomas and Redman 2008). Alternatively, data is deemed of high quality if it correctly represents
the real-world construct to which it refers. Furthermore, as data volume increases, the question
of internal data consistency becomes significant. For this section I will focus on the following key
data quality components:

• Accuracy: Degree at which the data actually represents the real world status that it is
measuring. May be calculated by using an automated method with the help of various lists
and mapping.

• Completeness: Level at which desired data attributes are supplied.

• Timeliness (age of data): Extent to which data is adequately updated for a current venture.

5.3.1 Accuracy

The measurements from the test data records are very accurate. This is because the regulations
and conditions of the tests have been precisely formulated in the CMM. Also, the test equipment
that is used for the measurements have a high standard. This is also due to the strict regulations
and safety standards in the aviation industry. As a result, the most minor deviations from the
norm are measured and recorded. This is also important, because for some variables a deviation
of 0.05 Volts can be a reason to reject a component.

The other variables, like employees and hours worked are also accurate. These have been
manually integrated in the data set using sources that register the information based on the test
reports from engineers. These reports also contain the amount of work spent, and the number
and type of components used. This data has been checked for errors before being integrated in
the final data set.

5.3.2 Completeness

Data completeness is an important quality component as it improves and supports the function of
predictive models. There are two questions that arise when assessing data completeness for this
project: ”how complete is the current data set” and ”is the provided data sufficiently complete for
the use of prognostics on the output variable? To give an answer on the first question, I made an
analyses on the amount of missing values throughout the data set. Most missing values originate
from test data readings. The main cause for this is that the reading has not been performed
because it was not deemed necessary due the result of a previous test. Table 5.3 gives an overview
of the total amount of missing values from the sequential test runs. Each subsequent test rent
covers less attributes than the preceding one because they are tested again for only a sub set of
the attributes. This can be illustrated as follows: if a component has passed all tests except one,
it will be rejected. After performing repairs or replacing the defect components, the component
must be put on the test stand again. In this case however, only the mandatory tests are performed.
The readings for the non-mandatory (or optional) tests are left out, and are therefore marked as
missing values in the data set. Some components have to be placed on the test stand for more
than six times. The number of relevant tests decreases as the component needs to be run on the
stand more often. The average number of missing values for the sixth test run is 87.8%.

5.3.3 Timeliness

In the field of data science, timeliness and accuracy are fundamental prerequisites when it comes
to performing data analysis. The final data set for this project contain test data records from as

Data-driven tool for the implementation of condition-based maintenance 29

CHAPTER 5. DATA UNDERSTANDING

Test run Count Missing values* Percentage

1st (initial) run 63 2 0.009
2nd run 52 22 0.096
3rd run 63 68 0.296
4th run 47 131 0.570
5th run 19 183 0.796
6th run 1 202 0.878

Table 5.3: Summary of missing values. *Average count of missing values per test variable.

early as; 17 March 2010, until 26 November 2013. This is not the most recent data available for
component units, but it is the only data available of which the TSR (output variable) is known.
The data is considered reliable for analysis purposes because the test procedure and the contents
of the component have remained unchanged the last years.

30 Data-driven tool for the implementation of condition-based maintenance

Chapter 6

Data Preparation

This chapter explains the steps taken during the data cleaning steps performed on the acquired
data set. The output of this phase are the train and test sets that are used for the modeling phase.
I must emphasize that the process of data cleaning is not sequential in nature. Between each of the
different modeling techniques, iterative data transformation actions have been committed to make
the data suitable for the model in question. These steps are clearly described in the next chapter.
For the cleaning steps I used primarily the known Python libraries: scikitlearn, numpy, and
pandas. This chapter is divided in three steps, based on the KDD process framework. These steps
are feature selection, data cleaning, and data integration.

6.1 Feature Selection

Data selection is defined as the process where data relevant to the analysis is decided and retrieved
from the data collection. One of the goals of this project is to design a complete Python package,
in which the data is automatically selected and processed for analysis. The removal of irrelevant
columns from the data set was done by making use of expert knowledge. The columns that I
dropped in were:

• Non-numeric variables. Columns containing descriptions or references

• Duplicate columns. Some test files contained multiple readings from the same run.

• Non-explanatory variables. These are customer of order identifiers, account reference
numbers, etc.

• Empty columns

6.2 Data Cleaning

The complete data cleaning script written in Python 3 can be seen in Appendix C. What follows
is a step-by-step explanation and rationale of the code.

6.2.1 Work order duplicates

After importing the data set(df) and relevant packages, the first step was to remove the duplicates
in the work orders. The fact is that for each run file a separate work order is created and
components that have to go over test bench several times will generate a doubling in the test
results. I solved this by taking the most recent (or most recently executed) test from every run
file. This makes it certain that only the approved test values are included:

df = df.drop_duplicates(subset = 'HDR.USER_DOC', keep = 'last')

Data-driven tool for the implementation of condition-based maintenance 31

CHAPTER 6. DATA PREPARATION

6.2.2 Missing values

For this part I created a separate data-frame for the sensor data: df sensor. After inspecting the
sensory data, it became clear that there were a lot of empty values. Apparently this is a normal
phenomenon during test runs. For example, some load checks are skipped for time saving purposes
if there is sufficient evidence that the component will succeed the test. In Python these missing
values are indicated with NaN. I handle the missing data with the following code:

from sklearn.preprocessing import Imputer

imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)

imputer = imputer.fit(df_sensor)

X[:, 1:3] = imputer.transform(df_sensor)

The mean imputer calculates the mean value of the column and replaces the NaN values with
the mean value. Some columns have a high number of missing values. I set a thresh-hold of 40%
on the amount of missing values that are acceptable. Columns that have a higher percentage of
missing values are dropped:

df_sensor['HDR.USER_DOC'] = df['HDR.USER_DOC']

thresh = len(df_sensor)*.4

df_sensor = df_sensor.loc[:, pd.notnull(df_sensor).sum()>thresh]

For the parts (df parts) and employees (df employee) data I used a different approach. These
variables are binary variables that also contain missing cells. These are simply filled using the
fillna function:

df_employees = df.loc[:,'Employee_is_1':'Employee_is_17']

df_employees.fillna(value=0, inplace=True)

df_parts = df.loc[:,'PN_is_58163-8':'PN_is_MS9276-09']

df_parts.fillna(value=0, inplace=True)

df_parts['Total_Parts'] = df_parts[list(df_parts.columns)].sum(axis=1)

6.2.3 Encoding of categorical variables

The data set contains a number of categorical variables that must be transformed into numeric
arrays. An example of a categorical variable is QFINISH.WORK PERFORMED. This variable consists
of the following unique values: REP (repair), OVH (overhaul) and INS (inspection). To create binary
dummy variables for each value, I use the OneHotEncoder function of scikitlearn on the subset
of categorical variables; df categorical. This feature represents categorical variables as binary
vectors. This first requires that the categorical values be mapped to integer values. Then, each
integer value is represented as a binary vector that is all zero values except the index of the integer,
which is marked with a 1:

from sklearn.preprocessing import OneHotEncoder

onehot_encoder = OneHotEncoder(sparse=False)

df_categorical = onehot_encoder.fit_transform(df_categorical)

The same procedures was applied to the employee and part-number data frames. Some parts
were removed from the unique value list however. This is because a number of parts belong to a
category that is always used for repairs and does not provide any additional information about
the type of repair. Examples are; bearings, plastic isolation, etc.

32 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 6. DATA PREPARATION

6.3 Data Integration

The final step was to merge the different data-frames after pre-processing into the final data set.
And divide the data into a train and test set. To make the column names more readable, I removed
the punctuation marks and unwanted characters from the column labels:

def remove_invalid_chars(df):

df.columns = [elem.replace(",", '').replace("[", '').replace(']',

'').replace('<', '') for elem in df.columns.values]

remove_invalid_chars(df)

I split the output value (TSR) into three different bins, based on the that will serve as output
classes. Each bin specifies the limits for the TSR values of the component work orders. The values
in these bins are therefore binary and indicate whether or not the component falls within these
limits.

Example: a work order of a component returning with a TSR value of 5,500 flight hours for
overhaul, gets a value of 1 for the first 2 bins, and a value of 0 for the last bin (TSR between 6,000
and 8,000 flight hours).

Figure 6.1: Summary statistics of the target variable: TSR

Merging all the input data together results in a cleaned data set with 227 rows and 482 columns
or features, with no missing values. Finally, splitting the data results in a train set of 127 rows
and a test set of 100 rows. A distribution of 60% train data and 40% test data is often used in
machine learning settings with less than 200 instances (Adi Bronchstein, 2017). I have chosen a
test set of 44% to get a nice round amount of 100 instances in the test set. During some modeling
techniques, I use the k-fold cross validation method, whereby the data set is divided into 5 equal
sets. The code below shows the train/test split in Python. To specify the input data range I use
the df.loc function with the column names.

test_size = .44

seed = 4

train, test = train_test_split(df, test_size=test_size, random_state=seed)

Y_train = train['TSR']

X_train = train[list(df.loc[:,'Employee_is_17':

'SHORT_CIRCUIT_TEST-Gen_Short_Circuit_Current'])]

Y_test = test['TSR']

Data-driven tool for the implementation of condition-based maintenance 33

CHAPTER 6. DATA PREPARATION

X_test = test[list(df.loc[:,'Employee_is_17':

'SHORT_CIRCUIT_TEST-Gen_Short_Circuit_Current'])]

34 Data-driven tool for the implementation of condition-based maintenance

Chapter 7

Modeling

This chapter is the result of the fourth phase of the CRISP-DM methodology, see section 3.4.4.
While most people think that modeling is the most time consuming part of a project, more time
was spent on understanding the data and preparing it then on the modeling part itself. First,
an overview of the modeling assumptions is presented. This is followed by the test design of
the data analysis. From section 7.4 to 7.6 I give a theoretical description of the different data
mining techniques that were used during the project, and their respective parameters. Finally
an assessment and validation of the generated models is given, with an overview of the revised
parameter settings.

7.1 Modeling Assumptions

The choice of data that one includes in the model, how the data are processed, and the algorithms
themselves all rely on or create assumptions about the underlying data structure. Assumptions
are made at every point of the modeling process.This is why “data-driven” approaches and un-
supervised learning methods should be validated against both theoretical expert-knowledge and
multiple tests of model quality.

There are two basic assumptions underlying the machine learning techniques that I will use.

• Firstly, the available data instances are independent and identically distributed (IID), ac-
cording to an unknown probability distribution. Models are trained on a set and tested on
another, under the assumption that the two are very strongly correlated (once overfitting is
taken care of).

• Secondly, the algorithms do not care about the order in which data is presented, and all
data is treated the same.

7.2 Model Selection

In section 3.4.4 I already stated that the three candidate models I will use for this project are:
Neural Networks, Gradient Boost trees and Forest Classification trees. Often the hardest and
crucial part of solving a machine learning problem is finding the right estimator for the job.
Different estimators are better suited for different types of data and different problems. A very
useful flowchart is designed by scikit-learn to give users a bit of a rough guide on how to approach
problems with regard to which estimators to try on the data. The complete chart can be found
in Appendix D. Following this guide, I made a list of candidate models that are applicable for the
classification problem at hand. Keeping the project duration in mind, I decided to focus on three
modeling techniques. This decision was made by comparing the models on different modeling
criteria, see Table 7.1.

Data-driven tool for the implementation of condition-based maintenance 35

CHAPTER 7. MODELING

KNN Logistic regression Naive Bayes Decision trees Random Forests XGBoost Neural networks

Problem Type Either Classification Classification Either Either Either Either

Results interpretable by user? Yes Somewhat Somewhat Somewhat A little A little No

Easy to explain algorithm? Yes Somewhat Somewhat Somewhat No No No

Average predictive accuracy Lower Lower Lower Lower Higher Higher Higher

Training speed Fast Fast Fast Fast Slow Slow Slow

Prediction speed Fast Fast Fast Fast Moderate Fast Fast

Amount of parameter tuning needed Minimal None Somewhat Some Some Some Lots

Perform well with small number of observations? No Yes No No No No No

Handles lots of irrelevant features well? No No No No Yes Yes Yes

Automatically learns feature interactions? No No No Yes Yes Yes Yes

Gives calibrated probabilities of class membership? Yes Yes No Possibly Possibly Possibly Possibly

Parametric? No Yes Yes No No No No

Features might need scaling? Yes No No No No No Yes

Table 7.1: Comparing Supervised Learning Algorithms

From the table we can see that Neural Networks and the ensembling tree techniques have
the best overall score (dark gray corresponds to more important criteria). I decided to include a
logistic regression model. The reason for this is to include a model that is robust and does not
decrease in predictive performance when there are fewer number of observations.

7.3 Test Design

In order to build the models and evaluate their performance I divide the final data set randomly
in a training set and a test set. In order to avoid underfitting and overfitting I make use of the
k-fold Cross validation method. The procedure has a single parameter called k that refers to the
number of groups that a given data sample is to be split into. As such, the procedure is often
called k-fold cross-validation. Cross-validation (CV) is primarily used in applied machine learning
to estimate the accuracy of a machine learning model on unseen data. That is, to use a limited
sample in order to estimate how the model is expected to perform in general when used to make
predictions on data not used during the training of the model. The following procedure is followed
for each of the k “folds”: A model is trained using k − 1 of the folds as training data. Then the
resulting model is validated on the remaining fold of the data (it is used as a test set to compute
a performance measure such as accuracy).

Figure 7.1: Test Design using CV

The performance measure reported by k-fold cross-validation is then the average of the values
computed in the loop. This approach can be computationally expensive, but does not waste too
much data (as is the case when fixing an arbitrary validation set), which is a major advantage
in problems such as inverse inference where the number of samples is very small. The value of
k must be chosen carefully to prevent a misrepresentation of the model accuracy, such as a high
bias or high variance. For this project I choose a value of k = 10. This is because the number of
samples in the final data set is limited and it has been found through experimentation to generally
result in a model evaluation with low bias and a modest variance (Kuhn and Johnson 2013). The

36 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 7. MODELING

Modeling notation Python code Definition

X := {x1, ..., xn} df final Matrix containing all input data
y ∈ N TSR Data column containing the TSR value
y2000 ∈ {0, 1} TSR 2000 Binary classification for TSR = 2000
y4000 ∈ {0, 1} TSR 4000 Binary classification for TSR = 4000
y6000 ∈ {0, 1} TSR 6000 Binary classification for TSR = 6000
ŷi for i ∈ {2000, 4000, 8000} TSR.predict TSR-class probability predictions

Table 7.2: Definition of the model input and output

simplest way to use cross-validation is to call the cross val score function in Python. Below you
can see the code used for the cross-validation split used to evaluation all the models.

The first data mining goal of this project is to classify the component into classes based on a
prediction of the RUL using the available test data. This classification problem can be solved by
numerous classification algorithms. Some of which are more complex than others. Together with
the project team I decided to create several prediction models, using the following techniques;
Neural Networks, Gradient Boost Trees (GBT), Forest Classification Trees (FCT) and Logistic
Regression. The models are then compared with each other using the performance indicators
discussed in section 4.3.2.

In the next sections, I give a description of each modeling technique along with a step-by-step
explanation of the Python code I wrote to build the prediction models. For each modeling ap-
proach I use the same definition for output and input, see Table 7.2. The derivation of the binary
output variables is explained in Chapter 6.

7.4 Neural Network

A supervised neural network, at the highest and simplest abstract representation, can be presented
as a black box with 2 methods learning and predicting. The learning process takes the inputs and
the desired outputs and updates its internal state accordingly, so the calculated output gets as
close as possible to the desired output. The predict process takes the input and generates the most
likely output according to its past “training experience”. The training of a neural network is an
iteration process where the internal state is updated at each iteration. The error at each iteration
is reduced by adapting the weights of the model to each input variable, thus creating a weighted
sum of all the input variables using a bias. A neural network is very suitable for recognizing
non-linear relationships between the input and the output.

A typical neural network has anything from a few dozen to hundreds, thousands, or even
millions of artificial neurons called units arranged in a series of layers, each of which connects
to the layers on either side. The input units receive input data from the outside world that the
network will attempt to ’learn’ about. Other units sit on the opposite side of the network and
signal how it responds to the information it’s learned; those are known as output units. In between
the input units and output units are one or more layers of hidden units, which form the majority
of the artificial brain. The connections between one unit and another are represented by a number
called a weight which can be either positive or negative. The higher the weight, the more influence
one unit has on another. Information flows through a neural network in two ways. Patterns of
information are fed into the network via the input units, which trigger the layers of hidden units,
and these in turn arrive at the output units. This common design is called a feed-forward network.
Each unit receives inputs from the units to its left, and the inputs are multiplied by the weights
of the connections they travel along. Every unit adds up all the inputs it receives in this way
and if the sum is more than a certain threshold value, the unit ”fires” and triggers the units it’s

Data-driven tool for the implementation of condition-based maintenance 37

CHAPTER 7. MODELING

connected to (those on its right). Figure 7.2 a Neural Network with five inputs, three hidden layers
and one output.

For a neural network to learn, it uses an element of feedback process called back-propagation.
This involves comparing the output a network produces with the output it was meant to produce,
and using the difference between them to modify the weights of the connections between the units
in the network. In time, back-propagation causes the network to learn, reducing the difference
between actual and intended output to the point where the two exactly coincide.

Figure 7.2: Neural Network diagram

To summarize, a Neural Networks consist of the following components:

• An input layer, x

• An arbitrary amount of hidden layers

• A set of weights and biases between each layer, W and b

• A choice of activation functions for each hidden layer, σ

The first step in building our Neural Network, is defining the model class in Python, its inputs
and outputs, and its initial weight parameters, see Figure 7.3 It is common practice to use only
one hidden layer, because adding a second or third layer does rarely improve the performance of
the mode, but it does increase its complexity considerably.

Deciding the number of neurons in our hidden layer is a very important part of deciding the
overall neural network architecture. Though these layers do not directly interact with the external
environment, they have a tremendous influence on the final output. Using too few neurons in the
hidden layer will result in something called underfitting. Underfitting occurs when there are too
few neurons in the hidden layers to adequately detect the signals in a complicated data set. Using

38 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 7. MODELING

too many neurons in the hidden layers can result in several problems. First, too many neurons
in the hidden layers may result in overfitting. Overfitting occurs when the neural network has
so much information processing capacity that the limited amount of information contained in the
training set is not enough to train all of the neurons in the hidden layers. A second problem can
occur even when the training data is sufficient. An inordinately large number of neurons in the
hidden layers can increase the time it takes to train the network. The amount of training time
can increase to the point that it is impossible to adequately train the neural network. There are
many rule-of-thumb methods for determining the correct number of neurons to use in the hidden
layer: The number of hidden neurons should be

• In the range between the size of the input layer and the size of the output layer

• 2/3 of the input layer size, plus the size of the output layer

• Less than twice the input layer size

My choice for the number of hidden neurons is based on a review article by Panchal and
Panchal (2014), where they came up with the following equation:

Nh =
(α · (Ni +No))

Ns

Where, Nh is the number of hidden neurons, Ni is the number of input neurons (in our case
120 input neurons), α is an arbitrary scaling factor (usually 2-10), No is the number of output
neurons (in our case that is 1 output neuron). And Ns is the number of samples in the data set
used to train the network (in our case this is 80% of 230; 184). Therefore the number of hidden
neurons is set on an initial number of 6 hidden neurons (α=8).

Figure 7.3: Initialization of the Neural Network

The output of a 6-layer Neural Network with a set of parameters (θ) is calculated using the
weights Wand the biases b. At this stage I have the initial probabilities of the output and the
actual output class. The model than ”adapts” the weights in order to minimize the error between
the predicted value ŷi and the actual value of TSR yi, using a so-called; loss function. I set the
loss function to be the sum of squares of the absolute errors (which is the most commonly used
loss function in machine learning):

L(θ) =
∑
i

(yi − ŷi)2

The process of minimizing the the loss function (back-propagation), has a number of parameters
that play a role in this process. Some parameters are left at their default values (batch size and
solver algorithm for example). Other parameters are fine tuned to improve the back-propagation
process, keeping the computation time in mind. After the training process, the model is then
used to predict the class probabilities c for the test set. The output for each work order (sample)
is an array with three probabilities, each corresponding to the predefined TSR class. The final
output value used for model evaluation is simply obtained by choosing the class with the highest
probability:

ŷi = argmaxj∈{2000,4000,8000}P (cj |xi)

Data-driven tool for the implementation of condition-based maintenance 39

CHAPTER 7. MODELING

These output probabilities are obtained by the model, using the softmax function. This func-
tion is a generalization of the logistic function that “squashes” a K-dimensional vector z of arbitrary
real values to a K-dimensional vector σ(z) of real values in the range [0, 1] that add up to 1. A
consequence of using the softmax function is that the probability for a class is not independent
from the other class probabilities. Appendix C.1 shows the complete Python script for the NN
model.

7.5 Decision Trees

The main causes of difference in actual and predicted values in any machine learning technique,
are noise, variance, and bias. Decision trees use a technique called ensemble, that helps to reduce
these factors (except noise, which is irreducible error). A decision tree ensemble is just a collection
of predictors, or CARTs (classification and regression trees) which come together (e.g. mean of
all predictions) to give a final prediction. A CART is a bit different from decision trees, in which
the leaf only contains decision values. In CART, a real score is associated with each of the leaves,
which gives us richer interpretations that go beyond classification. Ensembling techniques are
further classified into Bagging and Boosting.

• Bagging is a simple ensembling technique in which I build many independent predictors/-
models/learners and combine them using some model averaging techniques. (e.g. weighted
average, majority vote or normal average). I take random sub-sample/bootstrap of data for
each model, so that all the models are little different from each other. Each observation is
chosen with replacement to be used as input for each of the model. So, each model will have
different observations based on the bootstrap process. Because this technique takes many
uncorrelated learners to make a final model, it reduces error by reducing variance. Example
of bagging ensemble is Random Forest models.

• Boosting is an ensemble technique in which the predictors are not made independently, but
sequentially. This technique employs the logic in which the subsequent predictors learn
from the mistakes of the previous predictors. Therefore, the observations have an unequal
probability of appearing in subsequent models and ones with the highest error appear most.
(So the observations are not chosen based on the bootstrap process, but based on the error).
The predictors can be chosen from a range of models like decision trees, regressors, classifiers
etc. Because new predictors are learning from mistakes committed by previous predictors, it
takes less time/iterations to reach close to actual predictions. Choosing the stopping criteria
is important because a poor choice could lead to overfitting on training data. Gradient
Boosting is an example of boosting algorithm. Boosting is a sequential technique which
works on the principle of tree ensembles. It combines a set of weak learners and delivers
improved prediction accuracy. At any instant t, the model outcomes are weighed based on
the outcomes of previous instant t− 1. The outcomes predicted correctly are given a lower
weight and the ones miss-classified are weighted higher.

Applying boosting algorithms is a good way of improving the accuracy of a predictive model,
especially in combination with feature engineering. In this project, I used two widely used and
very popular ensembling techniques; XGBoost and Random Forest. In section 7.6 I discuss the
methods used for feature engineering.

7.5.1 XGBoost

XGBoost stands for “eXtreme Gradient Boosting”, where the term “Gradient Boosting” refers to
the ensemble algorithm mentioned earlier. Gradient boosting is an approach where new models
are created that predict the residuals or errors of prior models and then added together to make
the final prediction. It is called gradient boosting because it uses a gradient descent algorithm to
minimize the loss when adding new models. Both XGBoost and Random forest models use the

40 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 7. MODELING

same ensemble algorithm, the only difference arises in the way in which the models are trained.
This means that the models I write for XGBoost can also be used for the Random Forest model,
and therefore repetition of the mathematical derivation is not needed.

As I mentioned previously, the prediction scores of each individual tree are summed up to get
the final score. Mathematically, we can write our model in the form:

ŷi =

k=1∑
K

fk(xi), fkεF

Where K is the number of trees, f is a function in the functional space F , and F is the set
of all possible CARTs. A salient characteristic of objective functions for decision trees is that
they consist two parts: training loss L(θ) and the regularization term Ω(θ). The loss function
is exactly the same as the function used for the Neural Network model, see Section 7.2. The
regularization term controls the complexity of the model, which helps us to avoid overfitting. A
high regularization means that the model is complex and could potentially lead to overfitting and
long running times. For a simple and predictive model, both L(θ) and Ω(θ) have to be balanced
(bias-variance trade-off).The objective function to be optimized is given by:

obj(θ) =

i∑
n

l(yi, ŷi) +

k=1∑
K

Ω(fk)

Before delving into the actual training process, I would like to highlight the XGBoost model
parameters. Before running XGBoost, I have to set two types of parameters: booster parameters
and task parameters. General parameters relate to which booster (tree or linear) and do not need
to be set because they are automatically set by the XGBoost package in Python. The booster and
task parameters are important because they define the environment of the learning process and
they specify the learning task and the corresponding learning objective. See Figure 7.4 for the
initial set-up of the XGBoost model. The parameters that are relevant for tuning are:

• objective (default=reg:linear). This parameter is the most important for the XGBoost
model. It specifies which objective function is used for optimization. The are 14 different
objective function I can choose from, but the linear regression function which is the default
is not the most suitable for our project. Here, I choose multi:softmax. This is a activa-
tion function that turns numeric outputs into class probabilities that sum to one. This is
especially use full for this project, because we have defined three classes in the output of the
model. The softmax function is calculated as follows:

S(yi) =
eyi∑
i e
y
i

• eta (default= 0.3, alias: rate, range: (0,1)). Step size shrinkage used in update to prevents
overfitting. After each boosting step, we can directly get the weights of new features, and
eta shrinks the feature weights to make the boosting process more conservative.

• max depth (default=6, range: (0,∞)). Maximum depth of a tree. Increasing this value will
make the model more complex and more likely to over-fit.

• tree method string (default=auto). This is the tree construction algorithm used in XG-
Boost. The choices are: auto, exact, approx, hist, gpu exact, gpu hist.

• scale pos weight (default=1). Controls the balance of positive and negative weights. I use
this parameter to handle the unbalanced classes in the data set.

Data-driven tool for the implementation of condition-based maintenance 41

CHAPTER 7. MODELING

Figure 7.4: Initial set-up of a XGBoost model in Python

Now the model is a partially specified equation: a numeric function of the input data, with
some unspecified numeric parameters. During the training procedure, the model is searching for
the ’best’ set of parameters that optimize the specified objective function. The model needs to
learn the functions fi, each containing the structure of the tree and the leaf scores. Learning tree
structure is much harder than the traditional optimization problem where you can simply take
the gradient. It is intractable to learn all the trees at once. Instead, an additive strategy is used:
the current classifier is fixed, and a new tree is added at a time. If we denote the prediction value
at step t as ŷti . Then we have:

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

...

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi)

Then we need to determine which tree to use for each step. The boosting algorithm adds the
tree that optimizes the objective function the most. The objective function at time t is:

objt =

n∑
i=1

l(yi, ŷ
(t)
i) +

t∑
i=1

Ω(fi)

=

n∑
i=1

l(yi, ŷ
(t−1)
i) + ft(xi) + Ω(ft) + constant

Because we have the mean squared error as loss function, the objective becomes:

objt =

n∑
i=1

(yi − (ŷ
(t−1)
i + ft(xi)))

2 +

t∑
i=1

Ω(fi)

=

n∑
i=1

[2(ŷ
(t−1)
i − yi)ft(xi) + ft(xi)

2] + Ω(ft) + constant

This becomes our optimization goal for the new tree. The number of iterations during the
training process is set automatically. The model will continue training until the validation score
stops improving. The output of the XGBoost model can be represented by a ranking of the
attributes in order of importance, and the actual decision tree. To plot the importance I use the

42 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 7. MODELING

IPython function xgboost.plot importance(XGBoost). To plot the output tree via matplotlib,
I use the function xgboost.plot tree(), specifying the ordinal number of the target tree. This
function requires graphviz and the matplotlib library. See Figure 7.5 for a plot of the baseline
decision tree before parameter tuning. The final decision trees are presented in chapter 8 and
Appendix E. The complete Python script for the XGBoost model can be found in Appendix C.2.

Figure 7.5: Plot of the XGBoost decision tree prior to parameter tuning

7.5.2 Random Forest

Another commonly used classifier is the Random Forest classifier (RFC). This technique is, like
XGBoost, a tree-based model. It also makes use of a supervised algorithm and can be implemented
in both classification and regression problems. RFC creates decision trees on randomly selected
data samples, gets prediction from each tree and merges them together to get a more accurate and
stable prediction. Figure 7.6 shows a representation of a RFC with two trees. The RFC algorithm
works as follows:

1. Select random samples from the data (train) set

2. Construct a decision tree for each sample and get a prediction result from each decision tree.

3. Perform a vote for each predicted result.

4. Select the prediction result with the most votes as the final prediction.

Figure 7.6: Random Forect Classifier with two trees

Data-driven tool for the implementation of condition-based maintenance 43

CHAPTER 7. MODELING

There are a lot of similarities between RFC and XGBoost models. The calculations that the
models use for the fitting process are the same. Therefore I will not derive the mathematical
calculation for the RFC here. The idea of bagging in random forest is very important. Bagging
means Bootstrap aggregation. Bootstrap means generating random samples from the data set
with replacement. The main reason of bagging is to reduce the variance of the model class. Like
I mentioned earlier, XGBoost models also deal with the trade-off between variance and bias. The
main difference between RFC and XGBoost is the method used to tackle this. Both RFC and
GBM are ensemble methods, meaning they build a classifier out a big number of smaller classifiers.
Now the fundamental difference lies on the method used:

Random Forest Classifier (RFC)

RFC uses decision trees, which are
very prone to overfitting. In order to
achieve higher accuracy, RF decides to
create a large number of them based on
bagging. The basic idea is to re-sample
the data over and over and for each
sample train a new classifier. Differ-
ent classifiers over fit the data in a dif-
ferent way, and through voting those
differences are averaged out.

Gradient Boost Machine (GBM)

GBM is a boosting method, which
builds on weak classifiers (high bias,
low variance). The idea is to add
a classifier at a time, so that the
next classifier is trained to improve the
already trained ensemble. Notice that
for RFC each iteration the classifier is
trained independently from the rest.

When writing the RFC model, the Hyper-parameters in random forest are either used to in-
crease the predictive power of the model or to make the model faster. I will discuss about the
hyper-parameters of sklearns built-in random forest functions, since I use this library for all the
modeling techniques The first parameter I have to set to increase the predictive power is the
n estimators, this is the number of trees. According to experiences of data scientist in GitHub
and DataCamp, a choice in the range of 10 - 20 is appropriate. In theory, the more trees used,
the better the final prediction because the multitude of trees serves to reduce the variance of an
already low biased tree ensemble. But the downside of increasing the number of trees is the amount
of computing needed. Each prediction of a data point in the test data will have to go through
all the individual trees separately. Another important hyper-parameter is max features, which
is the maximum number of features Random Forest is allowed to try in an individual tree. On
default, this parameter is set as the squared number of the number of features. min sample leaf

determines, like its name already says, the minimum number of leafs that are required to split an
internal node. Decreasing this parameter will increase the model complexity and thus lead to a
lower bias.

To increase the models speed we can tweak the following parameters;

• n jobs: this parameter tells the engine how many processors it is allowed to use. If it has a
value of 1, it can only use one processor. A value of “−1” means that there is no limit.

• random state: makes the model’s output replicable. The model will always produce the
same results when it has a definite value of random state and if it has been given the same
hyper-parameters and the same training data. I will use the same state for all the models
in order to have a valid comparison.

• oob score (also called oob sampling), which is a random forest cross validation method. In
this sampling, about one-third of the data is not used to train the model and can be used
to evaluate its performance. These samples are called the out of bag samples. It is very
similar to the leave-one-out cross-validation method, but almost no additional computational
burden goes along with it.

44 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 7. MODELING

The main limitation of Random Forest is that a large number of trees can make the algorithm
to slow and ineffective for real-time predictions. And this can be an issue when implementing an
RFC for real-time condition based maintenance. In general, these algorithms are fast to train,
but quite slow to create predictions once they are trained. A more accurate prediction requires
more trees, which results in a slower model. For the current data set (≈ 300 instances) random
forest algorithm is fast enough, but there can certainly be situations where run-time performance
is important and other approaches would be preferred. The complete Python script for the RFC
model can be found in Appendix C.3.

7.6 Logistic Regression

Logistic regression is another technique borrowed by machine learning from the field of statistics.
It is among the commonly used techniques in predictive modeling, and especially for binary clas-
sification problems. In this project I am dealing with multi-class output, so in order to use logistic
regression as a predictive model I have to create and train a separate classifier for each class and
combine the scores of each class to have an overall prediction. Logistic Regression uses sigmoid
function. An explanation of logistic regression can begin with an explanation of the standard
logistic function. The logistic function is a sigmoid function, which takes any real value between
zero and one. It is defined as:

σ(t) =
ex

ex + 1
=

1

1 + e−x

Where t is the learned regression function that consists of linear and/or non-linear components
of the input data x. Input values are combined using weights or coefficient values (referred to
as the Greek letter Beta) to predict the output value y. A key difference from linear regression
is that the output value being modeled is a binary values (0 or 1) rather than a numeric value.
Below is an example logistic regression equation:

y =
1

1 + e−(β0+β1x)

Where y is the predicted output, β0 is the bias or intercept term and β1 is the coefficient
for the single input value x. Each column in the input data has an associated β coefficient (a
constant real value) that must be learned from the training data. This is done using maximum-
likelihood estimation. Maximum-likelihood estimation is a common learning algorithm used by a
variety of machine learning algorithms, although it does make assumptions about the distribution
of the input data. The best coefficients result in a model that predicts a class very close to 1
(e.g. TSR>4000) for the default class and a value very close to 0 (e.g. TSR<4000) for the other
class. The intuition for maximum-likelihood for logistic regression is that a search procedure seeks
values for the coefficients (Beta values) that minimizes the error in the probabilities predicted by
the model to those in the data (e.g. probability of 1 if the data is the primary class). Figure 7.7
shows an example of simple sigmoid function with two coefficients.

Figure 7.7: Logistic regression function with two coefficients

Data-driven tool for the implementation of condition-based maintenance 45

CHAPTER 7. MODELING

There a three main parameters to take into account when building the logistic regression model:

• The minimization algorithm used to optimize the best values for the coefficients of the train-
ing data can be chose with the parameter solver. All the available algorithms are suitable
for our business case except the liblinear, because it can not handle polynomial loss and
is limited to one-versus-rest schemes. liblinear is set as the default solver algorithm in
Python, so I manually set it to lbfgs. sag and saga are recommended to use for faster
predictions in large data sets. This is only true for features with approximately the same
scale. This is the case for a lot of the test data features in our data set, but the size of the
data set is not in the order that makes the two latter algorithms more favorable.

• As mentioned earlier, I have set the output value of the data to be multi-class binary vari-
ables. Logistic regression models in Python have the ability to not only fit a binary problem
for each label, but also to minimize the polynomial loss across the entire probability distri-
bution. The parameter is called multi class and is set to multinomial.

The complete Python script of the logistic regression model is included in Appendix C.4. It
is worth noting that, in contrast with the previous models, logistic regression has some major
disadvantages. It is easy interpretable, doesn’t require high computation power and not hard to
implement. But is not able to handle a large number of categorical features/variables. And as I
discussed in Chapter 6, a large amount of features are hot-encoded categorical variables. Also,
logistic regression is vulnerable to overfitting and will not perform well with independent variables
(e.g. variables that are not correlated with the target variable).

7.7 Model Assessment

At this point, the different types of machine learning algorithms are ranked in Python, using the
built-in scikit-learn functions. The key to a fair comparison of machine learning algorithms is en-
suring that each algorithm is evaluated in the same way on the same data. For every single model
I used 5−fold cross validation, which I explained in section 7.3, and retrieved and summarized the
results both numerically and using a box and whisker plot.

The 5−fold cross validation procedure used to evaluate each algorithm, is configured with the
same random seed to ensure that the same splits to the training data are performed and that each
algorithms is evaluated in precisely the same way. Each algorithm is given a short name, that will
be used for the remainder of this report. The code used for the algorithm comparison is as follows:

seed = 7

Prepare cross-validation (cv)

cv = KFold(n_splits = 5, random_state = None)

Classifiers

models = []

models.append(('LogReg', LogisticRegression()))

models.append(('NN', MLPClassifier())) #Neural Networks

models.append(('RFC', RandomForestClassifier()))

models.append(('XGBoost', GradientBoostingRegressor()))

iterate over classifiers

models = []

trained_classifiers = []

for name, clf in zip(models, classifiers):

scores = []

for train_indices, test_indices in cv.split(X):

46 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 7. MODELING

clf.fit(X[train_indices], y[train_indices].ravel())

scores.append(clf.score(X_test, y_test.ravel()))

min_score = min(scores)

max_score = max(scores)

avg_score = sum(scores) / len(scores)

trained_classifiers.append(clf)

models.append((name, min_score, max_score, avg_score))

Model Min Max Average c-stat

XGBoost 0.66 0.73 0.67 0.69
Random Forest 0.64 0.71 0.66 0.67
Logistic Regression 0.56 0.66 0.57 0.62
Neural Networks 0.63 0.70 0.66 0.65

Table 7.3: Model assesment on: prediction accuracy and the c-statistic

Tabel 7.3 shows the result of running this code. The min and max column displays the
minimum and maximum scores from the cross validation set. The C-statistic (sometimes called
the “concordance” statistic or C-index) is a measure of goodness of fit for classification models.
It is equal to the area under the Receiver Operating Characteristic (ROC) curve and ranges from
0.5 to 1. We can see that the models have an average performance (.56 − .73). XGBoost and
Random Forest clearly score significantly higher than the NN and Logistic Regression estimators.
To illustrate this even further I plot the model performance (accuracy) on a whisker plot, see
Figure 7.8. The code to calculate the minimum, maximum and average scores for this plot is as
follows:

for name, model in models:

kfold = model_selection.KFold(n_splits=10, random_state=seed)

cv_results = model_selection.cross_val_score(model, X, Y, cv=5)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Figure 7.8: Machine learning algorithms comparison

Data-driven tool for the implementation of condition-based maintenance 47

CHAPTER 7. MODELING

Classifier Evaluation metric
Precision Recall F1-score

TSR = 2000 0.63 0.62 0.61
Random Forest TSR = 4000 0.50 0.56 0.53

TSR = 6000 0.61 0.62 0.64

TSR = 2000 0.76 0.71 0.70
XGBoost TSR = 4000 0.62 0.58 0.66

TSR = 6000 0.71 0.72 0.74

TSR = 2000 0.61 0.59 0.58
Logistic Regression TSR = 4000 0.54 0.56 0.55

TSR = 6000 0.62 0.62 0.61

Table 7.4: Evaluation of classifiers for different classes

The assessment of the models gives information on the overall accuracy of the models. To
get more insight in the classification performance of the models for the different TSR classes
(TSR = 2000, TSR = 4000, TSR = 6000), I calculated the average test scores for each model on
the different classes, see Table 7.4. I used the following benchmark on the f1−score (combined
metric of precision and recall) to assess the models: 0.5 indicates a very poor model, whereas 0.8
indicates a strong model.

What is striking is that the performance for the class; TSR = 4000 is lower than the other
two classes. This is due to the fact that the models are less able to make the distinction at the
separation line of 4000 flight hours. Random Forest and XGBoost score higher than Logistic
Regression. This is because they select important features automatically.

7.7.1 Revised Parameter Settings

In order to improve the created models, I have two options: gather more data and perform feature
engineering. Or revising the parameters by performing a hyper-parameter optimization. The first
option has usually the greatest pay-off in terms of invested time versus improved performance, but
there are no additional work orders I can add to the data set and other data sources are exhausted,
I chose to perform hyper-parameter tuning on the existing models. Unlike hyper-parameters, gen-
eral parameters are trained during the learning process. Hyper-parameters are parameters that
are not directly learned within estimators. In scikit-learn they are passed as arguments to the
constructor of the estimator classes. In case of the Random Forest, hyper-parameters include the
number of decision trees, and the number of features considered by each tree when splitting a node.

Some models allow for specialized, efficient parameter tuning strategies. I will use a strategy
called grid search (GridSearchCV). It generates candidates from a grid of parameter values that
I have to specify with the param grid parameter. Parameter search uses the score function
by default to evaluate a parameter setting. Because I am interested in the combined metric of
precision and recall, I used the F1−score as input for the grid search. Next I instantiated and fitted
the grid search for each model and displayed the best hyper-parameters, and the corresponding
performance. For the XGBoost and Random Forest models I used the following param grid.

param_grid = {#'bootstrap': [True, False],

'class_weight': ['balanced' , None],

'max_depth': [20,40, 60,80,100, None],

'max_features': [1,2,3,'log2', 'auto'],

'min_samples_leaf': [1,2,3,4,5],

'min_samples_split': [8,10,12,14,16],

'min_weight_fraction_leaf': [0.0,1.0,2.0,3.0,4.0,5.0],

48 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 7. MODELING

'n_estimators': [20,50,100,150]

}

grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,

cv = 5, n_jobs = -1, verbose = 2)

grid_search.best_params_

'bootstrap': True,

'class_weight': 'balanced',

'max_depth': 80,

'max_features': 3,

'min_samples_leaf': 5,

'min_samples_split': 12,

'min_weight_fraction_leaf': 0.2,

'n_estimators': 100}

best_grid = grid_search.best_estimator_

grid_accuracy = evaluate(best_grid, test_features, test_labels)

For XGBoost I included the additional parameters: grow policy and scale pos weight. Table
7.5 shows the model performance of the models using the tuned hyper-parameters and the corres-
ponding improvement.

Classifier Evaluation metric
Precision Recall F1-score

TSR = 2000 0.69 (+0.06) 0.63 (+0.02) 0.65 (+0.04)
Random Forest TSR = 4000 0.50 0.58 (+0.02) 0.53

TSR = 6000 0.63 (+0.02) 0.65 (+0.03) 0.66 (+0.02)
TSR = 2000 0.83 (+0.07) 0.74 (+0.03) 0.75 (+0.05)

XGBoost TSR = 4000 0.63 (+0.02) 0.56 (+0.01) 0.66
TSR = 6000 0.75 (+0.04) 0.77 (+0.05) 0.77(+0.03)
TSR = 2000 0.62 (+0.01) 0.61 (+0.02) 0.60 (+0.02)

Logistic Regression TSR = 4000 0.56 (+0.02) 0.56 0.56 (+0.01)
TSR = 6000 0.65 (+0.03) 0.63 (+0.01) 0.61

Table 7.5: Classifier performance after parameter optimization

Intuitively, the accuracy measures the overall performance of the classifier, while precision and
recall measure the performance on the positive (resp., negative) class only. Comparing results
from the three classifiers I can draw the following conclusions:

• The performance of the XGBoost model is slightly better than those obtained for random
forest and logistic regression, both exhibiting quite similar results.

• XGBoost model is able to reach good precision values for both ”low TSR”(p = 0.83) and
”high TSR” (p = 0.75) values.

• On the other hand, the recall for the XGBoost model is very low (r = 0.59 and f1 = 0.66);
this means that the probability of false alarm for this classifier is quite high (in 1−0.56 = 44%
of the cases, the classifier raises a false alarm.

Data-driven tool for the implementation of condition-based maintenance 49

Chapter 8

Results

8.1 Main Findings

In this section I will present the results and main findings of the modeling techniques discussed in
the previous chapter. The direct correlation between the input variables and the target variable
can best be measured using the bi-variate correlation coefficient. To investigate this, I use the
so-called Pearson correlation coefficient. This is the co-variance of the two variables (X and Y)
divided by the product of their standard deviations. The coefficient is represented by the Greek
letter ρ (rho) and the formula is as follows:

ρX,Y =
cov(X,Y)

σXσY

Where cov is the co-variance, and ρ is the standard deviation. Table 8.1 shows the features
with the highest correlation coefficient in descending order. Each feature name begins with the
name of the test, followed by the recorded measurement in bold. The correlation coefficient ranges
from −1 to 1. A value of 1 implies that a linear relationship between X and Y , with all data
points. A value of −1 implies that all data points lie on which Y decreases as X increases. A
value of 0 implies that there is no linear correlation between the variables.

The largest linear correlation (−.317 for T1 N) shows that there are no major dependency
between the individual features and the final TSR of the component. The data on parts used
and amount of hours worked also do not return in the ranking. The FREQ REG appears multiple
times in the ranking. Figure 8.1, shows the scatter-plots of the FREQ REG readings against the
TSR values.

Feature Correlation with TSR

FREQ REG TN 1 -0.317
SHORT CIRCUIT T2 to T4 Voltage 0.185
PMG VOLTAGE Exciter Current -0.185
GEN LOAD CHECK I2 -0.179
FREQ REG Avg Std State Freq 0.175
FREQ REG Recovery Steady State Freq -0.17
GEN PHASE 3 Current 0.15

Table 8.1: Ranking of linear correlation between input features and TSR

Figure 8.1(a) shows a vague S-curve. Most components have a reading of 115.4 on the TN 1
test. But components with a higher score tend to have a lower TSR, and components with a lower
reading have a slightly higher TSR value. In Figure 8.2(b) it shows that the frequency readings

50 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 8. RESULTS

(a) TN 1 against TSR

(b) Avg Std State Freq against TSR

Figure 8.1: Seaborn Scatter-plots of FREQ REG features

Data-driven tool for the implementation of condition-based maintenance 51

CHAPTER 8. RESULTS

are clustered around two values: 401.1Hz and 401.2Hz. Although the difference is minimal, the
negative Pearson correlation suggest that higher frequencies result in lower TSR. The same phe-
nomenon can be found in other features with frequency related readings.

The input data on employees, parts, and amount of hours worked, no significant individual
correlation has been found: .05, .09, and .01 respectively. An interesting finding was the relation
between TSR and HDRACC.NO. The account number or code refers to the airline owning the com-
ponent. Although this variable scores low in the Pearson score [0.02], there is one airline that has
a relatively low TSR value. The data set contained 13 components from the account CA003, with
a maximum TSR of 4892 hours, see Figure 8.2.

Figure 8.2: Box-plot of the Account Numbers (Airlines)

Count Average TSR Std. TSR

AU010 112 3412 2528
CA003 39 1128 1340
CO001 10 4967 2655
NL0012 31 3529 2402
PO040 30 4494 2672
...

Table 8.2: TSR statistics for different Airlines

8.2 Feature Importance

In previous section I reported the results and findings of the linear correlation between input
features and the output variable. In this section I will report the more complex relations that
underlie the ensemble tree models. These relations are not linear in nature and are best represented
by the feature importance of the model. It has been shown that the XGBoost model has the
highest prediction accuracy for all TSR classes. The next important step, is to look at the feature
importance of this model. Feature importance gives a score for each feature of the data, the
higher the score more important or relevant is the feature towards the output variable. Feature
importance is an inbuilt class that comes with Tree Based Classifiers, I will be using this class to
extract the top 15 features for the XGBoost model.

52 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 8. RESULTS

(a) TSR = 2000 class

(b) TSR = 4000 class

(c) TSR = 6000 class

Figure 8.3: Feature Importance plots for the XGBoost classification model

In Figure 8.3 it shows the ranking of the top 15 features based on the F-score. The F-score is
simply calculated by summing the presence of a given feature in all the trees. This is a metric that
simply sums up how many times each feature is split on. What emerges from these plots is that a
number of features score high in all three classes. Especially from the PMG Volts and the FREQ REG

appear high on the importance ranking. This is even more apparent in the display of the XGBoost
decision tree. The final decision tree is shown in Figure 8.4. Each box is headed by the name
of the feature and the cut-off value for the classification decision. Samples amounts the number
of instances at that decision points (from the test set). And the values specify what instances
belong to each TSR class. For example [5, 13, 34, 60] means that 5 instances are classified to have
a TSR of smaller than 2000 flying hours. 13 instances are classified to have a TSR between 2000
and 4000 hours, etc. The final XGBoost trees that classify each class separately are included in
Appendix E.

Data-driven tool for the implementation of condition-based maintenance 53

CHAPTER 8. RESULTS

Figure 8.4: Decision tree of the XGBoost model

54 Data-driven tool for the implementation of condition-based maintenance

Chapter 9

Conclusions and
Recommendations

In this thesis I have presented a data mining tool for the implementation of condition-based main-
tenance for the complex component. The tool benefits from the combination of both automatic
data analysis techniques and human knowledge, since machine experts are involved in several
steps, for example, to select the most important faults for the component at hand or the data
relevant to the analysis. The use of this tool to real component test and administrative data
allowed me to compare the performance of three different supervised data mining techniques on
the prediction of the remaining useful lifetime that is represented by the TSR value. Among the
considered classifiers, the XGBoost has been selected as the most effective and promising, thanks
to its higher precision on detecting low TSR values (80% precision with a 44% chance of a false
alarm) and its interpretability that could help troubleshooting.

However, based on the high chance of false alarm I do not recommend initiating the deploy-
ment of the current tool in the maintenance decision making, for a number of reasons. The tool is
still in the initial phase of development and is built on available event data from historical work
orders. This data can not guarantee an accurate prediction of the health of current and future
component work orders, as no trends in the fault mechanisms is taken into account. In addition,
a preventive maintenance decision has a major financial and logistical impact. With a high prob-
ability of a false alarm, a deployment of the tool will lead to unnecessary maintenance operations
and customer contract costs. This can also result in a lack of trust and company-wide adaptation
to future, more accurate CBM tools.

For future research there are several areas were additional research can lead to insights to
improve results in terms of predictive maintenance, prediction accuracy and cost savings. These
areas are as follows

• Fokker wants to implement CBM with prognostic features in the future, however there are
some crucial steps that need to be done before this is possible. In general, for a CBM
system, a lot of data as well as knowledge about the specific component is needed. So
the first step necessary to implement CBM is to decide which data to collect, i.e. what
should be considered as input data in the CBM program. In this step it is important
to get a thorough understanding of the component in question and decide whether the
current collection procedure specified in the CMM manual is sufficient for a remaining lifetime
estimation or if new test readings need to be logged. This can be seen in my analysis of
the correlation of the features with the component condition, where I could not find any
correlations with the TSR. In this case it might be needed to install additional hardware to
be able to log other signals that are not available today. The current situation at hand in the
analytics department is the availability of a lot of data for analysis but a lack of knowledge

Data-driven tool for the implementation of condition-based maintenance 55

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

about how to interpret the data. This could be called “data rich – information poor”.

• During my conversations and research at the Schiphol repair shop, it became clear that the
use of text and notes is widespread in maintenance documents. These notes often contain
important information about the failure mode and the repair tasks that have been taken.
Using modern techniques, this information can be converted into useful input data to pre-
dicting future failures. Text mining is a well-known technique that can be used to detect
patterns and tendencies. Concretely, texts will be automatically structured, dissected, trans-
formed, and subsequently inserted into databases where it can be evaluated and interpreted.
In my opinion, investing in text mining can generate a large amount of important data for
the application of CBM.

• A cost-benefit analysis on the trade-off between false alarms and false negatives should
be conducted. Finding the optimum balance between these two classification errors that
results in minimum costs can provide future developers of the tool information to set certain
parameters of the model in such a way that this balance is reached. In order to make this
analysis, the different costs and prices for making the errors along with their respective
probabilities should be investigated.

Since the output of this project will not go through the deployment stage which is the last
phase of the CRISP-DM framework, a reflections regarding the process should be made. The
main issue is the lack of knowledge regarding the fault causes. Without a physical understanding
of the degradation process of a component it is very difficult to analyze data and foresee when
failure will occur. Simply relying on deep-learning algorithms to find the underlying causes will
not work. Most defects are simply replaced and in general no further investigation of the fault
cause is performed. Thus, the root cause of the replacement and failure remains unknown. A
better approach would have been to have substantive discussions with maintenance engineers
about which data is relevant, and which is not. With this knowledge a number of data streams
can then be crossed out and more attention can be focused in collecting data that measures the
critical signals. Hereby, reducing the time spent on data preparation and increasing predictive
performance.

56 Data-driven tool for the implementation of condition-based maintenance

Chapter 10

References

Tenning, C. (2011). Designing the 777 Electrical Power System.

Lawrence, M., Anuj, S., and Gerald, M. K. (1995). Statistical-based or condition-based pre-
ventive maintenance? Journal of Quality in Maintenance Engineering, Vol. 1 Issue: 1, 46-59.

Rosmaini, A., and Shahrul, K. (2012). An overview of time-based and condition-based main-
tenance in industrial application. School of Mechanical Engineering, Universiti Sains Malaysia.

Srinivasan, M., and Lee, H. (1996). Production-inventory systems with preventive maintenance.
IIE Trans, vol. 28, 879-890.

McAfee, A., and Brynjolfsson, E. (2012). Big Data: The Management Revolution. Harvard
Business Review.

Wang, L., Chu, J., and Mao, W. (2008). A condition-based order-replacement policy for a single-
unit system. Applied Mathematical Modelling, 2274-2289.

Cho, D., and Parlar, M. (1991). A survey of maintenance models for multi-unit systems. European
Journal of Operational Research, 1-23.

Reinertsen, R. (1996). Residual life of technical systems; diagnosis, prediction and life exten-
sion. Reliability Engineering and System Safety, 23-34.

Scarf, P. (1997). On the application of mathematical models in maintenance. European Journal
of Operational Research, 493-506.

Van den Bergh, J., De Bruecker, P., Beliën, J., and Peeters, J. (2013). Aircraft maintenance
operations: state of the art. Faculteit Economie En Bedrijfswetenschappen.

Shearer C. (2000). The CRISP-DM model: The new blueprint for data mining.

Franks, B. (2007). International Institute for Analytics.

Taghipour, S., and Banjevic, D. (n.d.). Optimal Inspection of a complex system subject to peri-
odic and opportunistic inspections and preventive replacements. European Journal of Operational
Research, 649-660.

Data-driven tool for the implementation of condition-based maintenance 57

CHAPTER 10. REFERENCES

Jardine., A. K., Lin, D., and Banjevic, D. (n.d.). A review on machinery diagnostics and pro-
gnostics implementing condition-based maintenance. Mechanical Systems and Signal Processing,
1483-1510.

Lin, X., Basten, R. J., Kranenburg, A. A., and Houtum, G. J. (2012). Condition based spare
parts supply. Proceedings of Second International Conference on Mobile Technology. New Yotk:
Applications and Systems.

Geitner, F., and Bloch, H. P. (2012). Machinery Troubleshooting. Machinery Failure Analysis
and Troubleshooting. 4th edition. Oxford: Butterworth-Heinemann.

Zhu, Q. (2015). Maintenance Optimization for Multi-component Systems under Condition Mon-
itoring. PhD Thesis, Eindhoven University of Technology.

Martin, K. F. (1994). A review by discussion of condition monitoring and fault diagnosis in
machine tools. International Journal of Machine Tools and Manufacture, 527-551.

Davies, A. (1990). Management Guide to Condition Monitoring in Manufacture. Institution
of Production Engineers (Great Britain).

Tinga, T. (2010). Application of physical failure models to enable usage an load based main-
tenance. Reliability Engineering and System Safety. 95(10):1061-1075.

Michales, K. (2016). MRO Industry outlook. IATA 12th Maintenance Cost Conference ICF
International

MacDonald, M. (2017) Annual Analyses related to the EU Air Transport Market 2016. p.109
Wyman, O. (2016) MRO Big Data - A lion or a Lamb, Innovation and adoption in aviation MRO,
MRO Survey.

Wen, Z. and Liu, Y. (2011). Application of Prognostics and Health Management in Aviation
Industry. In Prognostics ans System Health Management Conference (PHM-Shenzhen), 2011,
p.1-5. IEEE

Zhao, C., Chen, Y., Wang, H., and Xiong, H. (2012). Reliability analysis of Aircraft Condi-
tion Monitoring Network using an enhanced BDD algorithm. Chinese Journal of Aeronautics,
25(6):925-30

Byington, C., and Stoelting, P. (2004). A Model-Based Approach to Prognostics and Health
Management for Flight Control Actuators. In IEEE Aerospace Conference, p.3551-3562

Byington, C. S., Watson, M., and Edwards, D. (2004). Data-driven neural network methodology
to remaining life predictions for aircraft actuator components. In IEEE Aerospace Conference
Proceedings, volume 6, p.3581-3589

Sun, J., Zuo, H., Wang, W., and Pecht, M. G. (2012). Application of a state space modeling
technique to system prognostics based on a health index for condition-based maintenance. Mech-
anical Systems and Signal Processing, 20(5):1189-1201

Philips, P., Diston, D., Starr, A., Payne, J., and Pandyra, S. (2010). A review on the optim-
ization of aircraft maintenance with application to landing gears. In Proceedings of the 11th
World Congress on Engineering Asset Management (WCEAM 2009), number September, p.68-76

Jianhui Luo, J., Pattipani, K., Liu Qiao, L., and Chigusa, S. (2008). Model-Based Prognostics

58 Data-driven tool for the implementation of condition-based maintenance

CHAPTER 10. REFERENCES

Techniques Applied to a Suspension System. IEEE Transactions on Systems, Man, and Cyber-
netics - Part A: Systems and Humans, 38(5):1156-1168

Philips, P., Diston, D. (2011). A knowledge driven approach to aerospace condition monitor-
ing. Knowledge-Based Systems, 24(6):915-927

Roemer, M., Nwadiogbu, E., and Bloor, G. (2001). Development of diagnostic and prognostic
technologies for aerospace health management applications. In 2001 IEEE Aerospace Conference
Proceedings (Cat. No.01TH8542), volume 6, p.3139-3147

Peng, Y., Dong, M., and Zuo, M. J. (2010). Current status of machine prognostics in condition-
based maintenance: A review. International Journal of Advanced Manufacturing, 50(1-4):297-313

Engel, S., Gilmartin, B., Bongort, K., and Hess, A. (2000). Prognostics, the real issues in-
volved with predicting life remaining. In 2000 IEEE Aerospace Conference Proceedings (Cat
No.00TH8484), volume 6, p.475-469

Pecht, M. (2009). Prognostics and health management of electronics. Encyclopedia of Struc-
tural Health Monitoring, p.1-13

Wang, W., and Christer, A. H. (2000). Towards a general condition-based maintenance model for
a stochastic dynamic system. Journal of the Operational Research Society, 51(2):145-155

Heng, A., Zhang, S., Tan, A. C., and Mathew, J. (2009). Rotating machinery prognostics: State
of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 23(3):724-739

Yang, D., Li, H., Hu, Y., Zhao, J., Xiao, H., and Lan, Y. (2016). Vibration condition monit-
oring system for wind turbine bearings based on noise suppression with multi-point data fusion.
Renewable Energy, 92:104-116

Pham, H. T., and Yang, B. S. (2010). Estimation and forecasting of machine health condition
using ARMA/GARCH model. Mechanical Systems and Signal Processing, 24(2):546-558

Phyu, T. N. (2009). Survey of Classification Techniques in Data Mining. Proceedings of the
International Multi-Conference of Engineers and Computer Scientists 2009 Vol I.

Thomas, C. Redman (2008). Data Driven: Profiting from Your Most Important Business As-
set. Harvard Business Press, 2008.

Kuhn, M., Johnson, K. (2013). Applied Predictive Modeling. 1st edition, Springer. p.70

Data-driven tool for the implementation of condition-based maintenance 59

Appendix A

Fokker organigram

Figure A.1: Organisational chart of Fokker Services and its position in Fokker Technologies

60 Data-driven tool for the implementation of condition-based maintenance

Appendix B

Slip test

Figure B.1: Slip test Limits

Data-driven tool for the implementation of condition-based maintenance 61

Appendix C

Python Models

C.1 Neural Network

Figure C.1: Neural Network Python code

62 Data-driven tool for the implementation of condition-based maintenance

APPENDIX C. PYTHON MODELS

C.2 XGBoost

Figure C.2: XGBoost Python code

Data-driven tool for the implementation of condition-based maintenance 63

APPENDIX C. PYTHON MODELS

C.3 Random Forest

Figure C.3: Random Forest Classifier Python code

64 Data-driven tool for the implementation of condition-based maintenance

APPENDIX C. PYTHON MODELS

C.4 Logistic Regression

Figure C.4: Logistic Regression Python code

Data-driven tool for the implementation of condition-based maintenance 65

Appendix D

Scikit-learn flowchart: model
selection guide

Figure D.1: Model Selection Guide

66 Data-driven tool for the implementation of condition-based maintenance

Data-driven tool for the implementation of condition-based maintenance 67

APPENDIX E. XGBOOST CLASSIFICATION TREES

Appendix E

XGBoost Classification Trees

Figure E.1: XGBoost model for TSR = 2000 class

68 Data-driven tool for the implementation of condition-based maintenance

APPENDIX E. XGBOOST CLASSIFICATION TREES

Figure E.2: XGBoost model for TSR = 4000 class

Data-driven tool for the implementation of condition-based maintenance 69

APPENDIX E. XGBOOST CLASSIFICATION TREES

Figure E.3: XGBoost model for TSR = 6000 class

70 Data-driven tool for the implementation of condition-based maintenance

	Contents
	Introduction
	Problem Definition
	Report structure

	Literature
	Maintenance policies
	Corrective (breakdown) maintenance
	Planned maintenance (PM)
	Condition based maintenance

	CBM in the aviation industry
	Implementation process of a CBM program
	Data acquisition
	Data processing
	Maintenance decision making

	Conclusion

	Research Methodology
	Research question
	Scope
	Business relevance
	Scientific relevance

	Project assignment
	Project approach: CRISP-DM
	Business understanding
	Data understanding
	Data preparation
	Modeling
	Evaluation and Deployment
	Project outline

	Business Understanding
	Fokker Services
	Advanced Analytics
	Electro-mechanical component

	Business Objectives and Success Criteria
	Data Mining Goals
	Classification
	Performance measures
	Initial Assessment Tools and Techniques

	Data Understanding
	Data Collection
	Data Sources
	Collection Procedure

	Data Description
	Summary
	Initial Insights

	Data Quality
	Accuracy
	Completeness
	Timeliness

	Data Preparation
	Feature Selection
	Data Cleaning
	Work order duplicates
	Missing values
	Encoding of categorical variables

	Data Integration

	Modeling
	Modeling Assumptions
	Model Selection
	Test Design
	Neural Network
	Decision Trees
	XGBoost
	Random Forest

	Logistic Regression
	Model Assessment
	Revised Parameter Settings

	Results
	Main Findings
	Feature Importance

	Conclusions and Recommendations
	References
	Appendix
	Fokker organigram
	Slip test
	Python Models
	Neural Network
	XGBoost
	Random Forest
	Logistic Regression

	Scikit-learn flowchart: model selection guide
	XGBoost Classification Trees

