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Executive summary

This graduation project is executed at DAF trucks N.V. (DAF), in collaboration with DAF’s costing &
analysis department. DAF is a leading truck manufacturer whose core activity is the development and
production of light-, medium- and heavy-duty commercial vehicles.

Problem statement

Along with the sale of the trucks, DAF provides its buyers with multiple warranty, maintenance and
repair contract options. In order to offer their customers competitive prices for these contracts, accurate
prediction of repair and maintenance costs of the trucks is of vital importance for DAF. Currently, the
repair and maintenance (R&M) costs for DAF’s trucks are predicted based on generalized averages over
their whole fleet of trucks and rules of thumb for certain truck features (e.g. region where it is sold and
cargo that it will carry). It is unclear how much these factors actually contribute to the total R&M
costs. Furthermore, the current calculation model is a black box for DAF. There is little knowledge
about the model design choices and the reasoning behind the underlying relations and calculations. As
a result, reasoning behind the cost formulations themselves is not known. This results in suboptimal
cost calculations, which are notable through the difference between predicted costs and actual costs of
their contracts. As DAF wants to stay competitive and increase its market-share where possible, it
is of importance that they can offer their customers optimal contract prices while maintaining their
profit margins. This is why DAF is motivated to improve the prediction of the number of repairs and
corresponding costs for their trucks. Better predictions will help them to improve the cost allocations per
R&M contract that they sell to their customers, subsequently enabling them to provide better contract
prices and thus improve their market position. Recently, DAF has installed a new feature on their trucks,
named DAF Connect. Their trucks have been fitted with all kind of sensors that collect real-time data
on the condition, usage and state of operation of the trucks. The collected sensory data is transmitted
to DAF in 5-minutes intervals. Examples of measurements are the recording of engine temperature,
intake air pressure and engine rpm. Besides the interval data, aggregated trip information is sent to
DAF each time that a truck has completed a trip. DAF wants to use these data to predict the number
of repairs and corresponding costs for their trucks, based on the characteristics (e.g. type, engine and
age) and usage of the trucks (e.g. driving style and truck condition). At the time of research it was still
unclear how these data could be used for their predictions and thus, the following research question is
answered:

How can the number of truck repairs be predicted based on telemetry truck data and truck usage infor-
mation?

Research approach

To answer the research question, four prediction methods have been developed. Random Forests and
Neural Networks have been used as literature research showed that they are often used to predict future
state, Remaining Useful Life and machine operating conditions. Although often providing good modeling
performance, this comes at the cost of limited decision rule interpretability (Negnevitsky, 2005). To
compare their performance to some relatively simple models which can be interpreted easily, logistic
regression models and Decision Trees have been constructed as well.

Together with experts at DAF, there has been decided to construct binary classification models. The
reason for this is that only a limited set of trucks is available for analysis (as DAF Connect is rather new)
while many different types of repairs exist. As a result, there is not enough information available to predict
the exact number of repairs or the associated costs (modeling tests showed very poor performance).
Instead, a binary decision is made which predicts if a truck has more or less than the average number of
repairs over the time horizon under consideration. Trucks with less than the average number of repairs
are labeled 0, while trucks having more than the average number of repairs are labeled 1. With this
classification task, there can be derived which trucks require more intensive repair and maintenance and
which trucks do not. This can subsequently be used to substantiate R&M contract costs and identify
risk vehicles regarding R&M costs.
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The models have been developed according to the six phases of the CRISP-DM framework, which are
Business understanding, Data understanding, Data preparation, Modeling, Evaluation and Deployment
respectively. During the Business understanding phase, a literature study was executed to gain insights
into the available models and methods for the problem at hand. Furthermore, expert knowledge was
used to gain insights in the business objectives for DAF and the determination of the data mining goals.
In the data understanding phase, the data has been collected from the various data-sources at DAF after
which an initial exploration has been made and the quality of the data has been verified and reported.
This is done using both visual (e.g. boxplots and barcharts) and quantitative methods (e.g. numerical
summaries). Subsequently the data preparation has been performed. First, the correct data had been
selected by excluding data of all trucks that fell out of the scope of this research. Secondly, various
feature extraction operations have been performed in order to retrieve useful features from the available
telemetry data. Lastly, various data cleaning, construction and formatting tasks have been executed to
provide a clean dataset with the appropriate formatting that could be used for modeling. In the modeling
phase, the prediction models have been created and optimized (e.g. hyper-parameter optimization and
feature selection have been applied). In the evaluation phase, the results of the finals models have been
evaluated and compared on performance, usefulness for DAF and potential for future research. Finally,
in the deployment phase this report was delivered and the findings were presented at (and reviewed with)
both the company and the university.

Conclusions and recommendations

Conclusions

The prediction models showed that there was some predictive power in the avialable data. However,
the performance of the models was limited. This was mainly caused by the fact that the available data
only covered the early life of DAF’s trucks, in which not many repairs actually occurred. Furthermore,
the repairs that did occur were of many different origins, preventing the models from deriving robust
patterns for specific or common repairs. Nonetheless, a combination of features on driving behaviour,
truck status and some passive features showed that the telemetric data had potential regarding the
prediction of repairs. The random forest showed the most potential for repair predictions on DAF’s
trucks, it had the most consistent results of the compared models. It reached an accuracy of 64%,
precision score of 67% and recall score of 64%. Lastly, it provided some insights into the features that it
selected based on the derived feature importances from the model.

Each of the models selected their own set of features for the prediction of expected repairs. However,
some features were used by multiple models and therefore, a form of feature importance validation
has been done by counting the occurrence frequency of the variables that have been used by the best
performing models. This resulted in a top 10 of most important features. With the exception of one
truck configuration feature (Asset type), the top 10 of most important features is comprised of features
that have been derived from DAF Connect, indicating its potential for the prediction of expected repairs
on DAF’s trucks. In short, these features can be divided into three categories, being driving related
features, truck status features and indirect features.From the top 10 of most important features, the
features Harsh braking duration, Tachograph speed, DPA anticipation scores and Max throttle duration
are directly influenced by the driver of the truck and thus categorized as driving related features. The
features Engine oil pressure and Engine intake air-pressure give information about the truck’s status
and are categorized as truck status features. Lastly, the features Asset type, Ambient air temperature
and Trip distance are features that are not directly influenced by the truck or the driver (assuming that
a driver doesn’t choose the trip distance, but receives this information from an external entity/company)
and labeled as passive features. In conclusion these features provide the best information about the
expected number of truck repairs.

Recommendations

there has been shown that the features that have been derived from DAF Connect show a better potential
in the prediction of the numbers of repairs than the currently used truck specifications and contract
details. Analysis of the constructed models showed that the Connect features were consistently favored
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above the currently used features. However, the current amount of available Connect data is too limited
to make useful predictions for individual trucks. Therefore it is recommended for DAF to wait until
more data is available before revisiting the problem of predicting the exact number of repairs or its costs
(i.e. at least two more years, as during that period most of the repairs occur).

It is recommended to DAF to focus on more narrowed down problems than the prediction of the total
number of repairs over a given time horizon (at least for individual trucks). Instead, it is recommended
for DAF to focus on the prediction of specific, expensive repairs before they actually happen. Extensive
literature is available on the prediction of Remaining Useful Life, Future state and Health status of
specific components or machines. For DAF, a prime example are the turbo and battery. They tend to
fail rather regularly and are costly (at least the turbo) to replace. With the right sensors in place, these
failures could be detected before they happen, allowing for the appropriate preventive actions to take
place. It is of vital importance that DAF thinks about the implementation of the right sensors to do so
now, at this point in time, because information that can be derived with these sensors only becomes useful
after months or even years of data collection. This is because currently available prediction methods
need to learn from the past (or at least have reference values) in order to come up with meaningful
predictions.

Furthermore, it is recommended to DAF to investigate the possibility to incorporate usage information
as derived in this research into their current cost calculation methods when more data has become
available. This information could be used to correct cost expectations ’on the go’. I.e. the driving
behavior of the connected trucks can be monitored while its operating and based on this, the expected
costs and/or number of repairs for specific trucks can be adjusted in the forecasts. Subsequently, specific
discounts could be offered to customers that prove to have a beneficial usage profile, either when they
buy additional trucks or during the agreed contract period itself. This would require a change in the
current business processes and thus should be investigated timely.

Lastly, some general recommendations regarding the data have been given. Much information that was
needed for this research was hidden in different databases and different sources. In order to obtain it,
many different and specific queries/scripts had to be written. Afterwards, they had to merged requiring
another set of manual operations. This made the collection of data time consuming and prevents possi-
bilities for automated analyses and data collection. It is therefore recommended for DAF to standardize
their data and documents in a single (cloud) location (which is currently explored by DAF), allowing for
much faster analyses and automation of data collection and processing.
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1. INTRODUCTION 1

1 Introduction

1.1 DAF trucks N.V.

This graduation project is executed at DAF trucks N.V. (DAF), in collaboration with DAF’s costing &
analysis department. DAF is a leading truck manufacturer whose core activity is the development and
production of light-, medium- and heavy-duty commercial vehicles.

1.2 Problem statement

Along with the sale of the trucks, DAF provides its buyers with multiple warranty, maintenance and
repair contract options. In order to offer their customers competitive prices for these contracts, accurate
prediction of repair and maintenance costs of the trucks is of vital importance for DAF. Currently, the
repair and maintenance (R&M) costs for DAF’s trucks are predicted based on generalized averages over
their whole fleet of trucks and rules of thumb for certain truck features (e.g. region where it is sold and
cargo that it will carry). It is unclear how much these factors actually contribute to the total R&M
costs. Furthermore, the current calculation model is a black box for DAF. There is little knowledge
about the model design choices and the reasoning behind the underlying relations and calculations. As
a result, reasoning behind the cost formulations themselves is not known. This results in suboptimal
cost calculations, which are notable through the difference between predicted costs and actual costs of
their contracts. As DAF wants to stay competitive and increase its market-share where possible, it
is of importance that they can offer their customers optimal contract prices while maintaining their
profit margins. This is why DAF is motivated to improve the prediction of the number of repairs and
corresponding costs for their trucks. Better predictions will help them to improve the cost allocations per
R&M contract that they sell to their customers, subsequently enabling them to provide better contract
prices and thus improve their market position.

Recently, DAF has installed a new feature on their trucks, named DAF Connect. In April of 2017
this application was considered to be correctly implemented (matured). Since then, trucks have been
fitted with all kind of sensors that collect real-time data on the condition, usage and state of operation
of the trucks. The collected sensory data is transmitted to DAF in 5-minutes intervals. Examples of
measurements are the recording of engine temperature, intake air pressure and engine rpm. Besides the
interval data, aggregated trip information is sent to DAF each time that a truck has completed a trip.
A full list of available data from both sources can be found in Appendix C. DAF wants to use these data
to predict the number of repairs and corresponding costs for their trucks, based on the characteristics
(e.g. type, engine and age) and usage of the trucks (e.g. driver style, road type and cargo). This can
then be used to define the costs of R&M contracts more accurately. At the time of research, the cost
predictions of a maintenance or service contract were based on expert knowledge and general averages
only (as explained above). Therefore, the connect data has a lot of potential and can help DAF to
identify and accurately analyze the maintenance and repair costs per truck.

1.2.1 Relevance

The manufacturing industry has to deal with an increasing global competition on product quality and
production costs (Brettel et al., 2014). To handle this, manufacturing companies transform into in-
tegrated networks where virtualization provides real-time access to relevant product and production
information for all participating entities (Brettel et al., 2014). Furthermore, ”Cyber-Physical System-
based manufacturing and service innovations are two inevitable trends and challenges for manufacturing
industries” (Lee et al., 2014). Big-data and connectivity are becoming an increasingly important part of
modern manufacturing industry. Nonetheless, many manufacturing systems are not yet ready to manage
big data as they lack smart analytic tools and knowledge (Lee et al., 2013) . Now, DAF is making its
first steps towards industry 4.0 with the implementation of Connect data in their trucks. The knowledge
that is obtained by this system can be used for Condition Based Maintenance, which is a trending topic
among manufacturing companies (Lee et al., 2014).
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1. INTRODUCTION 2

However, DAF does not only want to apply Condition Based Maintenance (CBM), but wants to make
better predictions of individual truck maintenance costs as well. For such problems, probability theory,
reliability theory and renewal processes are widely studied and put into practice (Hartzell et al., 2011).
In these studies, failure distributions and hazard rates are linked to parts, which are subsequently used
to predict the number of necessary preventive and corrective repairs that occur over certain maintenance
intervals (e.g. Weibull distributions are widely used as they provide a good fit with data in many
applications) (Arts, 2017). These kind of studies have been applied at DAF as well. The use of big-data
and machine learning for these predictions however, is a new field of application that has not yet been
implemented at DAF. R&M cost calculations are part of Product Life-cycle Management (PLM) (Lee
et al., 2008) and although big data is used for PLM to some degree, its research is ”still far from enough
because many promising ’Big Data’ applications remained undeveloped yet” (Li et al., 2015). There is
a lack of academic studies of Big-Data in PLM while being vital for fast Time-To-Market, quality, cost
reduction, flexibility and service (Li et al., 2015).

Machine learning prediction methods have been applied to vehicle time-series data (Frisk et al., 2014) and
warranty data (Prytz et al., 2015) before. Examples are the calculation of a vehicle’s Remaining Useful
Lifetime (RUL) and pattern detections in machine equipment using Random Forests (Prytz et al., 2015).
However, they all focus on the detection of failures shortly before they occur, while this research focuses
on the prediction of the number of failures that will occur over a predefined, longer time period. Research
on (lifetime) maintenance contract costs have been done as well, but often rely on statistical models,
discrete event simulations and failure rate analysis (Jackson and Pascual, 2008) (Wu and Akbarov, 2011)
(Wu, 2012). Machine Learning techniques such as Artificial Neural Networks (Rohani et al., 2011) and
Neuro-Fuzzy approaches (Chinnam and Baruah, 2004) have also been used to predict maintenance costs,
but just as in traditional reliability engineering, they focus on wear and failure rates instead of detailed
usage data such as available at DAF. The research proposed in this document tries to provide a basis
for DAF in their development of trucks towards an industry 4.0 automotive product. It aims to deliver
a prediction tool for the maintenance and repair of individual DAF trucks based on the usage data that
is retrieved from said trucks, providing DAF with a new approach to R&M predictions.

1.3 Research question

DAF has stated that, in order to stay competitive, maximize profits and simultaneously provide customers
with attractive contract prices, it is essential to predict truck repairs as accurately as possible. This
drives the desire of DAF to continously improve the understanding of factors that contribute to the
number of repairs on their trucks. The arrival of DAF Connect (telemetry truck data) presented DAF
with new business opportunities regarding the prediction of truck repairs. It sparked their interest in
the development of prediction models using the DAF Connect data in order to gain insights in the
effects of truck usage data on the prediction of repairs. Therefore, the following research question is
formulated:

How can the number of truck repairs be predicted based on telemetry truck data and truck usage infor-
mation?

1.3.1 Research sub-questions

To help answer the research question above, a set of deliverables and associated sub questions has been
formulated:

1. A definition of current repair predictions and cost calculations.

• What cost/repair data is available?

• Which factors are currently used to predict repairs?

2. An overview of available data and variables.

• Which variables can be extracted from the available data?

3. A model for the prediction of truck failures over a given period.
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• Which prediction method is most suitable for the problem at hand?

4. Evaluation of the models’ prediction power.

• What is the performance of the most suitable models?

• What variables provide information about the expected number of truck repairs?

5. Final document and presentation.

1.4 Research methodology

1.4.1 Available data

To get a better understanding of the project, a short overview of the available data is given. The data
consists of general truck information and sensory data that DAF’s trucks send to the DAF headquarters
wirelessly in regular time intervals of five minutes. This raw data is stored in an off-site data warehouse
where the data is separated and stored into the following datasets:

• General truck information data

• Trip data

• Trigger data

• Snapshot data

The General truck information data is stored in the so called Customer Contract Management (CCM)
database. For every produced truck it contains specific truck setup information as well as sales and
contract details. In fact, current contract cost predictions are based on the information in this dataset.
An overview of the variables in the dataset is found in table 2.

The Trip data collects data for each trip that a truck makes (where a trip is considered to be the time
between the start and shutdown of the engine). It aggregates the data from the trip and sends it to
the data-warehouse as a single instance. Valuable information such as the total brake duration, harsh
brake duration, max throttle duration and fuel consumption per trip are found in this dataset. In total,
46 variables are recorded per trip. A week of trip data constitutes to a size of 0.05GB of hard drive
memory.

The Trigger data records and stores sensory data from the truck, each time that a message is triggered
inside the truck. This allows for data analysis at the exact time of fault occurrence on DAF’s trucks.
Note that triggers are not just fault occurances. For example, starting and stopping the engine is also
considered to be a trigger. The trigger data set records 56 variables per entry and contains more detailed
information compared to the trip data. I.e. the current gear, engine load, coolant temperatures and
many more are recorded at the time of an event occurrence. A week of trigger data constitutes to a size
of approximately 3.00 GB of hard drive memory.

The last set contains the Snapshot data (also called 5-minute data). It is the most comprehensive set of
data, as it contains sensory data for each truck in five minute intervals. Data is sent at each interval,
regardless of the condition and state of the truck. 108 variables are recorded per truck every five minutes.
The total data size for a week’s worth of data constitutes to a size of approximately 2.00 GB of hard
drive memory.

1.4.2 Methodology

The research that is proposed in this document concerns a data mining task. The cross-industry standard
process for data mining (CRISP-DM) methodology is often used for these type of problems (Azevedo and
Santos, 2008). Although other methods exist as well (e.g.Sample, Explore, Modify, Model, and Assess
(SEMMA) and Knowledge Discovery in Databases (KDD)), they do not differ that much. Slightly
different terms and names for the research stages are used, but in the end they boil down to (more or
less) the same methodology (Azevedo and Santos, 2008). The CRISP-DM methodology is used as it
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”provides a framework for carrying out data mining projects” (Wirth, 2000). Furthermore, it is more
complete than SEMMA and KDD as it specifically starts with the business understanding phase while
the others do not incorporate this explicitly (Azevedo and Santos, 2008). Due to the vast amount of
data available and the complexity of DAF’s products and maintenance contracts, business understanding
is of importance for this research. Lastly, CRISP-DM incorporates a deployment phase, which is less
emphasized by the SEMMA and KDD methodology. Successful deployment is of significance for DAF
as it allows them to use the model for future cost predictions.

1.4.3 CRISP-DM methodology

The CRISP-DM model contains the phases, their respective tasks and outputs for data mining projects.
The model is divided into six phases, which are depicted in figure 1 (Wirth, 2000).

A short description per phase is given below:

• The Business understanding phase focuses on the formulation of business objectives and success
criteria, which are subsequently transformed into a data mining problem definition, goals and
project plan.

• In the Data understanding phase, initial data is collected, described (e.g. volume, attributes, key
relationships), explored and verified on quality (e.g. coverage, missing attributes, missing data and
deviations).

• Afterwards, in the Data preparation phase the data is selected, cleaned, constructed (e.g. transfor-
mations of month into season ), integrated and formatted (e.g. normalization).

• In the Modeling phase, the modeling technique along with its assumptions is selected and the test
design is generated. Subsequently the model is iteratively built and assessed (after which parameter
setting revision often takes place). In this phase additional data preparation often takes place.

• When the model is finalized it is evaluated in the Evaluation phase. The data mining results are
assessed with respect to the business success criteria, the process is reviewed and next steps are
determined (e.g. possible actions or decisions based on the findings).

• Lastly, in the Deployment phase, the model deployment is planned along with monitoring and
maintenance needs. A final report is created and the project is reviewed.

Important to note is that the CRISP-DM methodology is an iterative process. Moving back and
forth between phases is a common occurrence throughout the data mining project. The arrows in
the process diagram indicate the most important dependencies and iterations between phases (e.g.
Business understanding and Data understanding) (Figure 1). An overview of all tasks that belong
to the model phases is given in Appendix E.

During the Business understanding phase, a literature study was executed to gain insights into the
available models and methods for the problem at hand. Furthermore, expert knowledge was used to gain
insights in the business objectives for DAF and the determination of the data mining goals. In the data
understanding phase, the data has been collected from the various data-sources at DAF after which an
initial exploration has been made and the quality of the data has been verified and reported. This is
done using both visual (e.g. boxplots and barcharts) as well as quantitative methods (e.g. numerical
summaries). Subsequently the data preparation has been performed. First, the correct data had been
selected by excluding data of all trucks that fell outside of the scope of this research. Secondly, various
feature extraction operations have been performed in order to retrieve usefull features from the available
telemetry data. Lastly, various data cleaning, construction and formatting tasks have been executed to
provide a clean dataset with the appropriate formatting that could be used for modeling. In the modeling
phase the prediction models have been created and optimized (e.g. hyper-parameter optimization and
feature selection). Different methods were used to compare their performance and evaluate if there is
one best technique for the problem at hand. In the evaluation phase, the results of the finals models
have been evaluated on performance, usefulness for DAF and potential for future research. Finally, in
the deployment phase a report was delivered and the findings were presented at (and reviewed with)
both the company and the university.
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Figure 1: Phases of the CRISP-DM process model for data mining (Wirth, 2000)

1.5 Data mining goals and deliverables

Now, to provide an overview of the project, for each phase of the CRISP-DM model the deliverables
are defined. The deliverables are incorporated in the report and are used to answer the (sub) research
question. First, in order to obtain a proper business understanding it is important to map the current
methods that are used to predict repairs and define the business objective for the project. With help of
experts at DAF, the project is defined and data mining goals are established. Subsequently, the data is
retrieved from the different sources at DAF after which they are analyzed on their contents and quality.
The findings are summarized, visualized and presented in the data description section of this report. This
is the deliverable corresponding to the data understanding phase. Then, with a proper understanding
of the data, data preperation can be executed by selection, cleaning, construction, integration and
formatting of the data. This is done in the data preparation phase. No specific deliverable for DAF
is presented in this phase. Now, with the correct data in place, the test design and prediction models
can be constructed and delivered. This is done in the modeling phase. Subsequently the results of the
models are analyzed and assessed with respect to the business success criteria and data mining goals.
This is done in the evaluation phase and as a deliverable, the findings are summarized and visualized.
Lastly, in the deployment phase, the final report containing all findings and deliverables is presented and
handed over to DAF.

The above described data mining goals are established with the help of DAF experts and are as fol-
lows:

• Predict the expected number of repairs for trucks over the available time period.

• Evaluate and determine the prediction power of model features and analyze their usefulness in
predicting repairs.

The deliverables for each of the CRISP-DM phases as described above are summarized in Table 1.

1.6 Scope

To avoid loss of research quality, pre-determined scope boundaries are set.

The introduction of DAF connect is still very recent in terms of truck lifetime durations. At the start of
this project, roughly half a year of truck data was available. DAF has started with the implementation of
DAF connect before that time, but until April of 2017 this data has been inconsistent and unreliable. The
available useful data is therefore from trucks of an age from one to half a year old. However, according
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Table 1: Overview of the deliverables per CRISP-DM phase.

Phase Deliverable

Business understanding 1. A definition of current repair predictions and objectives of the research

Data understanding: 2. An overview of available data and variables.

Data preparation: No deliverable.

Modeling: 3. A model for the prediction of truck failures over a given period.

Evaluation: 4. Evaluation of the models prediction power.

Deployment: 5. Final document, presentation and recommendations/advice.

to DAF, peak maintenance and repair actions occur at an age of around four years. As more data is
simply not available, the research is focused on the early life of the truck, being the first half year to a
year of its life cycle.

As a consequence (of this lack of data), the research is of a more exploratory nature and thus, choices
have had to be made. Not all repairs over a trucks lifetime can be predicted. Instead, predictions are
made for early repairs. In future research, when more data is available, the findings and model from this
research can be extended towards predictions over longer periods of time.

Only the unexpected repairs are targeted in this research. This means that maintenance actions, ser-
vices, inspections and other, non-repair related adjustments to the trucks have not been taken into
account.

1.7 Thesis outline

The remaining chapters of the report are structured according to the CRISP-DM phases. First, the
findings of the literature review are given in Chapter 2. Then, the background information of the company
and the available data are described in Chapter 3 (business understanding &data understanding phases).
Chapter 4 goes into the details of the data preparation that has been executed (data preparation phase).
Chapter 5 describes the modeling setup used to perform the repair predictions (modeling phase). Chapter
6 provides the results of the models and methods used (evaluation phase) and finally, Chapter 7 provides
the conclusions and recommendations that followed from the research project.
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2 Literature review

The research in this thesis aims to predict the number of failures of trucks based on their usage. Relevant
findings on this topic as found in existing literature are described here. At first, an overview of current
failure prediction methods is given. Afterwards, failure prediction with the help of multi-variate time
series is elaborated in more detail. Then, the different machine learning techniques as used in this
research are explained. Lastly a discussion and conclusion regarding the findings in the literature are
given.

2.1 Predictive maintenance

In literature, the topic of failure prediction is often associated with Predictive maintenance and Condition
based maintenance (CBM) (Peng et al., 2010). Due to the extensive attention that these topics have
received and their close relation to failure prediction, it is included in this section. It provides an
overview of the current data mining techniques that are used in machine and vehicle prognostics and
predictive maintenance. In general, three types of predictive maintenance methods are applied, which are
Remaining useful life prediction (RUL), Future state prediction and Condition prediction (Peng et al.,
2010).

2.1.1 Remaining useful life prediction

One way to apply condition based maintenance is by the prediction of RUL. Expected times until failure
are calculated using statistical methods or data mining techniques. With these predictions, stakeholders
are able to decide if and when a component or machine needs replacement.

Frisk et al. (2014) predicted the RUL of starter batteries in heavy-duty trucks. To do this, they used
logged vehicle data that was retrieved from the trucks on a periodic basis. For a total of 33.306 vehi-
cles, 291 variables were logged. They contained both numerical (e.g. temperatures and pressure) and
categorical (e.g. model build and battery mount point) data. Important to note is that no time-series
data was collected, only aggregates such as total distance traveled and time in service. A key problem
was that out of all the available variables, it was not clear which best captured the battery degradation
characteristics. The dataset was reduced to 30 variables which were selected based on area under the
curve (AUC) of the receiver operating characteristic curves (ROC-curves) for single variable analysis and
tree error rate analysis for multivariate analysis. These variables were used to create random survival
forest, allowing for an accurate prediction of failures for a short time into the future (actual times were
confidential), using a probability of failure threshold of 0.9.

Chinnam and Baruah (2004) analyzed drilling operations to predict the RUL of drill bits. In total,
12 drill-bits were tested until failure. Thrust force and torque data were collected at 250 Hz and later
concatenated to 24 datapoints per drill operation. This time series data was subsequently fed to a focused
time-lagged feedforward network (TLFN) to predict thrust force and torque signals. These predictions
were subsequently used as two-dimensional input space for a fuzzy inference system (FIS) model to
estimate the conditional reliability. Although providing a framework and showing the feasibility of the
proposed method, no definitive performance measures were given.

RUL predictions have also been done by the use of vibration data. Wu et al. (2007) used accelerated
testing to predict the RUL of thrust ball bearings. A set of 23 bearings was subjected to a constant
load and rotational speed during which vibration signals were measured continuously. From this data a
degradation signal was derived which was used to predict the bearing’s residual life. A 3-3-1 Feedforward
Backpropagation Neural Network (FFBPNN) was proposed which used the degradation signal of the
bearings to predict the residual life percentile. Results showed an accuracy of 81.78% for a 10% prediction
error threshold and an accuracy of 97.52% for a 20% prediction error threshold.

More recently, Mathew et al. (2017) have made a comparative study of machine learning (ML) techniques
to predict the RUL of aircraft turbofan engines. For 250 engines with an unspecified sampling frequency,
run-to-failure measurements from 21 sensors were collected. Feature extraction methods were not spec-
ified. After future extraction, 10 different ML techniques were evaluated on their root mean square
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error (RMSE) scores for RUL prediction of the engines. They found that the random forest algorithm
generated the smallest error which was 29.73 time units (which are not further specified).

In general, remaining useful life predictions often concern some sort of degradation signals that have
been collected from specific machine components. Although providing reliable results for predictive
maintenance, RUL predictions are often performed for short times into the future only.

2.1.2 Future state prediction

Instead of RUL prediction, one could also use classification methods to predict the future state of
machinery. Using historic data as input, models can be constructed that predict the future state of
equipment for a given amount of time in advance (e.g.”failed” or ”not failed”).

Yang and Létourneau (2005) used decision trees and Naive Bayes classifiers to classify train axles as
either ’going to fail’ or ’not going to fail’ within a certain time period. Data was extracted from so
called Wheel Impact Load Detectors (WILD) which measures the impact force of each wheel passing
the system along with additional information such as train speed, train direction, nominal weight of the
car, name of the WILD site, and the time of the measurement. The data was collected over a period
of 17 months for a fleet of 804 train cars with 12 axles each. The resulting dataset contained 200.808
observations per axle. Expert knowledge, linear regression and Fast Fourier Transformation were used
to extract relevant features. Subsequently, different sets of these features were used to construct decision
trees and Naive Bayes classifiers. The outputs of the four best scoring models were subsequently used
to construct a meta-model which was used to classify the instances. To calculate the model, recall, false
positive rate and an own performance indicator that took into account the time between ’going to fail’
classification and actual failure were used. The final model had a recall of 0.97 and false positive rate of
0.08. Due to the lack of research in train axle failure prognostics, benchmarking with other research was
not possible.

Last et al. (2011) applied multi-target information fuzzy network (M-IFN) classification to classify car
batteries into ’broken’ or ’not broken’ as well as classification of the number of months until failure (i.e
0.0, 0.5, 1.0, 1.5, 2.0 and 2+ months). The dataset contained 46.418 periodical battery sensor records
from 21.814 vehicles. Each record contained 12 individual sensor measurements. The AUC was used as
a performance measure, scoring 0.6165. Although the model was compact and interpretable (14 rules
to classify both targets) and outperformed regular Weibull reliability analysis, its results were of limited
accuracy.

In the domain of predictive maintenance, wind turbines are of high interest (Tchakoua et al., 2014).
Large amounts of research have been executed regarding the prediction of their failures. An example is
the work of Canizo et al. (2017). They used two year of sensory data from a wind farm of 17 turbines. A
total of 104 operational parameters and 448 different alarm types were collected in 10 minute intervals.
This data was subsequently used to predict the future state of each turbine for t+10 to t+60 minutes in
advance. Principal component analysis (PCA) was used to reduce the set of parameters to 14 variables
which represented 99% of the covariance. A random forest algorithm was used to generate the predictive
models. They learned that the number of trees did not really affect the model’s precision. The effect
of maximum tree depth however, was significant. On average, the model predicted failures with an
accuracy of 82.04%, sensitivity of 92.32% and specificity of 60.58%. The results are promising, although
a relatively large amount of false positives was registered (due to low specificity performance).

Another popular field of application for predictive maintenance is found in the aircraft industry. Due to
the potentially high impact of aircraft engine failures, early detection of failures is of high interest (Hong
and Meeker, 2010). Byington et al. (2004) for example, have predicted the RUL for aircraft actuator
components. Test data that was made available by Boeing was used to construct Fuzzy logic classification
models, where the classification itself was based on RUL threshold levels. Feature extraction was done
by signal processing and neural network modeling. Models ranged from 8 to 20 classifications, providing
an overall error rate of 4% over 106 classifications and a maximum error of 10%.

On a first glance, future state prediction has a promising resemblance to our problem. It is often
performed with the help of multi-variate data such as done by Yang and Létourneau (2005), Last et al.
(2011) and Canizo et al. (2017). A recurring processing step involves the reduction of number of features
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when one is presented with a large dataset. Different techniques such as PCA (Canizo et al., 2017),
Neural network modeling (Byington et al., 2004) and expert knowledge (Yang and Létourneau, 2005)
can be used for feature selection. Furthermore, the future state is predicted using a range of different
machine learning techniques. Now, although these techniques show promising results for the classification
and prediction of the future state of a vehicle, they often predict the future state for a relatively short
time in advance (i.e. hours or days.) No research was found on the prediction of total breakdowns or
repairs over a long period of time such as presented in this research.

2.1.3 Condition prediction

Lastly, machine learning is used to predict the future condition of machines. It differs from future state
prediction with respect to the output of the models. Where future state prediction applies labeling for
classification, condition prediction uses regression to predict values such as temperature, vibration, fuel
level and so on.

For a set of 24 wind turbines Kusiak and Verma (2012) collected four months of sensory data that was
recorded over 100 parameters in 10 second intervals. This data was used to predict bearing failures in-
side the turbines. In order to reduce the number of variables, domain knowledge was applied to discard
50 parameters. Subsequently, three different wrapper algorithms were used to select the most relevant
parameters, being wrapper with genetic search (WGS) , wrapper with best first search (WBFS), and
a boosting tree algorithm (BTA). The final dataset contained the 18 most relevant variables. Multiple
multilayer perceptrons neural networks (MLP) with different configurations were constructed to predict
the turbines’ future state based on bearing temperature. Model performance was evaluated on absolute
error (AE), mean absolute error (MAE), relative error (RE), mean relative error (MRE) and coefficient
of determination (R2). A three layered 18-17-1 MLP proved to give the best performance with a MAE
between 0.765-0.860◦C, MRE between 1.65-1.88%, and (R2) coefficient between 0.998-0.994 for the train-
ing, testing, and validation set. Although a good performance was realized, the model only predicted
failures 1.5 hours in advance.

In a similar fashion as Kusiak and Verma (2012), Chaochao Chen et al. (2011) have applied condition
prediction of bearings in helicopter gearboxes. For a period of 1000 ground-air-ground cycles of the
helicopters, vibration features were extracted and used to develop a Neuro-Fuzzy system combined with
a Bayesian estimation technique. Its performance was compared to a recurrent neural network (RNN),
adaptive neuro fuzzy inference system (ANFIS) and adaptive recurrent based neuro fuzzy inference sys-
tem (ARNFIS) for the RMSE on predictions from r to 5r time units in advance (where r is a confidential
unit of time). The results demonstrated that the proposed method’s prediction accuracy was higher than
those of the three classical predictors. A RMSE from 0.0611 (r steps ahead on some weighted frequency
measurement) to 0.0822 (5r steps ahead) was realized for the bearings’ vibration prediction.

Marinelli et al. (2014) predicted the future condition of earthmoving trucks in Greece. For a set of
124 vehicles their capacity, age, kilometers traveled and maintenance level were acquired. These were
subsequently divided into a training, validation and test set and fed to a multilayer feedforward neural
network (MLFN) with one hidden layer to predict the condition level of the trucks (divided over four
classes). The neural network had an overall accuracy of 94.7% but no specification was made on the
amount of time that the model predicted ahead.

Although condition prediction is useful for the planning of maintenance or the prediction of failures for a
short time in advance, the prediction of condition often involves specific components or the use of basic
parameters such as age and distance traveled (e.g. (Marinelli et al., 2014)) or univariate measurements
such as bearing vibrations (e.g. (Chaochao Chen et al., 2011)). The resemblance with our research
regarding the type of data available and the predictions desired are low and therefore not directly
applicable in this research.

In general, existing research on predictive maintenance and failure prediction are focused on upcoming
failures. They provide accurate results but none of them focus on the number of failures over time. They
do however, show interesting insights about previous use of sensory data for the prediction of failures and
breakdowns. Furthermore, insights on feature extraction and selection from multi-variate datasets have
been discovered. However, the research as described above does not focus on multi-variate time series
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data, such as available at DAF. This is why the next section is introduced. It describes the available
literature on time series analysis on failure prediction.

2.2 Time series analysis

Reviewing the current methods of failure predictions revealed that the use of multi-variate (real time)
time series data to predict the number of failures on individual trucks has (to the best of our knowledge)
not been applied until this date, already pointing out the scientific relevance of this research. Nonetheless,
in this section an effort has been made to couple the existing literature on time series analysis to the
problem of truck failure predictions.

2.2.1 Traditional (time series) warranty and repair analysis

At first, the most common and simple form of time-series analysis for machine failure prediction is
described. It is based on univariate or bivariate usage data such as age, mileage and historic warranty
claims. Such predictions are common in the manufacturing industry and have been widely studied in
literature (Murthy and Djamaludin, 2002).

Wu and Akbarov (2012) for example, used historical warranty claim information to predict the number of
warranty claims of a product in the next k months starting from the current month. They fitted an inverse
Weibull distribution to the number of claims for a total of 20.000 products consisting out of 30 product
types. Subsequently, they used a non-homogeneous Poisson process and constrained maximum likelihood
estimations to build the forecasting model. The performance was measured using the normalized root
mean squared error (NRMSE) resulting in an average error between 0.13 and 0.24 depending on the
amount of months planned ahead.

Hong and Meeker (2010) used the warranty data in a different manner. They extracted use-rate and
cycles-to-failure (nr. of uses until failure) information from high end copying machines together with
three forms of occurred failure modes. Again, distribution functions were fitted to the data which were
subsequently used to calculate the remaining life and number of failures over a given period.

In similar fashion, many other papers that use univariate of bivariate data for their research are available.
Common examples for machine and truck warranty analysis are age based (Lawless, 1998), mileage
based (Ye and Murthy, 2016) and failure/hazard rate based (Jackson and Pascual, 2008) predictions.
Although providing a well established base for repair predictions, these methods are not able to take full
advantage of the specific (and multivariate) truck usage data such as available at DAF. They are accurate
for the prediction of fleet failure behavior but generalize their predictions too much to make accurate
predictions on individual machines or vehicles (Meeker and Hong, 2014). Instead, a more comprehensive
analysis in the form of multivariate time series analysis is desired, which is described in the following
two paragraphs.

2.2.2 Feature based time series analysis

One way to classify time-series data is by the extraction of relevant features from the data that describe
the time series. These can subsequently be used in classification and prediction methods such as decision
trees and neural networks.

Extensive literature on feature selection from time-series data is available. They are most often used
when comprehensibility of the variables and methods is desired. The extracted features can be used in
white box models such as regression models, decision trees and random forest (Rodŕıguez and Alonso,
2004).

Rodŕıguez and Alonso (2004) extracted averages and deviations to construct interval-based decision
trees. The method has been applied to different multivariate time series datasets. It proved to be
competitive with other methods of decision tree construction. However, comprehensibility comes at a
cost. Methods such as boosting outperform the interval-based decision tree on accuracy performance
but reduce comprehensibility of rules.
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Khaleghi et al. (2016) used estimators of distributional distance between time-series sequences to con-
struct a clustering algorithm. Data was taken from the MOCAP database, representing human locomo-
tion. They evaluated the model on entropy score and accuracy, showing that their model outperforms
current methods as used on the MOCAP dataset. They also showed that their methods can have worse
results for non-ergodic data.

Another method of feature extraction is to sum the time series data over a certain period and use these
aggregations as features for the prediction models. Prytz et al. (2013) used aggregated vehicle log data
from eighty trucks as input for their models. Hundreds of variables were reduced to twelve parameters
based on expert knowledge and subsequently used to classify a compressor component into healthy or
faulty. Random Forests and K-nearest neighbors algorithms were constructed. Although the amount of
data available was limited and feature selection was based on expert knowledge only, the method proved
to outperform the company’s scheduled maintenance plans.

Later Prytz et al. (2015) revisited the problem of air compressor failure predictions, but applied different
methods for feature selection. From approximately five-hundred available variables,the 14 most relevant
ones were selected. Guyon and Elisseeff (2003) and Bolón-Canedo et al. (2013) provided an extensive
overview of feature extraction methods. From these methods Prytz et al. (2015) adopted a wrapper
and filter approach to search for optimal feature sets. Subsequently these feature sets were compared
to a feature set as comprised by domain experts. They showed that the wrapper and filter methods
outperformed the expert’s feature set using the random forest method.

Additionally, clustering of multivariate time-series (MTS) datasets can be performed based on similarity
factors. Singhal and Seborg (2006) classified the operating condition for a batch fermentation process
in a production plant. The dataset consisted out of 12 temporal values that were measured in 1 minute
intervals for thirty hours. A total of 100 process batches was clustered. They used a Principal Component
Analysis similarity factor, Euclidean distance measure and Gaussian probability distribution measure as
similarity factors. They showed that their clustering method was more accurate than the clustering of
unfolded data and outperformed current methods as applied on that dataset.

Baydogan et al. (2013) argue that, for long time series, it is more appropriate to measure similarity from
higher level structures instead of local comparisons by similarity factors such as Dynamic Time warping
(DTW) and Euclidean distance measures. They extracted global properties from the time-series after
which they tried to improve the classification by the addition of local properties. The time-series were
divided into intervals after which features such as slopes, means and variances from these intervals are
extracted and used in the prediction models. The classifier was trained with support vector machines
(SVM) and random forests. Subsequently, its performance was compared to classifiers with DTW and
global features using 45 of the publicly available UCR time series database. The results were promising,
showing that it outperformed the other methods on most of these datasets. Baydogan et al. (2013)’s
research was based on univariate time-series. The work from Wang et al. (2016) provides a method to
extend these kind of feature derivations for MTS’s. In a similar way as Baydogan et al. (2013) they
derive features from the univariate series of a dataset. Subsequently, the most powerful features are
selected after which they are concatenated to form a vector of features that represent the whole MTS
dataset. These are then used to classify the MTS’s. The method was tested on a set of human motion
capturing data which contained 10 different movements (classes) measured on 25 variables. After feature
extraction and selection, 10 features remained which resulted in a classification accuracy of 89%.

In general, the available literature on MTS analysis is relatively scarce (Fulcher and Jones, 2014).
Nonetheless, global feature extraction (e.g. mean, weighted average, variance, skewness, , min, max
etc.) in combination with local feature extraction have shown promising results with regard to MTS
classification and clustering. To a lesser extent, similarity factors (e.g. dynamic time warping, euclidean
distance measures etc.) have been used for MTS classification as well. However, they can be outper-
formed by feature extraction methods and result in a less interpretable analysis of the classifier rules
(Fulcher and Jones, 2014). The latter methods are explained in the following paragraph.

2.2.3 Pattern based time series analysis

Besides the feature extraction methods as described above, other methods of time series analysis have
been researched as well, focusing less on the comprehensibility and feature extraction from the data and
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more on accuracy of results.

Wang et al. (2016) proposed the use of deep neural network learning for MTS dataset classification. They
argued that their methods are pure end-to-end without the need for heavy pre-processing steps. Deep
multilayer perceptrons (DMLP), fully convolutional networks (FCN) and residual networks have been
constructed and evaluated on 44 univariate UCR time series datasets as a benchmark test. The results
were comparable to other methods, but as stressed, required much less pre-processing. Furthermore,
the proposed methods tend to over-fit due to the large number of layers and model interpretability is
poor.

In a similar manner, Zheng et al. (2014) have used deep learning to classify MTS datasets. They
proposed a Multi-Channels Deep Network to learn features from the individual dimensions of the time-
series and subsequently concatenates them and feeds them to an MLP to perform classification. They
evaluated their method on two real-world datasets. The first dataset contained 19 classes of physical
activities performed by 9 subjects which were measured on 52 variables. This resulted in a dataset of
3.850.505 instances. The second dataset is comprised of 53, 8-minute recordings of ECG, PPG, and
impedance pneumography signals (with a sampling frequency of125 Hz.). They showed that their model
outperformed state ot the art DTM nearest neighbor algorithms on both datasets, obtaining an accuracy
of over 90% on both sets. However, algorithm and classification rules are not visible and thus the
model’s underlying methods are a black box. Furthermore, they estimated that it would take a nearest
neighbor algorithm with Dynamic Time Warping one month to perform its classification, due to the
computationally expensive DTW similarity measure.

2.3 Modeling techniques

Learning method In order to select the appropriate modeling technique, the learning method has
to be defined at first. In general, there are two types of inductive-learning methods, being supervised
and unsupervised learning. Supervised learning is used when output values (or classes) for the training
samples of the machine learning model are known and the model response can be evaluated directly.
With unsupervised learning, the input values are given to the learning system while no output value
(classes) are known during the learning process. The goal of unsupervised learning techniques is to
discover natural structure in the data while supervised methods are used to predict labels or numbers
(Kantardzic, 2011). For the study at DAF, the number of repairs on trucks and their associated costs are
stored in local (and cloud) databases and thus output values are known upfront. Therefore, the learning
method is of the type supervised learning.

Machine learning techniques With the learning method established, a decision had to be made on the
machine learning techniques to be used for the study at DAF. Many different methods exist and there is
no distinct preference for each of the models as this is dependent on multiple, case specific factors. Some
models such as decision trees and logistic regression models are easily interpretable due to the ability
to graphically visualize the decision rules (when their size is kept small) and feature importances can
be derived. Other models such as neural networks are more of a ’black box’ model and often require a
relatively large amount of data but are highly capable in modeling non-linear input/output relationships
(Byington et al., 2004).

Now, the goal of the project is two-sided. On the one hand there is a desire to achieve a high as possible
model performance, as this is used to evaluate the potential of DAF Connect regarding repair (cost)
predictions. On the other hand, clarification of decision rules and feature importance interpretability is
desired as these can be used by DAF to derive business rules regarding contract costs and maintenance
schemes for trucks in the future.

Random Forests and MLP’s are used as modeling techniques in this research because literature research
(Chapter 2) showed that they are often used to predict future state, RUL and machine operating condi-
tions. Although often providing good modeling performance, this comes at the cost of limited decision
rule interpretability (Negnevitsky, 2005). To compare their performance to some relatively simple models
which can be interpreted easily, logistic regression models and Decision Trees are constructed as well.
Their working is explained in short below.
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2.3.1 Logistic Regression

The first modeling technique is logistic regression. It is a relatively simple method that is used to predict
a binary dependent variable (Y=1 or Y=0) based on a set of predictor variables X. For the study at DAF,
a truck having ’many repairs’ is classified as 1 and a truck having ’few repairs’ is classified as 0. Using this
logic, the regression coefficients (also called beta-coefficients) of the features in the model can be used to
derive the relation of the features with respect to the output class. A positive beta-coefficient indicates
a contribution to output class 1 while a negative regression-coefficient does this for class 0.

In short, the Logistic Regression model with k different independent variables is given by:

P (Y = 1) =
1

1 + e(β0+β1∗n1+β2∗n2+...+βk∗nk)
(1)

where P(Y=1) is the probability of a truck having many repairs and β0 + β1 ∗n1 + β2 ∗n2 + ...+ βk ∗nk
are the corresponding regression coefficients (Kurt et al., 2008).

Formally, equation 1 is the following function solved for p:

log
p(y = 1)

1− p(y = 1)
= β0 + β1 ∗ n1 + β2 ∗ n2 + ...+ βk ∗ nk (2)

This transformation of the outcome is called the logistic (or logit) transformation. Fitting the data to
this logit function is known as logistic regression.

2.3.2 Decision Trees

A decision tree describes a data set by a tree-like structure. It starts with a so called root node from
which it develops new nodes, branches and leaves. The root note includes all data which is split over
different nodes as the tree grows deeper. The goal of these splits is to separate the data into subsets of
increasing purity with regards to the dependent variable (classification label in our case). Thus a split
in the decision tree corresponds to a predictor (variable) with the maximum separation power over the
(sub)set under consideration. For a better understanding, an example of a small decision tree is given
in Figure 2.

Figure 2: An example of a decision tree .

In this case, the root node is represented by the mean ambient air temperature as measured by the truck.
The importance of the feature is calculated as the decrease in node impurity weighted by the probability
of reaching the node. The probability of reaching the node is easily calculated by dividing the number
of samples that have reached te node by the total number of samples. The node impurity is represented
by the Gini scores of the nodes:

GiniScore = 1−
C∑
i=1

(Pi)
2) (3)
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where C is the number of unique labels (or categories, which are 2 in our binary classification case) and
Pi is the chance that an instance in the node under consideration is of class i. Thus, the Gini score
becomes zero when all cases fall into a single category and 0.5 when the cases are equally split over both
categories.

As an example, the Feature importance of the ’Maxtachographspeed’ in Figure 2 is calculated as fol-
lows:

1. Impurity decrease to the left: (0.493− 0.482 = 0.011).

2. Impurity decrease to the right: (0.493− 0.425 = 0.068)

3. The probability of reaching the node to the left: 74/239 = 0.309

4. The probability of reaching the node to the right: 75/239 = 0.314

5. Finally, the Feature importance is then calculated by: 0.011 ∗ 0.309 + 0.068 ∗ 0.314 = 0.025

Note that a feature can appear in a tree multiple times. In this case, their values are summed. For a more
detailed explanation of the Gini index we refer the reader to the work of Rutkowski et al. (2014).

Furthermore, for the remainder of this report, the feature importances are given as normalized scores
(i.e. summing them to 1) in order to provide a clear view of the relative feature importances in the
models.

2.3.3 Random Forest

The random forest is a so called ensemble learning method. Basically, it is an ensemble of Decision
Trees as explained above. A multitude of different decision trees is built after which majority voting is
used to perform classification. These trees are somewhat random due to the fact that random sets of
observations and features are used to construct the individual trees. In short, the algorithm works as
follows (Liaw and Wiener, 2002):

1. Draw (bootstrap) samples from the dataset.

2. For each sample, grow a classification tree where at each node, a random sample (instead of all) of
the predictors is evaluated to choose the best split.

3. New data is subsequently classified by aggregating the predictions of the individual trees that have
been constructed in the forest. To do this, majority voting is used.

The random forest returns a matrix where the rows represent the test instances and the columns represent
the scores for each classification label of the data. This score is given by the fraction of trees in the model
that classified (or voted) the instance to be of the label represented by the column. The model than
chooses the label with the highest fraction (most votes) as the final label for the test instance under
consideration. This is called majority voting. In general, the randomness and majority voting in the
model prevents over-fitting and allows for good generalization over the data (Breiman, 2001).

2.3.4 MLP Neural Network

The last modeling technique that is considered is the MLP-Neural network. It is a feed-forward artificial
neural network, consisting of an input layer, 1 or more hidden layers and finally an output layer. Each
layer (except the input layer) consists of a set of nodes, which are neurons that utilize a nonlinear
activation function. For clarification an example MLP is given in Figure 3. It is an MLP with n input
nodes (features) and 1 hidden layer with k neurons. The output is a non-linear function approximation
which can be used for both classification and regression.

Now, in every hidden layer, the neurons transform the values of the previous layer with a weighted sum
of the inputs and the specified activation function (e.g. step functions, logistic functions or tangens
hyperbolicus functions). The model is trained using back-propagation, where the weights of the connec-
tions are adjusted based on the strength of each node’s contribution to the final prediction made by the
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Figure 3: Simple schema of a MLP-NN with 1 input layer, 1 hidden layer and 1 output layer.

network. The mathematical optimization algorithm to do this is called gradient descent (Witten, I. H. ,
Frank, E., 2016). In short, the steps to train the model are as follows:

1. Initialization: Weights and biases are initialized based on a normal distribution with a mean and
variance of zero.

2. Sample presentation: Provide the training samples to perform forward and backward passes.

3. Forward pass: Propagate a training sample from the input, through all layers until the output and
calculate the error signal.

4. Backward pass: Recursively compute the local gradients from the output layer, through all layers
until the input layer and adapt the weights according to the error gradient.

5. Iterate steps 2 till 4 until a stopping criterion is met (e.g. gradient vector has reached a small
enough gradient, output error size is sufficiently small, the generalization performance has peaked
or the maximum number of iterations has simply been reached).

The advantage of neural networks is that they are capable to learn complex non-linear relationships in
the data. However, this comes at the cost of model interpretability as neural networks are often described
as black boxes (Witten, I. H. , Frank, E., 2016). The model has been incorporated in this research in
order to see if a higher classification performance could be reached by sacrificing understandability and
feature importance evaluation.

2.4 Previous work

Recently, another study regarding the prediction of the number of truck repairs has been executed at
DAF. The research executed by Goudsmits (2018) aimed to predict the number of truck repairs over
time based on truck specifications and repair and maintenance contract details (i.e. intended truck
usage, cargo, area of operation and so on). He found that inspection interval, homecountry, body type
and estimated yearly mileage were important factors for the prediction of the total number of repairs
over time. The difference in his work and this research is the fact that DAF Connect was not used for
the repair predictions, as it was not available at the time of his research. In addition to the use of DAF
connect, the truck specification data is used as well. As this has been derived from a similar dataset
as used by Goudsmits (2018) and the goal of the research is similar (predicting the number of truck
repairs), the results from this research are compared to those of Goudsmits (2018).

2.5 Discussion

Traditional repair and maintenance cost analyses using warranty claim data and basic time-series data
such as age, failure rates and mileage do not take full advantage of the multivariate usage data at DAF
and are therefore not suitable for this research. Instead, methods associated to multivariate time series
analysis appear to provide more promising results.
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There are two ways to approach MTS analysis. On the one hand, one can use methods such as (deep)
neural networks to achieve maximum accuracy prediction at the cost of model intepretability (Wang
et al., 2016) (Zheng et al., 2014). On the other hand, one can use more interpretable methods such as
decision trees and random forest at the cost of accuracy performance (Baydogan et al., 2013) (Bastos
et al., 2014) (Prytz et al., 2015). Which of the two approaches is best depends on the goals of the
research.

Important to take into account when analyzing MTS data is the required computational power. MTS
distance similarity measures such as DTW and Euclidean distance calculation show promising classifica-
tion results (Singhal and Seborg, 2006) but Zheng et al. (2014) showed that unmodified similarity factor
analysis of a multivariate time-series dataset with ’just’ 3.850.000 instances would already take at least
a month of calculation time on an average computer.

2.6 Conclusion

The goal of this research is to predict the total number of failures over a given period. This is subsequently
used to explain, based on truck usage, which customers are likely to have many repairs and what the
explaining variables/causes are. Literature review showed that traditional predictive and condition based
maintenance methods, although providing accurate results for failure predictions over short time periods,
are not used to predict the total number of failures over long periods of time. Furthermore, they make
no use of multi-variate time series telemetry data to do these predictions.

More resemblance to our research can be found in literature concerning multi-variate time series analy-
sis. Although lacking research about aggregate number of failure predictions as well, it provided useful
insights about approaches to multi-variate time series analysis and it’s application to failure predic-
tions.

Overall, comparing the reviewed repair and maintenance prediction methods in combination with the
available data showed that global feature extraction in combination with local feature extraction such
as applied by Baydogan et al. (2013) provided the most promising results.

Lastly, four different suitable modeling techniques have been identified during literature review. These
are logistic regression, decision trees, random forests and neural networks respectively. Random Forests
and neural networks are often found in literature regarding predictive maintenance and thus used in
this research. To compare their performance to some relatively simple models which can be interpreted
easily, logistic regression models and Decision Trees are constructed as well.
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3 The company and the available data

In this chapter, the background of the company is given. Their products are explained and the department
in which this research project is executed is described. Secondly, the available data is described and data
exploration findings are given.

3.1 The company

DAF’s headquarter is based in Eindhoven, the Netherlands and recently celebrated its 90th anniversary.
In 1928, the company was founded by Huub van Doorne as a simple engineering and blacksmith workshop.
Over time, it quickly developed into the leading truck manufacturer that it is today. The DAF Euro
6 is the latest truck model which has received an additional overhaul last year, meeting the latest
environmental requirements and providing the best comfort, quality and efficiency to date.

Besides Eindhoven, DAF has production facilities in Westerlo, Leyland (England) and Ponta Grossa
(Brazil). The total production area covers approximately 2.200.000m2, allowing for a total workforce
of 9240 FTE (fulltime-equivalent). DAF produces trucks according to the ’built-to-order’ principle,
meaning that trucks can be built according to specific customer needs. In 1996 DAF has been taken over
by PACCAR inc, being a subsidiary ever since (DAF, 2018a).

Currently, DAF produces no less than 240 trucks per day. Allowing for a European market share in
the heavy and light segment of 15.5% and 10.1% respectively. DAF is the market leader for the heavy
segment in the Netherlands, Great Britain, Poland, Hungary and Bulgaria. Furthermore, it has a growing
presence outside of Europe. Market positions in e.g. Ecuador, Peru, Chili an Colombia are strengthening
due to the expansion of dealer networks in these countries and the recently opened manufacturing plant
in Brazil (DAF, 2018a).

3.2 Products

3.2.1 Truck type

DAF distinguishes three main types of trucks, being the LF, CF and XF (Figure 4.) (DAF, 2018b). The
XF is DAF’s long haul truck of choice. Offering optimal transport efficiency, reliability and the lowest
fuel costs. The CF is DAF’s medium sized all-round truck, excelling in its versatility. This makes the
CF most suitable for all-round transport and non-standard applications such as garbage collection and
construction work. Lastly, the LF is most suitable for short-haul (distribution) transport. Its size and
engine types ensure ideal efficiency and fast delivery (DAF, 2018b).

Each customer and transport application has different requirements. This is why DAF allows its cus-
tomers to configure trucks according to their own unique wishes. Choices range from axle configuration
and cabin type to safety features (e.g. night-lock) and the selection of the steering wheel material (DAF,
2018b).

In addition, DAF supplies its engines and axles to coach, bus, off-road and agriculture vehicle manufac-
turers and provides financial lease for its own trucks through PACCAR financial inc.

Figure 4: DAF’s newest LF, CF and XF series respectively.
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3.2.2 Chassis type

Besides a truck type, different chassis and corresponding axle configurations are available as well. For
the chassis there is an option for either a rigid (FA) or tractor (FT) chassis. Rigid trucks have their
container directly attached to the chassis while tractor trucks carry detachable trailers (figure ??).

Lastly, the different kind of axle configurations (each for its own cargo and transport purposes) can be
found in Figure 5. Of these configurations, the standard FA and FT configuration are sold the most.
The actual most sold configuration differs per truck type. For example, for rigid XF trucks the FAR
configuration is in higher demand than the FA configuration.

Figure 5: DAF’s available axle configurations.

3.3 Service and aftersales

3.3.1 Warranty and R&M contracts

For each produced and sold truck, DAF offers multiple services and aftersale options. A standard one
year full warranty and two year driveline warranty is included in each truck sale, after which customers
can add additional services such as Repair and Maintenance contracts (R&M contracts), Road side
assistance, Financial services and Driver training (DAF, 2018c). As the research concerns the repair,
maintenance and failures of trucks, the R&M contracts (also called DAF MultiSupport packages) are
elaborated below.

Customers can choose from a range of six pre-defined maintenance packages at DAF. Each package has
the option for some additional services as well. The packages including optional services are shown in
Figure 6.

The Warranty plus - Driveline and Warranty plus - Vehicle packages provide additional warranty on
top of the standard warranty period, but do not include any of DAF’s additional support services. They
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Figure 6: DAF’s available Multi-support packages (DAF, 2018c).

focus solely on the repair of parts that do not experience wear. The Care+, Xtra Care, Flex Care and Full
Care packages do offer these additional support services (DAF, 2018c). R&M contracts (called packages
at DAF) can be closed for up to ten years, while warranty contracts run for a maximum of three years.
For an overview of the distribution of contracts per truck, the reader is referred to Appendix F.

3.3.2 MultiSupport Calculator

For the price calculations of a MultiSupport package, DAF has developed an online price calculator that
is used to negotiate and agree on the total package price. The costs are calculated not only on the chosen
package and options, but includes specific driver/truck information as well. For example, the country
in which a truck operates and the payload that it is expected to carry also influence the total price.
The features as used in the current R&M contract price calculations are given in Table 2. Based on the
input, contract costs are derived and one out of three maintenance schedules is selected. The inital price
of the contract is based on the selected truck type. Depending on the other inputs (i.e. the variables
from Table 2), additional costs are added to the initial price, based on cost curves and expected costs as
assigned to the selected variables.

Customers that have bought a MultiSupport package can go to official DAF dealers and franchisers for
necessary repair and maintenance actions. The dealers can subsequently make a claim for the costs of the
executed repair or maintenance actions after which DAF checks the validity of the action and reimburses
the dealer when approved. It is possible that dealers sell a truck without one of DAF’s own support
packages. In that case, the dealer often provides its own contracts or uses other third party insurances,
meaning that no claims can be made at DAF (except for the standard first-year warranty repairs).

3.3.3 Costing & analysis

The department at which the research is conducted is the Costing & Analysis department. It is a relatively
new department that is founded in 2014. Before that time they were part of the Commercial services
department. The main tasks of the department are analysis and reporting, cost curve management, data
quality management and predictive tasks. Among others, the department is responsible for the prediction
of total R&M contract costs.
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Table 2: The features that are currently used for the price calculations of R&M contracts.

Feature Description

Contract package MultiSupport care package of choice.

Options Additional options to the pre-fixed care package.

Contract lenght Length of the contract in years.

Start kms The total mileage on the truck at the time of contract closing.

Vehicle age The age of the vehicle at the time of contract closing.

Yearly mileage The expected amount of driven miles per year.

Oil type gearbox The type of oil in the truck’s gearbox (as different grades of oil are available).

Oil type rearaxle The type of oil in the truck’s rearaxle.

Oil type engine The type of oil in the truck’s engine.

Truck model XF, CF or LF.

Truck series Model version.

Body type The type of body that the truck carries (e.g. rigid, tractor, box or demounting).

Chassis type Type of chassis on the truck.

Axle configuration Axle setup on the truck.

Engine type The specifications of the engine inside the truck.

Emission The emission label of the truck (e.g. EURO 3,4,5 or 6).

ADR Certified to transport dangerous goods (yes/no).

S&M inspection interval The agreed time between maintenance inspections (for english trucks only).

Service interval engine The agreed duration for engine oil replacement intervals.

Power Take Off The average hours per day that the Power Take Off on the truck engine is used.

Gearbox Type of gearbox inside the truck.

Tractor coupling type Tells whether a coupling is fitted or not.

Retarder System Type of retarder system fitted inside the truck (if any).

Nr. of drops per day The expected amount of cargo drops that the truck will make per day.

Area of operation The geographical area in which the truck will operate.

Type of operation The type of trips that the truck will make (e.g. long haul or regional).

Road type What share of it’s trips the truck will drive off-road.

Application The type of cargo that the truck will carry (e.g. sand & gravel, pallets or waste).
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The data that is used in this research is extracted from a range of different data sources. In order to
provide the reader with a clear overview of the available data, the contents of the datasets and the
information that is extracted from them are described next.

3.4 Data sources

The data that is used in this project has been extracted from multiple sources, which on their turn, exist
of one or more subsets of data. An overview of the different sources is given in this section. The data
from the different datasets are linked to the trucks by truck identification number which is present in
each of the datasets, called the vehicle identification number (VIN).

3.4.1 CCM truck data

The CCM database contains the relevant information regarding the warranty and R&M contracts that
are sold with the trucks. It contains the truck’s specification information (e.g. model, engine type
and production date) and customer contract information (e.g. home country, warranty package, R&M
contract type and delivery date). A complete overview of the variables is given in Appendix A.

3.4.2 Mi claim database

Repairs are executed and claimed by official DAF dealers and workshops. Each claim is either entered
into the so called Dealer Claim Entry system (DCE) or Service Claim Handling (SCH) system after
which it is stored in the claim database, called the Mi claim database. It contains information about
the truck and corresponding customer, details about the repair and all relevant costs associated to it.
When a repair is claimed at DAF, it is not automatically reimbursed. Each individual claim has to
pass a claim review first. It is not uncommon that claims are declined, for example when unreasonable
prices are charged or excessive labor hours are registered. In this case, the dealers can opt to pay the
unaccepted claim amount by themselves. The paid amount is then stored in the data base as a local
policy payout. When dealers don’t reimburse the customer either, the claim is definitively declined. The
reviewed claims and the outcomes are all stored in the Mi claim database. An overview of all variables
in the dataset is given in appendix B.

3.4.3 Connect database

The connect database holds all the truck usage data that is collected from the trucks that are operating
in the field. Operational data is collected from the trucks by a multitude of sensors, after which it is
sent to DAF by the use of telemetry and stored in off-site servers. This data is then used to analyze
truck information such as fuel consumption, trip route information, combined load weight and so on.
The data that is sent through connect is stored in three subsets, being the trip data, trigger data and
snapshot data respectively. A more detailed explanation of these three sub databases is given in section
1.4.1. Furthermore, a complete overview of the variables in the three databases is given in appendix C.
The trigger data is not analyzed in details as its relevant features are found in the snapshot data as well
and the trigger messages are not related to specific repairs anyway.
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3.5 Descriptive analytics of the CCM Database

In this section, the available CCM data is described and the most important findings that resulted
from the data exploration are given for the data up to and including 21-08-2018. The features in the
CCM database can be categorized into three groups, based on their relation to the truck. They are the
following:

• Contract information

• Truck specifications

• Truck usage

The different groups are explained below, and the corresponding variables are listed in Table 3. For an
explanation of each of the variables, we refer the reader to Appendix A.

Contract information (38 features) concerns all features that hold information about the R&M contracts
that have been sold with the trucks. Upon closing of the contracts, the contract type, duration and other
specifics are agreed upon and stored in the CCM database.

The Truck specifications (30 features) are also found in the CCM database. Before the closing of an
R&M contract, truck specifications such as the model, axle configuration and engine fitted are defined.
Furthermore, details such as the oil type in the axles and the presence of vehicle safety features are
determined as they all affect the pricing of the R&M contracts.

The features in the Truck usage group (8 features) are part of the contract details as well. They are
determined together with the customer based on the expected use of the truck and the environment in
which it will operate. Among others, they concern the delivery country, type of cargo that is hauled
and the number of cargo drops that the trucks will make per day. Contract fees are adjusted based on
assumptions of the effects of these feature values on the total truck repair costs. Until this point in time,
DAF had no method to check if truck owners actually used the truck as specified. This is why they
believe that the actual usage may differ from the specified usage characteristics. Of course, with the
introduction of DAF Connect, usage could be more closely monitored in the future.
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Table 3: Overview of the CCM truck data groups and the corresponding features.

Contract Information Contract information (2) Truck specifications Truck usage

Forecasting Run Date First Registration Date Model Service Interval Engine

Forecasting Report Date Country Series Number of Drops per day

Subsidiary Default Service dealer Lo-
cation code

Sub series Area of Operation

Contract Number Delivery date Chassis number Type of Operation

Contract Version Delivery Country Brand Power Take Off (PTO)

Countract Group Selling dealer Engine power Static PTO Hours per day

Contract Name Selling dealer Location
code

Axle configuration Road Type

current Contract (version)
Status

Default Service Dealer Emission Application

snapshot Contract (ver-
sion) Status

Asset Description

Contract Birthdate Asset Type-info

Contract (1st) activation
date

Vehicle Park Number

Contract (version) Start
date

Vehicle Safety Features

Contract (version) activa-
tion date

Soot Filter

Contract (version) End
date (original)

Retarder System

Contract end-date (ac-
tual)

Fuel Specification

Contract end-year (ac-
tual)

Factory External Camera
System

Contract closing date Body Specification

Contract closing year Taillift Fitted

Contract (version) dura-
tion in months (original)

ADR Specification

Contract (version) dura-
tion in months (actual)

(Semi-) Trailer Coupling

Contract (overall) dura-
tion in months (actual)

Rear Axle Oil

FinVehAge Gearbox Oil

Contract (overall) Age in
months (actual)

Engine Oil

Contract (version) start
kms

Driven Axle Suspension

Contract contracted
yearly mileage

Body Type

Contract Origin Axle configuration

Contract package Engine Type

Currency Engine

Claim delay Date Gearbox

Last date invoiced Rear Axle Type

Predicting the number of truck repairs using logged vehicle Page 23



3. THE COMPANY AND THE AVAILABLE DATA 24

To provide the reader with a better understanding of the data in the CCM database, the minimum,
maximum, mean, median and standard deviation of the numerical features are calculated, which provide
the reader with a quick overview of the feature values and their characteristics (Nelson et al., 2003).

Table 4: Quantitative summary of all numerical variables in the CCM dataset.

Variable min max mean median std

Contract (version) duration in months (original) 11 96 40 36 15,13

Contract (version) duration in months (actual) 11 96 40 36 15,13

Contract (overall) duration in months (actual) 11 96 40 36 15,13

FinVehAge 1 16 9 10 3,82

Contract (overall) Age in months (actual) 1 16 8 8 3,73

Contract (version) start kms 0 81.500 692 0 5754,77

Contract contracted yearly mileage 25.000 290.000 133.976 120.000 34.443

Static PTO Hours per day 0 5 0,17 0 0,27

Month in service 0 15 7 7 3,72

Furthermore, an initial quality check has been performed on the CCM truck data. This revealed that
several of the variables contained missing values, indicated by ”NULL” in the dataset. Missing values
in a dataset often negatively affect the performance of prediction models (Triebel et al., 2008). They
are discussed in more detail in the next chapter. The missing values are quantified and listed in Table
5. As can be seen, there are quite some variables with many missing values. This is for a large part
explained by the fact that, when a truck is not fitted with a certain component, a NULL value is filed
in the database. The Power Take Off for example, is either fitted (value: ’gearbox mounted’) or not
(value: ’NULL’). Consultation of CCM domain experts revealed that this data is missing as they were
only gathered for older truck models, and no longer stored for the newer models as analyzed in this
research. However, this doesn’t mean that the features are not fitted on the trucks. When possible, the
connect data has been used to derive their presence (e.g. counting PTO duration to derive if a PTO has
been fitted). The features with missing values are further addressed in Chapter 4.
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Table 5: Overview of the CCM truck data variables containing missing values.

Variable DataType Nr. Null % Null

Vehicle Safety Features Cat. 2864 99,3%

Soot Filter Cat. 2864 99,3%

Factory External Camera System Cat. 2864 99,3%

Body Specification Cat. 2864 99,3%

Taillift Fitted Cat. 2864 99,3%

Driven Axle Suspension Cat. 2864 99,3%

Power Take Off (PTO) Cat. 2864 99,3%

Contract closing date Num. 2812 97,5%

Contract closing year Num. 2812 97,5%

S&M Inspection Interval (’O’ licence) Cat. 2804 97,2%

Vehicle Park Number Cat. 2147 74,4%

First Registration Date Num. 11 0,4%

FinVehAge Num. 3 0,1%

Delivery date Num. 3 0,1%

Besides missing values, the dataset contains categorical features that have a single value for most (or all)
of it’s instances. For example, all of the trucks have been fitted with the same axle oil (synthetic) and
engine type (EURO-6). Furthermore, almost all trucks have the same type of operation (93,3%: long
distance) and number of drops per day (99,3%: 1 to 6 drops). The features that have the same value
for each instance are removed from the dataset as they then become a constant (i.e. zero variability
predictor) and thus do not contain any information. The features that contain predominantly (but not
completely ) one value should be handled with caution. They could add unnecessary complexity to the
prediction models as they might have limited prediction power (low variability). However, simply deleting
all features with a low variability is dangerous as the few ’outliers’ might contain valuable information
about the target variables. An overview of all variables that have many identical values (> 65%) is given
in Table 6. They will be further addressed in Chapter 4.

Predicting the number of truck repairs using logged vehicle Page 25



3. THE COMPANY AND THE AVAILABLE DATA 26

Table 6: Overview of categorical variables in the CCM truck data that contain mostly identical values.

Variable DataType % Identical Value

Brand Cat. 100,0% DAF

Emission Cat. 100,0% EURO-6

Fuel Specification Cat. 100,0% Diesel EN590

Rear Axle Oil Cat. 100,0% Synthetic (ext)

Engine Type Cat. 100,0% EURO 6

Gearbox Oil Cat. 99,9% Synthetic (ext)

Road Type Cat. 99,5% On Road only

Area of Operation Cat. 99,4% W.-Europe (excl. Scandinavia)

Number of Drops per day Cat. 99,3% 1 to 6

Contract Origin Cat. 98,2% New

Contract (version) start kms Num. 95,4% 0

Contract Version Cat. 95,0% 1

ADR Specification Cat. 94,3% No

Engine Oil Cat. 93,9% Synthetic (ext)

Type of Operation Cat. 93,3% Long Distance

(Semi-) Trailer Coupling Cat. 92,5% Fifth wheel

Body Type Cat. 92,5% Tractor Not Applicable

Axle configuration Cat. 92,1% 4x2

Rear Axle Type Cat. 84,2% SR 1344

Application Cat. 76,3% General (dry freight, pallet loads)

Sub series Cat. 70,5% 7

Gearbox Cat. 69,8% TraXon 12 speeds

Series Cat. 69,1% XF F7 BH

Retarder System Cat. 66,8% ZF Intarder

Model Cat. 66,5% FT XF F7 BH

Contract package Cat. 65,6% DAF MultiSupport Full Care
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The CCM dataset consists of 76 features in total. However, not all of them are useful for modeling.
Some features are duplicates of each-other or have no relation to the truck specification and usage
whatsoever.

In collaboration with DAF knowledge experts, 26 features have been identified as irrelevant. They
concern contract details such as the contract name and subsidiary. They do not provide information
about the behaviour of the truck or it’s configuration. in Table 7, the full list of irrelevant features is
given.

Table 7: Overview of the irrelevant contract data features from the CCM database.

Feature Feature

Forecasting Run Date Contract end-year (actual)

Forecasting Report Date Contract closing date

Subsidiary Contract closing year

Contract Number Contract (version) duration in months (original)

Contract Version Contract (version) duration in months (actual)

Countract Group Contract (overall) duration in months (actual)

Contract Name Contract (overall) Age in months (actual)

Contract Birthdate Currency

Contract (1st) activation date Claim delay Date

Contract (version) Start date Last date invoiced

Contract (version) activation date First Registration Date

Contract (version) End date (original) Vehicle Park Number

Contract end-date (actual) Snapshot Contract (version) Status

Service dealer Selling dealer

Brand Emission

Furthermore, 6 redundant features have been identified. The truck model for example, is duplicated
under different formats as being multiple individual features. In Table 8, the redundant features and
their duplicates are listed.

Table 8: Overview of the redundant features and their duplicate in the CCM database.

Feature Duplicate Feature

Selling dealer location code Selling dealer

Default Service dealer location code Service dealer

Series Asset Type-info

Model Asset Type-info

Country Delivery country

In summary, the CCM dataset contains truck specification data of 2884 trucks. Of the 76 available
features, many are redundant or insignificant for the purpose of this research. Collaborating with knowl-
edge experts at DAF, 32 features have been identified as irrelevant, leaving 44 useful features. The
remaining dataset is of reasonable quality. No outliers or incorrect values have been found. However,
the dataset does contain a lot of missing values and some categorical variables contain predominantly
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one value.

3.5.1 Graphical analysis

At first, an overview of the truck specifications is given for the connected trucks with CCM contracts.
Since the introduction of DAF Connect, 2884 trucks with these contracts have been fitted with Connect
(up to and including 21-08-2018).As can be seen in Figure 7, the vast majority of connected trucks is
made up of DAF’s XF truck, which is its largest available model. The CF and LF models comprise the
remainder of sold trucks. The dataset contains 2728 XF’s, 83 CF’s and 73 LF’s.
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Figure 7: The distribution of trucks types for connected trucks (21-08-2018).

Looking at the distribution of chassis types for the connected trucks, there can be seen that a similar
phenomenon occurs. From Figure 8, it shows that the FT is the most sold setup by far. The FT is DAF’s
standard 4x2 tractor truck, which is most often used for general truck and trailer activities. Other, less
common chassis setups can be indicators for other types of truck usage.
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Figure 8: The distribution of chassis types for connected trucks (21-08-2018).

Another important feature is the time in service for each of the trucks. As explained in section 1.6, the
time period over which the connect data is collected is limited. From the CCM database, there is derived
that the majority of trucks that have been fitted with DAF connect have been in service for less than
two years, which can be seen in Figure 9. On average, the connect trucks have been in service for 11
months (at 2018-08-21). As a result, the analysis and predictions in this research are limited to the early
life of the trucks, as more data is simply not available.
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Figure 9: The number of months that the connected trucks are in service (21-08-2018).

The country in which the trucks operate can be of significance as well. Variables such as road conditions
and fuel quality are, to a degree, country dependent. At the moment, as DAF connect is a new devel-
opment, it has been deployed in Europe only. To give the reader a better view of the countries in which
connected trucks operate, a density plot is made for the map of Europe, which is given in Figure 10.
The color density of the countries indicates their number of active trucks. The most popular countries
are Germany, France, Lithuania, Spain, Hungary and the Netherlands respectively.

Figure 10: The distribution of connected trucks in Europe (21-08-2018).

For the interested reader, a range of other informative plots such as production rates, class distributions
and the distribution of closed CCM contract types are given in Appendix F and G.
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3.6 Descriptive analytics of the Mi Database

As explained in section 3.4, the Mi claim database provides information about the claimed truck repairs.
An overview of the available data is given in this section. Again, it concerns all data up to and including
21-08-2018. As is the case for the CCM truck data, the features can be categorized into different groups,
which are:

• Truck information

• Repair details

• Cost specification

The truck information is used to link the repairs to the corresponding CCM contract. Besides the VIN
and chassis number, basic details such as the truck type, production date and the delivery country are
given. For more specific truck information, the corresponding CCM data is consulted. More interesting
are the repair details and cost specifications. They contain all necessary details about the repairs that
are performed on the trucks. Besides the component that has been repaired and the dealer which made
the claim, specifics such as labor hours, components used and the causes of the defects are stated.
Furthermore, the date and time of the defect, repair and the claim itself are registered. Together with
the repair details, the cost specifics are given. Labour hours, material prices and other costs are all
reported. Now, DAF only reimburses claims when they satisfy all R&M conditions. This is why, at
first, the claimed costs are registered. After the claim analysis, the paid amounts are added. The claim
analysis is not binary. i.e. claims can also be denied and accepted partially. It is perfectly normal
that half of the material costs are reimbursed while the other half is deemed to be outside of contract
conditions. Similarly, it can happen that the material costs are paid while the labour hours are not. For
the cost analyses in this project, only the paid repairs are taken under consideration as it is assumed that
all unpaid claims have been rightfully rejected. To give the reader a complete overview of the available
data in the Mi database, the features are listed in Table 9. Note that the features are separated per
group, as specified above. For a description of the features, the reader is referred to Appendix B.
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Table 9: Overview of the Mi data groups and the corresponding features.

Truck information Repair details (1) Repair details (2) Cost specification

ChassisNr ClaimCountry Artnr1 MATT CLAIMED

TypeName ClaimDealer Artnr2 LABOUR CLAIMED

ProductRange Claimnr Artnr3 MISC CLAIMED

productionsite ClaimSort Artnr4 TOTAL CLAIMED

prodDate FieldReportYN Artnr5 MATT PAID DTNV

prodMonth warrantycattegory labourcode1 LABOUR PAID DTNV

DeliveryDate LastClaimStatus labourcode2 MISC PAID DTNV

deliveryCountry Laststatusstartdate labourcode3 PAID MIN LANDED

deliveryDealer DefectCode labourcode4 LANDED COSTS DTNV

defectcodedescription labourcode5 TOTAL PAID DTNV

defectcause Misc1 ArticlePaidDN LocalPolicy

CausallPart Misc2 LabourPaidDN LocalPolicy

DefectDate Misc3 MiscPaidDN LocalPolicy

defectmonth Misc4 HandlingPaidDN LocalPolicy

ClaimReceiveDate Misc5 TotalPaidLocalPolicy

Claimfinalised ITSCode HoursClaimed

KmChassis MonthInService rejectioncode

KmPart DriveLineYN acceptedclaimwarranty

KindofPart serviceproduct AcceptedClaimLocalPolicy

Again, the numerical variables are summarized by the calculation of data characteristics such as mean,
standard deviation and minimum and maximum values. The full numerical data summary is given in
Table 10. A striking finding is the fact that claims sometimes contain negative repair costs. These
negative costs seem to contradict the concept of repair (reimbursement) claims. However, consulting a
claim assessment expert learned that they are actually debit costs resulting from wrongfully approved
repair claims. Most often the corresponding (wrongfully) approved claim is found in the database as
well. Do note however, that this is not always the case due to the fact that repairs can be debited only
partially as well. Furthermore, some repairs have been performed before the truck has been in service
altogether. This is due to the fact that a truck is considered to be in service, not when it leaves the
production line, but when it has been prepared for customer use.

Predicting the number of truck repairs using logged vehicle Page 31



3. THE COMPANY AND THE AVAILABLE DATA 32

Table 10: Quantitative summary of all numerical variables in the Mi dataset.

Variable min max mean median std

prodMonth 2014-01 2018-07 - 2017-07 -

defectmonth 2015-01 2018-08 - 2018-03 -

Claimfinalised 0 2018-08 - 2018-03 -

KmChassis 0 925 72 54 72

KmPart 0 925 7 0 27

MATT CLAIMED 0 25713 267 54 965

LABOUR CLAIMED 0 5431 133 76 236

MISC CLAIMED 0 39533 72 4 601

TOTAL CLAIMED 0 39533 472 220 1276

MATT PAID DTNV 0 25713 237 47 902

LABOUR PAID DTNV 0 5431 107 59 204

MISC PAID DTNV 0 6395 41 4 202

PAID MIN LANDED 0 25735 386 168 1067

LANDED COSTS DTNV 0 3034 30 1 107

TOTAL PAID DTNV 0 27053 416 176 1154

ArticlePaidDN LocalPolicy -1626 0 -2 0 33

LabourPaidDN LocalPolicy 0 368 6 0 23

MiscPaidDN LocalPolicy 0 2074 7 0 62

HandlingPaidDN LocalPolicy 0 0 0 0 0

TotalPaidLocalPolicy -1626 2074 11 0 77

HoursClaimed 0 57 2 1 3

MonthInService -9 36 7 6 6

acceptedclaimwarranty 0 1 1 1 0

AcceptedClaimLocalPolicy 0 0 0 0 0

TOTAL PAID COMBINED 0 27053 427 189 1153

To perform a preliminary data quality analysis, the number of missing values has been evaluated for
the Mi data as well. There are some variables that have a large number of missing values. However,
they are mainly optional fields, providing a logical explanation of their number of missing values. The
artnr2, artnr3, artnr4 and artnr5 features for example, are only filled when more than one component
is replaced (i.e. more ’articles’ are used). The same holds for the misc features, as they are only filled
out when miscellaneous parts are used that are not in DAF’s register. An exception is the causal Part
feature, which should indicate the part that caused the defect. In practice this is most often left blank,
while it could provide useful information. Furthermore, for a single claim the truck’s delivery date and
corresponding months in service are missing, which is an negligible amount. The full list of Mi features
with missing values is given in Table 11.

Predicting the number of truck repairs using logged vehicle Page 32



3. THE COMPANY AND THE AVAILABLE DATA 33

Table 11: Overview of the Mi truck data variables containing missing values.

Feature DataType Nr. Null % Null

Misc5 object 14,430 99.81%

labourcode5 float 14,414 99.70%

labourcode4 float 14,328 99.10%

Misc4 object 14,298 98.89%

Artnr5 object 14,012 96.92%

labourcode3 float 13,963 96.58%

CausalPart object 13,956 96.53%

ITSCode object 13,878 95.99%

Artnr4 object 13,604 94.09%

Misc3 object 13,031 90.13%

labourcode2 object 12,656 87.54%

Artnr3 object 12,119 83.82%

Artnr2 object 10,517 72.74%

Misc2 object 10,278 71.09%

Artnr1 object 7,052 48.78%

Misc1 object 6,686 46.24%

labourcode1 object 2,532 17.51%

DeliveryDate datetime 1 0.01%

MonthInService float 1 0.01%

Furthermore, of the 66 features in the Mi dataset, there are a few irrelevant features. They are either
outside of the scope of this research, or already present in the CCM truck data (i.e. truck information).
For example, the claim dealers and defect code are not related to the truck itself and therefore not of
interest when predicting repairs. Furthermore, features such as the truck type and product range are
already present in the CCM truck data. The full list of redundant and irrelevant features is given in
Table 12.
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Table 12: Overview of the irrelevant and redundant features from the Mi database.

Feature Why Explanation

TypeName Redundant Present in CCM data

ProductRange Redundant Present in CCM data

prodDate Redundant Present in CCM data

prodMonth Redundant Given in ’prodDate’

DeliveryDate Redundant Present in CCM data

deliveryCountry Redundant Present in CCM data

deliveryDealer Irrelevant Not truck related

ClaimCountry Irrelevant Not truck related

ClaimDealer Irrelevant Not truck related

Claimnr Irrelevant Not truck related

ClaimSort Irrelevant Not truck related

FieldReportYN Irrelevant Not truck related

LastClaimStatus Irrelevant Not truck related

Laststatusstartdate Irrelevant Not truck related

DefectCode Irrelevant Not truck related

defectmonth Redundant Given in ’DefectDate’

Claimfinalised Irrelevant Not truck related

KmPart Irrelevant Not truck related

KindofPart Irrelevant Not truck related

Artnr1 Irrelevant Not truck related

Artnr2 Irrelevant Not truck related

Artnr3 Irrelevant Not truck related

Artnr4 Irrelevant Not truck related

Artnr5 Irrelevant Not truck related

labourcode1 Irrelevant Not truck related

labourcode2 Irrelevant Not truck related

labourcode3 Irrelevant Not truck related

labourcode4 Irrelevant Not truck related

labourcode5 Irrelevant Not truck related

Misc1 Irrelevant Not truck related

Misc2 Irrelevant Not truck related

Misc3 Irrelevant Not truck related

Misc4 Irrelevant Not truck related

Misc5 Irrelevant Not truck related

ITSCode Irrelevant Not truck related

rejectioncode Irrelevant Not truck related

acceptedclaimwarranty Irrelevant Not truck related

AcceptedClaimLocalPolicy Irrelevant Not truck related

prodCountry Redundant Present in ’Productionsite’
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In summary, 39 out of the 66 available features in the Mi dataset are either redundant or irrelevant to
this research. This is due to the fact that they do not hold information about the truck specifications or
usage. Furthermore, there are multiple features with either missing values or predominantly one feature
value. The remainder of the data is of decent quality, where especially the most important features such
as repair costs, claim values and the defect/causal parts are accurately filed.

3.6.1 Graphical analysis

In total, 14,458 claims have been registered for the 2884 DAF Connect trucks with an R&M contract.
Of these claims, 3170 claims are for repairs and 11,288 are maintenace, service, courtesy or field action
claims. Courtesy claims are reimbursements that are not officially covered by the customer’s contract(s)
but are still reimbursed by DAF out of courtesy. Field action claims are claims that have been issued
by DAF itself when, for example, a certain production batch has a faulty component installed and they
are collectively replaced by DAF ’in the field’. Lastly, service and maintenance actions are planned and
not part of unsuspected, unplanned repairs. For this research, we focus on the repairs claims only. Now,
when looking at the 3170 repair claims, an average of 0.43 R&M claims and 0.67 warranty claims have
been filed per truck. The actual distribution of claims per truck can be found in Figure 11. As can be
seen from the calculations above, the number of repairs per truck is limited. This is logically explained
by the fact that DAF’s trucks are built according to a much higher life expectancy than the time that
Connect has been available. In fact, DAF expects its trucks to have their repair and maintenance peak
after no less than 48 months of service (which is halfway their expected lifetime of 96 months).

(a) Nr. of R&M claims (b) Nr. of warranty claims

Figure 11: The distribution of total number of repair claims per truck (21-08-2018).

The numbers above include all trucks in the dataset, without any scope limitations. However, as we
are only looking at the trucks that have been in service for 8 months or more and are delivered after
01-04-2017, it is more informative to look at the number of claims per months in service. During the
time that a customer’s warranty contract is active, repairs on the truck are handled as warranty claims.
However, warranty contracts do not include wear parts. This means that repairs on components such as
brake pads and clutches are not covered by warranty. Instead, they are covered by the R&M contracts
(see section 3.3). This is why, when looking at the total repairs (claims) per truck, the sum of both claim
types has to be considered. This sum is given as the Total number of claims.

To provide a visual representation of the number of claims per months in service, boxplots are given in
Figure 12. Multiple outliers are detected for the number of repairs per truck. As there can be numerous
different reasons that could explain these excess number of repairs, they have been investigated in more
detail before any actions were taken. Consultation with DAF experts resulted in the decision to not
exclude any truck with many repairs (outliers) as they consisted out of legitimate claims from DAF’s Mi
claim database.
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(a) R&M claims (b) Warranty claims

(c) Total number of claims

Figure 12: Boxplots of the R&M claims (a), warranty claims (b) and total number of claims (c) per
months in service (2018).

3.6.2 Repair types

Of course, the number of repairs only provides information on a high level. On a lower level, the type
of repair and its corresponding costs provide a more substantial overview of repairs per truck. As we
are looking at trucks that have been in service for 8 months or more, two contracts can be active on
the trucks simultaneously, being the warranty contract as well as the R&M contract. Repairs on the
driveline are automatically claimed through the warranty contracts while any other repairs are claimed
through the R&M contracts. An overview of the distribution of claims on these contracts is given in
Figure 13.

Figure 13: Distribution of contracts on which repair claims are made (21-08-2018).
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Beside the contract on which a repair is claimed, further distinctions are made based on the nature of
the repairs. Repairs can either be on the driveline or on the non-driveline. Driveline repairs encapsulate
repairs that are performed on the engine, gearbox, differential and other parts which are directly involved
with the power train of the trucks. Any other repairs are labeled as non-driveline repairs, which can range
from the repair of light bulbs to the repair of electrical systems and chassis. Note that, for example,
the engine and gearbox also contain parts that are not directly related to the driveline and are thus
labeled as non-driveline components. Examples are the water pump system and oil cooling system. To
provide the reader with an idea of the nature and quantity of claimed repairs, an overview of the 10 most
common repairs on both the driveline and non-driveline are given in Figure 14.

(a) Driveline repairs (b) Non-driveline repairs

Figure 14: The top 10 most occurring repairs on both the driveline (a) and non-driveline (b).

As the name suggests, R&M contracts also include maintenance services. These services are planned
on pre-defined time intervals and include standard maintenance actions such as oil top ups and vehicle
condition checkups. Just as for repairs, these actions are recorded in the Mi database. However, they
are not included in the repair overview above as they concern pre-defined actions, thus not adding value
to the predictions in this research.

Now, to accurately predict the repair costs of trucks, the corresponding costs of these repairs are of
key importance. The setup of claim entries is such that there are no pre-defined costs assigned to the
different repairs. The number of labour hours and component costs differ per case and country. Instead,
the average costs per repair are derived and used as indicators for the cost of the different repairs. In
figure 15 an overview of the average costs for the most common repairs is given.

(a) Average driveline repair costs (b) Average non-driveline repair costs

Figure 15: The top 10 most occuring repairs on both the driveline (a) and non-driveline (b) (21-08-2018).

Lastly, not only the number of repairs, but the total value of these repairs is of significance as well.
In the end, they are of high interest for DAF as they represent the highest expense on the R&M and
maintenance contracts. The 10 repairs with the highest combined repair costs are given in Figure 16.
Note that the ’service’ claims are not directly related to specific repairs and such have been excluded
from this research.
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Figure 16: The top 10 of most expensive repairs from 01-04-2017 up to and including 21-08-2018.

3.6.3 Assumptions on the repair data

The sections above have provided an overview of the repair and claim information available at DAF.
In collaboration with DAF experts, a few assumptions have been made on the data. They are listed
below.

1. There is assumed that the claimed and reimbursed amounts accurately represent the costs of the
repairs. Although fraud on the claimer’s side can occur, it is assumed that DAF’s claim review
system is foolproof and thus the claimed values accurately represent the repair costs on the trucks.

2. Only the claims that have been reimbursed by DAF are taken under consideration as it is assumed
that all unpaid claims have been rightfully rejected.

These assumptions are made as there is no detailed information available on why certain claims have
been accepted or rejected. They are often individual cases which have been reviewed by claim analysts
before being stored in the claim database.

3.7 Descriptive analytics of the connect data.

The last set to analyze is the connect data. It contains all truck usage information that has been collected
from the operating trucks through DAF’s connect data telemetry system (as explained in chapter 3.4).
The two relevant subsets (trip and snapshot data), are analyzed in this section.

3.7.1 Trip data

The Trip data is a collection of data for each trip that a truck makes (where a trip is considered to be
the time between the start and shutdown of the engine). It aggregates the data from the trip and sends
it to the data-warehouse as a single instance. Valuable information such as the total brake duration,
harsh brake duration, max throttle duration and fuel consumption per trip are found in this dataset. In
total, 46 variables are recorded per trip. They are given in Table 13. For variable details, the reader is
referred to Appendix C.
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Table 13: Overview of the trip data.

Aggregated trip data measurements

inputfiledate brake duration maxthrottlepaddle duration

datetime begin cruisecontrol distance dpabrakingscore sum

unixtimestamp begin harshbrake duration dpaanticipationscore sum

datetime end idling duration dpabrakingevent count

unixtimestamp end gps elevationloss dpaanticipationevent count

gpsdatetime end gps elevationgain cruisecontrol fuelconsumption

gpslatitude end pto count gpsspeed

gpslongitude end pto distance cruisecontrol distanceclass 1

gpsdatetime begin pto duration cruisecontrol distanceclass 2

gpslatitude begin totalfuelconsumption begin cruisecontrol distanceclass 3

gpslongitude begin fuellevel begin cruisecontrol distanceclass 4

totaldistance begin totalfuelconsumption end cruisecontrol distanceclass 5

totaldistance end fuellevel end vin

tripkey gps distance month

dcmserialno idling fuelconsumption

dcmswversion acceleration duration

Most of the features in the trip data are automatically aggregated before being stored in the connect
database. Brake durations, idling durations and other similar features are all given as a total duration in
seconds. Exceptions are the fuel level, trip duration and total fuel consumption, which are not aggregated
automatically. The total fuel consumption for example, is calculated by subtracting the fuel level at the
end of the trip from the fuel level at the beginning of the trip. In a similar manner the driven distance
and trip duration are calculated. The VIN is used to link the trips to the corresponding CCM and Mi
data of the trucks. To get a better understanding of the data, a quantitative summary including the
minimum, maximum, mean, median and standard deviation of each of the numerical variables is given
in Table 14.
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Table 14: Quantitative summary of the numerical trip data.

Variable min max mean median std

gpslatitude end 33 255 51 49 25

gpslongitude end -10 255 10 7 31

gpslatitude begin 33 255 51 49 25

gpslongitude begin -10 255 10 7 31

totaldistance begin 0 318,201,310 62,156,352 55,179,350 45,053,079

totaldistance end 0 318,315,425 62,200,438 55,224,953 45,061,477

brake duration -7 282,441,707 180 19 161,813

cruisecontrol distance 0 808,520 21,705 0 55,434

harshbrake duration -3 1303 15 0 37

idling duration -6,896 576,173,923 1,113 190 541,719

gps elevationloss 0 69,680 184 10 397

gps elevationgain 0 69,772 198 12 407

pto count 0 64 0 0 0

pto distance 0 6410 0 0 5

pto duration 0 21,153 13 0 182

totalfuelconsumption begin 1 99,518,908 18,471,680 16,318,219 13,532,694

fuellevel begin 0 100 70 71 26

totalfuelconsumption end 7 99,522,303 18,484,618 16,330,960 13,535,013

fuellevel end 0 100 67 67 27

gps distance 0 29,167,437 42,837 541 87,060

idling fuelconsumption -179,999 202,297 294 123 2,187

acceleration duration -67,122,714 67,139,152 793 76 54,415

maxthrottlepaddle duration -56 67,133,010 81 0 38,461

dpabrakingscore sum 0 17,805 260 0 564

dpaanticipationscore sum 0 16,933 283 0 550

dpabrakingevent count 0 196 4 0 8

dpaanticipationevent count 0 314 5 0 9

cruisecontrol fuelconsumption -35,668 317,598 5,753 0 15,160

cruisecontrol distanceclass 1 0 184,935 1 0 107

cruisecontrol distanceclass 2 0 56,980 63 0 495

cruisecontrol distanceclass 3 0 195,280 1,365 0 5,594

cruisecontrol distanceclass 4 0 807,990 20,275 0 52,914

cruisecontrol distanceclass 5 0 7,195 1 0 34
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The quantitative summary already reveals some possible outliers and erroneous data. For example,
idling fuelconsumption, brake duration and maxthrottlepaddle duration have a negative minimum value,
which is impossible in practice. Simultaneously, these features also have an unrealisticly high maximum
value. This becomes clear when (using Table 14) their mean and median values are compared with the
corresponding minimum and maximum values. For example, The maximum for the full acceleration time
duration during a trip (maxhtrottlepaddle duration) is found to be 67,139,152 seconds. This amounts
to an unlikely long trip of 777 consecutive days without turning off the engine and applying maximum
acceleration throughout. The mean value of 81 seconds however, is much more promising. Now, the
same logic applies to the other features that contain such high feature values. The mean and median are
often of a much lower value than the maximum, indicating a high likelihood of the presence of outliers,
which are further analyzed in the data preparation chapter.

Furthermore, as is the case for the Mi and CCM datasets, the trip data contains irrelevant and redundant
features as well. The date and time are captured in different formats and through different sources for
each instance. The inputfiledate, unixtimestamp begin, unixtimestamp end, gpsdatetime begin, month
and gpsdatetime end are redundant as they are already given by datetime begin and datetime end for
each trip instance. Furthermore, the fuellevel begin, fuellevel end, tripkey, dcmserialno, dcmversion and
gpsspeed are irrelevant for the repair predictions. The tripkey is merely used as a identifier, which also
holds for the dcm serial number. The dcmversion holds information about the current connect software
version in the truck, which is of no influence to the truck’s behavior or setup. Lastly, the gps speed as
recorded for each trip is of unknown origin. It doesn’t in any way represent the average speed or other
relevant information about the truck’s speed during a trip. Thus, in total, 13 out of the 46 features are
regarded to be redundant or irrelevant for further use.

Lastly, analysis showed that there are close to none missing values in the dataset. The only exception are
the gpsdatetime end, gpsdatetime begin and gpsspeed where 0.50 to 1.50 percent of data is missing. They
appear to be missing randomly and on random trucks without an evident logical explanation. however,
as explained above, the gps datetimes and speed are not of direct relevance and thus, their missing values
can be ignored altogether.

3.7.2 Snapshot data

The snapshot data collects sensory data from the operational trucks in five minute intervals, starting
from the moment that the engine is turned on until the moment that it is turned off. The data consists
out of actual sensor recordings at the time of measurement, giving information about the real-time state
of the truck at that point in time. Each snapshot instance contains 108 features, ranging from fuel-, oil-
and coolant levels to ambient air pressure and engine rpm’s. A full list of variables is given in Table 15.
For a detailed explanation of the variables, the reader is referred to Appendix C.
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Table 15: Overview of the snapshot data.

Snapshot data variables

snapshotkey barometricpressure 1 engineload 1

inputfiledate barometricpressure 2 engineload 2

datetime barometricpressure 3 engineload 3

unixtimestamp barometricpressure 4 engineload 4

gpsdatetime barometricpressure 5 engineload 5

gpslatitude fuellevel 1 enginespeed 1

gpslongitude fuellevel 2 enginespeed 2

totaldistance fuellevel 3 enginespeed 3

eventid fuellevel 4 enginespeed 4

totalfuelconsumption fuellevel 5 enginespeed 5

idle duration fueltemperature 1 engineintakeairpressure 1

dcmserialno fueltemperature 2 engineintakeairpressure 2

dcmswversion fueltemperature 3 engineintakeairpressure 3

gpsaltitude fueltemperature 4 engineintakeairpressure 4

gpsheading fueltemperature 5 engineintakeairpressure 5

fuellevel engineoiltemperature 1 tachographspeed 1

aftertreatmentlevel engineoiltemperature 2 tachographspeed 2

grosscombinationweight engineoiltemperature 3 tachographspeed 3

wheelbasedspeed engineoiltemperature 4 tachographspeed 4

tachographspeed engineoiltemperature 5 tachographspeed 5

gps distance engineoilpressure 1 totaldistance 1

enginecoolantlevel 1 engineoilpressure 2 totaldistance 2

enginecoolantlevel 2 engineoilpressure 3 totaldistance 3

enginecoolantlevel 3 engineoilpressure 4 totaldistance 4

enginecoolantlevel 4 engineoilpressure 5 totaldistance 5

enginecoolantlevel 5 enginecoolanttemperature 1 gpsspeed

engineoillevel 1 enginecoolanttemperature 2 ambientairtemperature

engineoillevel 2 enginecoolanttemperature 3 distanceuntilservice

engineoillevel 3 enginecoolanttemperature 4 enginecoolanttemperature

engineoillevel 4 enginecoolanttemperature 5 enginetotalhours

engineoillevel 5 servicebrakeairpressure 1 servicebrakeairpressure1

aftertreatmentlevel 1 servicebrakeairpressure 2 servicebrakeairpressure2

aftertreatmentlevel 2 servicebrakeairpressure 3 gpshdop

aftertreatmentlevel 3 servicebrakeairpressure 4 eventname

aftertreatmentlevel 4 servicebrakeairpressure 5 tripkey

aftertreatmentlevel 5 month vin

Almost all data in the snapshot dataset is of numerical origin (with the exception of some datetimes
and the VIN). Again, a quantitative summary of the data is made, including the minimum, maximum,
mean, median and standard deviation for each of the numerical variables. For readability purposes, the
results have been moved to Appendix D.

The numerical summary revealed some errors in the data, which are described here. The features en-
gineoiltemperature, enginecoolanttemperature, fueltemperature, ambientairtemperature, gpsaltitude, ser-
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vicebrakeairpressure, grosscombinationweight, engineintakeairpressure and idle duration show exception-
ally high maximum values when comparing them to their mean and median. This indicates that they
are likely to be outliers. Furthermore, fluid level measurements for aftertreatmentlevel and engineoillevel
can reach levels of over 100%, which might be caused by incorrect calibration or swaying of the fluids
during driving. Lastly, gps sensors record a value of 255 (which is not a coordinate) when no gps signal
is available at the time of measurement. In general, many possible outliers are present in the dataset,
which are analyzed in more detail in the next chapter.

The presence of missing values has been evaluated. All features that have been measured in one minute
intervals contain an ascending number of missing values, where the first minute measurement contains
roughly ten percent of missing data and the fifth (and last) minute measurement contains roughly thirty
percent of missing data. The resulting correlation between the measurement minute and the percentage of
missing data was investigated which revealed that most of the missing data was caused by early stopping
when a truck was turned of. If a truck is turned of down in the middle of a five minute measurement
period, the incomplete data sample is sent to DAF anyway, leaving missing values for all measurements
for the remainder of the time-frame. Excluding these incomplete samples resulted in a dataset with only
a few arbitrarily missing variables (< 0.2%).

Also, most of the enginetotalhours and distanceuntilservice measurements are missing (82%). Lastly,
the features ambientairtemperature, enginecoolanttemperature, gpsspeed, servicebrakeairpressure1 and
servicebrakeairpressure2 contain a limited number of missing values (0.2%). The full overview of missing
values per variable is given in Table 16.

Table 16: Overview of the variables with missing values in the Snapshot data.

Variable Nr. missing % Missing Variable (2) Nr. missing (2) % Missing (2)

distanceuntilservice 2,251,315.00 82.4 enginecoolanttemperature 3 483,018.00 17.7

enginetotalhours 2,251,315.00 82.4 barometricpressure 3 483,007.00 17.7

fuellevel 5 884,399.00 32.4 enginecoolantlevel 3 482,948.00 17.7

engineoiltemperature 5 881,006.00 32.2 engineoilpressure 3 482,902.00 17.7

fueltemperature 5 881,001.00 32.2 engineload 3 482,815.00 17.7

engineoillevel 5 880,970.00 32.2 enginespeed 3 482,813.00 17.7

engineintakeairpressure 5 880,961.00 32.2 fuellevel 2 435,267.00 15.9

totaldistance 5 879,597.00 32.2 engineoiltemperature 2 431,275.00 15.8

tachographspeed 5 879,541.00 32.2 fueltemperature 2 431,235.00 15.8

servicebrakeairpressure 5 878,316.00 32.1 engineoillevel 2 431,161.00 15.8

aftertreatmentlevel 5 878,293.00 32.1 engineintakeairpressure 2 431,099.00 15.8

barometricpressure 5 878,269.00 32.1 totaldistance 2 429,343.00 15.7

enginecoolanttemperature 5 878,268.00 32.1 tachographspeed 2 429,094.00 15.7

enginecoolantlevel 5 878,234.00 32.1 servicebrakeairpressure 2 427,621.00 15.6

engineoilpressure 5 878,233.00 32.1 aftertreatmentlevel 2 427,559.00 15.6

engineload 5 878,209.00 32.1 enginecoolanttemperature 2 427,528.00 15.6

enginespeed 5 878,205.00 32.1 barometricpressure 2 427,516.00 15.6

fuellevel 4 539,632.00 19.7 enginecoolantlevel 2 427,471.00 15.6

engineoiltemperature 4 535,800.00 19.6 engineoilpressure 2 427,407.00 15.6

fueltemperature 4 535,788.00 19.6 engineload 2 427,282.00 15.6

engineoillevel 4 535,729.00 19.6 enginespeed 2 427,268.00 15.6

engineintakeairpressure 4 535,721.00 19.6 fuellevel 1 284,807.00 10.4

totaldistance 4 534,069.00 19.5 engineoiltemperature 1 280,567.00 10.3

tachographspeed 4 533,971.00 19.5 fueltemperature 1 280,554.00 10.3

servicebrakeairpressure 4 532,409.00 19.5 engineoillevel 1 280,444.00 10.3

aftertreatmentlevel 4 532,407.00 19.5 engineintakeairpressure 1 280,421.00 10.3
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barometricpressure 4 532,371.00 19.5 totaldistance 1 278,125.00 10.2

enginecoolanttemperature 4 532,366.00 19.5 tachographspeed 1 277,940.00 10.2

enginecoolantlevel 4 532,319.00 19.5 aftertreatmentlevel 1 276,476.00 10.1

engineoilpressure 4 532,306.00 19.5 servicebrakeairpressure 1 276,449.00 10.1

engineload 4 532,260.00 19.5 barometricpressure 1 276,404.00 10.1

enginespeed 4 532,255.00 19.5 enginecoolanttemperature 1 276,403.00 10.1

fuellevel 3 490,472.00 17.9 enginecoolantlevel 1 276,301.00 10.1

engineoiltemperature 3 486,615.00 17.8 engineoilpressure 1 276,278.00 10.1

fueltemperature 3 486,581.00 17.8 engineload 1 276,203.00 10.1

engineoillevel 3 486,482.00 17.8 enginespeed 1 276,199.00 10.1

engineintakeairpressure 3 486,453.00 17.8 ambientairtemperature 5,597.00 0.2

totaldistance 3 484,799.00 17.7 enginecoolanttemperature 5,597.00 0.2

tachographspeed 3 484,593.00 17.7 gpsspeed 5,597.00 0.2

servicebrakeairpressure 3 483,096.00 17.7 servicebrakeairpressure1 5,597.00 0.2

aftertreatmentlevel 3 483,055.00 17.7 servicebrakeairpressure2 5,597.00 0.2

The features servicebreakairpressure1 and servicebreakairpressure2, besides containing many faulty mea-
surements, are redundant as they are measured by the other service airbreak sensors as well. The same
redundancy holds for the feautures gps distance, month, enginecoolanttemperature, fuellevel, aftertreat-
mentlevel, wheelbasedspeed, tachographspeed and gpsspeed. The distanceuntilservice feature holds no
information about the truck’s condition and is therefore regarded irrelevant. The same holds for the fea-
tures snapshotkey, inputfiledate, unixtimestamp, gpsdatetime, dcmserialno, dcmswversion, gpsheading,
eventid, eventname, datetime, gpshdop, totaldistance 1, totaldistance 2, totaldistance 3, totaldistance 4,
totaldistance 5 and tripkey. lastly, the VIN is used as an identification variable only. Thus, 29 out of
108 features are removed from the snapshot dataset.

3.8 Chapter Summary

The full dataset contains data for 2884 trucks. Together, these trucks have had 14.458 claims of which
3170 were actual unplanned repairs on truck components, which are all stored in the Mi database.
Both the number and type of claims as well as the associated costs for these claims have been recorded
by DAF. Furthermore, truck specification data and truck usage data has been collected from three
different datasources at DAF. the CCM data is used to retrieve truck setup and specifications and is
of categorical origin (engine type, axle configuration, truck model etc.) Furthermore it contains some
information regarding the expected truck operations (type of cargo carried, number of drops per day
etc.). The Snapshot data and Trip data has been used to derive truck usage based on actual operational
data of the trucks (through telemetry) and are of numerical origin. In total, 230 features are available
per truck. However, the data contains quite a few variables that are redundant, irrelevant or of poor
quality regarding the number of missing and erroneous values. Furthermore, some variables are of low
cardinality, up to a set of just 1 for some categorical variables, depriving them of any predictive power.
These findings have been elaborated in this chapter and are further addressed in Chapter 4.
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4 Data preparation

In this chapter, the data pre-processing and cleaning steps that have been taken are elaborated. They
follow the steps as found in the ’data cleaning’ phase of the CRISP-DM model (Wirth, 2000). The data
cleaning steps for this framework are given in Appendix E. Cleaning of the data is a crucial step as ”(1)
real-world data is impure; (2) high-performance mining systems require quality data; and (3) quality data
yields concentrative patterns” (Zhang et al., 2003). In general, low quality data leads to low quality
results (Zhang et al., 2003).

4.1 Selecting the relevant trucks and data

The first step in the data selection process was to exclude all of the data that falls outside of the scope
of the project. The total list of connected trucks with R&M contracts consisted out of 2884 trucks at
21-08-2018. However, many of these trucks did not fit the scope. They were either too young to be able
to validate the number of failures over the specified time-frame, or that old that they did not contain the
correct software for data collection (based on expert knowledge at DAF). The data from DAF’s connect
system only became reliable for trucks that had been produced from 01-04-2017 or later, while the scope
of the project required the trucks to be in service no later than 21-12-2017. This resulted in a set of 1099
trucks that were available for analysis.

Furthermore, data exploration revealed numerous irrelevant, redundant or poor quality features which
have been removed with the help of knowledge experts at DAF. From the CCM database, 32 out of
76 features have been removed as they contained irrelevant contract details or redundant information.
From the trip database, 13 out of 46 features have been removed from the trip database and 29 out of
108 features have been removed from the snapshot dataset. They were irrelevant or redundant as well.
A detailed explanation of the removal of each of these features is given in Chapter 3,

Lastly, the data from the Mi database is only used to retrieve the type, amount and costs of repair
claims that have been made on the trucks. This is due to the fact that any truck information present in
this database has been derived from the CCM or Connect databases. The features TotalPaidLocalPolicy
and Total Paid DTNV contain the total of repair costs per claim which have been reimbursed by DAF.
The type of repair is given by the information inDefectCode, defectcodedescription and warrantycategory,
where the defect code defines the component (group) that has been repaired and the warranty category
specifies the category of the repair (e.g. warranty or R&M contract).

In conclusion, the initial data selection resulted in a set of 1099 trucks that were available for analysis
and a reduction of the number of features from 230 to 156.

4.2 Classifying the trucks based on repairs

Together with experts at DAF, there has been decided to construct binary classification models. The
reason for this is that only a limited set of trucks is available for analysis (as DAF Connect is rather
new) while many different types of repairs exist. Furthermore, the majority of trucks has either 0 or 1
repair during the first year of service (for more details on the number and type of repairs we refer the
reader back to Chapter 3.6). As a result, there is not enough information available to predict the exact
number of repairs or the associated costs. Instead a binary decision is made which predicts if a truck
has more or less than the average number of repairs over the time horizon under consideration. Trucks
with less than the average number of repairs are labeled 0, while trucks having more than the average
number of repairs are labeled 1.

With this classification task, there can be derived which trucks require more intensive repair and main-
tenance and which trucks do not. This can subsequently be used to substantiate R&M contract costs
and identify risk vehicles regarding R&M costs.
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4.3 Data cleaning

This section describes the outliers, missing values, inconsistencies and noise that has been found in the
data, together with the methods that are used to deal with them.

4.3.1 Outliers

Data exploration revealed numerous errors in the data measurements regarding pressures, weight, fuel
levels, temperatures and so on. However, the physical limitations of the trucks and material/fluids
inside are well known at DAF. This information is leveraged to detect and remove the most obvious
outliers. Together with the DAF experts, baseline values have been established for each of the features
in the connect database. The minimum an maximum of acceptable values have been determined and
any measurements that fall outside of those boundaries have been removed. To clarify, an example is
given for the detection of outliers in the fuel temperature that is measured for a specific truck. In Figure
17, the fuel temperature measurements during a trip are given in five minute intervals. The outlier
thresholds have been set to a minimum of 0 degrees celsius and maximum of 120 degrees celsius. For
the given trip, one outlier is found that surpasses the maximum threshold. The measured temperature
of 217 degrees celsius would have spontaneously ignited the fuel and is therefore classified as an outlier.
The same logic has been applied for the other connect data features. When outlier boundaries could
not be established with the help of DAF experts, the 1.5 interquartile rule for boxplots are used to
detect outliers. They provide a interpretable outlier detection rule and do not require the data to be
normally distributed as the boxplot depends on the median instead of mean value of the data (Walfish,
2006). The boxplots for the connect data features are given in Appendix H. Together with the numerical
analysis in Section 3.7 they provide an intuitive overview of the measurements that are found in the
Connect database. Subsequently, a list of established outlier boundaries using the 1.5 IQR Rule is given
in Appendix I

Figure 17: Example of temperature outlier analysis using predefined baseline boundaries.

The CCM dataset did not contain any outliers as each entry consisted of a set of categorical features
that have been selected from a predetermined range of options upon R&M contract closing with the
customer.

4.3.2 Missing values

Beside outliers, data exploration revealed numerous missing values as well. For the CCM database it
has been established that it is a result of the fact that the value Nan (Not a number) is filed when a
component is not fitted to the truck (e.g. the soot filter or tail-lift are almost never fitted). Therefore,
there is assumed that a missing value for truck specification and truck usage features in the CCM database
correspond to ’component not fitted’. Furthermore, for three trucks, the delivery date is missing. There
has been decided to ignore those trucks as essential information about their age is missing.
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For the snapshot and trip datasets, the data is of numerical origin and collected from the operating trucks
in real time. As a result it is highly likely that missing values are a result of faulty or non-active sensors
on the trucks. During the data exploration phase, it became clear that there were numerous missing
variables for each of the features in the snapshot dataset (Table 16). The first step when encountering
missing values is to determine if the data is missing at random or that an underlying cause can be
identified (Fallis, 2013). Analyzing some sample datasets and consultation with experts revealed that
many of the instances from the snapshot data with missing values had an underlying cause, as they were
heavily dependent on the eventname of the snapshot message. Snapshots are sent in five minute intervals
but also when the truck is started and stopped. Of course, at this point the truck is not yet driving and
thus, no information except basics such as the datetime and current location are transmitted. For this
reason, all snapshot messages with an eventname feature value other than ’TIME TRIGGER’, and thus
not recorded during operation, are removed from the dataset.

After removal of the incomplete snapshot messages, some missing values still remained. However, they
were missing at random and thus, measures to deal with randomly missing values had to be taken.
According to (Han et al., 2011) missing values can either be ignored, filled in manually, replaced by a
measure of central tendency or changed to a global constant. Now, as the dataset under consideration is of
considerable size, and removal of instances with missing values would result in loss of other information
as well, there has been decided to fill each missing value with the mean value of the attribute under
consideration, where the mean of the attributes is derived for each truck individually.

4.3.3 Inconsistencies and noise

As elaborated, the snapshot data is captured in five minutes intervals. However, selected measurements
are executed in one minute intervals instead of the regular five. They are stored within the truck and
sent as individual features in the snapshot message. This inconsistency is actually beneficial as the extra
measurements can be leveraged to retrieve more detailed truck operation information. They are used to
derive approximations for probability distributions of measurements as explained in Section 4.4.2.

The snapshot data also contained noisy information caused by faulty sensor measurements. When a
sensor is not able to do an accurate measurement at the time of the snapshot creation, it registers a
default value (e.g. gps latitude: 255 degrees or service break air-pressure: 65535 Kpa). Fortunately,
these default values are easily recognizable as outliers due to their extreme values and thus dealt with
appropriately during outlier removal using expert knowledge and the box-plot interquartile range.

Furthermore, the trip dataset contained many trip measurements with a total duration of zero minutes
or without any distance driven. This is simply explained by the fact that truck drivers can switch the
key on their trucks without driving. To avoid these noisy data inputs, only trips with a total distance of
more than two kilometers have been taken into account. This number has been chosen based on expert
knowledge. Local transport (e.g. city distribution) can include many short trips, but two kilometers of
driving is enough to assume that a trip to a new location has been made.

Another inconsistency in the trip data is the aggregation of trip information. Although most variables
contain aggregated data which can be used for analysis directly, a few exceptions are present. The trip
duration, distance driven and fuel consumed are not directly present in the dataset but have to be derived
from the data. The trip duration for example is derived by subtracting the datetime begin from the date-
time end feature. In a similar fashion, the trip distance is derived from the features totaldistance begin
and totaldistance end. Lastly, the features totalfuelconsumption begin and totalfuelconsumption end have
been used to derive the fuel consumption used. As the derived features replace the features that have
been used for their derivation, the total number of features in the trip dataset is reduced from 33 to 30
features.

The Mi claim dataset contained noise in the form of rejected claims. A repair claim could be filed and
paid, after which it has been rejected later in the verification process. In these cases, a rejection code
is added to the claim file and the paid amount is recovered by DAF. To avoid these invalid claims, any
claim that has its paid repair costs reimbursed in full is removed from the dataset. Furthermore, all
claims that are not related to repairs (i.e. maintenance claims, service actions and inspections) have
been removed from the dataset, such that only relevant repairs remained.
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Lastly, a generalization has been made for the one minute data in the snapshot dataset (see Section 3.7.2).
As they contained arbitrarily missing values and were measured in a different time interval, the median
of the measurements during each five minute interval has been derived and used as the replacement value
for that specific measurement interval.

4.4 Feature derivation and extraction

Several operations had to be executed on the data in order to create meaningful variables for classification.
They include feature extraction, attribute derivation and data aggregation, which are described in this
section.

4.4.1 Deriving truck usage features from the datasets

The trip data has both timestamps and aggregated feature values based on the duration of a trip.
Therefore, to make measured trip variables time independent, some derivations have been made. The
trip start time-stamp and the trip end time-stamp are used to derive the trip duration for each entry in
the trip dataset by subtracting the start time from the end time. In a similar fashion, the total distance at
end and the beginning of each trip are used to determine the driven distance per trip. These trip durations
and distances are consecutively used to transform the aggregated measurements (i.e. brake duration,
fuel consumption etc.) into averaged measurements per kilometer. By doing this, the measurements
become independent of the trip duration or length, thus providing a generalized/uniform measurement
of driving behavior for each truck. The purpose of this generalization is to provide DAF with possible
business insights regarding driving behavior and repairs. If they prove to be valuable repair predictors,
they can be used to relate maintenance requirements and expected repairs to driving behavior. The first
month of operation for each truck has been used to derive the truck usage features. It could be the case
that multiple drivers are linked to a single truck. However, there is assumed that the first month of
operation allows for enough time to find the usage profile based on these multiple drivers. This has been
assumed because there is no data available to verify when a truck changes from one driver to the other
(i.e. driver information is not stored).

To clarify, a simple example is given. Imagine that we want to score two drivers on their braking behavior.
Driver one made a trip of 1000 km, while driver two drove only 100 km. The measured brake duration
of driver one is 500 seconds, while driver two’s brake duration is 55 seconds. The average score is then
derived by dividing the brake durations by the driven distance. Driver one’s score then becomes 0.5
seconds per kilometer, while driver two gets a score of 0.55 seconds of braking per kilometer. Their
behavior is now compared in a generalized way. The same logic has been applied to the other aggregated
trip measurements in the trip dataset.

In addition, the trip measurements such as the above described breaking duration have been summed
over the entire month of truck operation measurement such that the total score is given. Also, the mean,
standard deviation and skewness of the trip measurements has been derived. They contain information
on the driving behavior dependent on distance and time, which could hold additional information about
the expected number of repairs. Lastly, the number of trips during the first month of operation has been
calculated by counting of the number of trip measurements for each truck. This provides information
about the expected number of trips that a truck will make over the prediction period.

In summary, for every feature from the trip data (except for the redundant features as elaborated in
Section 3.7.1), the value per driven kilometer has been derived, the sum of the measurements over the
first month of operation has been calculated and the mean, standard deviation and skewness of the
measurements has been calculated for each truck.

4.4.2 Fuzzy histograms and feature extraction

The snapshot and trip data by themselves can’t be used as model input directly. In order to use the
time series data for classification tasks, relevant information has to be extracted from them (Rodŕıguez
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and Alonso, 2004). Global characteristics are retrieved for each truck’s (snapshot) time-series measure-
ments. The mean, maximum, minimum standard deviation and skewness values are derived as they are
commonly used metrics to describe the global characteristics of time-series data (Yang and Létourneau,
2005)(Baydogan et al., 2013)(Nanopoulos et al., 2001). Furthermore, the number of snapshots has been
calculated and added as a feature as it provides information about the expected hours of operation during
the period under consideration (a snapshot counts for five minutes of operation time).

Furthermore, a more advanced method for feature extraction has been applied in the form of fuzzy
histograms. Fuzzy histograms are a fuzzy generalization of crisp histograms and used to describe the
probability distribution function properties of the time-series measurements of the trucks. They contain
a much higher level of statistical efficiency compared to the regular crisp histograms, while maintaining
a high level of computational efficiency Waltman et al. (2005). Due to the overlap in the fuzzy sets, they
better approximate probability distribution functions than the regular crisp histograms (van den Berg
et al., 2004).

Figure 18: A crisp histogram (left), compared to a fuzzy histogram (right) with overlapping membership
functions (van den Berg et al., 2004).

Based on (Waltman et al., 2005), the fuzzy histograms are explained as follows:

For samples of x(1), ..., x(n) with a random sample size n, The corresponding probability distribution

function f̂(x) is estimated by a fuzzy histogram as follows:

f̂(x) =
∑
i

piµi(x)∫
µi(x)dx′ (4)

where pi is given by:

pi =
1

n

n∑
j=1

µi(xj) (5)

and µ1, ..., µi are the membership functions that describe the fuzzy partitioning. Therefore, the sum of
their membership to the membership functions is equal to 1 for all x:

∑
i

µi(x) = 1∀x εR (6)

For a more detailed discussion on fuzzy histograms, the reader is referred to (Kaymak et al., 2003) and
(van den Berg et al., 2004).

The membership functions that are used are triangular as they are easy to understand, commonly
used in practice and capture the desired properties well (Barua and Kosheleva, 2014). Each triangular
membership function µi(x) is defined by a lower limit a, an upper limit b and value m :

Predicting the number of truck repairs using logged vehicle Page 49



4. DATA PREPARATION 50

µi(x) =



0, x ≤ a
x−a
m−a , a < x ≤ m
b−x
b−m , m < x < b

0, x ≥ b

(7)

This method has been tested with 5,7 and 9 membership functions (bins) respectively in order to evaluate
their effect on the model performance. This was done to compare the effect of different numbers of fuzzy
bins on the model performance as there is no unambiguous definition for the optimal number of bins.
The tests were performed on several trip data and snapshot data measurements. The list of features over
which the fuzzy bins have been used to extract features is given in Appendix O. These features have
been selected as they were found to have a high feature importance during modeling of the base models.
Experiments on the modeling performance showed that the best performance was reached using 5 fuzzy
bins and therefore, the models with fuzzy bins in this research are made using this number of bins. An
overview of the experiment results is given in Appendix J. Easy to understand linguistic terms such as
’very low’, ’low’, ’average’, ’high’ and ’very high’ have been used for the membership functions in order
to retain feature interpretability. An example of a fuzzy histogram with five bins for the distribution of
truck speed measurements is given in Figure 19.

Figure 19: The fuzzy histogram for the distribution of truck speed measurements.

The membership degrees are counted for all the measurements of the time-series feature and truck
under consideration, aggregated per bin and subsequently normalized, resulting in a feature vector that
describes the PDF of the measurements.

To clarify, a short example for three speed measurements of an arbitrary truck is given based on the bins
in Figure 19 (for this example, we assume that the three observed measurements are the complete set of
measured truck speeds):

Step 1. Find the values of the measurements:

Measurement 1: 80 kmph
Measurement 2: 30 kmph
Measurement 3: 50 kmph

Step 2. Calculate the membership degrees to the bins:

Measurement 1: Membership High = 0.65, Membership MediumHigh = 0.35
Measurement 2: Membership Medium = 1
Measurement 3: Membership Medium = 0.5, Membership MediumHigh = 0.50

Step 3. Aggregate the membership values for all measurements:
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Total membership to Medium: 1 + 0.50 = 1.50
Total membership to MediumHigh: 0.35 + 0.50 = 0.85
Total membership to High: 0.65

Step 4. Normalize the membership values to 1:

Normalized membership to Medium: 0.50
Normalized membership to MediumHigh: 0.28
Normalized membership to High: 0.22

These normalized membership functions have subsequently been used as additional input features for
modeling.

4.4.3 Data integration and formatting

The data from the trip database, snapshot database, R&M contract database and MI (repair) database
are easily integrated into a single dataset as the VIN (identification number) of the truck is present in
each of the datasets. Merging them on the VIN results in the formation of the final dataset that is used
for analysis. When formatting of the data has been required for modeling, it is explained in the next
chapter together with each of the models that have been used for analysis.

4.5 Final dataset

Data has been selected based on the scope of the project and data availability. The scope has been
determined to be the trucks that have been produced from 01-04-2017 or later, while they had to be in
service no later than 21-12-2017. This resulted in a set of 1099 trucks that have been used for analysis.
For each of these trucks, a set of 156 features remained after data cleaning.

Now, as DAF is interested in the potential of the available data in the future, two datasets have been
derived for these trucks. One set contains all trucks that have been in service for 8 months or more such
that predictions could be made over a time horizon on 8 months. This resulted in a set of 793 trucks.
Subsequently, a set that contains all trucks that have been in service for 11 months or more has been
derived, such that the repair predictions could also be made over a time horizon of 11 months. The
difference in obtained results was then used to analyze the effects of a longer prediction time horizon on
the modeling performance. This resulted in a set of 342 trucks.

The average number of repairs in the 8 months ahead dataset was found to be 1.06. Therefore, trucks
that had one or more repairs were classified as having ’many repairs’, while trucks with less than 1 repair
were classified as having ’few (no) repairs’. This resulted in a nicely balanced dataset that could be used
for analysis.

The average number of repairs in the 11 months ahead dataset was found to be 1.70. Therefore, trucks
that had 2 or more repairs were classified as having ’many repairs’ and trucks with less than 2 repairs were
classified as having ’ few repairs’. This resulted in a more or less (40%-60%) balanced dataset. Although
some imbalance is present, the minority class is not substantially underrepresented. Furthermore, under-
sampling and over-sampling have limitations of their own. Under-sampling reduces the already small
dataset even further, and might remove important samples from the set, while oversampling can cause
the models to over-fit on the duplicated instances. Lastly, Estabrooks et al. (2004) showed that the
optimal ratio between the two classes doesn’t have to be 50-50 and different sample ratios could even
improve results. Nonetheless, caution has to be paid when analyzing the accuracy of the models formed
with this dataset as some bias towards the majority class could be formed. Therefore, the precision,
recall, f1 and Kappa score are also analyzed, as together, they provide a good indication of the model’s
ability to classify both classes accurately.
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4.6 Chapter summary

Data has been selected based on the scope of the project and data availability. The scope has been
determined to be the trucks that have been produced from 01-04-2017 or later, while they had to be in
service no later than 21-12-2017. Two datasets have been created. The first set contains 793 trucks (8
months time horizon for predictoin). The second set contains 342 trucks (11 months time horizon).

For these trucks, irrelevant, redundant and poor quality features have been removed, resulting in a
reduction of 230 features to 156 features per truck. For these features, expert knowledge and box-plot
interquartile ranges have been used to determine and remove outliers. Missing values have been imputed
by the mean for each individual truck and feature. Noise in the form of faulty measurements, trips less
than 2 km, and rejected repair claims has been removed from the dataset.

From the clean data and final dataset, new attributes have been derived which were more representative
for truck usage. From the trip dataset, scores per kilometer of driving have been derived from the trip
data in order to compare driving behavior in a generalized way. The trip measurements have also been
aggregated (their values have been summed over the measurement period of one month) and the mean,
standard deviation and skewness of the measurements has been calculated in order to create features
that describe the cumulative usage profile over the first month of operation. Lastly, different features
have been extracted from the snapshot time-series data. The min, max, mean, standard deviation
and skewness have been derived for the feature measurements during the first month of truck operation.
Besides these global features, fuzzy histograms have been used to create feature vectors that approximate
the probability distribution functions of the measured features for each individual truck.

This resulted in a set of 324 features for each truck. For clarity purpose, an example of a complete
feature set is given in Appendix P
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5 Repair prediction models

Before constructing the final models, several modeling decisions had to be made. The modeling techniques
had to be chosen. the scoring metric had to be defined, features had to be selected and hyper-parameters
had to be tuned. In this chapter the modeling setup is elaborated, modeling choices are justified and
finally the final test design is explained.

5.1 Modeling setup

5.1.1 Scoring metrics

The problem under consideration is binary. Often, a confusion matrix is used to derive the model
performance for such classification tasks (Kantardzic, 2011). The confusion matrix visualizes the model
performance by classifying and showing the true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) predictions. The TP and TN are correctly classified predictions. The FP
predictions are classified as positive while actually being negative and the FN predictions are classified
as negative while being positive. The confusion matrix is visualized in Figure 20.

Figure 20: Confusion matrix for a binary classification problem.

The confusion matrix is used to derive several performance metrics. Most common are the Accuracy,
Precision, Recall, Kappa and the F1 score.

The accuracy is the most intuitive scoring metric which gives us the proportion of correctly classified
samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

The precision metric tells us which proportion of samples classified as positive are actually positive. It
is often used when there are large consequences for a positive classification. E.g. for the prediction of a
patient having cancer or not, a high precision is desired:

Precision =
TP

TP + FP
(9)

The recall metric is used to determine how many of the actual positive samples have been identified by
the model. E.g. when for a sample of 100 patients, 5 patients have cancer it is desirable that the model
finds all of these five instances and thus has a high recall score:

Recall =
TP

TP + FN
(10)

The Kappa score compares the expected results from random prediction with predictions in the same
proportion as the predictions made by the classifier being evaluated. I.e. it compares the observed
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accuracy (model accuracy) against the expected accuracy (random chance). This is especially useful for
(highly) imbalanced datasets. For example, for the mentioned case of a sample of 100 patients of which
5 have cancer an accuracy of 95% is reached when all patients are classified as healthy. The Kappa score
however is low as this accuracy is (almost) reacheable by chance as well. According to Anthony J Viera
and Joanne M. Garrett, 2005 the scores and agreements are as follows:

• 0: chance agreement.

• 0.01 - 0.2: Slight agreement.

• 0.21 - 40: Fair agreement.

• 0.41 - 0.60: Moderate agreement.

• 0.61 - 0.80: Substantial agreement

• 0.81 - 0.99: Almost perfect agreement.

The kappa equation is given by:

Kappa =
Accuracy − p

1− p
(11)

Where p is the probability of predicting the correct class due to chance.

Lastly, the F1 score represents both the Precision and Recall. Although not as being the average of the
two. For example, when the model has a Recall of 1 as it classifies all patients as having cancer, the
precision is only 5% (for our 100 patients example). This is why the F1 score takes the harmonic mean
of both the Precision and Recall:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(12)

For DAF, the most interesting scoring metric is that of accuracy. It is equally important to identify
trucks that will have many repairs as identifying trucks that will have few repairs. This is because R&M
contract prices are based on the expectations of the total repairs (and costs) of the individual trucks.
Therefore, a wrong classification of the truck would directly result in incorrect R&M expectations of the
truck under consideration. Besides the accuracy, the precision, recall, F1 score and Kappa score have to
be taken into account as well in order to identify possible bias towards one of the labels in the dataset.
Now, the dataset for 8 months ahead predictions contains an almost perfectly balanced class distribution
and thus, the additional scoring metrics are not particularly relevant. However, the dataset for 11 months
ahead predictions does contain a little imbalance (60%-40%, as elaborated in Section 4.5) and thus the
additional scoring metrics can be used to evaluate possible bias towards the majority class.

5.1.2 Feature selection

When a scoring metric has been selected, in theory a machine learning model can be run with some basic
parameter settings using all the features that are present in the dataset. However, this often results
in suboptimal results as no features have been selected and the hyperparameters have not been tuned.
We’ll discuss the feature selection first.

Less relevant or highly correlated features often result in a decreased classification accuracy of machine
learning models. Feature selection has proven to be an effective measure to increase the predictive
accuracy, learning efficiency and reduce the complexity of the used models (Vieira et al., 2012). As
stated by Kantardzic (2011). Feature selection is useful for a threefold of reasons :

• It often improves the performance of data-mining models. Especially when the number of features
is large and/or many noisy features are present.

• The learning process of the models becomes faster and more memory efficient when the number of
features is reduced.
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• Understanding of the underlying process that leads up to the results becomes easier when the
number of features is reduced.

In general, three types of feature selection can be distinguished (where hybrid methods are a combina-
tion of these methods), being feature ranking (also called filtering methods), subset selection (also called
wrapping methods) and embedded feature selection respectively (Vieira et al., 2012). Feature ranking is
used to rank the features based on some sort of metric and discards all features that do not meet the
required threshold. Where metrics are (for example) the accuracy of available data, consistency, infor-
mation content and statistical dependencies (e.g. mutual information between the feature and target
or a chi-squared test for dependency between feature and target). Subset selection on the other hand,
searches all available features (although often greedy and not exhaustive) for the best performing subset
without ranking the features within the chosen subset. Lastly, embedded methods execute variable selec-
tion as a part of the training phase and are usually specific to the learning machine under consideration.
In this study, both filtering and wrapping are applied. At first, a preliminary feature selection is made
based on data quality and consistency. Afterwards, further filtering based on statistical dependencies
and wrapping methods have been used to further reduce the dataset. The methods that are used in this
study are described below.

5.1.3 Filtering methods

A few filtering methods have been applied to the final dataset in order to try and reduce model complexity
and noise. Although many, relatively easy methods to do so are available, one has to be careful as
seemingly redundant features don’t truly have to be. They can still increase performance when taken
with additional features (Guyon and Elisseeff, 2003). Initial filtering steps are only used to identify truly
useless features.

Variance threshold The first filter that has been applied is that of the variance threshold. When a
feature had only one specific value for all data instances (e.g. all trucks were of the brand DAF) the
feature has been removed from the subset as they didn’t posses any predictive value. In other words, a
baseline variance of 100% had been set. Although one could argue that a more lenient variance threshold
of, for example, 95% could further reduce noise in the dataset there has been decided to not lower the
treshold level. It could be possible that some valuable information is stored in the 5% of the minority
values. Besides that, the subsequent use of wrapping methods that has been performed in this study
further reduces te subset of features and can also discard those ’redundant’ features with a low variance
(when present).

Mutual information Another common filtering method for feature selection are correlation analysis and
mutual information (MI) calculation. Although correlation analysis is frequently used for basic statistic
analyses it is only able to capture linear dependencies between features (Chandrashekar and Sahin, 2014).
Mutual information however, is capable of measuring any kind of relation between variables, both linear
and nonlinear (Chen et al., 2018). Therefore, we prefer the MI method over correlation analysis as an
additional filtering method for feature selection.

MI calculates the ’amount of information’ that can be obtained about a random variable, through another
random variable. It does this by quantifying the amount of mutual information in units such as bits.
Given two discrete variables X and Y, the mutual information between them is defined in terms of their
probabilistic density functions p(x), p(y) and p(x, y) as follows:

I(X;Y ) =
∑
x εX

∑
yεY

p(x, y) log(
p(x, y)

p(x)p(y)
) (13)

The mutual information between the continuous features and labels in our dataset is estimated based on
entropy estimates from k-nearest neighbor distances as described by Kraskov et al. (2004), which is more
simply explained by Ross (2014). In short, from a continuous feature vector N , for every corresponding
class label data-point i, a number Ii is computed. This is based on i’s nearest-neighbors having the same
label y. First, for all data-points , the kth closest neighbor with the same label is identified, where the
set of samples in N having the same label is defined as Nyi . The distance between the two points is then
defined as d where the distance is derived from the values of feature vector N corresponding to the two

Predicting the number of truck repairs using logged vehicle Page 55



5. REPAIR PREDICTION MODELS 56

points. The number of neighbors, regardless of their class label, that fall within distance d (basically,
a bin of size 2d) is calculated, which is defined as mi. Ii can then be calculated based on N and my

by:

Ii = ψ(N)− ψ(Nyi) + ψ(k)− ψ(mi) (14)

where ψ(.) is the digamma function (logaritmic derivative of the gamma function).The MI of the contin-
uous feature X and discrete class label Y is then calculated by averaging Ii over all datapoints:

I(X,Y ) = 〈Ii〉 (15)

For a more detailed explanation we refer the reader to (Kraskov et al., 2004)

Besides being able to capture non-linear relationships, another advantage of the MI filter method as
proposed by Chen et al. (2018) is that the method can be used to determine the optimal number
of features whereas other filtering methods often rely on a (heuristically), user defined threshold for
inclusion. In short, the proposed method operates as follows:

1. For featureset X, calculate the MI between each available feature x and target variable Y and rank
the features on their MI score.

2. Build/train the models with the first k features of the ranked list and calculate the performance of
the model (e.g. accuracy or AUC), where k is run from 1 to X in increments of 1.

3. Plot the model performance versus the number of features used and identify the optimal number
of features by identifying the number of features associated with the peak of the plot.

For a more comprehensive explanation of the MI feature selection method, we refer the reader to the
work of Chen et al. (2018).

5.1.4 Wrapping methods

Two different wrapping methods have been compared in this study, being Recursive Feature Elimination
(RFE) and Sequential Feature Selection (SFS). Although exhaustive methods exist as well, they become
computationally expensive very fast for large datasets and a large feature space (Chandrashekar and
Sahin, 2014). The RFE and SFS are greedy wrapping methods which provide adequate results and have
an acceptable computation time.

Sequential Feature Selection The SFS comes in two ’flavors’, being forward and backward selection.
The forward selection algorithm starts with an empty set of features and as a first step adds the one
feature that gives the highest objective function score (e.g. classification accuracy or precision). This
feature is then permanently included in the feature subset. For every next step, the model adds another
feature to the subset by iterating over the remaining features and selecting the one that provides the
highest objective function together with the previously included features (current feature subset). This
process is repeated until the required number of features is selected (i.e. when the objective function
score no longer increases) (Chandrashekar and Sahin, 2014). On the other hand, the backward selection
algorithm follows a similar procedure but reversed. It starts with the full set of features and iteratively
removes the feature which exclusion results in the largest increase of the (user defined) performance
metric. As another backward feature selection method is already presented later on, there has been
decided to use the forward selection method during the modeling phase. The forward SFS algorithm is
given in Figure 21, where the accuracy (acc) is used as the scoring metric.

Recursive Feature Elimination The RFE algorithm is similar to the backwards SFS apart from the
performance metric used for evaluation (Figure 22). The RFE algorithm removes features based on the
feature importance rather than a user defined performance metric. It uses either the feature coefficients
(linear models) or feature importance (tree based models) to rank features and iteratively removes the
worst ranked feature from the subset of features until one’s left with the desired number of features,
making it an instance of backward feature elimination (Guyon et al., 2002).
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Figure 21: The SFS algorithm.

Figure 22: The RFE algorithm.

5.1.5 K-Fold cross validation and parameter optimization

When constructing models, simply splitting the data into a training-set and test-set, building a model
with the training-set and evaluating its performance with the test-set once (holdout method) would be
rather pessimistic. Although being an easy to understand method, it can result in a biased performance
estimate and over-fitting due to the fact that the training-set might be unrepresentative of the test-set
or new instances in general (Chandrashekar and Sahin, 2014). To mitigate these effects and provide a
more robust model validation technique, cross-validaton is widely used (Efron and Fron, 2012).

Instead of a single split (holdout), the training-set is split into k mutually exclusive subsets of (roughly)
the same size. Essentially this is a repeated holdout method that is repeated for k times where in each
iteration, 1 of the k subsets is used as the validation set and the remaining k-1 sets are used for training.
This mutually exclusive splitting of the dataset ensures that each data point is only used for validation
once (and k-1 times for training). This technique allows for efficient use of all the available data and is
therefore especially valuable when working with small datasets. Although k can be chosen arbitrarily,
extensive research has shown that 10 splits are recommended as this minimizes variance and bias (Han
et al., 2011)(Witten, I. H. , Frank, E., 2016). Now, using 10-fold cross validation, the created model is
trained on 10 different subsets and scored on the remaining validation set, where the performance of the
model is simply calculated by:
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CV P =
1

k
∗

k∑
i=1

Pi (16)

Where k is the number of folds, CVP is the cross validated performance metric score and P is the perfor-
mance metric score of the model. Figure 23 provides a visualization of the cross-validation process.

Figure 23: 10-fold cross validation where E is the performance metric score.

Besides evaluating different machine learning techniques for the problem at hand, the k-fold cross valida-
tion technique is also used to determine the optimal set of hyperparameters of models (when applicable).
Using the same logic as described above, cross validation can be used to evaluate the performance of
models with different hyperparameter settings over the same training data. Subsequently, the model
with the best average performance is selected as the final model. More details on hyperparemeters and
their tuning are given per model in Chapter 6.

Note that the final selected model, because it has already been validated, can be retrained over all folds
of the training data (thus including the validation fold). The final (trained) model can then be used on
the test set which has been held out during the entire modeling process to evaluate the performance on
new, unseen data.

5.1.6 Experimental setup

As a summary of the chapter, the experimental setup is given. This experimental setup is used for two
different model setups which are given below:

• Base model - Model without fuzzy histograms or feature selection applied.

• Base model with SFS - Model without fuzzy histograms but with feature selection applied.

• Extended model - Model with fuzzy histograms but no feature selection applied.

• Extended model with SFS - Model with fuzzy histograms and feature selection applied.

As explained, for both the datasets (8 and 11 months) the dataset is divided into three subsets, being
the training, validation and test set respectively. The holdout method is used to split the data into
a training set and test set where 70% is used for training and 30% is used for testing. The training
set is subsequently split into validation and training sets using 10-fold-cross-validation. The number of
instances (rows) per resulting subset is given for both datasets in Table 17 (note that, as mentioned,
each row contains 324 features). Furthermore, the categorical features in each of the datasets are one-
hot encoded before being used for training and analysis as this provides the models with a numerical
representation of the categorical data that can be used as input directly.

Subsequently the models are built using the training sets. The model hyper-parameters are tuned using
the (cross validated) accuracy on the validation sets. Lastly, the best scoring model is subsequently
retrained using both the training and validation data before being used to perform predictions on the
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Table 17: The number of rows (instances) per subset for both datasets

Dataset 8 months subset Nr. of rows Dataset 11 months subset Nr. of rows

Training set(s) 499 Training set(s) 216

Validation set(s) 56 Validation set(s) 24

Test set 238 Test set 102

test sets, whose results are used for evaluation in the next chapter. As mentioned, the specific parameters
on which the models are tuned are explained for each model in Chapter 6. The general test design setup
is given in Figure 24.

Figure 24: The general experimental setup for the different prediction models.
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6 Modeling results

In this chapter the used modeling techniques are evaluated. Their performance is evaluated using the
test set that has been untouched during training and tuning of the models. The results are listed
and relevant variables are given and discussed. In this chapter, the holdout between the test-set and
training/validation set is select a-priory in order to compare the results between the different models
on the same dataset. The best scoring models using 10-fold-cross validation have been reported in this
section. However, one has to take into account that the models are not stable per definition. Different
runs and data splits resulted in slightly different performances. The average results using different splits
are given in Appendix L

6.1 Feature selection

As explained in the previous chapter, three different feature selection methods have been proposed and
tested on the final datasets in an effort to increase the modeling performance. The methods were tested
using both decision trees and random forests. All 324 features including the features that have been
derived using Fuzzy histograms (Appendix O) were used as input for the feature selection methods. The
methods were specified to optimize the performance metric of accuracy as this has was the most relevant
scoring metric for DAF (see Section 5.1.1). During testing it became apparent that the Sequential
Forward Selection had superior results compared to RFE and MI. Where SFS showed a clear optimal
number of features for the problem at hand, RFE and MI had poor results as the optimal number of
features selected was unstable and no clear optimum could be identified when visualizing the methods.
Furthermore, their performance (based on the validation accuracy scores) was significantly lower than
the scores reached with SFS. A possible explanation for this phenomenon could be that MI and RFE
base their feature selection on a feature importance metric while SFS bases its selection purely on the
increase in performance of the model. Now, as the prediction power of the models is limited, the relations
within the data are not as strong either. It could be possible that the metric as used by MI and RFE
feature elimination do not adequately capture these relations within the data. To provide a better
understanding of the above described limitations , an example for the three methods is visualized in
Figure 25, where their performances for one of the used random forest models are compared. It shows
the 10-fold-cross-validated validation scores against the number of features selected.
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(a) (b)

(c)

Figure 25: The performance of MI (a), RFE(b) and SFS (c) on one of the used random forest models.

As shown, The SFS technique outperforms the other methods on its performance score ( 8% higher
accuracy score) and shows a much clearer optimal number of features due to the obvious trend that is
visible in the figure. Based on the lack of performance of the other two methods, there has been decided
to focus on SFS as the feature selection method during the final modeling and evaluation. Now, as each
of the evaluated machine learning modeling techniques operates differently, applying SFS results in a
different subset of features for each individual modeling technique. Thus, a single definitive subset of
features cannot be given here. For readability purposes, the relevant, selected features are given for each
modeling technique individually in the subsections of this chapter.

In the remainder of this chapter, the results for each of the modeling techniques are elaborated.

6.2 Logistic Regression

First, the results for Logistic Regression are presented. For the logistic regression model there are
two parameters that can be chosen, where the first parameter is the regularization method. There is
Lasso Regression (L1) and Ridge Regression(L2), where the difference between the two is found in the
penalty term. L1 minimizes the sum of absolute differences between the targets and prediction, while
L2 minimizes the sum of the square of differences between the two. Thus, one can image that the
L2 method is much more sensitive to outliers. Furthermore, L1 is better capable in handling many
(irrelevant) features (Andrew, 2004). A downside of the L1 method is that results can be unstable (i.e.
feature correlation scores are not always consistent), while this is not the case for L2 regression. The
second parameter to be chosen is the regularization strength C, where a larger C corresponds to a larger
penalization of ’large’ weight coefficients. The goal is to prevent the model from over-fitting by picking
up ’noise’ and ’specific cases’.

Furthermore, before being used as input for the logistic regression models, the feature values of the input
are normalized. Thus, the values for each feature are scaled between the range 0 and 1 (Han et al., 2011).
The reason to do this is twofold. On the one hand, this is done because the regularization methods are
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’not equivariant under scaling of the inputs, and so one normally standardizes the input before solving’
Hastie et al. (2001). I.e. they are sensitive to the scale of the features, as they penalize large weights of
coefficients. On the other hand it allows for direct comparison of the beta coefficients to derive feature
importance as they are formed over the same range (scale) of data for each feature.

The parameter optimization as described above has been done by a grid-search over the range of available
parameters. This method searches for the optimal set of parameters for the model under consideration
by an exhaustive search of the given parameter space (or grid). A (ten fold cross validated) model
is constructed for each possible set of hyper-parameters after which the best performing set is given as
output and used for final modeling. The reader is referred to Appendix Q for the range of parameters that
has been searched. For the 8 months ahead models, a regularization strength C of 100 and Regularization
method L1 was found to be the optimal combinations of features, while for the 11 month ahead datasets
a regularization strength C of 1 and regularization method L2 was found to be optimal.

6.2.1 Base models

The results for the base model are given in Table 18.

Table 18: Logistic Regression base model results

Setup Accuracy Precision Recall F1 Kappa

Logistic Regression 8 months ahead 0.55 0.61 0.50 0.55 0.14

Logistic Regression 11 months ahead 0.57 0.45 0.46 0.46 0.12

As one can see, the base model provides only limited results. Besides only making a correct prediction
for 55% (8 months ahead) and 57% (11 months ahead) of the samples, only a limited number of trucks
having many repairs are correctly identified (recall) and of each truck that has been classified as having
many repairs, only 50% or less actually were of that class (precision). Note that we are mostly interested
in the accuracy as we simply need the model to be make as much correct classifications as possible.
For contracting purposes both the trucks with many repairs as the trucks with few repairs are equally
interesting. From a business side of view, classifying a truck with many repairs as a truck with few
repairs has equal consequences as classifying trucks with few repairs as trucks with many repairs.
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6.2.2 Extended models

Next, SFS has been applied in an effort to remove redundant variables and improve model accuracy.
The SFS method was run using 10 fold cross validation and the results for the 8 months ahead model
are given in Figure 26. The cross-validated accuracy scores on the validation sets are plotted against the
number of features used in the model. The solid line shows the averaged validation accuracy score while
the standard deviation is given by the shaded area around the average accuracy scores. The performance
of the model increases up until 12 features, after which the performance of the model decreases again
(due to noisy and irrelevant features). The 12 features are subsequently used to train the final model
after which its performance is evaluated over the test set, which is given in Table 19. The same procedure
has been applied for the other Logistic Regression models.

Figure 26: Cross-validated 8 months ahead Logistic Regression accuracy scores plotted against the
number of features selected by the SFS.

Table 19: Modeling results for the base Logistic Regression model with SFS.

Setup Accuracy Precision Recall F1 Kappa

Logistic Regression SFS 8 months ahead 0.56 0.57 0.54 0.56 0.10

Logistic Regression SFS 11 months ahead 0.66 0.66 0.45 0.51 0.30

The best results are obtained using the 11 months ahead model and the features as found by SFS.
Therefore, the feature importance in terms of beta scores are given in Figure 27. They provide insights
in the features that are relevant for the prediction task. The features can then be compared to the
relevant features in the other models to validate their importance in general. Now, the performance
of the 11 months ahead model is significantly better than that of the 8 months ahead model. This is
expected as the repairs become more predictable over time (i.e. the repairs that will occur on a truck
during it’s lifetime are more predictable than the repairs during its early life only). The average number
of repairs per truck jumped from 1 to 2 in the three months of time difference between the two datasets.
Thus, trucks from the 8 months ahead dataset only need a single incidental repair to be classified as
having ’many’ repairs, while trucks from the 11 months ahead dataset need at least two. This likely
allows for the model to find more robust relations between the number of repairs and truck features as
a single incidental repair no longer classifies a truck as having many repairs. This holds for the results
of the remaining other models as well.
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Figure 27: The beta coefficients for te best performing base Logistic Regression model.

Looking at the coefficients from the model, there can be seen that the model uses a combination of
Connect data and product specification information for the classification task. It shows that a CF
truck with a specific setup is expected to have more repairs than an XF truck with specific setups.
Simultaneously, the total cruise control distance and mean idling duration have a positive effect on the
number of repairs. The positive effect of the total cruise control is logically explained by the fact that a
higher value for this feature indicates a more intensive and/or frequent use of the truck. The cause of
the positive effect of the mean idling duration is a bit more speculative. It is most likely that the trucks
with a high relative idling duration make frequent stops or are used for specific heavy tasks. Lastly, the
negative effect of the minimum oil level in the engine is a feature that is directly related to the truck’s
condition. Thus, a lower oil level results in a higher chance of a truck having many repairs (as a higher
minimum oil level leads to a negative value for the repair predictions).

Next, the extended model is evaluated, which follows the exact same procedure as the base model with
the difference that fuzzy histograms have been used to derive additional variables from the Connect data
(as explained in section 4.4.2). The models are run including the new variables and their results are
given in Table 20 and Table 21.

Table 20: Modeling results for the extended Logistic Regression model without SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended Logistic Regression 8 months ahead 0.56 0.58 0.53 0.55 0.11

Extended Logistic Regression 11 months ahead 0.58 0.45 0.49 0.47 0.13

Table 21: Modeling results for the extended Logistic Regression model with SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended Logistic Regression SFS 8 months ahead 0.57 0.57 0.52 0.54 0.10

Extended Logistic Regression SFS 11 months ahead 0.69 0.61 0.48 0.54 0.31

The Extended models consistently outperform the base models. Especially the extended 11 months ahead
model with SFS proves to outperform the model without SFS by 3 percent-point (see Appendix M for
validation). To gain insights in the working of this model, the SFS results and the feature importances
of the new best performing model are given in Figure 28.
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Figure 28: The beta coefficients for te best performing extended Logistic Regression model.

As can be seen, the extended model chooses quite some different variables for it’s predictions compared
to the base model. Thus, the fuzzy histograms added some complexity to the model but improved it
nonetheless. Most of the variables in Figure 28 are straightforward, with the exception of WRNTY +
2nd YEAR ND + 3rd year DL. One could derive that trucks that have this type of warranty contract
can be expected to have a higher risk of many repairs during their first year of operation (as seen by the
positive beta coefficient for that feature). However, trucks with this type of warranty package do not
enjoy further benefits compared to the trucks with standard warranty packages. Therefore, the direct
cause of the increased risk for these trucks cannot be directly derived. The meandelta distance feature
indicates the distance driven between the measured snapshot intervals and thus provides information
about the driving behavior of trucks. A higher average distance between the measured snapshots relates
to high driving speeds (and probably long distance trips).

6.3 Decision Tree

The decision tree is the next model under consideration. The maximum depth of the trees, minimum
number of samples per split and minimum samples per leaf are tuned using cross validation in order to
avoid over-fitting (and underfitting) of the models. A higher number of samples per slit and per leaf
results in a more pruned tree. Thus, sections in the trees that provide little classification powers are
removed (sections that are only capable of classifying very specific instances). In general pruned trees
have better generalization capabilities than large trees (Kantardzic, 2011). For the analysis, the same
procedures as for the Logistic Regression models have been followed. For the searched parameter space
during parameter optimization, the reader is referred to Appendix Q. Also, the optimal parameters that
have been found for each of the models are given in Appendix R.

6.3.1 Base models

First the base model is evaluated, for which the results are given in Table 22

Table 22: The results for the base models without SFS.

Setup Accuracy Precision Recall F1 Kappa

Decision Tree 8 months ahead 0.54 0.59 0.41 0.48 0.08

Decision Tree 11 months ahead 0.64 0.50 0.56 0.53 0.21
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Next, SFS is used as the feature selection method to see if results improved. It’s cross-validated validation
scores are plotted against the number of features selected and shown in Figure 29. It shows that the
performance increases fast when a few features are added, after which it stagnates. This shows that just
a few features are needed to reach peak performance. In fact, after only 14 features the model showed
no further (significant) performance improvements.

Figure 29: Results of the Decision Tree model performance using SFS and 11 months of data.

The results for the base model using SFS are given in Table 23.

Table 23: The results for the base models with SFS.

Setup Accuracy Precision Recall F1 Kappa

Decision Tree 8 months ahead 0.55 0.56 0.56 0.57 0.11

Decision Tree 11 months ahead 0.64 0.54 0.44 0.47 0.19

As one can see, this did not significantly improve the performance of the models. The highest accuracy
remains to be 64%. Using the feature importance from the corresponding decision tree (11 months ahead
with SFS), insights about relevant features can be gained. They are given in Figure 30.
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Figure 30: Feature importance for the best 11 months ahead decision tree with SFS.

From these features it can be derived that the Connect database is important when predicting the repair
category of trucks. In fact, not a single feature from the CCM database is used in the decision tree. This
is striking as the logistic regression model did include CCM database features. However, this can be
explained by the different method with which the decision tree decides on the importance of its features
compared to the Logistic Regression model. As elaborated in Section 2.3.2, the feature importance is
derived based on the decrease in node impurity, weighted by the probability that a sample reaches the
node. Now, analyzing the important CCM features from the logistic regression models revealed that
chosen features often only had a limited number of appearances in the dataset. For example, the feature
delivery country Italy was only present in 9 instances of the dataset, for which 8 trucks were labeled
as having many repairs. Thus its relevant beta coefficient is explained for the logistic regression model.
It’s discriminating effect in the overall decision tree model, however, is limited (due to its few number
of occurrences in the dataset) and thus the decision tree doesn’t classify this feature as important. The
same logic applies for the other CCM database features that do not have a presence in the decision tree
models. Furthermore, the decision tree also considers non-linear relations between (combinations of)
features, which the logistic regression model does not. For example, a high acceleration and braking
duration per trip combined with a high weight of the truck (combination weight) likely influences the
number of repairs more significantly than a high acceleration duration by itself.

6.3.2 Extended models

Using the same procedure, the extended models are analyzed next. Again, for the best performing model,
the most important features are given below. The results for the extended models without SFS are given
in Table 24

Table 24: The results for the extended models without SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended Decision Tree 8 months ahead 0.58 0.58 0.72 0.64 0.15

Extended Decision Tree 11 months ahead 0.66 0.54 0.44 0.47 0.19

Subsequently the results for the extended models with SFS are given in Table 25.

It is interesting to see that the extended models (including the features derived with fuzzy histograms)
perform better in terms of accuracy. For the 11 months ahead predictions with and without SFS, the
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Table 25: The results for the extended models with SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended Decision Tree SFS 8 months ahead 0.60 0.59 0.68 0.63 0.19

Extended Decision Tree SFS 11 months ahead 0.66 0.55 0.61 0.58 0.19

extended models show an consistent increase of about 2 percentage-points compared to the base models
(see Appendix M for validation). To provide insights about the added features,the feature importance
for the best performing extended decision tree is given in Figure 31.

Figure 31: Feature importance for the best performing extended decision tree.

As one can see, two features that have been derived with the fuzzy histograms have been incorporated in
the best performing model. These are engineintakeairpressure 1 level hi and engineoilpressure 1 level lo
respectively. Again, the features that have been used for the predictions do not contain any truck spec-
ification features. Only Connect variables have been selected, where especially specific pressure levels
inside the trucks appear to contain additional information for the classification task. The meanambien-
tairtemperature could be of influence for two reasons. For one, a higher temperature could increase or
decrease the strain on the engine. However, it is more likely that it is an indication for the country/area
in which the truck operates. Realizing that the datasets contain trucks delivered in Europe only, the
average measured temperature is region/country dependent. The throttle and breaking durations are
direct indicators of a truck’s usage, which confirms that at least some potential can be found in the
Connect data at DAF regarding repair predictions. Especially as they are chosen in favor of the truck
specification features.

6.4 Random Forests

As explained, a random forest is basically an ensemble of trees. As such, the same parameters as for
decision trees can be tuned with the addition of the number of estimators. This parameter represents
the number of decision trees that is used in the forest. In principle, adding more trees allows the
model to obtain a better generalization performance, at the cost of increased computational complexity.
Furthermore, as random forests provide generalization by majority voting, pruning of the trees is less
important compared to single decision trees. Again, for the searched parameter space during parameter
optimization, the reader is referred to Appendix Q. Also, the optimal parameters that have been found
for each of the models are given in Appendix R.
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6.4.1 Base models

First, the results for the base models are given in Table 26.

Table 26: The results for the base models without SFS.

Setup Accuracy Precision Recall F1 Kappa

Random Forest 8 months ahead 0.59 0.63 0.54 0.58 0.19

Random Forest 11 months ahead 0.64 0.67 0.64 0.66 0.30

Next, SFS is applied. The cross validated validation scores are plotted against the number of features
selected in Figure 32. The performance (accuracy) follows a nice trend where the model performance
increases as more features are added until it reaches a peak at 22 features. Adding more features both
increases complexity and reduces the modeling performance, which is shown by the (mostly) decreasing
performance when more than 22 features are added.

Figure 32: Results of the Random Forest validation performance using SFS and 11 months of data.

The results for the base model using SFS are given in Table 27.

Table 27: The results for the base models with SFS.

Setup Accuracy Precision Recall F1 Kappa

Random Forest SFS 8 months ahead 0.63 0.64 0.69 0.66 0.26

Random Forest SFS 11 months ahead 0.64 0.52 0.41 0.46 0.18

The random forest that predicts 8 months ahead benefits from SFS while the method does not increase
the accuracy for the 11 months ahead predictions. The best performing model is the Random Forest 11
months ahead without SFS. Although is does have the same accuracy (64%) as the model with SFS, it
has a higher Kappa score (0.30, which corresponds to a fair agreement),recall and precision. To provide
insights in the decision making process, the top 10 most important features as identified by the model
are given in Figure 33:
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Figure 33: Feature importance for the best performing base random forest.

As can be seen, individual features do not provide much information about the classification of the
trucks in this model. Even the top 10 of features only have an importance of 0.02 (normalized) or less.
Nonetheless, they are the most important features for this model and can be used to verify the selected
features against the other modeling methods used.

6.4.2 Extended models

Next, the extended models are analyzed to check if they are able to increase the performance of the
random forests. Again, both including and excluding SFS. First, the results without SFS are given in
Table 28.

Table 28: The results for the extended models without SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended Random Forest 8 months ahead 0.61 0.63 0.63 0.63 0.23

Extended Random Forest 11 months ahead 0.64 0.66 0.64 0.65 0.29

Lastly, the performance for the extended models with SFS are reported in Table 29.

Table 29: The results for the extended models with SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended Random Forest SFS 8 months ahead 0.62 0.67 0.52 0.59 0.24

Extended Random Forest SFS 11 months ahead 0.66 0.58 0.36 0.43 0.23

The best performing model when looking solely at accuracy is the Extended Random Forest SFS 11
months ahead. However it’s recall is exceptionally poor. Thus, although providing a high accuracy, it is
only capable of identifying a limited number of trucks that have many repairs. In contrast, based on the
relatively high accuracy, it is therefore exceptionally good in recognizing trucks that will not have many
repairs. The corresponding feature importances are given in Figure 34.

The model uses a combination of truck specifications and usage characteristics to derive the class of
the truck. However, the importance of the usage characteristics and thus there can be stated that
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Figure 34: Feature importance for the best performing extended random forest.

they provide superior information compared to the truck specifications and contract information (CCM
variables).

6.5 MLP-NN results

The last model under consideration is the MLP-NN. Although it will be less informative for DAF com-
pared to the other methods, it has been implemented nonetheless, in order to see if it has significantly
better performance. For this model, the number of hidden layers, the activation function, learning rate
and maximum number of iterations have been tuned. The number of layers determines, as the name
suggests, the number of hidden layers in the model. Too few layers could result in a high training and
generalization error (under-fitting), while too many hidden layers result in a slow learner with poor
generalization. The activation function for the hidden layers is tuned by simply trying different types
of functions (logistic sigmoid, and hyperbolic tangens). Furthermore, the learning rate can be adapted
in order to change the step-size in weight updates. Too high of a learning rate can cause the model
to ’skip’ optimal settings, while too slow of a learning rate could result in the model taking too long
to reach the optimum. Lastly, the number of iterations is tuned as too many iterations could result in
an over-fitted model while too few iterations cause the opposite (LeCun et al., 2012). As for the other
models, the reader is referred to Appendix Q for an overview of the searched parameter space during
parameter optimization. Also, the optimal parameters that have been found for each of the models are
given in Appendix R.

6.5.1 Base models

Conform the other models, the performance of the base models is reported first. They are given in Table
30

Table 30: The results for the base models without SFS.

Setup Accuracy Precision Recall F1 Kappa

NN 8 months ahead 0.62 0.58 0.70 0.64 0.15

NN 11 months ahead 0.61 0.49 0.49 0.49 0.22

The accuracy and recall on the 8 months ahead base dataset are slightly higher compared to other models.
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However, as a trade-off, information about the feature importances cannot be derived in a straightforward
manner due to the black box working of the NN. Furthermore, its performance on the other datasets
is not significantly higher (or even worse) than that of the random forest models. They have a low
precision an recall score while not achieving a significant increase in accuracy. Thus, feature importance
derivations (e.g. sensitivity analysis) are not further explored for the NN’s. It can be concluded that the
results of the NN’s are not useful for DAF with the current amount of available data.

Next, SFS has been applied for the MLP-Neural network. However, the method seemed less suitable
for the MLP-NN than for the other methods. In fact, the accuracy of the models was hardly improved
while the precision and recall decreased. An example of the SFS results for the 11 months ahead model
is given in Figure 35.

Figure 35: SFS applied to one of the MLP-NN’s.

As one can see, there is no clear optimum for the number of features to select, which explains the
poor results when applying it to the MLP-NN’s. Nevertheless, the results with SFS are given in Table
31

Table 31: The results for the base models with SFS.

Setup Accuracy Precision Recall F1 Kappa

Base NN SFS 8 months ahead 0.61 0.61 0.73 0.66 0.17

Base NN SFS 11 months ahead 0.63 0.51 0.41 0.46 0.18

6.5.2 Extended models

Next, the results when including the additional features from the fuzzy histograms are analyzed. The
results for these extended models are given in Table 32.

Table 32: The results for the extended models without SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended MLP-NN 8 months ahead 0.61 0.60 0.73 0.66 0.20

Extended MLP-NN 11 months ahead 0.65 0.55 0.44 0.49 0.22
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Subsequently, the results using SFS on the extended models are given in Table 33.

Table 33: The results for the extended models with SFS.

Setup Accuracy Precision Recall F1 Kappa

Extended MLP-NN SFS 8 months ahead 0.61 0.45 0.46 0.46 0.11

Extended MLP-NN SFS 11 months ahead 0.66 0.56 0.49 0.52 0.26

Again, SFS did not provide any significant improvements for the NN-models. The extended models
without SFS however did have some improved results with respect to the base models. Although accuracy
did not always increase, the recall, precision and Kappa score improved slightly.

In general, the MLP-NN did not show an improved accuracy or kappa score compared to the other
models. In addition, some relevant information is lost in the models because the feature importance
cannot be analyzed. As DAF wanted to receive insights about the factors that influence the numbers of
repairs (such that they could act on it in the future) and the performance of the models is not significantly
better, there can be concluded that the MLP-NN is not suitable for the problem at hand.

6.6 Summary of results and relevant features

6.6.1 The most suitable models to predict repairs

In this section, the best modeling results and most suitable prediction methods are stated. Furthermore,
the relevant features for the prediction of repairs are given.

Four different types of machine learning techniques have been tested on their ability to predict if trucks
will have few or many repairs during their early life. They are Logistic Regression, Decision Trees,
Random Forests and MLP-Neural Networks respectively. In general, there is concluded that there is
some predictive power present in the Connect data of DAF, but the few numbers of repairs in the early
life of the trucks limited the prediction performances. The highest achieved accuracy is 63% for the 8
months ahead prediction, which has been reached using random forests in combination with SFS. In
addition, the random forest had a decent precision and recall score of 64% and 69% respectively.

Furthermore, an accuracy score of 69% has been reached for the 11 months ahead prediction, which is
achieved by the Logistic Regression model. However, the recall score (ability to recognize trucks having
many repairs) of this model was limited, being 48%. This indicates that some bias toward the ’few
repairs’ class exists in the model. Therefore, the random forest technique is preferred. Although having
a lower accuracy (64%), it has a significantly higher recall score 64% (and a precision score of 66%,
which is 5% higher than that of the Logistic Regression model). Lastly, the models had comparable
kappa scores as the Logistic Regression model scored 0.31 and the Random Forest model scored 0.30,
showing a fair agreement level.

6.6.2 Relevant features for repair predictions

To asses the relevant features in the prediction models, the most important features have systematically
been visualized in this chapter, where the feature importance based on gini impurity has been used for
the random forests and decision trees, and beta coefficients have been used for the Logistic Regression
models. Analysis of the features revealed that each modeling technique selects a different subset of
most important features. Therefore, an unambiguous set of relevant features cannot be given. Instead,
the most recurring features among each of the models is given as their presence across multiple models
provides a nice validation of their importance. The top 10 of most used features across the best performing
models is given in Table 34.

The asset type is found most often across the models. Depending on the specific type, this can either
cause the predictor to expect less or more repairs. For example, the asset type FT XF480D X 360 has
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Table 34: The 10 most used features across the best performing models

Feature Presence in nr. of models Total types present across models

Asset Type 2 6

Harsh brake duration 4 6

Tachograph speed 2 5

Engine oil pressure 4 5

Trip distance 3 4

DPA Anticipation scores 2 3

Max throttle duration 2 3

Ambient air temperature 2 2

Engine intake air-pressure 2 2

a negative beta coefficient in the Logistic Regression model while the asset type FT CF460ZH 380 is
associated with a positive beta coefficient. Implying that certain truck setups are expected to have more
repairs than others, which could be explained by the fact that certain setups are more often used for
special purposes than others. Harsh brake duration metrics such as harsh brake duration per kilometer
and mean harsh brake duration per trip are used by the decision trees and random forest, indicating that
they have a significant effect on the expected number of repairs. The tachograph speed is another feature
that is often used by the models, where, according to the Logistic Regression model, metrics such as low
average tachograph speed contribute to a lower expected number of repairs while high average tachograph
speed contributes to a higher number of expected repairs. Next, the engine oil pressure is often used to
determine the repair class of the trucks. In the Logistic Regression models a high pressure is related to
less repairs and a low oil level is related to more repairs. Thus, a low oil level has a negative impact
on the truck (engine). This is likely to be true as a low oil level causes the engine to run suboptimal
or even fail when the oil level becomes too low. Next, the trip distance is another important metric.
Although the direction of the relations cannot be directly derived from the models (large decision trees
and random forests), it is highly likely that short trip distances contribute to more repairs as this means
that the trucks have to make many stops and startups, while long trip distances relate to trucks for
long distance transport, which are known at DAF to have less repairs. The DPA anticipation score is a
metric that shows how well the driver is able to anticipate on traffic, based on the trucker’s behaviour
on the road. Thus, it is interesting to see that this score has an actual effect on the predicted number of
repairs. Although it cannot be derived directly from the models, a higher DPA anticipation score likely
contributes to a fewer number of repairs as it relates to a less aggressive driving style (i.e. better and
more active anticipation). Furthermore, the ambient air temperature is incorporated in the decision tree,
random forest and in the additional logistic regression model as given in Appendix K. From this model,
there could be derived that a lower ambient air temperature is related to more repairs. Now, although
it is possible that a low temperature results in strain on the engine and related parts (as it needs to get
up to running temperature), it is also possible that specific regions and countries simply have a higher
claim rate than others. Because the trucks in the dataset are from Europe only, the average ambient air
temperature could be related to the region of operation. To check this, the claim rate has been derived
for each country in the dataset, which is given in Table 35 (the claim rate is the average number of claims
per truck).
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Table 35: The claim rate per country, where the claim rate is the average number of claims per truck.

Country ClaimCount Nr. of trucks Claim rate Average temperature

Austria 12 9 1.33 6.35

UK 72 56 1.29 8.45

Netherlands 14 14 1.00 9.25

Italy 10 14 0.71 13.45

Germany 208 376 0.55 8.5

Switzerland 2 4 0.50 5.5

Spain/Portugal 153 326 0.47 13.3

Poland 13 29 0.45 7.85

France 35 87 0.40 10.7

Bulgaria 6 15 0.40 10.55

Romania 2 4 0.5 8.8

Belgium 5 13 0.38 9.55

Slovakia 1 3 0.33 6.8

Hungary 20 77 0.26 9.75

Czech Republic 0 5 0.00 7.55

Indeed, with the exception of Italy, the countries with a claim rate higher or equal to 0.50 generally
have a relatively low average temperature (although not exclusively lower). This somewhat supports our
suggestion that the ambient air temperature is related to the area of operation and thus the expected
number of claims. However, as the number of trucks in each country (with the exception of Germany and
Spain/Portugal) is rather limited in the available datasets, this conclusion cannot be properly validated
and thus should be investigated further by DAF when more data becomes available.

Lastly, the intake air pressure from the engine has some influence on the expected number of repairs.
According to the Logistic Regression model in Appendix K, a higher air-pressure is slightly related to less
repairs. However, this cannot be further validated by the other models (due to the size of the decision
trees and the limited comprehensibility of the random forests).

In conclusion, there can be said that the Connect variables have a relatively high prediction power com-
pared to the truck specifications and contract data that is currently used by DAF. They are consistently
favored by the prediction models when predicting the repair class of the trucks. However, due to the
limited prediction power within the data, unambiguous relations between them cannot be given. Instead,
based on the beta coefficients of the logistic regression models and the number of appearances as impor-
tant features within the tested models, the top 10 of most informative repairs has been presented, which
could be further explored upon usefulness in the future. This could be done by thoroughly consulting
knowledge experts and by derivation of additional properties from the available Connect data regarding
these features.

6.7 Comparison to the work of Goudsmits (2018)

As elaborated in Section 2.4, work on the prediction of the number of truck repairs has been executed at
DAF before, with the difference that DAF Connect could not be used at that time. Instead, only truck
specification information and contract details were used. To verify the added value of DAF connect,
the performance of his models (without Connect) is compared to that of the models in this research.
Goudsmits (2018) used a similar approach as this research by classifying trucks as having few of many
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repairs based on the average number of repairs over time. The accuracy of his models and the models
in this research are given in Table 36

Table 36: Comparison of the model performance (accuracy) of the work of Goudsmits (2018) and this
research.

Model Accuracy Goudsmits (2018) Accuracy current work

Logistic Regression 0.68 0.69

Decision Tree 0.66 0.66

Random Forest 0.69 0.64

Neural network Not used 0.66

As one can see, the modeling results are rather similar. At a first glance this seems illogical, as the
addition of DAF Connect introduced much more detailed information about the trucks and their usage.
However, the amount of available data has to be taken into account. DAF Connect is a new feature for
DAF’s trucks and thus, only a limited number of trucks has been fitted with the system at the time of
this research.

Where Goudsmits (2018) used information from 2433 trucks to achieve the above described prediction
performance, only 342 (11 months ahead dataset) trucks with DAF Connect have been used to reach
a similar performance in this research (as more truck with DAF Connect simply were not available).
Furthermore, he was able to do these predictions over a time horizon of two years, while with DAF
connect, only 11 months of repair data was available. Thus, it can be concluded that with approximately
7 times less data instances (2433/342 trucks) and a roughly 2 times smaller time horizon (24/11 months),
a similar prediction performance could already be reached by the addition of DAF Connect features for
modeling. This indicates the potential of DAF Connect in the future. When more trucks and a larger
time horizon become available it is expected that the models as used in this research will outperform the
models from previous work.
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7 Conclusions and recommendations

The last chapter of this document concludes the thesis. First, the individual sub-questions and finally
the main research question are addressed. Secondly, recommendations, academic relevance, limitations
and future research are discussed.

7.1 Research conclusions

In this subsection, the research subquestions and main research question are addressed and answered,
based on the results of the research.

1. What cost/repair data is available?

Detailed information about the repairs on trucks is available in DAF’s claim database. Among obvious
information such as costs and the corresponding trucks, more detailed information about the repairs such
as the type of repair, the associated components, labour hours involved and truck specifications can be
found. This data has been used to define the number of repairs and associated costs per truck.

2. Which factors are currently used to predict repairs?

In Chapter 2 the current factors are explained in detail. Basically, DAF uses static truck specification
data in combination with predefined usage profiles that a customer has to specify before buying a
repair and maintenance contract at DAF. Based on this information, DAF derives expected costs and a
maintenance category for the trucks. A downside of this method is that there is no method available to
check if the users actually use their trucks as stated in the contract, which limits DAF’s capability to
derive specific costs per individual truck.

3. Which variables can be extracted from the data?

With the arrival of DAF Connect (the telemetry systems inside DAF’s trucks) DAF has been able to
collect detailed, real time, data about their trucks’ operating state and health status. The factors that
can be extracted are threefold:

• Truck specification data can be extracted from the repair and maintenance contract information
of the trucks.

• Truck usage data can be derived using the data from DAF Connect, with which actual truck use
and operating conditions could be derived.

• Details about the repairs of the trucks can be derived from the claim database at DAF.

The collected Connect data from DAF’s trucks are basically sets of time series that are unique for each
truck. In an effort to capture this, usage profiles have been derived for each truck by the extraction
of variables from their time series. Minimums, maximums, averages, standard deviations and skewness
of measurements have been derived for each truck and in addition, fuzzy bins have been applied to
some of the relevant variables in order to try and capture detailed information about the probability
distribution of the truck measurements (e.g. the distribution of truck speed and engine oil pressure).
These features have subsequently been combined with the available truck specifications and contract
data per truck such that their relevance compared to the currently used information for cost predictions
could be verified.

4. Which prediction method is most suitable for the problem at hand?

Literature study showed that there is a range of methods that is commonly used in the field of predictive
maintenance. Of these methods, MLP-Neural Networks and Random Forest were most often used and
thus also incorporated in this research. In addition, Decision Trees and Logistic Regression has been
included. As they are rather interpretable models, they can be used to provide DAF with insights about
the specific features that had an influence on the expected number of repairs. Feature importance and
beta coefficients of these models can be analyzed in order to provide DAF with insights on the effects
of specific variables on the expected number of truck repairs. Based upon the results of the different
models, the most suitable method has been identified, which is explained in the next section.
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5. What is the performance of the most suitable models?

For the 8 months ahead prediction, the random forest proved to be the most suitable model. It achieved
an accuracy of 63% in combination with a precision score of 64% and recall of 69%. Furthermore, relative
feature importance could be derived from the model that provided DAF useful insights about the features
used for these predictions.

Furthermore, for the 11 months ahead prediction, based solely on accuracy, the Logistic Regression model
obtained the best result with an accuracy score of 69%. However, this came at a cost of a very limited
recall score of 48%, which was most likely caused by the slight imbalance (40%-60% ratio) in the 11
months ahead dataset. This caused the model to bias itself towards the majority class. A more robust
result was obtained by the random forest which had a lower accuracy of 64%, but a decent precision
score of 67% and recall score of 64%.

In conclusion, the random forest shows the most potential for repair predictions on DAF’s trucks, it has
the most consistent results over both of the datasets (8 months- and 11 months ahead) compared to
the other models. Furthermore, it had the best precision and recall scores and lastly, it provided some
insights into the features that it selected based on the derived feature importances from the model.

6. What variables provide information about the expected number of truck repairs?

As each of the models used their own set of features for the prediction of expected repairs, an unambiguous
answer to this question cannot be given. However, some features were used by multiple models and
therefore, some form of feature importance validation has been done by counting the occurrence frequency
of the variables that have been used by the best performing models. This resulted in a top 10 of most
important features which is presented in Table 34 of the previous chapter. With the exception of one
truck configuration feature (Asset type), the top 10 of most important features is comprised of features
that have been derived from DAF Connect, indicating the potential of DAF Connect for the prediction
of expected repairs on DAF’s trucks. In short, these features can be divided into three categories,
being driving related features, truck status features and indirect features. The features Harsh braking
duration, Tachograph speed, DPA anticipation scores and Max throttle duration are directly influenced
by the driver of the truck and thus categorized as driving related features. The features Engine oil
pressure and Engine intake air-pressure are information about the truck’s status and are categorized as
truck status features. Lastly, the features Asset type, Ambient air temperature and Trip distance are
features that are not directly influenced by the truck or the driver (assuming that a driver doesn’t choose
the trip distance, but receives this information from an external entity/company) and labeled as passive
features. In conclusion these features provide the best information about the expected number of truck
repairs.

With the sub-questions answered, the main question can be answered, which serves as a nice summary
of the research.

Main research question: How can the number of truck repairs be predicted based on
telemetry truck data and truck usage information?

To be able to use the telemetric truck data for repair predictions, useful features had to be extracted
from the multivariate time-series data (telemetric truck data), as it couldn’t be used as input for the
prediction of the number of truck repairs directly. Instead, usage profiles per truck were derived by the
extraction of global features from the telemetry data and using fuzzy histograms to approximate the
probability distribution of the measurements as a feature vector.

As a next step, the time horizon over which to predict the number of repairs was established. Based
on the available data at the time of research, a prediction horizon of 11 months was determined, simply
because DAF Connect was still new and any data from before that time was deemed to be unreliable
and inaccurate. Furthermore, an additional prediction horizon of 8 months ahead had been established
to compare the effects of different time horizons on the prediction performance of the models.

Subsequently, four different modeling techniques were constructed and tested according to the CRISP-
DM framework. These techniques were selected based on relevance in the literature and their ability to
provide DAF with insights about the features that were used to make the predictions. Although the con-
structed Logistic Regression models, Decision Trees, Random Forests and MLP-Neural networks showed
rather similar performances, the Random forests provided the most robust results. Simultaneously, it
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allowed for (limited) insights into the relevant features that had been used to get those results based on
the relative importance of the features in the model.

Lastly, The feature importance from the constructed decision trees and random forests, together with the
beta coefficients derived from the Logistic Regression models were used to determine the most relevant
features for the prediction of the number of truck repairs, which provided DAF with interesting insights
about their data and the potential for repair predictions.

In conclusion, there has to be stated that the prediction performance of the models was limited. This
was mainly caused by the fact that the available data only covered the early life of DAF’s trucks,
in which not many repairs actually occurred. Furthermore, the repairs that did occur were of many
different origins, preventing the models from deriving robust patterns for specific or common repairs.
Nonetheless, there is definitely potential in the available data from DAF Connect. Compared to the
previous work of Goudsmits (2018), who predicted truck repairs for DAF without the available data
from DAF Connect, the developed models in this research proved to be able to reach a similar prediction
performance using approximately 7 times fewer data instances (trucks) and a roughly 2 times smaller
time horizon for the number of repair predictions. Thus it is expected that in the future, when more
trucks and data are available for analysis, the models in this research will outperform the methods from
previous research.

7.2 Recommendations

Based on the findings in the research, several recommendations can be made for DAF.

At first, there was shown that the features that have been derived from DAF Connect show a better
potential in the prediction of the numbers of repairs than the currently used truck specifications and
contract details. Analysis of the constructed models showed that the Connect features were consistently
favored above the currently used features. However, the current amount of available Connect data is
too limited to make useful predictions for individual trucks. Therefore it is recommended for DAF
to wait until more data is available before revisiting the problem of predicting the number of repairs.
Furthermore, due to the many different origins and costs of truck repairs it is recommended to simplify
the problem. Instead of predicting the exact number of repairs, dividing trucks in categories such as
requiring few repairs, average repairs and many repairs respectively showed more potential. Ratings can
then be applied to trucks (e.g. such as applied in credit ratings) to identify the risky and less risky trucks
regarding the expected number of repairs. To provide DAF with an indication of the growth potential
regarding the prediction of the number of repairs, learning curves for the Decision Tree model and the
Random Forest (which proved to be the most suitable method for DAF) have been constructed. The
results are shown in Figure 36

(a) Decision Tree (b) Random Forest

Figure 36: The learning curves for the 11 months ahead predictions

The learning curves show the 10-fold-cross-validated accuracy scores on the validation set over the number
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of samples used for the predictions. As can be seen, a slight positive slope can be detected and thus, for
more data, there can be expected to be better results. However, the slope only increases slightly, further
indicating that DAF should only revisit the problem when significantly more training samples (trucks)
have been collected.

Based on the results, it is recommended to DAF to focus on more narrowed down problems than the
prediction of the total number of repairs over a given time horizon (at least for individual trucks).
Instead, it is recommended to DAF to focus on the prediction of specific, expensive repairs before they
actually happen. Extensive literature is available on the prediction of Remaining Useful Life, Future
state and Health status of specific components or machines. For DAF, a prime example are the turbo
and battery. They tend to fail rather regularly and are costly (at least the turbo) to replace. With the
right sensors in place, these failures could be detected before they happen, allowing for the appropriate
preventive actions to take place. It is of vital importance that DAF thinks about the implementation
of the right sensors to do so now, at this point in time because information that can be derived with
these sensors only becomes useful after months or even years of data collection. This is because currently
available prediction methods need to learn from the past (or at least have reference values) in order to
come up with meaningful predictions.

Furthermore, it is recommended to DAF to investigate the possibility to incorporate usage information
as derived in this research into their current cost calculation methods when more data has become
available. Based on the top 10 of most important features as described in the previous chapter, there
can be concluded that some aspects of the Connect data are more informative than the currently used
contract truck specifications and contract information. However, in this research, the usage information
is derived over the first month of operation and therefore, their characteristics are known only after
the sale of a truck and R&M contract. This information could be used to correct cost expectations ’on
the go’. I.e. the driving behaviour of the connected trucks can be monitored while its operating and
based on this, the expected costs and/or number of repairs for specific trucks can be adjusted in the
forecasts. Subsequently, specific discounts could be offered to customers that prove to have a beneficial
usage profile, either when they buy additional trucks or during the agreed contract period itself. As
the harsh braking duration, tachographspeed, max throttle duration and DPA Anticipation score are
directly influenced by the drivers and have been found to have an influence on the expected number of
repairs, they could be used to derive such usage profiles.

Lastly, some general recommendations regarding the data can be given. Much information that was
needed for this research was hidden in different databases and different sources (e.g. Mi database,
CCM database and the HUE Hive for Connect data). In order to obtain it, many different and specific
queries/scripts had to be written. Afterwards, they had to merged requiring another set of manual
operations. This made the collection of data time consuming and prevents possibilities for automated
analyses and data collection. It is therefore recommended for DAF to standardize their data and docu-
ments in a single (cloud) location such as provided by Microsoft Azure or Amazon web services (which
are currently explored by DAF), allowing for much faster analyses and automation of data collection and
processing.

7.3 Limitations

The available data at DAF was limited. At the time of research, the Connect data (telemetric data) had
been recently introduced and only 11 months of reliable data was present. This time is considered to be
the early life of a truck in which only a limited number of repairs occur. As trucks have an expected
lifetime of at least 10 years, ideally we would want to have the same amount of information. Of course 4
years of data could also show relevant relations but at least there can be stated that less than a year of
data is far from ideal. Additionally, the repairs that do happen are of a wide range of origins, preventing
the models to learn robust patterns based on common or specific repairs.

As a result, the prediction performance of the initially constructed models was limited. Therefore, there
was decided to make the problem a binary one, which was used to predict if a truck would have few or
many repairs. Thus, no insights have been gained on the modeling performance regarding the prediction
of the actual number of repairs.

Another limitation is that the number of trucks that was available for data analysis was limited. For the
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8 months ahead predictions, 793 trucks were available, while for the 11 months ahead predictions only
342 trucks remained. As a result, the predictions might contain bias (e.g. if 10 trucks are operating in
the Czech Republic and they all have a repair, the model will bias future trucks from the Czech Republic
based on these 10 instances). Therefore, DAF has to be careful with the implementation of specific
decision rules, which should be verified by experts and additional data analysis first.

Lastly, there are other machine learning techniques available that have not been used in this research.
Deep learning for example, is gaining popularity fast and can be used to solve complex problems. How-
ever, they were not further investigated due to a few reasons. For one, the techniques used in this research
were more prominently indicated to be useful for the problem at hand (predictive maintenance). Fur-
thermore, compared to e.g. deep learning, the currently used models were able to provide more insights
into their working and the features used. lastly, time constraints (e.g. long computation times for deep
neural networks) did not allow for further exploration of such methods.

7.4 Contribution to literature

To the best of our knowledge, this is the first research in which telemetric, real time, truck usage data
on customer trucks has been used to predict the number of repairs over an extended period of time.
Although much research about predictive maintenance is available, it focuses on RUL, future state and
health status over short periods (hours,days, weeks) in time. Therefore, this research provides an unique
approach on predictive maintenance predictions for machines by combining both telemetric data and
truck (machine) specification information to derive the number of repairs over a given time period.

Secondly, fuzzy histograms have been applied to derive detailed information about the probability distri-
bution of the real time truck measurements by approximating them with fuzzy bins. It showed that the
prediction performance increased for both Logistic Regression and Decision Tree models. As fuzzy his-
tograms are not widely used in literature, this research provides an unique use case and shows that fuzzy
histograms can be used for predictive maintenance in order to improve the prediction accuracy.

7.5 Future research

First of all, there has been determined that the number of repairs compared to the range of repair types
during the early life (first year) of truck operations is too low to make accurate predictions on exact
number of repairs or exact costs per truck. It is recommended that DAF does not invest in these type of
predictions for now, as they are too broad. In the future, (i.e. a few years) when more relevant data has
been collected, the problem could be revisited. The findings in this research can then be used as a starting
point and methodical explanation for the method to predict the number of repairs on trucks.

Furthermore, the research was performed by extraction of global features from the telemetric time series
data, while more detailed local features might provide additional insights. In an effort to improve the
modeling results and analyze the effects of more detailed features on the prediction performance, fuzzy
bins were constructed. They improved the prediction performance of the models, which indicated that
the models might further benefit from additionally derived features. Abnormal local patterns in the
data could be derived or features could be combined in an effort to improve the model input. However,
deriving useful local features and combinations is a complex task on which a lot of expert knowledge
might be needed (about the truck’s operating conditions and abnormal behavior patterns) and was not
further explored due to time constraints. In the future this could be investigated further.

Lastly, this research was about the prediction of the number of repairs in general. However, as the
results have proved to be of limited accuracy there could be decided to narrow the scope of future
research projects regarding repair predictions. For example, when more data has become available, there
could be focused on the prediction of specific expensive or commonly encountered drive-line related
repairs over a given time horizon as these might be more directly related to the usage profiles of the
trucks (e.g. the prediction of turbo failures or battery breakdowns). However, having the right sensors
in place is vital for the successful execution of such predictions.
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8 Appendices

A Overview of the available CCM truck data at DAF.

The variables that are present in the CCM truck dataset are given in table 37.

Table 37: Overview and explanations of the available CCM truck data.

Variable Explanation

Forecasting Run Date Date at which the contract cost forecast is run.

Forecasting Report Date Date at which the contract cost forecast is reported (mostly same date).

Subsidiary Subsidiary with whom the contract is closed.

Country Country in which the subsidiary is located.

Contract Number Unique contract identification number.

Contract Version Version of the current R&M Contract

Contract Group Group based on different contract settings.

Contract Name Contract name, as a combination of the contract number,

contract group and chassis-number.

current Contract (version) Status Indicator of the contract status (active, canceled, expired or on hold).

snapshot Contract (version) Status Indicator of the DAF Connect contract status

(active, canceled, expired or on hold).

Contract Birthdate Date at which the contract is drafted.

Contract (1st) activation date Date at which the contract becomes active.

Contract (version) Start date Date at which the contract is drafted.

Contract (version) activation date Date at which the contract should become active.

Contract (version) End date (original) Date at which the contract should terminate.

Contract end-date (actual) Date at which the contract has been terminated (if so).

Contract end-year (actual) Year at which the contract has been terminated (if so).

Contract closing date Date at which the contract has been closed with the customer.

Contract closing year Year at which the contract has been closed with the customer.

Contract (version) duration in months Contract duration according to terms.

(original)

Contract (version) duration in months Actual duration of the current contract.

(actual)

Contract (overall) duration in months Duration of all contract versions combined.

(actual)

FinVehAge Vehicle age at the time of contract information inquiry.

Contract (overall) Age in months (actual) Vehicle age at the time of contract information inquiry.

Contract (version) start kms Kilometers driven by the truck at the date of contract drafting.
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Contract contracted yearly mileage Estimate of the truck’s yearly mileage during the contract time.

Contract Origin Boolean to tell if the contract concerns a new or used truck.

Contract package Chosen R&M contract type.

Selling dealer Dealer that sold the truck.

Selling dealer Location code DAF internal location code for the selling dealer.

Default Service Dealer Service dealer that is responsible for the truck’s repair and maintenance.

Default Service dealer Location code DAF internal location code for the service dealer.

Currency Currency used in the truck and contract sale.

Claim delay Date The date after which claims could potentially be filed

but not yet processed by the forecast.

Last date invoiced The last date at which the customer has received a claim reimbursement.

Model Truck model specification (Axle and truck type).

Series Model series (truck type and model year)

Sub series Model year

Chassis number Unique truck chassis number.

Brand Truck brand.

Engine power Fitted engine’s power in kilowatt.

Axle configuration Type of axle fitted.

Emission European emission class of the truck.

Asset Description Truck type, engine power in horsepower and axle type fitted.

Asset Type-info Axle type, truck type, engine power in horsepower, engine type,

cabin type and wheelbase size respectively.

Delivery date Date of delivery from the factory to the selling dealer.

First Registration Date The data upon which the license plate is registered.

Vehicle Park Number Reference number for the truck as used by the customer.

Delivery Country Country in which the truck is delivered.

S&M Inspection Interval (’O’ licence) Interval duration for service and maintenance inspections in weeks.

Vehicle Safety Features Type of vehicle safety features fitted.

Soot Filter Soot filter fitted (True/False).

Service Interval Engine Type of engine service interval chosen (standard/extended).

Retarder System Type of retarder system (braking aid) fitted.

Fuel Specification Type of fuel for the truck.

Factory External Camera System Camera system fitted (True/False).

Body Specification Body type of the truck.

Taillift Fitted Tail lift fitted on the truck (True/False).

ADR Specification Allowed to cary hazardous material (True/False)

(Semi-) Trailer Coupling Type of trailer coupling fitted.

Rear Axle Oil Type of rear axle oil in the truck.
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Gearbox Oil Type of gearbox oil in the truck.

Engine Oil Type of engine oil in the truck.

Driven Axle Suspension Type of driven axle (shaft) suspension (if any).

Body Type Type of truck body fitted.

Axle configuration Axle type fitted.

Engine Type European emission class of the truck.

Engine Engine power in horsepower.

Gearbox Type of gearbox fitted.

Number of Drops per day Number of expected drops per day of the truck during contract time.

Area of Operation Geographical area that the truck will operate in

(Western europe, North Africa etc.).

Type of Operation Operation class of the truck (long distance, regional or local).

Power Take Off (PTO) Power take off installed (True/False).

Static PTO Hours per day Expected number of hours that the truck will use the PTO per day.

Rear Axle Type Type of rear axle fitted.

Road Type Expected percentage of time that the truck will drive offroad.

Application Expected cargo type that the truck will transport

(e.g. pallets, containers, livestock).
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B Overview of the available Mi claim data at DAF.

The variables that are present in the Mi claim dataset are given in table 38.

Table 38: Overview and explanations of the available Mi claim data.

Variable Explanation

ChassisNr The chassisnumber of the truck.

TypeName Body type, model and series of the truck.

ProductRange Model and eninge type of the truck.

productionsite City where the truck is manufactured.

prodDate Date of production.

prodMonth Month of production.

DeliveryDate Date that the truck is delivered to the customer.

deliveryCountry Country of delivery.

deliveryDealer Dealer to which the truck is delivered.

ClaimCountry Country from which the claim is made.

ClaimDealer Dealer that has claimed the repair.

Claimnr Claim identification number.

ClaimSort Indicates on which type of contract the claim is made.

FieldReportYN Boolean that indicates if the claim is a field action or not.

warrantycattegory Indicates on which type of contract the claim is made.

LastClaimStatus Indicates whether (if present) a previous claim has been handled or not.

Laststatusstartdate Indicates when the last claim status update has been altered (for previous claims).

DefectCode Code of the defect that is claimed

defectcodedescription Description of the code.

defectcause Reason for claim.

CasualPart Part that has caused the claim/repair.

DefectDate Date on which the defect occurred.

defectmonth Mont in which the defect occurred.

ClaimReceiveDate Date on which the claim was received.

Claimfinalised Date on which the claim was handled.

KmChassis Km count on the chassis.

KmPart Km count on the repaired part.

KindofPart Type of part that has been repaired

MATT CLAIMED Total costs of the material that has been claimed.

LABOUR CLAIMED Total costs of the labour that has been claimed.

MISC CLAIMED Total costs of miscellaneous that has been claimed.

TOTAL CLAIMED The sum of the costs of the claim.
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MATT PAID DTNV The amount as reimbursed by DAF for the material claim.

LABOUR PAID DTNV The amount as reimbursed by DAF for the labour claim.

MISC PAID DTNV The amount as reimbursed by DAF for the miscellaneous claim.

PAID MIN LANDED The total amount paid by DAF deducted by the landed costs.

LANDED COSTS DTNV A percentage of materail costs paid to cover miscellaneous (tiny) part costs.

TOTAL PAID DTNV The total amount as reimbursed by DAF.

ArticlePaidDN LocalPolicy The amount as reimbursed by the dealer itself for the material claim.

LabourPaidDN LocalPolicy The amount as reimbursed by the dealer itself for the labour claim.

MiscPaidDN LocalPolicy The amount as reimbursed by the dealer itself for the miscellaneous claim.

HandlingPaidDN LocalPolicy The amount as reimbursed by the dealer itself for the handling claim

TotalPaidLocalPolicy The total amount as reimbursed by the dealer itself.

HoursClaimed The total number of labour hours claimed.

Artnr1 Number of the article that has been replaced.

Artnr2 Number of the article that has been replaced.

Artnr3 Number of the article that has been replaced.

Artnr4 Number of the article that has been replaced.

Artnr5 Number of the article that has been replaced.

labourcode1 Labour code associated with the repair action.

labourcode2 Labour code associated with the repair action.

labourcode3 Labour code associated with the repair action.

labourcode4 Labour code associated with the repair action.

labourcode5 Labour code associated with the repair action.

Misc1 Free text field

Misc2 Free text field

Misc3 Free text field

Misc4 Free text field

Misc5 Free text field

ITSCode Code for the International Truck Service action when applicable.

MonthInService Months that the trucks has been in service.

DriveLineYN Boolean that indicates if the repair is on the driveline or not.

rejectioncode Reason of claim rejection if applicable.

acceptedclaimwarranty Boolean that indicates if the claim is fully accepted by DAF or not.

AcceptedClaimLocalPolicy Boolean that indicates if (parts of) the claim is paid by the dealer itself or not.

serviceproduct Contract on which the repair has been reimbursed.
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C Overview of the available connect interval data at DAF.

The measurements that are sent from each individual truck as snapshots (5-minute intervals) are listed
in Table 39, together with their variable explanation.

Table 39: Overview and explanation of the snapshot data.

Snapshot variable Description

snapshotkey Unique hash for each snapshot message (primary key).

datetime Date/time of snapshot event in UTC.

unixtimestamp Unixepoch of snapshot event in seconds since 1-1-1970.

gpsdatetime Date/time when gps position was recorded in UTC.

gpslatitude Gps latitude in degrees.

gpslongitude Gps longitude in degrees.

totaldistance All time vehicle distance since the start of operation (odometer) in meters.

eventid Integer value identifying the type of snapshot.

distanceuntilservice Remaining distance until service is required in meters.

totalfuelconsumption All time fuel consumption since start of operation in milliliters.

idle duration Duration of vehicle speed <0.1 km/h since the beginning of a trip in seconds.

dcmserialno Unique serial number of the DCM (Daf Connect Module).

dcmswversion Software version of the embedded DCM software.

gpsaltitude Altitude according to GPS in meters above sea level.

gpsheading Heading according to GPS in degrees (0 is north, 180 is south).

fuellevel Truck fuel tank level in percentage.

aftertreatmentlevel Truck adblue tank level in percentage.

grosscombinationweight Vehicle gross combination weight in kg.

wheelbasedspeed Vehicle speed based on wheel sensor.

tachographspeed Vehicle speed based on tachograph sensor.

gps distance Distance traveled based on high frequency GPS location algorithm

since the start of the trip in meters.

enginecoolantlevel 1 Engine coolant level in percentage in one minute intervals (minute 1).

enginecoolantlevel 2 Engine coolant level in percentage in one minute intervals (minute 2).

enginecoolantlevel 3 Engine coolant level in percentage in one minute intervals (minute 3).

enginecoolantlevel 4 Engine coolant level in percentage in one minute intervals (minute 4).

enginecoolantlevel 5 Engine coolant level in percentage in one minute intervals (minute 5).

engineoillevel 1 Engine oil level in percentage in one minute intervals (minute 1).

engineoillevel 2 Engine oil level in percentage in one minute intervals (minute 2).

engineoillevel 3 Engine oil level in percentage in one minute intervals (minute 3).

engineoillevel 4 Engine oil level in percentage in one minute intervals (minute 4).
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engineoillevel 5 Engine oil level in percentage in one minute intervals (minute 5).

aftertreatmentlevel 1 Adblue (diesel exhaust gas cleaner) tank level in percentage

in one minute intervals (minute 1).

aftertreatmentlevel 2 Adblue (diesel exhaust gas cleaner) tank level in percentage

in one minute intervals (minute 2).

aftertreatmentlevel 3 Adblue (diesel exhaust gas cleaner) tank level in percentage

in one minute intervals (minute 3).

aftertreatmentlevel 4 Adblue (diesel exhaust gas cleaner) tank level in percentage

in one minute intervals (minute 4).

aftertreatmentlevel 5 Adblue (diesel exhaust gas cleaner) tank level in percentage

in one minute intervals (minute 5).

barometricpressure 1 Ambient air pressure in kilo-pascal in one minute intervals (minute 1).

barometricpressure 2 Ambient air pressure in kilo-pascal in one minute intervals (minute 2).

barometricpressure 3 Ambient air pressure in kilo-pascal in one minute intervals (minute 3).

barometricpressure 4 Ambient air pressure in kilo-pascal in one minute intervals (minute 4).

barometricpressure 5 Ambient air pressure in kilo-pascal in one minute intervals (minute 5).

fuellevel 1 Fuel tank level in percentage in one minute intervals (minute 1).

fuellevel 2 Fuel tank level in percentage in one minute intervals (minute 2).

fuellevel 3 Fuel tank level in percentage in one minute intervals (minute 3).

fuellevel 4 Fuel tank level in percentage in one minute intervals (minute 4).

fuellevel 5 Fuel tank level in percentage in one minute intervals (minute 5).

fueltemperature 1 Fuel temperature in degrees celcius in one minute intervals (minute 1).

fueltemperature 2 Fuel temperature in degrees celcius in one minute intervals (minute 2).

fueltemperature 3 Fuel temperature in degrees celcius in one minute intervals (minute 3).

fueltemperature 4 Fuel temperature in degrees celcius in one minute intervals (minute 4).

fueltemperature 5 Fuel temperature in degrees celcius in one minute intervals (minute 5).

engineoiltemperature 1 Engine oil temperature in one minute intervals (minute 1).

engineoiltemperature 2 Engine oil temperature in one minute intervals (minute 2).

engineoiltemperature 3 Engine oil temperature in one minute intervals (minute 3).

engineoiltemperature 4 Engine oil temperature in one minute intervals (minute 4).

engineoiltemperature 5 Engine oil temperature in one minute intervals (minute 5).

engineoilpressure 1 Engine oil pressure in kilo-pascal in one minute intervals (minute 1).

engineoilpressure 2 Engine oil pressure in kilo-pascal in one minute intervals (minute 2).

engineoilpressure 3 Engine oil pressure in kilo-pascal in one minute intervals (minute 3).

engineoilpressure 4 Engine oil pressure in kilo-pascal in one minute intervals (minute 4).

engineoilpressure 5 Engine oil pressure in kilo-pascal in one minute intervals (minute 5).

enginecoolanttemperature 1 Engine coolant temperature in degrees celcius in one minute intervals (minute 1).

enginecoolanttemperature 2 engine coolant temperature in degrees celcius in one minute intervals (minute 2).
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enginecoolanttemperature 3 engine coolant temperature in degrees celcius in one minute intervals (minute 3).

enginecoolanttemperature 4 engine coolant temperature in degrees celcius in one minute intervals (minute 4).

enginecoolanttemperature 5 engine coolant temperature in degrees celcius in one minute intervals (minute 5).

servicebrakeairpressure 1 Service-brake air pressure in kilo-pascal in one minute intervals (minute 1).

servicebrakeairpressure 2 Service-brake air pressure in kilo-pascal in one minute intervals (minute 2).

servicebrakeairpressure 3 Service-brake air pressure in kilo-pascal in one minute intervals (minute 3).

servicebrakeairpressure 4 Service-brake air pressure in kilo-pascal in one minute intervals (minute 4).

servicebrakeairpressure 5 Service-brake air pressure in kilo-pascal in one minute intervals (minute 5).

engineload 1 Engine load in percentage in one minute intervals (minute 1).

engineload 2 Engine load in percentage in one minute intervals (minute 2).

engineload 3 Engine load in percentage in one minute intervals (minute 3).

engineload 4 Engine load in percentage in one minute intervals (minute 4).

engineload 5 Engine load in percentage in one minute intervals (minute 5).

enginespeed 1 Engine speed in rpm in one minute intervals (minute 1).

enginespeed 2 engine speed in rpm in one minute intervals (minute 2).

enginespeed 3 engine speed in rpm in one minute intervals (minute 3).

enginespeed 4 engine speed in rpm in one minute intervals (minute 4).

enginespeed 5 engine speed in rpm in one minute intervals (minute 5).

engineintakeairpressure 1 Air pressure in the intake manifold of the engine in kilo-pascal

in one minute intervals (minute 1).

engineintakeairpressure 2 Air pressure in the intake manifold of the engine in kilo-pascal

in one minute intervals (minute 2).

engineintakeairpressure 3 Air pressure in the intake manifold of the engine in kilo-pascal

in one minute intervals (minute 3).

engineintakeairpressure 4 Air pressure in the intake manifold of the engine in kilo-pascal

in one minute intervals (minute 4).

engineintakeairpressure 5 Air pressure in the intake manifold of the engine in kilo-pascal

in one minute intervals (minute 5).

tachographspeed 1 Vehicle speed based on tachograph sensor in one minute intervals (minute 1).

tachographspeed 2 vehicle speed based on tachograph sensor in one minute intervals (minute 2).

tachographspeed 3 vehicle speed based on tachograph sensor in one minute intervals (minute 3).

tachographspeed 4 vehicle speed based on tachograph sensor in one minute intervals (minute 4).

tachographspeed 5 vehicle speed based on tachograph sensor in one minute intervals (minute 5).

totaldistance 1 All time vehicle distance since the start of operation (odometer) in meters

in one minute intervals (minute 1).

totaldistance 2 All time vehicle distance since the start of operation (odometer) in meters

in one minute intervals (minute 2).

totaldistance 3 All time vehicle distance since the start of operation (odometer) in meters
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in one minute intervals (minute 3).

totaldistance 4 All time vehicle distance since the start of operation (odometer) in meters

in one minute intervals (minute 4).

totaldistance 5 All time vehicle distance since the start of operation (odometer) in meters

in one minute intervals (minute 5).

gpsspeed Speed of the truck in km/h measured by the GPS unit.

ambientairtemperature Air temperature outside of the truck in degrees celsius.

enginecoolanttemperature Temperature of the engine coolant fluid in degrees celsius.

gpshdop Accuracy indication for the gps position.
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The set of measurements that is sent to DAF after each completed trip is given in Table 40. It contains
aggregated data about the trips of individual trucks.

Table 40: Variable explanations of the trip data.

Trip data variable Explanation

datetime begin Date/time at the start of the trip in UTC.

unixtimestamp begin Unixepoch timestamp at the start of the trip in seconds since 1-1-1970.

datetime end Date/time of end of trip in UTC.

unixtimestamp end Unixepoch of end of trip in seconds since 1-1-1970.

gpsdatetime end Date/time when gps position was recorded at end of the trip in UTC.

gpslatitude end Gps latitude at end of the trip in degrees.

gpslongitude end Gps longitude at end of the trip in degrees.

gpsdatetime begin Date/time when the gps position was recorded at the start of the trip in UTC.

gpslatitude begin Gps latitude at the start of the trip in degrees.

gpslongitude begin Gps longitude at the start of the trip in degrees.

totaldistance begin All time vehicle distance since the start of operation (odometer)

at the start of the trip in meters.

totaldistance end All time vehicle distance since the start of operation (odometer)

at the end of the trip in meters.

tripkey Unique hash for each unique trip message (trip identifier).

dcmserialno Unique serial number of the DCM (Daf Connect Module).

dcmswversion Software version of the embedded DCM software.

brake duration Duration of active braking during the trip in seconds.

cruisecontrol distance Distance with cruise control enabled during the trip in meters.

harshbrake duration Duration of active breaking and deceleration >2.5m/s2 during trip in seconds.

idling duration Duration of the vehicle speed being <0.1 km/h during the trip in seconds.

gps elevationloss Total elevation loss during the trip, according to the GPS, in meters.

gps elevationgain Total elevation gain during the trip, according to the GPS, in meters.

pto count Count of the number of PTO enabled / disabled cycles,

where PTO stands for Power Take Off. The PTO is used to e.g.

power waste crushers in garbage trucks which uses energy from the engine.

pto distance Distance traveled with the PTO enabled during the trip in meters.

pto duration Duration of the PTO enabled during the trip in seconds.

totalfuelconsumption begin All time fuel consumption since start the of operation

fuellevel begin Level of the fuel tank at the start of the trip in percentage.

totalfuelconsumption end All time fuel consumption since the start of operation at the

end of the trip in milliliters.
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fuellevel end Level of the fuel tank at end of the trip in percentage.

gps distance Total trip distance based on high frequency GPS location algorithm in meters.

idling fuelconsumption Total fuel consumption with vehicle speed <0.1 km/h during the trip in milliliters.

acceleration duration Total duration of vehicle acceleration >0.1 m/s2 during the trip in seconds.

maxthrottlepaddle duration Total duration of the throttle paddle activation >95% during the trip in seconds.

dpabrakingscore sum The sum of all DPA (Driving performance assistant) braking event scores

during the trip.

dpaanticipationscore sum The sum of all DPA anticipation event scores

during the trip.

dpabrakingevent count The number of dpa braking events during the trip.

dpaanticipationevent count The number of dpa anticipation events during the trip.

cruisecontrol fuelconsumption Total fuel consumption while cruise control is enabled during the trip in milliliters.

gpsspeed Vehicle speed based on GPS.

cruisecontrol distanceclass 1 Total distance traveled during the trip in meters,

with cruise control enabled in km/h class 1: 0-25.

cruisecontrol distanceclass 2 Total distance traveled during the trip in meters,

with cruise control enabled in km/h class 2: 25-50.

cruisecontrol distanceclass 3 Total distance traveled during the trip in meters,

with cruise control enabled in km/h class 3: 50-75.

cruisecontrol distanceclass 4 Total distance traveled during the trip in meters,

with cruise control enabled in km/h class 4: 75-100.

cruisecontrol distanceclass 5 Total distance traveled during the trip in meters,

with cruise control enabled in km/h class 5: 100-125.
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The variables that are present in the trigger dataset are given in Table 41.

Table 41: Variable explanations of the trigger data.

Trigger data variable Explanation

triggerkey Unique hash for each trigger message (primary key).

inputfiledate Date of the trigger event.

datetime Date/time of the trigger event in UTC.

unixtimestamp Unixepoch timestamp of the trigger event in seconds since 1-1-1970.

gpsdatetime Date/time according to the gps upon trigger activatin, recorded in UTC.

gpslatitude Gps latitude in degrees

gpslongitude Gps longitude in degrees

eventid Integer value identifying the type of trigger (decoded in theeventname database).

dcmserialno Unique serial number of the DCM.

dcmswversion Software version of the embedded DCM software.

gpsaltitude Altitude according to GPS in meters above sealevel.

gpsheading Heading according to GPS in degrees (0 is north, 180 is south).

dm01spn Suspect parameter number decoded from the J1939 DM01 CAN

(Controller Area Network) message.

dm01fmi Failure mode identifier decoded from J1939 DM01 CAN message.

dm01occ Occurance count decoded from J1939 DM01 CAN message.

dm01red Red stop lamp status (True / False) decoded from the J1939 DM01 CAN message.

dm01yellow Amber warning lamp status (True / False) decoded from the J1939 DM01 CAN message.

dm01mil Malfunction indicator lamp status (True/False) decoded from the J1939 DM01

CAN message.

totaldistance All time vehicle distance since the start of operation (odometer) in meters.

dm01sa Source address of J1939 DM01 CAN message.

dm01active Indicator (True\False) of an active lamp (yellow/red/malfunction).

ttblockid Telltale block id decoded from J1939 FMS1 CAN message.

ttstatusid Telltale status id decoded from J1939 FMS1 CAN message.

ttvalue Vehicle identification number.

gpsspeed The truck’s speed in km/h measured by the GPS.

ambientairtemperature Air temperature outside of the truck in degrees celsius.

enginecoolanttemperature Engine coolant temperature in degrees celcius.

servicebrakeairpressure1 Service-brake air pressure in kilo-pascal in one minute intervals.

servicebrakeairpressure2 Service-brake air pressure in kilo-pascal in one minute intervals.

fuellevel Truck fuel tank level in percentage.

aftertreatmentlevel Truck adblue tank level in percentage.
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grosscombinationweight Vehicle gross combination weight in kg.

wheelbasedspeed Vehicle speed based on wheel sensor.

tachographspeed Vehicle speed based on tachograph sensor in one minute intervals.

retardertorqueactual Retarder rpm (the retarder is a torque converter that helps the truck to break

(e.g. while going downhill).

retardertorquemode The current retarder mode.

pedalbreakposition1 Tells how far down the break pedal is pressed in percentage.

pedalacceleratorposition1 Tells how far down the acceleration pedal is pressed in percentage.

enginespeed Engine speed in rpm.

engineload The engine power used in percentage of total power.

gearcurrent Gear that the truck is in.

gearselected Gear that is actually selected.

ptoengaged Indicator (True/False), telling if the PTO is activated or not.

cruisecontrol Indicator, telling if cruise control is active (True/False).

cumulatedfuel All time fuel consumption since start of operation in milliliters.

distanceuntilservice Remaining distance until service is required in meters.

enginetotalhours All time number of hours that the truck engine has been running

(since the start of operation).

powerbatteryvoltage Current battery voltage.

warningclass Class from 1-10, indicating which warning light is activated on the driver dashboard.

warningnumber Unique hash, used as identifier for the specific warning message.

warningstate Indicator (True/False) of an active warning light on the dashboard.

vevtcause Description of the event observed that generated the message.

eventname Indicator of lamp event type (lamp raised/lamp still active/lamp cleared)

tripkey Unique hash for each unique trip message (trip identifier).

vin Vehicle identification number.

month Month in which the trigger event occurred.
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D Numerical summary of the snapshot data

Table 42: Quantitative summary of the numerical snapshot data.

Variable min max mean median std

aftertreatmentlevel 0 102 77.6 82 21.19

aftertreatmentlevel 1 0 102 76.69 81.2 20.88

aftertreatmentlevel 2 0 102 76.77 81.2 20.84

aftertreatmentlevel 3 0.4 102 76.79 81.6 20.83

aftertreatmentlevel 4 0 102 76.81 81.6 20.81

aftertreatmentlevel 5 0 102 76.84 81.6 20.78

ambientairtemperature 0 65,535.00 2,217.60 12 11,818.71

barometricpressure 1 81 104 98.92 100 2.43

barometricpressure 2 80 103 98.9 100 2.44

barometricpressure 3 80 104 98.89 100 2.45

barometricpressure 4 80 105 98.89 99 2.45

barometricpressure 5 81 105 98.88 99 2.46

distanceuntilservice -32,767,000.00 32,765,000.00 2,192,938.76 -1,000.00 14,906,454.89

enginecoolantlevel 1 0 100 100 100 0.06

enginecoolantlevel 2 0 100 100 100 0.09

enginecoolantlevel 3 0 100 100 100 0.07

enginecoolantlevel 4 0 100 100 100 0.07

enginecoolantlevel 5 100 100 100 100 0

enginecoolanttemperature -1 255 79.89 85 17.94

enginecoolanttemperature 1 0 255 81.84 86 13.88

enginecoolanttemperature 2 0 255 82.88 86 12.19

enginecoolanttemperature 3 1 104 83.29 86 11.55

enginecoolanttemperature 4 3 105 83.65 86 10.94

enginecoolanttemperature 5 4 103 84.26 86 9.76

engineintakeairpressure 1 80 510 155.14 122 77.19

engineintakeairpressure 2 82 510 158.72 126 77.01

engineintakeairpressure 3 82 510 159.94 128 76.98

engineintakeairpressure 4 84 510 160.84 130 76.86

engineintakeairpressure 5 82 510 162 132 76.7

engineload 1 0 100 29.19 22 28.31

engineload 2 0 100 28.05 18 28.83

engineload 3 0 100 28.57 20 29.05

engineload 4 0 100 28.95 21 29.18
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engineload 5 0 100 29.43 22 29.32

engineoillevel 1 8 102 100.38 100.4 0.74

engineoillevel 2 100 102 100.39 100.4 0.21

engineoillevel 3 100 102 100.39 100.4 0.2

engineoillevel 4 100 102 100.39 100.4 0.2

engineoillevel 5 100 102 100.39 100.4 0.2

engineoilpressure 1 0 744 236.22 252 94.73

engineoilpressure 2 0 748 257.95 252 67.29

engineoilpressure 3 0 716 258.53 252 67.03

engineoilpressure 4 0 724 259.05 252 66.81

engineoilpressure 5 0 672 259.38 252 66.5

engineoiltemperature 1 -6 1,774.00 116.86 104 190.07

engineoiltemperature 2 -6 1,774.00 118.12 105 185.08

engineoiltemperature 3 -4 1,774.00 118.01 105 181.72

engineoiltemperature 4 -2 1,774.00 117.92 105 178.66

engineoiltemperature 5 3 1,774.00 118.29 106 175.65

enginespeed 1 0 2,792.00 934.86 1,045.00 320.05

enginespeed 2 0 2,800.00 989.76 1,059.00 262.06

enginespeed 3 0 2,660.00 997.5 1,064.00 258.36

enginespeed 4 0 2,554.00 1,004.05 1,068.00 255.03

enginespeed 5 0 2,616.00 1,012.85 1,073.00 250.48

enginetotalhours -1 1,358.00 140.14 100 179.1

fuellevel 0 100 69.13 70 25.66

fuellevel 1 0 100 69.21 70 25.55

fuellevel 2 0 100 68.87 69 25.53

fuellevel 3 0 100 68.83 69 25.55

fuellevel 4 0 100 68.83 69 25.55

fuellevel 5 0 100 68.81 69 25.55

fueltemperature 1 -4 215 35.39 32 23.94

fueltemperature 2 -3 215 33.19 31 22.19

fueltemperature 3 -3 215 32.76 31 21.76

fueltemperature 4 -3 215 32.57 31 21.43

fueltemperature 5 -3 215 32.54 31 21.09

gps distance 0 418,631.00 4,054.18 5,213.00 3,126.70

gpsaltitude 0 32,500.00 204.41 131 205.17

gpslatitude 36.03 255 55.97 49.18 40.64

gpslongitude -9.43 255 15.6 6.96 48.99

gpsspeed 0 118.74 15.94 18.91 17.12
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grosscombinationweight 3,200.00 655,350.00 209,453.05 38,800.00 282,667.96

idle duration -5 282,441,616.00 303.17 0 241,632.35

servicebrakeairpressure 1 0 1,216.00 178.51 120 254.12

servicebrakeairpressure 2 0 1,216.00 177.47 120 258.96

servicebrakeairpressure 3 0 1,216.00 177.82 120 259.43

servicebrakeairpressure 4 0 1,216.00 178.06 120 259.63

servicebrakeairpressure 5 0 1,216.00 176.77 120 256.67

servicebrakeairpressure1 0 65,535.00 3,902.19 128 15,149.48

servicebrakeairpressure2 0 65,535.00 3,895.32 128 15,135.91

tachographspeed 0 123 49.11 67 39.36

tachographspeed 1 0 121 54.7 76 37.6

tachographspeed 2 0 123 58.57 79 35.62

tachographspeed 3 0 123 60.05 80 34.91

tachographspeed 4 0 125 61.3 81 34.29

tachographspeed 5 0 126 62.95 82 33.41

totaldistance 0 94,235,735.00 12,760,532.30 9,846,645.00 11,261,477.27

totaldistance 1 0 94,228,464.00 12,819,211.99 9,909,165.00 11,281,552.03

totaldistance 2 0 94,229,904.00 12,869,253.59 9,959,315.00 11,299,494.93

totaldistance 3 0 94,231,344.00 12,888,000.57 9,979,300.00 11,304,084.72

totaldistance 4 0 94,232,784.00 12,907,043.66 9,998,165.00 11,312,532.97

totaldistance 5 0 94,234,240.00 12,944,436.19 10,044,005.00 11,316,709.97

totalfuelconsumption 200,372.00 31,615,098.00 3,764,006.44 2,870,086.50 3,410,584.40

wheelbasedspeed 0 124 49.1 67 39.33
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E Overview of the tasks that belong to each phase of the CRISP-DM model.

Each phase of the CRISP-DM model comes with its own set of tasks. An overview of these tasks is given
in Figure 37.

Figure 37: Overview of the tasks that belong to each phase of the CRISP-DM model (Wirth, 2000).
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F Distribution of contracts for the connected trucks

The figures below show the contracts that are closed with the trucks.
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Figure 38: Distribution of the type of warranty contracts that are sold with the connect trucks.
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Figure 39: Distribution of the type of R&M contracts that are sold with the connect trucks.
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G Fleet information

DAF allows its customers to choose from a range of different engines. For each model, a range of engine
types is available. The MX-13 and MX-11 engines are by far the most common as they are the engines
of choice for the DAF XF and CF. The remaining type of engines are installed into the smaller DAF LF,
which is the least popular model of the three. An overview is given in Figure 40.

Figure 40: The number of months that connect trucks are in service divided per truck class.

The number of trucks that have DAF connect included is limited. This is due to the fact that the system
is not included by default. Since 2017, of the roughly 7000 trucks that were produced per month (240
per day), 5.5% had DAF connected installed. This amounts to 385 trucks per month on average. An
overview of the produced connected trucks per month is given in Figure 41.

Figure 41: The production of connected trucks per month, divided over product type (model).
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H Overview of box-plots for the Connect Data.

Figure 42: Snapshot data histograms (1)
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Figure 43: Snapshot data histograms (2)
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Figure 44: Snapshot data histograms (3)

Predicting the number of truck repairs using logged vehicle Page 103



8. APPENDICES 104

Figure 45: Snapshot data histograms (4)
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Figure 46: Snapshot data histograms (5)
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Figure 47: Snapshot data histograms (6)
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Figure 48: Snapshot data histograms (7)
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Figure 49: Snapshot data histograms (8)
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H.1 Box-plots of the trip database features.

Figure 50: Trip data histograms (1)
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Figure 51: Trip data histograms (2)

Figure 52: Trip data histograms (3)
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Figure 53: Trip data histograms (4)

Figure 54: Trip data histograms (5)
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I The 1.5 IQR for the Connect Data

The upper and lower boundaries as established using the 1.5 IQR rule are given below. When the lower
bound of the IQR is lower than zero it is replaced by zero as none of the measurements can become
negative by default. Note that these boundaries were only used when they could not be established by
expert knowledge, analysis of the outlier visualization or known physical boundaries.

Table 43: The 1.5 IQR boundaries for the snapshot data.

Feature Lower bound Upper bound

gpslongitude 0.0 23.05

totaldistance 0.0 27720146.25

totalfuelconsumption 0.0 8207048.75

idle duration 0.0 40.0

gpsaltitude 0.0 646.5

gpsheading 0.0 502.31

fuellevel 0.0 173.0

grosscombinationweight 0.0 1602975.0

wheelbasedspeed 0.0 220.0

tachographspeed 0.0 220.0

gps distance 0.0 17526.5

fuellevel 1 0.0 173.0

fuellevel 2 0.0 173.0

fuellevel 3 0.0 173.0

fuellevel 4 0.0 173.0

fuellevel 5 0.0 173.0

servicebrakeairpressure 1 0.0 304.0

servicebrakeairpressure 2 0.0 304.0

servicebrakeairpressure 3 0.0 304.0

servicebrakeairpressure 4 0.0 304.0

servicebrakeairpressure 5 0.0 304.0

engineload 1 0.0 110.0

engineload 2 0.0 102.5

engineload 3 0.0 105.0

engineload 4 0.0 107.5

engineload 5 0.0 110.0

enginespeed 1 0.0 1839.0

engineintakeairpressure 1 0.0 292.0

engineintakeairpressure 2 0.0 299.0

engineintakeairpressure 3 0.0 306.0
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engineintakeairpressure 4 0.0 306.0

engineintakeairpressure 5 0.0 308.0

tachographspeed 1 0.0 215.5

tachographspeed 2 0.0 191.0

tachographspeed 3 0.0 182.0

tachographspeed 4 0.0 173.0

tachographspeed 5 0.0 162.5

totaldistance 1 0.0 27773182.5

totaldistance 2 0.0 27820067.5

totaldistance 3 0.0 27839368.75

totaldistance 4 0.0 27860200.0

totaldistance 5 0.0 27894052.5

gpsspeed 0.0 60.64

ambientairtemperature 0.0 29.5

distanceuntilservice 0.0 43815000.0

enginetotalhours 0.0 486.5

servicebrakeairpressure1 0.0 364.0

servicebrakeairpressure2 0.0 364.0

delta distance 0.0 17740.0

delta fuel 0.0 4334.0

fuellevel med 0.0 173.0

servicebrakeairpressure med 0.0 264.0

engineload med 0.0 86.0

tachographspeed med 0.0 205.0

gpshdop 0.4352 0.80

eventid 1.0 1.0

fueltemperature 1 4.0 60.0

fueltemperature med 5.5 57.5

fueltemperature 2 7.0 55.0

fueltemperature 3 7.0 55.0

fueltemperature 4 7.0 55.0

fueltemperature 5 7.0 55.0

engineintakeairpressure med 14.0 254.0

aftertreatmentlevel 17.0 145.0

aftertreatmentlevel 1 17.19 142.0

aftertreatmentlevel 2 17.19 142.0

aftertreatmentlevel med 17.19 142.0

aftertreatmentlevel 3 17.60 142.39
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aftertreatmentlevel 4 17.60 142.39

aftertreatmentlevel 5 18.20 141.4

gpslatitude 36.96 59.75

engineoiltemperature 1 70.5 130.5

engineoiltemperature med 75.5 127.5

enginecoolanttemperature 77.0 93.0

engineoiltemperature 2 78.0 126.0

enginecoolanttemperature 1 78.0 94.0

enginecoolanttemperature 2 78.0 94.0

enginecoolanttemperature 3 78.0 94.0

enginecoolanttemperature 4 78.0 94.0

enginecoolanttemperature 5 78.0 94.0

enginecoolanttemperature med 79.5 91.5

engineoiltemperature 3 80.5 124.5

engineoiltemperature 5 81.5 125.5

engineoiltemperature 4 83.0 123.0

barometricpressure 1 93.5 105.5

barometricpressure 2 93.5 105.5

barometricpressure 3 93.5 105.5

barometricpressure 4 93.5 105.5

barometricpressure 5 93.5 105.5

barometricpressure med 93.5 105.5

enginecoolantlevel 1 100.0 100.0

enginecoolantlevel 2 100.0 100.0

enginecoolantlevel 3 100.0 100.0

enginecoolantlevel 4 100.0 100.0

enginecoolantlevel 5 100.0 100.0

enginecoolantlevel med 100.0 100.0

engineoillevel 1 100.4 100.4

engineoillevel 2 100.4 100.4

engineoillevel 3 100.4 100.4

engineoillevel 4 100.4 100.4

engineoillevel 5 100.4 100.4

engineoillevel med 100.4 100.4

engineoilpressure 1 164.0 324.0

engineoilpressure 5 198.0 310.0

engineoilpressure 2 204.0 300.0

engineoilpressure 3 204.0 300.0
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engineoilpressure 4 204.0 300.0

engineoilpressure med 210.0 290.0

enginespeed med 303.75 1609.75

enginespeed 2 425.0 1561.0

enginespeed 3 508.0 1516.0

enginespeed 4 562.5 1486.5

enginespeed 5 615.5 1459.5

month 201706.0 201714.0

gpslatitude end 37.77 59.45

gpslongitude end 0.0 22.42

gpslatitude begin 37.75 59.47

gpslongitude begin 0.0 22.44

totaldistance begin 0.0 26978247.5

totaldistance end 0.0 27027932.5

brake duration 0.0 269.5

cruisecontrol distance 0.0 10787.5

harshbrake duration 0.0 30.0

idling duration 0.0 1056.0

gps elevationloss 0.0 376.0

gps elevationgain 0.0 453.5

pto count 0.0 0.0

pto distance 0.0 0.0

pto duration 0.0 0.0

totalfuelconsumption begin 0.0 7973692.25

fuellevel begin 0.0 171.0

totalfuelconsumption end 0.0 7996560.0

fuellevel end 0.0 170.5

gps distance 0.0 108274.5

idling fuelconsumption 0.0 667.0

acceleration duration 0.0 1966.0

maxthrottlepaddle duration 0.0 72.5

dpabrakingscore sum 0.0 735.0

dpaanticipationscore sum 0.0 932.5

dpabrakingevent count 0.0 17.5

dpaanticipationevent count 0.0 17.5

cruisecontrol fuelconsumption 0.0 2487.5

gpsspeed 0.0 0.07

cruisecontrol distanceclass 1 0.0 0.0
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cruisecontrol distanceclass 2 0.0 0.0

cruisecontrol distanceclass 3 0.0 0.0

cruisecontrol distanceclass 4 0.0 5200.0

cruisecontrol distanceclass 5 0.0 0.0

month 201706.0 201714.0

week 28.5 56.5

TripDurationMinutes 0.0 131.53

TripFuelConsumption 0.0 32904.0

TripDistance 0.0 111722.5

AverageSpeed 0.0 130147.13
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J Fuzzy bins experiment results

To test the effect of different sizes of bins on the modeling performance, a small experiment using fixed
model parameters and data splits has been run for the different modeling methods that have been used.
The cross-validated validation scores are reported in Table 44. There can be seen that the modeling
performance in general does not increase (or decrease) with an increased number of bins. Therefore,
there has been chosen to work with fuzzy histograms with 5 bins during the modeling and evaluation
phase of the project.

Table 44: The cross-validated experimental model performance using different sizes of bins

.

Nr. of bins Decision Tree Random Forest MLP Neural Network Logistic Regression

5 0.65 (+- 0.05) 0.65 (+- 0.07) 0.60 (+- 0.02) 0.55 (+- 0.07)

7 0.59 (+-0.07) 0.60 (+- 0.08) 0.60 (+- 0..01) 0.54 (+- 0.08)

9 0.59 (+- 0.12) 0.60 (+- 0.08) 0.60 (+- 0.01) 0.54 (+-0.13)
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K Similarly performing Logistic Regression model beta coefficients

in this appendix, the beta coefficients for one of the found Logistic Regression trees during the modeling
phase are given. It had a slightly worse accuracy (68%) than the best performing model. But as it
incorporated some additional features, it can be used to extract some useful information about the beta
coefficients and their effect on the expected number of repairs.

Figure 55: The beta coefficients for one of the found Logistic Regression models.
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L Average accuracy over 10 different modeling runs

In this section, the average performance per model is given when run over 10 different splits of the initial
data, in order to provide an insight in the modeling instability that is present.

Table 45: The average accuracy and it’s standard deviation for 10 runs of the Logistic Regression
modeling process.

Model Mean STD

Base LR 11 months 0.56 0.01

Extended LR 11 months 0.57 0.01

Base LR 8 months 0.55 0.00

Extended LR 8 months 0.56 0.00

Base LR 8 months SFS 0.55 0.01

Extended LR 8 months SFS 0.57 0.00

Base LR 11 months SFS 0.66 0.01

Extended LR 11 months SFS 0.69 0.01

Table 46: The average accuracy and it’s standard deviation for 10 runs of the Decision Tree modeling
process.

Model Mean STD

Base DT 11 months 0.57 0.05

Extended DT 11 months 0.61 0.03

Base DT 8 months 0.52 0.03

Extended DT 8 months 0.54 0.03

Base DT 8 months SFS 0.53 0.01

Extended DT 8 months SFS 0.54 0.03

Base DT 11 months SFS 0.58 0.04

Extended DT 11 months SFS 0.64 0.02
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Table 47: The average accuracy and it’s standard deviation for 10 runs of the Random Forest modeling
process.

Model Mean STD

Base RF 11 months 0.63 0.02

Extended RF 11 months 0.62 0.02

Base RF 8 months 0.59 0.02

Extended RF 8 months 0.61 0.02

Base RF 8 months SFS 0.62 0.01

Extended RF 8 months SFS 0.61 0.01

Base RF 11 months SFS 0.62 0.02

Extended RF 11 months SFS 0.65 0.02

Table 48: The average accuracy and it’s standard deviation for 10 runs of the MLP-NN modeling process.

Model Mean STD

Base NN 11 months 0.57 0.03

Extended NN 11 months 0.61 0.03

Base NN 8 months 0.55 0.06

Extended NN 8 months 0.58 0.02

Base NN 8 months SFS 0.55 0.04

Extended NN 8 months SFS 0.58 0.02

Base NN 11 months SFS 0.58 0.03

Extended NN 11 months SFS 0.61 0.02
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M T-test on model improvements using Fuzzy Bins

To verify that the fuzzy bins indeed did increase the accuracy performance of the Logistic Regression and
Decision Tree models, a one-sided t-test has been performed over 10 different runs and data-splits. The
results are given below. First an F-test on equal variance has been performed after which subsequently
the one sided T-test to test for a significant increase in accuracy has been performed. The Extended
models are the models including features derived with fuzzy bins while the base models are the models
without these features. In the tables, base models are indicated with a B while the Extended models are
indicated with an E.
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N The derived truck usage features over the first month of operation.

The relevant trip measurements of the trucks have both been averaged per kilometer and summed over
the first month of operation, in order to derive general usage features.

Table 51: Overview of the derived truck usage features over the first month of operation.

Average value per driven kilometer Aggregated (sum of all measurements)

TripFuelConsumption TripFuelConsumption

dpaanticipationscore sum dpaanticipationscore sum

brake duration brake duration

harshbrake duration harshbrake duration

cruisecontrol distanceclass 1 cruisecontrol distanceclass 1

cruisecontrol distanceclass 2 cruisecontrol distanceclass 2

cruisecontrol distanceclass 3 cruisecontrol distanceclass 3

cruisecontrol distanceclass 4 cruisecontrol distanceclass 4

cruisecontrol distanceclass 5 cruisecontrol distanceclass 5

cruisecontrol fuelconsumption cruisecontrol fuelconsumption

dpaanticipationevent count dpaanticipationevent count

dpabrakingevent count dpabrakingevent count

dpabrakingscore sum dpabrakingscore sum

maxthrottlepaddle duration maxthrottlepaddle duration

acceleration duration acceleration duration

idling fuelconsumption idling fuelconsumption

idling duration idling duration

TripDistance TripDistance

TripDurationMinutes TripDurationMinutes

TripFuelConsumption TripFuelConsumption

pto distance pto distance

pto count pto count

pto duration pto duration

gps elevationloss gps elevationloss

gps elevationgain gps elevationgain

cruisecontrol distance cruisecontrol distance

gpslatitude begin gpslatitude begin

gpslongitude begin gpslongitude begin
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O The features over which fuzzy bins have been used for feature extrac-
tion.

Table 52: The features over which fuzzy bins have been used for feature extraction.

Feature Explanation

Fuel temperature Temperature of the fuel inside the truck

Ambient air temperature Air temperature outside of the truck

Engine intake air pressure Air pressure at the engine intake

engine oil pressure Oil pressure inside the engine

Tachographspeed Speed of the truck in kmph

Harsh brake duration Harsh braking duration per trip in seconds

Acceleration duration Acceleration duration per trip in seconds

cruise control distance Cruise control distance driven per trip

gps elevation gain Elevation gain during a trip in meters

dpa-anticipation score Calculated score for the anticipation skills of the driver

during the trip (higher score equals better anticipation).
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P An example of an instance in the final datasets.

To provide the reader with an overview of all the features that have been used for modeling, an example
instance is given here. It contains all of the 324 derived features and their corresponding value for the
truck under consideration.

Table 53: Example of an instance of the final datasets.

Feature Value

NrOfSnapshots 1960

Meandelta distance 4981.607143

Meandelta fuel 1258.666327

Meanidle duration 32.19897959

Meangrosscombinationweight 28566.73469

Meanambientairtemperature 15.36326531

Meangpsaltitude 30.78622449

Meangpslatitude 51.09156005

Meangpslongitude 4.506652781

Stddelta distance 2102.417085

Stddelta fuel 499.8493657

Stdidle duration 117.5326319

Stdgrosscombinationweight 13599.80315

Stdambientairtemperature 3.420306526

Stdgpsaltitude 43.69880102

Stdgpslatitude 0.398866996

Stdgpslongitude 0.499523447

Skewdelta distance -0.64456125

Skewdelta fuel 0.169818936

Skewidle duration 7.306793124

Skewgrosscombinationweight 0.58745172

Skewambientairtemperature 0.151904669

Skewgpsaltitude 3.877692727

Skewgpslatitude -3.318319163

Skewgpslongitude -0.019503855

Meanenginecoolantlevel med 100

Meanengineoillevel med 100.4

Meanaftertreatmentlevel med 78.75316327

Meanbarometricpressure med 100.9043367

Meanfuellevel med 70.92729592

Meanfueltemperature med 31.21479592
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Meanengineoiltemperature med 98.26403061

Meanengineoilpressure med 306.4377551

Meanenginecoolanttemperature med 86.30280612

Meanservicebrakeairpressure med 83.46530612

Meanengineload med 25.59285714

Meanenginespeed med 1063.029847

Meanengineintakeairpressure med 142.9464286

Meantachographspeed med 60.55127551

Stdenginecoolantlevel med 0

Stdengineoillevel med 0

Stdaftertreatmentlevel med 18.58228037

Stdbarometricpressure med 0.993165295

Stdfuellevel med 26.82836748

Stdfueltemperature med 5.607598529

Stdengineoiltemperature med 10.31325622

Stdengineoilpressure med 39.43783373

Stdenginecoolanttemperature med 5.56623006

Stdservicebrakeairpressure med 52.95606566

Stdengineload med 15.62897076

Stdenginespeed med 179.8935537

Stdengineintakeairpressure med 31.11065872

Stdtachographspeed med 27.36614923

Skewenginecoolantlevel med 0

Skewengineoillevel med 0

Skewaftertreatmentlevel med -0.658027484

Skewbarometricpressure med -0.581256587

Skewfuellevel med -0.452849222

Skewfueltemperature med 0.153947941

Skewengineoiltemperature med -3.572221887

Skewengineoilpressure med -1.5873581

Skewenginecoolanttemperature med -7.233155903

Skewservicebrakeairpressure med 1.365496146

Skewengineload med 0.522099409

Skewenginespeed med -1.54314209

Skewengineintakeairpressure med 1.755173623

Skewtachographspeed med -0.881706624

DistanceTravelled 10055155

Maxidle duration 1861
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Minidle duration 0

Maxambientairtemperature 25

Minambientairtemperature 8

Maxtotaldistance 22688255

Mintotaldistance 12633100

Maxtotalfuelconsumption 6169847

Mintotalfuelconsumption 3504778

Maxwheelbasedspeed 94

Minwheelbasedspeed 0

Maxgrosscombinationweight 61600

Mingrosscombinationweight 6800

Maxgpslongitude 5.8441896

Mingpslongitude 3.0013466

Maxgpslatitude 51.702446

Mingpslatitude 48.7856

Maxenginecoolantlevel 100

Minenginecoolantlevel 100

Maxengineoillevel 100.4

Minengineoillevel 69.2

Maxaftertreatmentlevel 100

Minaftertreatmentlevel 36.4

Maxbarometricpressure 102

Minbarometricpressure 97

Maxfuellevel 100

Minfuellevel 9

Maxfueltemperature 76

Minfueltemperature 14

Maxengineoiltemperature 108

Minengineoiltemperature 15

Maxengineoilpressure 544

Minengineoilpressure 0

Maxenginecoolanttemperature 97

Minenginecoolanttemperature 16

Maxservicebrakeairpressure 248

Minservicebrakeairpressure 0

Maxengineload 100

Minengineload 0

Maxenginespeed 1957
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Minenginespeed 147

Maxengineintakeairpressure 334

Minengineintakeairpressure 98

Maxtachographspeed 94

Mintachographspeed 0

MeanTripDurationMinutes 37.96256983

MeanTripDistance 28090.83799

std TripDistance 48941.88263

skew TripDistance 2.034432475

MeanTripFuelConsumption 7448.636872

std TripFuelConsumption 12539.7079

skew TripFuelConsumption 2.172959231

Meandpaanticipationscore sum 366.5921788

std dpaanticipationscore sum 634.1488803

skew dpaanticipationscore sum 2.733583701

Meanbrake duration 120.4888268

std brake duration 201.9308161

skew brake duration 3.13727088

Meanharshbrake duration 15.30726257

std harshbrake duration 36.8586596

skew harshbrake duration 4.896012667

Meancruisecontrol distanceclass 1 0.782122905

std cruisecontrol distanceclass 1 4.075961362

skew cruisecontrol distanceclass 1 5.133734591

Meancruisecontrol distanceclass 2 58.35195531

std cruisecontrol distanceclass 2 324.0205135

skew cruisecontrol distanceclass 2 10.32158778

Meancruisecontrol distanceclass 3 1360.670391

std cruisecontrol distanceclass 3 3465.15853

skew cruisecontrol distanceclass 3 4.651801326

Meancruisecontrol distanceclass 4 14933.05866

std cruisecontrol distanceclass 4 31059.51845

skew cruisecontrol distanceclass 4 2.177355712

Meancruisecontrol distanceclass 5 0

std cruisecontrol distanceclass 5 0

skew cruisecontrol distanceclass 5 0

Meancruisecontrol fuelconsumption 3654.391061

std cruisecontrol fuelconsumption 7511.960345
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skew cruisecontrol fuelconsumption 2.274831871

Meandpaanticipationevent count 5.983240223

std dpaanticipationevent count 10.45302945

skew dpaanticipationevent count 2.849309093

Meandpabrakingevent count 4.824022346

std dpabrakingevent count 8.4760188

skew dpabrakingevent count 2.783364283

Meandpabrakingscore sum 319.4581006

std dpabrakingscore sum 569.9482921

skew dpabrakingscore sum 2.792204072

Meanmaxthrottlepaddle duration 27.07821229

std maxthrottlepaddle duration 93.36284763

skew maxthrottlepaddle duration 8.976156083

Meanacceleration duration 540.2011173

std acceleration duration 910.197503

skew acceleration duration 3.472129571

Meanidling fuelconsumption 335.8268156

std idling fuelconsumption 476.7854936

skew idling fuelconsumption 3.514352277

Meanidling duration 586.9106145

std idling duration 740.679333

skew idling duration 2.845569394

std TripDurationMinutes 51.62018679

skew TripDurationMinutes 2.037718417

Meanpto distance 0.377094972

std pto distance 2.13290361

skew pto distance 5.883998601

Meanpto count 0.055865922

std pto count 0.294119212

skew pto count 6.284201674

Meanpto duration 22.66480447

std pto duration 181.6412706

skew pto duration 14.43365291

Meangps elevationloss 53.01117318

std gps elevationloss 108.8023155

skew gps elevationloss 5.135947049

Meangps elevationgain 53.5

std gps elevationgain 110.2918398
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skew gps elevationgain 5.419655752

Meancruisecontrol distance 16352.86313

std cruisecontrol distance 32778.98891

skew cruisecontrol distance 2.090047768

Meangpslatitude begin 51.18865017

std gpslatitude begin 0.33472457

skew gpslatitude begin -3.603809265

Meangpslongitude begin 4.543775949

std gpslongitude begin 0.605398171

skew gpslongitude begin -0.071885818

SumTripDistance 10056520

SumTripFuelConsumption 2666612

SumTripFuelConsumptionPerKilomter 0.265162502

Sumdpaanticipationscore sum 131240

Sumdpaanticipationscore sumPerKilometer 0.01305024

Sumbrake duration 43135

Sumbrake durationPerKilometer 0.004289257

Sumharshbrake duration 5480

Sumharshbrake durationPerKilometer 0.00054492

Sumcruisecontrol distanceclass 1 280

Sumcruisecontrol distanceclass 1PerKilometer 2.78E-05

Sumcruisecontrol distanceclass 2 20890

Sumcruisecontrol distanceclass 2PerKilometer 0.002077259

Sumcruisecontrol distanceclass 3 487120

Sumcruisecontrol distanceclass 3PerKilometer 0.048438227

Sumcruisecontrol distanceclass 4 5346035

Sumcruisecontrol distanceclass 4PerKilometer 0.531598903

Sumcruisecontrol distanceclass 5 0

Sumcruisecontrol distanceclass 5PerKilometer 0

Sumcruisecontrol fuelconsumption 1308272

Sumcruisecontrol fuelconsumptionPerKilometer 0.13009192

Sumdpaanticipationevent count 2142

Sumdpaanticipationevent countPerKilometer 0.000212996

Sumdpabrakingevent count 1727

Sumdpabrakingevent countPerKilomter 0.000171729

Sumdpabrakingscore sum 114366

Sumdpabrakingscore sumPerKilomter 0.011372324

Summaxthrottlepaddle duration 9694
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Summaxthrottlepaddle durationPerKilometer 0.000963952

Sumacceleration duration 193392

Sumacceleration durationPerKilomter 0.019230509

Sumidling fuelconsumption 120226

Sumidling fuelconsumptionPerKilometer 0.01195503

Sumidling duration 210114

Sumidling durationPerKilometer 0.020893311

SumTripDistancePerKilometer 1

SumTripDurationMinutes 13590.6

SumTripDurationMinutesPerKilometer 0.001351422

Sumpto distance 135

Sumpto distancePerKilometer 1.34E-05

Sumpto count 20

Sumpto countPerKilometer 1.99E-06

Sumpto duration 8114

Sumpto durationPerKilometer 0.00080684

Sumgps elevationloss 18978

Sumgps elevationlossPerKilometer 0.001887134

Sumgps elevationgain 19153

Sumgps elevationgainPerKilometer 0.001904536

Sumcruisecontrol distance 5854325

Sumcruisecontrol distancePerKilometer 0.582142232

Sumgpslatitude begin 18325.53676

Sumgpslatitude beginPerKilometer 0.001822254

Sumgpslongitude begin 1626.67179

Sumgpslongitude beginPerKilometer 0.000161753

AverageSpeed 44397.68664

BreakDurationPerKilometer 0.004289257

HarshBreakDurationPerKilometer 0.00054492

FuelConsumptionPerKilometer 0.265162502

SumOperatingHours 226.51

AverageSpeedinKmH 44.39768664

DrivenKilometers 10056.52

NrOfTrips 358

ProductRange XF MX-11

WARRANTY PACKAGE Standard + 3rd year driveline

Month in service 15

engineoil Synthetic (ext)
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Engine (DMSC ->CCM) 440

Homecountry 002 - Belgium

Application y General (dry freight, pallet loads)

bodytype Tractor Not Applicable

drops per day 1 to 6

operation type Long Distance

Vehicle Safety Features Not fitted

Asset Type-info FT XF440Y X 380

Gearbox AS Tronic 12 speeds

Contract status Active - Active

Retarder System MX engine brake

Contract contracted yearly mileage 110000

Contract (version) start kms 0

Area of Operation W.-Europe (excl. Scandinavia)

ChassisType FT

fueltemperature 1 level lo 0.004218122

fueltemperature 1 level md 0.537751946

fueltemperature 1 level mdhi 0.449920788

fueltemperature 1 level hi 0.007699049

fueltemperature 1 level vehi 0.000410095

ambientairtemperature level lo 0.003520408

ambientairtemperature level md 0.469846939

ambientairtemperature level mdhi 0.513418367

ambientairtemperature level hi 0.013214286

ambientairtemperature level vehi 0

engineintakeairpressure 1 level lo 5.33E-06

engineintakeairpressure 1 level md 0.549338002

engineintakeairpressure 1 level mdhi 0.378398769

engineintakeairpressure 1 level hi 0.066263183

engineintakeairpressure 1 level vehi 0.005994718

engineoilpressure 1 level lo 0.015085361

engineoilpressure 1 level md 0.316457964

engineoilpressure 1 level mdhi 0.658157943

engineoilpressure 1 level hi 0.010298152

engineoilpressure 1 level vehi 5.80E-07

tachographspeed level lo 0.102363946

tachographspeed level md 0.166666667

tachographspeed level mdhi 0.330238095
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tachographspeed level hi 0.400459184

tachographspeed level vehi 0.000272109

acceleration duration level lo 0.911695846

acceleration duration level md 0.087355749

acceleration duration level mdhi 0.000948405

acceleration duration level hi 0

acceleration duration level vehi 0

harshbrake duration level lo 0.943695244

harshbrake duration level md 0.055009276

harshbrake duration level mdhi 0.00129548

harshbrake duration level hi 0

harshbrake duration level vehi 0

cruisecontrol distance level lo 0.841935893

cruisecontrol distance level md 0.149606353

cruisecontrol distance level mdhi 0.008457754

cruisecontrol distance level hi 0

cruisecontrol distance level vehi 0

gps elevationgain level lo 0.995292565

gps elevationgain level md 0.004707435

gps elevationgain level mdhi 0

gps elevationgain level hi 0

gps elevationgain level vehi 0

dpaanticipationscore sum level lo 0.870778432

dpaanticipationscore sum level md 0.124833229

dpaanticipationscore sum level mdhi 0.004388338

dpaanticipationscore sum level hi 0

dpaanticipationscore sum level vehi 0

Predicting the number of truck repairs using logged vehicle Page 134



8. APPENDICES 135

Q The searched hyperparameter space for each of the models

For the Logistic regression the hyper-parameter search space consisted out of the following:

• C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]

• Regularization penalty method: [L1,L2]

For the Decision tree models, the hyper-parameter search space consisted out of the following:

• Maximum depth: [1,2,3...16]

• Minimum number of samples per split: [10, 15, 20...50]

• Minimum number of samples per leaf: [10, 12, 14.....30]

For the Random forest models, the hyper-parameter search space consisted out of the following:

• Maximum depth: [1,2,3...30]

• Minimum number of samples per split: [2, 4, 6...50]

• Minimum number of samples per leaf: [1, 3, 5.....31]

• Number of estimators: [50, 100, 150...1000]

For the MLP-Neural network models, the hyper-parameter search space consisted out of the follow-
ing:

• Maximum number of iterations: [100, 200, 500, 1000, 1500, 2000]

• Number of hidden layers: [1,2,3...20]

• Learning rate: [constant, inverse scaling, adaptive]

• Activation function: [Logistic sigmoid, hyperbolic tangent, rectified linear]
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R The optimal hyperparameters for each of the models.

Table 54: The optimal parameters for the decision tree models.

Model Min. samples per leaf Min. samples per split Max. tree depth

Decision tree base 8 months 22 45 6

Decision tree base 11 months 10 25 5

Decision Tree extended 8 months 18 35 7

Decision tree extended 11 months 16 35 6

Table 55: The optimal parameters for the random forest models.

Model Min. samples per leaf Min. samples per split Max. tree depth Nr. of estimators

Random Forest base 8 months 7 14 15 500

Random Forest base 11 months 5 14 18 500

Random Forest extended 8 months 5 8 18 700

Random Forest extended 11 months 6 12 17 600

Table 56: The optimal parameters for the MLP-Neural Network models.

Model Nr. of hiddden layers Activation function Learning rate max. nr. of iterations

MLP-NN base 8 months 4 rectified linear (f(x) = max(x,0)) inverse scaling (decreasing over time) 1000

MLP-NN base 11 months 5 rectified linear (f(x) = max(x,0)) inverse scaling (decreasing over time) 1000

MLP-NN extended 8 months 5 hyperbolic tangent inverse scaling (decreasing over time) 1000

MLP-NN extended 11 months 7 rectified linear unit (f(x) = max(0,x)) inverse scaling (decreasing over time) 1000
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S List of abbreviations

Table 57: The list of abbreviations.

DAF DAF Trucks N.V.

R&M Repair and maintenance

CBM Condition based maintenance

PLM Product life-cycle management

RUL Remaining useful life

CCM Customer contract management

CRISP-DM Cross-industry standard process for data mining

SEMMA Sample, Expolore, Modify, Model and Assess

KDD Knowledge discovery in databases

FTE fulltime-equivalent

AUC Area under the curve

ROC-curve receiver operating characteristic curve

TLFN Time-lagged feedforward network

FIS Fuzzy inference system

FFBPNN Feedfword backpropagation neural network

ML machine learning

RMSE root mean square error

WILD wheel impact load detectors

M-IFN multi-target information fuzzy network

PCA Principal component analysis

WGS Wrapper with genetic search

WBFS Wrapper with best-first search

BTA Boosting tree algorithm

MLP Multilayer perceptrons neural network

AE Absolute error

MAE Mean absolute error

RE Relative error

MRE Mean relative error

RNN Recurrent neural network

ANFIS Adaptive neuro fuzzy inference system

ARNFIS Adaptive recurrent based neuro fuzzy inference system

MLFN Multilayer feedforward neural network

NRMSE normalized root mean squared error

DTW Dynamic time warping
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SVM support vector machine

MTS multivariate time-series

DMLP Deep multilayer perceptron

FCN Fully convolutional network

DCE Dealer claim entry system

VIN Vehicle identification number

CAN Controller Area Network

DCM Daf Connect Module

DPA Driving Performance Assistant

PDF Probability Distribution Function

TP True positive

TN True negative

FP False positive

FN False negative

ROC-curve receiver operating characteristic curve

MI Mutual Information

IQR Inter Quartile Range

SFS Sequential Feature Selection

RFE Recursive Feature Elimination
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