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Abstract

A logistics service provider that offers two synchromodal transportation services with a 1- and 2-
day shipment window faces a single-leg revenue management problem. The service provider seeks
to maximize the expected profit by guaranteeing that its capacity is utilized by committing to
allotment contracts or reserving capacity for spot market sales, while coping with limited capacity,
stochastic demand, and stochastic spot market freight rates and simultaneously accounting for the
transportation services’ shipment windows. In this study, we present a stochastic integer program
and a simulation-based optimization model to solve the revenue management problem optimally.
We use the model to show that the expected profit function is concave in the capacity and that the
optimal allocation distribution depends on the capacity, contractual and spot demand and freight
rates, the shipment windows, the spot market demand volatility, and the customer’s forecast
reliability. Next, we show that the optimal capacity reserved for spot market sales is independent
of the spot freight rate volatility, provided that the service provider is risk-neutral. A sensitivity
analysis is conducted to examine the allocation mechanisms, and to assess managerial insights.
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Executive summary

This project presents a single-leg cargo revenue management problem of a logistics service provider
with two synchromodal transportation services that seeks to maximize its profit by optimizing the
capacity allocation to allotment contracts and spot market demand. The research is conducted at
a container terminal operator in Rotterdam, which is pioneering with synchromodal transportation
in order to develop efficient hinterland transportation.

Problem Statement
A logistics service provider offers two mode-free transportation services: Express and Standard
with a 1- and 2-day shipment window respectively. The shipment window indicates the allowed
delivery time in days, such that the service provider should deliver Standard shipments either
today or tomorrow. The logistics service provider can sell its transportation services in advance
to freight forwarders via allocation contracts or sell it on the spot market. The cargo allotment
contract is an agreement between the carrier and the customer that specifies pre-determined freight
rates for transportation services within the contract period. The customer is only charged for the
realized shipment volume and does not face any capacity restrictions on their shipment volume.
By committing to allotment contracts, the logistics service provider is obliged to accommodate
the contractual demand throughout the booking horizon. The spot market, on the other hand,
consists of shipment requests from customers without allocation contracts. The logistics service
provider can utilize these shipment requests and receives the current spot freight rate for the
service. Serving the spot market provides an option on demand because the service provider
is allowed to reject the incoming spot order. However, spot market demand is volatile, which
exposures the logistics service provider to the risk that capacity is underutilized. Therefore, to
maximize profit, the logistics service provider should determine the optimal mix between medium-
term allocations contracts and reserving capacity for spot market demand, while accounting for
the spot market demand volatility. The synchromodal service provider should also account for
the effects of the differentiated transportation services (Express and Standard) on its profit and
operational performance. Although Express services generate more revenue per shipment, the
Standard services have more planning flexibility, which enables network optimization.

The synchromodal service provider faces a revenue management problem, which is an economic
trade-off between guaranteeing that capacity is utilized by committing to allocation contracts or
reserving capacity for spot market sales, with the objective to maximize profit while coping with
its transportation service characteristics, limited capacity, stochastic demand, and stochastic spot
freight rates. Therefore, in order to maximize profit, the logistics service provider must:

1. Determine the optimal contract allocation to multiple freight forwarders;

2. (optionally) Reserve capacity for spot market demand;

3. Account for the optimal cargo mix between the transportation service types.

The company’s current sales strategy focuses on maximizing the asset utilization, which holds that
sales targets to maximize utilization without directly considering the operational implications.
The objective of this research is to define a cargo revenue management model that maximizes the
expected profit by optimizing the capacity allocation, to develop insights on the optimal allocation
mechanisms, and to provide the company with practical recommendations. Therefore, based on
the problem statement, the following research question was defined:
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How can the introduction of a revenue management model that optimizes the capacity
allocation to allotment contracts and spot market demand support EGS’s perform-
ance in terms of profit and asset utilization?

Analysis
In order to answer the research question, two simulation-based optimization models are developed.
The objective of both models is to maximize the expected profit, by determining the optimal ca-
pacity distribution to allotment contracts and spot market demand. First, a stochastic integer
program is defined to optimally solve the capacity allocation problem, while coping with the
shipment windows of the transportation services, limited capacity, stochastic demand, and de-
terministic spot freight rates. Second, a simulation-based optimization model is defined to extend
the stochastic integer program by assuming stochastic spot freight rates, which exhibit mean-
reverting properties and are modeled by an Ornstein-Uhlenbeck process. The models evaluate
the performance of an allocation portfolio by providing the expected profit, asset utilization, and
excess shipments. Next, a method is defined to determine the minimum acceptable freight rate
per shipment of a rejected contract, such that it is profitable to accept the contract and offsets
other more profitable business opportunities, which supports sales during negotiations.

The capacity allocation problem is solved optimally for small-sized numerical problems, a case
study is conducted and a sensitivity analysis is performed to extend the insights on the allocation
dynamics. The numerical analysis revealed that the profit function is concave in the capacity
since the profit increases when additional demand is allocated to underutilized capacity, while it
decreases as capacity is overutilized due to penalty costs owing to excess shipments. The case
study showed that the optimization algorithm results on average in 3.68% more profit compared
to the allocation decisions taken by experienced sales representatives.

Furthermore, the sensitivity analysis illustrated that the optimal capacity allocation distribution
depends on the capacity, the contractual and spot demand, the corresponding freight rates, the
transportation services’ shipment windows, and on the spot demand volatility. The optimal capa-
city allocation is independent of the spot freight rate volatility, provided that the service provider
is risk-neutral.

Moreover, it is shown that it is profitable to include Standard services in the allocation portfolio
when the revenue per shipment is at most 30% lower than the revenue of Express shipments.
The additional shipment day of Standard services provides the service provider with planning
flexibility, which reduces the probability of excess orders. The smaller the freight rate, the more
profitable to increase the share of Standard orders in the allocation portfolio. Next, extending
the shipment window of the Standard service saves penalty costs, and allows to allocate more
demand, which yields additional profit. The service provider could compensate the customers for
the extended shipment window with the obtained profit.

Besides, the sensitivity analysis showed that it is profitable to substitute Express shipments for
spot shipments, while it is only profitable to substitute Standard shipments if the spot freight rate
compensates the profit loss due to the reduced planning flexibility. It turns out that the optimal
capacity reserved for the spot market depends on the freight rates and the spot demand volatility.

Finally, this study showed that the customer’s forecast reliability affects the profit of the service
provider. The forecast reliability reflects in what degree the customer’s shipment volume matches
with the volume indicated in the allotment contracts. Reliable forecast positively contributes to
the profit. It follows that the freight rates charged to unreliable customers should compensate the
profit loss.

Based on the conducted research, it is obtained that a revenue management model that optimizes
the capacity distribution to allotment contracts and spot market demand, and copes with fixed
capacity, the shipment windows, stochastic demand, freight rates, and stochastic spot freight rates
provides the opportunity to improve the company’s profit. That is, numerical experiments and
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the sensitivity analysis showed the dependency of the optimal allocation on the demand, shipment
windows and freight rate characteristics. The optimal asset utilization depends on the allocation
portfolio that maximizes profit. Consequently, maximizing the profit may not imply maximized
asset utilization. Furthermore, this study showed that profit opportunities may exist by reserving
capacity for spot market sales. Quantifying the profit opportunity was not possible, due to a lack
of available company data.

By addressing the cargo revenue management problem of a synchromodal service provider, we
contribute to the limited existing literature in three ways. First, this study provides a model
to solve the capacity allocation problem with multiple transportation services optimally, while
coping with stochastic influences and constraints. We showed that the shipment windows affect
the optimal cargo distribution. Second, we show that profit opportunities exist by serving spot
market demand, but notice that the optimal capacity reserved for spot sales depends on the
spot demand volatility. Third, this paper studies the capacity allocation problem with stochastic
spot freight rates, by modeling it as an Ornstein-Uhlenbeck process. We show that the optimal
capacity allocation is not affected by the spot rate volatility, provided that the service provider is
risk-neutral.

Recommendations
This study showed that the optimal capacity allocation that would maximize profit depends on the
stochastic contractual and spot demand, the freight rates, the limited capacity, and the customer’s
forecast reliability. In order to maximize profit, it is recommended to shift from a strategy that
focuses on maximizing the asset utilization to a strategy that focuses on profit maximization, by
applying the defined optimization models that cope with the limited capacity, the transportation
services’ shipment window, stochastic demand, the spot demand volatility, and the customer’s
forecast reliability.

Second, this study showed that reserving capacity for spot market sales provides an opportunity
to improve the profit. While the demand from allotment contracts must be accommodated, the
logistics service provider could optionally accept or reject spot shipment requests. The sensitivity
analysis illustrated that substituting capacity reserved for Express shipments with spot shipments
yields additional profit while substituting Standard shipments is only profitable if the spot freight
rate compensates the profit loss due to reduced planning flexibility. Additionally, the sensitivity
analysis showed that less capacity should be reserved for spot demand when the volatility increases.
Therefore, it is recommended to reserve capacity for spot market sales but to account for the spot
demand volatility in the allocation process. Moreover, it is recommended to survey the spot
market freight rate and demand characteristics since this study did not analyze the actual spot
demand characteristics, because of data unavailability.

Third, we recommend that the service provider should focus on allocating Express services, but also
include lower-priced Standard services in the allocation portfolio to account for planning flexibility,
such that the profit is maximized. Although the revenue reduces by allocating Standard services
instead of Express shipments, the penalty costs savings outweigh the revenue opportunity, which
implies a higher profit. Including Standard services becomes more profitable as the freight rate
difference between Express and Standard shrinks.

Finally, it is recommended to measure and incorporate the customer’s forecast reliability in the
capacity allocation process. This study showed that unreliable customers with uncertain demand
negatively affect profit. The forecast reliability is especially of importance in the case of Express
shipments because this service has a relative tight planning flexibility, which increases the exposure
to demand uncertainty. Moreover, we recommend reflecting the customer’s forecast reliability in
the freight rates, such that unreliable customers are charged higher freight rates that compensate
the expected profit loss. In order to incorporate the forecast reliability in the allocation process,
the company should start measuring the reliability of its current customers.
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Chapter 1

Introduction

This report presents the results of a revenue management study to maximize the profit of a logist-
ics service provider that offers synchromodal transportation services by optimizing the capacity
allocation to allotment contracts and spot market demand. The capacity allocation problem with
spot market demand has been solved optimally incorporating the characteristics of the synchro-
modal products. This project is realized with the cooperation of European Container Terminal
Rotterdam and European Gateway Services, pioneers in synchromodal transportation.

1.1 Synchromodal transportation

Synchromodal transportation is a logistics concept that focuses on the integration and cooperation
of transport services and modes in order to provide service operators more transportation possib-
ilities (Zhang & Pel, 2016). Characteristic of the synchromodal concept is that shippers allow the
network operator to select the modality of the shipment. The shipper and the logistics service
provider agree only on the delivery of products at a specified price, time, quality and sustainability,
and gives the service provider freedom to decide on how to deliver the product (Haller, Pfoser,
Putz & Schauer, 2015).

The logistics service provider functions as the network orchestrator that manages the transporta-
tion operations in the network. Synchromodality enables the network orchestrator to optimize the
network transportation plan by exploiting the extra planning flexibility and by efficiently utilizing
all available resources given the current state of the network. Moreover, the service operator can
optimize the transportation plans by bundling the flow of goods from different customers (Pfoser,
Treiblmaier & Schauer, 2016).

As planning flexibility is essential to enable synchromodal planning, logistics network operators,
i.e., carriers, have an incentive to introduce differentiated transport services with different tariff
classes depending on the shipment window and flexibility (Van Riessen, Negenborn & Dekker,
2015). Shippers could provide the logistics service provider with this additional flexibility by
leaving the mode selection to the service provider (Gorris et al., 2011; Lucassen & Dogger, 2012).
Logistics service providers should offer shippers an incentive to book synchromodal by transferring
a proportion of the financial benefit of synchromodality to shippers (Behdani, Fan, Wiegmans &
Zuidwijk, 2016). This way, the service level and the level of flexibility of the transportation service
is reflected by the price of the product.

Synchromodality is promised as the future of transport, having benefits for logistics compan-
ies, consumers and the environment (Singh, van Sinderen & Wieringa, 2016). Shippers demand
higher levels of service, in terms of delivery time and reliability, while supply chains get more
global and increasingly interconnected (Crainic, 2000; Crainic & Laporte, 1997; Veenstra, Zuid-
wijk & Van Asperen, 2012). Cost reductions, improved reliability, flexible and integrated supply
chains, reduction of CO2-emissions and reduced pressure on roads are promising benefits of the
synchromodal concept (Singh et al., 2016). Furthermore, synchromodal transportation results in
reduced delivery times, increased capacity utilization and buffering effects between the alternative
modes yielding a more flexible, reliable and robust transport system (Zhang & Pel, 2016).
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Furthermore, maritime terminals also benefit from synchromodal transportation as it contributes
to hinterland accessibility. In turn, efficient hinterland transport may result in faster container
release and reduced terminal congestions at seaports (Franc & Van der Horst, 2010). Hinterland
accessibility is an essential contributor to the seaport’s competitiveness (De Langen & Pallis, 2006;
Wiegmans, Hoest & Notteboom, 2008). Therefore, Notteboom and Rodrigue (2005) state that
“the development of the hinterland network is a new dimension for competition between seaports.”

1.2 Project environment

Company background

European Container Terminal (ECT), is the leading container terminal operator in Europe and
part of Hutchison Ports, which in turn is the world’s leading port network. ECT operates two
maritime container terminals located in the Port of Rotterdam: ECT Delta Terminal and Euromax
Terminal Rotterdam. The Port of Rotterdam (PoR) is a major European port that functions as
central node and connects Europe with the rest of the world. The Rotterdam-based terminals
processed 7.5 million twenty-foot equivalent units (TEU) in 2015 (ECT Rotterdam, 2016). Fur-
thermore, ECT owns and operates four inland terminals: MCT Moerdijk and Hutchison Ports
Venlo in the Netherlands, Hutchison Ports Duisburg in Germany and Hutchison Ports in Belgium,
which are connected by rail and waterway connections.

In 2007, ECT founded European Gateway Services (EGS) to provide more efficient and sustainable
hinterland transportation with the goal to improve hinterland accessibility. EGS is a Dutch-based
logistics service provider that provides synchromodal network solutions for European hinterland
transport. As a subsidiary of ECT, EGS offers barge and rail transportation services between the
maritime and inland terminals of ECT and an expanding network of partnered terminals. The
company has a strong European network that contains 22 terminals located in the Netherlands,
Germany, Belgium, Austria and Switzerland (European Gateway Services, 2018), see Figure A.1
in Appendix A. EGS is committed to providing qualitative, reliable, cost-efficient, innovative and
sustainable logistics solutions for its customers. Moreover, EGS offers Extended Gate services,
which allow customers to delay customs formalities until its cargo arrives at an ECT inland
terminal, resulting in additional time savings and increased efficiency. Other services of EGS’s
product portfolio include Terminal services, E-services, and Deepsea Liner services. By having the
flexibility to switch between transportation modes and providing extra services, EGS is a principal
competitor in the field of container hinterland transportation. Table A.1 in Appendix A provides
EGS’s key figures.

Synchromodal network

EGS operates a synchromodal network with rail and barge connections, depending on the access-
ibility of the destination. At this point, the company’s network does not include truck connections,
but if necessary, the company charters a truck from an external partner. The availability of mul-
tiple modalities provides the opportunity to optimize the network by selecting the most efficient
modality for each shipment. Furthermore, the EGS network allows for redirecting freight via mul-
tiple corridors to its final destination, which contributes to the planning flexibility. Next, being
a subsidiary of a container terminal operator, EGS could temporality store containers at a ter-
minal and ship the container later if this contributes to the network’s performance. The company
deploys a synchromodal planning algorithm that optimizes the network planning.

Synchromodal services

As a pioneer in synchromodal transportation, EGS is currently developing a synchromodal product
portfolio. EGS translated the synchromodal concept into two mode-free logistics products with
varying service levels: Express and Standard. The service level indicates the shipment window,
where the Express product has a tighter window than the Standard product. Accordingly, EGS
charges a premium on Express services, as this product has less planning flexibility compared to
the Standard product.
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It should be highlighted that the logistics service provider (EGS) determines the modality of the
shipment. The shipper and EGS only agree in advance on the price and shipment window, and
it is up to EGS to select the optimal modality given the agreed shipment window and given the
current state of the network. A pilot study with a major customer showed that the synchromodal
service portfolio improves the on-time delivery reliability and asset utilization.

1.3 Problem statement
Capacity allocation problem
A logistics service provider could sell its transportation services in advance to freight forwarders
via medium-term allotment contracts or sell it on the spot market. Since the capacity of the
logistics service provider is relatively fixed, managing inventory involves capacity allocation and
booking control (Billings, Diener & Yuen, 2003).

Capacity allocation involves distributing capacity between allotment contracts and spot market
demand. An allotment contract is a pre-determined agreement between the logistics service pro-
vider and a customer to transport the customer’s shipments for a fixed shipment compensation
within the contract period. The logistics service provider optimizes its capacity allocation before
the start of the booking horizon by determining which allotment contracts to accept and reserving
capacity for spot market sales. Accordingly, the service provider is obliged to transport the con-
tractual demand throughout the booking horizon, while it sells the remaining capacity on the spot
market. The medium-term allocation decisions therefore effectively reduce the capacity for spot
market shipments (Billings et al., 2003). The optimal allocation of capacity is challenging due to
exaggerated demand information of forwarders and uncertain spot market demand (C. Liu, Jiang,
Geng, Xiao & Meng, 2012).

Allotment contracts

Logistics service providers commit to mid-term allocation contracts with shippers and freight
forwards to assure capacity utilization and mitigate cash flow risks (Hellermann, 2006). Shippers
and freight forwarders, on the other hand, try to secure capacity access while pressing for favorable
terms, strengthened by its market domination. The cargo allotment contract is an agreement
between the carrier and the customer that specifies pre-determined rates for transportation services
within a fixed term, typically a year. The settled rate per shipment reflects the discount that the
customer negotiated, based on the volume that the customer expects to ship in the contract period.
The customer is only charged for the realized shipment volume, and not penalized if it falls short
or exceeds the expected shipment volume as defined in the contract. Accordingly, the customer
does not face any capacity restrictions on their shipment volume. In fact, by committing to the
medium-term allocation contracts, the customer acquires options on transportation services of the
carrier. That is, the customer has the right but not the obligation to ship demand via the carrier
at a specified strike price that may be exercised at any time within the contract period. As a
result, the pricing decisions and the management of the cargo contracts with customers, all having
unique contracts, are two key factors that affect the carrier’s profitability (Billings et al., 2003).

Spot market

The logistics service provider could also sell its transportation services on the spot market, i.e., it
could serve the demand of customers without granted capacity via allotment contracts. Although
EGS currently does not serve the spot market, management has some aspirations to serve the spot
market in the future.

The container freight industry is especially appropriate to serve the spot market due to stand-
ardized transportation units, and the relatively fixed transportation schedules (Gorman, 2015).
The advantage of serving the spot market is that the logistics service provider could accept de-
mand continuously, instead of allocating capacity for an extended period via contracts. Moreover,
the spot market is commonly more profitable than contractual shipments. However, spot mar-
ket demand is volatile, which exposures the logistics service provider to the risk that capacity is
underutilized. Therefore, to maximize profit, the logistics service provider should determine the
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optimal mix between medium-term allocations contracts and reserving capacity for spot market
demand, while accounting for the spot market demand volatility.

Cargo mix

Furthermore, while determining the optimal contract portfolio, the synchromodal service provider
should account for the effects of the differentiated transportation services (Express and Stand-
ard) on its profit and operational performance. The service provider should sell the right set of
products to their customers in order to develop cost-efficient transportation plans, while also max-
imizing revenue. Although Express services generate more revenue per shipment, the Standard
services provide more planning flexibility, enabling network optimization. Consequently, relatively
low-priced Standard services with high planning flexibility are not inferior to Express services
(Van Riessen, Negenborn & Dekker, 2017). The contract allocation decision thus involves determ-
ining the optimal cargo mix given the characteristics of synchromodal transportation services,
such that profit is maximized.

EGS is currently testing a synchromodal product portfolio with a major customer. The objective
of the pilot is to examine the customer behavior to synchromodal transportation services and to
examine the operational effects. Preliminary results suggest that the company should consider the
optimal mix between the synchromodal products in an early stage of the sales process such that
it could contribute to the operational performance. The conclusions that follow from this master
thesis project contribute to the further development of the synchromodal project of EGS.

In short, the cargo capacity allocation problem of a logistics service provider is an economic
trade-off between guaranteeing that capacity is utilized by committing to allocation contracts or
reserving capacity for spot market sales, given its transportation service characteristics, such that
profit is maximized. To maximize profit, the logistics service provider must:

1. Determine the optimal contract allocation to multiple freight forwarders;

2. (optionally) Reserve capacity for spot market demand;

3. Account for the optimal cargo mix between the transportation service types.

Revenue management opportunities
Revenue management entails strategies and tactics to manage demand with the objective to max-
imize revenue or yield. Revenue management is practiced in industries or markets that face high
fixed costs and low margins, with the goal of efficiently selling perishable resources or products
(Cross, 1997; McGill & Van Ryzin, 1999; Talluri & Van Ryzin, 2006). The cargo business is such
an industry, and cargo revenue management, therefore, involves maximizing profit by optimizing
the prices of transportation services and asset utilization given a relatively fixed capacity. Billings
et al. (2003) highlight the need for cargo revenue management: “Cargo carriers must adopt rev-
enue management or face the consequences of revenue opportunity loss and being competitively
disadvantaged.”

Capacity is valuable for logistics service providers, and the efficiency with which it is utilized
should be maximized (Freeland, 2007). Especially when demand keeps growing, while the options
for increasing capacity are limited. The company involved in this research currently experiences
capacity limitations, which emphasizes the need for a revenue management strategy to maximize
profit by optimizing the capacity distribution. Barnhart, Belobaba and Odoni (2003) state that a
revenue management model is required to balance customer demand and transportation options.

EGS’s current sales strategy focuses on maximizing asset utilization, which holds that sales targets
to maximize utilization without directly considering the operational implications. Shifting from
an emphasis on maximizing asset utilization to maximizing profit is the first impact of revenue
management, given that higher profitability may be realized with a lower utilization (Billings et
al., 2003). Agatz, Campbell, Fleischmann, Van Nunen and Savelsbergh (2013) state that “Revenue
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management has shown that companies can do much better than a one-size-fits-all first-come-first-
served strategy when selling scarce capacity to a heterogeneous market.” So a revenue management
strategy that focuses on maximizing profit rather than on asset utilization could yield improved
profitability and operational performance. The synchromodal service provider faces a revenue
management problem, as it is challenged to select those allotment contracts, and to reserve the
optimal amount of capacity for spot market demand such that profit is maximized. Billings et
al. (2003) note that sales should have the tools to determine the optimal space allocation via
medium-term contracts.

Minimum bid-price
Furthermore, revenue management systems contain information that sales can use to explain why
specific freight arrangements cannot be accepted (Freeland, 2007). The logistics service provider
seeks to maximize the expected profit by optimizing the capacity allocation, given the contract
terms that are negotiated by the sales offices. Optimizing the capacity allocation is a trade-off
between the allotment contracts, and the service provider will only accept those contracts that
maximize profit and reject all other contracts. Revenue management practices could provide sales
with a minimum bid-price of a rejected contract, such that it is profitable to accept the contract.
That is, the minimum bid-price is the minimum acceptable price per shipment such that it offsets
other more profitable business opportunities (Billings et al., 2003). In other words, the minimum
bid-price tells how much the revenue per shipment of a rejected contract should increase such that
it compensates the opportunity costs of accepting other more profitable contracts. It indicates the
floor price, which sales representatives can use to (re-)negotiate a contract. Further profitability
is achieved as the renegotiated price exceeds the bid price. This study presents a method to
determine the minimum bid-price of rejected contracts, based on the optimal allocation contract
portfolio that follows from the revenue management model.

1.4 Scope
As discussed above, the sales department of EGS faces the challenge of optimally allocating its
capacity to contract or spot market demand such that the expected profit is maximized. This
research should provide the sales department with a model that supports them in the capacity
allocation problem when selling the cargo capacity. All aforementioned aspects motivate the re-
search, and its objective is the development of a mathematical model and its solution algorithm
to the capacity allocation problem. The target of the solution algorithm is to provide sales rep-
resentatives with (near-) optimal solutions to the problem, such that the tool is practical to use.
The research is conducted in the Product Development department of ECT Rotterdam, with the
cooperation of the Sales and Operations departments of EGS. This section introduces the scope
that is used as input to model and analyze the capacity allocation problem of a synchromodal
logistics service provider.

Medium-term contract allocation
Billings et al. (2003) mention that four fundamental issues should be addressed to achieve profit
maximization: cargo product definition, contract pricing, medium-term allocation, and short-term
booking control. In general, there are three levels of revenue management decisions: strategic,
tactical and booking control (Phillips, 2005). Decisions on the strategic level involve market
segmentation, cargo product definition, and contract pricing. Tactical decisions are concerned with
medium-term allocations, while short-term booking control implies determining which shipment
requests to accept and which to reject.

This study focuses on the tactical medium-term allocation level by solving the capacity allocation
problem of a synchromodal logistics service provider. The capacity allocation problem involves
optimizing the medium-term contract portfolio and allocating capacity to spot market demand
with the objective to maximize profit. More specifically, we develop a model that determines which
contracts to grant, and that determines the optimal static spot market booking limit while coping
with the available capacity. The spot market booking limit indicates the maximum number of
spot market shipment requests the service provider should accept on a day such that its expected
profit is maximized in the long run.
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Transportation services
As already stated, the synchromodal product portfolio of EGS includes two shipment service types:
Express and Standard. Express shipments are fast-delivery services with a relatively tight shipment
window, while the shipment window flexibility characterizes the Standard services. It follows that
the freight rates reflect the shipment window flexibility of the product, viz. Express shipments
are more expensive than Standard shipments. Accordingly, the scope of this research includes
both transportation services, which holds that the model to be developed should incorporate both
products and its characteristics.

Single corridor
We limit ourselves to focus on optimizing the capacity allocation of a single corridor. More
specifically, the Rotterdam – Venlo corridor is selected as the primary focus of this research, as
this is a typical synchromodal corridor connected by road, rail and waterways. Additionally, EGS
is currently testing the synchromodal portfolio with a major customer on this corridor. It is likely
that the knowledge and information of this pilot study could contribute to our research.

Bid contracts
This study focuses on optimizing the contract portfolio, and it is, therefore, assumed that all bid
contracts are known. Next, each bid contract specifies the expected daily number of Express and
Standard shipments and a fixed rate for each shipment type. As argued before, the contractual
agreement does not limit the customer on shipment volume, i.e., they are not penalized if the
realized shipment volume exceeds or falls short. The contractual shipment prices are exogenous as
the prices are a result of negotiations between the service provider and the customer. Furthermore,
for the sake of simplicity, it is assumed that the contract periods have the same length, covering
the entire booking horizon.

Constraints and uncertainties
The capacity allocation problem should respect the following constraints and uncertainties:

• Limited capacity: The service provider has a limited daily container capacity, measured
per TEU. The standardization of shipping containers allows transporting the containers
with different modes without handling and unloading the individual cargo packed in the
containers. Therefore, it is assumed that all containers are homogenous, i.e., all containers
have the same characteristics and cover exactly one TEU.

• Commodities: The service provider does not distinguish between the type of commodities.
Although some commodities require special services such as refrigerated containers, these
special requirements are managed on the operational level. Therefore, we assume that all
commodities require exactly the same service. Additionally, we assume that the freight rates
are independent of the commodity types.

• Shipment disturbances: Shipment delays caused by the network operator or beyond their
control during logistics and transport operations are out of scope. Delays are a day-to-day
process and potentially caused by different actors, which increases the complexity to control
the disturbances. Although disturbances are business as usual, we assume that disturbances
are handled on the operational level. Therefore, we exclude the shipment disturbances effects
since we distribute capacity on a tactical level for the medium-term, e.g., a year.

• Stochastic demand: Contractual and spot market demand are stochastic. Although the
bid contracts specify an expected number of shipments per service type, the realized demand
is uncertain. This research excludes seasonality patterns in demand, due to unavailable data
to verify the seasonality patterns and in order to reduce the problem complexity.

• Stochastic spot prices: Related to stochastic demand is the uncertainty of the spot freight
rates, influenced by demand and supply mechanisms. The service provider should account for
this uncertainty as it may influence the capacity allocation decision. Therefore, we account
for stochastic spot freight rates in this research.
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1.5 Research goal
This research aims to support logistics service providers in their capacity allocation decision process
with the goal to maximize profit. Following from the Problem Statement in Section 1.3 and from
the Scope in Section 1.4, the research goal is derived as follows:

Develop a mathematical model that maximizes profit by determining the optimal con-
tract allocation portfolio and spot market booking limit, while coping with the shipment
windows of the differentiated synchromodal products, stochastic contract and spot market
demand, fixed revenue of contractual transportation services, stochastic spot market
freight rates and fixed capacity.

The mathematical model and its solution algorithm should determine the optimal contract al-
location and the optimal spot market booking limit with respect to the shipment windows of
the differentiated products and the fixed capacity. The spot market booking limit indicates the
maximum number of spot orders to accept on a day. That is, on a given day, all incoming spot
shipment requests are accepted up to the fixed booking limit. The target of the solution algorithm
is to provide the sales department with a decision support tool to evaluate the optimal set of
contracts to accept. Next, the solution algorithm should provide insights into the cargo service
types mix and the minimum acceptable freight rates of rejected contracts.

1.6 Research question
The main research question follows from the Problem Statement, Research Goal and according to
all aspects mentioned above:

How can the introduction of a revenue management model that optimizes the capacity
allocation to allotment contracts and spot market demand support EGS’s perform-
ance in terms of profit and asset utilization?

Underlying research questions
The following sub-questions were defined to answer the research question. First, the characteristics
of the differentiated transportation products should be studied to establish a definition of the
transportation services, leading to the following sub-question:

I What are the characteristics of the differentiated synchromodal transportation services
(Express and Standard)?

To define a revenue management model that maximizes profit, we need to determine which mod-
eling types are the best suitable to define and optimize the capacity allocation problem with
deterministic and stochastic spot freight rates. Therefore, we need to analyze the model require-
ments, resulting in the following sub-question:

II What type of modeling is the best fit to model the capacity allocation process of the syn-
chromodal transportation provider, given stochastic demand, limited capacity and stochastic
spot market prices?

Next, this study focuses on a capacity allocation problem with stochastic spot market freight
rates. The following research question is defined to determine how to represent the stochastic spot
freight characteristics:

III What type of modeling is the best fit to model the stochastic spot market freight rates?
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Subsequently, we will derive the revenue management models by answering the following sub-
questions:

IV How to determine the optimal capacity allocation to allotment contracts and spot market
demand that would maximize profit given stochastic demand, limited capacity, and determ-
inistic spot market rates?

V How to determine the optimal capacity allocation to allotment contracts and spot market de-
mand that would maximize profit given stochastic demand, limited capacity, and stochastic
spot market rates?

As discussed in Section 1.3, the minimum bid-price indicates the required freight rate of a rejected
allotment contract that offsets other more profitable business opportunities. By answering the
following sub-question, we can determine the minimum bid-price based on the results that follow
from the optimization models:

VI How to determine the minimum bid price of a rejected allotment contract?

Finally, this research will focus on the development of a solution algorithm to provide a practical
tool to the sales offices that optimizes the capacity distribution to allotment contracts and spot
market demand within a reasonable computation time. Therefore, the following research question
is defined:

VII What type of solution algorithm is practical in providing a (near-) optimal solution to the
capacity allocation problem?

1.7 Methodology
A methodology is defined to achieve the research goals and is structured according to the reflective
cycle, a design theory of Van Aken (1994) see Figure 1.1. The case class that will help to position
the research in literature is defined as a cargo capacity allocation problem. The selected case
is the capacity allocation problem of a synchromodal logistics service provider, as described in
Section 1.2. The problem selection and diagnosis of the selected case are summarised in Section 1.3
by describing the Problem Statement and in Section 1.4 by discussing the Project Scope. This
research tries to develop generic design knowledge for similar cases within the case class. The
results of the problem-solving process, the regulative cycle, are used in the reflective cycle to
reflect and to determine the design knowledge.

The insights gained by answering sub-questions 1-6 capture the design step of the regulative cycle.
To answer sub-question 1, current literature on synchromodal transportation is examined, and the
product development team of ECT is consulted to specify the characteristics of the synchromodal
transportation services. Although part of this research question is already answered in Section 1.1,
it is found significant to investigate the requirements of the synchromodal services, which should
be reflected by the mathematical model to be developed. To answer sub-question 2, current cargo
revenue management literature, in particular cargo capacity allocation problems, is investigated
to examine which mathematical models and modeling techniques are used to optimize the profit of
the capacity allocation problem. Next, maritime literature on freight rates is examined to answer
sub-question 3.

The knowledge gained by answering sub-questions 1-3 serves as input for the design of the mathem-
atical model and to answer sub-questions 4 and 5. Based on these insights, the decision variables
will be determined, an objective function will be constructed, and the set of restrictive conditions
are defined. First, deterministic spot market prices will be assumed to reduce the complexity
of the model. The cargo capacity allocation problem with spot market demand is modeled as a
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stochastic integer problem incorporating the characteristics of the synchromodal services. Second,
we incorporate the stochastic spot freight rate by defining a simulation model. It should be noted
that the development of the mathematical model is an iterative process and revisions of the models
or its solutions algorithms could happen in each step.

To increase the practicability of the mathematical model for sales representatives, it is tried to
determine the minimum bid-price, which answers sub-question 6. The minimum bid-price will be
derived from the solution of the mathematical model of sub-question 4.

After the mathematical models are defined, a solution algorithm that optimally solves the math-
ematical models will be developed. The models will be encoded in Python. A genetic algorithm is
developed to increase the practicability of the model to the sales representatives since it signific-
antly decreases the required computation time. The development of the genetic algorithm answers
sub-question 7.

The developed mathematical model is solved in the implementation step of the regulative circle.
The model is evaluated by submitting it to a sensitivity analysis to assess the effects of the input
parameters on the results. Unfortunately, due to the lack of company data, it is not possible to
optimally solve the cargo capacity allocation problem for the selected case. Therefore, all data
to evaluate the model is constructed by estimations from experienced sales representatives. The
sensitivity analysis in the evaluation step finalizes the regulative cycle.

The reflection step in the reflective cycle also assesses the practicality of the cargo capacity al-
location model. During the reflection step, it is examined how the model could support EGS
management in its decision-making process. Furthermore, the reflection step assesses if the case-
specific design knowledge gained by completing the regulative cycle is generally applicable.

Figure 1.1: Reflective Cycle
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1.8 Report outline
The remainder of this report is structured based on the Methodology as defined in Section 1.7. In
Chapter 2 we review current literature on cargo revenue management and related concepts with
the aim to conceptualize the revenue management problem, identify existing mathematical models
and to position our research in the current literature. Chapter 3 presents the mathematical model
with deterministic spot market freight rates, the simulation model that incorporates stochastic
spot freight rates, and a method to determine the minimum bid-price. Next, Chapter 4 presents a
genetic algorithm that functions as a solution algorithm to the mathematical model. In Chapter 5
we perform a sensitivity analysis on the model, thereby setting the stage for a detailed assessment
from which practical recommendations will be derived. Last, Chapter 6 presents the research
conclusions, limitations of this research and future research directions.
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Chapter 2

Literature Review

This chapter provides an overview of current literature on cargo revenue management in general
and related to synchromodal transportation. The goal of this section is twofold. First, it provides
a theoretical foundation on the subjects relevant to this research. Second, it supports positioning
the contributions of this research against the gap observed in the current literature.

The chapter is structured as follows. First, an overview of (cargo) revenue management literature
is provided to introduce the concept and the research area. Next, current revenue management
literature on synchromodal transportation is examined. Thirdly, literature on cargo capacity
allocation problems is presented to determine modeling techniques and to identify gaps in current
literature. Fourth, the literature on stochastic freight rates is examined to determine the necessary
modeling techniques. Finally, the contribution of this paper to current literature is provided.

2.1 Revenue management
Revenue management comprises strategies and tactics to manage demand with the objective to
maximize revenue or yield. The goal of revenue management is to sell the right product to the
right customer at the right price and at the right time (Cross, 1997). Revenue management
strategies focus on the identification of customer segments, based on the customer’s perceived
value of a product, and subsequently aligning the product’s characteristics and price to target
each customer segment (Phillips, 2005; Cross, 1997). Revenue management commonly involves
data-driven analyses to predict customer behavior and to optimize product availability and prices.
The revenue management discipline is all about prioritizing service to the most profitable customer
(Agatz et al., 2013).

Next to focusing on revenue maximization, revenue management strategies could also contribute
to costs savings, while helping to maintain quality (Elliott, 2003). For example, by introducing
premiums and discounts on delivery fees, groceries try to encourage customers to select a particular
time slot for home delivery with the objective to facilitate cost-efficient routing (Agatz, Campbell,
Fleischmann, van Nunen & Savelsbergh, 2008).

Business conditions
The following business conditions conducive to revenue management strategies are identified in
literature, see Weatherford and Bodily (1992), Talluri and Van Ryzin (2006) and Phillips (2005):

• Capacity is fixed, perishable and booked prior to departure;

• Stochastic demand;

• Price as a signal of quality;

• The seller can divide capacity into fare classes (e.g., Express and Standard services);

• The fare class availability can be changed over time.

It turns out that the business context of the synchromodal logistics service provider complies
with the identified conditions. The presence of revenue management enabling conditions supports
the purpose of this research, which focuses on a revenue management strategy to optimize the
medium-term capacity distribution with the objective to maximize profit.
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Context

Revenue management is classically separated into four subproblems: forecasting, inventory con-
trol, pricing and overbooking (Belobaba, 1987; Chiang, Chen & Xu, 2006; Talluri & Van Ryzin,
2006). This revenue management study targets the inventory control problem of a logistics service
provider. A short overview of the revenue management subproblems is included below to provide
the context of the inventory control problem related to the other problems.

The inventory control problem of a logistics service provider involves efficiently distributing capa-
city to customers over time such that profit is maximized, i.e., quantity-based revenue management.
Pricing is a critical aspect of revenue management models since incorrectly pricing could cause
revenue management systems to make incorrect decisions (Ingold, Yeoman & McMahon-Beattie,
2000). The challenge of price-based revenue management is to determine the appropriate mag-
nitude of discounts and premiums (Agatz et al., 2013). It should be noted that quantity-based
revenue management rather supplements than replaces price-based revenue management (Phillips,
2005). Overbooking strategies are applied to guarantee that capacity is fully utilized, while cop-
ing with no-shows and cancellations. Forecasting functions as a critical input to the optimization
models for inventory control, pricing, and overbooking. It determines to a large degree the per-
formance of a revenue management system. Reducing the forecast error of a revenue management
system by 20% could result in a 1% revenue increase (Pölt, 1998).

Inventory and booking control

As already argued in Section 1.3, logistics service providers commit to mid-term allocation con-
tracts with shippers and freight forwards, to ensure capacity utilization and to mitigate cash flow
risks. These allocation contracts specify a pre-determined price per shipment but do not specify
the shipment volume. The relationship between the carrier and the freight forwarder has parallels
with the wholesaler and the retailer, because the carrier has the transportation resources, while
the forwarder has the marketing expertise and long-term contracts with shippers (Gupta, 2008).
Alternatively, the logistics service provider could also (partly) utilize its capacity by serving the
spot market, i.e., serving demand of customers without an allocation contract.

The logistics service provider faces a trade-off between distributing capacity to allocation contracts
with key customers or to spot market demand. Therefore, inventory control of a logistics service
provider involves capacity allocation management and spot market booking control (Billings et
al., 2003; Hoffmann, 2013). The challenge of capacity allocation management is to determine the
optimal cargo mix between medium-term allocations and spot market shipments that maximizes
profit. Medium-term contract and spot market demand utilize the same capacity, implying that
the allocation decisions affect the remaining available capacity to sell on the spot market. Next,
capacity allocation management is concerned with optimizing the contract portfolio that would
maximize profit, i.e., determining which key customers the service provider should contract. The
allocation decisions significantly impact the carrier’s profitability (Billings et al., 2003).

Spot market booking control is concerned with managing incoming shipment requests from con-
tracted customers and the spot market on a daily basis, that is, managing the utilization of
capacity. Since the logistics service provider is obliged to satisfy the contractual demand, booking
control involves deciding whether a spot booking request should be accepted or not. Logically, a
spot market booking request is only accepted if the service provider has sufficient capacity avail-
able. This decision is a dynamic problem because the service provider must consider the current
bookings on hand, incoming shipment requests prior to departure, no-shows and cancellations.

This research exclusively focuses on the cargo capacity allocation problem of the cargo revenue
management system, as the logistics service provider involved in this research currently encoun-
ters the problem, see Section 1.3. To answer the research questions in Section 1.6, the capacity
allocation problem will be studied in the context of a synchromodal logistics service provider. This
study contributes to the cargo revenue management research field, and in particular to the limited
studies available on the medium-term capacity allocation problems.
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2.2 Cargo capacity allocation problem

This subsection provides an overview of current literature available on the cargo capacity allocation
problem.

Levin, Nediak and Topaloglu (2012) study the cargo capacity allocation problem with allotments
and spot market demand. The article considers an airline that offers transportation services on a
number of parallel flights between a particular origin and destination pair, where customers exhibit
choice behavior between flights. The problem involves a multi-dimensional capacity: volume and
weight. They propose a model to simultaneously select the optimal allotment contracts and find a
booking control policy that maximizes the total expected profit. First, they formulate a dynamic
program to the booking control problem and approximate the expected profit from the spot
market. Next, the spot market profit approximation is used to determine the optimal allotment
contract portfolio by defining multiple linear mixed-integer programs. The work of Moussawi-
Haidar (2014) is close to that of Levin et al. (2012). In contrast to Levin et al. (2012), the solution
to their dynamic program depends on the accepted spot market bookings. Next, they account for
no-shows and cancellations by allowing overbooking.

This work also addresses the cargo capacity allocation problem as in Levin et al. (2012) and
Moussawi-Haidar (2014) as we consider a logistics service provider that seeks to optimize its
capacity distribution among allotment contracts and spot market demand. However, the work
in this study distinguishes from their work as we account for two transportation services with
different shipment windows, of which one service allows postponing the shipment to the next
day. Next, we only focus on the static allocation problem by introducing a static booking limit
on spot market shipment requests. Furthermore, the logistics service provider considered in our
work has a one-dimensional capacity defined per TEU, while the work of Levin et al. (2012) and
Moussawi-Haidar (2014) incorporates a two-dimensional capacity.

D. Liu and Yang (2015) address joint slot allocation and dynamic pricing for multi-node container
sea-rail multimodal transport. They propose a two-stage model to the problem. The first stage
involves determining the optimal long-term slot allocation and empty container allocation, while
the second stage is concerned with booking control and price settling. Their work involves a
single transportation line and a single transportation service. Our work focuses on the first stage
problem without the empty container allocation problem but considers the effects of multiple
transportation services with varying service levels.

Lee, Chew and Sim (2007) propose a revenue management model for a single-leg ocean carrier
that serves contracted customers and the spot market, while also considering the postponement
opportunity of shipments. The carrier involved is allowed to ship demand from the contracted
customer immediately or postpone it to the next shipment, while spot demand must be shipped
immediately. They present a stochastic dynamic programming model to the problem and show
that a threshold policy defines the optimal allocation. The problem addressed in our work also
reflects the shipment postponement effects but distinguishes itself in that not all contracted sales
can be postponed. Next, our work considers two different transportation services sold to allot-
ment customers, Express and Standard, of which postponing is only allowed for a single service.
Furthermore, the work of Lee et al. (2007) mainly focus on the allocation of containers to ships
on a daily basis, while we focus on the allocation of capacity on the medium-term.

Ang, Cao and Ye (2007) focus on the sea cargo problem for the carrier in a multi-period planning
horizon. The objective is to optimize the cargo mix and shipping schedule that would maximize
the total profit generated given limited capacity. Cao, Gao and Li (2012) study the capacity
allocation problem of a container rail operator by taking into account matches in supply and
random demand. Amaruchkul and Lorchirachoonkul (2011) propose a dynamic program to select
the allotments that maximize the expected total profit. They propose a discrete Markov Chain to
derive a probability distribution of the actual volume usage.
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2.3 Current revenue management literature on synchromodal
transportation

Even though several studies focus on synchromodal transportation, their results focus mainly on
the operational implications of the logistics concept. Less attention has been paid to the rev-
enue management opportunities for synchromodal transportation, including pricing and demand
management. Therefore, current revenue management literature conducive to synchromodal trans-
portation is examined to identify the revenue management need related to synchromodal trans-
portation, to identify the gap in literature and to position our research. In this study, we address
the gap by focusing on demand management strategies that incorporate the synchromodal concept
characteristics.

Central in the synchromodal concept is that shippers order mode-free shipments (Gorris et al.,
2011; Lucassen & Dogger, 2012). The cargo products of the service provider are service-bound.
The shipper and the logistics service provider agree only on the delivery of shipments at a specified
cost, time, quality and sustainability (Haller et al., 2015). As planning flexibility is crucial for
cost-efficient transportation plans, network operators have an incentive to introduce differentiated
transport products with different tariff classes depending on the shipment window and flexibility
(Van Riessen et al., 2015). Therefore, Van Riessen et al. (2015) state that pricing and operations
are strongly linked since promoting planning flexibility improves the network performance if the
additional flexibility leads to cost-efficient transportation plans. However, they also argue that not
all customers are willing to transfer planning flexibility to the network operator due to company
policy, habituation, and pricing mechanisms. Behdani et al. (2016) identify “synchromodal service
pricing as a strategic topic of synchromodality since part of the financial benefits should be trans-
ferred to customers by a fair pricing scheme to guarantee a sustainable operation of synchromodal
freight systems. Next, Pfoser et al. (2016) recognize pricing, cost, and service as a critical success
factor to ensure the effective implementation of synchromodal transportation.

Current revenue management studies in the synchromodal context focus mainly on the pricing
problem. For example, Li, Lin, Negenborn and De Schutter (2015) study the pricing problem of a
differentiated product portfolio in a synchromodal network, by developing a model that determines
whether a booking request should be accepted or rejected. Next, Ypsilantis and Zuidwijk (2013)
study the pricing and network problem jointly by determining the shipment prices during network
design. Van Riessen et al. (2017) focus on the demand management (inventory control) problem
by proposing the Cargo Fare Class Mix model. The objective of the model is to determine the
optimal mix between transportation services that maximize profit. They conclude that low-priced
products with high planning flexibility are not inferior to high-priced products, because the extra
planning flexibility could be exploited to optimize the network planning. Furthermore, they show
that increasing the shipment windows of the low-priced flexible service relative to the high-priced
Express product yields additional costs savings.

Although pricing, cost, and service are identified as a critical success factor, there are currently
only limited studies on these revenue management subjects available. Therefore, in this research,
we target to contribute to the limited literature available on revenue management strategies for
synchromodal transportation.

Cargo Fare Class Mix problem
The research of Van Riessen et al. (2017) has parallels with our research. Therefore, we will discuss
the model they propose and argue the limitations of the study that shall be tried to bridge.

The Cargo Fare Class Mix problem is concerned with optimizing the cargo mix such that profit is
maximized. Van Riessen et al. (2017) propose a booking limit on two differentiated synchromodal
services: Express and Standard. The Express service has a 1-day shipment window and the
Standard product a 2-day window. The booking limit reflects the number of shipments of a service
type that should be accepted on a daily basis. That is, incoming shipment requests are accepted
up to the booking limit and rejected otherwise. The objective of the model is to determine the
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optimal booking limits of both services that would maximize the profit given stochastic demand.
Accepted shipments generate revenue and penalty costs are incurred if capacity is exceeded. Bear
in mind that the Standard product has a 2-day shipment window, which holds that the service
provider is allowed to transship the shipment either today or tomorrow.

Although Van Riessen et al. (2017) already study the optimal cargo mix between differentiated
synchromodal products, they focus on the booking control problem of a logistics service provider
that only serves the spot market. That is, they assumed that the logistics service provider could
accept or reject any incoming order. Consequently, they neglect the effects of the medium-term
allocation contracts between the shipper and the carrier. The model of Van Riessen et al. (2017)
does not answer the optimal cargo allocation problem between allocation contracts and spot market
demand but only focus on the cargo mix between the transportation services. As argued in
Section 1.3, logistics service providers commit to medium-term allocation contracts to ensure
asset utilization. Due to the existence of these contracts, the service provider is not able to
reject a shipment request from a contracted customer if the booking limit is exceeded. Our study
targets the limitations of the Cargo Fare Class Mix problem by focusing on the optimal cargo mix
between allocation contracts and spot market demand while considering the characteristics of the
synchromodal products.

The work of Van Riessen et al. (2017) is used as a guideline to shape our research. In line with their
work, we also define two transportation services with the same shipment window characteristics.
Next, they defined a Markov Chain to model the expected excess orders on a daily basis. We opt
to select the same modeling technique and adjust the Markov Chain such that it applies to our
research focus.

2.4 Stochastic freight rates
Lastly, the literature review focuses on the existing literature regarding stochastic freight rates.
The objective of this study is to model the stochastic properties inherent to the spot freight rates
by incorporating an existing stochastic model in the cargo capacity allocation problem, which is
to the best of our knowledge not studied yet.

A mean-reverting property characterizes the evolution of the stochastic freight rates. Koekebakker,
Adland and Sødal (2006) conclude, based on empirical results and in line with maritime economic
theory, that the freight rates in both dry-bulk and tanker markets are non-linear stationary.
That is, freight rates tend to revert to the long-run mean level. Adland (2003) concludes that
extraordinarily high or low freight rates in a perfectly competitive market are not sustainable
due to the potential of supply adjustments. They argue that shippers would substitute forms of
transportation at extremely high freight rates. In reverse, meager freight rates will lead to supply
adjustment in the form of scrapping capacity. The freight rates cannot display explosive behavior,
because of the existence of a lower and upper bound (Koekebakker et al., 2006). Modeling the
stochastic freight rate process by the mean reversion property is dominating in literature, see
Strandenes (1984) and Tvedt (1997). Although most studies that include stochastic freight rates
focus on the dry-bulk shipping market, we assume that the same price mechanisms apply in the
hinterland transportation market as we assume a perfectly competitive market. Therefore, the
spot freight rates in the capacity allocation problem will be modeled following the mean reversion
property.

The Ornstein-Uhlenbeck process is a mean reverting stochastic process that describes the evolution
of prices over time, see Vasicek (1977). It is used to simulate the movements in freight rates over
time and is modeled by i.a. Bjerksund and Ekern (1995); Sødal, Koekebakker and Aadland (2008)
and Jørgensen and De Giovanni (2010). The mean-reverting property of the process reflects the
tendency of the freight rates to revert to the long-term mean over time. The drift of the freight
rates depends on the current value of the price. That is, the drift term will be positive if the
current freight rate is lower than its long-term mean, and the price will move back to its long-
term mean if the current freight rate exceeds the mean. The drift of returning to the mean is
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stronger if the current value of the process is further away from the mean. The OU-process is
Gaussian, Markov and stationary (Vasicek, 1977). Tvedt (1997) concludes that the OU-process
is a stochastic differential equation that is analytically solvable, although the process does not
describe the best fit Markov specification of the freight rates. Considering the current literature
on freight rates, we will model the stochastic spot freight rates by an Ornstein-Uhlenbeck process.
For completeness, see Figure F.1 in Appendix F that represents three samples price paths that
follow an Ornstein-Uhlenbeck process.

2.5 Contribution to current literature
The topic addressed in this study integrates two fields of research: cargo revenue management and
synchromodal transportation. In relation with the bodies of literature examined, our contributions
to current literature are as follows.

First, we propose a stochastic integer program to the cargo capacity allocation problem with al-
lotment contracts, spot market demand, and shipment windows. To the best of our knowledge,
there are no studies that consider the effects of shipment service levels, i.e., which allow postpon-
ing shipments to the next day, while determining the optimal distribution of capacity between
allotment contracts and spot market. We address this gap by optimally solving the capacity alloc-
ation problem. This study contributes to the cargo revenue management field by determining the
optimal cargo mix given multiple transportation services, where it is allowed to postpone orders
to the next shipment.

Second, the findings of this project contribute to the limited literature available on cargo revenue
management for synchromodal transportation providers. Synchromodal shipment services have
various shipment windows, affecting the cargo allocation process and the corresponding profit.
Van Riessen et al. (2015) argue that operations and sales are strongly linked. In this study, we
try to link those departments by considering the operational effects while optimizing the capacity
distribution such that profit is maximized.

Third, the focus of our research distinguishes from conventional cargo revenue management models
as we incorporate stochastic spot freight rates in the cargo mix decision process.
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Chapter 3

Optimization Models

This chapter is dedicated to the development of two optimization models to solve the cargo capacity
allocation problem optimally. First, we present the problem formulation, define the allotment
contact terms and define the underlying assumptions. Next, we formulate the stochastic integer
program with deterministic spot market freight rates. Later in this chapter, we formulate a
simulation-based optimization program that extends the cargo capacity allocation problem by
incorporating stochastic spot market freight rates. Last, we formulate equations to derive the
minimum-acceptable bid price based on the results of the stochastic integer program.

3.1 Problem formulation
A logistics service provider operates scheduled transportation services between an origin-destination
pair with a fixed daily capacity in a specific booking horizon. It offers two synchromodal transport-
ation services with varying service levels to its customers: Express and Standard, with a 1-day
and 2-day shipment window respectively. The 2-day shipment window of the Standard service
holds that the service provider could ship the shipment immediately or postpone it to the next
day. The transportation services are mode-free, i.e., the logistics service provider determines the
modality deployed for the shipment.

To maximize the expected profit, the service provider faces the problem of distributing its capacity
between allotment contracts with freight forwarders and spot market demand, while also account-
ing for the capacity distribution between the transportation services. That is, the service provider
should determine which allotment contracts to grant and reserves capacity for spot market sales
by determining the daily spot market booking limit.

Allotment contracts are signed before the start of the booking horizon and remain valid throughout
the booking horizon. Therefore, the logistics service provider decides on its capacity distribution
to allotment contracts and spot market sales before the start of the booking horizon. Contractual
and spot shipment requests occur continuously in the booking horizon. The service provider
reserves capacity for spot market sales by determining a static spot market booking limit. The
static booking limit is fixed throughout the booking horizon and indicates the number of spot
orders to accept on a day.

The logistics service provider is obliged to transport all accepted demand and is penalized for
excess shipments, which are charted to an external party and do not invoke the capacity of a
subsequent day. Penalty costs include for example the costs of alternative transportation and loss
of goodwill.

In short, the objective is to determine the optimal allocation of capacity to allotment contracts with
multiple freight forwarders and reserving capacity for spot market demand that would maximize
the total expected profit, while coping with the shipment windows, capacity constraints, stochastic
demand and optionally stochastic spot freight rates.
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3.1.1 Allotment contract definition

The mutual allotment contract agreement between the logistics service provider (seller) and the
freight forwarder (buyer) specifies the following terms:

• The buyer orders mode-free transportation services, which holds that the contract does not
specify the modality to be deployed for the shipment;

• A specified freight rate per container shipment per service type;

• The buyer is only charged for the realized shipment volume;

• The buyer has no volume restrictions.

In other words, the logistics service provider commits to serve all the customer’s shipment demand
in the agreed contract period for a fixed freight rate per service type, which is a common agreement
within the freight business, see Section 1.3.

3.1.2 Assumptions

To model the cargo capacity allocation problem the following assumptions are defined:

• The cargo capacity allocation problem is optimized for a single corridor. That is, the logistics
service provider allocates its capacity on a single origin-destination pair, which holds that
network effects are excluded.

• The complete set of allotment contract bids are known. That is, all allotment contracts to
choose from are known when optimizing the capacity allocation.

• The logistics service provider is risk-neutral, which holds that the service provider is only
concerned with maximizing the expected profit and is indifferent to risk when distributing its
capacity to allotment contracts and spot market demand. More specific, the logistics service
provider is neither risk-averse nor risk-seeking. That is, it does not attempt to reduce the
exposure to demand and freight rate uncertainty by accepting an allocation portfolio with
more certainty but with lower expected profit. Additionally, it does not try to exploit risk
opportunities by accepting an allocation portfolio with more uncertainty but with lower
expected profit to take the probability of a higher payoff.

• The contractual demand for Express and Standard services and spot market demand are
Poisson distributed and are statistically independent of each other.

• An allotment contract cannot be partially accepted, i.e., the complete shipment package of
a freight forwarder must be accepted.

• The booking horizon equals one year, such that the logistics service provider must optimize
its capacity allocation each year for the next year.

• We consider a one-period allocation model, and therefore we assume that the allotment
contract period covers the entire period.

• No-shows and cancellations are excluded and out of scope, as we assume that these are
handled on an operational level.

• The capacity of the logistics service is measured in number of containers (TEU).

• No restrictions exist regarding the type of commodities, see Section 1.4.

• Spot market demand consists exclusively of Express shipment requests, i.e., they require
same-day delivery immediately once accepted.

• Shipments allocated to any modality are delivered on the same day.

• There are no shipment disturbances, i.e., shipment delays that may occur during logistics
and transportation operations are out of scope, see Section 1.4.
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• Standard shipments are shipped immediately or optionally postponed to the next day without
any penalty costs, whereby postponing is only allowed once.

• Contractual shipment freight rates are deterministic and exogenous since they are specified
in the negotiated bid contract.

• Express shipments have less planning flexibility than Standard shipments due to a shorter
shipment window, which is reflected by the freight rates. Consequently, revenue generated
by Express shipments (rEi ) of bidder i are higher than or at least equal to the revenue of
Standard shipments (rSi ) of bidder i:

rSi ≤ rEi ∀i (3.1)

• The penalty costs p of excess shipments are always higher than the generated revenue of
both contractual and spot market shipments. Hence,

rP < p P ∈ {E,S, spot} (3.2)

3.2 Stochastic integer program with deterministic spot freight
rates

The logistics service provider has a fixed daily capacity of C units, which it could allocate to key
customers via allotment contracts or reserve for spot market sales. The service provider must
decide on its capacity distribution before the start of the booking horizon, by granting contracts
and setting a static booking limit on spot market sales. Appendix B.1 provides an overview of the
stochastic integer program.

3.2.1 Allotment contracts
Consider a finite set of allotment contract biddings B that consists of the contracts that the
logistics service provider can select to include in its contract portfolio. Let B = {b1, . . . , bn}
with n allotment contracts and bi the bidding contract of bidder i. Let P = {E,S} be the set
of transportation service types offered by the service provider in which E and S represent the
Express and Standard transportation service types respectively.

Each bidding contract bi specifies an expected daily number of shipments E(XP
i ) per service type

in P , which follows a stochastic demand distribution. Based on the work of Moussawi-Haidar
(2014) we assume that E(XP

i ) ∼ Poisson(λPi ), where λPi is the average daily arrival rate of
allotment bookings of bidder i and of service type P . Next, each contract bi indicates the revenue
rPi generated per realized shipment of service type P . Let xi the binary decision variable to
represent the contract allocation decision of bidder i, such that a contract is granted to bidder i
if xi = 1 and rejected if xi = 0. Next, let −→x = [x1, xi, . . . , xn] the contract allocation portfolio
with n contract allocation decision variables xi to represent the accepted and rejected allotment
contracts in the portfolio.

3.2.2 Spot market
The daily spot market demand is represented by Xs ∼ Poisson(λs), with λs the average daily
arrival rate of spot market shipment requests. At this point, we assume that the revenue generated
by a spot market shipment is deterministic and is represented by rspot. Later we relax this
assumption by assuming stochastic spot market freight rates, see Section 3.3.

Let nspot be the booking limit decision variable, which is an integer that indicates the maximum
number of spot shipment requests to accept for a day in the booking horizon. The booking limit
is static, which holds that it is forecast-based, valid and unaltered in the entire booking horizon.

The introduction of the booking limit implies that the demand function of the accepted spot
market shipments is not Poisson distributed, because it is constrained above by the booking limit.
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Therefore, a truncated distribution of the spot market sales is formulated as in Van Riessen et al.
(2017). To determine the expected number of realized spot market shipments, we should account
for the booking limit. The following two situations can be distinguished:

1. The number of shipment requests is less than nspot;

2. The number of shipment requests is equal or greater than nspot.

The realized spot market demand is the minimum of the spot market shipment requests Xs and
the booking limit nspot, because all shipment requests above the booking limit are rejected.

Dspot(t) = min
(
Xspot(t), nspot

)
(3.3)

The probability that k shipment requests are accepted in situation 1 follows from the Poisson
density function for k smaller than nspot.

P
(
Xspot(t) = k

)
= e−λ

λx

x!
, k = 0, 1, 2, . . . , nspot − 1 (3.4)

The probability that nspot shipment requests are accepted (situation 2) is P (Xspot ≥ nspot),
because there arrive more shipment requests than accepted, Equation (3.5). In other words, spot
orders are accepted up to the booking limit and are rejected from that point. The probability of
accepting nspot orders is equal to 1−F (nspot), where F (nspot) is the cumulative Poisson distribution
function.

P
(
Xspot(t) = nspot

)
= 1−

nspot−1∑
k=0

e−λ
λx

x!
= 1− F (nspot) (3.5)

It follows that the expected number of realized spot market shipment requests, given booking limit
nspot, is the sum of the expected number of shipments that arrive in situation 1 and 2.

E
(
Xspot|nspot

)
=

nspot−1∑
k=1

kP (Xs = k) + nspot[1− F (nspot)] (3.6)

3.2.3 Objective function
The logistics service provider seeks to maximize its total expected profit by optimizing its con-
tract portfolio and determining the optimal static spot market booking limit given its fixed daily
capacity, see Equation (3.7). The service provider is obliged to transport all accepted demand,
and penalty costs of size p are charged over excess shipments (Es). The first part of the objective
function formulates the expected revenue generated from the accepted contract sales, the second
part represents the expected profit from the spot market sales and the last part accounts for the
penalty costs of the excess shipments.

The booking limit nspot is constrained by the available daily capacity because it is assumed that
the penalty costs always outweighs the revenue generated by a spot market shipment. That is,
the revenue of a spot market shipment does not offset the penalty costs, which holds that it does
not make sense to accept more spot market shipments as the daily capacity.

max−→x ,nspot

∑
i∈B

xi
(
λEi r

E
i + λSi r

S
i

)
+ rspotE(Xspot|nspot)− pE(Es) (3.7)

s.t.

nspot ≤ C
xi ∈ {0, 1} ∀x ∈ B
nspot ∈ N
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This reasoning does not hold for contractual demand. Since it is not allowed to accept an allotment
contract partially, the additional revenue of accepting an allotment contract could compensate the
penalty costs. Consider the case that a carrier has some shipment capacity left, but insufficient
capacity to satisfy all demand of a single allotment contract. In order to accept the contract, the
additional expected revenue generated by accepting the contract should offset the penalty costs of
the excess shipments. Hence, the penalty costs of the excess shipments in the objective function
account for the contractual capacity constraints. Therefore, we need to derive an equation to
determine the expected excess shipments.

3.2.4 Expected excess shipments

Excess shipments occur when the logistics service provider has insufficient capacity available to
satisfy the accepted demand. More specifically, excess shipments are Express shipments, spot
shipments, and postponed Standard shipments, that cannot be transported within a day due to
capacity limitations. The number of excess orders Es on day t depends on the demand patterns of
the Express contractual sales of day t (DE), on the demand patterns of the spot market shipments
of day t (Dspot) given booking limit nspot, on the number of Standard shipments that are left over
from day t− 1 (RS) and the available capacity C.

Es(t) = max
(
DE(t) +Dspot(t) +RS(t)− C, 0

)
(3.8)

In order to derive an equation to determine the expected excess orders on a given day t, we
are required to formulate equations for DE and Rs, while we already provided a derivation to
determine Dspot in Equation (3.3).

Cumulative allotment demand per service type: DE , DS

First, we derive equations to determine the cumulative demand of the contractual sales per service
type, DE and DS . It is assumed that the contractual demand of both service types are Poisson
distributed and that the distributions of the individual contracts per service types are mutually
independent. To determine the cumulative demand distribution per service type, we sum the
Poisson demand distributions of all accepted contracts, Equation (3.9) and Equation (3.10). Con-
sequently, the cumulative Express allotment demand is the sum of the daily average arrival rate
λEi of each allotment contract multiplied with the decision variable xi of each customer i. The
resulting demand distributions for DE and DS are Poisson distributed, because if the sum of two
independent variables are Poisson distributed then the sum of those variables are also Poisson
distributed, see Grimmett and Welsh (1986).

DE =

n∑
i=1

xiλ
E
i ∼ Poisson(λE1 , . . . , λ

E
n ) (3.9)

DS =

n∑
i=1

xiλ
S
i ∼ Poisson(λS1 , . . . , λ

S
n) (3.10)

Expected postponed Standard shipments: RS

In order to determine the expected number of excess orders, we need to know the available capacity
on a given day t, which depends on the number of Standard orders that are postponed from the
day before (RtS). As in Van Riessen et al. (2017), we formulate a Markov Chain with RtS as the
Markov state to determine the expected number of orders that are postponed on the long-term.
The state of the transportation system is fully described by RtS , memoryless and independent
from previous states. We derive the transition probabilities of the Markov Chain based on the
work of Van Riessen et al. (2017), but account for (1) the demand distributions of the contractual
sales per service type and (2) the truncated spot market demand distribution. The steady-state
distribution indicates the probability of postponing j Standard orders on average to the next day
and follows from the transition probabilities.
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Transition probabilities

First, we need to derive the transition probabilities p(i, j) to determine the remaining demand
for the next day (Rt+1

S ) given the remaining demand from the day before (RtS), Equation (3.11).
That is, given the number of orders i that are postponed the day before, we need to derive the
transition probability that there are j orders postponed to the next day.

P (Rt+1
S = j|RtS = i) (3.11)

Van Riessen et al. (2017) note that we could differentiate between the situation with excess ship-
ments (Es > 0) and without excess shipments (ES = 0) to determine the transition probabilities:

p(i, j) = P (Rt+1
S = j, ES > 0|RtS = i) + P (Rt+1

S = j, ES = 0|RtS = i) (3.12)

Given the current state of the system (RtS = i) we distinguish between the following situations:

1. Capacity is sufficient to transport all demand, including DE , Dspot, the remaining demand
of the day before (RtS) and all today’s Standard demand (DS). Consequently, there are no
excess shipments (Es = 0) and there are zero orders postponed to the next day (Rt+1

S = 0).

2. Capacity is sufficient to transport DE , Dspot, R
t
S , and there is capacity left to transport

part of DS , while the leftovers from DS are postponed to the next day. Hence, there are no
excess orders (Es = 0) and Rt+1

S = Ds − (C −DE −Dspot −RtS).

3. Capacity is insufficient to transport DE , Dspot and RtS . Hence, there are excess shipments
(Es > 0) and all Standard shipments on day t are postponed to the next day, i.e., Rt+1

S = Ds.

Given situations 1 and 2 with no excess demand (ES = 0) there might capacity left to transport
(partly) today’s Standard demand (DS). That is, there are s slots available to transport DS ,
which effectively reduces the number of orders postponed to the next day. The probability that
there are s slots available depends on the available capacity, DE , Dspot, and the remaining demand
of the day before RtS .

P (S = s) = P (DE +Dspot +RtS = C − s) (3.13)

The probability that there is sufficient capacity available to ship all demand (situation 1) is the
probability that DE and Dspot are smaller than the available capacity after satisfying the i leftovers
from the day before, and the required slots s to transport DS , provided the probability that DS

is smaller than or equal to the s remaining slots. The truncated spot market demand distribution
(Dspot) prevents us from summing the spot and Express demand distributions, as the resulting
distribution is not Poisson distributed. Therefore, the probability that there are no excess ship-
ments depends on the probability that DE is smaller than or equal to the remaining available
capacity, given the probability that there are z spot orders, Equation (3.14).

C−i∑
s=0

P (DE+Dspot = C−i−s)P (DS ≤ s) =

C−i∑
s=0

nspot∑
z=0

P (DE = C−i−s−z)P (Dspot = z)P (DS ≤ s)

(3.14)
Next, consider situation 2 without excess orders (ES = 0), there is capacity left such that today’s
Standard demand (DS) is partly allocated to the s remaining slots. Consequently, the remaining
demand that is postponed to the next day Rt+1

s = DS−s. Hence, the probability that j shipments
are postponed to the next day given that there are i remaining shipments from the day before is
derived as:

C−i∑
s=1

nspot∑
z=0

P (DE = C −RtS − z − s)P (Dspot = z)P (DS = s+ j) (3.15)
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Thus, the probability of postponing j orders to the next day, given i remaining orders of the day
before and given that there are no excess orders follows from situation 1 and 2:

P (R
(t+1)
S = j, ES = 0|RtS = i) =


∑C−i
s=0

∑nspot

z=0 P (DE = C − i− z − s)P (Dspot = z)P (DS ≤ s) if j = 0,

∑C−i
s=0

∑nspot

z=0 P (DE = C − i− z − s)P (Dspot = z)P (DS = s+ j) if j > 0.

(3.16)
The probability that there are excess shipments (situation 3) occurs when capacity is insufficient
to transport today’s Express demand (DE), spot demand (Dspot), and yesterday’s remaining
Standard shipments (RtS).

P (ES > 0) = P (DE+Dspot+R
t
S > C) = P (DE+Dspot > C−RtS) =

nspot∑
z=0

P (DE > C−RtS−z)P (Dspot = z)

(3.17)
If capacity is insufficient to satisfy the required demand on day t, then all incoming Standard
shipments of day t are postponed to the next day (t+ 1). Consequently, the transition probability
that there are j orders postponed to the next day, given i leftovers from the day before, depends
on the probability that there are excess orders, Equation (3.17), and the probability that there
are precisely j Standard shipments on day t.

P (Rt+1
S = j, ES > 0|RtS = i) = P (ES > 0)P (DS = j) = P (DS = j)

nspot∑
z=0

P (DE > C−i−z)P (Dspot = z)

(3.18)
Substituting Equation (3.16) and Equation (3.18) in Equation (3.12) results in the following trans-
ition probability function:

π(i,j) =



P (DS = 0)
∑nspot

z=0 P (DE > C − i− z)P (Dspot = z)

+
∑C−i
s=0

∑nspot

z=0 P (DE = C − i− z − s)P (Dspot = z)P (DS ≤ s) if j = 0,

P (DS = j)
∑nspot

z=0 P (DE > C − i− z)P (Dspot = z)

+
∑C−i
s=0

∑nspot

z=0 P (DE = C − i− z − s)P (Dspot = z)P (DS = s+ j) if j > 0.

(3.19)

Steady-state probabilities

To determine the expected number of shipments that are postponed in the long run, we need
to derive the steady-state distributions of the Markov state Rs. Let πj = P (R∞s = j), where
πj reflects the long term probability of postponing j orders to the next day. The steady-state
probability follows from solving the Markov equilibrium equation given the transition probabilities
p(i, j) in Equation (3.19):

πj =
∑
i

πip(i, j) (3.20)

∑
i

πi = 1 (3.21)

Expected excess shipments: E(ES)

As we have defined equations to determine DE , Dspot and the steady-state distribution of the
average number of Standard orders postponed to the next day RS , we can derive the expected
number of excess shipments. In order to determine the expected number of excess orders, we
follow the same approach as in Van Riessen et al. (2017), but account again for (1) the contractual
Express and Standard demand from multiple freight forwarders and (2) the truncated spot market
demand.
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Excess shipments (ES) occur when there is insufficient capacity available to transport today’s
Express demand (DE), today’s spot demand (Dspot) and the remaining Standard shipments of
the day before (RS). Therefore, the probability of excess orders depends on the probability
distribution of DE , Dspot and RS , see Equation (3.22). Again, the truncated spot market demand
distribution (Dspot) prevents us from summing the spot and Express demand distributions, because
the resulting distribution is not Poisson distributed. Therefore, we account for the truncated spot
demand distribution by determining the probability that capacity is insufficient to transport DE

after satisfying RS and z spot orders, given the spot market booking limit nspot and given the
probability that there are z spot orders. Hence, we take the sum over z spot orders to determine
the probability of excess demand:

P (ES > 0) = P (DE +Dspot +RS > C) =

nspot∑
z=0

P (DE > C −RS − z)P (Dspot = z) (3.22)

Subsequently, the probability of having m excess orders follows from Equation (3.22):

P (ES = m) =


P (DE ≤ C −RtS − z)P (Dspot = z) if m = 0,

P (DE = C +m−RtS − z)P (Dspot = z) if m > 0.

(3.23)

To determine the expected number of excess orders we need to sum over the probability that
m > 0. Consequently, given the probability πq of postponing j orders in the long-run, which
follows from the steady-state distribution in Equation (3.20) and Equation (3.21), the expected
number of excess Standard orders is:

E(ES) =

α+β+nspot∑
m=1

m

nspot∑
z=0

β∑
q=1

P (DE = c+m− z − q)P (Dspot)πq (3.24)

Where α is the upper bound of the Express demand Poisson distribution and β the upper bound of
the Standard demand Poisson distribution. These upper bound are determined based on Cheby-
shev’s inequality (1867), which state that the probability that the distribution values are within
k standard deviations of the mean is at least 1 − 1

k2 . Hence, we set the upper bound such that
it is within k standard deviations from the mean, α = µ + kσ. This holds that, given Pois-
son distributed demand, the upper bound is α = µ + k

√
λ. We target to set k = 10 such that

the cumulative probability over the range is at least 0.99. For example, consider λ = 100 then
α = 100 + 10

√
100 = 200.

3.2.5 Utilization
We determine the expected utilization η as in Van Riessen et al. (2017), but account for the
expected spot demand:

η =
E(DE) + E(DS) + E(Xspot|nspot)− E(ES)

C
(3.25)
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3.3 Simulation-based optimization model with stochastic
spot freight rates

This section extends the capacity allocation problem with stochastic freight rates by formulating
a simulation model. As argued in Section 2.4, the stochastic freight rates exhibit mean-reverting
behavior, which is modeled by the Ornstein-Uhlenbeck process. A drawback from this approach
is that the optimization model defined in Section 3.2 is not valid anymore, as the spot market
freight rates are time-dependent. Therefore, a simulation model is formulated that optimizes the
capacity allocation such that profit is maximized given limited capacity, stochastic demand and
stochastic freight rates. First, the Ornstein-Uhlenbeck process and its parameters are presented,
followed by the derivation of the simulation model. Appendix B.2 provides an overview of the
formulated simulation-based optimization model.

3.3.1 Ornstein-Uhlenbeck process
The spot freight rate evolution over time is reflected by a stochastic Ornstein-Uhlenbeck process
in Equation (3.26), where St is the spot price at time t, θ the long-term mean freight rate, σ the
volatility, Wt a Wiener process with mean 0 and variance dt, and κ the mean reversion rate at
which the process reverts.

dSt = κ(θ − St)dt+ σdWt (3.26)

The drift term
(
κ(θ − St)dt

)
is the difference between the current spot freight rate (St) and the

long-term mean (θ) and pushes the spot freight rate back to the long-term mean. The constant
κ indicates the rate at which the freight rate reverts back to the long-term mean - the higher the
rate, the faster it returns back. The drift rate is negative as the current freight rate is higher than
the long-term mean, which forces the spot freight rate to evolve back to the mean value. The
second term

(
σdWt

)
reflects the volatility of the mean-reverting process.

The exact solution to the stochastically differential equation can be approximated by Equa-
tion (3.27), where t is the time-step, see Bjerksund and Ekern (1995). The approximation to
the exact solution is used to simulate the evolution of St.

St+1 = Ste
−κt + θ(1− e−κt) + σ

∫ T

0

e−κ(T−t)dWs (3.27)

The mean of the stochastic freight rate equals θ and the variance of the mean-reverting process
increases in the volatility σ and is bounded by the reversion rate κ, see Appendix F.2 for a
mathematical derivation of the mean and the variance.

lim
T→∞

E[St] = θ

lim
T→∞

V ar[St] =
σ2

2κ

3.3.2 Simulation-model
The objective of the simulation model is to find the optimal cargo capacity allocation to allotment
contracts with multiple freight forwarders and to spot market demand, given the limited daily
capacity, stochastic demand and stochastic freight rates. In contrast to the stochastic integer
program in Section 3.2, we introduce a time-component. Let T = 0, 1, . . . , t be the number of days
in the booking horizon. The introduction of time holds that we should account for the value of
money over time. Therefore, we determine the optimal contract portfolio based on its net present
value (NPV ), by continuously discounting the revenue streams with the annual risk-free interest
rate (rf ). Let B = {b1, . . . , bn} with n allotment contracts and bi the bidding contract of bidder
i. The binary decision variable xi represents if the bid contract of customer i is included in the
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allocation portfolio, i.e., contract i is accepted if xi = 1. Next, let −→x = [x1, xi, . . . , xn] the contract
allocation portfolio with n contract allocation decision variables xi to represent the accepted and
rejected allotment contracts in the portfolio. Furthermore, let nspot the decision variable that
represents the spot market booking limit. The objective is to maximize profit by optimizing the
contract portfolio and the spot market booking limit.

max−→x ,nspot

NPVallotment +NPVspot −NPVexcess (3.28)

NPV: Spot market sales

Let rtspot be the stochastic spot market freight rate at time t that follows an Ornstein-Uhlenbeck
process and let Dt

spot be the spot market demand at time t . Spot market demand is again
constrained by the booking limit nspot such that Dt

spot = min(Xt
spot, nspot), where Xt

spot reflects
the number of spot market shipments that follows from a demand distribution. It is assumed that
Xt
spot ∼ Poisson(λspot), where λspot is the average daily arrival rate of spot shipment requests.

However, notice that all theoretical distributions fit. The NPV of spot market sales is then:

NPVspot =
∑
t∈T

rtspotD
t
spote

−
rf t

252 (3.29)

NPV: Allotment contract sales

Furthermore, let Dt
E,i ∼ Poisson(λE,i) be the Express shipment demand of customer i at time

t, where λE,i is the average daily arrival rate of a shipment request. Equivalently, let Dt
S,i ∼

Poisson(λS,i) be the Standard shipment demand of customer i at time t. Again, notice that all
theoretical distributions fit. Next, let rE,i and rS,i the revenue per shipment of customer i of the
Express and Standard service types respectively. The revenue per shipment is fixed throughout
the booking horizon and therefore independent of time. Hence, the NPV of the contract sales is
the sum of the revenue generated from all accepted contracts:

NPVallotments =
∑
t∈T

∑
i∈B

xi(rE,iD
t
E,i + rS,iD

t
S,i)e

−
rf t

252 (3.30)

NPV: Excess shipments

Next, we derive an equation to determine the number of Standard shipments that are postponed
to the next day. Let RtS be the number of Standard shipments at day t that are postponed to
the next day (t + 1). Hence, at day t the logistics service provider is obliged to transport the
remaining Standard shipments of the day before, Rt−1S .

After satisfying today’s Express shipment demand (Dt
E), today’s spot shipments (Dt

spot), and the

remaining Standard shipments from the day before (Rt−1S ), there may some remaining capacity
slots s available to ship (partly) today’s Standard demand (Dt

E), Equation (3.31). Consequenlty,
the number of Standard orders that are postponed to the next day depends on the remaining
capacity slots s, Equation (3.32)

st = max
(
C −Rt−1S −

∑
i∈B

Dt
E,i −Dt

spot, 0
)

(3.31)

RtS = max
(∑
i∈B

Dt
S,i − st

)
(3.32)

Next, we derive an equation to determine the penalty costs that are charged over the excess
shipments. It is assumed that the penalty costs include the costs for alternative transportation,
which depends in turn on the current spot market freight rates and a premium. That is, if the
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logistics service provider is forced to outsource the excess shipments to a third party, it pays the
current spot freight rate plus a premium on this rate. The premium is introduced such that the spot
prices never exceed the penalty costs and includes for example commission or administration costs.
The purpose of including the penalty costs is to constrain the model in its allocation decisions.
Therefore, we assume that the penalty costs are bounded below by the highest contractual Express
freight rate plus a premium as excess shipments will otherwise always result in profit. That is, if
the penalty costs are lower than the revenue of contractual Express shipments, the service provider
will make a profit on each excess shipment of the size revenue minus penalty costs by outsourcing
it. Therefore, given stochastic freight rates, we assume that the penalty costs p at day t are equal
to the maximum of the spot freight rate or the revenue of an Express shipment on day t multiplied
with a premium percentage on this price, such that the freight rates never offset the penalty costs.

rmax = max
i∈B

(rE,i) (3.33)

pt = min(rmax, S
t) ∗ (1 + premium) (3.34)

Excess orders occur when there is insufficient capacity available to transport Express shipments,
the remaining Standard orders from the day before and spot market shipments. The logistics
service provider is charged a penalty of size p over each excess order:

NPVexcess =
∑
t∈T

pt max
(∑
i∈B

Dt
E,i +Dt

spot +Rt−1S − C, 0
)
e−

rf t

252 (3.35)

Objective function

Consequently, the objective function of the simulation follows from all above-defined equations:

max
xi,nspot

∑
t∈T

(∑
i∈B

xi
(
rtE,iD

t
E,i + rtS,iD

t
S,i

)
+ rtspotD

t
spot− pt max

(∑
i∈B

Dt
E,i +Dt

spot +Rt−1S −C, 0
))

(3.36)

3.4 Minimum bid-price
The optimization models in Section 3.2 and Section 3.3 determine the optimal contract portfolio
that maximizes profit. The results that follow from the model can also be exploited to determine
the minimum bid-price of those contracts that are rejected. Assumed that the shipment volumes
of the proposed contracts are fixed, the minimum bid-price per shipment of the excluded contract
i should offset the profit loss between the optimal contract portfolio and the contract portfolio
that includes contract i. The required minimum bid-price increase is zero if a specific contract is
already included in the optimal contract portfolio because there do not exist any more profitable
business opportunities.

Let f∗(x1, x2, . . . , xn, nspot) be the value of the optimal contract portfolio with spot market booking
limit nspot. Next, let f̄(x′1, x2, . . . , xn, nspot) be the value of the contract portfolio with the highest
value containing contract x′1 of which we want to determine the minimum bid-price. It should
be noted that the contracts in portfolio f̄ are not necessarily included in the optimal contract
portfolio f∗. This way, we exclude capacity constraints, because simply adding the excluded
contract portfolio might imply that capacity is exceeded, yielding penalty costs.

To determine the required freight rate increase per shipment (∆ri) we subtract the profit of the
optimal contract portfolio f∗ with the profit of contract portfolio f̄ and divide it by the total
expected number of shipments, Express and Standard, (XE

i +XS
i ) as defined in contract x′1, see

Equation (3.37).

∆r =
f∗ − f̄

(XE
i +XS

i )
(3.37)
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The minimum bid-price per shipment per service type is the initial negotiated freight rate plus
the necessary profit increase, see Equation (3.38).

rp
′

i = rpi + ∆ri (3.38)

It is also feasible to determine the minimum bid-price for a specific service type P , Express or
Standard, by dividing the value difference between the portfolios by the expected number of
shipments of the service type, see Equation (3.39) and Equation (3.40). The minimum bid-price
per service type could be useful for sales offices when there is for example only room to renegotiate
the Express rates.

∆rPi =
f∗ − f̄
XP
i

(3.39)

rP
′

i = rPi + ∆rPi (3.40)

Minimum bid-price example
Consider two contracts with similar demand, yet one contract consists majorly of Express ship-
ments and the other of Standard shipments. The initial negotiated Express and Standard freight
rates per service type in both contracts are $100 and $80, respectively. The penalty costs equal
$150, and the service provider does not serve the spot market. The logistics service provider has
a limited daily capacity of 20 TEU, such that only one contract can be accepted.

Assumed that the logistics service provider is risk-neutral, it will grant contract 1 and ignores
contract 2, because the former contract yields more profit than the latter, see Table 3.1.

To offset the profit opportunity of accepting contract 1, the shipment freight rates of contract 2
should increase with $4.25, see Equation (3.41). Hence, the service provider should renegotiate
contract 2 observing the minimum bid-prices of $104.25 and $84.25 for Express and Standard
shipments respectively, see Table 3.1. Alternatively, it could either charge an additional fee of
$16.98 for Express shipments or $5.66 for Standard shipments, while keeping the shipment freight
rate for the other service unchanged.

∆r =
1724.68− 1639.76

6 + 14
= 4.25 (3.41)

Table 3.1: Minimum bid-price example with 2 initial bid contracts and penalty costs of 150. To
offset the revenue opportunity of accepting contract 1, the freight rates of contract 2 should increase
with 4.25, or alternatively the freight rate of Express shipments or Standard shipments with 16.98
and 5.66 respectively.

Contract Demand Freight Rate Profit η E(Es)

Express Standard Express Standard f(x) [%]

1 15 5 100 80 1725 94 1.77

2 5 15 100 80 1640 98 0.40

2̄ (All) 5 15 104.25 84.25 1725 98 0.40

2̄ (Exp) 5 15 116.98 80.00 1725 98 0.40

2̄ (Std) 5 15 100.00 85.66 1725 98 0.40
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Chapter 4

Genetic Algorithm

This section presents a heuristic to solve the capacity allocation problem (CAP) with spot market
demand. We show that a Genetic Algorithm (GA) provides (near-) optimal solutions within a
reasonable computation time. First, the GA concept is introduced, followed by a definition of
the GA problem, its components, and the associated parameter settings. A pseudo-code of the
algorithm is provided in Appendix C.1. Finally, the performance of the GA is benchmarked against
the exact solution in terms of profit and computation time.

4.1 Genetic algorithm design
Finding the exact solution to the capacity allocation problem with spot market demand is a time-
consuming task as the number of solutions grows exponentially with the number of contracts.
Although exact solutions to the problem are preferred, the required computation time is undesir-
able. Therefore, a Genetic Algorithm (GA) is developed as heuristic with the goal to find optimal
or near-optimal solutions to the CAP within a reasonable computation time.

GAs are global search heuristics that imitate the principals of human evolution and survival of
the fittest, see Holland (1992). The goal of the GA is to find the optimal allocation portfolio
that maximizes the output of the CAP. The rationale behind the GA is to exploit information of
examined solutions to search the solution space intelligently. The effectiveness of the heuristic is
a tradeoff between exploration and exploitation. Exploring the solution space to a high degree
increases the accuracy, but negatively affects computation time. While a too small coverage of the
solution space provides fast results, it might not lead to high-quality solutions. Hence, contrary
to exactly solving the problem, heuristics provide relative fast solutions but do not guarantee the
optimal solution.

Figure 4.1: Genetic algorithm evolution process
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Representation

The decision variables of the CAP are encoded into chromosome representation, i.e., a binary
string, to make them suitable for evolution operations. An individual is a chromosome with genes
that represents a single solution to the CAP. The genes of an individual encode the set of decision
variables in the GA, where each gene determines a distinct property. It is decided to encode the
spot market booking limit following the binary alphabet rather than an integer to standardize
chromosome coding and evolution operations.

Chromosome X̂ : x1, x2, . . . , x, xk+n represents the decision variables of the CAP, where k is
the number of contracts available and n the length of a binary string that encodes the spot
market booking limit upper bound γ, which is determined as in Section 3.2. The solution vector
xi(i = 1, 2, . . . , k) represents the contracts of the CAP as binary decision variables, where a ‘1’
indicates that a contract is included and a ‘0’ that a contract is excluded from the allocation
portfolio. The solution vector xi(i = k + 1, k + 2, . . . , k + n) represents the spot market booking
limit as a binary string. The length n of the binary booking limit string depends on the required
bits to represent the spot demand upper bound. For example, three binary bits are required to
represent a spot market upper bound of 5, e.g., the binary string ‘101’ equals 5. To illustrate, the
chromosome in Table 4.1 indicates to accept contract 1 and 2, reject contract 3 and a booking
limit of 5 spot shipments.

Table 4.1: Chromosome representation: accept contract 1 and 2, reject contract 3 and a spot
market booking limit of 5 orders.

Contracts Booking limit

Element x1 x2 x3 x4 x5 x6
Chromosome 1 1 0 1 0 1

Binary 22 21 20

Initialization

The initialization process launches the evolution process, which randomly generates a population
of individuals. Diversity of candidate solutions in the initial generation is necessary to prevent
premature convergence towards suboptimal solutions. Therefore, each candidate solution in the
solution space has equal selection probability.

Evaluation

The evaluation process assesses the performance of all individuals in a generation by calculating
the fitness. The fitness of an individual is the expected profit given the allocation portfolio, as
stated in Section 3.2. Evaluation of the fitness value guides the evolution of individuals from
generation to generation because, analogous to evolution theory, healthy individuals with a high
expected profit are likely to pass its inheritance to next generations. Due to the randomness of
the evolution operators, it is plausible that precisely the same individuals exist in a consecutive
generation. Therefore, we store the performance of examined individuals such that a duplicate
does not require reexamination, because assessing the fitness performance is a time-consuming
task.

Selection

Selection is the process of determining which individuals in the current generation participate in
producing an offspring for the next generation. In other words, selected individuals are parents
of the children in the next generation. The goal of selection is to identify fit individuals for
reproduction such that strong genes of the parents are passed onto the next generation, and unfit
solutions are eliminated (Sivaraj & Ravichandran, 2011).
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The tournament selection method is used to select individuals for reproduction. Two individuals
from the current generation are randomly drawn to participate in a tournament. The selected
individuals are compared on the fitness value, and the winning individual is inserted into the
mating pool. Tournament selection provides selection pressure based on fitness differences between
individuals and guides the GA to improve the fitness of succeeding generations (Sivanandam &
Deepa, 2008).

However, unfit solutions should also have a probability to participate in the mating process to
prevent premature converge towards a suboptimal optimum. In other words, the genes of unfit
individuals promote exploration of the solution space. Therefore, a stochastic probability ps is
introduced that determines the probability that an individual is selected based on its fitness. The
strongest individual makes it into the mating pool with probability ps, and the weak individual is
the lucky one with probability (1− ps).

Multiple tournaments are organized to select the required number of parents. A non-replacement
strategy is used, which holds that previously drawn individuals could not participate in next
tournaments to prevent that individuals are excluded by chance. However, the whole generation
is replaced if all individuals are selected once, or if there is only a single individual left.

Crossover
Crossover pushes the GA to converge to an optimum and exploits the solution space. It is an
iterative process where the genes of two parents are exchanged to create a child, such that the
decision variables of the child is a combination of both parents.

A uniform crossover process is applied, which hold that both parents have equal probability to
pass a specific gene to the child. That is, to determine the value of each gene xCi , a coin is flipped
to determine if the child’s gene value is determined by parent 1 (xP1

i ) or parent 2 (xP2
i ), see

Figure 4.2.

Figure 4.2: Crossover example

Mutation
Mutation randomly alters the value of a gene, i.e., the value of a decision variable changes, res-
ulting in another allocation portfolio. It promotes exploration of the search domain and escaping
from local optima. Mutation prevents, therefore, loss of diversity (Holland, 1992). Mutation is a
rare event and occurs with probability pm per gene of an individual. A high probability ensures
sufficient coverage of the search domain but could prevent the algorithm to converge to an op-
timum, i.e., a random walk. On the other hand, a low mutation rate might result in premature
convergence to a local optimum.

A random number between 0 and 1 is sampled to determine if a gene mutates. If the random
number is smaller than or equal to pm, the value of the gene is altered. Subsequently, if gene xi
with value 1 is selected for mutation its value will change into xi = 0, see Figure 4.3. Again, we
check for the spot market upper bound. If the upper bound limit is violated, the mutation process
starts from scratch with the unmutated child.

Termination criteria
The evolution process terminates after a certain number of generations have been generated.
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Figure 4.3: Mutation example with pm = 0.1

Improvement

Prototyping the GA revealed that the algorithm was often able to find the right contract portfolio,
but sometimes failed to find the optimal spot market booking limit. Therefore, we define an
improvement process to determine the booking limit that would maximize profit. We select the
optimal contract portfolio observed by the GA for improvement operations and try to increase
or decrease the spot booking limit. In other words, it is verified if profit opportunities exist by
altering the booking limit while keeping a fixed contract portfolio. Improvement is an iterative
process where the spot market booking limit is increased with one shipment in each iteration until
the expected profit decreases. The same procedure is followed to analyze the effects of lowering
the booking limit, with a booking limit lower bound of 0 spot shipments.

Solution

The optimal solution found by the GA after the improvement process is the contract portfolio
with the highest expected profit observed by the GA, but is not necessarily the optimal solution
to the CAP.

4.2 Parameter tuning

The effectiveness of the evolution operators depends on multiple parameters. The parameter val-
ues influence the performance and effectiveness of the algorithm regarding finding (near-) optimal
solutions and computation time (Eiben, Hinterding & Michalewicz, 1999). As tuning the para-
meters is a time-consuming task, it is decided to set the parameters based on recommendations in
literature or by logical reasoning. The primary motivation to develop a GA is to show the effect-
iveness of a heuristic to the CAP. The following parameter settings are applied in the remainder
of this paper.

Selection probability

A static selection probability is applied, which holds that the probability of selecting the strongest
individual is equal in all generations. The probability is set to 80%, such that fit individuals are
promoted, but ensure genetic diversity by including a survival probability of the weaker individual:

ps = 0.80 (4.1)

Mutation probability

Typically it is recommended to set the mutation rate pm to 1/l, where l denotes the number of
elements in a chromosome (Back, 1993). As the CAP chromosome consists of n + k elements,
where k are the number of contracts and n the binary string length of the spot upper bound, the
mutation probability of each element equals:

pm(k, n) =
1

k + n
(4.2)
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Population size

The population size indicates the number of individuals in a generation. The optimal population
size is a trade-off between accurate results and computation time. The population size must be
large enough such that the search domain is sufficiently covered, however, too large populations
negatively affect computation time. The optimal population size Sopt(n) depends on the number
of decision variables n in the chromosome and is bounded below by n and above by 2n (Alander,
1992). Consequently, we set the population size S to two times the number of elements in the
chromosome:

Sopt(k, n) = 2(k + n) (4.3)

Number of children

This parameter determines the number of children that each couple of parents produces and is
related to the number of parents. The number of children multiplied by the number of parents
should equal the population size to preserve stable population sizes. The number of children C is
set to 2 children per couple:

C = 2 (4.4)

Number of parents

This parameter determines which individuals are selected from the current generation to particip-
ate in the reproduction for the next generations. The parameter value depends on the population
size S and the number of children C:

P (S,C) =
S

C
(4.5)

Number of generations

This parameter regulates the termination criteria of the algorithm. The optimal number of gener-
ations is a trade-off between accuracy and effectiveness. A large number of generations increases
the probability of finding the optimal solution because more candidate solutions are examined
but negatively affect the computation time. An analysis of the number of generations parameter
showed that the number of generations depends on the population size and the theoretical number
of candidate solutions covered, see Appendix C.2. Based on this analysis, we fix the number of
generations such that 60% of the solution space is covered. That is, we determine the total number
of solutions, which depends on the number of contracts k and the spot demand upper bound γ,
and divide it by the population size S and rounded above.

Gopt(S, k, γ) =
(2kγ) ∗ 60%

S
(4.6)

4.3 GA performance analysis
In order to examine the GA’s performance, the heuristic is applied to multiple capacity allocation
problems with spot market demand. We determine the performance by comparing the allocation
decision found by the GA with the optimal solution, which is found by exactly solving the CAP
as in Section 3.2. The second performance indicator involves the algorithm’s accuracy, which
is defined as the number of times that the GA was able to find the optimal solution. Next,
we examine the GA’s computation time relative to the required time to exactly solve the CAP.
The GA is coded in Python, and the performance is examined using an Intel(R) Core(TM) i7-
3630QM CPU2.40 GHz processor. We run the GA five times for each scenario and determine
the average performance, to improve the reliability and consistency of the performance indicators.
This way, the randomness effects of the evolution processes are reduced. First, we examine the
GA’s performance given the problem size. Secondly, we address the performance regarding the
capacity sensitivity.
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Problem size

The CAP problem size equals 2kγ, with k allotment contracts and γ spot demand upper bound.
Multiple scenarios with varying problem sizes are defined, while we fix the capacity to 15 TEU.
We apply a demand to capacity ratio of 1.80, which indicates that there are 180% more shipment
requests as capacity available. Demand is randomly allocated to the contracts, but we fix the
average spot market shipment requests to 2 orders per day, while it is fixed to 1 order when there
are more than 8 contracts due to computation time limitations. Next, we apply the GA parameter
settings as defined in Section 4.2. An overview of the scenarios and the associated parameter values
can be found in Table C.2 in Appendix C.3.

Figure 4.4a presents the average GA error term given the number of contracts. The error term
indicates the profit difference between the optimal solution and the solution found by the GA. It
turns out that the error term increases with the problem size. Increasing the problem size implies
a larger solution space with more candidate solutions, which reduces the probability that a single
candidate solution is selected. Although the algorithm was not always able to find the optimal
solution, the error term is rather small. Overall, the average profit difference is equal to 0.038%,
while the maximum average error term is equal to 0.156%.

Furthermore, the GA has an accuracy of 84.44%. That is, out of the 45 trial runs, the algorithm
was able to find 38 times the optimal solutions. A detailed overview of the results is provided in
Table C.4 in Appendix C.3.

Moreover, Figure 4.4b shows that the GA achieves significant computation time savings, with an
average time reduction of 59%. The GA computation time increases, analogous to exactly solving
the problem, in the problem size, because the termination criteria depend on the problem size.
Figure 4.4b also indicates the fraction of time required to solve the GA compared to the required
time to solve the cargo capacity allocation problem exactly. It follows that computation time
savings increments proportionally to the problem size.

Capacity

The computation time of exactly solving the CAP depends on the capacity size. Therefore, we
examine the GA’s computation time sensitivity to the capacity. We define scenarios with different
capacity sizes and set the demand to capacity ratio again to 1.80 with 1 spot shipment request per
day. A detailed overview of the scenario and the corresponding parameters settings are presented
in Table C.3 in Appendix C.3.

(a) Error term. (b) Computation time.

Figure 4.4: Error term and computation time given the problem size against exactly solving the
capacity allocation problem.
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(a) Error term. (b) Computation time.

Figure 4.5: Average error term and computation time given the capacity against exactly solving
the capacity allocation problem.

Figure 4.5a shows that the GA results in an average error term of 0.11%, yielding (near-) optimal
solutions. A relatively small error-term was obtained, and the results do not indicate that the
error term increases with the capacity, which implies that the GA is insensitive to the capacity
size. The results report an accuracy of 84.62%.

Furthermore, the GA achieves on average time savings of 60.81% compared to exactly solving the
problem, see Figure 4.5b. Increasing the capacity size negatively affects the computation time.
Calculating the objective function is the most time-consuming task of both the GA and the exact
optimization model, which increments with the capacity.

4.4 Chapter conclusion
The GA performance analysis demonstrated that the algorithm is an effective heuristic to the
capacity allocation problem, as it provides optimal or near-optimal solutions within a reasonable
computation time. Scenario-based analyses showed that the GA has an average error term of
0.08%, i.e., 0.04% and 0.11% in the problem and capacity size scenario respectively. The error
term increases with the problem size but is insensitive for the capacity size. The GA obtains on
average 60% faster results compared to exactly solving the model. The computation time increases
in the problem size and capacity. Based on the results, we conclude that the GA is a practical
approach to find high-quality solutions to the capacity allocation problem.
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Chapter 5

Analysis

This chapter presents an analysis of the proposed optimization models. In the remainder of this
chapter, we assume that all demand is Poisson distributed unless stated otherwise. We start this
chapter by demonstrating the stochastic integer optimization model by applying it to a capacity
allocation problem. The second section is dedicated to the results that followed from a case study
in which experienced sales representatives were challenged to beat the optimization model. The
chapter finishes with a sensitivity analysis to evaluate the impact of the input parameters on the
allocation behavior.

5.1 Results for a small-size capacity allocation problem
In this section, we apply the stochastic integer optimization problem to a capacity allocation prob-
lem. Consider a capacity allocation problem with 3 bids, spot market demand, and a fixed capacity
of 25 TEU. All bids have an expected daily demand of 10 TEU, but different distributed Express
and Standard demand. More specifically, one contract includes especially Express shipments, one
mainly Standard shipments, while the last contract has equal demand for Express and Standard
services, such that λE = {8, 5, 2} and λS = {2, 5, 8}. The service provider negotiated equal ship-
ment rates per service type for all contracts, i.e., rE = {100, 100, 100} and rS = {80, 80, 80}. Next,
there are on average 8 daily spot shipment requests, i.e., λspot = 8, with a deterministic and fixed
revenue (rspot = 120). Excess orders are outsourced to a third-party that charges the spot market
freight rate with a 25% premium, i.e., p = 150. The logistics service provider seeks to maximize
its expected profit by determining the optimal contract portfolio and spot market booking limit.

Table 5.1 summarizes the results of the allocation decisions, by providing the expected profit,
utilization, demand, and excess shipments. The vector xA = [x1, x2, x3] represents the allocation
portfolio, where xi reflects the decision to allocate contract i. Figure 5.1 shows the expected profit
of the 224 possible solutions to the allotment problem. It follows that accepting all contracts,
xA = [1, 1, 1], is less profitable compared to allocating two contracts with reserving capacity for
spot market demand. That is, accepting all allocation contracts implies an expected demand
of 30 TEU, while there is only 25 TEU daily capacity available, resulting in excess orders and
penalty costs. Furthermore, granting a single contract and serving the spot market results in
underutilized capacity, providing a revenue opportunity by allocating additional demand. To
maximize profit, the service provider should accept contract 1 and 2, reject contract 3 and set the
spot market booking limit (nspot) to 7 shipments per day. That is, the service provider should
focus on allocating Express shipments and reserve capacity for Spot orders to maximize the profit.
Notice that a higher expected profit is realized with lower asset utilization.
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Table 5.1: Results of a numerical experiment with 3 allotment contracts, spot market demand
and 25 TEU capacity. With λE = {8, 5, 2}, λS = {2, 5, 8}, λspot = 8, rE = {100, 100, 100},
rS = {80, 80, 80}, (rspot = 120) and p = 150

Allocation nspot Profit Utilization E(DE) E(DS) E(DSpot) E(ES)

[1, 1, 0] 7 2365 98.4 13 7 6.3 1.7

[1, 0, 1] 7 2325 98.9 10 10 6.3 1.6

[0, 1, 1] 7 2280 99.2 7 13 6.3 1.5

Figure 5.1: Expected profit given contract allocation portfolio and spot market booking limit. Al-
location portfolio xA = [1, 1, 0] represents to accept contract 1 and 2, and reject contract 3.

5.2 Case study

A case study was developed to compare the decisions generated by the optimization model and
the ones that were taken by experienced sales and operations representatives. The case study
was conducted during a workshop with the objective to introduce the cargo capacity allocation
problem, to create awareness of the relation between the allocation decisions and the performance
in terms of profit, asset utilization and excess shipments, and to identify shortcomings of the
optimization model. First, a small-sized cargo capacity allocation problem was submitted to
the representatives to get familiar with the subject and its complexities. Once familiar, the
representatives were asked to solve a more significant and more challenging allocation problem
with the goal to maximize profit.

5.2.1 Case description

A logistics service provider with a fixed daily capacity of 200 TEU seeks to maximize its expected
profit by optimizing its capacity distribution between freight forwarders and spot market demand.

The case involves 15 bids, which specify the expected number of daily shipments and a fixed freight
rate specified per service type. A structured scheme defines the relation between the demand and
revenue parameters of the Express and Standard services, such that variance among the parameters
is guaranteed, see Table D.1 in Appendix D.1. The contract parameters are randomly assigned
given the defined demand and revenue relations. Table D.2 in Appendix D.1 provides an overview
of the contract terms.
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Furthermore, there are on average 4 spot market shipment requests per day with a deterministic
and fixed revenue of $150 per shipment. Next, excess orders require alternative transportation,
resulting in penalty costs that include the spot price with a 33% premium, i.e., p = 200. Planners
were informed to account for demand uncertainty and the spot market booking limit. The cargo
capacity allocation problem has 786,432 unique solutions.

5.2.2 Results
Six experienced sales and operations representatives were asked to solve the capacity allocation
problem. The allocation decisions obtained by the representatives are compared with the optimal
allocation that follows from the optimization model. The results revealed that the optimization
model outperforms the allocation decisions of the representatives, resulting in 4.8% more profit
on average, see Figure 5.2. The profit difference between the optimal solution and the ones taken
by the participants vary between 0.7% and 11.5%. One participant was able to find the optimal
contract allocation, yet additional profit (+0.7%) could have been realized by increasing the spot
market booking limit. Table D.3 in Appendix D.2 provides a summary of the resulting performance
of all allocation portfolios.

The main conclusion that follows from the case study is that the optimization model that solves
the capacity allocation problem can improve the expected profit. Furthermore, the workshop
contributed to the awareness, among the representatives, of the allocation decision consequences
on the profit. The representatives mentioned the complexity of the problem and noted that
more factors influence the profit than solely focusing on asset utilization. Next, the participants
noticed the awareness of the shipment windows of the synchromodal products on the operational
performance. Pfoser et al. (2016) identify ‘Awareness’ and ‘Mental Shift’ as a critical success
factor to ensure effective implementation of synchromodal transportation. It is believed that the
capacity allocation problem workshop contributes to the awareness factor, as it shows the trade-offs
between the synchromodal transportation services.

Figure 5.2: Expected profit given the optimal allocation portfolio and the average profit of the
allocation decisions taken by experienced sales and operations representatives.
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5.3 Sensitivity analysis

This section discusses the results obtained from the sensitivity analysis. The section first addresses
the model behavior given the capacity and demand size to validate if the model exhibits the
expected behavior. Second, we examine the sensitivity of the freight rates on the allocation
decision. The third section focuses on the spot market demand and volatility and its effects on
the allocation decision. Next, we analyze the penalty costs sensitivity. Fourth, we show that
increasing the shipment window of the Standard service yields additional profit. Last, we study
the influence of the forecast reliability of contractual sales on profitability.

5.3.1 Capacity and demand size

First, we examine the behavior of the stochastic integer model regarding the demand and capacity
size. In order to assess the model behavior, we define three scenarios in which we scale the demand
proportionally to the capacity, see Table E.1 in Appendix E.1. We solve the capacity allocation
problem and analyze the performance of each allocation decision.

Figure 5.3 shows the expected profit of each possible allocation portfolio for all scenarios, where
the contract allocations are represented by [x1, x2], e.g. [1, 0] indicates that contract 1 is accepted
and contract 2 is rejected. Since the spot limit upper bound γ increases with the mean shipment
arrival rate, we visualize the booking limit relative to its upper bound γ. For example, a 60%
ratio with a spot demand upper bound of 25 shipments in scenario 1 indicates that the booking
limit equals 15 orders. Besides, we determine the profit of a single allocation portfolio relatively
to the optimal profit of the scenario, such that we are able to compare the results of the scaled
scenarios.

It turns out that the model exhibits the same behavior given the allocation decisions. That
is, the expected profit function is concave in all situations. As expected, allocating demand
to underutilized capacity increases the expected profit, because it generates additional revenue,
while it does not result in excess orders. However, allocating demand to scare capacity results in
excess shipments, which in turn negatively affects the profit. Hence, the profit function is concave
upwards if there is capacity left to be utilized and concave downwards if capacity is exceeded.

The optimal contract portfolio involves in all cases accepting contract 1, rejecting contract 2 and
fixing the booking limit to about 50% of the spot market demand upper bound γ. As expected,
increasing the booking limit up to 50% results in additional profit in the cases [0, 1] and [1, 0], as
additional spot demand is allocated to underutilized capacity. However, the profit decreases as too
many shipments are accepted, resulting in excess shipments and penalty costs. Only serving the
spot market, case [0, 0], consequences low asset utilization such that revenue opportunities exist.

Figure 5.3: Model behavior of proportionally scaling capacity and demand size.

39



It should be noticed that the incremental increase of the expected number of spot shipments slows
as the booking limit goes to the spot demand upper bound because the range that is covered by
the booking limit contains all random variables. More specific, the probability that more spot
orders arrive than the booking limit decreases as the booking limit is close to the upper bound.
Next, accepting both contracts, case [1, 1], and increasing the booking limit negatively affects the
profit, as there is insufficient capacity to satisfy all demand.

To conclude, the profit that follows from solving the stochastic integer model exhibits the expected
behavior. The small differences in the model behavior, compared to the other scenarios, is caused
by the variance of the Poisson distribution, which increases with the mean arrival rate. The model
also exhibits the same behavior when there are more contracts or when there is only a single
shipment service defined, see Figures E.1 and E.2 in Appendix E.2. Since the computation time
increases in the capacity/demand size, we will use relatively small capacity and demand sizes
(±20) in the remainder of this chapter.

5.3.2 Freight rates
This section analyzes the sensitivity of the freight rates on the allocation mechanisms. First, we
examine the cases with fixed and deterministic freight rates. Second, we determine the optimal
capacity distribution to Express and Standard orders given the freight rate spread. The freight
rate spread indicates the revenue difference of Standard and/or spot services relative to Express
shipments, e.g., a $100 Express freight rate with a 10% spread indicates a $90 and $110 Standard
and spot freight rate respectively.

Fixed deterministic freight rates

We examine the sensitivity of the freight rates on the allocation decision mechanisms, by altering
the freight rate spread between the transportation services. Consider a capacity allocation problem
with two contracts and an expected daily spot market demand of 13 shipments. The first contract
contains mainly Express orders, while the other mainly Standard orders: λE = {8, 2}, λS = {2, 8}.
The logistics service provider has a daily capacity of 20 TEU, and penalty costs that include the
spot freight rate with a 10% premium.

First, we increase the freight rate spread of the Standard and spot services relative to the Express
rate, adhered to the following rate structure: rS ≤ rE ≤ rspot. Table 5.2 shows the dependency of
the optimal allocation on the freight rate spread. It turns out that the logistics service provider
should allocate capacity to Standard shipments if the freight rate spread is smaller than 7.5%, but
should focus on Express demand as the spread exceeds 7.5%, see Table 5.2.

The 2-day shipment window of the Standard service results in less excess demand, which offsets
the revenue opportunity of allocating the contract with mainly Express shipments. That is, the
trade-off freight rate spread between contract I with mainly Express shipments and contract II
with mainly Standard shipments depends on the profit equilibrium:

Profit
(
contract I

)
= Profit

(
contract II

)
Table 5.2: Freight rate analysis with variable deterministic spot freight rates and 20 TEU capacity,
and Poisson distributed Express, Standard and spot demand, with λE = {8, 2}, λS = {2, 8},
λspot = 13, and penalty costs include spot rate with 10% premium.

Freight rates Penalty Allocation portfolio Profit Utilization Excess

Spread Express Standard Spot contracts nspot shipments

0.0% 100.00 100.00 100.00 110.00 [0,1] 13 1971 99.4% 1.7

7.5% 100.00 92.50 107.50 118.20 [0,1] 13 1984 99.4% 1.7

7.6% 100.00 92.40 107.60 118.36 [1,0] 13 1985 97.4% 2.1

10.0% 100.00 90.00 110.00 121.00 [1,0] 13 2002 97.4% 2.1
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Allocating contract I results in 2.1 expected excess shipments, while allocating contract II results
in 1.7 expected excess shipments. Hence,

Penalty
(
contract I

)
> Penalty

(
contract II

)
Consequently, allocating contract I is only profitable if the Express freight rates compensate the
profit loss owing to more excess shipments. Therefore, if the freight rate spread increases, the
benefit of the 2-day shipment window disappears because the additional revenue for Express
shipment compensates the penalty costs:

Revenue
(
contract I

)
− Penalty

(
contract I

)
> Revenue

(
contract II

)
− Penalty

(
contract II

)
On the other hand, as the freight rate spread decreases, the profit obtained from the Standard
shipments outweighs the revenue opportunity of allocating contract I. Although contract I results
in a higher revenue, the penalty costs reduces the profit, such that it is more profitable to accept
contract II:

Revenue
(
contract I

)
−Penalty

(
contract I

)
< Revenue

(
contract II

)
↑ −Penalty

(
contract II

)
Second, we analyze the trade-off between Express and Standard orders given the freight rate spread
and a fixed and deterministic spot freight rate. We determine a break-even freight rate spread in
which both contracts are even profitable. That is, at the break-even point, the expected profit
that follows from accepting contract I equals the expected profit of allocating contract II.

Figure 5.4 shows the break-even freight rate spread given the spot rate relative to the Express
rate. Contract II, with mainly Standard orders, is allocated if the freight rate spread is smaller
than the break-even point, while contract I is accepted if the spread exceeds the break-even point.
The break-even spread is more significant when the spot rate increases relative to the Express rate
because the penalty costs grow proportionally to the contractual freight rates, which disadvantages
contract I as it leads to more expected excess shipments. The freight rates of Express shipments
must compensate the additional penalty costs, which explains a larger freight rate spread. It
should be highlighted that this observation only holds when the penalty costs depend on the spot
freight rate.

Figure 5.4: Break-even freight rate spread between Express and Standard transportation services,
with λE = {8, 2} and λE = {2, 8}. Allocate contract II if the freight rate spread is smaller than
the break-even point, allocate contract I otherwise.
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Finally, we show how the spot freight rate affects the allocation decision given fixed Express and
Standard freight rates. In other words, we increase the spot freight rate, and in turn also the
penalty costs, subject to fixed contractual shipment rates. Considering the freight rate spread
findings above, we distinguish between a spread rate of 5% and 15% such that we exclude the
allocation trade-off effects. Table 5.3 reflects that the allocation decision is not affected by the spot
freight rate, as the penalty costs increase with the spot rates. The additional revenue of allocating
extra demand does not outweigh the penalty costs. Notice that capacity is underutilized if we
only serve the spot market, which holds that the optimal allocation portfolio contains at least one
contract.

Table 5.3: Spot freight rate analysis with variable deterministic spot freight rates, fixed contract
freight rates, 20 TEU capacity, and Poisson distributed Express, Standard and spot demand, with
λE = {8, 2}, λS = {2, 8}, λspot = 13, and penalty costs include spot rate with 10% premium.

Freight rates Penalty Allocation portfolio Profit Utilization Excess

∆Spot Express Standard Spot contracts nspot shipments

+0% 100 100 85 110 [1,0] 13 1899 97.4% 2.1

+30% 130 100 85 143 [1,0] 13 2178 97.4% 2.1

+0% 100 100 95 110 [0,1] 13 1931 101.9% 1.2

+30% 130 100 95 143 [0,1] 13 2222 101.9% 1.2

Optimal capacity allocation to Express and Standard shipments

In this section, we examine the optimal capacity allocation distribution between Express and
Standard shipments given the freight rate spread between the transportation services and provided
that there are no spot market sales. We assume that there is infinite demand for Express and
Standard shipments, and finite and fixed capacity. Additionally, we assume that there are infinite
contracts with a demand for precisely one Express or one Standard shipment, such that there are
no contractual volume restrictions. Next, the penalty costs are two times the Express freight rate
to avoid excess orders.

Figure 5.5 presents the optimal allocation between Standard and Express orders given the freight
rate spread and a 1- and 2-day Express shipment window policy. In the first, we examine the
1-day shipment policy, which is the primary focus of this research.

Considering a freight rate spread between 3% and 30%, it turns out that the optimal allocation
portfolio consists majorly of Express services, but also includes Standard services. While Express
services generate more revenue per shipment, Standard services provide planning flexibility, which
reduces the probability of excess shipments. The shipment window of the Standard service hedges
against demand uncertainty, because it is allowed to postpone Standard orders in case of insufficient
capacity, while Express shipments require immediately alternative transport, yielding penalty
costs. More specifically, Standard surplus demand is postponed to the next day that may face low
demand, such that demand is balanced over the days. Although Standard shipments generate less
revenue, the penalty costs savings outweigh the revenue loss, designating the essence of including
Standard shipments. The share of Standard services in the optimal allocation increases as the
freight rate spread decreases, because the revenue-opportunity of allocating Express reduces, while
allocating Standard demand also saves on penalty costs.
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Figure 5.5: Optimal capacity distribution between Express and Standard shipments

Furthermore, the optimal distribution in Figure 5.5 reflects that the service provider should ex-
clusively allocate Express shipments as the freight rate spread exceeds 30%. From this point, the
penalty costs savings do not compensate the revenue loss. More specifically, it is more profitable
to take the penalty costs, than trying to reduce the excess orders by substituting capacity reserved
for Express shipments by lower-priced Standard shipments.

A small freight rate spread (0-2%) indicates that the service provider should only focus on utilizing
Standard demand. In this case, the freight rate does not reflect the extended shipment window
of the Standard service, as it equals the Express freight rate. Therefore, the Standard service is
preferred above Express services as it reduces the probability of excess orders and results in lower
penalty costs, while it generates equal revenue.

Moreover, Figure 5.5 indicates to prefer the allocation of Express shipments over Standard services,
when extending the Express and Standard shipment window to a 2- and 4-day policy respectively.
In this case, the extended shipment window of the Express service provides the opportunity to
postpone shipments and hedges therefore against demand uncertainty. It follows that there is less
need to include Standard shipments in the portfolio since the Express service already provides the
opportunity to smooth demand. However, Standard services are still preferred as the freight rate
decreases, since the 4-day shipment window provides more flexibility, yielding lower penalty costs
compared to the 2-day Express shipment window.

The optimal allocation distribution provides the opportunity to benchmark the company’s current
service portfolio with the optimal one. A deviation from the optimal distribution indicates that
any shift towards substituting Express or Standard shipments in the allocation portfolio results in
additional profit. For example, consider a logistics service provider with a demand that consists for
2% of Standard shipments with a freight rate spread of 20% and a 1- and 2-day shipment window
for Express and Standard services respectively. Figure 5.5 indicates that the optimal allocation
portfolio consists for 8% of Standard shipments, which is a discrepancy with the current situations.
Consequently, the logistics service provider should include more Standard services in its allocation
portfolio, by substituting it with Express demand. More specific, the service provider should
increase the share Standard orders and reduce the share Express orders to maximize its expected
profit.

43



Notice that the allocation distribution does not provide any detail about the demand size relative
to capacity. Additionally, the optimal distribution is based on a fixed freight rate spread between
all shipments and does not account for differences in rates between individual contracts. Consider
for example an average freight rate of $100 and $90 for Express and Standard services respectively,
i.e., a 10% freight spread. Next, consider a single contract with demand for one Express order
that represents less than 1% of the total demand with a relatively high revenue of $180 for Express
shipments, which is twice the Standard shipment rate. The optimal distribution indicates that
the service provider should exclusively accept Standard orders. However, it is likely that it is
profitable to accept the contract as it replaces two Standard shipments.

Therefore, although the optimal distribution provides a biased view by neglecting the freight rates
of individual contracts, the framework provides a generic policy guideline.

5.3.3 Spot market

In this section, we address the spot allocation decision sensitivity for spot market demand. First,
we evaluate the effects of the spot demand size and examine the profit opportunity of substituting
contractual demand with spot demand. Second, we show how spot demand volatility affects the
allocation decision.

Spot market demand allocation

In this section, we evaluate the spot demand volume effects on the allocation decision, given
fixed and deterministic spot rates as in Section 5.3.2. Furthermore, we examine the effects of
substituting Express and Standard shipments with spot shipments.

Table 5.4 summarizes the allocation results when increasing the spot demand, by providing the
average spot market demand, the contract portfolio, and the spot market booking limit. It turns
out that more capacity is reserved for spot sales as the average demand on the spot market
increases. Notice, that it is assumed that the spot market and contractual demand are both Poisson
distributed, which implies that the volatility increases with the expected number of shipments.
Consequently, as there is no significant difference between the average spot, Express, and Standard
shipment demand size, the contractual and spot demand are even volatile.

The results in Table 5.4 show that reserving capacity for spot demand is profitable, even when
spot demand is rather low since spot shipments are more profitable than Express and Standard
shipments. That is, the case with λ = 7, with a total demand of 17 shipments, outweighs the
profit of accepting both contracts, which accommodates 20 expected shipments. The booking
limit reduces the probability of excess orders relative to Express contractual demand, because it
bounds the accepted spot shipments requests. That is, spot shipments are only accepted up to
the booking limit, while Express and Standard shipments are always accepted. Therefore, given
equal demand volatility, reduced excess orders and a higher revenue, it is profitable to reserve
more capacity for spot shipments as the spot shipment demand increases.

Table 5.4: Spot demand analysis with Express and Standard transportation services and 20 TEU
capacity. Poisson distributed Express, Standard en Spot demand, with λE = {8, 2}, λS = {2, 8},
rE = 100, rS = 80, rspot = 120, and p = 150.

Spot Demand Contracts nspot Profit Utilization Excess

λspot [%] [orders]

0 [1,1] 0 1702 96.7 0.66

7 [1,0] 11 1730 82.6 0.38

13 [0,1] 12 1982 99.1 1.21

26 [0,0] 20 2369 98.7 0.00
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Substituting demand

To examine the effects of reserving capacity for spot sales at the expense of Express and Standard
shipments, we substitute contractual shipment demand with spot market demand. Notice that
spot and Express shipments have both a 1-day shipment window, while Standard shipments are
either shipped today or tomorrow.

Figure 5.6 shows the change in profit given the Express substitution rate, which indicates the
ratio of Express shipments that are replaced with spot shipments, e.g., a 50% substitution rate
with 10 initial Express shipments indicates an expected demand of 5 shipments for both Express
and spot services. To evaluate the substitution effects, we assume equal Express and spot freight
rates, because if we can prove that substituting Express demand is profitable given equal freight
rates, then substituting is even more profitable when the spot rate increases. We apply the same
logic by setting equal freight rates for spot and Standard shipments, when we substitute Standard
demand with spot market demand. We optimize the resulting capacity allocation problem and
compare the scenarios on profit. It should be highlighted that we assume that Express, Standard
and spot market demand are Poisson distributed. Later in this section, we relax this assumption
and analyze the allocation decision given volatile spot demand.

It turns out that additional profit is obtained as more Express shipments are substituted. The spot
booking limit provides an upper bound on the spot sales, while the service provider is obliged to
accept all incoming Express demand. As a consequence, the spot market prevents against excess
shipments, yielding penalty cost savings, see Figure 5.7. On the other hand, substituting Express
shipments results in less revenue, because Express shipments are not constrained above. That
is, given equal expected demand, the expected number of spot sales is lower than the expected
number of Express orders, and generates thus less revenue, see Equation (3.6). Nevertheless, the
penalty cost savings offset the revenue loss, yielding more profit.

The profit opportunity increases as the share of Express shipments in the initial case increments,
especially when there are only Express orders, see Figure 5.6. The shipment window of Standard
shipments hedges against demand uncertainty, because it is allowed to postpone Standard ship-
ments. Replacing Standard orders with Express orders in the initial allocation portfolio with a
0% Express demand substitution rate increases the exposure to excess shipments, yielding more
expected penalty costs. Therefore, the advantage of substituting Express demand for spot demand
increases when there are relatively few Standard shipments in the allocation portfolio.

Figure 5.6: Simulation results of substituting Express demand with spot market demand, with 20
TEU capacity, rE = rspot = 100, rS = 80, p = 150, and Poisson distributed demand.
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Furthermore, it turns out that substituting Standard shipments for spot market shipments reduces
the expected profit, provided equal freight rates, see Figure 5.8. Substituting Standard shipments
cause additional excess shipments, due to reduced planning flexibility. Besides, the booking limit
constraints the spot shipments above, while excess Standard shipments are postponed to the next
day, such that they still generate revenue. That is, the service provider can accommodate more
shipments, yielding additional revenue, while it does not lead to excess shipments and thus posit-
ively contributes to the expected profit. Accordingly, in order to substitute Standard shipments for
spot shipments, the revenue generated by spot sales should offset profit loss. Figure 5.9 indicates
the required spot freight rate, which increases with the substitution rate, such that it is profitable
to substitute capacity reserved for Standard shipments with spot market demand.

In short, the substitution analysis showed that it is profitable to substitute Express shipments for
spot shipments while substituting Standard shipments is only profitable if the spot freight rate
compensates the profit loss.

Figure 5.7: Revenue and penalty costs of substituting Express demand for Spot market demand
with 75% initial Express demand, with 20 TEU capacity, rE = rspot = 100, rS = 80, p = 150, and
Poisson distributed demand.

Figure 5.8: Simulation results of substituting Standard demand for Spot market demand, with 20
TEU capacity, rE = rspot = rS = 100, p = 150, and Poisson distributed demand.
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Figure 5.9: Required spot freight rate increase to offset the profit loss due to substituting Standard
demand.

Spot market demand volatility

In contrast to the previous spot market analysis, we examine the allocation decision mechanisms
by increasing the spot demand volatility relative to the Express and Standard demand volatility,
i.e., we assume more uncertain spot demand. In Section 3.1.2 we assumed Poisson distributed spot
demand, with a mean arrival rate of λ shipments and a variance of λ, i.e., a standard deviation
of
√
λ. However, in order to alter the spot demand volatility, we assume a Normal distribution

with mean λ and standard deviation
√
λ, which approximates the Poisson distribution for λ > 10,

provided that a continuity correction is applied. The accuracy of the approximation increases
with λ. We alter the standard deviation of the Normal distribution to assess the spot demand
volatility. The reference case follows a Normal distribution with a standard deviation of

√
λ and

we compare it with more volatile spot demand by increasing the standard deviation.

Figure 5.10 shows the expected profit given the increased spot demand volatility relative to the
initial case, in which spot and Express demand are even volatile. Increasing the spot demand
volatility negatively affects the profit as the exposure to capacity underutilization increases. The
realized shipment demand deviates further from the mean when the standard deviation, i.e., the
demand uncertainty, increments. Consequently, there is an increased probability that there arrive
less spot shipment requests as the booking limit allows, which results in underutilization and
revenue loss. On the other hand, the upward demand risk, i.e., there are more incoming spot
shipment requests as expected, does not influence the profit since the booking limit prevents to
accept more shipments as the booking limit. The exposure to spot demand volatility increases as
more capacity is reserved for spot sales.

Notice that we assumed that the Normal distribution approximates Poisson distributed spot de-
mand, which holds that the standard deviation equals

√
λ, with λ the mean expected spot ship-

ments. This implies that a larger mean results in a relatively larger standard deviation. Therefore,
given Poisson distributed demand, the larger the expected number of spot orders, the stronger the
profit is influenced by the volatility.

To analyze the spot demand volatility effects, consider the following scenario that is optimized
by the simulation-based optimization model, as defined in Section 3.3. A service provider with
a capacity of 150 TEU, with a demand for 50 Express, 50 Standard and 100 spot shipments,
seeks to maximize the expected profit. The service provider is forced to reject demand due to
capacity limitations. Based on the observation in Section 5.3.3, we assume that it is only allowed
to substitute Express demand for spot demand. The contractual demand is variable, such that the
service provider can substitute Express demand one by one, i.e., there are no contractual volume
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constraints. Next, we assume deterministic and fixed freight rates of $100 for spot and Express
shipments and $90 for Standard shipments. The penalty costs comprise the spot freight rate with
a 10% premium, i.e., p = 110, and the risk-free rate rf equals 1%.

Table 5.5 summarizes the results of the optimal capacity distribution to spot, Express, and Stand-
ard demand. A standard deviation of

√
λ reflects a Normal distribution that approximates the

Poisson distribution. Notice that the Express and Standard demand follow a Normal distribution
that approximate the Poisson distribution, such that we only increase the spot demand volatil-
ity. It turns out that less capacity is reserved for spot market sales as the volatility surges. The
risk of underutilization increases with the spot demand volatility, because realized spot demand
could disappoint, while Express demand provides more certainty. The spot market booking limit
prevents overutilization because all demand above the booking limit is rejected. It follows that
the logistics service provider should allocate less spot demand as the spot demand uncertainty
increases.

In Figure 5.6, we observed that substituting capacity reserved for Express shipments by spot ship-
ments positively contributes to the profit, and that the contribution increases with the substitution
rate. We now analyze the volatility effects on the profit while we substitute Express demand for
spot demand.

Figure 5.11 shows the expected profit given the spot demand volatility and the Express substitution
rates, relative to a portfolio that only includes Express shipments. Profit opportunities exist in
the initial case with equal volatile Express and spot demand by substituting Express demand
with spot shipments, because the spot market booking limit prevents against excess orders, see
Section 5.3.3.

Table 5.5: Simulation results of determining the optimal spot market booking limit given volatile
spot demand, with λspot = 100, λE = 50, λS = 50.

Spot demand volatility nspot DE DS Profit Revenue Penalty

1.00
√
λ 89 12 50 14,907 15,032 125

1.10
√
λ 87 14 50 14,904 15,036 132

1.50
√
λ 81 20 50 14,893 15,028 135

2.00
√
λ 71 30 50 14,878 15,037 159

Figure 5.10: Profit given more uncertain spot market demand, with DE = {8, 2}, DE = {2, 8},
rE = 100, rS = 80, rspot, and p = 100.
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It turns out that the profit opportunity decreases when spot demand gets more uncertain. A
contract portfolio that consists for 75% of Express shipments with 25% more volatile spot market
results in equal expected profit as the portfolio with only Express shipments. That is, at this
point the logistics service provider is indifferent between partly serving the spot market or only
utilizing Express demand. Only serving Express demand is preferred as the spot volatility is
more substantial than 25% compared to an allocation portfolio that consists for 25% of Express
shipments. Furthermore, it turns out that a higher spot volatility is acceptable as the Express
substitution rate increases. The penalty costs significantly influence the profit, which reflects that
it is profitable to substitute Express shipments for spot demand because it reduces the expected
excess shipments. Although, the exposure to spot demand volatility increases when relatively
much capacity is reserved for spot sales, it is still profitable to substitute Express demand for spot
demand. For example, it is profitable to substitute all Express demand for spot services as the
spot market is 80% more volatile as contractual Express demand.

5.3.4 Stochastic spot freight rates
This section addresses the capacity allocation problem with stochastic spot freight rates. As
discussed in Section 2.4, the stochastic spot rates exhibit a mean-reverting property, which is
modeled by an Ornstein-Uhlenbeck process. To analyze the optimal allocation decision under
stochastic spot freight rates, we alter the variance of the spot rates by varying the mean-reverting
rate and the standard deviation.

Consider a capacity allocation problem with a fixed capacity of 50 TEU and 50 TEU demand
for both Express and spot services, i.e., λE = λspot = 50, while there is no demand for Standard
services, such that the service provider can solely focus on optimizing the capacity distribution
to Express and spot market demand. This way, we exclude the shipment window complexity
on the allocation decision. Moreover, in Section 5.3.3, we observed that it is only profitable to
substitute Express demand with spot demand. We assume Normal distributed Express and spot
demand, that approximate the Poisson distribution with mean λ and standard deviation

√
λ.

Next, we assume that spot market demand is two times as volatile as Express demand, i.e., a
standard deviation of 2

√
λ, such that the benefits of serving the spot market are suspended, see

Section 5.3.3. In other words, it is even profitable to serve the spot market as utilizing Express
demand. Furthermore, we assume that there are no contractual volume restrictions, such that the
service provider could determine the optimal cargo mix between Express and spot demand. The
Express freight rates are deterministic and equal $100. The spot freight rates are described by
an Ornstein-Uhlenbeck process with the long-term mean freight rate θ of $100, while we alter the
standard deviation and mean-reverting rate of the freight rates to examine the sensitivity.

Figure 5.11: Simulation results of substituting Express demand with volatile spot demand relative
to a portfolio that consists exclusively of Express demand, given an initial share spot orders.
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We apply the simulation-based optimization model as in Section 3.3.1 and sample a spot price
path in each simulation run via the OU-process, see Equation (3.27). We determine the expected
profit of each allocation portfolio and identify the best performing allocation portfolio in each
simulation run given the realized demand and spot freight rates. That is, we count the number of
times that a portfolio resulted in the highest profit. Notice that we exclude the demand-supply
mechanisms to reduce the complexity by assuming that the spot demand and freight rates are
independent. All simulation results are subject to a 95%-confidence interval.

Figure 5.12 reflects the probability distribution that an allocation portfolio, indicated by the spot
market booking limit, provides the highest profit, given stochastic demand and deterministic or
stochastic spot freight rates. The probability distribution function is established based on the
number of times that an allocation portfolio resulted in the highest profit. For example, given
deterministic spot freight rates, there is a 10% probability that an allocation portfolio with a spot
market booking limit of 30 shipments provides the maximum profit. In other words, allocating
on average 22 Express shipments with a spot market booking limit of 30 shipments provided 505
times out of 5,000 simulations runs the highest profit.

It turns out that the optimal allocation portfolio that provides the highest expected profit is in-
dependent of the stochastic freight rate volatility because the optimal capacity allocation remains
the same when the volatility increases, see Table 5.6. That is, the optimal allocation portfolio
with n∗spot does not significantly change when we increase the spot freight rate volatility, see Ap-
pendix F.3. More specific, the optimal allocation portfolio given deterministic and volatile spot
freight rates includes a spot market booking limit of 30 shipments and 22 allocated Express ship-
ment demand. A risk-neutral logistics service provider will commit to the allocation portfolio with
the highest expected profit. Therefore, the optimal capacity distribution of the logistics service
provider is insensitive to the spot freight rate volatility because the initial allocation portfolio
provides the highest expected profit, even when the spot freight rate volatility surges.

Moreover, Table 5.6 provides the mean and the standard deviation of the optimal booking limit
probability distribution. It turns out that increasing the spot freight rate volatility implies a
reduced probability that the selected allocation portfolio provides the highest profit when the
freight rates are realized in the booking horizon. In other words, increasing the variance of the
spot freight rates results in a more substantial standard deviation of the optimal booking limit
distribution, implying that we are less confident that the optimal allocation portfolio provides the
maximum profit.

Figure 5.12: Probability mass distribution that the selected spot market booking limit results in
the highest profit, given stochastic spot demand and deterministic or stochastic spot freight rates.
Based on 5,000 simulations runs with θ = 100, and κ = 0.25.
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Table 5.6: Optimal capacity distribution to spot and Express demand given volatile spot market
demand σspot = 2

√
λ, 50 TEU capacity, rE = 100, p = 150, and the long-term mean spot rate

θ = 100

Spot freight rates Spot demand allocation

κ σrate Var n∗spot Daily profit µbooking limit σbooking limit skewness

deterministic 30 4774.81 ±1.78 28.46 4.37 -0.64

0.25 10 200 30 4753.54 ±0.71 26.99 8.58 -0.78

0.25 20 800 30 4733.37 ±3.75 25.46 12.11 -1.24

Figure 5.13: Probability mass distribution of that the selected spot market booking limit results in
the highest profit, given stochastic spot demand and stochastic spot freight rates. Based on 5,000
simulations runs with θ = 100, and κ = 0.25.

For example, consider the case in Figure 5.13, increasing the standard deviation from 10 to 20
reduces the probability that an allocation portfolio with 30 spot shipments is the optimal portfolio
with 3%. That is, there is a 7% probability that a booking limit of 30 shipments with a standard
deviation of 10 results in the highest profit, while this probability is only 4% when the standard
deviation increases to 20. Notice, that the mean of the optimal booking limit distribution does not
equal the allocation portfolio that provides on average the highest expected profit. The tails of
the probability distribution increase with the stochastic spot freight rate volatility, which reduces
the mean of the observations. However, increasing the spot rate volatility does not significantly
affect the optimal capacity allocation to spot market demand.

Furthermore, it turns out that the optimal capacity allocation is moderately negatively skewed,
which implies that the distribution has a relatively large lower tail compared to the upper tail,
see Table 5.6. Again the optimal allocation portfolio with the highest expected profit remains
equal when the volatility increases. Increasing the spot rate volatility results in a more significant
lower tail of the optimal spot market booking limit relative to the upper tail. It follows that the
service provider could hedge against the spot rate volatility by reducing the capacity reserved for
spot sales. That is, the exposure to the spot freight rate uncertainty depends on the capacity size
reserved for spot sales, implying that the exposure increases when the service provider allocates
more capacity to spot market demand. The upper tail of the optimal allocation distribution is
bounded by the spot demand size, which equals 50 shipments.
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Another interesting observation from Figure 5.13 is that the probability of primarily serving Ex-
press demand, instead of spot demand, increases with the spot freight rate volatility. The Express
freight rates provide security against the spot freight rate volatility, because the contractual freight
rates are deterministic. As the spot freight rates have a negative trend, it becomes more profitable
to serve Express demand since it has a higher revenue per shipment. However, if the spot freight
rates have a positive trend, such that the spot prices exceeds the contractual prices, the logistics
service provider could not profit of this opportunity when it allocates too few spot market demand.
Therefore, the optimal allocation portfolio that results on average in the highest expected profit
is independent of the spot freight volatility as it could have a positive or a negative trend, which
is unknown at the moment of allocation.

Finally, we analyze the effects of the mean-reverting rate, which reflects the speed at which the
spot freight rate reverts back to the long-term mean. To examine these effects, we alter the
mean-reverting rate and the standard deviation such that it results in equal spot freight rate
variance. It turns out that the standard deviation of the optimal capacity allocation distribution
decreases when the mean-reverting rate increases, see Table 5.7. That is, if we increment the
mean-reverting rate to 1, such that the prices tend to revert quicker back to the mean level, the
standard deviation of the optimal allocation portfolio increases. Therefore, increasing the mean-
reverting rate reduces the exposure to the spot freight rate volatility, because the prices revert
earlier back to the mean-level, preventing ‘extreme’ freight rates.

Table 5.7: Optimal capacity distribution to spot and Express demand given volatile spot market
demand σspot = 2

√
λ, 50 TEU capacity, rE = 100, p = 150, and the long-term mean spot rate

θ = 100

Spot freight rates Spot demand allocation

κ σrate Var n∗spot µbooking limit σbooking limit

0.25 20 800 30 25.46 12.11

0.50 28.28 800 30 26.63 10.35

1 40 800 30 27.97 8.28

5.3.5 Perfect-hindsight study

This study focuses on a static spot market booking limit, which indicates the maximum number of
spot orders to accept, independent of available capacity and time. The service provider commits to
allotment contracts before the start of the booking horizon and is obliged to serve all contractual
demand, which holds that the service provider can only influence profit throughout the booking
horizon by accepting and rejecting spot shipment requests. In order to quantify the performance
of this static allocation strategy, we perform a simulation-based revenue-opportunity assessment.

The assessment compromises a perfect-hindsight approach that determines the optimal profit in
case demand was perfectly known, see Talluri and Van Ryzin (2006). In retrospective, it is de-
termined which spot requests should have been accepted given the actual realized contractual and
spot market demand. The perfect-hindsight approach provides an upper bound to the expected
profit, which we use to quantify the performance of the static allocation strategy. That is, we
compare the profit obtained by a static booking limit strategy with the profit upper bound.

We analyze the profit of the optimal and static strategy in multiple scenarios in which we alter the
utilization and the ratio of spot orders in total demand. We assume Poisson distributed Express,
Standard and spot demand and fixed capacity. For simplicity, we assume equal freight rates for
Express, Standard and spot shipments, penalty costs of 150% the freight rates, and a risk-free
interest rate rf of 1%. All simulations are subject to a 95%-confidence interval.
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Given a 100% utilization, the assessment shows that the static strategy obtains on average 99.04%
of the total profit that could have been acquired with the optimal strategy. In other words, the
static allocation strategy results in 0.96% less profit compared to the profit upper bound. Adapt-
ing the allocation strategy could exploit this profit opportunity. It turns out that the revenue-
opportunity grows proportionally with the ratio of spot sales to the total demand, especially in
case of low and high utilization, see Figure 5.14.

There exist no revenue opportunities when the logistics service provider only serves contractual
demand (0% spot) because the provider must accommodate this demand. On the other hand, only
serving the spot market (100%) with an average asset utilization of 100% does also not provide
revenue opportunities, because the booking limit equals the daily capacity, yielding no excess
orders. Revenue-opportunities exist in all other cases, which could be exploited by accepting more
or less spot shipment requests.

Considering a high asset utilization (110%), the service provider should reject spot shipments
to prevent for excess orders, while it should accept more spot shipments in case of low asset
utilization (90%). An asset utilization of 100% provides small revenue opportunities as the con-
tractual demand, and the spot market sales are on average equal to the capacity. To exploit these
revenue-opportunities, the service provider should reject spot shipment requests if they have more
contractual sales on hand as expected and should accept requests if demand falls short. Notice
that it is likely that the optimal solution to the capacity allocation problem has a utilization
of about 100%, because overutilization results in penalty costs, while underutilization provides
revenue opportunities.

Figure 5.14: Profit opportunity assessment.

5.3.6 Penalty costs

Penalty costs constraint the service provider in its allocation decision. Naturally, increasing the
penalty costs reduces the demand allocation to prevent excess shipments, see Table 5.8. More
specifically, the results in Table 5.8 reflect that the spot booking limit decreases when the penalty
costs increase. The saved penalty costs outweigh the additional revenue obtained by allocating
extra spot shipments. Hence, the optimal capacity allocation is a trade-off between revenue and
penalty costs. Consequently, the logistics service provider should temper the demand allocation
as the penalty costs increase.
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Table 5.8: Penalty costs analysis. Poisson distributed Express, Standard and spot demand, with
λE = {8, 2}, λS = {2, 8}, λspot = 13, rE = 100, rS = 80, rspot = 120, and p = 150.

Penalty costs Contracts nspot Profit Utilization Excess

[%] [orders]

120 [0,1] 13 2028 95.7 2.43

150 [0,1] 12 1982 99.1 1.21

200 [0,1] 11 1946 98.4 0.70

300 [0,1] 10 1910 96.7 0.29

5.3.7 Shipment window

In this study, we assumed a 1- and 2-day shipment window for Express and Standard services
respectively. This section evaluates the effects of increasing the Standard shipment window relative
to the Express window on the allocation decision and the on performance regarding profit, revenue,
and penalty costs.

Table 5.9 displays the expected profit given the shipment window policy. It turns out that extend-
ing the shipment window, while keeping the same allocation, results in additional profit. That
is, extending the shipment window to a 3-day policy yields 2.7% more profit, due to penalty cost
savings, see Table 5.10. This finding is in line with the work of Van Riessen et al. (2017) that
show that increasing the Standard shipment window results in costs savings.

Furthermore, extending the shipment window provides the opportunity to accept more demand.
A 3-day policy allows incrementing the booking limit with one spot order, yielding 3.4% more
profit. The additional shipment day hedges against demand uncertainties as demand fluctuations
are absorbed. Extending the shipment window to a 4-day policy allows to increment the booking
limit with another additional shipment and surges the profit with 5.9% compared to the 2-day
policy.

It is plausible to assume that the customer will only agree to extended shipment windows if it
is reflected by the freight rates. Therefore, the logistics service provider should transfer part
of the financial benefits that follow from extending the shipment window to the customer. For
example, extending the shipment window from a 2-day to a 3-day policy results in $50 (=$1993-
$1883) additional profit, provided that the allocation not changes. This extended window allows
the service provider to reduce the Standard shipment freight rate with $7.14 (= $50/7), given an
expected demand of 7 Standard shipments, such that the expected profit of the 2-day policy equals
the 3-day policy profit. Consequently, the logistics service provider charges $72.86 per Standard
shipment instead of $80.00. Notice that we assumed in this example that the shipment demand
is independent of the freight rate, i.e., demand does not inflate due to the reduced prices.

Table 5.9: Simulation results of extending shipment window of Standard services, based on 10,000
runs of 252 days. 20 TEU capacity, and Poisson distributed Express, Standard and spot demand,
with λE = {7, 3}, λS = {3, 7}, λspot = 10, rE = {100, 100}, rS = {80, 80}, rspot = 120, p = 200.

Allocation Average Daily Profit

x1 x2 nspot 2-day policy 3-day policy 4-day policy

0 1 11 1883 ± 0.1 1933 ± 0.1 (+2.7%) 1951 ± 0.2 (+3.6%)

0 1 12 1878 ± 0.2 (-0.3%) 1942 ± 0.1 (+3.4%) 1972 ± 0.2 (+5.0%)

0 1 13 1867 ± 0.3 (-0.8%) 1939 ± 0.2 (+3.9%) 1977 ± 0.2 (+5.9%)
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Table 5.10: Standard shipment profit for 2 and 3-day policy with contract portfolio [0,1] and a
booking limit of 11 shipments.

Policy Revenue Penalty Profit

2-day 1960 77 1883

3-day 1960 27 1933

[0%] [-65%] [+3%]

5.3.8 Forecast reliability
The allotment bid specifies the expected daily number of shipments per service type that the
freight forwarder expects to ship. This suggests that the service provider should optimize its
allocation portfolio based on demand forecasts that are provided by the freight forwarders. In
this section, we evaluate the effects of the forecast reliability on service provider’s expected profit.
We define the forecast reliability as the variance of the demand distribution, i.e., it indicates the
spread of the random demand variables from the mean. Accordingly, a high forecast accuracy
implies a low variance. To assess the forecast reliability effects on the profit, we assume that
demand is Normal distributed and alter the standard deviation as in Section 5.3.3. The reference
case follows a Normal distribution with a standard deviation of

√
λ and approximates the Poisson

distribution for λ > 10.

Table 5.11 provides a summary of the expected profit given the forecast reliability. It turns out
that the profit increases with the forecast reliability, insinuating that the service provider should
prefer customers with reliable forecasts, provided that the freight rates of less reliable customers
do not compensate the profit loss. Contracts with reliable forecasts are profitable because there
is a lower probability that the capacity is exceeded, yielding reduced penalty costs. Next, a lower
standard deviation implies that the realized shipments are closer to the mean, which positively
effects operations as the probability of ‘extreme’ shipment volumes decreases.

Reliable contracts are preferred in situations with normal asset utilization (1.00), high asset util-
ization (1.10), low asset utilization (0.90), and in case of only Express demand. However, it turns
out that the forecast reliability does not affect the profitability in case of only Standard orders
because the 2-day shipment window of the Standard services hedges against demand uncertainty.
That is, Standard shipments are postponed to the next day in case of high demand, which is
not allowed for Express and spot shipments. The shipment window of Standard services absorbs
demand fluctuations and is thus less sensitive to the forecast reliability.

Table 5.11: Simulation results of the allotment contract’s forecast reliability without spot market
demand. 95%-confidence interval based on 10,000 simulation runs.

Capacity Demand Freight Rates Standard Deviation

(exp/std) (exp/std) 0.5
√
λ

√
λ 2

√
λ 3

√
λ

200 100/100 100/80 17068 (±1) 17005 (±1) 16744 (±2) 16341 (±4)

180 100/100 100/80 12441 (±6) 12429 (±6) 12356 (±7) 12203 (±9)

220 100/100 100/80 17996 (±2) 17987 (±2) 17956 (±1) 17838 (±3)

100 100/0 100/0 9445 (±2) 8887 (±1) 7772 (±2) 6658 (±3)

100 0/100 0/80 7087 (±3) 7089 (±3) 7087 (±3) 7088 (±3)
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Chapter 6

Conclusions

This project presented a single-leg cargo revenue management model to determine the optimal
cargo capacity distribution that maximizes the expected profit. In this chapter, we answer the
research question, reflect upon the scientific contribution, formulate practical recommendations,
and provide directions for future research. The research question that guided this research was
formulated as:

How can the introduction of a revenue management model that optimizes the capacity
allocation to allotment contracts and spot market demand support EGS’s perform-
ance in terms of profit and asset utilization?

A synchromodal logistics service provider offers two mode-free transportation services: Express
and Standard with a 1- and 2-day shipment window respectively. The logistics service provides
faces a capacity allocation problem, which is an economic trade-off between guaranteeing that
capacity is utilized by committing to allotment contracts and reserving capacity for spot market
sales, with the objective to maximize the expected profit, while coping with the shipment windows,
limited capacity, stochastic demand, and (optionally) stochastic spot freight rates.

Two optimization models are defined to the cargo capacity allocation problem that acknowledge
the stochastics and constraints. First, a stochastic integer program is defined to determine the
capacity distribution that maximizes the expected profit, given deterministic spot freight rates.
In the second, we formulated a simulation-based optimization model that incorporates stochastic
spot freight rates, which exhibit mean-revering characteristics and are modeled by an Ornstein-
Uhlenbeck process. The optimal allocation portfolio suggests which contracts to accept, which to
reject and includes a spot market booking limit, which indicates the maximum number of spot
orders to accept on a day. Next, the models provide the expected profit, asset utilization and
excess shipments of the allocation portfolio.

Furthermore, we presented a method to determine the minimum bid-price of contracts that are
rejected due to other more profitable business opportunities. The minimum bid-price indicates
the required freight rate of a contract such that it offsets the profit opportunities. In other words,
it specifies the floor price from which the contract is profitable to grant.

We solved the capacity allocation problem optimally for small-sized numerical problems, conducted
a case study and performed a sensitivity analysis to extend our insight on the allocation dynamics.
The numerical analysis revealed that the profit function is concave in the capacity since the profit
increases when additional demand is allocated to underutilized capacity, while it decreases as
capacity is overutilized due to penalty costs owing to excess shipments. The case study showed
that the optimization algorithm results on average in 3.68% more profit compared to the allocation
decisions taken by experienced sales representatives.

The sensitivity analysis illustrated that the optimal cargo allocation distribution depends on the
capacity, contractual and spot demand, the corresponding freight rates, the transportation services,
and on the spot market demand volatility.

Moreover, the analysis revealed that the optimal distribution between Express and Standard
services depends on the shipment windows and the freight rate spread. It is shown that it is
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profitable to include Standard shipments in the allocation portfolio provided that the freight rate
spread is at most 30%, because the extra shipment day of the Standard service hedges against
demand uncertainty, which in turn positively contributes to the profit. The smaller the freight
rate spread, the more profitable to include Standard services.

Furthermore, the sensitivity analysis showed that extending the shipment window of the Standard
service yields additional profit due to penalty cost savings, and allows to allocate more demand.
The logistics service provider could use the additional profit to compensate the customer for the
extended shipment window.

Besides, we addressed the customer’s demand forecast reliability, which indicates the demand
volatility. The lower the reliability, the more substantial the demand deviations. Reliable forecasts
positively contribute to the profit, while the expected profit reduces with the reliability. It follows
that the freight rates charged to unreliable customers should compensate the profit loss. Besides,
the service provider should prevent excess shipments as the penalty costs increase.

Numerical experiments showed that it is profitable to substitute Express shipments with spot
shipments, while it is only profitable to substitute Standard shipments if the spot freight rate
compensates the profit loss due to reduced planning flexibility. Serving the spot market exposures
the logistics service provider to the risk of underutilized capacity, because the realized shipment
request could fall short. It turned out that the optimal capacity allocation to Express, Standard
and spot market demand depends on the freight rates and the spot demand volatility.

Moreover, we showed that the optimal capacity allocation of a risk-neutral logistics service provider
is independent of the spot freight rate volatility, because increasing the spot price volatility results
in exactly the same capacity allocation. However, the probability of selecting the optimal capacity
allocation decreases as the spot freight rate becomes more volatile since there is more uncertainty
in the realized spot freight rates. Additionally, the exposure to spot price volatility increases as
more capacity is reserved for spot sales.

To improve the practicability of the optimization models, we developed a genetic algorithm as
a heuristic to the capacity allocation problem. Computational results showed that the proposed
algorithm provides (near-) optimal solutions within a reasonable computation time, with a reported
average error term of 0.08%, and average time savings of 60%.

The conducted research provides the foundation to answer the research question. As stated in
the problem statement, the company’s current sales strategy focuses on maximizing the asset
utilization, without accounting for stochastic demand and the transportation services’ shipment
windows. The introduction of a revenue management model that optimizes the capacity distri-
bution to allotment contracts and spot market demand, and copes with fixed capacity, stochastic
demand, freight rates, and stochastic spot freight rates provides the opportunity to improve the
company’s profit. That is, numerical experiments and the sensitivity analysis showed the depend-
ency of the optimal allocation on the demand, shipment windows and freight rate characteristics.
The optimal asset utilization depends on the allocation portfolio that maximizes profit. Con-
sequently, maximizing the profit may not imply maximized asset utilization. Furthermore, this
study showed that performance improvement is possible by reserving capacity for spot market
sales. Quantifying the profit opportunity was not possible, due to a lack of available company
data.

By addressing the cargo revenue management problem for synchromodal service providers, we
contribute to the limited literature on revenue management for synchromodal transportation and
cargo capacity allocation problems in general. We showed that the shipment windows affect the
optimal cargo distribution. Furthermore, we contribute to literature by showing that it is profitable
to substitute advanced capacity sales with spot market demand. Finally, this paper contributes
to current cargo revenue management literature by studying the capacity allocation problem with
stochastic spot freight rates, by modeling it as a Ornstein-Uhlenbeck process.
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6.1 Recommendations
Based on the conclusions drawn, we formulate the following practical recommendations.

Focus on profit maximization
From the conclusion drawn in the previous section, it follows that the logistics service provider
can maximize its profit by optimizing the capacity distribution to multiple freight forwarders and
spot market demand, while coping with stochastic demand, freight rates, spot demand volatility
and customer reliability. Therefore, it is recommended to shift from a maximizing asset utilization
strategy to a strategy that focuses on maximizing profit by accounting for stochastic demand,
freight rates, spot demand volatility and customer reliability in the capacity allocation process.

Reserve capacity for spot market demand
In this study, we showed that serving the spot market provides an opportunity to improve the
profit. Spot market shipment requests provide an option on demand because the service provider
is allowed to reject incoming shipment requests. While demand from the allotment contracts must
be accommodated, spot shipment requests could be rejected. Case in point, if the carrier has
sufficient capacity available, spot requests would be accepted and rejected if capacity is insufficient.
The sensitivity analysis revealed that substituting Express shipments with spot shipments yields
additional profit, while substituting Standard shipments is only profitable if the spot freight rate
compensates the reduced planning flexibility. Serving the spot market exposures the logistics
service provider to the risk of underutilized capacity, because the realized shipment requests could
fall short. The results of this study indicate that less capacity should be reserved for spot market
sales as the demand volatility increases. In short, it is recommended to reserve capacity for spot
market sales, while coping with the stochastic spot demand and freight rates.

It should be noted that this study did not analyze the actual spot market demand and freight
rates, due to unavailable data. Therefore, we recommend that ECT and EGS should survey the
spot market characteristics.

Include Standard services in the allocation portfolio
Given a 1- and 2-day shipment window for Express and Standard services, respectively, and a 10%
freight rate spread between the services, the capacity allocation distribution that would maximize
the expected profit consists for 18% of Standard shipments and 82% of Express services, provided
that spot market demand is not utilized.

In this study, we showed that the optimal capacity distribution to the transportation services
depends on the shipment windows and the freight rate spread. It turned out that it is profitable
to include Standard services in the allocation portfolio provided that the freight rate spread is at
most 30%. The additional shipment day of the Standard transportation service provides extra
planning flexibility, and reduces the probability of excess orders, yielding lower penalty costs that
offset the revenue loss of selling Express services. Consequently, a higher profit may be obtained
with a lower revenue. Therefore, it is recommended to focus on selling Express services, but
account for planning flexibility by including Standard services in the portfolio.

Measure and incorporate the customer’s forecast reliability
Currently, EGS does not measure and incorporate the customer’s forecast reliability in its capacity
allocation decision process. This study showed that the forecast reliability affects the expected
profit from the allocation portfolio. It turned out that the Express services are especially sensitive
to the forecast reliability. As the shipment window of the Standard services hedges against the
demand uncertainties, it is less sensitive to demand fluctuations. Therefore, it is recommended to
incorporate the customer’s demand reliability in the allocation decision process, especially if the
service provider sells mainly Express services. Next, it is recommended to reflect the customer’s
reliability in the freight rates, such that unreliable customers compensate the service provider
for the demand uncertainty. To incorporate the forecast reliability, the company should start
measuring the reliability of its current customers, such that this information could be exploited in
the next allocation process.
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6.2 Limitations
We identify the following limitations of our research:

• No empirical demand and freight rate data is used in the simulations. The input parameter
values are guessed based on previous work and recommendations of sales representatives.
Due to a lack of data, it was impossible to test the proposed model based on actual informa-
tion. Consequently, there is a discrepancy between the current situation and the simulations,
yielding results that may deviate from the real-world situation. Nevertheless, the simulations
provided insights into the mechanisms of the proposed model.

• We assumed Poisson distributed demand. Again, empirical data was unavailable which
makes fitting a theoretical distribution impossible. To deal with other theoretical distribu-
tions model adoptions are required. Notice that the proposed simulation-based optimization
model fits all theoretical distributions.

• A fixed capacity is assumed but, in reality, capacity could be flexible.

• A deterministic lead time of each modality is assumed.

6.3 Future research
This section derives suggestions for future research.

Network revenue management
In our study, the capacity allocation problem was solved optimally for a single corridor, i.e., a
single-leg revenue management problem. In reality, most carriers operate a network of connections.
Maximizing the profit of a single corridor might not yield an overall maximized network-wide
profit. Including multiple corridors introduces extra complexities since a freight forwarder might,
for example, wants a contract that covers the whole network, while another carrier has only
demand for a single corridor. Therefore, it would be interesting to study the multi-leg cargo
capacity management problem of a synchromodal service provider.

Overbooking
We neglected the effects of no-shows and cancellations on the allocation decision in this study.
Although various studies focused on the overbooking concept, it is not studied in a business context
with multiple transportation services. It is therefore interesting to examine the overbooking effects
in future research.

Booking control
In this study, we presented a capacity allocation model with a static booking limit, which indicates
the maximum daily number of spot shipments to accept. In reality, the service provider could
exploit the latest information available in its spot request acceptance decision. The complexity
is that the carrier should decide whether to accept the spot order when the actual demand at
departure is unknown. Accounting for delayed demand or demand that does not show up makes
the problem even more complicated. Accordingly, the carrier faces a booking control problem,
which requires a booking policy that determines if a spot request should be accepted in order to
maximize profit. In Section 5.3.5 we showed that profit opportunities exist by optimizing the spot
request allocation decision. For future research, it is therefore interesting to study the booking
control problem given multiple transportation services.

Booking control models have been studied by Amaruchkul, Cooper and Gupta (2007); Levin
et al. (2012) and Moussawi-Haidar (2014), but all focus on a single transportation service. The
booking control problem is a dynamic process as the spot acceptance decisions are time-dependent.
Therefore, the mechanisms of the problem can be modeled by a Markov Decision Process, where
the state variable represents the current inventory on hand. The objective of the problem is to
accept the optimal amount of spot shipment requests such that profit is maximized. The optimal
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acceptance decision depends on the current orders on hand, the expected demand, the expected
cancellations, and the show-up probability. The complexity of the booking control problem for
the synchromodal service provider is that Standard orders could be postponed to the next day.
Modeling this problem as a Markov Decision Process results in an infinite Markov Chain because
postponing shipments influence the bookings on hand of the next day and the days after that,
e.g., a spot order is accepted if there is room to postpone a Standard shipment to the next day
and tomorrow’s Standard shipment to the day after. This also holds that the MDP state variables
should be formulated such that both Express and standard Shipments on hand are tracked.

Extending transportation services
In our study, we assumed that there are only two transportation services with fixed shipment
windows. Accordingly, the proposed stochastic integer model is bounded by the number of services
and the corresponding shipment windows. It would be interesting to study the effects of relaxing
these assumptions.
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Appendix A

Company background

Table A.1: Key Figures European Gateway Services

Number of TEU 800.000

Number of employees 230

Number of ports 2

Number of hinterland terminals 17

Barge 6

Rail 4

Barge and Rail 7

Number of countries 5

Figure A.1: European Gateway Services network
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Appendix B

Formulation optimization models

B.1 Stochastic Integer Problem with deterministic freight
rates
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B.2 Simulation-based optimization model with stochastic
freight rates

max−→x ,nspot
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NPVspot = NPVexcess =
∑
t∈T

pt max
(∑
i∈B

Dt
E,i +Dt

spot +Rt−1S − C, 0
)
e−

rf t

252

dSt = κ(µ− St)dt+ σdWt

St+1 = Sie
−κt + µ(1− e−κt) + σ

√
1− e−2κt

2κ
N0,1

RtS =
∑
i∈B

Dt
S,i −max

(
C −Rt−1S −

∑
i∈B

Dt
E,i −Dt

spot, 0
)

rmax = max
i∈B

(rE,i)

pt = min(rmax, S
t) ∗ (1 + premium)

subject to

xi ∈ {0, 1} ∀x ∈ B
nspot ∈ N
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Appendix C

Genetic algorithm

C.1 Pseudocode

Algorithm 1 Genetic Algorithm to the Capacity Allocation Problem

1: GA(N, ps, pm, C, T)
2: N← population size
3: P k ← generation k with n individuals
4: Xk

i ← Chromosome of individual i of generation k
5: xgi ← Gene g of individual i
6: ps ← Selection probability
7: pm ← Mutation probability
8: C ← Number of children
9: T ← Termination criteria: maximum number of generations

10:

11: Initialize generation P 0 with N random individuals:
12: while < N :
13: generate individual X0

i

14: Evaluate individuals in P 0:
15: compute fitness for all X0

i ∈ P 0

16: while maximum generation not reached (k < T ) do:
17: //Create generation k + 1:
18: //Selection
19: Create N

2 tournaments
20: for Each Tournament do
21: if P k 6= ∅ do
22: Select and remove randomly two individuals Xi from P k

23: if fitness(X1) ≤ fitness(X2) do
24: insert X1 into mating pool with probability ps
25: insert X2 into mating pool with probability 1− ps
26: else
27: insert X1 into mating pool with probability 1− ps
28: insert X2 into mating pool with probability ps
29: end if
30: else
31: Replace all individuals in P k

32: end if
33: end for
34: . continues on next page
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35: //Crossover
36: while population < N do
37: Create C couples of parents from the mating pool
38: for Each Couple do
39: for Each xg ∈ X do
40:

Xg
Child =

{
xgParent1, with probability 0.5

xgParent2, otherwise.

41: end for
42: end for
43: //Mutation
44: for Each Individual Xk

i ∈ P k do
45: for Each gene of individual Xk

i do
46: if random number ≤ pm do
47: Flip value of gene xgi into opposite value
48: end if
49: end for
50: end for
51: //Evaluate individuals in P k

52: compute fitness for all Xk
i ∈ P k

53: //Increment
54: k: k+1
55: end while
56: //Improve
57: Select best fit individual from all generations P
58: Increase booking limit of best individual with +1
59: Evaluate fitness(i+1)
60: while fitness(i+ 1) ≥ fitness(i) do
61: Increase booking limit of individual i with +1
62: Evaluate fitness(i+ 1)
63: end while fitness(i+ 1)
64: Decrease booking limit of best individual with −1
65: Evaluate fitness(i+1)
66: while fitness(i+ 1) ≥ fitness(i) do
67: Decrease booking limit of individual i with −1
68: Evaluate fitness(i+ 1)
69: end while fitness(i+ 1)
70: //Solution
71: Return fittest individual
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C.2 Parameter analysis
This appendix presents an analysis of the Number of Generations input parameter of the Genetic
Algorithm. Two parameter settings are analyzed: a fixed parameter value and a parameter value
that depends on the CAP problem size. It turns out that the error term reduces when the number
of generations increases and that the optimal number of generations depends on the problem size.
A recommendation for the optimal parameter value as a function of the problem size is provided,
given that all other parameter values are set as stated in Section 4.2.

Evaluation criteria
The main evaluation criteria of the GA is the profit error term between the solution found and
the optimal solution. The error term is defined as the percental difference between the revenue
of the best solution found by the GA and the revenue of the optimal solution, which is found by
exactly solving the CAP. The second evaluation criteria is the accuracy of the algorithm, which is
defined as the number of times that the algorithm was able to find the optimal solution.

Test environment
The two parameter value strategies are evaluated based on the same scenarios. The strategies are
tested in multiple scenarios where the number of contracts, i.e. the problem size, increases while
keeping all other problem input values (capacity, revenue per shipment etc.) and the GA process
parameters equal. Each scenario consists of x contracts and an expected spot market demand of
2 shipments. The demand to capacity ratio is set to 1.8, which holds that the contractual and
spot market demand is 180% the size of the available capacity. Furthermore, the problem size
of a scenario, i.e. all possible candidate solutions, is 2kγ, where k are the number of contracts
and γ the spot market booking limit upper bound. Next, the GA parameters, except the Number
of Generations parameter, are determined according to the basic settings, see Section 4.2. An
overview of the parameter settings for each scenario can be found in Table C.1. For each case, i.e.,
a scenario with a specific parameter value, five GA runs are executed to ensure consistency among
scenarios. This way, the randomness effects on the GA performance are reduced. The average
performance of the five GA runs is calculated.

Table C.1: Scenario and corresponding parameter values

Scenario
#Contracts

(k)
λspot

Problem
Size

Population
Size

#Children #Parents pm ps

1 2 2 32 12 2 6 0.167 0.800
2 3 2 64 14 2 7 0.143 0.800
3 4 2 128 16 2 8 0.125 0.800
4 5 2 256 18 2 9 0.111 0.800
5 6 2 512 20 2 10 0.100 0.800
6 7 2 1024 22 2 11 0.091 0.800
7 8 2 2048 24 2 12 0.083 0.800
8 9 2 4096 26 2 13 0.077 0.800
9 10 2 8192 28 2 14 0.071 0.800

Fixed parameter value
The fixed parameter value strategy holds that the number of generations is fixed, independent
of the problem size, and independent of the other parameters. That is, the GA is terminated
after x generations. Figure C.1a presents the results of a scenario where the number of contracts
increases, while the parameter value is fixed to 8 generations. The results indicate that the error
term increases with the problem size (number of contracts), except for one outlier (9 contracts).
Multiple fixed Number of Generations parameter values were tested and all results indicate that
the error term increases in the problem size.

70



(a) Fixed number of generations termination criteria. (b) Problem size dependent termination criteria.

Figure C.1: Error term.

The increasing error term is explained by the fact that the GA examines a fixed number of
candidate solutions since the Number of Generations parameter and all other parameters are
fixed. While increasing the problem size and keeping the number of generations fixed, the number
of candidate solutions examined relative to the population size decreases. This holds that the
probability of selecting the candidate solution with the highest revenue decreases. It should be
noted that increasing the number of generations while keeping the problem size fixed reduces the
error term.

Problem size dependent parameter value
The results of the fixed parameter strategy indicate that there is a relation between the optimal
number of generations and the problem size. Therefore, the relation between the problem size
and the number of generations is analyzed with the goal to identify the optimal problem size
coverage. Multiple Number of Generations parameter values are tested. For each value, the
percental coverage of the solution space is calculated, by multiplying the number of generations G
with the population size S and dividing it by the problem size, see Equation (C.1). It should be
noted that this does not imply that x% of the solution space is actually examined. A single solution
could be examined multiple times due to the randomness of the evolution operators. Accordingly,
the coverage rate only indicates the total number of individuals in all populations examined and
not the unique ones. Next, only 4 different scenarios with varying amounts of candidate solutions
are examined, due to computation time limitations.

Coverage =
S ∗G
k + n

(C.1)

It turns out that increasing the solution space coverage reduces the error term, see Figure C.1b.
By classifying the coverage space of the multiple scenarios into intervals it is tried to determine the
average of all error terms. The error term results indicate that an coverage of 66% of the solution
space results in optimal GA performance, i.e. with an error term of 0%. Leaving out the scenario
with the smallest solution space (64 combinations) indicates that a coverage of 60% is sufficient.
Due to the low number of combinations of the 64 combination scenario the coverage step size is
33%.

Clearly, there is a relation between the performance and the solution space coverage, and thus
the number of generations since the population size is fixed. In addition, a high coverage of
the solution space results in a high accuracy of the GA, Figure C.2a. A coverage of more than
66% (60% without the smallest scenario) results in an accuracy of 100%, which implies that the
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algorithm was able to find the optimal solution in each trial run. Finally, increasing the number
of generations negatively affects computation time since more candidate solutions are examined,
figure Figure C.2b.

Parameter analysis results
Analyzing the two-parameter strategies shows that the optimal number of generations depends
on the number of candidate solutions in the solution space. A fixed number of generations, while
keeping all other parameters fixed, results in an error term that increases with the problem size. It
is therefore recommended to determine the optimal number of generations based on the problem
size. It turned out that a 60% coverage rate is sufficient such that the GA performs optimal, i.e.,
with a 0.00% error term and a 100.00% accuracy. Therefore, the number of generations should
be set such that 60% of the solution space is covered. More specific, the optimal number of
generations G is a function of the problem size and the population size S, Equation (C.2).

It should be noticed that an optimal GA performance, i.e. with a 0.00% error term, is not guaran-
teed with this parameter function. Although that the probability of finding the optimal solution
increases with increasing the number of generations, the GA evolution process still contains ran-
domness, which could influence the performance both positively and negatively. In addition, it
should be noticed that only a few scenarios are examined, yet as already stated, the main focus
of the GA development is to show its effectiveness and not the best algorithm.

Gopt(S, k, γ) =

⌈
2kγ ∗ 60%

S

⌉
(C.2)

(a) Accuracy. (b) Computation time.

Figure C.2: Problem size dependent termination criteria.
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C.3 Performance analysis scenarios and results

Table C.2: Scenario 1 - Problem size

#Contract Capacity Ratio λspot #Generations Population #Children #Parents pm ps
Demand/Capacity Size

2 25 1.8 2 2 12 2 6 0.167 0.800
3 25 1.8 2 3 14 2 7 0.143 0.800
4 25 1.8 2 5 16 2 8 0.125 0.800
5 25 1.8 2 9 18 2 9 0.111 0.800
6 25 1.8 2 16 20 2 10 0.100 0.800
7 25 1.8 2 28 22 2 11 0.091 0.800
8 25 1.8 1 35 22 2 11 0.091 0.800
9 25 1.8 1 55 24 2 12 0.071 0.800
10 25 1.8 1 120 15 2 13 0.077 0.800

Table C.3: Scenario 2 - Capacity

#Contract Capacity Ratio λspot #Generations Population #Children #Parents pm ps
Demand/Capacity Size

5 5 1.8 1 5 20 2 10 0.100 0.800
5 10 1.8 1 5 20 2 10 0.100 0.800
5 15 1.8 1 5 20 2 10 0.100 0.800
5 20 1.8 1 5 20 2 10 0.100 0.800
5 25 1.8 1 5 20 2 10 0.100 0.800
5 30 1.8 1 5 20 2 10 0.100 0.800
5 35 1.8 1 5 20 2 10 0.100 0.800
5 40 1.8 1 5 20 2 10 0.100 0.800
5 45 1.8 1 5 20 2 10 0.100 0.800
5 50 1.8 1 5 20 2 10 0.100 0.800
5 60 1.8 1 5 20 2 10 0.100 0.800
5 70 1.8 1 5 20 2 10 0.100 0.800
5 80 1.8 1 5 20 2 10 0.100 0.800
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Table C.4: Results scenario 1 - Problem size

#Contracts Error Term Exact Profit Average GA Profit Run 1 Run 2 Run 3 Run 4 Run 5

2 0.00 2471.56 2471.56 2471.56 2471.56 2471.56 2471.56 2471.56
3 0.00 2433.32 2433.32 2433.32 2433.32 2433.32 2433.32 2433.32
4 0.00 2398.23 2398.23 2398.23 2398.23 2398.23 2398.23 2398.23
5 0.02 2561.62 2561.13 2559.12 2561.62 2561.62 2561.62 2561.62
6 0.05 2514.33 2513.13 2514.33 2514.33 2508.32 2514.33 2514.33
7 0.16 2603.88 2599.81 2583.54 2603.88 2603.88 2603.88 2603.88
8 0.09 2553.77 2551.37 2553.77 2553.77 2553.77 2553.77 2547.77
9 0.01 2497.46 2497.16 2497.46 2497.46 2497.46 2497.46 2495.94
10 0.01 2613.77 2613.51 2613.77 2613.77 2612.46 2613.77 2613.77

Table C.5: Results scenario 2 - Capacity

Capacity Error Term Exact Profit Average GA Profit Run 1 Run 2 Run 3 Run 4 Run 5

5 0.00 430.66 430.66 430.66 430.66 430.66 430.66 430.66
10 0.17 945.13 943.53 945.13 945.13 945.13 945.13 937.13
15 0.16 1473.51 1471.11 1461.51 1473.51 1473.51 1473.51 1473.51
20 0.32 2005.04 1998.65 2005.04 2005.04 2005.04 1973.07 2005.04
25 0.16 2537.36 2533.46 2517.36 2537.36 2537.36 2537.36 2537.36
30 0.16 3070.15 3065.35 3070.15 3070.15 3046.16 3070.15 3070.15
35 0.00 3603.36 3603.36 3603.36 3603.36 3603.36 3603.36 3603.36
40 0.00 4136.96 4136.96 4136.96 4136.96 4136.96 4136.96 4136.96
45 0.00 4671.22 4671.22 4671.22 4671.22 4671.22 4671.22 4671.22
50 0.15 5205.45 5197.52 5165.52 5205.45 5205.45 5205.45 5205.45
60 0.00 6275.69 6275.45 6275.69 6275.69 6275.10 6275.69 6275.69
70 0.30 7348.66 7326.26 7292.66 7348.66 7292.66 7348.66 7348.66
80 0.00 8424.40 8424.40 8424.40 8424.40 8424.40 8424.40 8424.40
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Appendix D

Case study

D.1 Case description

Table D.1: Relation between demand and revenue parameters for each scenario.

````````````Demand
Revenue

Express = Standard Express > Standard Express >> Standard

Express = Standard 1 2 3

Express > Standard 4 5 6

Express >> Standard 7 8 9

Express < Standard 10 11 12

Express << Standard 13 14 15

Table D.2: Case study contract terms, with 200 TEU capacity, λspot = 4, rspot = 150, and p = 200.

Contract Demand Freight rate

Express Standard Express Standard

1 8 0 112 100

2 25 20 96 96

3 16 16 128 76

4 21 16 134 52

5 3 12 111 94

6 9 3 105 105

7 12 10 114 82

8 10 10 102 102

9 13 22 134 67

10 22 16 112 76

11 10 13 102 102

12 8 10 97 97

13 8 8 122 65

14 14 21 115 78

15 0 9 141 92
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D.2 Case results

Table D.3: Results of case study.

Case Allocation Spot limit #Contracts E(DE) E(DS) E(Dspot) E(ES) Profit ∆Profit Revenue Penalty Utilization

Optimal [1,1,1,0,1,1,1,1,0,0,1,1,0,0,0] 10 9 101 94 4 0.9 19990 20012 178 99.1%

1 [1,1,1,1,0,0,0,0,0,1,0,0,0,1,0] 5 6 106 89 3.6 0.6 19373 -3.1% 19485 112 99.0%

2 [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0] 5 9 103 102 3.6 9.1 18958 -5.2% 20782 1824 99.7%

3 [1,1,0,0,1,0,1,1,1,1,1,1,0,0,0] 5 9 111 113 3.6 23.1 17700 -11.5% 22324 4624 102.2%

4 [1,1,1,0,1,1,1,1,0,0,1,1,0,0,0] 5 9 101 94 3.6 0.5 19848 -0.7% 19952 104 99.0%

5 [0,1,0,1,1,0,1,1,1,0,0,1,0,0,1] 5 8 92 109 3.6 5.1 18853 -5.7% 19876 1023 99.7%

6 [1,1,1,0,1,0,0,0,1,1,1,0,0,0,0] 4 7 97 99 3.2 0.5 19465 -2.6% 19569 104 99.4%
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Appendix E

Capacity and demand size

E.1 Scenario

Table E.1: Scenario 1: Two allotment contracts with opposite demand for Express and Standard
services, and spot market demand

(
= 2

3capacity
)
. rE = 100, rS = 80, rspot = 120.

Scenario Capacity Demand

x times scaled Contract 1 Contract 2 Spot

(exp/std) (exp/std)

1 20 7/3 3/7 13

2 40 14/6 6/14 26

3 60 21/9 9/21 39

E.2 Scaling demand and capacity size

Figure E.1: Model behavior of scaling capacity and demand proportionally with only Express or
Standard services

77



Figure E.2: Model behavior of scaling capacity and demand proportionally with five contracts
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Appendix F

Stochastic freight rates

F.1 Freight rate evolution

Figure F.1: Three possible spot price paths in a year. Simulated using the Ornstein-Uhlenbeck
Mean Reverting Model with θ = 100, σ = 2, κ = 0.01 and T = 252 days.
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F.2 Mathematical derivation

St+1 = Ste
−κt + θ(1− e−κt) + σ

∫ T

0

e−κ(T−tdWs

E[St] = Ste
−κt + θ(1− e−κt)

lim
T→∞

e−T = 0

lim
T→∞

E[St] = lim
T→∞

(
S0e
−κT + θ(1− e−κT )

)
= S0 lim

T→∞
e−kT + θ

(
1− lim

T→∞
e−kT

)
= θ

V [St] =
σ2

2κ
(1− e−2κT )

lim
T→∞

V [St] = lim
T→∞

(σ2

2κ
(1− e−2κT )

)
=
σ2

2κ

(
1− lim

T→∞
e−2κT

)
=
σ2

2κ

F.3 Analysis

Table F.1: Simulation results to determine the optimal capacity distribution to spot and Express
demand given volatile spot market demand with σspotdemand = 2

√
λ, 50 TEU capacity, rE = 100,

p = 150, and deterministic spot freight rates with mean spot rate θ = 100. Top 10 observations of
5000 simulation runs with a 95%-confidence interval.

n∗spot λE Daily Profit #Observed optimum Probability optimal allocation

30 22 4774.81 (±1.78) 505 0.10

31 21 4774.75 (±1.79) 446 0.09

29 23 4774.23 (±1.79) 483 0.10

32 20 4773.89 (±1.78) 412 0.08

28 24 4773.86 (±1.79) 477 0.10

27 25 4771.63 (±1.79) 385 0.08

33 19 4771.42 (±1.78) 298 0.06

26 26 4770.30 (±1.80) 300 0.06

34 18 4768.95 (±1.77) 233 0.05

25 27 4767.46 (±1.79) 251 0.05

35 17 4765.27 (±1.76) 173 0.03

80



Table F.2: Simulation results to determine the optimal capacity distribution to spot and Express
demand given volatile spot market demand with σspotdemand = 2

√
λ, 50 TEU capacity, rE = 100,

p = 150, and spot freight rates with mean spot rate θ = 100, rate κ = 0.25 and standard deviation
σ = 10. Top 10 observations of 5000 simulation runs with a 95%-confidence interval.

n∗spot λE Daily Profit #Observed optimum Probability optimal allocation

30 22 4753.54 (±0.71) 352 0.07

31 21 4753.53 (±0.86) 372 0.07

29 23 4752.61 (±0.45) 311 0.06

32 20 4752.57 (±1.05) 363 0.07

33 19 4751.64 (±1.16) 363 0.07

28 24 4750.95 (±0.17) 277 0.06

34 18 4749.49 (±1.26) 301 0.06

27 25 4748.86 (±0.48) 233 0.05

26 26 4747.02 (±0.66) 207 0.04

35 17 4746.14 (±1.39) 256 0.05

25 27 4744.18 (±0.83) 172 0.03

Table F.3: Simulation results to determine the optimal capacity distribution to spot and Express
demand given volatile spot market demand with σspotdemand = 2

√
λ, 50 TEU capacity, rE = 100,

p = 150, and spot freight rates with mean spot rate θ = 100, rate κ = 0.25 and standard deviation
σ = 20. Top 10 observations of 5000 simulation runs with a 95%-confidence interval.

n∗spot λE Daily Profit #Observed optimum Probability optimal allocation

32 20 4733.38 (±3.75) 251 0.05

31 21 4733.09 (±3.60) 236 0.05

33 19 4732.55 (±3.89) 271 0.05

30 22 4732.45 (±3.45) 198 0.04

29 23 4731.24 (±3.32) 181 0.04

34 18 4730.39 (±4.03) 292 0.06

28 24 4729.21 (±3.16) 159 0.03

35 17 4727.59 (±4.17) 288 0.06

27 25 4726.84 (±3.00) 159 0.03

31 20 4724.96 (±3.66) 6 0.00

32 19 4724.62 (±3.80) 7 0.00
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