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Executive Summary  

This case study analysis and predicts service times in delivery of customer goods in package delivery 

vehicle routing. A machine learning XGBoost algorithm is used to make service time predictions. The 

new service time prediction results are described, thereby indicating the accuracy of the XGBoost 

algorithm prediction performances in the context of consumer goods delivery service times. In this 

study the XGBoost algorithm replaces the current rule-based service time prediction model currently 

used by Coolblue. The performance of the XGBoost algorithm is described relatively to the current 

rule-based service time prediction model, as well as to a simple linear regression model. Besides the 

service time mean absolute error (MAE) performance metric used in this study, also customer 

satisfaction score estimations are provided in this case study. Customer satisfaction is the most 

important KPI used by Coolblue. The customer satisfaction is measure by the NPS (Nett Promotor 

Score) metric. By usage of XGBoost algorithm for creating service time predictions, the delivery service 

time MAE decreases by 1.09 and 1.14 minutes for the two-indicated configuration of best models 

input parameter settings. This prediction performance improvement is measured relatively to the 

current rule-based model used by Coolblue. Furthermore, resulting from this study it turns out the 

XGBoost algorithm creates 0.39 better service time predictions relatively to a linear regression model 

prediction. Although the application of the XGBoost algorithm results in more accurate service time 

predictions no significant improvement of the customer satisfaction NPS score is found.  

     Coolblue is the second largest online retailer in the Netherlands. In 2017 it reaches a yearly revenue 
of 1.2 billion Euros. Coolblue sells a wide range of electronical devices, but also sells gardening tools, 
fitness equipment and travel accessories. This project is performed at the largest department of 
Coolblue, named ‘Shipping and Delivery’. This department is responsible for both process 
improvement and growth of the Coolblue privately owned delivery service. Coolblue wants to improve 
the accuracy of the service time predictions. Besides indirect impact of better service time predictions 
for potential improvement of NPS scores, Coolblue indicates six reasons why more accurate service 
time predictions are beneficial for the company. Among others, Coolblue thinks about indicating a 
shorter arrival time interval (than the current 1-hour time interval) to the customer in the future. 
Furthermore, more accurate service time predictions result in less variability in the deliver operations, 
less customers calling the customer help service and happier delivery employees.  
     In this study a wide range of variable is extracted from the company database. Moreover, new floor 
level information is obtained by floor level surveys filled in by the delivery employees after the 
products are successfully delivered to the customer. Also new features are engineered by combination 
and transformation of existing features. In this case study two cross-validation methods, four variable 
scaling techniques, 5 train / test splits data partition configuration and the quantile outlier reduction 
method are used. A scenario analysis is performed to detect successful method configuration and 
input dataset features. The input dataset applied to the prediction model turns out to be most 
important for achieving accurate service time predictions. Different model scenarios in this case study 
are different configuration of one of the following model attributes; input dataset, algorithm, pre-
processing method, parameter values.  
     All model scenarios got assigned some parameter values and hyperparameter values. The 
difference between parameters and hyperparameters are its acceptance of adaptation of the 
(hyper)parameter values during the model training phase. While parameters are determined before 
the model is trained, the hyperparameters are adjusted in subsequent model iterations. The 
hyperparameters are tuned by using a Bayesian hyperparameter optimization method, named Tree-
Structured Parzen Estimation (TPE). Shuffled and K-Fold Shuffled cross-validation is used to split the 
train datasets in train set and validation set folds. After a good selection of hyperparameter values is 
determined, the best performing hyperparameters are used as input parameters for the best model. 
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Whereas, only the train set is used to determine the optimal hyperparameters, the test set is used to 
describe the real model performance. The test set is a holdout set split apart from the initial dataset.  
      Besides MAE analysis, NPS score analysis, (input dataset) scenario prediction performance analysis, 
also the performance of four visualizations are tested. Three of those four visualizations are aimed at 
uncovering the feature importance as well as the feature value importance in the model. The 
remaining visualization assists in pointing out the difference in prediction performances of the current 
Coolblue prediction model as well as the new XGBoost prediction model. This performance impact 
plot indicates the XGBoost model is better predicting the delivery service times in than the current 
Coolblue prediction model. Beside prediction model comparison, the performance impact plot assists 
in recognizing the strength and weaknesses of the XGBoost service time prediction even on the feature 
value level. The plot is very useful and indicative both before and after the implementation the 
XGBoost machine learning prediction in company operations.  
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1. Introduction  

This study creates and analyses service time predictions in package delivery vehicle routing 

operations. The Service time predictions are obtained by usage of machine learning algorithms. More 

concretely, the XGBoost Gradient Tree Boosting method is used to create the service time predictions. 

This study is a Master Thesis Graduation Project that is performed at the Operation Management and 

Logistics Graduate Program of Eindhoven University of Technology. The company at which the case 

study is performed is named Coolblue. The project is executed at the Shipping and Delivery 

Department. Coolblue determined the object of study. Operations Management and Logistics is a 

multidisciplinary study program that comprises disciplines such as product development, quality 

management, logistics, information systems and human resource management (Eindhoven University 

of Technology, 2018). This study can be considered as a trade-off from the product development and 

information systems research areas. 

1.1 Coolblue  

Coolblue is the second largest online retailer in the Netherlands (ecommercenews, 2018). 

The company's yearly revenue increased substantially last couple of years. Since 2015 the company 

yearly revenue more than doubled from 540,000 million euro yearly revenue to 1.2 billion euro yearly 

revenue in 2017 (twinklemagazine, 2018). Coolblue sells a wide range of electronic devices plus some 

other products such as gardening tools, fitness equipment and travel accessories. In 2015, Coolblue 

started delivering white good products themselves. Starting a delivery service entailed the 

establishment of a new department managing all operations involved in delivering the Coolblue 

product. The department name ‘CoolblueDelivers’ was chosen. CoolblueDelivers started with a 2-Man 

delivery service, which delivers medium to large size products (mostly white-goods). The Coolblue 2-

Man delivery service evolved rapidly into the most important delivery service for delivering the 

medium to large size-category products that are sold by Coolblue. In addition to the Coolblue 2-man 

delivery service, also 1-man delivery service and bike delivery service has been added recently. One 

of the most important reasons the Coolblue company and the CoolblueDelivers department achieved 

such fast growth is the excessive focus on customer satisfaction. Coolblue measures customer 

satisfaction performance in terms of Nett Promotor Score (NPS). NPS is defined as the ratio of 

customer experience and predicts business growth (Reichheld, 2004). NPS is measured on a ten-point 

rating scale. Customers indicating a NPS score of 9 or 10 are called promotors. Customers indicating a 

NPS score of 6 or lower are called detractors. After composing the ratio of promotors and the ratio of 

detractors, the NPS score is obtained by subtracting the detractor ratio from the promotors ratio. In 

2017, the NPS score of Coolblue was ranging around the 73, whereas the NPS score of similar delivery 

companies as B-Post and PostNL was ranging around 70 and 66 respectively. The relatively high 

customer satisfaction score is achieved by unique propositions as ‘Ordered today before 23.55 - 

Delivered tomorrow'. Furthermore, CoolblueDelivers just implemented the option for ordering a 

delivery time slot (morning, afternoon, evening) at the same time of ordering the products. Coolblue 

wants to enhance the customer satisfaction NPS score even more by using better service time 

predictions, since a positive relation has been found between arrival time performance and NPS 

scores.  
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1.2 Study Motivation 

This project was initiated by the Shipping and Delivery department of Coolblue. Coolblue wants to 

improve the service time predictions because service time predictions are not accurate according to 

Coolblue. Coolblue delivers a wide range of products to a wide range of customers. All customers have 

unique housing style and delivery address locations. Nevertheless, the planned service times are only 

set to distinct values for product groups. For example, all washing machines got assigned the same 

service times. Coolblue thinks at least more product and client information should be taken into 

consideration. There will inevitably be a wide range of factors significantly influencing the service time. 

Therefore, the aim of this study is to take as much as possible useful information into consideration 

to create the service time prediction. This is the reason a machine learning approach is taken in this 

study. Machine learning algorithms can learn (complex) relations between predictive (independent) 

variables and a target (dependent) output variable. A gradient boosting decision tree-based algorithm, 

named XGBoost, is used in this study to make service time predictions.  

 

The overarching reason why the service time predictions need to be improved retains in the 

observation of a positive relation between arrival time performance and NPS. Arrival time 

performance is dependent on service time predictions, since prediction of the service times more 

accurately will result in better arrival time performance. Coolblue observed that from January 2017 to 

October 2017 the NPS scores for on-time arrivals turned out to be 75 on average, NPS scores for too-

early arrivals had a mean of 74 and NPS scores for too-late arrivals were 71 on average.  

 

Besides the positive relation between arrival time performance and customer satisfaction, there are 

more reasons that motivating this study: 

 

• Better service time predictions usually lead to less too-late arrivals. Too-late arrivals are 

harmful in terms of customer arrival time accuracy levels. Furthermore too-late arrivals also 

have a negative impact on positive company opinion estimations made by the customers. 

• Better service time predictions, in general, lead to less waiting time (slack) in the vehicle 

routing, because inaccurate service time predictions result in lower probability of on-time 

arrival. This means that better service time predictions reduce the chance of customers not 

being at home because they expected the Coolblue delivery employee to arrive earlier or later. 

The costs of waiting time in vehicle routing consists of the delivery employee salary costs. 

• A higher amount of waiting time results in more variation in the package delivery operation 

mean service time. According to the Manufacturing Systems Queueing Formula (φ𝐵 =
𝐶𝑎

2+𝐶𝑜
2

2

𝑢

1−𝑢
𝑡𝑜), variation in process time, results in higher flow time (φ). Process time variation 

is included in the flow time formula as coefficient of variation (𝑐𝑎). Coefficient of variation is 

obtained by dividing the process time standard deviation by the mean process time (𝑐𝑎 =

𝜎𝑎/𝜇𝑎). obtained by inaccurate service time predictions prediction results in higher flow time. 

Flow time denotes to total time between departure at the depot until arrival at the depot 

after delivering all products.  

• Better service time predictions usually lead to less need to adjust the tour planning, which 

subsequently reduces planning costs. 

• Better service time predictions usually lead to less too-late arrivals. Too-late arrivals are one 

of the major factors of customers calling the customer care service. This is expensive in terms 

of customer service salary costs. 
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• Coolblue potentially wants to indicate shorter time windows to the client (i.e. half an hour) 

instead of the current 1-hour time window reported to the client the same morning of actual 

delivery.  

1.3 Customer Satisfaction Metric used at Coolblue - NPS 

NPS is the most critical performance measurement metric used within the Coolblue company. NPS is 

an abbreviation for ‘Net Promoter Score'. In section 1.1 a definition is provided for NPS. The general 

aim of NPS is catching the customer loyalty and the likelihood of Coolblue product promotion by the 

customer. Coolblue measures NPS score is by making use of NPS surveys. Customers with a registered 

online account are asked to indicate the likelihood of advising Coolblue as a company to family or 

friends, on a 10-point rating scale. This single question NPS survey is sent to member customers by e-

mail after the products have been delivered. In Figure 1.1 the NPS score calculation method is 

provided. The NPS score is obtained by subtracting the detractor percentage from the promoter 

percentage (Reichheld, 2004). Customers indicating a 9 or 10 NPS score are called promoters. 

Customer indicating a 7 or 8 score are called neutral customers. Customers indicating a score ranging 

from 0 to 6 are called detractors. The distinct names assigned to NPS score values are self-explanatory. 

Promotors are expected to promote Coolblue products to family and friends. Detractors are expected 

to warn family and friend for buying products at Coolblue. Neutral customers are expected not to 

promoting Coolblue to family and friends, either positively or negatively. 

 

 

    Figure 1.1: Net Promoter Score (NPS)  

                       Calculation Method. 

1.4 Current Coolblue Service Time Planning 

The current Coolblue service time prediction model can be formulated as: 

  
𝑂𝑆𝑇 =  ∑ 𝑃𝑆𝑇𝑖 + ∑ 𝑈𝑇𝑖 + 𝑑𝑄𝑇                                                         (1.1) 

 

            𝑂𝑆𝑇              Service time                 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟, 𝑏𝑦                 
                                                                           ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑤ℎ𝑒𝑛 𝑎𝑟𝑟𝑖𝑣𝑒𝑑  

                       𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟’𝑠 ℎ𝑜𝑢𝑠𝑒.  𝑇ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑖𝑠               
                                                            𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠:  (𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒 −  𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒)   

 

   𝑃𝑆𝑇             Product(s)   𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 

Service Time                  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑖𝑛𝑠𝑡𝑎𝑙𝑙) 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑠) 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟  
    𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒. 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

                                 𝑐𝑎𝑛 𝑏𝑒 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑤𝑒 𝑛𝑒𝑒𝑑 𝑡𝑜  
               𝑠𝑢𝑚 𝑡ℎ𝑒 𝑈𝑇 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑖.    
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             𝑈𝑇𝑖      Unloading Time    𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑢𝑛𝑙𝑜𝑎𝑑 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟𝑒𝑑                 

                                             𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑣𝑎𝑛 𝑤ℎ𝑒𝑛 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 
                                                                          𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑   

                                                                    𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑤𝑒 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑠𝑢𝑚 𝑡ℎ𝑒 𝑈𝑇 𝑜𝑓   
                                                                            𝑎𝑙𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑖.    

 

            𝑄𝑇      Questionnaire               𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑖𝑛 𝑎 𝑠ℎ𝑜𝑟𝑡 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑛𝑎𝑖𝑟𝑒                

                                  Time                                 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟, 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ℎ𝑎𝑠 

                                                            𝑏𝑒𝑒𝑛 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟’𝑠 ℎ𝑜𝑢𝑠𝑒. 𝑇ℎ𝑖𝑠    

                                                                            𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑛𝑎𝑖𝑟𝑒 𝑠ℎ𝑜𝑢𝑙𝑑 𝑜𝑛𝑙𝑦 𝑏𝑒 𝑓𝑖𝑙𝑙𝑒𝑑 𝑖𝑛 𝑜𝑛𝑒𝑠 𝑝𝑒𝑟 𝑜𝑟𝑑𝑒𝑟. 

 

            d      Boolean                   ∀𝑑 ∈  {0,1}         , where       

                                0            𝑖𝑓 ∑(𝑛𝐷𝑃𝑃𝑖 + 𝑛𝐹𝑆𝑃𝑖) = 0 

                                1            𝑖𝑓 ∑(𝑛𝐷𝑃𝑃𝑖 + 𝑛𝐹𝑆𝑃𝑖)  > 0 

 

            𝑛𝐷𝑃𝑃𝑖      Number of       𝐷𝑟𝑒𝑚𝑝𝑒𝑙𝑝𝑙𝑢𝑠 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑                  

     DrempelPlus                   𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑖𝑠 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦. 𝐷𝑟𝑒𝑚𝑝𝑒𝑙𝑝𝑙𝑢𝑠        

     Products     𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑟𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑         

                                         𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒.                                                     
 

             𝑛𝐹𝑆𝑃𝑖     Number of       𝐹𝑢𝑙𝑙 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 𝑡𝑜                 

    Full-Service                   𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑖𝑠 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦. 𝐹𝑢𝑙𝑙 𝑆𝑒𝑟𝑣𝑖𝑐𝑒         

   Products     𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑎𝑛𝑑 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒        

                                                                              𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 ℎ𝑜𝑢𝑠𝑒.            

 

1.5 Project Statement 

Setting a project statement is the most critical decision in defining a good study. This is because the 

project statement affects a lot of individual study components. Some study components will be 

restricted by the definition of the project goal. The project statement is defined as follows; 

  
Case Study: Select, develop and execute a structured approach to find the most viable service time 

prediction solution in package delivery vehicle routing by using the XGBoost algorithm. 

 
Concretely, prediction models are designed to predict future delivery service times as accurately as 

possible. The predictive power of various machine learning models is tested and compared with each 

other. The most viable solution is concluded in this report and recommended to the management of 

shipping and delivery department of Coolblue. 

1.6 Type of Study  

In this study, predictive analysis is performed. Predictive analytics is a broad umbrella term which 

includes many research areas. The best fitting research area for classifying this study is empirical 

models for prediction. Empirical models for prediction is part of the ‘parent' study area Empirical 

models (Esearch & Koppius, 2011, p. 554-555). Empirical Models are models that make predictions or 
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explanations based on empirical quantitative or qualitative data. In this study, empirical quantitative 

data is used as the machine learning model input. Specifically, empirical quantitative data is data 

collected from questionnaires or other measurement instruments (Patten & Newhart, 2017, p. 94). 

The Empirical models' research area is divided into two sub streams: 

  
• Empirical models for prediction 

• Empirical models for explanation 

  
Empirical models for prediction seek to maximize predictions accuracy by both model bias and sample 

variance. (Esearch & Koppius, 2011, p. 555) In empirical models for prediction, predictive power is 

prioritised over explanation power.  
On the contrary, the specific aim of empirical models for explanation is testing causal hypotheses 

between empirical phenomena (Esearch & Koppius, 2011, p. 554). To test causal relations, the 

explanation power of model input variables is tested. Exploratory power refers to the strength of the 

relationship between two empirical constructs.  

1.7 Structure of the Thesis 

In this chapter, the introductory information is provided. Among others, the company at which the 
study is performed is introduced, the project statement is given. 
        In chapter 2, a short literature review is provided describing the context of service time 
predictions in vehicle routing. Among others in this chapter it is stated that not much previous 
research has been done in this specific research area. 
        In chapter 3, a structured approach is provided to make machine learning predictions. It is 
described that the empirical model development process scheme, proposed by Schmueli and Koppius 
(Esearch & Koppius, 2011), is used in this study. The empirical model development process scheme 
includes steps as; goal definition, data gathering, data aggregation, data pre-processing, exploratory 
data analysis, model selection, model deployment and output evaluation and validation. The methods 
used in each of the steps is analysed in detail 
        Chapter 4 is named conceptual model. In this chapter, a description is given how the methods 
proposed in chapter 3 are concretely being applied in this study. A description is given how for 
example the data is aggregated and combined, how exploratory data analysis (EDA) is done, which 
pre-processing operations are indeed applied to the data, what prediction algorithm is used and how 
data is evaluated, validated. 
        Chapter 5 is the results section. Both numerical and graphical results are provided. Central in this 
result section is the performance on three KPIs; Mean Absolute Error (MAE), Mean Error (ME) and 
NPS. The best model is indicated as well in this section.  
        In chapter 6, the conclusion is drawn. Again, the performance of the best machine learning model 
is analysed in comparison to the current Coolblue service time planning model and other machine 
learning prediction models. Furthermore, an evaluation is done whether this best model is a viable 
solution for Coolblue to implement. 
        Chapter 7 is the discussion section. The shortcomings in the input dataset, as well as any other 
computation steps applied, are described in relation to the output accuracy. 
        Chapter 8 gives recommendations for further research. Recommendations can best be useful 
preparation steps to analyse before the machine learning service time predictions model can be 
implemented. 
        Chapters 9, 10 and 11 give a summary of the study, references and the appendix respectively.  
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2. Literature Review 

In this chapter first, the previous research on service time calculation in vehicle routing is reviewed. 

Second, the importance of customer satisfaction and accurate service time predictions is analysed and 

confirmed.   

2.1 Service Time Calculations in Vehicle Routing 

The traditional Vehicle Routing Problem (VRP) encompasses many extensions. Examples of these 

extensions are for example Capacitated VRP (CVRP), Time-Dependent VRP (TDVRP), Pickup and 

Delivery Vehicle Routing Problem (PDPVRP), Time Window VRP (TWVRP) and Split-Delivery VRP 

(SDVRP) (Lin, Choy, Ho, Chung, & Lam, 2014). The Coolblue service time problem also belongs to a 

specific category type of the vehicle routing problem, namely the Stochastic Delivery and Service Time 

Vehicle Routing Problem (VRPSST). The VRPSST has received shallow attention in the literature. Gómez 

et al. (2016) are one of the few researchers that investigated the VRPSST. Gómez et al. (2016) indicate 

that different algorithms can be used to optimise routes. Examples of suitable algorithms for the 

VRPSST problem are; tabu search and neighbourhood search. Vehicle routing problems in general 

have two components. The first component is the driving time. This is driving time it takes from the 

depot to the customer, or the driving time between subsequent customers in the vehicle routing tour. 

The second component is the service time. The service time is the difference between departure time 

at the customer and the arrival time at the customer. The first, component driving time, in literature 

is mostly approximated by usage of a single or multiple distribution approach (Gómez et al. 2016). 

Service time in general is significantly less than the driving time. Therefore, in most research, service 

time is approximated by usage of a single distribution or even a deterministic value. There are several 

reasons that doubt the accuracy of deterministic service time values by using it in predictive context. 

Remind that some service times will inevitably take longer than others because it takes some time to 

arrive at the front door of the house. Furthermore, some addresses are located at higher floor levels, 

for example addresses that are in a flat.  

2.2 Importance of customer satisfaction and accurate service time predictions 

In the last couple of decades, the primary objective function in most routing models was minimising 

the service costs (Kovacs, Golden, Harti, & Parragh, 2014). The simplest and widely used method for 

minimising service costs is achieved by minimising the delivery service time. But on the contrary, 

excellent service will result in satisfied customers. Satisfied customers form a bond with the company 

and are very likely to repurchase again in the future (Kovacs et al., 2014). The effects of satisfied 

customers can be found in Figure 2.1 below. Figure 2.1 gives the service-profit chain configuration. To 

achieve a high perceived value by the customer and consequently high-profit margins, customer 

satisfaction must be enhanced as much as possible. Historical customer satisfaction data from 

Coolblue indicates a relation between on-time arrival and customer satisfaction scores. In general, the 

rule of thumb holds that the better the delivery employees arrive on time, the higher the customer 

satisfaction is. Historical data about too-early and too-late arrivals show lower customer satisfaction 

scores. Indirectly, the accuracy in arrival time is pleasant for the customer, thereby enhancing the 

perceived value and eventually profitability.  
       The focus in vehicle routing problems should not be on minimisation of the service time but on 

reasonable service time. With reasonable service time, it is meant that the delivery employees got 

assigned an accurate service time to deliver products but are not pushed towards unreasonable low 

service times. Unreasonable low service times will negatively impact the time to help the client, thus 
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reducing the received value and profitability. Creating reasonable service times thus is in line with the 

customer-centric approach used at Coolblue. 
       Additionally, accuracy in service times is also in line with the queueing theory. Higher variance in 

service time amplifies the total flow time, represented as route duration in case of the VRP. The 

relation between flow time and variation is presented as;  φ𝐵 =
𝐶𝑎

2+𝐶𝑜
2

2

𝑢

1−𝑢
𝑡𝑜. Flow time is indicated 

by (φ). The flow time increases among other by higher values of the numerator c𝑜. c𝑜 stand for the 

coefficient of variation observed in the process, or in this case the vehicle routing tour. The coefficient 

of variation is composed by dividing the standard deviation by the mean service time. The standard 

deviation of route durations increases by relatively bad service time predictions, resulting in longer 

flow times.  
 

 
Figure 2.1. Service Profit Chain Relation (Kovacs et al., 2014) 
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3. Methodology 

The method used to perform this study is abstracted from the article ‘Predictive Analytics in 

Information Systems Research’, written by Schmueli and Koppius (2011). Shmueli and Koppius (2011) 

describe a way of integrating predictive analytics into information systems research (Shmueli & 

Koppius, 2011, p. 553). A diagram including a sequence of steps for building a predictive empirical 

model is presented. This diagram is adjusted slightly and used as the guideline to perform the 

predictive analysis in this study. The new diagram is presented in Figure 3.1 below. The main reason 

for using this specific diagram is the clarity of actions described in individual part of the diagram. By 

following the steps sequentially, a complete analysis of viable machine learning prediction models can 

be done. The model created is flexible in its design, therefore in the remainder of this report the name 

‘machine learning tool' will be used for referring to the model. The machine learning tool is flexible 

for inserting inputs and at the end the tool outputs both statistical performances as well as visual 

representations of the service time prediction performance. More input and output options of the 

machine learning tool are discussed in this method section and in Chapter 5. In the remainder of this 

method section, all individual steps of the machine learning process diagram in Figure 3.1 are 

discussed in separate sections.  

  

 
Figure 3.1.  Process diagram scheme for building the empirical service time prediction model 

3.1 Goal Definition 

According to the process diagram scheme in Figure 3.1, the first step in creating a service time 

prediction model is the definition of a clear project goal. The goal of this study is; finding and selecting 

the best service time prediction model. Coolblue remain having the right to reject a model based on 

for example complexity reasons. In this study, a vast amount of different model scenarios is created 

and tested on the indicated performance metrics. Scenarios in the service time prediction tool are 

considered unique if the two models are inconsistent about any of the following model machine 

learning model attributes; input dataset, algorithm used, pre-processing method, input parameter 

values or hyperparameter input values.  

3.2 Baseline Model Selection 

The baseline model is the model that serves as the initial performance baseline to compare against 

the new prediction model. The current Coolblue service time prediction model is used as the baseline 

model in this project. To make service time prediction, Coolblue currently makes use of a rule-based 

model. The current Coolblue service time prediction is composed from 3 dimensions, which are 

product group, unloading time and service time. The current Coolblue service time prediction model 

is given in Formula 1.1 and explained in detail in section 1.4. The current Coolblue service time 

prediction model is selected as baseline model because this study aims to discover the service time 

prediction improvement achieved by usage of machine learning models relative to rule-based 

planning solutions.  
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3.3 Data collection and study design 

The third step of the service time prediction model diagram in Figure 3.1 is: ‘Data collection and study 

design.’ According to Shmueli and Koppius (2011), three things need to be considered in this step: 

  

1. Data Collection Instruments 

2. Variable Inclusion 

3. Input Data Sample Size 

  
The three pre-mentioned steps are discussed in more detail below. 

3.3.1 Data Collection Instruments 

The data collection instruments used in this project are two relational database management systems. 

Relational database management systems enable loading in data from structured database 

environments. The relational databases used in this study are SQL Servers and DireXtion. SQL Servers 

is the internal database in which almost all information of Coolblue is stored. SQL Servers give us 

historical data for most of the product and order related variables in the service time machine learning 

tool. DireXtion is a Route Planning Tool used by the Coolblue. This application is provided by a third-

party software supplier. The DireXtion database provides is with all historical planned and realised 

route planning times. 

3.3.2 Variables Included 

To select the complete set of variables, a list of variables potentially impacting the service time is 

composed. According to Shmueli and Koppius (2011, p. 564) variables for prediction should be chosen 

based on domain knowledge and empirical evidence of association with the response. Therefore, the 

list of input variables is composed by interviewing delivery employees, delivery team leaders and 

operation employees.  

 
There are two reasons why none of the variables are deleted upfront:  

 
1. Empirical evidence of predictive association with the response is hard to detect upfront. A 

predictive association can only be guaranteed by just using the variable in a prediction model. 

Using a correlation to determine the predictive association is not accurate since correlation 

relation does not imply predictive association. 

2. Additionally, Shmueli and Koppius (2011, p. 1165) state that variables that are completely 

useless by itself can be useful for predictions by taking them together.   

3.3.3 Input Data Sample Size 

Different sample sizes are used in this project. The sample size changes by unique definition of the 

input data scope belonging to the various machine learning models tested in this study. The historical 

dataset used to make predictions has 310,595 rows. The original 26 columns are provided in Table B.1 

in the appendix. The 310,595 orders were delivered to the customers during the period starting at 14-

12-2017 and ending at 08-10-2018. 
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3.4 General Data Preparation 

The next step belonging to the process diagram of Figure 3.1 is general data preparation. General 

data preparation is decomposed into five categories; 

  
1. Variable Conversion 

2. Variable Creation 

3. Missing Value Completion 

4. Variable Value Correction 

5. Data Aggregation 

  
In this section, each of the five different steps is separately discussed. 

3.4.1 Variable Conversion 

Some value formats of variables in the input dataset needed to be converted. The overarching reason 

for converting those variable values is enabling the prediction model to process the variables. Machine 

learning methods cannot process nominal and ordinal variables. Therefore, this datatype variables 

needed to be transformed into numerical variables. In Table B.2 in the appendix, an overview of all 

three datatype conversion transformations performed to variables are given. In general, three types 

of conversion operations are applied; coercing, mapping and factorising. 
Some variables are coerced from their current datatype into numeric datatype. Coercing is 

performed if the datatype format is incorrect, meaning that a wrong datatype initially is attached to 

the variable. This happens if the variable already is represented in numerical format, although the 

dataset does not recognise this. 
Other variables are mapped from their current datatype into numeric datatype. The mapping 

conversion is applied if the current categorical variable values need to be converted into specific 

numeric values. The mapping operation thus is a manual process. Variables selected for this operation 

are Boolean variables or categorical variables with a small number of values. Examples of variables 

that are mapped to specific numerical values are the ‘b2bcustomer' variable and the ‘normal-

delivery/pickup/swap' variable. The later variable is often named ‘service type’ in this study for 

convenience.  
Last, some variables are factorised from their current datatype into numeric datatype. The 

Factorising operation transforms categorical data into numerical data. Factorizing is applied for 

transforming categorical variables with a vast number of values into numerical values. Mapping the 

vast number of variables is considered a massive operation, therefore factorising is the best way to 

create numerical data. Factorizing transforms categorical data into numeric variables based on 

alphabetical order. 

3.4.2 Variable Creation 

A small number of variables need to be created since those variables are currently not yet available in 

the database. In total four variables were created, these are; 

  
1.    Normal-Delivery/Pickup/Swap 

2. Floor Level Front Door House 

3. Floor Level Delivery Product Inside House 

4. Stoptime Minutes 



 

 
13 

 

5. Visit Counter 

6. Visit Counter Mean Service time 

7. Real Quantity Including Combi Boxes 

8. SubProductType_DeliveryService_ServiceType_Sizecategory 

9. Mean Service Time 

10. Mean Prediction Error 

11. Mean Service Time (Clustered) 

12. Mean Prediction Error (Clustered) 

 
The ‘Normal-delivery/ Pickup/Swap' variable simple was not present in the company database but was 

inherited in the ‘order id' variable values extracted from the DireXtion database. Therefore, the 

‘Normal-delivery /  Pickup / Swap' variable is created by splitting off this information from the ‘order 

id' variable. The next two additionally crated variables were categorised as highly important by domain 

experts. The expert opinion was the ultimate trigger for adding two extra question to the ‘post-

delivery-survey' to obtain extra floor level information. The ‘post-delivery-survey' is filled in by the 

delivery employees after every delivered order. However, since the survey question related to variable 

2 and 3 are added to the ‘post-delivery-survey' at 08-05-2018, orders before this date do not include 

variable 2 and 3 information. The last variable that is created is ‘Stoptime Minutes'. ‘Stoptime Minutes' 

refers is the created from subtracting the arrival time from the departure time at each delivery stop 

in the data. This feature needed to be created because the ‘Realised Service Time' feature, which was 

extracted from the DireXtion database, turned out to be inaccurate. The ‘Realised Service Time' 

variable gave values that were rounded to the nearest integer. Furthermore, a visit counter variable 

is feature engineered. This variable counts the number of visit belonging to unique customers. It could 

be that the delivery service time is impacted by the number of times a product has been delivered to 

the same customer. To capture this information the ‘Visit Counter’ variable and the ‘Visit Counter 

Mean Service Time Variable’ is created. Next, the order quantity is adjusted slightly in by creating a 

new ‘Real Quantity Including Combi Boxes’ variable. Products belonging to the size categories S/M/L1 

are combined in Combi boxes. This affected the quantity size of the order delivered to the customer. 

Next a new product aggregation level is created. In this new product variable, the Sub Product Type 

information is combined with the Delivery Service information, the Service Type information and the 

Size category information. More new products variables are created by combining existing variables, 

but they are more thoroughly explained and analysed in section 5.1. Last, ‘Mean Service Time’ and 

‘Mean Prediction Error’ variables are created. For 13 variables, among other the products variables, 

the mean service times and mean prediction error are calculated. These variables are tested in 5.1. 

Also, Clusters of the mean service time and mean prediction error outcomes are created for each 

variable separately as well as summed up. More explanation is provided in section 5.1.  

3.4.3 Completing Missing Variables Values 

Next, the dataset is checked on missing values. Some machine learning algorithms cannot handle 

missing data. For using null-value sensitive algorithms, it is necessary to complete missing values. It is 

worth considering the potential reasons that are causing the missing variable values to be missing. 

Missing variable values are present in the data for several reasons such as (Witten & Frank, 2011, p. 

58); 

  
• Malfunctioning measurement equipment 

• Changes in experimental design during data collection 

• Collation of several similar but not identical datasets 
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The historical input dataset includes some missing data as well. As mentioned in section 3.4.2, two 

floor level related variables include missing values. This is because the floor level variable information, 

that is obtained by a ‘post-delivery-survey’ was not filled in before 08-05-2018. No obvious indication 

was found causing some other variables to include missing values. According to Shmueli and Koppius, 

there are 9 ways of handling missing data (Shmueli & Koppius, 2011, p. 563); 

  
1. Remaining null values in the original format 

2. Removing observations 

3. Removing variables 

4. Using proxy variables 

5. Indicate missingness by creating dummy variables 

6. Completing null values to a numerical value 

7. Completing null values with the mode, median or mean 

8. Completing null values with ‘neighbour sample variable values 

9. Using advanced regression techniques to handle missing data 

          
Three of the in total nine variable completion methods are tested in this study, which are completion 

method 1, and 6. Since only for three variables in historical input dataset missing values are present, 

it is decided to apply the 1st variable completion method (remaining null values in the original format) 

to most of the model scenarios. The reason for retaining the null values is that the XGBoost Tree based 

boosting algorithm can handle Nan values. Retainment of the variables is beneficial over removing the 

variables, because some variable information is potentially missing for a reason. By assigning a 

concrete number to this missing values, the ‘missingness information' could be taken into 

consideration by the machine learning model.  (Witten & Frank, 2011, p. 58).  Furthermore, insertion 

of missing values by a numerical value and mean value is checked. No reason was found for inserting 

mode, median, mean or a neighbour sample variable value. The integer -9, -2, 0 and 9 are selected to 

replace the Nan values. 0 is the standard value to replace missing values with. -2 is chosen because 

many variables already include 0 as variable value and the ‘floor level installation product inside the 

house' variable also has a  -1 value. The -1 variable value here refers to the installation of a product in 

the basement of the house. The -9 and 9 values far from the scope of most other input variables, which 

satisfies the research on those completion variable values.  

3.4.4 Correcting Variables Values 

Next, some variables values needed to be corrected. Incorrectly logged variable values are tackled 

specifically in this stage. Incorrect logged variable values can arise by intentional or unintentional 

human incorrect logging or by a logging failure somewhere in the automated data logging pipeline. 

Incorrect logging, in general, should be considered as even more dangerous than missing values. This 

is because incorrect logging often is less visible on first sight and thus a more thorough investigation 

is needed to find an incorrect variable. Incorrectly logged variables behave as outliers. Next, incorrect 

variable values are discovered manually. The variable ‘planned driving time' turns out to provide 

incorrect variable values. The ‘planned driving time' gives different values from what is logically 

expected. The expectation of the ‘planned driving time' is (arrival at client i) - (departure at client i-1). 

This turns out not to be in line with the observed data. To tackle this problem in this project 

specifically, the driving time is left out of the NPS simulation. An indirect method is used now that 

accurately measures predicted arrival time, which need to take the incorrectly logged ‘planned driving 

time’ variable into consideration. 
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3.4.5 Data Aggregation 

Last, the complete input dataset is exposed to an aggregation transformation. All rows in the initial 

input dataset stand for specific products that are ordered by customers. The product aggregation level 

is not desired as input for our machine learning models since the delivery service time is linked to 

orders instead of products. One order consists of 1 to many products. Therefore, an aggregation of 

input dataset rows with same ‘order id' is applied to the complete input dataset. In section 4.1 a more 

extensive description and visual explanation are provided about this ‘order id' based aggregation 

method. 

3.5 Exploratory Data Analysis 

Exploratory data analysis (EDA) is an essential step that need to be applied in every machine learning 

project. According to Schmueli and Koppius (2011), EDA should be divided into two distinct parts; 

  
1.  Summarizing data numerically 
2.  Summarizing data graphically 

  
In this study, both the input dataset variables and the objective function (NPS) needs to be explored 

both numerically and graphically. 

3.5.1 Summarizing Data Numerically 

Numeric summarisation of the input dataset variables is vital for discovering data structures, variable 

distributions and variable relations. Especially descriptive statistics, datatypes analysis and the unique 

variables count are used to summarise data numerically. In order to facilitate extracting knowledge 

from initial numerical statistics data, the service time prediction script automatically bundles all initial 

statistics information into a single excel file. The information is visualised for each variable individually. 

In Table B.2 in the appendix, an overview of these statistics excel is provided. The type of information 

is given in the ‘type_descriptive_statistics' column. The following column indicates a single variable 

that is used in the model. 
        Numerical summarisation of the objective function is performed as well. The objective function 

in this study is NPS. In global, the time performance can be divided into arriving; too-early, on-time 

and too-late. The NPS scores for too-early, on-time and too-late arrivals must be analysed extensively 

in order to use the NPS scores to compute new NPS predictions belonging to machine learning models. 

In section 4.2.2 an extensive description is given about the historical NPS score numerical analysis.  

3.5.2 Summarizing Data Graphically 

The term ‘exploratory visualisation' is often used in literature to indicate graphical exploration of data 

structures (Shmueli & Koppius, 2011). Exploratory visualisation helps in detecting variable 

commensurateness. Variable commensurate refers to the distribution of the input variable values in 

the model. The distribution of values for six important input variables is provided later in this report 

in section 4.2.1. 
       Same as for numerical data summarisation, also graphical summarisation is applied to the model 

objective function (NPS). In section 4.2.2, graphical summarisations of historical NPS scores are 

provided to underline the numerical historical NPS observations. 
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3.6 Model Specific Data Preparation 

In this section, model specific data preparation steps are discussed. The model-specific data 

preparation steps are distinct for all different models created in the machine learning prediction 

model. This is in sharp contrast with the earlier specified general data pre-processing operations that 

are applied as input of all models in the machine learning prediction tool. In total four model-specific 

data preparation steps are discussed in the remainder of this section. The four model-specific data 

preparation steps are; 

  
1. Variable Selection 

2. Handling Outliers 

3. Variable Scaling  

4. Data Partitioning  

3.6.1 Variable Selection 

The number of variables available to solve problems in this advanced digital time is extensive. As 

indicated in Table B.1 in the appendix, 26 original variables are used in this service time prediction 

problem. It is very important to select the right set of features as input for the prediction model. As 

with any other model, capturing the reality is mostly dependent on the description of the reality. In In 

machine learning models, the most predictive variables should be used. Most of the variable in this 

study could directly be extracted from existing company databases. Some other variables were 

created adding extra questions to an existing ‘post-delivery-survey’ to discover new information. In 

section 3.3.3, it is indicated that the unique combination of Sub Product, delivery service id, normal-

delivery/pickup/swap and size-category variables taken together as a unique variable value. This 

resulted in a new column that is created from concatenation of other variable columns. The 

importance of selecting the right set of variables is underlined by the statements of Guyon & Elisseeff 

(2003). They show that under-specified models can sometimes produce better predictions. Retaining 

irrelevant variables to a dataset sometimes “confuses” machine learning algorithms (Witten & Frank, 

2011, p. 288). Guyon & Elisseeff (2003) even prove that it is sometime beneficial to remove some of 

the less influential variables from the prediction model in order to reach more accurate predictions. 

These two proves give enough reason to check machine learning prediction by inputting a lower 

variable space, thereby reducing the variable space. However, note that variable reduction is a 

complex study area, which is classified as NP-hard (Almaldi & Kann, 1998). An extensive field of 

variable reduction methods exist, each of them claiming to provide high variable reduction 

performance.  

  
In global, variable selection can be reached by applying in one of the following three methods: 

  
• Filters 

• Wrappers 

• Embedded Methods 
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The three distinct variable reduction methods enumerated above are different from each other in the 

level of inclusion of the method within the machine learning algorithm. 
       Filters reduce variables entirely before the deployment of machine learning model predictions. 

Filters thus can be considered as a pre-processing step and are completely independent of the 

machine learning prediction phase. 
       Wrappers make use of machine learning models to reduce the variable space. Wrappers compare 

a subset of variables with the original complete set of variables. As an example, Support Vector 

Regression (SVR) methods can first be used to select the most important variables. Next, these most 

important variables are selected and inserted to the prediction model (XGBoost in this study) as input 

variables.  
       Embedded Methods include variable subset testing into the machine learning process. Instead of 

using the feature importance to delete unimportant variables, embedded methods just use the 

machine learning algorithm itself to select important variables. For example, decision trees use a 

nested subset method, a specific embedded method type, by selecting variables based on the 

coefficient of variation.  

  
By reviewing Guyon & Elisseeff (2003) and Witten & Frank (2011) in total, ten possible variable 

reduction methods are obtained. The ten variable reduction methods (indicated with variable 

reduction types) are; 

  
1. Manual Variable Reduction (filter) 

2. Machine Learning Method Variable Reduction (wrapper / filter)  

3. Machine Learning Model Internal Process Variable Reduction (embedded method) 

4. Backward Elimination (wrapper) 

5. Forward Selection (wrapper) 

6. Statistical Significance Tests (filter) 

7. Normal and Hierarchical K-Means Clustering (filter) 

8. Incremental Clustering (filter) 

9. Probability-Based Clustering (filter) 

10. Bayesian Clustering (filter) 

  
In total five of the variable reduction methods are implemented in the service time prediction tool. 

The in total four variable reduction methods used in this study are described below. 

3.6.1.1 Manual Variable Reduction 

The first and most straightforward method of variable reduction in the service time prediction tool is 

manual variable reduction. The name of this variable reduction method is very indicative. Specific 

variables are reduced by hand. Mostly, input variables are deleted from the variable input space based 

on expert advice. Experts are referring to persons having a thorough understanding of the system that 

is analysed. Experts in this study are company workers that are executing work related to the delivery 

operations. Examples are planners, continuous improvement employees, team leaders and delivery 

employees.  

3.6.1.2 Machine Learning Method Variable Reduction 

Besides operating as a predicting method, machine learning models can also operate as (pre-

processing) variable reduction wrapper or filter. Machine learning models themselves can perform 
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variable reduction since they include the ability to rank the input variables on importance. For 

example, decision tree algorithms, as the XGBoost algorithm, have a variable importance method 

implemented in the wrapper code. In general, in python, the ‘Select From Model' method can be used 

as a variable reduction wrapper. Besides, the wrapper variable reduction method described above, it 

is also possible that a machine learning method is used as a pre-processing variable reduction filter. A 

filter is different from wrapper in that it is completely separated from each other, still placed in 

sequence. The XGBoost algorithm filter for example first filters the most important variables. Next, 

the most important variables are used by another predictor, which could be for example a K-Nearest-

Neighbours algorithm. According to Witten & Frank (2011), the performance of the K-Nearest-

Neighbour algorithm can surely be improved by using different machine learning methods as variable 

reduction filter. This is predominantly caused by the fact that the K-Nearest-Neighbours is very 

susceptible to extraneous variables. 

3.6.1.3 Machine Learning Model Internal Process 

Some machine learning models have a regularisation component inhibited in the internal machine 

learning structure. The regularisation component reduces the number of variables automatically. GLM 

net regression, neural networks and ensemble tree methods are examples of algorithms that include 

a regularisation term. GLM net regression filters the input variable space based on regularization of 

the coefficient in the regression model. Neural Networks create second-order constructs in the hidden 

layers by making linear combinations of input variables algorithms (Witten & Frank, 2011, p. 227). In 

the second order construct creation process, some weights between input variables and second-order 

constructs are set to very low values, in this way regularizing the importance of input variables. In case 

of regularizing the input variable contributions to zero, this means that the information from input 

variables is not incorporated in the second order constructs at all. Not including information from 

some variables, in fact, is like the deletion of the variables. Thus, machine learning algorithms 

regularise the input variable space just by the construction of the algorithm. The main machine 

learning method used in the machine learning prediction tool is the XGBoost prediction method. The 

XGBoost algorithm prunes trees based on the coefficient of variation. This process is explained in more 

detail later in section 3.7.1.1. 

3.6.1.4 Cluster Method 

Besides variable selection methods, also a variable creation method is example, which is called the 

cluster method for convenience. The cluster method approach is applied in two ways. First, for in total 

13 variables, mean service time and mean prediction errors variables are created for distinct variable 

values. As an example, the mean service time and mean prediction error of all Washing Machines are 

computed. Next, these newly created mean service time and mean prediction errors are clustered in 

bins of 0.5 minutes. The reasoning behind applying this clustering method relies in the statements 

made by Guyon & Elisseeff (2003, p.1165). They indicate that; "A variable that is completely useless 

by itself can provide a significant prediction performance improvement when taken with others." This 

initial clustering is followed by a next, more high-level clustering. In this second order clustering, the 

mean service time values are averaged, and mean prediction error values are summed up to form two 

new variables. These variables are called ‘All Summed Up Mean Service Time’ and ‘All Summed Up 

Mean Prediction Error’ respectively. The contribution of the two types of clustering methods 

described in this section on the service time prediction is explained in chapter 5 ‘Results’.  
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3.6.1.5 Backward Elimination (Recursive Feature Elimination) 

Forward selection and backward elimination methods add or reduce variables respectively based on 

the evaluation of the error prediction after one variable change in the variable space region. In forward 

selection, a low number of variables is started with, but sequentially more variables are added. On the 

contrary, backward elimination reduces the input variable space of the data, by eliminating 

unimportant variables sequentially. The backward elimination method is not used in the service time 

prediction model because it has a very long time to converging to an optimal dataset, in which features 

are eliminated.  

3.6.1.6 Statistical Significance Tests 

The next variable reduction method is variable reduction based on a statistical significance test. 

Statistical significance test measures the difference in predictive performance between the 

independent variables and the dependent variable (Witten & Frank, 2011). Independent variables 

showing a low statistical significance test performance result are removed if the predictive 

performance of those variables is below a certain significance threshold. Various statistical methods 

can be used. The 𝜒2 test measures the similarity between two variables. In general, the following 

formula is used to define the chi-square test: 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
. In this formula, 𝑂𝑖 refers to the 

independent variable and 𝐸𝑖  refers to the dependent variable.  𝜒2  test provides a the significance 

indicator ‘p-value’ as output. A p-value below 0.05 is indicates a significant relation between the 

independent variable and the target variable. Besides the 𝜒2 test, the statistics method ‘mutual 

information regression’ is used to compare the target variable with the independent variables. Mutual 

Information measures how much information is communicated, on average, in one variable to another 

(McEliece, 2013, p. 4). The definition and definition formulation of the mutual information function is 

copied from the article of Erik Miller (2013, p. 4): 

  
"𝑇ℎ𝑒 𝑓𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑢𝑡𝑢𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑟𝑎𝑛𝑑𝑜𝑚  

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑋 𝑎𝑛𝑑 𝑌, 𝑤ℎ𝑜𝑠𝑒 𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦           

   𝑃(𝑋;  𝑌) 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦: "                                                                                         

 

                                                                                          𝐼(𝑋; 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦)𝑙𝑜𝑔
𝑃(𝑥,𝑦)

𝑃(𝑥)𝑃(𝑦)𝑦∈𝑌𝑥𝜖𝑋                               (3.1) 

 

To limit the scope of this research and focus more on the other aspect of feature selection, the 

statistical significance test in not used in the service time prediction model.   

3.6.2 Handling Outliers 

Outliers can be characterised as observations that have significantly different values compared to 

most of the observation values. It is essential to detect and delete outliers because outliers do not 

represent the data well. Suspicious observation values may be outliers, but interpretation is needed 

to assess suspicious data points as being real outliers (Rousseeuw & Hubert, 2011, p. 73). Three 

different types of outlier detection techniques can be categorized, which are:  

  
1. Univariate Outlier Deletion Methods 

2. Robust Scaling Operations 

3. Advanced Outlier Deletion Methods 

 

http://www.statisticshowto.com/p-value/
http://www.statisticshowto.com/p-value/
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In the remainder of this subsection, those three outlier techniques are described. In the execution of 

this study, the univariate outlier deletion method and the robust scaling operation method is used as 

pre-processing techniques in the service time prediction model.   

3.6.2.1. Univariate Outlier Deletion Methods 

Univariate outlier deletion methods outlier techniques that make use of the specific range of the 

variable values themselves. Univariate outlier deletion methods assume that the variables are 

independent identically distributed (i.i.d.) from other variables (Rousseeuw & Hubert, 2011, p. 73). 

Three distinct types of univariate outlier deletion methods can be distinguished: 

  

• Interquartile Range Outlier Deletion 

• Z-Scores Outlier Deletion 

• Quantile Outlier Deletion 

 

Interquartile range outlier deletion uses the theory of boxplots to compose bounds for outlier 

deletion. Data points not belonging to the range indicated in Formula 3.2 are considered to be outliers 

(Rousseeuw & Hubert, 2011, p. 74): 
 

{𝑄1 −  1.5 ∗ 𝐼𝑄𝑅 | 𝑄3 +  1.5 ∗ 𝐼𝑄𝑅}                                                   (3.2) 

 
The z-score outlier deletion is calculated the same way as standard scaling is calculated. The z-score is 

determined by subtracting the mean variable value from the individual data point observation value 

and subsequently divided by the standard deviation (Rousseeuw & Hubert, 2011, p. 73). Subsequently, 

the x percentage of the highest z-scores and x percentage of the lowest z-scores are deleted from the 

data. The specific value of x needs to be determined. It is possible to define the value of x as 

hyperparameter in the service time prediction model. The Z-score formula can be described as: 

 

𝑧𝑖 =
(𝑥𝑖−𝑥̃)

𝑠
                                                                          (3.3) 

 
Last, the quantile outlier deletion method deletes variable values outside a specified quantile range. 

For example, setting the quantile range as ⟨0.01|0.99⟩ means that all 1 percent of lowest variable 

values and all 1 percentage of highest variable values are deleted from the data. Based on the 

simplicity in theory of this quantile outlier deletion method, accompanied with the flexibility in 

setting input parameters, the quantile outlier deletion method is used in the service time prediction 

model. 

3.6.2.2. Robust Scaling Operations 

Robust scaling operations make changes to the range of variable values. Besides absolute variable 

value reduction, also the relative distance between variables is decreased. In section 3.6.3, four types 

of scalers are described in detail. All those four scalers can be classified as being robust. The four 

scalers are: 

• Logarithmic Scaling 

• Polynomial Scaling 

• Standard Scaling 

• Robust Scaling  
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Note that the standard scaler does not reduce the relative variable value distance a lot and thus is not 

a very strong robust scaling method. 

3.6.2.3. Advanced Outlier Detection Methods  

Advanced outlier detection methods make use of machine learning methods to classify observation 

as being either normal value or outliers. Advanced outlier techniques are increasingly becoming 

popular since they are more applicable with the current availability of fast RAM processors in modern 

computers. The performance of advanced outlier techniques is good in most situations. The most 

widely used advanced outlier detection methods are: 

  

1. Isolation Forest 

2. Local Outlier Factor 

  
Isolation Forest makes use of the Random Forest tree ensemble method. In essence isolation forest 

checks the path length from the root node to the terminal node for all unique values of an 

observations. Isolation Forest is classifies the observations as outliers, if the observation follow a 

relatively short path to the terminal leaf (Liu, Liu, Ting, & Zhou, 2008, p. 3). The logic behind the short 

path theory used by the isolation forest algorithm is that outliers mostly cause extremely high values 

of the target variable. Consequently, to decrease the prediction error, the outlying variable value is 

split at a high level in the decision tree. Especially in high-dimensional datasets, isolation forest is very 

useful (Liu, Liu, Ting, & Zhou, 2008, p. 2). Like the good performance of random forest in case of large 

variable space dimensions, isolation forest effectiveness is high when a lot of irrelevant variables are 

included in the dataset. Isolation forest includes a linear time complexity and only needs a small 

memory requirement (Liu, Liu, Ting, & Zhou, 2008, p. 2).  
        The local outlier factor (LOF) technique is based on the Nearest-Neighbours algorithm. It attaches 

to the observations an ‘degree’ of being an outlier, which is called the LOF. The term local refers to 

the density of neighbours in the region in which the data observation is located (Breunig, Kriegel, Ng, 

& Sander, 2000, p. 1). If the data observation lives in a less dense region in comparison to the density 

region of its neighbouring data observations, the algorithm assigns a higher outlier value to the former 

data observation in comparison to the later data observation. Density regions of neighbour data 

observations give the algorithm an indication of expected average density levels of the complete 

dataset. Formula 3.4 below gives the local outlier factor of observation ‘p’:  
 

                                                             𝐿𝑂𝐹𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) =
𝑜 𝜖 ∑

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑜)

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)

|𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|
                                                (3.4) 

 
In the LOF formula provided above, the average value of observation p’s local reachability density 

(denoted as 𝑙𝑟𝑑) is compared with the 𝑙𝑟𝑑 of its neighbours. The symbol o indicates the neighbouring 

data observations (Breunig et al., 2000, p.4). Consecutively, A higher LOF value is obtained by low 

values of p’s own local reachability density and high values of its o neighbouring data points local 

reachability density. 

 

To limit the scope of this service time prediction research and bypass the negative consequence (long 

run time) of these outlier detection algorithms, the decision is made not to test the LOF and Isolation 

Forest in the service time prediction model.  
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3.6.3 Variable Scaling 

Variable scaling is the next model-specific data preparation step used in the service time prediction 

model. Variable scaling transforms variables values to new values by applying a scaling function. In 

general, there are four reasons why scaling is applied. First, scaling is an effective method to reduce 

the impact of outliers. Especially robust scalers can detect and delete outliers. Second, scaling helps 

algorithms to interpret the value ranges of different variables better. Especially distance-based 

algorithms are sensitive to inequality of variable values over different variables. Examples of distance-

based algorithms are; PCA and K-Nearest-Neighbours. Scaling helps creating a more linear relationship 

between the independent variable and the dependent variable. Linear predictors performance can be 

improved with scaling the variable values. Linear regression, support vector regressors (SVR) and 

neural networks are examples of linear predictors for which variable scaling is likely to be helpful. This 

could be explained by just referring to the name of this prediction class ‘linear’, because linear 

methods can best predict the data if the data is linearly separated.  

        It should be noted that decision tree models, like the baseline XGBoost model, performs quite 

well for unscaled data. This is because decision tree models are not belonging to the distance-based 

model classifications. XGBoost can make variable value splits anywhere in the variable value range. 

This means that XGBoost is not linearly interpolating results for variable values from different variable 

values. In all cases scaling the data potentially speed up the gradient descent method. That is why 

scaling is applied for input datasets of the XGBoost model. Four types of variable scalers are used in 

the service time prediction script: 

  
1. Logarithmic Scaling 

2. Standard Scaling 

3. Robust Scaling 

4. Polynomial Scaling 

3.6.3.1 Logarithmic Scaling 

Logarithmic scaling of variables is a commonly used method to increase the predictive performance. 

There are some situations in which logarithmic scaling is often beneficial. The first effective situation 

is when the dependent variable and the independent variables do more resemble an exponential 

relation than a linear relation. By applying a logarithmic scaling to the dependent variable, the relation 

between the independent variable and the dependent variable will be more linearly shaped. 

Logarithmic scaling of the dependent variable in a simple linear function example can mathematically 

be defined as: 

log(𝑦𝑖) = 𝛼 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + . . .  + 𝛽𝑛𝑥𝑛𝑖                                             (3.5) 

     OR the Inverse Function;  

𝑦𝑖 = 𝑒𝛼 + 𝑒𝛽1𝑥1𝑖 + 𝑒𝛽2𝑥2𝑖  + . . .  + 𝑒𝛽𝑛𝑥𝑛𝑖                                               (3.6) 

The second situation is when the relation between the dependent variable and the independent 

variable is very heteroskedastic. Heteroskedasticity indicates a dependent variable on the 

independent variable relation in which the error term does not show a normal and consistent 

distribution around the linear distribution line. By applying a logarithmic scaling to both the dependent 

variable and the independent variable, the error term will be scaled more towards the linear 
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distribution line. In Figure 3.2 below, the transformation from heteroskedastic data toward a more 

homoskedastic data, by application of logratihmic scaling, is depicted. 

 

 
         Figure 3.2.  Logarithmic Scaling Power: from a  

              heteroskedastic relation to a  

homoskedastic relation 

 
Last, logarithmic scaling will create relations that are more normally distributed. The magnitude of left 

or right skewness will be decreased. Most of the algorithms can better interpret input data if the 

relation between the dependent variable and the independent variable show a normal distribution. 

3.6.3.2 Polynomial Scaling 

Polynomial scaling helps in finding relations between variables by changing the magnitude of variable 

coefficients. In Formula 3.7, the application of a polynomial scaling on a linear function is expressed: 

𝑦𝑖 = 𝛼 + 𝛽1𝑥1𝑖
𝑛 + 𝛽2𝑥2𝑖

𝑛 + . . .  + 𝛽𝑛𝑥𝑛𝑖
𝑛                                             (3.7) 

 
By using polynomial scaling, the relation between the dependent variable and the independent 

variable transforms from being a linear relation towards a polynomial relation. Some variable relations 

do more resemble a polynomial relation than a linear relation. In Figure 3.3 below an example is 

provided that indicates the effect of using a polynomial scaling operation to assist in finding the right 

data separation line. 

 

 
Figure 3.3:  Polynomial scaling power: turning an inseparable  

                    data space into a separable data space 

 

Additionally, polynomial scaling in some cases helps stochastic gradient descent algorithms to 

converge faster. The polynomial scaler in most cases is a powerful scaler and is thus integrated as pre-

processing operation in some the service time prediction model.  
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3.6.3.4 Standard Scaling 

The standard scaler redistributes the variable values on a new axis scale length where the variable 

mean (𝑥̅) is assigned the value 0 and one standard deviation (𝜎) from the mean is assigned the value 

1. Another name for standard scaling is standardisation. Standard Scaling is a robust scaling operation 

because relative variable value distances are changed. The further away an observation value is 

located from the mean value of the variable, the more the observation value will be scaled towards 

the mean. The high-level motive of the standard scaling operation is trying to fit the variable value 

distribution as a normal distribution. Most of the algorithms can better interpret input data if the 

relation between the dependent variable and the independent variable show a normal distribution. 

Therefore, standard scaling is a popular pre-processing scaling operation, which is used service time 

prediction model as well. The mathematical formulation of the standard scaler is provided in Formula 

3.8: 

 

             𝑥′ =
𝑥 − 𝑥̅

𝜎
                                                               (3.8) 

3.6.3.6 Robust Scaling 

Robust scaling is very similar to min-max scaling. Instead of assigning the minimum and the maximum 

values as boundary values, the robust scaler uses the Q1 and Q3 values as boundary values. The Q1 

and Q3 variable values represent the variable values assigned to 25% and 75% of the variable value 

range respectively. By making this change to the min-max formula, the robust scaler, scales 

observations with a very high or very low value relatively more than observations that have less 

extreme values to the mean. Robust scaling, as the name indicates, is more robust to the effect of 

outlying observations in the data. The robust scaling operation can mathematically be formalised as: 
 

𝑥′ =
𝑥𝑖 − 𝑄1(𝑥)

𝑄3(𝑥) − 𝑄1(𝑥)
                                                         (3.10) 

 

3.6.4 Data Partitioning 

Last model-specific data preparation step is data partitioning. In data partitioning, the dataset is split 

into a distinct part to enable both training and testing processes. The decision about composing data 

partitioning cut-off point is of central importance since different partitioning solution can result in 

very different prediction outcomes. In general, there is one universal rule that needs to be followed 

while creating data partitions; the partitioned dataset that is used to test model's performance must 

not be used in any way to  train the model and finetune the parameters (Witten & Frank, 2011, p. 

149). In this project, the dataset is split into two distinct parts; training set and test set. By using cross-

validation, 80% of the training set is used to train the model. The remaining 20% of the training set is 

used to test the trained model performance. This 20% training set split off is called the validation set. 

The validation set is used to test the training set performance while input hyperparameter are 

incrementally improved. The test set is used to test the trained model on holdout test dataset. By 

using a holdout test dataset, which is representative in modelling real system behaviour, the realistic 

predictive performance of the model can be determined. In literature, no consensus has been reached 

about the best dataset split distribution between train and test set. Each prediction problem is unique, 

meaning that the test dataset size that can models real system performance best differs for each 

problem. Therefore, there always needs to be a made trait-off between prediction accuracy and test 

accuracy. In general, the following rule holds; the more data that is fed as input training set to the 
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prediction algorithm, the better the predictions will be (Witten & Frank, 2011, p. 149). However, 

testing a good regressor on limited data does not give a good notion of the error estimate. The training 

set/test set split rule of thumb is the partitioning of the complete dataset into 30% test set and 70% 

training set. Besides the training set/test set data partitioning, also the model parameters (referred to 

as hyperparameters) must be optimised. The initial dataset, consisting of 310,595 orders, is 

considered large enough to split off parts of the data as a test set. It is not needed to solely make use 

of cross-validation because the dataset is not large enough. The default train set partitioning 

percentage of 70 percentage used, provide us 240.000 orders to train the data on, which still is an 

extensive dataset for creating a good model. The most popular data partitioning method used in 

predictive analytics to optimise hyperparameters is cross-validation. Cross-validation splits the data in 

a number of folds (𝑛), trains the data on (𝑛 − 1),  folds and checks performance by predicting the 

trained model for the remaining (𝑛 − (𝑛 − 1)) folds (Witten & Frank, 2011, p. 153). Mention that 

extensive tests on numerous different datasets, with different learning techniques, have shown that 

using 10 folds is about the right number of folds to get the best estimate of error (Witten & Frank, 

2011, p. 153). However, I. H. Witten and E. Frank place this statement into perspective later, by 

mentioning that using 5- or 20-fold cross-validation is almost as good as using 10-folds.  Therefore 5-

fold cross-validation is used in the service time prediction model. Last, one decision needed to be 

made, which is determining the type of cross-validation. Three cross-validation variants are applicable 

to the service time prediction problem, which are: 

 

1. K-Fold order based Cross-Validation 

2. Shuffled day/tour based Cross- Validation 

3. K-Fold Shuffled day/tour based Cross-Validation 

4. Leave-One-Out Cross-Validation 

3.6.4.1 K-fold Cross-Validation 

K-fold cross-validation creates folds by combining observations in chronological time. It assures that 

each of the observations is ones being represented in the validation dataset. This property deducts 

the adverse effect that would arise when some of the observations are represented more than ones 

in the complete dataset. The procedure used by K-fold cross-validation is not correctly enabling 

prediciton of the new system. K-fold cross-validation induces that predictions are being made for 

several weeks or even months ahead. In reality, one day in advance, the complete set of delivery 

orders of the next day is clear. Therefore, the service time predictions be created one day in advance. 

The misalignment in prediction horizon created by usage of K-fold cross-validation is undesirable and 

therefore not included in the service time prediction model. Figure 3.5 below visualises the K-fold 

cross-validation scheme. 

 

 
Figure 3.5.  K-Fold cross-validation scheme 
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3.6.4.2 Shuffled Cross-Validation 

The decision was made to include shuffled cross-validation as one of the cross-validation options in 

the service time prediction tool. Tests have shown that predictive performance can be improved by 

making use of shuffled cross-validation instead of K-fold cross-validation. In contrast to K-fold cross-

validation, the shuffled cross-validation process include information from day n to make predictions 

for day n + 1. In essence, shuffled cross-validation creates random splits of the observations in the 

input dataset. The shuffled cross-validation process used in this study is adjusted slightly. Not 

individual observations are taken randomly from the input dataset, but unique days or tours in the 

dataset are randomly shuffled and clustered in folds in the input dataset. Day based shufflesplit 

protects for data leakage in the training process. Splitting on the order_id aggregation level potentially 

leads to data leakage between training and test data. By using order_id based splitting, the model 

already knows, for example, some information like the working pace of delivery employees on a 

particular day. There is one more reason why shuffled cross-validation is prefered over K-fold cross-

validation. Two input variables have missing values for the first several months of the training dataset. 

By using k-fold cross validation, some validation fold will not include any information from those two 

variables, resulting in inaccurate performance measurements. This is in opposition to the most 

important data partitioning rule mentioned in section 3.6.4 stating that about equal proportions of 

the complete dataset should be represented in the training set and the test set. Figure 3.6 below 

visualises the shuffled cross-validation scheme.  

 

 
Figure 3.6.  Shuffled cross-validation scheme 

3.6.4.3. Shuffled K-fold Cross-Validation 

Besides ordinary shuffled cross-validation, also a shuffled K-fold cross-validation scheme is 

implemented in the service time prediction tool. The shuffled K-fold cross-validation scheme is best 

describing real model behaviour and therefore used as default cross-validation method in this study. 

The shuffled K-fold cross-validation first shuffles the data on the day based aggregation level. Next, K-

fold cross-validation is applied to the data. By using this cross-validation method the information from 

day n is included to make predictions for next day n + 1. All days exactly ones are part of the validation 

fold. This takes away the effect of randomness in the creation of folds, resulting in more reliable 

prediction estimates by averaging all folds predictions. 
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3.6.4.4 Leave-One-Out Cross-Validation 

Leave-one-out cross-validation is able to include information from day n for making service time 

predictions for day n +1. Despite the leave-one-out cross-validation is a proper method for the service 

time prediction problem, the decision is made not to make use of this cross-validation scheme. The 

reason for not including the leave-one-out cross-validation scheme in this study is because the 

complete leave-one-out process is computationally too expensive. The leave-one-out cross-validation 

works as follows. Sequentially one of the observations is left out to identify the validation set. The 

remaining observations are combined and together form the training set. After the training set model 

is tested on the validation set, the process starts again by leaving out the next observation from the 

dataset.  The leave-one-out cross-validation can be considered as an extensive K-fold cross-validation 

scheme, for which in turn, all the variables are ones forming the validation fold. This means that the 

number of folds is equal to the number of days, which is determined to be inappropriately large. 

3.7 Choice of Methods 

In this study, a structured machine learning approach is developed for generating package delivery 

service time predictions. In section 3.2 it is mentioned that the current Coolblue service time 

prediction method generates deterministic service time predictions. It lacks the capability to include 

more than just the general order information (Product Type and Delivery Service information) in the 

prediction process. A lot of information is available in Coolblue databases enabling us to develop a 

machine learning prediction that learns from the information that is provided to the model. Machine 

learning models are popular nowadays for creating prediction models. They mostly outperform 

manually created rule-based prediction models, because machine learning models are able to detect 

the complex relations that are existing between variables in the dataset (Chen & Guestrin, 2016, pp. 

1). The machine learning models used in this study is XGBoost, often classified as a tree ensemble 

learning method. Machine learning models come with a lot of parameters and hyperparameters. Both 

of them need to be tuned in order to reach accurate predictions. In section 3.7.2 the parameter tuning 

process is explained. Last, the performance of the predictions is described in terms of customer 

satisfaction (NPS). This transformation method from transferring service time predictions into 

expected customer satisfaction scores is described in section 3.7.3.   

3.7.1 Machine Learning Algorithm Used 

In this modern and digitally advanced world, a lot of machine learning algorithms are available. Each 

algorithm has its own pros and cons. The performance and the efficiency of the algorithms are mainly 

dependent on the problem it tries to solve and the dataset that is input to the machine learning 

algorithm. For selecting proper algorithms, algorithm recommendations in scientific articles are 

examined. Tianqi Chen and Guestrin (2016) mentions that the gradient boosting decision tree method 

‘XGBoost' turns out to be the winning solution in 17 online machine learning competitions released 

on the machine learning platform Kaggle1, from the in total 29 challenges published on this platform. 

The decision is make use of the XGBoost as default prediction algorithm in this study. 

XGBoost is an evaluation of the older Random Forest decision tree algorithm. Random Forest 

creates an extensive set of decision trees and subsequently combines the result of the individual trees. 

In this way, the error prediction inaccuracy of one decision tree is shadowed by the better accuracy of 

                                                
1 Kaggle is the world's largest community of data scientists and machine learners, owned by Google Inc. Kaggle 

got its start by offering machine learning competitions and now also offers a public data platform, a cloud-based 

workbench for data science, and short form AI education. 
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the other decision tree. However XGBoost does this in a much smarter way. It accurately locates the 

inaccuracy of one decision tree and transports it to the next decision tree. Moreover, XGBoost is a 

sparsity and catch aware algorithm, enabling relatively fast computation. This are the main reason 

swhy XGBoost is used in the study and thus preferred over Random Forest.  

Besides preferring XGBoost over Random Forest, XGBoost is also preferred over the 

competitor algorithm Neural Network. The first reason is already mentioned; the XGBoost algorithm 

turns out to be the winning algorithm in most of the machine learning competitions released on Kaggle 

(XGBoost winning 17 times vs Neural Networks winning 11 times). The second reason is the 

underperformance of Neural Networks in cases of low covariance between the dependent variable 

and independent variable. Benjamin et al. (2017) show that Neural Networks performs 1.5 times 

worse than XGBoost in predicting neural spikes. Benjamin et al. (2017) expect that the low covariance 

causes the underperformance of the Neural Network algorithm among the variables in the dataset. In 

total, they tested the performance of XGBoost, Neural Network, Ensemble Methods and GLM on three 

different datasets that include neural data. For all the three datasets, XGBoost is outperforming the 

Neural Network algorithm. In addition, Benjamin et al. show that the XGBoost algorithm is only 

outperformed by an Ensemble method. The Ensemble method combines the predictions of all four 

pre-mentioned algorithms and used this set of combined predictions as input for a ‘second level’ 

XGBoost algorithm.  The Ensemble prediction method is not tested in this study since the predictive 

performance gain is minimal in comparison to the XGBoost algorithm. In the next section, it is 

described how the XGBoost algorithm works and why it creates such very accurate predictions. 

3.7.1.1 XGBoost 

The XGBoost algorithm belongs to the class of gradient boosting decision tree algorithms. Decision 

trees algorithms create trees from sequential if-then rule split. Starting from the root of the trees, in 

each split the dataset is split based on a specific variable value. The decision tree evolves out wide 

adding more tree levels. Eventually, all observation end up in one of the terminal leaves of the tree. 

The average recorded service time of all the observations in one single leave determine the service 

time prediction. Decision trees models are constructed by usage of historical data. This process is 

called ‘training’. In the training phase, a subset of the complete dataset, called the ‘train set’, is 

provided. The XGBoost algorithm creates node splits by using the coefficient of variation (CV) 

property. Decision tree algorithms can handle outliers in the datasets better than most other 

algorithms. The high performance accuracy can be attributed to the very powerfull coëfficient of 

variation (CV) method included in decision trees. CV is measured on individual features. Features 

having the highest relative standard deviations are selected for creating the the next splits. By splitting 

features with relatively high standard deviation, the prediction gain can be improved most. 

Computation of the coefficient of variation (CV) formula for a feature (F) is computed as follows: 

 

 

𝐶𝑉 (𝐹)  =  
𝑆𝑡𝑑

𝑥̅
∗ 100%                                                            (3.11) 

 

    𝑆𝑡𝑑 =  √
∑(𝑥 − 𝑥)2

𝑛
                                                               (3.12) 

 

                                                                                                                  𝑤ℎ𝑒𝑟𝑒,   𝑥̅  =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  
 

                                                                                                                         𝑛 =  𝑐𝑜𝑢𝑛𝑡 
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In contrast to classical decision tree algorithms, the XGBoost algorithm creates multiple decision trees. 

The reasoning behind using a complete set of decision trees instead of one is that one decision tree is 

sensitive to inaccurate parameter settings in the input dataset. To reduce this inaccuracy present in a 

single decision tree, the XGBoost algorithm creates multiple decision trees that are boosting the 

prediction results towards better and better predictions. 
Each Individual decision tree use K additive functions to predict the output (𝑦𝑖). The resulting 

output is given in Formula 3.12 below. Each function 𝑓𝑘 corresponds to an independent tree structure 

(𝑞) with leaf weights (𝑤)  (Chen & Guestrin, 2016). Here 𝑞 represents the structure of each tree that 

maps an example to the corresponding leaf index. 𝑇 is the number of leaves in the tree (Chen & 

Guestrin, 2016).  
The predictive performance of the individual decision trees is combined in the regularised boosting 

objective ℒ(ф)  given in formula 3 below. ℒ(ф)  sums up the individual tree prediction errors that are 

multiplied by a differentiable convex loss function (𝑙) and regularises it with a regularisation term Ω. 

According to Chen & Guestrin(Chen & Guestrin, 2016), the regularisation term is the secret power of 

XGBoost which helps to create a model that is simple but still achieves very accurate predictions. The 

regularization term Ω furthermore fights against undesirable overfitting predictions. It does so by 

penalizing the complexity of the model.  
Regularisation of the prediction outcomes happens in two distinct ways in the algorithm. In 

Formula 3.13 below, it can be found that first of all there is a regularisation term T. T stands for the 

number of leaves in the tree. T is multiplied by parameter gamma. Furthermore, there is a 

regularisation term w, denoting the individual tree leave weights. A tunable parameter λ is placed in 

front of w. The regularisation boosting objective ℒ(ф) is the reason why XGBoost is outperforming 

other algorithms. This boosting regularisation term is very powerful, and therefore this boosted 

regularisation objective is described in more detail. In section 3.7.2.1.2. In the next subsection 

3.7.2.1.1, the single decision tree construction is described. 

 

                            𝑦̂ =  ф(𝑥𝑖)  =  ∑ ƒ
𝑘

(𝑥𝑖),𝐾
𝑘=1                                          ƒ𝑘 ∈  𝐹             (3.12) 

                             

𝐹 = {ƒ(𝑥) = 𝑤𝑞(𝑥)}(𝑞: ℝ𝑚 → T, w ∈ ℝ𝑇)                                  (3.13) 

                                                 

ℒ(ф) =  ∑ 𝑙(𝑦̂𝑖𝑖 , 𝑦𝑖)  +  ∑ Ω(ƒ𝑘)𝑘                                                         (3.14) 

   

𝑤ℎ𝑒𝑟𝑒  Ω(ƒ)  =  𝛾𝑇 +
1

2
𝜆||𝑤||2                                                         (3.15) 

3.7.2.1.1 Individual Decision Tree Construction 

As mentioned earlier in this subsection, XGBoost creates multiple decision trees from subsets of the 

training data. In bagging decision tree ensembles models, the subsets are created by averaging 

individual decision tree predictions. In contradiction to bagging tree ensembles, boosting tree 

ensembles do not average the individual decision trees, but sum the individual tree results. There are 

more differences between bagging and boosting, for example in the creation of new decision trees. In 

essence, decision trees are in XGBoost by focusing more on dataset observation that gave poor 

predictions. XGBoost creates subsamples of the training dataset based on error prediction of 

observations in previous XGBoost decision tree iterations. This means that observations with high 

prediction errors, measured in previous XGBoost decision tree creation iterations, got assigned a 

higher value than observation with a low prediction error in previous XGBoost decision tree iterations. 
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3.7.1.1.2 Gradient Tree Boosting Method 

Last, the gradient tree boosting method used by XGBoost is described in this section. Gradient 

methods make iterative steps, in the direction toward the minimum of the derivation of the loss 

function ℒ(ф). Mathematically, the corresponding optimal value of the loss function is represented 

as: 

 

ℒ̃(𝑡)(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

𝑇
𝑗=1  + 𝛾𝑇                               (3.16) 

Besides the predictive accuracy, the XGBoost algorithm is constructed with the inclusion of some 

powerful advanced features. In total five advanced features are added to the XGBoost model making 

the algorithm highly scalable, efficient and sparsity aware. The five powerful features are given below 

in dotted enumerations. The inclusion of those powerful features inside the XGBoost algorithm makes 

the complete XGBoost algorithm highly scalable and able to deploy billions of observations by using 

far fewer resources than existing algorithms (Chen & Guestrin, 2016). The five advanced features are: 

  

• Approximate Algorithm 

• Sparsity-Aware Split Finding 

• Weighted Quantile Sketch 

• Block structure for Parallel learning and Out-of-Core Computation 

• Cache-Aware Access 

3.7.2 Hyperparameter Optimization 

Optimising a machine learning model is a complex process. Apart from the extensive set of 

preprocessing operations, that could be applied and the decision to select a proper algorithm, also the 

hyperparameters need to be tuned. Hyperparameters are different from normal parameters since 

normal parameters are set to a constant value. It looks very counterintuitive that parameters take on 

a constant value. However constant values in parameters refer to the stability in parameter values 

while creating the prediction model. The reason for assigning a constant value to parameters in 

training phase is based on either the study objective, expert knowledge or just because default 

settings are used. 
On the other hand, hyperparameters are parameters that need to be tuned in model training 

phase in order to minimise the objective function. Finding good hyperparameter values can be done 

in three different ways; manual, semi-manual or automated (Bergstra, Bardenet, Bengio, & Kégl, 2011, 

p. 1). The manual hyperparameter search strategy is called; manual hyperparameter selection. The 

semi-manual hyperparameter search strategy is called; grid search. Last, there are two automated 

hyperparameter search strategies; random search and Bayesian search. 
In this study, we make use of the Bayesian hyperparameter search. The specific name of the 

Bayesian search model used in the service time prediction tool is; Tree-structured Parzen Estimator 

(TPE). The reason for selecting the specific Bayesian hyperparameter search strategy technique type 

TPE is twofold. First of all, TPE is theoretically better than its counterparts Grid Search and Random 

Search. TPE belongs to Bayesian optimisation methods, which are characterised for makes use of 

known information to enhance predictions (Tipping, 2004, p. 1). Concretely, TPE uses a smart learning 

approach to test hyperparameter sets sequentially. Manual search, grid search and random search 

lack such smart learning approaches. Second, TPE shows better performance on the objective function 

in comparison to the three pre-mentioned competing hyperparameter optimisation techniques. J. 
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truth 

Bergstra et al. (2011) compare four types of hyperparameter optimisation techniques on two 

prediction problems; TPE, Gaussian Process (GP), Manual Search and Random Search. The 

performance of the four hyperparameter optimisation techniques is given in Figure 3.12 below. For 

both of the investigated datasets, TPE outperforms the other three hyperparameter optimisation 

methods. It even achieves an error reduction of 4.50% and 2.84% for the first and second dataset 

respectively in comparison with manual search hyperparameter selection technique. 
 

 

Table 3.1.  Performance four hyperparameter selection techniques 

  (TPE, GP, Manual Search, Random Search) 

    on the convex dataset and the MRBI dataset. 

3.7.2.1 Method Used By TPE 

The TPE optimisation process is graphically presented in Figures 3.7 and 3.8 below and explained in 

the remainder of this section. First of all, remind that an objective function is always required in order 

to select better hyperparameters. The objective function in the service time prediction model can be 

expressed as 𝑥∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
(𝑥 ∈𝑋)

ƒ(𝑥) , where 𝑥∗ is the optimal set of hyperparameter for the objective 

function expressed relative to the feature space ƒ(𝑥). The optimisation of this objective function is 

known as an NP-hard problem, therefore very difficult to solve. 

 

 

             

               Figure 3.7.  2nd Iteration TPE Hyperparameter          Figure 3.8.  6th Iteration TPE Hyperparameter                                         

                                  Optimization                     Optimization 

                         

To solve the NP-hard objective function optimisation problem, TPE uses an evolutionary mixture 

model. The evolutionary mixture model can be classified as a greedy sequential method and is called; 

sequential model-based global optimisation (SMBO). The SMBO tries to uncover the hyperparameters 

minimizing the objective function  (Bergstra et al., 2011). The SMBO algorithm have been used in many 

applications in which the evaluation of the objective function is difficult (Bergstra et al., 2011, p. 2). 

Difficulty in objective function optimisation arises by the high combinatorial possibilities of the 

hyperparameter set. To circumvent the high combinatorial possibility problem, the SMBO approach 

makes use of a stepwise approach. In each sequential step, new hyperparameter settings are created 
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based on the performance of previous specified hyperparameters. SMBO uses an approximation of 

the objective function as strategy. The approximation is named ‘the surrogate model' and is denoted 

as p(x|y). The p(x|y) formulation of the surrogate model resembles the universal Bayesian 

formulation given as p(B|A). One could refer to the surrogate model as follows; ‘the probability of x, 

given y takes a particular value’ (Bergstra et al., 2011). The p(x|y) calculation method used by TPE is 

given in formula 3.17 below.  

 

𝑝(𝑥|𝑦)  =  {
𝑙(𝑥)  𝑖𝑓 𝑦 <  𝑦∗

𝑔(𝑥)  𝑖𝑓 𝑦 <  𝑦∗                                                 (3.17) 

 

Concretely, TPE creates two distributions g(x) an l(x) from the configuration space. l(x) is created by 

forming a distribution based on the point in the configuration space 𝑥, where y is lower than 𝑦∗. y(x) 

is created by forming a distribution based on the point in the configuration space 𝑥, where 𝑦 is higher 

than 𝑦∗. Based on the two distributions, TPE uses a selection function for making the decision about 

which set of hyperparameter values could best be investigated in the next step. For finding the best 

set of hyperparameter values, the selection method uses the Expected Improvement (EI) criteria 

(Bergstra et al., 2011). The EI criteria is visually represented as the blue bottom surface in Figures 3.11 

and 3.12. The maximum value of the EI derivation will give the next hyperparameter set that will be 

tested. After each hyperparameter set check, the EI function will update itself, creating new a new 

surface. This can be observed by comparing Figure 3.11 with Figure 3.12. The mathematical 

formulation of the EI formula is given below in Formula 3.18. Note that EI is maximised by 

maximisation the g (x) l(x)⁄  ratio given in the latter part of Formula 3.18. 

  

               𝐸𝐼𝑦∗(𝑥) =
𝛾𝑦∗𝑙(𝑥)−𝑙(𝑥) ∫ 𝑝(𝑦)𝑑𝑦

𝑦∗

−∞

𝛾𝑙(𝑥)+(1−𝛾)𝑔(𝑥)
 ∝  (𝛾 +

𝑔(𝑥)

𝑙(𝑥)
(1 − 𝛾))−1                   (3.18) 

                                                  

3.7.3 Arrival Time Calculator 

The main performance measurement metric in this study is the Nett Promoter Score (NPS). The NPS 

metric is used for measuring customer satisfaction. The goal and calculation method used by NPS is 

completely explained in section 1.3. After investigation of historical NPS score data, it turns out that 

customers assign lower NPS scores if the drivers arrive more than 30 minutes too early or 1 minute or 

more too late. These arrival time indications are both relative to the 1-hour timeslot that is send to 

the customer at the same morning of delivery. The NPS historical data analysis is described in later 

section 4.2 in more detail. In the current situation, the Coolblue delivery employees do not get 

instructed by arrival time guidelines they should try to follow to improve NPS scores. However, it is 

very likely that the NPS score can significantly be improved in the following way; assigning extra or 

less driving time to each customer stop on the vehicle routing. Both arrival time configurations are 

focussed on preventing much too-late deliveries later in the tour. To improve NPS scores most, 

relatively to the current situation, in total four arrival time policies are included in the service time 

prediction tool: 
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1. Too-early arrivals are accepted as it is in the current situation. 

2. Like policy 1, plus additional driving time 𝑝 assigned to each customer. In this way, the 

drivers get an extra time of p minutes for each delivery. This results in less too-late 

deliveries, but on the other hand, causes more too-early deliveries. The arrival time 

calculator determines the effect on NPS while adding different values of parameter 𝑝. 

 

In sections 5.1 and 5.2 the NPS results of the two arrival time policies are described in detail.   

3.8 Evaluation and Validation 

In this section, the model evaluation methods and model validation methods used in the service time 

prediction tool are described. In the model evaluation the following question is of central importance; 

what is the best service time prediction model scenario among the investigated service time model 

scenarios tested? In the model validation phase has a different question with central importance; Does 

to model make logical predictions in various input and model execution situations?  

3.8.1 Model Evaluation 

In this study, two metrics are used to evaluate the model performance. The two metrics are the service 

time prediction error and the NPS score. In the remainder of this subsection, an explanation is 

provided how the two metrics are concretely implemented and used in the service time model. 
The first and most important performance metric used to evaluate the predictive performance 

of the model is the service time prediction error. Because NPS score on their own is not able to provide 

a functional output parameter for machine learning algorithms to optimize, the service time 

prediction error is used as main performance metric. The service time prediction error is measured as 

the difference between the service time predictions and the realised service time. In the service time 

prediction tool, the Mean Absolute Error (MAE) is set as the default error metric. In contrast to the 

standard Mean Error (ME) the MAE only uses the magnitude of the prediction error and does not 

make use of the direction of the prediction error (Witten & Frank, 2011, p. 181).  

MAE is the default error metric in this study. By setting the MAE metric, as default metric in 

this study, it means that the performance of other metrics like Mean Squared Error (MSE) and Root 

Mean Squared Error (RMSE) is not checked. The reason for assigning MAE as default error metric is 

the following; The MAE relatively treats all prediction error magnitude the same. The favourable 

consequence of treating all prediction error the same is that all observations will be optimised linearly 

by the magnitude of the error. This means that there is no exceptional focus on the potentially 

unrepresentative service time outliers. In this way, the effect of incorrect outliers in the input dataset 

is not transferred to the prediction creation process. However, it could be that the high service time 

observations should not be classified as outliers.  

The MAE metric is used as main performance metric in the service time calculations. However, 

sometimes is it interesting to see the real distribution of the error. Then it is recommended to check 

the mean error (ME). ME gives unadjusted positive and negative error values. 

 Furthermore, the decision is made not to test relative error measures. Potential relative error 

metrics that could be tested are the Relative Squared Error (RSE), Root Relative Squared Error (RRSE) 

and the Relative Absolute Error (RAE or MAPE). Relative error metrics normalise the error measures 

according to the mean value (Witten & Frank, 2011, p. 181). This means lower weights are placed on 

values higher than the mean value. These metrics diminishes the effect of outliers, which is 

undesirable. Last also the coefficient of determination (R2) and AIC/BIC error metrics are not used in 

the service time prediction tool. The R2 error is not used because the total error in non-linear models 
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does not add up to 1, like in linear models (Colin Cameron & Windmeijer, 1997). In non-linear models, 

the total error term could not be calculated objectively, since the total error term applicable in linear 

regression models (𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑆𝑆𝑒𝑟𝑟𝑜𝑟) does not hold. The reason for not using the AIC 

or the BIC error metrics is that these metrics are only capable of making a performance comparison 

between different models. The magnitude of the AIC and BIC value is uninformative. Since AIC and BIC 

are composed based on the R2 model fit, AIC and BIC are considered invalid for non-linear models 

(Hastie, Tibshirani, & Friedman, 2013). The mathematical formulas for the three performance metrics 

that are used in the service time prediction tool are given below (Witten & Frank, 2011, p. 181): 

 

    𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐸)                                                           
𝑝1 − 𝑎1 + ...  + 𝑝𝑛 − 𝑎𝑛

𝑛
                                  (3.19)        

 

    𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸)                              
|𝑝1 − 𝑎1| + ...  + |𝑝𝑛 − 𝑎𝑛|

𝑛
                              (3.20)                                                                                                

                      
The second evaluation metric is the NPS score. In section 1.3 a detailed description is provided about 

how the NPS score is obtained from customer surveys. The NPS score is computed after the MAE 

service time check. As explained in section 1.3, historical NPS scores turns out to indicate different 

NPS scores for too-early, on-time and too-late arrivals at the customer.  

        The new predicted NPS scores is composed by setting new customer arrival time in which the 

XGBoost service time prediction is inserted as service time. Next, the new arrival times are mapped to 

the historical NPS scores on 15-minute intervals. In this way, new machine learning model NPS scores 

are obtained. Those new machine learning model NPS scores are compared with the current realised 

NPS score by Coolblue. This results in the notion of customer satisfaction increasement or reduction 

realised by the implementation of the new machine learning model.  

 
In reference to the most important evaluation metrics described in this section (MAE and ME), the 

following hypothesis is defined: 

 
H1: The MAE and ME of the machine learning computed service times predictions is                             

VV. Expected to be significantly lower than the MAE of the current Coolblue service time …. 

…V.predictions. 

3.8.2 Model Validation 

Most important for any model is that the model accurately represents reality. It is essential to relate 

the performance of the model against the behaviour of the real system. 
First, Numerical model statistics are compared with numerical statistics of the real system. 

Therefore, the service time predictions are validated. The actual question was; are the new machine 

learning service time predictions giving reasonable values? To answer this question both visualisation 

and descriptive statistics will be used.  

Besides the service time predictions validation, also the distributions of too-early, on-time and 

too-late arrivals are analysed. Nevertheless, since the expectation raised in H1 is that the machine 

learning model more accurately predicts service times, the NPS calculator is likely to provide higher 

NPS scores. Taking this into consideration the following validation hypotheses are proposed:  

 
H2: The number of too-early arrivals is expected to be higher in the current Coolblue service                                                                                

….   time model in comparison to the machine learning service time model. 
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H3: The number of too-late arrivals is expected to be higher in the current Coolblue service                          

….   time NPS model in comparison to the machine learning service time NPS model. 

 
H4: The new machine learning model NPS scores significantly outperforms the current            

……Coolblue model NPS score.  

3.9 Graphical Model Performance Comparison  

Besides numerical model evaluation and validation, graphical model evaluation and validation 

significantly helps in determining the best model. In section 3.8, the numerical model comparison is 

described. In this section, the graphical model comparison is described. Three categories of 

visualisations used in this study are described. Visualisations help in discovering the best model from 

the set of candidate models. By reviewing the visualisations together with the numerical output, 

relations in the model behaviour can be observed which assist in selectin the best model. In this 

section, the theoretical approach behind the visualisations is described. 

 
The MAE numeric model comparison is executed for all individual model. Graphics, however, are only 

computed for the five best machine learning models. The five best machine learning predictors 

graphically are compared to the current Coolblue service time prediction model in every single 

visualisation. In total three visualisation categories are defined. The first category of visualisations 

shows KPI performance. In these visualisations, either the MAE, ME or NPS score is provided on the Y-

axis. The second category of visualisations show the error distribution. The third category of 

visualisation give an inside into the inner structure of the model by pointing out feature importances. 

3.9.1 KPI Plots  

First and most essential visualisations category is the KPI plots category. The name KPI Plots refer to 

visualisations that represent the metric performance results obtained by the model. The three KPI's 

in this study are MAE, ME and NPS. In the KPI plot visualizations one of those three metrics is placed 

at the Y-axis. The theoretical descriptions of those three KPI's is already provided in sections 3.8.1 and 

3.8.2.  

3.9.2 SHAP Value Feature Importance Plots 

Last visualisation category is the SHAP Value Feature Importance Plots. SHAP values describe the 

importance of variables included in the model. Machine learning predictors mostly give a very 

accurate prediction. However, the computation method used by machine learning algorithms is rather 

complex and mostly seen as a black-box structure. To advance understanding of the complex machine 

learning black-box structure, an analysis of feature importance is done.  

 
Lundberg notes almost all feature importance calculation methods belong to the set of additive 

feature attribution methods (Lundberg, Erion, & Lee, 2018). Additive features attribution methods 

sum the individual observation values, thereby creating a model output score. Feature Additive 

attribution models however must satisfy three important properties to be valid methods; local 

accuracy, missingness and consistency. Local accuracy means that the feature importance outcome 

for all features together always sum to the same standard number  (Lundberg et al., 2018). The 

missingness property states that a missing feature should logically be assigned feature importance of 

0  (Lundberg et al., 2018).  The consistency property states that, changing the order of the features so 
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a single feature will have a more substantial impact on the model,  will never decrease the feature 

importance value of this feature  (Lundberg et al., 2018). In the article Lundberg et al. (2018), all pre-

mentioned model validation properties are checked for the following four feature importance metrics: 

 

• Feature importance based on split  

• Feature importance based on gain 

• Permutation 

• Shaabas.  

 
It results that none of the four-enumerated feature importance metric satisfies to all the three model 

validation properties local accurate, consistency and ability to handle missing data. Fortunately, 

Lundberg proposes one new feature importance metric that does satisfy all three properties. The 

name of this feature is; SHAP (SHapley Additive exPlanations) values. SHAP values assign feature 

importance to the model based on the Shapley theorem. Because SHAP value is the only feature 

importance methods satisfying the three pre-mentioned properties the decision is made to use SHAP 

values in this study to determine feature importance. There even is one more reason to use SHAP 

values in favour of the pre-mentioned other feature importance methods; SHAP values best recognise 

model performance changes. The proof is given in Figure 3.9 below. This Figure represents the model 

prediction improvement if the worst feature is removed from the input dataset. By removing the worst 

features, the prediction of the model should increase. SHAP values can best recognise the 

performance increase by observing that the SHAP value line is higher than the other feature 

importance lines.   

 

                                          
        Figure 3.9.  Performance Improvement  

                    Recognition of SHAP 

                     values vs other feature 

                   importance methods.  

 
For determining SHAP values for each feature, the SHAP metric uses a two-stage procedure. 

Sequentially one of the variables is removed from the input dataset. The prediction will be made and 

an error term of the model results. Next, the feature is retained in the input dataset. Again, the 

prediction will be made and the error term results. By comparing the error terms of the model in both 

situations, the feature importance of all variables in the model can be drawn. SHAP values denote the 

feature importance in log odd values. Log odd values are created by transforming the probabilities to 

the probabilities of a logistic function. In Formula 3.24 below, the logistic function is presented. 

Visualising feature importance in terms of log odds values is desirable for one main reason; Log odd 

values will create equal axis length for both predictions lower than the mean, or predictions higher 
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than the mean. In ordinary cases, it is tough to compare probabilities. A simple example can be drawn. 

If you team attends a soccer tournament, based 
on the team’s quality, they will have a chance of winning a match 1 of the seven times (1 6⁄ ) = 0.17 

Another team is better and has a probability of winning a match 6 of the 7 times; (6 1⁄ ) = 6. However, 

the two probabilities cannot be compared by using the 0.17 and 6 outcome probabilities.  

 
Log odds create a logistic transformation to the function. In this way the 0.17 and 6 outcome scores 

are transformed into:  

 
𝐿𝑜𝑔 𝑂𝑑𝑑      𝐿𝑜𝑤 𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑊𝑖𝑛𝑛𝑖𝑛𝑔:       𝑙𝑜𝑔(0.17) = −1.79 

 

                                            𝐿𝑜𝑔 𝑂𝑑𝑑      𝐻𝑖𝑔ℎ 𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑊𝑖𝑛𝑛𝑖𝑛𝑔:            𝑙𝑜𝑔(6) =    1.79 

 
Observe that the log odds correctly translate the probabilities in easily recognisable numbers. 

 
In section 4.5, the three types of SHAP plots used in this study are defined. Later, in section 5.2, the 3 

SHAP Plot visualisations are provided and described in detail. 
 

𝑓(𝑥) =
1

1+𝑒−𝑥                                                             (3.21) 
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4. Conceptual Model 

In Chapter 3, the methodology used to compute machine learning service time prediction is described. 

In addition, also the model validation and evaluation metrics and methods used are explained. In this 

chapter, a conceptual model diagram is proposed for transforming the methodology into real process 

outcomes. The high-level service time prediction model setup diagram is presented in Figure 4.1 

below. In short terms Figure 4.1 describes the system prediction behaviour that a historical dataset is 

inserted in the model, a subset of 6 possible pre-processing operations are applied to the data and 

the Bayesian solvers finetunes the hyperparameters by using cross-validation in the train set. Next, 

the optimal model is determined by the final performance testing optimizer, the MAE of de service 

time is determined and the NPS scores is estimated.  

 

 
      Figure 4.1:  Setup Service Time Prediction Model - High Aggregation Level 

4.1 Dataset Construction and General Data Pre-processing Operations 

In this subsection, the construction of datasets and general data pre-processing operations are 

described. First, the dataset construction is considered. 
     To start making machine learning predictions, a dataset must be constructed that includes 

indicative features. Therefore, as much as possible service-time related features need to be captured. 

All features that potentially influence service time predictions are selected. The features are selected 

based on interviewing Coolblue employees that are most closely involved in the delivery operations. 

The function title of the colleagues that were interviewed; Logistic Planners, Business Analysts, Team 

Leaders and Drivers. With the help of information received from these colleagues, a UML diagram of 

the service-time dependent variable features system is created. This UML diagram is presented in 

Figure 4.2 below. Figure 4.2 provides an overview of the association, aggregation and composition 

relations between all features used in the service time prediction model.  

      In total two databases are used for extracting the data, one internal Coolblue database and a third-

party logistics service provider database. From the logistics company database, all historical planning 

and all historical realisation data were extracted. Additionally, the differences between planning and 

realisation is extracted from this logistics company database. Planning and realisation data is available 

for all the following indicator segmentations; service time, driving time, arrival time and departure 

time. The data is uniquely available for each order, and therefore it is possible to merge this data on 

order id with the SQL Servers Internal Coolblue Database. The SQL Servers Internal Coolblue Database 

contains both order-related data and product-related data.  
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      In Figure 4.2 below, the UML diagram of the service time model feature relation system is provided. 

In Figure 4.2 it is indicated that products are aggregations of orders, meaning that an order consists 

of 1 up to n products. Furthermore, the products are belonging to one specific product group. Product 

groups are generalisations of product types and sub-product types. After the route planning is carried 

out, individual orders got assigned a sequence number and a tour number. A tour consists of multiple 

sequence numbers. Sequence numbers are just indicating a ranking of stops numbers in the tour. The 

first stop in the tour is assigned sequence number 1, the next stop in the tour is assigned sequence 

number 2. The sequence number logic is applied similarly to later stops in the tour. One tour is carried 

out by a driver, a co-driver and in exceptional situations also a second co-driver. The driver, co-driver 

and second co-driver are driving the van to all delivery locations and are delivering or installing the 

products at the customer desired location within the house. 

      Next, the general data pre-processing operations are described. As is mostly the case, the data is 

not completely clean and free of inconsistencies. General data pre-processing operations can be 

applied in many ways. In Table B.2 in the appendix, all General Data Preparation operations are given. 

Unclean variables are indicated for the need to be converted, created, completed, corrected or 

transformed.  

 

 

Figure 5.2.  UML Diagram Service Time Model Feature Relation System 
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4.2 Exploratory Data Analysis 

Exploratory data analysis (EDA) is of the highest importance before proceeding to model creation and 

deployment. EDA is so seriously important because it discovers the model requirements and model 

bounds. Also, the relations and distributions between variables, that are included in the model can be 

tracked down by doing EDA. In this section, a distinction is made between the model input variable 

EDA and model objective function EDA. Both numerical and graphical analysis is performed in each 

subsection 4.2.1 and 4.2.2.  

4.2.1 Input variable EDA  

Input Variable EDA refers to the analysis of individual features distributions or analysis of relations 

between features. All features that were initially having an object datatype are transformed into 

numeric datatype, meaning that for all features, numerical evaluations can be performed. The most 

important numeric data analysis techniques are descriptive statistics. The first numeric data analysis 

technique, descriptive statistics, gives most important information for a variable in the dataset. In 

Table 4.1 below, the descriptive statistics of the target variable ‘Stoptime Minutes’ is given.  

       The ‘Stoptime Minutes’ feature is the target variable in this study. It qualifies the historical 

realised service times. Initial EDA validations checks can be done by reviewing Table 4.1. In the next 

part the non-outlier transformed test dataset descriptive statistics will be provided. The test dataset 

consists of 97357 orders for the non-outlier transformed dataset. The original datasets contain 

310595 orders. On average, the service time of the delivery order is 11.69 Minutes. The standard 

deviation of the service time target variable is 9.77. Moreover, 75% of deliveries are lasting more 

than 5.78 minutes, meaning that a high percentage of orders (25%) is delivered in a very short time 

window. This could be due to the inclusion of so-called ‘DrempelPlus’ products in the historical 

orders dataset. ‘DrempelPlus’ products are products that are delivered at the customer desired 

location inside the house. However, those products are not completely installed. Examples of 

‘DrempelPlus’ products are; Home trainers, Cross-trainers and Ovens. On the other side of the 

range, 25% of deliveries are lasting more than 15.76 minutes. By further analysing the minimum 

value and maximum value descriptive statistics of the target variable, there turns out to be a small 

percentage of wrong service times, the maximum service time duration in the dataset is 381.62 

minutes and the minimum service time duration is -1422.86.  

        The maximum service time value is approximately equal to 11.5 hours. This is unreasonable 

large and therefore classified as an outlier. The minimum service time duration denoted is a negative 

value. Negative service time duration cannot happen, that is why all negative service times should be 

deleted from the input dataset. Because the minimum and maximum service time values are 

outliers, a decision needs to be made which service times durations are considered as outliers and 

therefore reduced from the dataset. To define the right service time value bounds for which the 

service times are outliers, the count distribution of the service times is presented in Table 4.1 below. 

The service time duration count distribution in Figure 4.3 shows the number of occurrences of 

service time durations accumulated in 1-minute bins. In Figure 4.3 a sharp drop of in total 49 

deliveries lasting 54 minutes to 26 orders lasting 55 minutes is observed. While observing the service 

time bins higher than 55 minutes, the total amount of orders per one-minute bin even more 

decreases. The decision was made to delete all orders lasting longer than 54 from the dataset to test 

the predictive performance of the model if this high service time values were removed. Observe that 

service times durations smaller than 5 minutes occur most. The service time duration 5 minutes up 

to and including 12 minutes turn out to appear in almost equal quantities. For each subsequent 

service time duration 1-minute bins, the number of  
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Table 4.1. Test Dataset Historical Realized  

               Service Time No Outliers 

             Reduced and Outlier Reduced  

               Configuration  

  
More numerical EDA statistical are combined in Table B.3 in the appendix. Table B.3 gives us the 

following information; The percentage of deliveries that were ordered by loyal customers is 2.67%. 

Loyal customers ordered at least twice in the past 7. Furthermore, the percentage of orders delivered 

by the 2-man Coolblue delivery service is 82.55%.  This means that the 2-man delivery service is used 

much more than the 1-man delivery service and the bike delivery service. Next, Table 6 indicates that 

half of the orders have a sequence number lower than 10 (62.47%). The meaning of sequence number 

in this study is described in section 4.1. Last three observations from Table 6 are; ‘Depot’ orders are 

filtered out correctly (‘Visit’ orders are retained), only a small percentage of orders is not delivered 

successfully (0.65%) and 0.47% of deliveries resulted in damage to the client personal belongings. 
Besides numerical input features EDA also Graphical input features EDA is performed to see 

the objective function distributions in the data quickly. Distribution plots are created for; realised 

service time, time-related features (orders per month, orders per hour, orders per sequence number), 

the number of products per order and front door floor level. The realised service time distribution is 

already discussed in this section. A graphical representation is provided in Figure 4.3 below. Sequence 

number distribution is analysed earlier in this section as well. The distribution plot can be found in 

Figure 4.4 below. Figure 4.5 gives us the histogram of delivery moment over the day in bins of hours. 

64.47% of all orders are delivered in the morning, where peak moment has a timespan from 8.30 to 

11.30. Figure 4.6 gives the number of orders per month. A strong trend in the number of orders per 

month turns out to be present. Except for small dips in February and April, the total amount of orders 

delivered per month is sharply increasing, especially in the months May and June. Figure 4.7 shows 

that most front doors of delivery addresses is located at ground level. Only 19.6% of delivery addresses 

are located on higher floor levels. Last, Figure 4.8 shows the number of products per order. 73.19% of 

orders consist of just 1 product, 16.13% of orders consist of 2 products and 6.58% of orders consist of 

3 products. Only a small amount of orders (4.32%) includes more than 3 products.  

        Last, to get an indication of the relations in the data and get an understanding of feature 

interaction a correlation heatmap is created. The heatmap is provided in Figure B.1 in the appendix.  
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      Figure 4.3.  Realised Service Time Count                                 Figure 4.4.  Sequence Number Count  

                          Distribution Plot                                                                         Distribution Plot 

                 

          
      Figure 4.5.  Number of Orders Delivered                                    Figure 4.6.  Number of Orders Delivered 

                          per Hour                                                                                       per Month 
    

 

              
      Figure 4.7.  Floor Level Front Door                                              Figure 4.8.  Number of Product per Order 

                          Distribution Plot                                                                                       
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4.5 Review Numeric and Graphical Output and Best Model Selection 

The machine learning prediction tool is designed to test a wide range of machine learning model 

scenarios. Each machine learning model scenarios is a variation to other machine learning model 

scenarios by the uniqueness of one of the following dimensions; input variables inserted, pre-

processing method applied, the algorithm used, or arrival time calculation method employed. Besides 

data pre-processing and prediction operations, the machine learning prediction model has a numeric 

statistics generation option and several graphical representation options. Therefore, the tool is both 

suitable for prediction and reviewing purposes. In this section, the most critical numerical output 

statistics and graphical output statistics are described. 
        Numerical output statistics of the two most important KPIs for the prediction models are 

generated. The output statistics of the two most important KPIs help in selecting the best model. The 

two most important KPIs are; Mean Absolute Error Individual Customer Stop (MAE) and the NPS score. 

All the models that are tested are evaluated on MAE. Based on MAE, the three best models are 

examined in more detail. The three best models, giving the lowest MAE scores, are subsequently 

compared on NPS score as well. Moreover, a deep dive is performed to this set of 5 best models to 

improve the predictive performance even more by making changes to input variables, 

(hyper)parameters, or pre-processing operations. Scenarios resulting from adjustments to the three 

best models are again tested on MAE and NPS score performance. The arrival time calculation method 

stays the same because otherwise, the interpolation of NPS score will come in play. In the result 

section 5.1, the numerical output of the three best models is provided. 
        Graphical output can be considered as an extension to numerical output as well as a friendly 

representation to light results. A good visualisation often is preferred over tabular information, just 

because it is attractive. In total four different result visualisations, types are created. In section 3.9, 

the categories of visualisations are described. Each category includes multiple plots. The first category 

of visualisations shows KPI performance. In these visualisations, the MAE, ME and NPS score is 

provided. The second category of visualisations shows the error distribution. The third category of 

visualisation is giving an inside into the inner structure of the model by plotting feature importance. 

The three visualisation categories are described in detail in the next subsections. 

4.5.1 KPI Plots  

The first category of visualisations shows KPI performance. In these visualisations MAE, ME and NPS 

score plots are provided. In total four plots are created; 

 
The first output visualisation gives the distribution of the MAE in a histogram. The second output 

visualisation gives a violin plot histogram of both the model MAE and ME. Furthermore, in the scenario 

analysis provided in section 5.1, the various model scenario MAE and confidence interval range as 

provided in a line plot visualization. Last, also an NPS score barchart visualization is provided. This 

barchart is presented in section 5.4. 

4.5.2 Error Joint Plot 

In this section, the joint plot visualisations are described. A joint plot is a multifunctional plot; it 

combines two visual representations; the error scatterplot and the regression prediction line. On the 

Y-axis, the realised service times are located. On the X-axis, the planned service times are located. The 

error scatterplot is mostly referred to as an essential plot for validating the model. In the ideal 

situation, the regression scatterplot line indicates that the scatters are approximately normal 
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distributed. The normality is measured as distance to the linear regression line. In Figure 4.9, four 

different regression error joint plots are provided. The linear regression plot is provided in the upper 

left Figure. The linear regression line ideally is approximating the diagonal line that increases with 

similar magnitude for the realised service times and the planned service times. If this is not the case, 

it means the model is overpredicting or underpredicting the model slightly. In Figure 4.9 the upper left 

plot regression line can be compared with the diagonal line in the upper right scatterplot. The scatters 

scatterplot in both Figures are the same, same scales are used. In the down left scatterplot, both the 

X-axis and the Y-axis range is doubled in comparison with the upper two plots in Figure 4.9. This gives 

a better indication of the distribution of the ‘Planned Service Time’ and the ‘Realised Service Time’ 

variables. Some outliers are still not reflected in the down left plot. Last, the downright plot is a special 

type of scatterplot, referred to as the hexian scatterplot. This scatterplot type reflects density regions 

by usage of different colours. Especially in very dense scatterplot regions, the hexian scatterplot is 

useful. From hexian scatterplot the observation can be made that the planned service time in general 

is little overestimating the realised service time. Later, in section 5.3 it is pointed out that the planned 

service time is indeed overestimating the realised service time on average. In this case, it is essential 

to check the ME distribution plot, which will be created as well as is indicated in section 4.5.1. 

 

 
Figure 4.9.  4 Configurations of Error Joint Plots 

 

4.5.3. SHAP Value Feature Importance Plots  

Getting an approximation of the internal functioning of the machine learning predictor and at the 

same times discovering feature importances, SHAP value visualisations are provided. In section 3.9 

the explanation is provided why SHAP values are favoured over other variable importance plots to 

determine feature importance. It is also described that SHAP values make use of log odd scales to 

define the importance of the variables in the model. Furthermore, an example is provided how log 

odds are calculated and why log odds are visually attractive. In total three different SHAP value plots 

are used in this study to indicate feature importance;  

 
1) SHAP Vertical Summary Barcharts 
2) SHAP Vertical Summary Coloured ScatterPlots 
3) SHAP Distribution Dependence Plot 
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The SHAP Vertical Summary Barchart ranks the features vertically based on importance. The most 

important feature is placed on top, whereas the least important features place on the bottom. Getting 

an understanding of the importance of features in the model is useful for two reasons. Analysis of 

feature importance helps in understanding the model better. Second, it is a perfect indicator for 

determining for selecting the features to drop. Third, it gives an understanding of potentially 

interesting features that could be added by reviewing the type of features that are ranked at the top.  

 
The SHAP Vertical Summary Coloured ScatterPlots ranks the features in the same way as the SHAP 

Vertical Summary Barchart. However, this plot is more advanced. With the help of coloured dots, it 

indicates the SHAP value distribution of individual SHAP values over high or low values of that features. 

It thereby leverages individualised feature attributions in comparison to standard feature importance 

bars. 

 
SHAP Distributional Dependence Scatterplot gives the interaction effect of two variable in the model 

by remaining the initial target variable scores. Like SHAP Vertical Summary Coloured ScatterPlots, 

SHAP Distributional Dependence Plots make use of coloured dots to represent the interaction effect. 

This third kind of SHAP plot is very informative since it can capture the interaction effect by both 

vertically and horizontally. 

 
In section 5.2 the all the plots described in this section are given and described in detail. 

 

 
Figure 4.10.  Log Odds and Service Time Relation Curve 
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4.2.2 Objective Function EDA 

Objective function numerical EDA reviews the objective that needs to be improved in the model. In 

section 3.8.1 it is mentioned that two metrics are assigned as main KPIs in this study; service time 

prediction error and NPS score. Because the service time prediction error is analysed in the results 

sections 5.1 and 5.2, only the NPS metrics are analysed graphically and numerically in this section. In 

section 1.3, an explanation is given that in simple terms, the time performance can be divided in too-

early arrival, on-time arrival and too-late arrival. By reviewing the historical NPS scores of the on-time 

performance distribution in Table 4.1 and Figures 4.11 and 4.12 below, it can be observed that there 

is a positive relation between NPS an on-time performance. The NPS on average are higher the 

delivery employees arrive on time, relative to arriving too-late or too-early.  
        Especially, arriving too-late at the customer is harmful in terms of NPS as can be seen in Table 4.1 

and Figures 4.11 and 4.12 below. The historical NPS scores provided in Table 4.1 are scores inserted 

as input parameter in the NPS calculation model. First, by analysing Figure 4.11 and 4.12 and Table 4.1 

carefully, it is decided to state one single deterministic NPS score for the time interval range 0 minutes 

lateness up to 1-hour lateness. This on-time arrival range is indicated in Figures 4.11 and 4.12 as the 

area between the black vertical line. 60 minutes lateness refers to the end of the one-hour time slot 

that is indicated to the customer at the beginning of the day. 0 minutes lateness refers to arriving at 

the strict beginning of the time interval indicated to the customer the same morning of delivery 

execution. The average NPS score of the 0 minutes lateness to 60 minutes lateness time interval, is 

set to the deterministic (mean) value of this time interval, which is 74.46. The NPS scores outside on-

time arrival range are clustered in 15-minute time-intervals. This is done to regularize the model 

outcomes by protecting for outlying NPS observations in the 15-minute time window. The number of 

NPS scores obtained in the single minute interval is not large enough for creating a grounded NPS 

difference distinction. Most of the time, single minute time interval average NPS scores are based on 

less than 500 NPS surveys. The number of 500 NPS survey is evaluated not to be representative in 

dialogue with Coolblue management.  

       

 
Table 4.1 2017 and 2018 NPS Aggregation Data. 

   

      

 Figure 4.11.  Historical NPS Score Distribution 2017       Figure 4.12.  Historical NPS Score Distribution 2018 
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4.3 Model Specific Pre-processing, Algorithm Deployment and Service Time Evaluation 

 

This section consists of three parts, which are; model-specific data preparation, algorithm deployment 

and service time prediction error evaluation. 

 
First, model-specific data pre-processing operations are performed. Different from the general data 

pre-processing operations discussed in section 4.2, model specific data pre-processing operations are 

adjustment made to: 

 

1. Variable Selection  

2. Data Partitioning  

3. Scaling Operations  

4. Handling Outliers 

 

In section 3.6 a thorough explanation of all 4-enumerated model specific data pre-processing 

operations is given. In this section model specific data pre-processing operations that are applied in 

the service time prediction model is described.                   

      Next, the prediction algorithm is selected, deployed and evaluated. Model selection, deployment 

and evaluation are performed many times before an optimal solution is found. There are two reasons 

causing the high amount of cycle repetition needed before convergence of an optimal solution. The 

first reason is that some boosting algorithms, like XGBoost, aggregate predictions of multiple 

individual models for creating the prediction. The boosting methodology used by XGBoost is explained 

3.7.1.1. The second reason is that hyperparameters are selected by a sequential model-based global 

optimisation (SMBO) approach. In subsequent iterations of model deployment, the hyperparameters 

are improved. Because a sequential iteration strategy is used to find optimal hyperparameters, the 

model must be deployed several times in a row.  

      Next, the prediction error is obtained by usage of an evaluation metric. Section 3.8.1 describes the 

prediction error metric that is tested in the service time prediction tool. Mean absolute error (MAE) is 

used as the default prediction error metric. MAE measures the prediction error for the complete set 

of orders in the test set. Besides calculation of the MAE of individual service times, also the mean error 

(ME) of all stops is determined. 

4.4 Arrival Time Module and the NPS Calculation Module 

This section is devoted to two process steps arrival time method constructor and the NPS calculation 

module. In the arrival time method constructor, two possible arrival time calculation methods are 

initiated. Both arrival time calculation methods come with different restrictions and solution spaces 

for computing expected arrival times. 

4.4.1 4 Arrival Time Scenarios 

The first arrival time calculation method reflects the current delivery procedure. The drivers depart 

from the depot and arrive at the delivery locations belonging to the tour sequentially. No restrictions 

are placed on too-early arrivals, meaning that too-early arrivals are accepted. In sections 4.2, the 

meaning of too-early arrivals is explained.  
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        The second arrival time method assigns an additional constant driving time value to the model. 

By using a parameter p, driving time is added to each driving time duration between customer i and 

customer i+1, where i is the sequence number in the tour. 
        For describing the relation between the parameter p and the NPS a grid search Table is designed. 

The grid search Table is explained in section 5.1, and a visualisation of the values in the grid search 

Table is given in section 5.1 as well.  

4.4.2 Arrival Time Lateness Module 

The arrival time lateness module determines the arrival time lateness of all individual stops in the 

tour. The arrival time lateness is computed by simulation. The formulas used in this calculation are 

given below. In the remainder of this section, the arrival time calculation module is explained by 

referring to the mathematical formulas used. 

 

The arrival time calculation consists of three components, which are; ‘realised arrival times’ (𝑅𝐴𝑇𝑜,𝑖,𝑡), 

‘predicted arrival times’ (𝑃𝐴𝑇𝑜,𝑖,𝑡) and ‘arrival time lateness’ (𝐴𝑇𝐿𝑜,𝑖,𝑡). The 𝑜, 𝑖, 𝑡  subscript refers to the 

order, sequence number and tour number that is attached to a specific delivery order. It is important 

to add this extra information, because 𝐴𝑇𝐿𝑜,𝑖,𝑡  of orders consisting to the same tour are dependent on 

each other. In Formula 4.3 and Formula 4.4 it can be observed that the arrival time lateness is obtained 

by subtracting the predicted arrival times from the realised arrival times. The Coolblue model 

predicted arrival time does not have to be calculated since this value already exists in the company's 

database. For clarification reasons, the calculation method used by Coolblue is given in Formula 4.1. 

The Coolblue predicted arrival time 𝐶𝑃𝐴𝑇𝑜,𝑖,𝑡 results from adding up predicted driving time (𝑃𝐷𝑇𝑜,𝑖,𝑡) and 

the predicted service time (𝑃𝑆𝑇𝑜,𝑖,𝑡) to the current customer to the predicted arrival time calculation at 

the previous customer. However, the Machine learning predicted arrival time needs to be calculated 

again, since this predicted arrival time includes the new service time estimations. Unfortunately, in 

the company database the predicted arriving time turns out to provide incorrect values. Therefore, 

the calculation method for composing the machine learning predicted arrival time (𝑀𝐿𝑃𝐴𝑇𝑜,𝑖,𝑡) is 

subtracted from the Coolblue predicted arrival time (𝐶𝑃𝐴𝑇𝑜,𝑖,𝑡), by creation of a machine learning 

service time lateness variable (𝑀𝐿𝑆𝑇𝐿𝑜,𝑖,𝑡). The service time lateness (𝑆𝑇𝐿𝑜,𝑖,𝑡) provides the difference 

between the Coolblue predicted service time (𝐶𝑃𝑆𝑇𝑜,𝑖,𝑡) and the machine learning predicted service 

time (𝑀𝐿𝑆𝑇𝐿𝑜,𝑖,𝑡). Since the driving time of both the Coolblue model and the machine learning model is 

equal, the only difference relies in the service time. By adding up the machine learning service time 

lateness (𝑀𝐿𝑃𝐴𝑇𝑜,𝑖,𝑡) to the Coolblue model predicted arrival time (𝐶𝑃𝐴𝑇𝑜,𝑖,𝑡), the new machine learning 

predicted arrival time is created. This mathematical operation is provided in Formula 4.2. 

 

Next, the arrival time lateness can be determined for both the Coolblue model and the machine 

learning model. The arrival time lateness scores are provided in Formula 4.1 and Formula 4.2. For the 

Coolblue Model, the arrival time lateness (𝐶𝑃𝐴𝑇𝐿𝑜,𝑖,𝑡) of an individual order is composed by subtracting 

the individual order Coolblue planned arrival time (𝐶𝑃𝐴𝑇𝑖) from the individual order realised arrival 

time of an individual order (𝑅𝐴𝑇𝑜,𝑖,𝑡). The same methodology holds for composition of the machine 

learning model arrival time lateness (𝑀𝐿𝑃𝐴𝑇𝐿𝑜,𝑖,𝑡). The arrival time lateness (𝑀𝑃𝐴𝑇𝐿𝑜,𝑖,𝑡) of an individual 

order is composed by subtracting the individual order machine learning model planned arrival time 

(𝑀𝑃𝐴𝑇𝑖) from the individual order realised arrival time of an individual order (𝑅𝐴𝑇𝑜,𝑖).   
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  Predicted 𝐶𝑜𝑜𝑙𝑏𝑙𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 (𝐶𝑃𝐴𝑇𝑜,𝑖,𝑡) = 𝐶𝑃𝐴𝑇1 + ∑ 𝐶𝑃𝑆𝑇𝑜,𝑖,𝑡
𝑛−1
𝑖 =1 + ∑ 𝐶𝑃𝐷𝑇𝑜,𝑖,𝑡  ∀𝑜 ∈ 𝐹,𝑛

𝑖 =2   (4.1)       
  Arrival                

  Times       𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑀𝐿𝑃𝐴𝑇𝑜,𝑖,𝑡) = 𝐶𝑃𝐴𝑇𝑜,𝑖,𝑡 + ∑ 𝑀𝐿𝑆𝑇𝐿𝑜,𝑖,𝑡 ∀𝑜 ∈ 𝐹,𝑛−1
𝑖 =1   (4.2)         

 

  Arrival      𝐶𝑜𝑜𝑙𝑏𝑙𝑢𝑒 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 𝐿𝑎𝑡𝑒𝑛𝑒𝑠𝑠 (𝐶𝑃𝐴𝑇𝐿𝑜,𝑖,𝑡)   =  𝑅𝐴𝑇𝑜,𝑖,𝑡 − 𝐶𝑃𝐴𝑇𝑜,𝑖,𝑡                    ∀𝑜 ∈ 𝐹, (4.3) 

  Time  

  Lateness    𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛. 𝑃𝑟𝑒𝑑. 𝐴𝑟𝑟. 𝑇𝑖𝑚𝑒 𝐿𝑎𝑡𝑒𝑛𝑒𝑠𝑠 (𝑀𝐿𝑃𝐴𝑇𝐿𝑜,𝑖,𝑡 )  =  𝑅𝐴𝑇𝑜,𝑖,𝑡 −  𝑀𝐿𝑃𝐴𝑇𝑜,𝑖,𝑡           ∀𝑜 ∈ 𝐹, (4.4) 

 

                                     𝑤ℎ𝑒𝑟𝑒,   

                                                   𝑃𝐴𝑇1          =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 1𝑠𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 1) 

 𝑃𝑆𝑇𝑖           =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑠𝑡𝑜𝑝𝑠  

    𝑃𝐷𝑇𝑖          =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑠𝑡𝑜𝑝𝑠 𝑖  

                                                       𝑅𝐴𝑇𝑖           =  𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑠𝑡𝑜𝑝𝑠 𝑖  

                                                       𝑅𝑆𝑇𝑖           =  𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑠𝑡𝑜𝑝𝑠 𝑖  

                                                       𝑅𝐷𝑇𝑖          =  𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑠𝑡𝑜𝑝𝑠 𝑖  

                                                        𝑆𝑇𝐿𝑖          =  𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 𝐿𝑎𝑡𝑒𝑛𝑒𝑠𝑠 𝑎𝑡 𝑠𝑡𝑜𝑝𝑠 𝑖 

                                                             𝑇          =  𝑇𝑜𝑡𝑎𝑙 𝑜𝑟𝑑𝑒𝑟_𝑖𝑑′𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

                                                             𝑛          =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑 

                                                             𝑖           =  𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑛 𝑡𝑜𝑢𝑟 

                                                             𝑡           =  𝑇𝑜𝑢𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 

                                                            𝐹          =  𝑆𝑒𝑡 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡   

4.4.3 NPS Calculation Module 

After the arrival time lateness module has determined the arrival time lateness, the NPS calculation 

module is activated. Formulas 4.5 and 4.6 provided below are used to compose new NPS scores. The 

NPS calculation module uses the arrival time lateness scores of each order as input. It does so by 

assigning the arrival time lateness (𝐶𝑃𝐴𝑇𝐿𝑜 𝑎𝑛𝑑 𝑀𝐿𝑃𝐴𝑇𝐿0) of each order an NPS score. The NPS score is 

based on the historical NPS score for lateness intervals and therefore indicated as 𝑁𝑃𝑆𝑙. The historical 

NPS scores for specific lateness intervals is provided in Table 4.1 in section 4.2. 

        In Formula 4.5 the Coolblue Model Predicted NPS score (𝐶𝐵𝑁𝑃𝑆) is calculated. The 𝐶𝐵𝑁𝑃𝑆 is 

computed by summing up the NPS lateness interval scores (𝑁𝑃𝑆𝑙) of all test dataset orders and 

subsequently dividing this value by the total amount of dataset orders (𝑇).  

        Formula 4.6 applies the exact same calculation method for determining the machine learning 

model predicted NPS score. The 𝑀𝐿𝑁𝑃𝑆 is computed by summing up the NPS lateness interval scores 

(𝑁𝑃𝑆𝑙) of all test dataset orders and subsequently dividing this value by the total amount of dataset 

orders (𝑇).  
 

  

  Estimated  𝐶𝑜𝑜𝑙𝑏𝑙𝑢𝑒 𝑀𝑜𝑑𝑒𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑁𝑃𝑆 𝑆𝑐𝑜𝑟𝑒 (𝐶𝐵𝑁𝑃𝑆) =   
∑ (𝑁𝑃𝑆𝑙  | 𝐶𝑃𝐴𝑇𝐿𝑜)𝑇

𝑜

𝑇
                                 ∀𝑜 ∈ 𝐹,   (4.5) 

  NPS 

  Score          𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑒𝑙 𝑃𝑟𝑒𝑑. 𝑁𝑃𝑆 𝑆𝑐𝑜𝑟𝑒 (𝑀𝐿𝑁𝑃𝑆) =   
∑ (𝑁𝑃𝑆𝑙 | 𝑀𝐿𝑃𝐴𝑇𝐿𝑜)𝑇

𝑜

𝑇
                          ∀𝑜 ∈ 𝐹,   (4.6) 

                                    𝑤ℎ𝑒𝑟𝑒,   

                                                  𝑁𝑃𝑆𝑙            =  𝐿𝑎𝑡𝑒𝑛𝑒𝑠𝑠 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑁𝑃𝑆 𝑆𝑐𝑜𝑟𝑒 

                                                         𝑇           =  𝐿𝑎𝑡𝑒𝑠𝑡 𝑜𝑟𝑑𝑒𝑟_𝑖𝑑′𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

                                                          𝑙           =  𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

                                                         𝑜           =  𝑜𝑟𝑑𝑒𝑟_𝑖𝑑 

                                                         𝐹          =  𝑆𝑒𝑡 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡  
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5. Findings and Results 

In this Chapter the service time and NPS score results are discussed for the machine learning 

prediction model and the current Coolblue prediction model. As explained in the introduction of 

chapter 4 and indicated graphically in Figure 4.1, a wide variety of model scenarios are tested on 

performance. Model scenarios in the service time prediction tool are considered unique if the two 

models are inconsistent about any of the following model attributes; input dataset, algorithm, pre-

processing method, parameter values. The determination of the model scenario happens in the before 

model training and in Figure 4.1 by the two gear wheel symbols. In total 50 model scenarios are 

composed. Two configurations of best models are proposed. Resulting from this scenario test, 

conclusion can be drawn about the current found best performing machine learning models, satisfying 

consistent application of the data and data leakage between train and test set is protected for. In the 

remainder of this chapter first a scenario analysis visualization is provided in chapter 5.1. In chapter 

5.2 a scenario sensitivity analysis is provided. In chapter 5.3 the two best models are analysed on MAE 

and ME of service time by comparison to the current Coolblue prediction model service time 

performance and a simpler Linear Regression prediction model service time performance. In chapter 

5.4 the NPS score of the two proposed machine learning models are compared to the current Coolblue 

NPS score. Last, in chapter 5.5 the accuracy of the proposed XGBoost prediction model solution is 

analysed by usage of several plots. These plots uncover the internal calculation methods used by the 

‘black-box algorithm’ XGBoost, thereby enhancing system user understanding and assisting in 

performance reporting before and after implementation of the system.  

5.1. MAE Input Dataset Scenario Analysis 

In this section the MAE performance of a subset of all tested scenarios is presented. In the introduction 

section of this chapter it is described that model scenarios are created by uniqueness of the following 

model attributes; input dataset, algorithm, pre-processing method, parameter values. The input 

dataset turns out to be most impacting the service time predictions. Therefore, Figure 5.1. visualizes 

the performance of model scenarios for which the input dataset is unequal.  

 

   
       Figure 5.1. MAE Model Scenario Analysis Line Plot     Table 5.1. Model Scenario Description   

 

In Figure 5.1 both the machine learning prediction model MAE scenario performances (orange) and 

the current Coolblue prediction model scenario performances (light blue) are provided. In all the 

model scenarios, the orange line is placed lower than the blue line, meaning the machine learning 

model is outperforming the current Coolblue prediction model. In case no outlier reduction is 

performed to the input dataset, the current Coolblue prediction model reaches a service time 

prediction MAE of 5.18 minutes. To clarify the different model scenarios that are analysed in Figure 
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5.1 a scenario description table is provided in Table 5.1. The scenario numbering is not linearly 

increasing since more scenarios checks are performance in this study than the input dataset 

adjustment checks given in Figure 5.1.  

 

Input Dataset Scenario 6 

The first scenario of Figure 5.1 is scenario 6. This scenario from initial point of view is considered as 

potential best scenario. As given in Table 5.1, scenario 6 is composed from the original dataset of 26 

features. The product is provided in scenario 6 input dataset by Sub Product name, enriched with the 

delivery service indication, the size category and the delivery type. The input dataset is enriched in 

this model scenario with adding the extra variables set 1. Extra variable set one consist thee feature 

engineered variables; ‘Real Quantity Including Combi Boxes’, ‘Visit Counter’ and ‘Visit Counter Mean 

Service Time Reduction’. The first feature is a slight adjustment of the normal ‘Quantity’ feature, for 

which the real quantity is adjusted because some small products are delivered in a combination box. 

The second feature counts the number of times any Coolblue order has been delivered to the 

customer in the past. This feature is added since it may be possible that delivery employees need 

shorter service time to deliver the products at a well-known customer. The third created variable gives 

the average service time reduction for unique visit counters, a value that is obtained from historical 

data. The input dataset of scenario 6 is extended with the mean service time and mean prediction 

error that belong to the product that is delivered to the customer. Each product has its own service 

time and prediction error. Last two complex variables ‘All Summed Mean Prediction Error 2’ and ‘All 

Summed Mean Service Time 2’ are added. These variables accumulate the mean service times and 

mean prediction error for all features. Scenario 6 reaches a relatively good performance with a service 

time prediction MAE of 4.22 and a low confidence interval range of 0.007. In total 3 different train/test 

split are used for composing this model.  

 

Input Dataset Scenario 7 

Scenario 7 is a rather simple input dataset configuration. The 26 variables in the standard input dataset 

is enriched with the three variables of the extra variable set 1. However, to check the importance of 

the product information for creating an accurate prediction, the product information is removed from 

the input dataset. Due to removal of the product information from the input dataset, a poor service 

time prediction MAE of 4.95 with a confidence interval range of 0.122 is obtained. In total 11 train/test 

split configuration are created to test this model.  

 

Input Dataset Scenario 9 

Scenario 9 is a simple baseline scenario, because the input dataset is equal to the standard 26 variables 

plus the three variables composing the extra variable set 1. Scenario 9 provides a good option to 

compare this simple model performance with scenario 6, in which more service time and prediction 

error variables are added. The MAE of scenario 9 turns out to be 4.23 with a confidence interval range 

of 0.026. In total 3 train/test split configuration are created to test this model. Reviewing the MAE of 

scenario 7 and 9, it turns out scenario 7 is not significantly achieving better service time predictions 

although extra service time and prediction error variables are added to this scenario.  

 

Input Dataset Scenario 11 

Scenario 11 is equal to scenario 9, except from one extra added variable; ‘Planned Service Time’. 

Currently, Coolblue composes a planned service time for all delivery orders. This planned service time 

in fact is the same as the Coolblue service time prediction often referred to in this study. By providing 

the planned service time as an input variable to the model, it gives the prediction model an extra 

guidance to the correct service time approximation. Scenario 11 reaches a service time prediction of 
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4.202 minutes with a confidence interval range of 0.013. In total 15 train/test split configuration are 

created to test this model. Although scenario 11, including the extra variable ‘Planned Service Time’ 

performs better in MAE terms than Scenarios 6 and 9, it does not perform better in the 95% confidence 

interval.  

 

Input Dataset Scenario 15 – Scenario 25 

The next 11 model scenarios, scenario 15 up to and including scenario 25, are various in the product 

aggregation level used. The input dataset consists of the 26 standard features including the 3 features 

in the extra variable set 1. Products can be indicated in the input dataset with different aggregation 

levels. Ascending from low aggregation level to high aggregation level it is possible to indicate products 

by; Product Group, Product Type, Sub Product Type and Product ID. Product Group for example state 

a washing machine for example as ‘White Good’, whereas Product ID states a washing machine as 

‘Miele YS 1000’. Scenarios 15 and 20 indicate that both the Product Group aggregation level and the 

Product ID aggregation level turn out to provide relatively low service time prediction performances 

of 4.50 minutes and 4.48 minutes respectively. The Sub Product Type and Product Type product 

aggregation level variables give MAE performances of 4.42 and 4.30. The Sub Product Type product 

variable aggregation level seems to be the best aggregation level, followed by the Product Type 

product variable aggregation level. Because, the product variable turns out to be very important in 

the service time prediction, more aggregation levels are composed. New product aggregation level 

features are created by combining each of the variables ‘Brand’, ‘Delivery Type’ and ‘Delivery Service’ 

with either the existing Sub Product Type variable or the Product Type variable. Resulting scenarios 

18, 19, 22, 23, 24 and 25 it can be concluded that none of the extra variables ‘Brand, ‘Delivery Type’ 

and ‘Delivery Service’ results in a significantly better service time prediction in the confidence interval. 

Brand is the only variable improving the service time predictions, however this improvement in not 

significant in the 95% confidence interval. The product aggregation level is obtained by the variable 

that combines the Sub Product Type, the Delivery Service, the Service Type and the Size category of 

the product. This product input variables are tested in scenario 21. Although scenario 21 gives best 

performance, the Sub Product Type and Sub Product Type + Brand product aggregation level gives 

similar performance in the 95% confidence range.  

 

Input Dataset Scenario 40 

Scenario 40 is the best performing model scenario for which no outlier service time outlier reduction 

is performed. Scenario 40 reaches a MAE of 4.09 on average with confidence interval range of 0.007. 

In total 16 train/test split configuration are created to test this model. The input dataset used in 

scenario 40 consists of the standard 26 features, the 3 extra features in extra variable set 1 and 52 

extra features of extra feature set 3. In extra variables in feature set 3 are first a concatenation of all 

product aggregation level. Whereas in model scenarios 15 up to and including 25 one single product 

aggregation level is inserted in the input dataset, all product aggregation levels are inserted in scenario 

40. Furthermore for 13 features an extra count variable is added to the input dataset. The extra count 

variables give the machine learning model extra help. It may be possible that product, drivers or even 

specific floor levels are turned on in the dataset. In this way the machine learning model can adopt 

this information. The count variable however is a bit tricky by usage of products, drivers or even floor 

levels that do not occur much. For example, if a product is only ordered ones in the complete dataset, 

then the model could use this information to define the service time prediction. Although this 

behaviour is not expected to occur much, it may occur in a small amount of predictions.  Besides all 

product aggregation levels and the count variable also the planned service time variable, the service 

time average and the prediction error average is added.  
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Input Dataset Scenario 45 

In scenario 45 the best performing model, that is obtained in scenario 40 is used again. However, in 

scenario 45 the service time outliers are removed from the dataset. All 4% lowest variables and 0.3% 

highest variables are deleted from the input dataset. The reason for deleting the 4% lowest variables 

is that Coolblue defines the realized service times that are lower than 2 minutes as incorrect loggings. 

By deleting 4% of lowest variables from the data, all orders up to 1.65 minutes service times are 

deleted from the input dataset. By deleting 0.3% of highest variables from the dataset, all orders taking 

longer than 50 minutes are deleted from the dataset. Orders with a service time longer than 50 

minutes occur infrequently, however this could negatively impact the internal structure of the 

machine learning method. Scenario 45 reaches a MAE prediction of 3.81 minutes with confidence 

interval range of 0.015 minutes. In total 4 train/test split configuration are created to test this model. 

Because outliers are removed from the dataset, also the Coolblue prediction improves from a MAE 

5.18 minutes to a MAE 4.95 minutes. The Coolblue prediction improves with 0.23 minutes and the 

machine learning prediction improves with 0.28. This means that removing the 4% lowest service time 

variables and 0.3% highest variables does significantly improve the service time prediction relative to 

the current Coolblue prediction.  

 

Input Dataset Scenario 46 

Scenario 46 is like the scenario 45 except that not 4% of lowest service times are deleted from the 

dataset, but the lowest 8% of service times are deleted from the dataset. This means that all service 

times order with a duration less than 2.53 minutes are deleted from the input dataset. The machine 

learning prediction achieves a MAE of 3.78 minutes with a confidence interval range of 0.013 minutes. 

In total 4 train/test split configuration are created to test this model. The representative Coolblue 

prediction gives a MAE of 4.93. Considering the performance improvement of the machine learning 

model of 0.31 and the Coolblue prediction performance improvement of 0.25, this means that service 

time outlier reduction of 8% lowest and 0.3% highest variables significantly improves the machine 

learning prediction relative to the current Coolblue prediction.  

 

Input Dataset Scenario 50 

The last scenario in Figure 5.1 is scenario 50. To clarify the power of this algorithm, the MAE obtained 

by XGBoost is ones compared with the MAE obtained by usage of a linear regression model. Scenario 

40 indicates that XGBoost makes service time predictions with a MAE of 4.09 for the best observed 

dataset. In scenario 50 the performance of the linear regression model on this exact same input 

dataset is provided. It turns out the linear regression model reaches a MAE of 4.48, significantly lower 

than the XGBoost prediction, but still better than the current Coolblue prediction model.  

 

Since all input variable scenario are described in the beginning of this subsection, it is interesting to 

see the distribution of the predictions that are created with the different scenarios. The most 

important scenarios 9, 40 and 45 service time realization and service time prediction histograms are 

provided in Figures 5.2, 5.4 and 5.5 respectively. To check the difference in performance of a worse 

prediction model, in Figure 5.3 the service time realization of scenario 15 is added. This scenario gives 

the service time prediction of the product ID level aggregation level product variable. The blue lines 

in Figure 5.2 up to and including Figure 5.5 gives the current Coolblue prediction. Observe that 

Coolblue rarely make service time predictions lower than 4 minutes. The two peaks in the blue Figure 

indicate that service times of 10 minutes and service times of 14 minutes are often predicted by 

Coolblue. The Green line in Figure 5.2 up to and including Figure 5.5 indicate the realized service times. 

The realized service times are well separated over the interval 1 minutes up to 20 minutes. Realized 

Service times longer than 20 minutes do not occur on regular bases. The red lines in Figure 5.2 up to 
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and including Figure 5.5 give the machine learning model performance. The red line is more closely 

located to the green line, thereby indicating that the service time predictions created by the machine 

learning model is more accurate than the current Coolblue prediction. Furthermore, it is interesting 

to see the distribution of service time predictions for the various scenarios. Scenario 15, given in Figure 

5.3, is less closely located to the green realized service time line than the other scenarios. This is as 

expected, because the MAE of scenario 15 is significantly higher than the MAE of the three other 

scenarios visualized here. The curve of the red lines is similar over the scenarios, meaning the XGBoost 

creates relatively consistent predictions for different scenarios. Furthermore, observe that the 

XGBoost prediction red line of scenario 45 is more closely located to the green line than scenario 40. 

The XGBoost prediction red line of scenario 40 in its term is more closely located to the green line than 

the red line in scenario 9.  

  Figure 5.2. Scenario 9           Figure 5.3. Scenario 15        Figure 5.4. Scenario 40         Figure 5.5. Scenario 40 

                       Service Time                            Service Time                            Service Time                             Service Time   
                       Histogram                                Histogram                                 Histogram                                 Histogram   

5.2. Scenario Sensitivity Analysis 

Besides model scenarios that are created by adjustments made to the dataset, more model scenarios 
are created by using additional scaling operations, using a different train/test set partitioning, using a 
different cross-validation technique or using different hyperparameter settings. In Table 5.2 below, 
the outcomes of the various applied techniques sensitivity analysis are provided. The outcomes in 
Table 5.2 indicate the improve or decreased performance by applying a certain technique before the 
model is trained. The outcomes are measured as prediction performance improvements or reductions 
while applying the model relative to scenario 11 that is pointed out in detail in section 5.1. The 
prediction performances or improvements or reductions are measured in minutes.  

First, 4 different scaling techniques are applied to the scenario 11 input dataset, which are; log scaling 
applied to the target variable, polynomial scaling applied to all independent prediction variables, 
standard scaling applied to all independent prediction variables and robust scaling applied to all 
independent prediction variables. Log scaling turns out to minimally increase the service time 
prediction with 0.001 minutes, which however is not significant in the 95% confidence interval range. 
The other three scaling techniques do not improve the service time prediction, in fact minimally 
negatively impacting the service time prediction. Performance impact results are given in Table 5.2 
below.  

Next, the impact of extra added or deleted variables is analysed. In section 5.1 already different input 
dataset configurations are described, however isolated performance impact is not discussed 
extensively. The model impact on adding the ‘Real Quantity Including Combination Box variable and 
the ‘Mean Service Time’ variables is described in Table 5.2. Adding the ‘Real Quantity Including 
Combination Box’ variable does not increase, nor decrease the service time model prediction. This 
means the ‘Real Quantity Including Combination Box’ variable does not have much impact on the 
model. Later, in section 5.5 it is visually shown that this variable does not have a high feature 
importance value. By adding the ‘Mean Service Time’ variable, the model performance improves with 
0.02 minutes, which turns out not to be significant. Besides adding extra variables, some variables are 
sequentially deleted from the dataset. The first variables that are deleted from the dataset are; co-
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driver number, second co-driver number, gender. By deleting those variables from the input dataset, 
the model is made privacy proof. Using privacy sensitive data as employee number and customer 
gender may not be acceptable to based predictions on. By deleting those 4 variables from the original 
dataset, the service time prediction MAE decreases by 0.04 minutes. Next, 3 other variables are one 
by one deleted from the dataset. These variables are; ‘Floor Level Front Door House’, ‘Floor Level 
Installation Product Inside House’ and ‘Number of Return Products’. Those three variables are 
belonging to the set of most important variables for the prediction model. Later, in section 5.5, a 
further analysis is given about the importance of the features in the input dataset. By deleting the 
‘Floor Level Front Door House’ the service time prediction MAE increases with 0.022 measured 
relatively to the dataset in which privacy sensitive data is deleted. Deleting the variable ‘Floor Level 
Installation Product Inside House’ negatively impact the service time prediction minimally with 0.001. 
Deletion of the ‘Number of Return Products’ variable has a very significant impact on the service time 
prediction. The MAE service time prediction error increases with 0.1 minute.  

The following technique sensitivity check that is performed is the cross-validation technique used. In 
total 3 cross-validation schemes are inserted in the service time prediction model. In section 3.6.4 an 
it is argued that the K-Fold cross-validation technique is an improper cross-validation scheme for 
splitting up the train dataset. The other two cross-validation methods are shuffled day or tour based 
cross-validation or K-Fold shuffled day or tour based cross-validation. Both the shuffled and K-Fold 
shuffled techniques gives same prediction performance in the 95% confidence interval. Furthermore, 
the day base splitting process gives 0.015 better prediction performance than the tour based splitting 
process. This result is unexpected, because one could argue that the machine learning prediction 
model might be possible to see relations on service time durations happing on same days, which are 
included in in the same dataset while creating a tour-based splitting. With this proof, the day-based 
k-fold splitting scheme can now be used as main splitting process to describe the service time 
prediction MAE.  

Next technique sensitivity check that is performed is the data partitioning check. Different data 
partitioning percentage splits are inserted to the model. In five iterations, the service time 
performance MAE is obtained from the test dataset percentages 0.1, 0.2, 0.3, 0.4 and 0.5. The 
difference in MAE between the 0.1 dataset partitioning and the 0.5 dataset partitioning is rather small 
with the value of 0.04. However, the MAE of the train/test set partitioning in the range of the above 
percentages are giving maximum MAE performance differences of 0.09.  

To accurately compare all model scenario’s, confidence intervals are calculated for all model 
scenarios. The confidence intervals are calculated by deploying the model several times with different 
random seeds. This assures that the orders composing the test dataset and the orders composing the 
train dataset are altered in by usage of different random seeds. The impact of random seeds in fact is 
already provided by notion of the confidence intervals belonging to the model scenarios given in 
Figure 5.1. Overall, it can be stated that service time prediction MAE impact of random seed 
adjustment is on average 0.07 minutes.  
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Last, Table 5.2 gives information about the service time 
prediction MAE impact of diversity in hyperparameter 
setting. The most important hyperparameters in the 
XGBoost predictions turn out to be the learning rate (or 
eta), the gamma (regularization term) and the maximum 
tree depth. In general, the learning rate is preferably set 
to a value as low as possible, although this increases the 
time to convergence. In Table 5.2 the prediction MAE 
impact of different max tree depth and gamma 
hyperparameter settings is provided. For the input 
dataset belonging to scenario 11, the best max tree depth 
turns out to be 7. However, it should be noted that for 
input dataset, belonging to other scenario models, the 
best max tree depth value is an integer value close to 7. 
The max tree depth value should be at least 4, but optimal 
max tree depth must be examined for each input dataset 
individually. Furthermore, it turns out the gamma 
parameter improves the performance relative to the 
model in which no gamma parameter is used with 0.04 
minutes. For the input dataset belonging to the model 
scenario 11, the optimal gamma                                             Table 5.2. Model Scenario Sensitivity         

parameter value is found to be 0.7.                                                                         Analysis   

5.3. Best Model MAE and ME 

As denoted in section 4.4, numerical output statistics of the three most important KPIs are provided 

in this results chapter 5. The three most important KPIs are; MAE, ME and NPS score. In this subsection 

the MAE and ME performances are analysed. Later, in section 5.4, the NPS score performances are 

analysed. In section 5.1 of this study, it is indicated that two models can be pointed out as best models 

which are still viable to implement. The first best model is the model scenario indicated as model 

scenario 40. In this model scenario, the 26 standard input variables are enriched with the 3 variables 

composing extra feature set 1, all product aggregation level variables, 13 mean prediction error 

variable and mean service time variables, 13 count variables and the current ‘planned service time’ 

variable used for the current Coolblue service time prediction. Besides inputting these variables, the 

hyperparameters are turned by the Bayesian optimizer. The second-best model is equal to model 

scenario 45 provided in Figure 5.1 and analysed in section 5.1 of this study. The second-best model 

that is selected is the same concerning input dataset variables used. However, before the model is 

trained, the 4% lowest service times and 0.3% highest service times are removed from the dataset. 

The reason for indicating two models as best models in this research is that Coolblue indicated not to 

be sure the service time outlier deletion is grounded. More research needs to be performed to confirm 

the acceptance of service time outlier deletion.  
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In Table 5.3 up to and including Table 

5.6 the MAE and ME performance of 

the two indicated best model 

scenario 40 and 45 are provided. 

Figures 5.6 and 5.7 present the 

numerical input provided in Table 5.3 

up to and including Table 5.6 

graphically. Note that in Figure 5.6 x 

percent of the data is deleted from 

the plot to enhance interpretability.  

  

Both the service MAE and ME scores 

of the machine learning models as 

well as the representative current 

Coolblue prediction models are given. 

By reviewing Table 5.3 up to and 

including Table 5.6, it can be 

concluded that by using the XGBoost 

algorithm, the MAE of the service 

time improves significantly 1.09 

minutes relative to the current 

Coolblue model by usage of model 

scenario 40. If model scenario 45 is 

used to make the predictions, the 

prediction improvement is even  

higher with the value 1.14 compared 

to the current Coolblue prediction 

method.  

 

Besides the MAE prediction performance improvement, also the ME prediction is improved. The 

current Coolblue model overestimates the service times on average significantly with a value of 1.13 

minutes for scenario 40 and a value of 1.07 minutes for scenario 45. By making use of the XGBoost 

machine learning prediction the ME of the service times is decreased to 0.19 by using model scenario 

40 and 0.10 by using model scenario 45.  

 

The 50% output statistics provided in Table 5.3 up to and including Table 5.6 includes another 
interesting statistic, which is the median value of the data. By reviewing the 50% statistics, it can be 
noted that both the current Coolblue model as well as the machine learning model predict the 
duration of most of delivery orders too long rather than too short. This overestimation of most of the 
orders is smaller by using the machine learning model compared to the current Coolblue prediction 
model.  

 

Figure 5.6. MAE and ME Performance Model 

     Scenario 40 – 2 Y-Axis Ranges 

                     

       

 

 

 

Figure 5.7. MAE Histogram Model Scenario 40 

                     

       

 

 

 



 

 
58 

 

    
 Table 5.3. Scenario 40            Table 5.4. Scenario 40            Table 5.5. Scenario 45            Table 5.6. Scenario 45 

                  MAE           ME                                          MAE                                       ME 

                  Descriptive                              Descriptive                              Descriptive                             Descriptive       

                  Statistics                                  Statistics                                  Statistics                                 Statistics 

 

5.4. NPS Results 

In previous section 5.3 the MAE and ME scores are provided for new machine learning models as wel

l and compared with the current Coolblue model. The MAE is the most important statistics metric us

ed in this study. In section 1.2, the six reasons are provided that motivate the importance of service t

ime prediction accuracy improvement for Coolblue. Resulting from the MAE scores, a simulation is cr

eated in which new expected machine learning based NPS scores are estimated. In section 4.4, the 

mathematical expression of the NPS calculation is provided. In Figures 5.8 below the new machine le

arning NPS estimations of model scenario 40 are provided in orange. In Figure 5.8 also the represent

ative current Coolblue model estimated NPS performances are provided as light blue bars. In each of 

the intervals presented on the X-axis in Figure 5.8, p-value adjustments are indicated and separated 

by a ‘-‘ symbol. P-value adjustments are needed to be made, because resulting from Table 5.3 up to 

and including Table 5.6, the current Coolblue model is overestimation the mean service times by app

roximately 1.1 minutes. Overestimating the service times on average means that the current Coolblu

e model on average arrive 1.1 times the sequence number earlier at the customers house than the n

ew machine learning model. To compensate for this discrepancy a p-value used that adjust the servic

e time 1.1 minutes for both the current Coolblue model as well as the machine learning model. In fac

t, a complete range of comparable p-values is created to come up with the best performance p-value 

in terms of NPS score. By reviewing Figures 5.8 the observation can be made that the new machine l

earning model NPS scores in scenario 40 is not significantly improving the NPS scores. Comparing onl

y the 1.1 minutes adjusted Coolblue model with the unadjusted machine learning model gives signifi

cant improvement in the 95% confidence interval range. The machine learning confidence intervals i

s [73.77 – 73.80] and the current Coolblue Model confidence interval is [73.72-73.76]. However, this 

significant improvement is only measured by using this p-values. In Figure 5.6 the machine learning 

model and Coolblue model bars are located more closely to each other at the end by using higher pa

rameter p values. It is up to Coolblue to decide the most suitable parameter p-value. It does not hold 

that for all p-values the p parameter interval turns out to be significant and thus the NPS is not signifi

cantly improving by implementation of the new machine learning model.  

The optimal p parameter value is even obtained for the machine learning model as -1.4 and for the 

current Coolblue model as -1.2.  

     To deep dive on the NPS results, the number of too-early, on-time and too-late deliveries are 

compared for the current Coolblue model and the new machine learning model by using the model 

scenario 40 input dataset. The results are provided in Table 5.7 below. In line with expectation raised 

in Hypothesis 3, the percentage of too-late deliveries decreases by usage of the new machine learning 

model relative to usage of the current Coolblue prediction model. However, the percentage of too-
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early and on-time deliveries is not decreased by usage of the new machine learning model relative to 

usage of the current Coolblue prediction model. An explanation of this simulation results is that the 

current Coolblue model arrival times are describing real historical arrival time behaviour. Delivery 

employees tried to arrive at the customer exactly on time and were successful in arriving on time on 

most of the deliveries. The machine learning prediction arrival times are derived from the current 

Coolblue arrival times. Because the machine learning prediction model arrival time estimations are 

expectations instead of real historical arrival times, the machine learning model in more deliveries 

arrive too-early at the customer. This harms the NPS score, resulting that no significant NPS score 

improvement can be concluded from this simulation analysis.  

 

 

     Figure 5.8. Scenario 40 NPS Estimation                                 Table 5.7. Time Performance Analysis  
                          And Parameter ‘p’ analysis 

5.5 Accuracy Check Machine Learning XGBoost Model 

The machine learning model gives more accurate service time of 1.09 minutes on average by using 

model scenario 40 and 1.14 minutes on average by using model scenario 45. The improvement in 

prediction performance triggers the implementation of the new machine learning model thereby 

replacing the current Coolblue prediction method. Still, as is always pointed out as the main 

disadvantage of complex machine learning algorithms, the internal decision rules used by the 

algorithm are not clear. The XGBoost algorithm is often referred to as a black-box algorithm. However, 

by creation of several deep dive plots, the accuracy and the internal decision rules used by the XGBoost 

algorithm can be revealed. In this section 5 types of plots are analysed. By using this type of plots, 

before and after implementation, the Coolblue companies does not need to scare away from 

implementation. The plots are providing accurate insides into the performance, the feature 

importances and the most important decision rules. 
 

First, in Figure 5.9 the MAE of the 

machine learning model and the 

MAE of the current Coolblue model 

is provided on the product 

aggregation level. This scatterplot 

with confidence interval gives a very 

detailed expected performance of 

specific products. This is extremely 

useful to describe to potential effect 

of implementation of the XGBoost 

machine learning algorithm on 

product level to Coolblue management. Furthermore Figure 5.9 gives guidance for selection products 

Figure 5.9.  20 Most Sold Product Performances impact Scatterplot 
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to focus on more with the aim creating even more accurate service time predictions. In Figure 5.9, the 

20 most sold products are selected for presentation in this plot.  

Second type of indicative plots are 

the feature importance plots. 

Feature importance plots help in 

uncovering the decision rules used 

by the XGBoost algorithm. There 

are three types of feature 

importance plots, each of them 

uniquely measuring 

importances of features. 

The first type of feature 

importance is based on weight. 

This is the number of times the 

XGBoost model splits on a specific 

feature in the input dataset. the 

second type of feature 

importance is based on gain ratio. 

In this plot the average of the gain achieved by splitting on a specific feature is determined. The third 

type of feature importance plot is based on cover ratio. The cover ratio describes the average 

percentage of samples that are input a split for specific features. Figure 5.10 and 5.11 give the feature 

resulting from model scenario 6. Observe that the ranking highly unequal by comparing both Figures. 

The gain feature importance type is determined to be more indicative than the weight feature 

importance type to base feature importance ranking on. It turns out that the number of return 

products is of highest for the XGBoost model to compose service time predictions. The product 

variable is indicated third most important variable by using the gain feature importance. Very 

surprisingly on ranked second the feature minutes is found. However, the importance of the minutes 

feature is highly unlikely to be accurate. It turns out this is caused by the low number of splits that are 

performed on the minutes feature. This surprising result indicate the inaccuracy belonging to 

determining feature importance by using this feature importance method. A new method for 

measuring feature importance is proposed with is called SHAP values.  

 

Third type of plots giving detailed 

information about the model 

structure are the feature 

importance variable value level 

scatterplots. In total four 

scatterplots are created. Three of 

them describe the feature 

importance on variable value level 

instead of the classical feature 

importance plots presented in 

Figure 5.10 and Figure 5.11. For all 

the four scatterplot the 20 most 

important features are extracted 

based on the gain feature values 

importance ratio. Next, the mean 

Figure 5.10.  Gain Feature Importance 

                     

       

 

 

 
Figure 5.11.  Weight Feature Importance 

                     

       

 

 

 

Figure 5.12.  Feature Importance Variable Value Level Scatterplots 
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gain is provided for each of the 20 most important feature values by the yellow scatters. In grey, the 

mean cover is provided for each of the 20 most important feature values.  

 

The mean weight of the 20 most important feature values are provided as green scatters. The blue 

scatters give a new, but very informative feature value importance indicator, which is the mean depth 

in the tree, where the splits are made for feature. The lower the mean tree depth level the feature 

values splits are made, the more important the features are, because more sample will be separated 

on in higher level of the tree on average.  

 

Last type of visualizations is the SHAP value 

visualizations. In section 3.9.3 an 

explanation is provided why SHAP values is 

the only consistent and accurate and 

reliable feature importance metric. SHAP 

value is the reliable feature importance 

metric replacing the classical feature 

importance metric provided above. The 

classical feature importance metric can still 

be used, but only as indicator, not to base 

real feature importance on. Three types of 

SHAP value plots are perfectly indicating the 

feature importances used in the XGBoost 

algorithm. First, the SHAP summary barchart 

is provide in Figure 5.14. The SHAP summary 

barchart is equal to the classical feature 

importance plots in construction. It 

presents the feature importance in Log 

Odds values. Next SHAP plot is the summary scatterplot, provided in Figure 5.14. Like the summary 

barchart, the summary scatterplot gives the 20 most important features for the XGBoost model. 

However, different from the summary barchart, coloured scatters are being used to give an 

understanding of the importance of the relation between high and low values of the variable in terms 

of log odds. Last, in Figure 5.15 and Figure 5.16, 2 individual SHAP value plots are provided. In these 

individual SHAP value plots the SHAP values of the complete range of variable values can be observed. 

This is very informative. In Figure 5.15 for example it can be observed that the XGBoost computes 

higher service time predictions if the number of return products increases from 0 to 1 and if the 

number of return products increases from 1 to 2. The service time predictions belonging to higher 

number of return products are comparable to the service time prediction for 2 return products. By 

analysing Figure 5.16 it can be concluded that the XGBoost model is able to translate the floor level 

front door house accurately into the prediction composition. Higher floor levels on average results in 

in higher SHAP values, meaning higher service time predictions.  

                         Figure 5.15. SHAP Individual SHAP Value          Figure 5.16. SHAP Individual SHAP Value 

Figure 5.13.  SHAP Summary Barchart Model Scenario 40 

                     

       

 

 

 

Figure 5.14.  SHAP Summary Scatterplot Model Scenario 40 
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                               Number of Return Products                                    Floor Level Front Door House 

6. Conclusion 

In this chapter the conclusions are drawn by using the results obtained by using a wide variety of 

model scenarios as input for the XGBoost machine learning model. Two main conclusions are drawn 

for the most important KPIs analysed in this study; the MAE and the NPS score. Next, some model 

(input) settings conclusions are drawn. Last, conclusions are formulated for the power of the model 

performance plots that are analysed.  

 
First, the delivery service time prediction MAE decreases by using the new XGBoost machine learning 

model with 1.09 or 1.14 minutes relative to the current Coolblue service time prediction model. The 

XGBoost service time prediction are significantly more accurate than the linear regression service time 

predictions (by 0.39 minutes). Therefore, hypothesis one raised in section 3.8.1 is accepted. The 

prediction performance increasement is dependent on the input dataset that is applied to the model. 

1.09 minutes MAE improvement is achieved by usage of the input dataset belonging to model scenario 

40 and 1.14 minutes MAE improvement is achieved by usage of the input dataset belonging to model 

scenario 45. The hyperparameters are tuned for the predictions created in model scenario 40 and 45 

for achieving the 1.09 minutes and 1.14 minutes MAE performance improvement respectively.  

 
The XGBoost machine learning model can create more accurate service time predictions than the 

current Coolblue model. However, the new NPS scores estimations created by simulation of the 

expected Coolblue model predicted arrival times and the XGBoost model predicted arrival times are 

not increasing in the 95% confidence interval. The XGBoost model with its representative (p-value 

adjusted) current Coolblue model, NPS scores are 73.79 and 73.73 respectively. Although the 

difference between these two models are significant, still the observation is made in section 5.3 that 

for most p-value model combination the difference is not significant. Therefore, the decision is made 

to reject hypothesis 4 raised in section 3.8.2. Furthermore, hypothesis 3 stating that the number of 

too-late deliveries decreased by usage of the XGBoost model is confirmed. On the contrary, the 

number of too-early deliveries does not decrease by usage of the XGBoost model. Therefore 

hypothesis 2 is rejected. 

 
Besides the KPI conclusion drawn above some extra conclusions can be drawn about the optimal input 

parameters that can be used in the model. The high-level conclusion can be drawn that the XGBoost 

model is capable of accurately separating the important features from the less important features. 

Although in some model scenarios no significant improvement is obtained, the conclusion can be 

stated that the more variables that are added to the input dataset, the better the service time 

predictions created by the XGBoost model. To achieve service time prediction improvements, it 

remains very important to add indicative features to the input dataset. It is recommended to add all 

product aggregation levels to the input dataset. The XGBoost algorithm can subtract useful 

information from each individual product aggregation level variable. Furthermore, if one product 

aggregation level wants to be inserted as input to the model, it is recommended to use either the Sub 

Product Type product aggregation level or an aggregation level that is derived from the Sub Product 

Type aggregation level. Adding the size category, delivery service, and delivery type to the Sub Product 

Type aggregation level is beneficial in terms of performance MAE.  

 
By reducing the 4% lowest service time values and the 0.3% highest service time values, the model 

prediction accuracy increases even more significantly with a value 0.05 minutes. Adding the variables 
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‘planned service time’, ‘real quantity including combi boxes’, ‘mean service time visit counter’, ‘mean 

service time’ and ‘mean prediction error’ are not significantly improving the XGBoost prediction, 

however these variables together still helps in reaching a small amount of prediction performance 

improvement. Last, the ‘counter variables’ are increasing the prediction performances of the XGBoost 

model. Those variables describe the number of times for example a product, driver or floor level is put 

on. In section 5.1 it is already indicated that those ‘count variables’ are tricky in terms of train / test 

dataset data leakage perspective.  

 
Furthermore, no significant improvement in service time prediction MAE is obtained by using any of 

the four feature scaling techniques applied to the data. Log scaling of the target variable is the only 

scaling technique improving the prediction minimally, with 0.001 minutes. This value however is not 

significant. The standard scaling, robust scaling and polynomial scaling techniques are not capable of 

improving the service time prediction. This conclusion can be made that the XGBoost algorithm is 

insensitive to diversity in model feature axis scales.  

     The service time MAE performance difference by using different test size partitions are not very 
large. Using 10% of the complete dataset as test size gives comparable performances as using 50% of 
the complete dataset as test size (difference is 0.04 in MAE). However, it is still recommended to use 
a reasonably large test set as for example 30% of the complete dataset.  
     Two representative cross-validation methods are discovered that suitable for the service time 
prediction problem. The first cross-validation method is shuffled cross-validation. The second cross-
validation method is shuffled K-Fold cross-validation. The performance of both cross-validation 
methods is comparable, however K-Fold cross-validation performs slightly better than the shuffled 
cross-validation method. By using one of the two cross-validation methods, the cross-validation unit 
must be provided. The optimal unit to split on is day-based, however it is recommended to use tour-
based splitting in case NPS score are being determined with the prediction results. The day-based unit 
split gives 0.04 minutes better MAE performance, which is significant.  
     The learning rate (eta) hyperparameter setting could best be set to a value in the range 0.05 until 
0.2. Lower learning rate hyperparameter settings results in very high computation times, whereas 
learning rate hyperparameter values higher than 0.2 are negatively impacting model performance. 
Besides the learning rate hyperparameter, also the max tree depth and gamma parameter turn out to 
be most important hyperparameters in the service time prediction model. By test applied to model 
scenario 9, it turns out the optimal max tree depth parameter turns out to be 7 and the optimal gamma 
parameter turns out to be 0.7. However, not that these parameters are very sensitive for the input 
dataset provided to the XGBoost prediction model. Therefore, if other input dataset is used than the 
input dataset in model scenario 9, the optimal max tree depth and optimal gamma hyperparameter 
values of 7 and 0.7 respectively are likely to chance as well.  
 
Last, several conclusions can be drawn from analysis of the variable impact plots and the feature 

importance plots. The variable importance plot given is a good way of analysing and describing the 

prediction model impact for specific variable values. To analyse the construction of the model and 

uncovering the decision rules used by the model, the classical feature importance plots, the feature 

value importance scatterplots and SHAP value plots can be used. Note, that the classical feature 

importance plots are not reliable, consistent and very accurate, still the plots can be used to 

understand the model structure better. It is highly recommended to use the SHAP values to measure 

feature importances and feature value importances.  
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7. Recommendations  

In this chapter the recommendations for feature research are provided. The recommendation is 

useful to analyse before implementation of the XGBoost prediction model is practiced.  

7.1 Recommendation 1 

The most important recommendation is that the XGBoost machine learning model can be 

implemented as service time prediction method for Coolblue Delivers. The XGBoost machine 

learning prediction model preferably replaces the current Coolblue rule-based prediction method. 

By usage of the variable impact plots and different the three types of feature importance plot the 

model structure and potential model inaccuracies can be detected both before and after the 

implementation phase. Also, without the privacy sensitive variable ‘driver number’, ‘co-driver 

number’, ‘second co-driver number’ and gender together with the unavailable variables ‘number of 

return products’, ‘floor level front door house’ and ‘floor level installation product inside house’ the 

XGBoost prediction outperforms the current XGBoost model on average with 0.93 minutes in terms 

of MAE. 

7.2 Recommendation 2 

It is recommended to create more variable impact plots, or variable value impact plots. For example, 

‘Floor Level Front Door House Variable Impact Plots’, ‘Number of Return Products Variable Impact 

Plots’ and ‘Real Quantity Variable Impact Plots’ could be created to get a better understanding of 

machine learning model prediction accuracy and inconsistencies. Also, deletion of the 4% of lowest 

service time values and 0.3% of highest service time values slightly increases the XGBoost prediction 

performance with 0.05 in relative to the current Coolblue prediction model.  

7.3 Recommendation 3 

Reviewing the NPS scores of different value of the p-parameter, the highest NPS score results from 

the p-parameter -1.4 for the machine learning prediction model and -1.2 for the current Coolblue 

prediction model. It is up to Coolblue to make the decision whether it is desirable to increase the 

planned service time of the current Coolblue model by 1.2 minutes and the predicted service time of 

the XGBoost machine learning model by 1.4 minutes. The values of 1.2 minutes and 1.4 minutes 

must be multiplied by the sequence number of the delivery order.  

7.4 Recommendation 4 

In the conclusion section the statement is made that adding extra variables very rarely results in less 

accurate service time prediction MAE results. The XGBoost algorithm can separate unimportant 

variables from the important variables. Therefore, it is recommended to engineer more features to 

enhance the model performances. Always keep a critical eye on potential data leakage between train 

dataset and test dataset. Furthermore, try to make a shortlist of variable that, also by logical 

reasoning, are helpful in guiding the XGBoost algorithm to a more accurate service time prediction. 

Also, usage of third-party delivered extra information, as Cadastre related data is advisable to test in 

the service time prediction model. Cadastre related data is very likely to increase the service time 

prediction further. 
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7.5 Recommendation 5 

If the Bayesian optimization method is performed for determining the right hyperparameter settings, 

it is recommended not to use a very wide range in hyperparameter settings since this results in a very 

long time to convergence before a good fitting hyperparameter set is determined. Select the indicated 

max depth, learning rate (eta) and gamma range as given in section 5.2 or chapter 6.  

7.6 Recommendation 6 

The delivery service times and the driving times together composes all components related to the 

customer arrival time predictions. No investigation has been done on the inconsistency of driving time 

predictions created by Coolblue. The driving times taking longer on average than the service times. To 

reduce the variability in arrival time prediction more in the future, it is advisable to research the driving 

time prediction improvement options.  
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8. Discussion 

The accuracy of the predictions made in this delivery service time prediction study are highly 

dependent on the accuracy and quality of the input parameters provided to the model. In this chapter 

the accuracy and quality of the service time predictions and input variables is discussed.  

     First, the service time error calculation is dependent on the quality of the target variable. The target 

variable is ‘stoptime minutes’ in this service time prediction study. In this study it is assumed that the 

‘stoptime minutes’ variable provides use with reliable historical realised service time data. However, 

the data composing the ‘stoptime minutes’ variable is logged by the driver employees themselves. 

The driver employees indicate the time of arrival at the customers house by pressing the arrival time 

button on the mobile phone at the actual time of arrival. The same hold for the departure time from 

the customers house. The driving employees are expected to press the departure time button on the 

mobile phone at the moment they start driving the van after the products has been delivered at the 

customers house. However, the exact time at which the customers press the arrival time button and 

the departure time button will undoubtedly be different than the exact and expected arrival time.  

     Besides the most impactful service time logging accuracy inaccuracy that undoubtedly is present in 

the ‘stoptime minutes’ target variable, the accuracy of the service time predictions is also dependent 

on the quality of the independent predicting variable in the model. Most of the variables are directly 

obtained from the Coolblue interval database. Inconsistencies of the data in the Coolblue database 

system could are likely to be present. This harms the results obtained in this service time prediction 

study.  

     In the pre-processing phase some orders are deliberately deleted from the input dataset. This is 

because for some orders much of the data was missing, a problem occurred while delivering the 

product (i.e. customer not at home at the exact time of delivery) or extremely high or low realised 

service times where deleted from the dataset because they are classified as incorrect service time 

loggings (scenarios 45 and 46). By deletion of orders in the test dataset, average number of order per 

tour number in the test dataset decreases. This subsequently also decreases chance of too-early and 

too-late arrivals, because the chance of too-early and too-late arrivals is dependent on the 

accumulation of service time variability later phases of the tour execution. 

     The results depicted in Figure 5.1 and described in section 5.1 are mean values of the x number of 

random train / test splits that are used to compose this service time prediction MAE number. However, 

the amount of train / test splits differs for the model scenarios. To enhance the accuracy of model 

scenario interpretation, the amount of train / test split partitions applied to the model scenario is 

indicated in the description of the different model scenarios in section 5.1 as well.   

     Last, 8 May 2018 the driving employees started logging the floor level front door house information 

and the floor level installation product inside house information. This means that 56% of the input 

dataset consist floor level related information logged by the data. For the remaining 44% of the input 

dataset the floor level related information is not present. This impact both the accuracy in service time 

prediction and the feature importance metric values for these two variables.  
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10. Appendix 

 

 
Table B.1:  Original Input Features 

 

 

Table B.2:  General Data Preparation Operations 
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Table B.3:  6 Features Numeric Exploratory Data Analysis (EDA) 

 
Figure B.1: Heatmap Variable Correlation Interaction 


