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ABSTRACT 

Form and structure are in close relation with each other. A relation 
that becomes especially clear in bending-active systems. These are 
structural systems that include curved beam or shell elements that 
base their geometry on the elastic deformation from an initially 
straight or planar configuration. The structural elements need a 
certain amount of slenderness to be formed into shape. At the same 
time, structural systems should be designed to withstand large 
external forces. Simply increasing member dimension does not 
satisfy. Stiffness and stability are found in the geometry, which ties 
form, structure, material and analysis into one holistic approach. 
The research of this graduation project focuses on the issues that 
come along when designing large-scale, long-lasting structures 
using flexible timber plates and discusses the development of a 
bending-active modular roof system.  

A constant exchange between numerical and physical results has 
built confidence that the predictive models that use geometrical 
nonlinear finite element analysis for both the form-finding and the 
structural analysis, as well as the simulation of stress-relaxation 
were sufficiently accurate. It is evident that the highly prestressed 
parts lose about half their stresses in the first year of construction 
due to stress-relaxation in the wood. The investigated systems 
have shown that these stresses influence the load-carrying 
behaviour in either a positive or a negative way, depending on 
either predominant tensile or compressive stresses respectively. 

A system was developed that is based on a pre-bent repeating 
module. The system harnesses the qualities that timber, and 
bending-active structures in general, have to offer. The geometric 
design of the units is led by the properties of the material. The 
orthotropic nature of the plywood panels was a leading factor for 
this design. It gave the preference to a primary, main, and 
secondary, supportive, load-carrying direction.  

A full-scale prototype was constructed from 3.6 mm thick birch 
plywood. In this prototype, five units were linked in the 
longitudinal direction. The prototype has shown that the building 
method works without resulting in fractures or formability issues. 
Geometrical improvements to the system were proposed that 
would further increase the load-carrying capacity of the system. 
The research concludes with a proposition for a circular roof 
design that shown potential to be used in a building structure.  
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1. INTRODUCTION 

1.1. ACTIVE BENDING AS AN APPROACH 
Curved shapes are often desired in large-span structures because 
of the superb structural qualities they can achieve. When properly 
designed, their main load-carrying behaviour is by axial or 
membrane forces, which utilise the element’s cross-section in the 
most optimal way. Additionally, extra stiffness and stability can be 
achieved by designing double curved geometries. The 
manufacturing costs of these structures, however, can be 
astronomical. Compared to straight elements, the price of single 
and double curved elements are respectively about two and six 
times higher (Schreurer, 2011).  

 

There are several ways to develop curvature in timber elements. 
Ideally, the wood is bent into shape to keep the fibres intact. In 
traditional timber construction, wood is bent by steam or 
lamination. Steam bending uses hot air to plasticise the wood and 
to bend it easily over a form or mould. The wood retains its 
curvature when it is cooled and dried, although a certain amount 
of spring back can be observed. Nowadays, lamination is mostly 
used in construction. Thin layers of wood are elastically bent inside 
a mould. The layers are glued and compressed into the desired 
shape and the laminated element retains its shape when the glue 
dries. Curved shapes can also be milled out of the elements. With 
computer numerical control (CNC), curves can be made with 
precision of 0.1 millimetres. Milling, however, destroys the fibrous 
structure of the wood, hence it weakens the elements.  

The presented methods all rely on special machinery, a significant 
amount of energy or the presence of forms and moulds to develop 
a curved piece of wood. This all contributes to the increasing 

Figure 1.1. The roof structure of the 
Centre Pompidou in Metz. All the 
elements are uniquely bent into 
shape by lamination. 

Figure 1.2. A double curved timber 
element from the Centre Pompidou 
in Metz. 
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manufacturing costs. An alternative to these rather laborious 
methods exists in the elastic bending and restraining of initially 
straight elements. This construction method provides a very time 
and material efficient alternative since it neither depends on the 
fabrication of expensive moulds nor on the auxiliary support of 
complicated formwork (Panagoulia and Schleicher, 2016). 
Lienhard (2014, p. 13) describes these structures as bending-
active systems and gives the following definitions: 

“Bending-active structures are structural systems that 
include curved beam or shell elements which base their 
geometry on the elastic deformation from an initially 
straight or planar configuration.” 

“Bending-active in structural terms: constrained statically 
indeterminate structures with residual bending stress.” 

Form and structure have a very tight relation. The geometry plays 
an important role in the load-carrying ability of a structure.  
Traditional structural design often has the aim to minimise 
bending moments in a system. Bending-active structures harness 
bending to generate complex and very lightweight designs. The 
geometry is determined for a large extent by the mechanical 
properties of the material. Elasticity and geometry become very 
closely related. The material defines the geometry, instead of the 
other way around (La Magna, 2017). 

Bending-active structures have the potential to overcome practical 
limitations for the construction of shell structures. Applications for 
bending-active structures are for instance lightweight facades, 
roofs or freestanding canopies (Schleicher, Magna and Zabel, 
2017). The structural elements need a certain amount of 
slenderness to be formed into shape. At the same time, structural 
systems should be designed to withstand large external forces. 
Simply increasing member dimension does not satisfy. Stiffness 
and stability should be found in the geometry, which ties form, 
structure, material and analysis into one holistic approach (La 
Magna, 2017).  

1.2. TIMBER AND BENDING-ACTIVE STRUCTURES 
The performance of bending-active structures is very closely 
related to the material that is facilitating the structure. Kotelnikova 
et al., (2013) gives an assessment on some of the most popular 
structural materials and their performance for active bending. The 
materials are valued for 1) a high elastic limit strain to fit with the 
construction process, 2) high material stiffness to give the 
structure its final stiffness and stability, 3) their maximum elastic 
strain rate to facilitate handling on site, 4) a low price for a given 
performance, 5) high environmental properties and 6) high 
durability of the material. The combination of values 1 and 2 
automatically results in the appreciation for the material’s flexural 

Figure 1.3. The Brazilian Oca house 
is a traditional bending-active 
structure 
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strength. In general, it can be said that materials that have a ratio 
for the flexural strength (in MPa) to the flexural Young’s modulus 
(in GPa) of fm/E < 2.5 are applicable for bending-active structures 
(Lienhard, 2014). Figure 1.5 gives an overview of some popular 
materials and their mechanical properties.  

Timber, as a natural composite material, scores relatively well on 
most assessed parameters. Other suitable materials are fibre 
reinforced polymers (FRP) and some metals. These materials 
might perform a little bit better on mechanical properties, but, a 
big advantage of wood is its environmental quality and its 
workability. Furthermore, the high strength-to-weight ratio makes 
timber ideal for lightweight construction.  

Bending-active systems can generally be divided into two 
categories, based on the element dimensions. One-dimensional 
elements, i.e. slender beams and rods, have been used frequently 
throughout the ages to build bending-active structures. Some of 
the applications are age-old, like the Brazilian Oca house from 
Figure 1.3. Gridshells are a more recent example of one-

Figure 1.6. The Multihalle in 
Mannheim, constructed in 1975, is 
the most well-known example of a 
gridshell. 

Figure 1.4. Plywood dome 
constructed by Thomas Moore in 
1957 at Washington Square in San 
Francisco to a design of Buckminster 
Fuller. 

Figure 1.5. Applicable materials for 
bending-active structures (Lienhard, 
2014). 

Coniferous 

Deciduous 
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dimensional bending-active structures. These structures are built 
by erecting a rectangular mesh of flexible timber rods and fixing it 
to the foundation. Most research on bending-active systems has 
been focussed on this type of systems. The most well-known 
example is the Multihalle in Mannheim by Frei Otto (Figure 1.6). 

Bending-active structures with two-dimensional elements, i.e. thin 
plates and strips, are less researched. Due to the dimensional 
limitation given by trees, timber plate elements have only found 
their way into the industry by the 20th century, with the adoption 
of engineered wood products, such as plywood. The plydome 
(Figure 1.4), designed by Buckminster Fuller, was the first system 
on record that actively used the flexibility of the plates to construct 
a spatial structure from a standard off-the-shelf plate element. By 
using plates instead of rods, the system is stable in its plane and 
the structural elements can immediately provide for a cover.  

1.3. STATE-OF-THE-ART 

In the past decade, research on bending-active plate structures has 
received growing interest from architects and engineers. This 
research often goes hand-in-hand with developments in 
computational methods and with the construction of prototypes or 
pavilions. A detailed overview of these projects can be found in 
Annex A.  

In the bending projects of Frei Otto and Buckminster Fuller, the 
flexibility of the elements was used to approximate predefined 
structural geometries, which were based respectively on a hanging 
chain model or on a geodesic dome.  Recent research on bending-
active structures incorporates numerical form-finding methods 
that accurately incorporate the bending-behaviour of structural 
elements into the design process. This research, therefore, 
integrates the behaviour based approach from traditional 
bending-active structures, such as the Oca house (Figure 1.3), 
where the material and structure are empirically worked to find an 
appropriate configuration, with the more geometrical and 
analytical design methods, as used by Otto and Fuller (Lienhard, 
2014).  

Figure 1.7. The ICD/ITKE research 
pavilion 2010 (Fleischmann and 
Menges, 2011) 

Figure 1.8. Timberfabric (Weinand 
and Hudert, 2010) 
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Some prototypes and pavilions that result from this research are 
the 2010 ICD/ITKE research pavilion (Figure 1.7), the 
Timberfabric project at IBOIS EPFL (Figure 1.8) and the Berkeley 
Weave (Figure 1.9). The form-finding methods that were 
developed will be discussed in Chapter 4.  

The research is characterised by the application of plate material 
in structural design and highlights interesting ways to develop 
innovative configurations and geometries that hold surprisingly 
good structural qualities in a material efficient way. This approach 
is often combined with computer aided manufacturing (CAM) 
techniques that allow for mass customisation of elements.  

1.4. RESEARCH OBJECTIVE 
The challenge when designing bending-active systems, lies in 
developing a structurally sound system from flexible elements. For 
small and medium scale projects, prototypes have proven that this 
possesses no problems. However, when the step to large-scale 
projects is made, problems arise regarding structural 
deformations and stability. These problems occur because the 
effects of self-weight and destabilisation by compressive stress 
increases with a larger scale (Lienhard and Knippers, 2013; 
Takahashi et al., 2016).  

These problems cannot simply be overcome by using thicker cross-
sections, because the cross-sectional dimensions are limited to 
facilitate the bending. Also, the forces that are necessary to bend 
the elements increase with growing scale, which might result in 
impractical or unsafe conditions during construction. 

Furthermore, the time-dependent behaviour of timber, i.e. creep 
and stress-relaxation, influences the structural behaviour of a 
system over time. Depending on the nature of the stresses (tension 
or compression), these effects influence the structure in a positive 
or a negative way (Lienhard, 2014; La Magna and Knippers, 2017).  

What is certainly interesting about bending-active timber plate 
structures, is that they can achieve great structural qualities, are 
efficient in transportation and construction and poses a high 
aesthetic appeal. Due to its cost efficiency in designing curved 
forms, this construction method truly has great potential for an 
application in the building industry. This research provides a 
framework for the development of long-term large-scale bending-
active structures. The work that was carried out for this graduation 
project can be outlined as follows. 

Develop in-depth knowledge and understanding on the 
structural behaviour of fundamental bending-active 
systems. 

Research to the applicability of bending-active timber plate 
systems for large-scale long-term building structures. 

Figure 1.9. Berkeley Weave 
(Schleicher and La Magna, 2016) 
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Develop insight in the time-dependent aspects of bending-
active timber. 

Provide a practical implementation by designing an actively 
bent timber roof system.  

1.5. METHODOLOGY 
The research encompassed both a physical, as a numerical 
approach. In a new field of research, it is evident that numerical 
simulations will not always give the designer the insight that can 
be achieved from working physically with the material. Early in the 
process, physical design explorations and simple test set-ups were 
made that developed the designers intuition on the elastic 
formability and numerical accuracy. This was coupled to the 
theoretical framework on bending-active structures that is 
available in literature. Together with the study of several reference 
projects, this gave a fundamental understanding about bending-
active systems and the solutions and approaches that can used 
when design these systems.  

The research has strong ties to what certain bending-active 
solutions will mean for timber engineering in particular. This has 
led to a practical design solution that has potential for the field of 
bending-active timber plates systems. Again, it is important that 
the numerical approach was sufficiently verified via prototypes to 
gain confidence in the numerical methods that are needed for the 
structural design and engineering of a large-scale bending-active 
structure.  

The research of this thesis is divided over nine chapters. An 
overview of these chapters is given below.  

Chapter two gives a theoretical background on the mechanical 
behaviour of bending-active systems.  

Chapter three discusses the form defining parameters of a 
bending-active structure, such as the material properties, element 
dimensions and system configuration. It describes how previous 
projects have managed to acquire rigidity from flexible elements.  

Chapter four focuses on the numerical form-finding of bending-
active systems. Three different approaches are discussed and 
evaluated.  

Chapter five dives deeper into the numerical approach that will be 
used for this research. It provides an in-depth explanation of the 
numerical workflow.  

Chapter six discusses fundamental bending-active systems. The 
numerical approach is validated and basic insight on the nature of 
bending-active systems, including the time-dependent effects is 
developed.  
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Chapter seven gives a design proposition for a bending-active roof 
system. A detailed overview of the parameters that describe the 
geometrical and structural behaviour of the system is provided.  

Chapter eight describes the development of a bending-active 
prototype that has been built by the author. It focuses on the design 
considerations that need to be taken into account when developing 
bending-active timber structures and dives deeper into the 
structural behaviour of the system. Different design solutions are 
discussed that can further enhance the qualities of the system. The 
chapter concludes with large-scale applications using thicker 
plates. 
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2. MECHANICAL BEHAVIOUR  
OF BENDING-ACTIVE TIMBER 

2.1. INTRODUCTION 
A theoretical background on the mechanical behaviour of bending-
active systems will be given according to beam theory. Although, 
this approach may not be completely correct for all systems where 
plates are actively bent, bending-active systems can, as a rule, only 
be formed by bending around a single axis. This decreases the 
application field to conical and cylindrical element orientations. 
This somewhat justifies this simplification. Multi-directional 
bending is, of course, possible when the topology of the plate 
allows for this. also discretised systems can be formed which 
harness possibilities to achieve double curvature. We will see more 
on this in Chapter 3. 

2.2. RESIDUAL STRESS 
All bending-active systems are formed through elastic deformation 
of initially straight or planar elements. Figure 2.1 shows the 
internal forces that are present when a single strip is bent and 
restrained by a horizontal force. A certain amount of prestress is 
developed as a result of these internal forces. This stress influences 
the structural behaviour and is commonly referred to as residual 
stress (Lienhard, 2014). This term will be adopted in this report.  

The residual stress remains constant when the structure is not 
subjected to any loading and material relaxation is not considered. 
The bending-active system should be designed in a way that the 
residual stress never reaches the elastic limit stress of the used 
materials, hence, Hook’s law for linear elastic materials can always 
be applied (Lienhard, 2014). The amount of residual stress is 
primarily determined by the flexural stresses that result from 
bending, and secondarily, by membrane – or axial – stresses 
introduced by restraining forces.  

The Euler-Bernoulli (2.1) law states that the bending moment My 
is proportional to the change in curvature κ, which is the inverse of 
the radius r. Using the moment-stress relation (2.2), where σM is 
the flexural stress, and Wy is the flexural resistance, it can be 
derived that the residual stress is only influenced by the Young’s 
modulus E, the cross-sectional height h and the curvature (2.3). 

1
𝑟𝑟

= 𝜅𝜅 = 𝑀𝑀𝑦𝑦

𝐸𝐸∙𝐼𝐼𝑦𝑦
      (2.1) 

𝜎𝜎𝑀𝑀 = 𝑀𝑀𝑦𝑦

𝑊𝑊𝑦𝑦
       (2.2) 

𝜎𝜎𝑀𝑀 = 𝐸𝐸∙𝐼𝐼𝑦𝑦
𝑟𝑟∙𝑊𝑊𝑦𝑦

= 𝐸𝐸∙ℎ
2∙𝑟𝑟

      (2.3) 

Figure 2.1. Normal force, shear 
force and moment diagram of a 
single bent strip.  
Blue = positive; red = negative 
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From (2.3) it can be deduced that, when retaining the same 
curvature, the flexural stress increases linearly with the cross-
sectional height. The flexural stress cannot surpass the elastic limit 
of a material, and, therefore the cross-sectional height should be 
kept to a minimum to facilitate the bending. Hence, the second 
moment of area should be as high as possible to fortify the stiffness 
of a structure. This means that solid and wider cross-sections are 
generally preferred over hollow or double-symmetric sections 
(Lienhard, 2014). The influence of the residual stress on the 
behaviour of a system will be elaborated in Section 2.5. 

2.3. THE SHAPE OF A BENT CURVE 
From equation (2.1), it is clear that the curvature of a bent element 
varies proportional to the bending moment and in inverse 
proportion to the element stiffness EI. The elastic energy as a result 
of bending for a thin plate with a constant stiffness is equal to: 

𝑈𝑈 = 1
2
𝐸𝐸𝐸𝐸 ∫ 𝜅𝜅2𝑑𝑑𝑑𝑑𝐿𝐿

0       (2.4)  

According to the principle of minimum total potential energy, the 
plate deforms to the shape that minimises the internal strain 
energy (D’Acunto and Kotnik, 2013). This shape is commonly 
known as the elastica. For a rise f to span L ratio of below 0.3, the 
elastica is very similar to the catenary (Figure 2.2).  

2.4. NONLINEARITY 
Bending-active systems exceed the field of linear structural 
analysis. Three different forms of nonlinearity can be described in 
structural mechanics, i.e. material nonlinearity, nonlinearity of 
boundary conditions and geometrical nonlinearity (Lienhard, 
2014). Material nonlinearity occurs when the material behaviour 
takes plasticity into account. Bending-active structures are 
designed to remain within the linear elastic region of the material. 
Material nonlinearity will therefore not be considered. Nonlinear 
boundary conditions occur when large deformations lead to 
change in the structures supports. This could be the case for some 
bending-active structures, where large deformations might lead to 
additional supporting points and contacts between initially 
separate elements. Geometrical nonlinearity occurs when there is 
a nonlinear relation between the external forces and the 
structure’s deformation. This means that, in contrast to linear 
theory, an increase in load with a factor n will not result in an 
increase in deformations by n. All bending-active structures 
behave geometrically nonlinear. First, during the formation 
process, where large deformations are imposed to bend the 
elements into shape, and secondly, in the final structure, which 
often behaves quite flexible compared to traditional structures and 
where buckling often is the governing failure mechanism.  

Figure 2.2. Parametric study of 
elastica and catenary based on FEM 
form-finding results to show the 
similarity of the elastica and the 
catenary (Lienhard, 2014, p. 113). 
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This section explains the fundamentals of nonlinear structural 
analysis for beam elements, reproduced from Crisfield (1997). The 
principle will be explained by analysing the system of Figure 2.3. 
When θ is assumed to be small, vertical equilibrium gives us 

𝑊𝑊 = 𝑁𝑁 sin𝜃𝜃 = 𝑁𝑁(𝑧𝑧+𝑤𝑤)
𝑙𝑙∗

≅ 𝑁𝑁(𝑧𝑧+𝑤𝑤)
𝑙𝑙

    (2.5) 

The strain in the bar can be derived by Pythagoras’ theorem 

ε = 𝑙𝑙∗−𝑙𝑙
𝑙𝑙

      (2.6) 
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The force in the bar is given by 
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The relation between the force and the displacement follows 
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The system’s stiffness can be defined by a spring constant KT 
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Which can also be written as  

𝐾𝐾𝑇𝑇 = 𝐾𝐾𝐸𝐸 + 𝐾𝐾𝑈𝑈 + 𝐾𝐾𝐺𝐺       (2.10) 

The terms that occur in this formula can be explained as 1) the 
tangential stiffness KT that describes the stiffness of a system; 2) 
the elastic stiffness KE, which directly relates to the elastic material 
stiffness and is constant for all bending-active structures; 3) the 
initial displacement stiffness KU, that is related to the deformation 
of the system; 4) the geometric stiffness KG, which is related to the 
stabilising and destabilising effect caused by the normal forces in 
the structure. This geometric stiffness plays an important role 
when designing bending-active structures and can best be 
explained by investigating the simple system of Figure 2.4, in 
which a clamped mast is subjected to a horizontal force H. When a 
compressive normal force is present in the element, this force 
results in an increase of the deformation caused by H. On the other 
hand, the presence of a tension force decreases the lateral 
deformation. This phenomenon is known as the second order 
effect. In general it can be said that an internal tension force 
stabilises, and an internal compression force destabilises a 
structural system.  

Figure 2.3. Mechanical system. 

Figure 2.4. Clamped mast for 
visualisation of 2nd order effects 
(Lienhard, 2014). 
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2.5. STIFFNESS AND STABILITY 
Lienhard (2014) gives an explanation on how the different terms 
in equation (2.10) can be related to bending-active systems. In 
Figure 2.5, the contribution of each of the stiffness terms is 
differentiated for an elastica arch with an applied central point 
load F. The figure shows how the stiffness changes for a completely 
flat to a fully bent configuration. The different arches are specified 
by the inward movement of the support wx. KE remains constant 
because the material is assumed linear elastic. KU increases after 
bending, because the curvature adds stiffness to the system. Once 
the strip starts moving inwards, KU slightly decreases. KG is 
negative because the restraining force in the supports introduces 
a compressive normal force into the system. This compression 
force increases second order deformations, hence decreases the 
stiffness of the system.  

For an elastica arch with a rise-to-span ratio of 0.15 the difference 
in buckling behaviour with and without residual stresses was 
investigated by Lienhard for a variable line-load. The snap-through 
analysis from Figure 2.6 shows that for the geometrical nonlinear 
case, where all stresses resulting from bending and restraining are 
taken into consideration, the critical load factor λ is about 25% 
lower.  

 

 

  

Figure 2.5. Differentiation of the 
stiffness matrix for an elastica arc 
with constant stiffness and beam 
length under different support 
locations. Modified from (Lienhard, 
2014, p. 143). 
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Figure 2.8. Membrane stresses in  
the longitudinal direction in the 
centre of the cross-section. 
(Lienhard, 2014, p. 157) 

-10 N/mm² 10 N/mm² 

Figure 2.7. Differentiation of the 
tangential stiffness when a beam is 
first bent and then twisted. Modified 
from (Lienhard, 2014, p. 157) 
wx,max = ± 0.5 L0 
φx,max  = ± 0.5 π 

Figure 2.6. Influence of residual 
stress on stiffness for the geometric 
nonlinear case including all residual 
stresses and  the reference geometry 
without pre-stress. Modified from 
(Lienhard, 2014, p. 143). 
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Figure 2.8 gives the differentiation of the tangential stiffness for 
an element that is bent and twisted. The strip is first bent by 
moving the supports inwards (wx) to about half its length, and then 
twisted by rotating the strip at the supports (φx) about half way 
around its longitudinal axis. The figure shows how the stiffness 
under an applied point load in the centre is altered under these 
different configurations. A large increase in stiffness is obtained as 
a result of the twist. This rise is primarily caused by the increasing 
geometric stiffness, resulting from a tension stiffening effect. 
Figure 2.7 shows that there is a large presence of tension stresses 
in the centre of the cross-section as a result of the twist. 

2.6. TIME-DEPENDENT MATERIAL BEHAVIOUR OF TIMBER 
Timber, as a viscoelastic material, is susceptible to time-dependent 
material behaviour.  

2.6.1. CREEP AND STRESS-RELAXATION 
A structure creeps when a constant long-term loading, such as self-
weight, acts on it, resulting in increasing deformations over time. 
On the other hand, when an element is elastically deformed, the 
load that is necessary to maintain a constant deformation 
decreases over time due to stress-relaxation. This means that the 
residual stresses that are present in bending-active systems 
reduce over time, which has consequences for the structural 
behaviour of the system. Where creep directly causes plastic 
deformations, the plastic deformations from stress-relaxation only 
become visible when the structure is dismantled (Figure 2.9). This 
deformation can best be explained by the lower spring-back force 
that is present in the elements after a structure’s lifetime.  

So far, the only research to stress-relaxation in relation to bending-
active timber plate structures has been carried out by Lienhard 
(2014) during the erection of the 2010 ICD/ITKE pavilion. This test 
shows the amount of relaxation in birch plywood for three 
different rise to span ratio’s (Figure 2.10). Although, exact 
information of the stress-levels in the elements is absent, the graph 
clearly shows that a large part of the relaxation occurs in the first 
few days, and furthermore, that the elements that are deformed to 
a larger curvature relax to a greater extend, with a highest 
measured relaxation value of about 55%.  

The designer should pay attention to the changing stress states. In 
the design of the Multihalle, stress-relaxation was seen as a 
positive event, because the members were stressed to a great 
extent, and, by the time that external loads were applied, the stress 
levels had already reduced to acceptable levels (Happold and 
Liddell, 1975). Furthermore, due to the retaining forces at the 
foundation, compressive stresses were present in the elements, 
that, as explained in the previous section, had a lower destabilising 
effect after relaxation. When tension stresses relax, on the other 
hand, a large part of the additional geometric stiffness acquired by 

Figure 2.9. Plastic deformation as a 
result of stress-relaxation in the  
elements of the dismantled AA/ETH 
pavilion (top) and 2010 ICD/ITKE 
pavilion (bottom). 

100

80

60

40

20

0.00

-20

0 500 1000 1500 2000 2500

Re
lax

at
io

n
[%

]

Time [h]

f /L  = 0.09
f/L  = 0.19
f/L  = 0.22

Figure 2.10. Relaxation tests of 
birch plywood bent to various rise to 
span ratios. Modified from 
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these stresses fades away over time. It can therefore questionable 
if twisted elements, which hold a lot of tension stresses, would be 
a viable solution for bending-active timber.  

Creep as a result of dead-load causes the structure to sag. It can 
therefore be argued that a funicular shape, that is based on axially 
loaded elements is advantageous for timber shell structures. Creep 
is assumed to be proportional to the initial deformation. Therefore 
the creep in axially loaded elements is limited. As we have seen in 
Section 2.3, the elastica shows great resemblance with the 
catenary.  

2.6.2. LOAD DURATION 
Long-term loading on timber structures can result in failure over 
time. The strength of timber under a long-term load is 
approximated with the Madison curve (Jorissen, 2016). The 
Eurocode takes this effect into account with the kmod factor. For 
plywood in climate class 1, for instance, the mechanical strength 
must be multiplied by a factor of 0.6 for permanent loading. 

For actively bent timer, it can be argued that a permanent load is 
applied to the system when an element is bent. However, as we 
have seen in the previous section, a part of this stress also relaxes 
over time. Figure 2.11 shows the Madison curve, together with a 
fast and a slow relaxation process according to Figure 2.10. When 
the amount of induced flexural stress is set to 0.86 of the ultimate 
strength, both the slow, as the fast relaxation curve remains below 
the ultimate strength during the structure’s lifetime. It should, 
however, be noted that when an element is highly stressed, it is 
more likely that the fast relaxation curve is followed. Therefore, 
when all other conditions remain the same, it is not likely that a 
highly stressed element fails as a result of the prestress induced by 
bending over time.  

  

Figure 2.11. Madison curve and fast 
and slow relaxation curves from 
Figure 2.10, for an element that is 
stressed to 0.86 of the ultimate 
strength. 
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3. FORM AND RIGIDITY 

3.1. INTRODUCTION 
In bending-active systems, material and form are very closely 
related. The shape of actively bent timber comes from a 
minimisation of the elastic energy. This results in natural forms in 
which the shape follows the element’s properties. This chapter 
gives an overview on the parameters that define the bending 
behaviour of timber elements. Furthermore, it will be explained 
how these elements work together to form spatial geometries. A 
large part of this chapter is related to the bending-active projects 
that are discussed in Annex A. 

3.2. MATERIAL PROPERTIES 
Wood is a natural material that is subjected to constantly changing 
weather conditions during growth of the tree. Other variables are 
more constant but location specific, such as varying soil conditions 
and growing space. All these factors have an influence on the 
material composition, making timber elements heterogeneous 
with a highly differentiated composition and properties. Mean 
values for the elastic- and shear moduli are used to describe the 
bending and twisting behaviour, and, it is therefore inevitable that 
these theoretical values will always result in an approximation of 
the real bent shape. 

Furthermore, wood is an orthotropic material. A sawn timber 
element has different mechanical properties in three directions 
that are perpendicular to each other (Figure 3.1). Wood behaves 
the strongest and stiffest along the fibre direction which is parallel 
to the longitudinal axis L. The radial axis R is normal to the growth 
rings and the tangential axis T is perpendicular to the fibre 
direction and tangent to the growth rings. The changing 
mechanical properties for each direction lead to anisotropic elastic 
behaviour in all timber elements, where twelve constants are 
needed to describe the material behaviour. A Young’s modulus E 
for each of the three axes, a Shear modulus G for each of the three 
shear planes and six Poisson’s constants ρ to indicate the ratio of 
the transverse to axial strain. These anisotropic material 
properties influence how the elements deform when they are 
subjected to bending and twisting moments. It is therefore of 
interest to have a clear idea of the ratio’s between these material 
constants. Table 3.1 gives an overview of the relation between 
Young’s and shear moduli of various wood species that have been 
examined and charted by Green et al. (1999). 

 

 

Figure 3.1. The longitudinal L, 
tangential T, and radial R axes of 
wood (Green et al., 1999, p. 2). 
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Large plates, however, cannot be sawn from a single tree. When 
thin plates are needed, the obvious choice is plywood. This type of 
engineered wood keeps the grain intact, and therefore preserves 
the natural strength of timber. Plywood is made from thin layers of 
veneer that are laminated in a cross-wise fashion. This greatly 
improves the lateral strength of these elements. Compared to solid 
timber, plywood has some other advantageous qualities. It has less 
variable mechanical properties, better dimensional stability and a 
greater utilisation of raw timber (Gerrard, 1987). Plywood consists 
of at least three layers. When extra layers are added, the plate 
increases in homogeneity. The ratio between the Young’s modulus 
parallel to the grain and the Young’s modulus perpendicular to the 
grain E0/E90 decreases. Also the impact of natural flaws, such as 
knotholes, is reduced. From the models of Figure 3.2, the impact 

Table 3.1. Elastic ratios for various 
species at approximately 12% moisture 
content (Green et al., 1999, p. 2).  
The shear modulus is given by G. For 
example, GLR is the shear modulus based 
on shear strain in the LR plane and 
shear stresses in the LT and RT planes 
(Figure 3.1).  

Figure 3.2. Two models constructed 
by the author with two sets of strips 
with the fibre direction oriented 
parallel (left) and perpendicular 
(right) to the longitudinal axis. The 
left model behaves significantly 
stiffer. 



27 
 

of the grain direction in thin plywood strips on the shape and 
stiffness of a bent and twisted system, is observed.  

When it is desired to deviate from this cross-wise orthotropic 
fashion, a custom lamination procedure can be chosen, where, for 
instance, consecutive layers of veneer are placed in the same 
direction to increase the stiffness in the longitudinal plate 
direction. Custom lamination can also be used to alter the stiffness 
along the length of a plate. This procedure was used in the 2015 
ICD/ITKE pavilion, where the grain direction in small parts of 
veneer was placed under a varying angle with the longitudinal axis 
(Figure 3.3). By varying the stiffness over the plate length, the 
bending behaviour of a plate can be manipulated (Bechert et al., 
2016). However, the manufacturing costs of these customised 
elements are, of course, a lot higher than the costs for off-the-shelf 
plywood plates. The equivalent flexural modulus of a plywood 
plate can be computed by 

   

   (3.1) 

 

In which: 

Em  is the flexural Young’s modulus around the longitudinal or 
tangential axis 

I is the moment of inertia around the longitudinal or 
tangential axis 

t  is the thickness of the plate 
i  indicates the veneer layer 

3.3. ELEMENT TOPOLOGY 
Together with the material properties, the element’s cross section 
determines the resistance of the element to bending and torsion. 
Resistance to bending is  expressed through the second moment of 
area over an axis. This value is also known as the moment of 
inertia. For simplification, it is assumed that a plate behaves like a 
thin beam. Hence, for a rectangular cross section, this value is 

 𝐼𝐼𝑦𝑦 = 1
12
𝑏𝑏ℎ3       (3.2) 

In which b and h describe the cross-sectional width and height. 
Locally decreasing the stiffness in a cross-section facilitates 
bending at a specific location. This can for instance be achieved by 
gradually altering the element’s width or thickness, as can be seen 
in the segmented timber shells from Brütting et al. (2017), or by 
introducing cuts in the elements, which was demonstrated in the 
AA/ETH-Pavilion (Figure 3.4). Cut-outs in plates can also be made 
to facilitate bending in multiple directions. The 2015 ICD/ITKE 
pavilion and the bend9 are an example of this (see Annex A).  

Figure 3.3. Veneer can be custom 
laminated (top) to vary the stiffness 
along the plate. This influences the 
bending behaviour (bottom) 
(Bechert et al., 2016). 

Figure 3.4. Cuts in the elements 
regulate the bending behaviour 
(D’Acunto and Kotnik, 2013). 
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3.4. CONNECTING AND ARRANGING ELEMENTS 
In the previous paragraphs, we have seen how the element’s 
material and topological properties determine the bending 
behaviour. The neutral axis of an element is  constantly changing 
over its surface. At the same time, every element is held in place by, 
or imposes a force on another element. A great extent of the 
geometry of a structure is determined by how different elements 
are put together. At a connection, the element’s axis is either 
transferred or changed. Parallelly aligned connections (Figure 
3.5) can be achieved by gluing elements directly to each other, or 
by clamping them with mechanical fasteners. The connection can 
also be made with rotational freedom around one or more axes. 
Rotations might be partly blocked due to overlapping elements or 
can be completely fixed with an intermediate wedge, giving more 
dimensional stability to a system.  

Elements can be arranged by simply letting them collide with each 
other. These connections only partly restrain translational degrees 
of freedom. These systems show resemblance with the properties 
of woven systems, as can be found in textiles or fabrics. Research 
to substituting these properties to timber has led to the 
development of the Timberfabric module (Figure 3.7). In addition 
to following a weaving pattern, the strips are also twisted like yarn, 
which adds friction to the system. Figure 3.6 shows the evolution 
of the weaving pattern towards a system of interlocking strips.  

 
A similar pattern is observed in the 2010 ICD/ITKE pavilion 
(Figure 3.9). These patterns, however, tent to easily rotate around 
the connection points. This can be prevented by introducing 
irregularities that alter the locations of these weak spots, or by the 
addition of an extra layer. This layer could be used to further shape 
the system according to the principle shown in Figure 3.8.  

 

 

Figure 3.8. A third layer locks the 
system (Schönbrunner et al., 2015). 

added layer 

Figure 3.5. Systems with parallel 
connections (Lienhard, 2014) 

Figure 3.6. Difference in warp and 
weft direction in Timberfabric 
(Weinand and Hudert, 2010). 

Figure 3.7. Evolution of a weaving 
pattern to a system of interlocking 
strips (Hudert, 2013).  
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3.5. CONFIGURATION AND ASSEMBLY 

 
Previous bending-active projects have shown that there can be 
numerous ways to combine structural elements. The chosen 
approach will have a large impact on the internal forces, structural 
behaviour, assembly and shape of a system. To develop an 
understanding of these structures, a distinction can be made in 
configurations in which these systems primarily find their force 
equilibrium, which can be globally or locally. 

Global systems show a continuous bending shape. They can either 
be externally or internally restrained. Global systems find their 
equilibrium by the presence of restraining forces from exterior 
sources, such as foundations or tension rings and bars. Gridshells, 
like the Multihalle, and segmented shells (Figure 3.10) are good 
examples of these systems. Forces that are needed to assemble 
these structures can become quite high. Internally restrained 
global systems are assembled from discrete elements that restrain 
themselves. With the addition of each element, the final shape is 
further approached (Figure 3.11). The Plydome and the Berkeley 
Weave are examples of internally restrained global systems.  

Bending-active systems that find their force equilibrium locally are 
characterised by a multiplication of closed bending systems. The 
2010 ICD/ITKE pavilion (Figure 3.9) and the Timberfabric project 
are good examples of these systems. This improves handling 
during construction, since forces are kept to a minimum and the 
form of an assembled part is close to the final shape. This is 
especially the case, when separate bending-active units are pre-
bent into a closed equilibrium system prior to assembly, as 
demonstrated in the 2015 ICD/ITKE pavilion (Figure 3.12).  

Figure 3.11. Assembly of the 
Berkeley Weave (Schleicher and La 
Magna, 2016). 

Figure 3.10. A bending-active 
segmented shell (Brütting et al., 
2017). 

 

Figure 3.9. Assembly of the 
ICD/ITKE 2010 research pavilion 
(Fleischmann and Menges, 2011). 



30 
 

This categorisation does not endeavours to be completely inclusive 
for all types of bending-active structures. In reality, these 
structures do not tend to be easily categorised. Often a 
combination of configurations is present in a structure. This can 
clearly be observed in the 2010 ICD/ITKE pavilion. Although, the 
largest part of the force equilibrium is obtained locally, some 
restraining forces are present at the supports to fix the strips to the 
exact location. Furthermore, the global geometry slightly changes 
when adding additional strips, which indicates that the internal 
forces are partly distributed globally as well.   

3.6. ACHIEVING RIGIDITY 

 
The structural elements need a certain amount of slenderness to 
be formed into shape. At the same time, structural systems should 
be designed to withstand large external forces. Simply increasing 
member dimensions does not satisfy. Stiffness and stability should 
therefore be found elsewhere.  

Often this rigidity is found in the geometry (La Magna, 2017). 
Various ways have been explored to develop double curved 
systems by using successively bent single curved plates. The Bend9 
(Figure 3.13) and Berkeley Weave (Figure 3.11) projects nicely 
show how a target surface can be approached by using actively 
bent elements. Both structures acquire double curvature by a 
strategical element topology that allows for multi-directional 
bending. 

Another way of finding rigidity, is by adding pre-stressed tensile 
elements to the structural system, i.e. cables or membranes. These 
systems are referred to as bending-active tensile hybrids (BATH) 
(Slabbinck et al., 2017). The addition of tensile elements can 
greatly increase the structural qualities of a system, as has been 
shown in the AA/ETH pavilion (Figure 3.15) or in the models 
presented by Slabbinck, Körner and Knippers (2017). However, a 
large issue when designing for long-term structures is the time-
dependent material behaviour. Creep and stress-relaxation in the 

Figure 3.12. Assembly of the 
ICD/ITKE 2015 research pavilion 
which uses units that are in closed 
equilibrium (Bechert et al., 2016). 

Figure 3.13. Bend9 project 
harnesses multi-directional bending 
to generate a double curved surface 
(Schleicher and Magna, 2016). 

Figure 3.14. The Bend9 uses 
multiple layers to increase rigidity 
(Schleicher and Magna, 2016) 

Figure 3.15. Tension elements in 
the AA/ETH pavilion (D’Acunto and 
Kotnik, 2013). 



31 
 

wood result in loss of pre-stress in the tensile elements. This was 
experienced in the AA/ETH pavilion, where the tension elements 
were tightened a few times over the year the pavilion was standing 
to retain its structural rigidity (D’Acunto, 2017). Therefore, it is 
very unlikely that tensile hybrid structures with actively bent 
timber elements are a viable option for long-term building 
structures. Rigid elements that can take both compression and 
tension and do not rely on prestress for their stability, on the other 
hand, could form a better solution for strengthening bending-
active timber. 

At last, additional layers can be added to achieve rigidity whilst 
remaining the elements flexibility during construction. The layers 
can either be directly placed on top of the previous layer, or 
connected by using connector pieces in between the layers (Figure 
3.14).
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4. NUMERICAL COMPUTATION  
OF BENDING-ACTIVE STRUCTURES 

4.1. INTRODUCTION 
In general, form-finding methods are used in the computational 
design of form-active structures, i.e. tensile membranes and 
catenary arch and shell structures. The geometrical form is an 
outcome of given boundary restraints and a target stress field. It is 
an erection process that is based on the optimization of the 
structural behaviour of the geometry.  

Where in general form-finding element characteristics are not 
considered, form-finding of bending-active structures uses the 
elements dimensions and material properties as input to describe 
the element’s behaviour during elastic bending  (Lienhard, 2014). 
Opposite to general form-finding, form-finding of bending-active 
systems does not include an optimization of the structural 
behaviour. The process can rather be seen as a form-development 
process, where numerical tools are used to develop the shape in 
which the bending-active system is in equilibrium. The stresses 
that occur in the elements during the formation are known 
throughout the process. Table 4.1 describes the difference in 
variables involved in the form-finding process of bending-active 
and form-active structures. 

 

 

This chapter briefly explains three different numerical approaches 
that can be used in the form-finding of bending-active systems. 
Although, all these methods use contracting cable elements to 
simulate the bending, their calculation methods, and hence, the 
used software, differs. The first method uses the finite element 
method (FEM), the second method uses isogeometric analysis 
(IGA) and the third method is based on a particle spring system 
with dynamic relaxation. All these methods use the 3D modelling 
software Rhino as the basic modelling environment, sometimes 

 Bending-active Form-active 

Geometric   
Boundary points and edges Input Input 

Length and surface dimension Input Output 
Sectional dimensions Input  Not considered 

Surface/element curvature Output  Output  
 

Mechanic   
Material stiffness Input Not considered 

Stress Output Input 
 

Sum of input variables 4 2 

Sum of output variables 2 2 

Table 4.1. Input and output variables 
for bending-active and form-active 
form-finding (Lienhard, 2014, p. 105) 
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combined with the Grasshopper plug-in for parametric input. The 
methods were explored by the author while visiting the 
masterclass on software approaches for simulating bending-active 
systems prior to 2017’s IASS symposium in Hamburg.  

4.2. FORM-FINDING WITH FEA 
The elastic behaviour of structures can be accurately simulated 
using a finite element analysis (FEA). A structural element, e.g. a 
plate or a beam, is discretised by a set of elements. The corner 
points of these elements are the degrees of freedom (DOF) to 
which the equilibrium formulation from equation (4.1) applies.  

𝐹𝐹 = 𝐾𝐾𝑇𝑇  𝑢𝑢       (4.1) 

This results in a large system of equations that can be solved 
numerically. In this formula, F is the force vector, KT is the 
tangential stiffness matrix and u is the unknown displacement 
vector. A finer mesh, i.e. more finite elements, generally results in 
more accurate computations and smoother surfaces, however, it 
does increase the calculation time.  

As we have seen in Section 2.5, bending-active systems behave in 
a geometrically nonlinear fashion. The stiffness of the system 
changes with increasing displacements. KT therefore becomes a 
function of u. The equilibrium equation should now be written as 

𝐹𝐹 = 𝐾𝐾𝑇𝑇(𝑢𝑢) 𝑢𝑢       (4.2) 

In this computation, the force vector F is applied incrementally. 
The equilibrium path of a structure is commonly approached by 
the Newton-Raphson method, which minimises the residual force 
in an iterative search (Figure 4.1). The stiffness matrix is updated 
after each load increment, which drastically increases the 
computational time of a nonlinear analysis, compared to a linear 
analysis.   

Figure 4.1. Nonlinear finite element 
analysis (La Magna, 2017, p. 64) 
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The simulations are performed in the commercial FEM software 
package SOFiSTiK. This commercial FE package has a stable solver 
that runs smoothly when large deformations, complex geometries 
and geometrically nonlinear effects are incorporated in the 
simulation (Bauer et al., 2018).  

Bending-active systems can be build using the elastic cable method 
that was developed by Lienhard (2014) during the design phase of 
the 2010 ICD/ITKE research pavilion (Figure 4.2). This is an 
approach that has been programmed into SOFiSTiK to increase 
computational time of bending-active systems. It uses contracting 
cables with an adaptive step-size control to gradually increase 
elastic strain in cables, which simulates the elastic bending. 
SOFiSTiK offers stable nonlinear solvers that can accurately 
describe the large deformations that occur during the form-finding 
steps. All the information on internal element stresses and strains 
can be used as a starting point for a next form-finding step.  

4.3. FORM-FINDING WITH IGA 
An interesting new field in structural analysis is isogeometric 
analysis (IGA). IGA has the aim to merge computer aided design 
(CAD) of structures and computer aided engineering (CAE) into 
one single environment. Bauer et al., (2017) developed a software 
tool Kiwi3d, that incorporates IGA into Grasshopper. The biggest 
difference with FEM, is that it describes the geometry through 
NURBS patches and trim curves, which is also used in popular 3D 
CAD packages, such as Rhino. The degrees of freedom (DOF) are 
the control points of these curves (Figure 4.3). In traditional FEM, 
a curved surface must always be described by a discretization in 
multiple finite elements. Hence, IGA results in a more accurate 
representation of the curved surface, and additionally, in less 
DOF’s to describe the surface, which reduces the computation time. 
(A. M. Bauer et al., 2017) (Längst, Michalski and Lienhard, 2016). 
However, it should be noted that the accuracy of the bending shape 
is still largely depending on the amount of control points used to 
describe the plate. This can be seen in Figure 4.4, where the 
elastica shape is approached more accurately with the addition of 
control points.  

Figure 4.3. Difference between 
DOF’s in FEM and IGA (Längst, 
Michalski and Lienhard, 2016) 

Figure 4.2. Contracting cables 
simulate the bending in the 
computation of the 2010 ICD/ITKE 
research pavilion (Lienhard, 2014, p. 
69). 
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IGA shows great potential for the computation and analysis of 
bending-active structures. This analysis method offers the 
possibility to have the same design freedom in an element before 
and after simulation, however, the theory behind IGA is very broad 
and it differs quite a bit from the standard structural design 
curriculum. Also, at the time of writing, the tools are still in 
developing phase, making it hard to offer a stable modelling 
approach for bending-active structures. Furthermore, only 
isotropic materials can currently be used in the analysis (A. M. 
Bauer et al., 2017). 

 

 

4.4. FORM-FINDING WITH PHYSICS BASED MODELLING 
Another way to simulate bending in CAD environments, is with the 
use of physics engines that simulate physical behaviour. Although, 
these tools have been developed for the simulation of visual effects 
in computer graphics, they have also found their way of application 
in architecture and structural design. Where form-finding using 
FEM software needs detailed material and geometric input from 
the user, such as material properties and cross-sectional 
dimensions, most of these physics engines are based on a particle 
spring system that consists of particles that are connected by 
springs with a certain stiffness (Nicholas and Tamke, 2013). This 
results in the lack of precise material data that are of interest to the 
structural engineer, such as stresses and deformations. However, 
this method does give accurate physical behaviour in the same 
sense as how a hanging chain accurately describes a catenary in 
the real word (Fleischmann and Menges, 2012).  

a b 
Figure 4.5. a) Segments of an 
initially straight beam. b) The 3DOF 
nodes cannot take the bending 
moment M. Bending the infinitely 
stiff segments results in  shear 
forces S in the nodes that account for 
bending-stiffness (Adriaenssens and 
Barnes, 2001). 

2×5 control points 2×11 control points 2×15 control points 

Figure 4.4. The accuracy of the 
elastica shape is approached more 
accurately with more control 
points (Bauer et al., 2017) 
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Particle spring systems generally have three DOF’s and use 
dynamic relaxation (DR) to find the equilibrium shape. Without 
going too much into detail, this method can be explained as follows. 
DR adopts a step-wise approach, where small time increments are 
used to trace the motion of each node (with a fictitious mass) that 
is imposed by a force, and uses artificial damping to find a static 
equilibrium (Adriaenssens and Barnes, 2001). Although, these 
systems only have translational DOF’s, flexural behaviour can be 
simulated in two different ways.  Firstly, through a system of one-
dimensional rods that acquire rotational stiffness through shear 
forces S (Figure 4.5). These shear forces are differentiated from 
the moment curvature relation for continuous beams 
(Adriaenssens and Barnes, 2001). Secondly, by transcribing this 
rotational stiffness to the hinging edges of a mesh (Tachi, 2013), 
enabling the simulation of the elastic behaviour of sheets (Figure 
4.6). Similar to the previous methods, the elements are bent by 
contracting a rod between two nodes. However, a slightly different 
approach is adopted. Here, the length of the cables is directly 
altered, contrary to using increasing strain.  

 

 

Physics based modelling can be done in Rhino via Kangaroo, which 
is a very popular physics-based tool that has been developed by 
Piker (2013) as a plugin for Grasshopper. The tool works fast and 
almost immediate feedback is felt while changing parameters. The 
tools can be used for design exploration, however, physics based 
modelling for exact engineering purposes remains very limited. 
The implementation of mechanical properties and geometric 
parameters is difficult (Nabaei, 2014). Furthermore, plate 
behaviour, especially for orthotropic materials such as timber, can 
hardly be simulated.  

Figure 4.6. Software exploration by 
the author. A segment of half a torus 
is approached by bending, using the 
Kangaroo physics engine. 
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4.5. CONCLUDING REMARKS 
Each of the discussed methods have their best application for 
specific tasks and stages in the design phase. An overview of these 
methods, together with their strengths and weaknesses can be 
found in Table 4.2. The beauty in IGA and particle spring systems, 
lies in the fact that they integrate design and analysis into the same 
software environment. Although, research is moving closer to one 
holistic approach for CAD and CAE, at the time of writing, this 
utopia for structural designers still remains out of reach. For the 
purpose of this research, the first method has been chosen to be 
most suiting. FEA is the common standard in engineering practice. 
It is most reliable in terms of accuracy. Since this research tries to 
tighten the gap for an application of bending-active structures into 
common building practice, it is important to deviate as little as 
possible from methods that are commonly accepted and trusted. 
Form-finding using FEM is therefore chosen as the most 
appropriate method for the research described in this report. 

 

METHOD STRENGTH WEAKNESS 
FEM (SOFiSTiK) 
 
 
(Chosen method for this 
research) 

+ Known to most engineers 
+ Very accurate simulation 
+ Good interaction with 
Rhino and Grasshopper   
+ No problems with 
simulating orthotropic 
material behaviour 

- Needs fine discretisation to 
describe curved surfaces 
- Large models need a lot of 
computation time 
- Solvers are very susceptible 
to instabilities 

IGA (Kiwi3d) + Modelling and analysis in 
same environment 
+ Quick calculation 
+ Accurate representation 
of the geometry 
+ Elements collide with 
each other 

- New tool needs further 
development 
- Currently less accurate then 
FEM 
- Not yet possible to use 
anisotropic material 
- Difficult theory 

Particle spring with DR 
(Kangaroo) 

+ Modelling and analysis in 
same environment 
+ Immediate response 
+ Good for design 
exploration 

- Less suited for plates 
- Not very accurate results 
- Computational time 
increases quickly with 
heavier models 

 

 

  

Table 4.2. Assessment of the form-
finding methods. 
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5. NUMERICAL APPROACH 

5.1. INTRODUCTION 
The numerical simulations will follow the elastic cable method 
from Lienhard (2014), where contracting cables are used to bent 
the planar elements. There are several ways to build these models. 
For a stable simulation, it is essential that the system is sufficiently 
restrained. Large deformations should only be allowed in the 
desired direction. Some different ways to come to a basic bending-
active system are given in Figure 5.1. This chapter will further 
describe the software approach for the form-finding and analysis 
of bending-active systems.  

 

 
 

5.2. WORKFLOW FOR THE COMPUTATION AND ANALYSIS 
OF BENDING-ACTIVE SYSTEMS 

The software approach for the numerical computation and 
analysis of bending-active structures will be carried out in Rhino 
for geometric modelling and SOFiSTiK for FEA. Both programs are 
seamlessly linked together through a Rhino SOFiSTiK interface. 
Both software packages have access to parametric environments. 
For Rhino, this is the well-known plug-in Grasshopper. 
Grasshopper gives a programming approach to CAD. Additionally, 
it offers plug-ins, such as STiKbug or GeometryGym, that have the 
same purpose of linking CAD and FEM. SOFiStiK has its own 
parametric environment called Teddy, which is based on a text 
based input called CADINP. Within the Teddy environment, 
different programs can be run for the pre-processing, analysis and 
post-processing of the FE model. The programs that are used for 
the simulation are elaborated in Table 5.1. The computation and 
analysis of bending-active structures can generally be divided into 
three phases, which are further described below. The full Teddy 
script for the form-finding of a bending-active system is given in 
Annex B. 

Figure 5.1. Three different ways to 
come to a bending-active system by 
contracting cables. 
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AQUA Define materials and cross-sections 
SOFIMSHA Parametric input of geometry 
SOFIMSHC Geometric input of geometry 
TEMPLATE Define variables 
SOFILOAD Define loads 
ASE Finite element solver 

 

5.2.1. PHASE I 
The first phase is the model preparation phase. In this phase, 
material and section libraries are set-up in AQUA. The ‘flat’ 
geometry is drawn in Rhino and is imported into Teddy with either 
SOFIMSHA for parametric input, or SOFIMSHC for geometric input. 

5.2.2. PHASE II 
The second phase covers of the numerical form-finding by elastic 
bending. The bending is driven by incrementally converging the 
length of a cable that ties two nodes to zero. During a simulation, 
the number of required iterations for an increment indicates the 
level of nonlinearity. Adaptive step size control is manually 
programmed into the solver by scaling the step size based on the 
number of iterations that were necessary in the previous load 
increment. This method has proven to greatly reduce the 
computational time compared to a linear progression of load 
increments (Lienhard, 2014). 

The step size is controlled using formula (5.1), in which n is the 
load factor of step i, I1 is the desired number of iterations and It is 
the number of iterations needed for the previous step. The root k 
can be altered to speed up the analysis, but normally varies 
between 0.1 and 0.3. 

𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑖𝑖−1 �
𝐼𝐼1
𝐼𝐼𝑡𝑡
�
𝑘𝑘

      (5.1) 

The TEMPLATE program defines variables that will be used in the 
adaptive increments loop. SOFILOAD describes the load case that 
controls the bending by predefining strain levels for a group of 
cables to -99.9 %. ASE runs a step-wise solver where this strain 
level is gradually applied through a loop with adaptive increments. 
After every step, a new primary load case ‘PLC’ is saved that 
contains all the information on node deformations and stress 
levels present in the elements. The latest PLC is loaded at the start 
of each new calculation step, which means the most up-to-date 
bent shape, together with all its internal stresses, is used as a 
starting point in each new calculation. A copy of the database is 
made via SYS COPY, and the final PLC is updated as the new starting 
system in ASE. Boundary conditions are updated to restrain the 
new system using SOFIMSHA. The steps in this phase can be 
repeated when an additional bending job should be carried out. 

Table 5.1. Used programs within 
SOFiSTiK. 
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5.2.3. PHASE III 
In the third phase, the bent geometry can be exported to Rhino via 
STiKbug. A Grasshopper script is written for efficient geometrical 
analysis and manipulation. Optionally, bent elements can be 
copied and coupled, and the new geometry is imported to Teddy 
via SOFIMSHA or SOFIMSCHC. However, when this additional step 
is blended into the framework, the stress state of the elements is 
lost in the process. The load cases for external loading are set-up 
in SOFILOAD. The nonlinear solver in ASE is used to calculate these 
load cases. When available, data on stress levels can be recollected 
by recalling the previous PLC. 

5.3.  SIMULATING STRESS-RELAXATION  
Stress-relaxation can be numerically simulated in SOFiSTiK by 
giving a load factor to the internal stresses of an element. A 
separate relaxation program is set up in ASE that runs prior to the 
structural calculations. In this program, the ‘FACL’ command is 
used to give a load factor to the internal stresses of a group (GRP) 
of elements within a certain PLC. ASE then calculates the new 
equilibrium state according to the new internal stresses. The 
following commands can for instance be used to specify the 
amount of relaxation in the model: 

‘GRP no 1  FACL 0.8’ (=20% stress-relaxation in the elements of group 1) 
‘GRP no 2  FACL 0.6’ (=40% stress-relaxation in the elements of group 2) 

‘GRP no 1,2  FACL 0.2’ (=80% stress-relaxation in the elements of group 1 & 2) 

The next chapter will further describe the phenomenon of stress-
relaxation in bending-active timber systems. 
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6. INVESTIGATING BASIC BENDING-
ACTIVE SYSTEMS 

6.1. INTRODUCTION 
The behaviour of bending-active structures was investigated 
according to the analysis of two different basic systems, which are 
the basic hinged, and the basic clamped system. Form-finding was 
done using the elastic cable method, discussed in Chapter 5 in 
SOFiSTiK (Figure 6.2). The numerical toolkit was tested and 
validated by comparison with simple experimental load tests 
(Figure 6.1). These tests are, by no means, following an exact 
experimental method, however, they are sufficiently accurate to 
study the general behaviour. This preliminary investigation had 
the aim to develop confidence in the numerical toolkit and insight 
into the fundamental behaviour of simple bending-active systems, 
which also includes the time-dependent behaviour of timber.  

The tests are performed with three-layered 3mm birch plywood. 
No material properties were available for this thickness, however, 
the material properties for a 4 mm plate are given by the supplier 
and are shown in Table 6.1. For the 3mm plate, the two outer 
veneer layers are somewhat thinner compared to the inner layer. 
This results in a relatively smaller flexural Young’s modulus in the 
longitudinal direction Em,0. For the 3mm plate, Em,0 was computed 
by a three-point flexural test and is 11,500 N/mm². Note that Em,0 
for a 4mm plate is equal to 16,471 N/mm². This value from 
literature was verified to be correct by means of a similar test.  

 
Characteristic strength Mean modulus of elasticity 

Bending Compression Tension Bending Tension and 
compression 

fm,0 

[N/mm²] 

fm,90 

[N/mm²] 
fc,0 

[N/mm²] 
fc,90 

[N/mm²] 
ft,0 

[N/mm²] 
ft,90 

[N/mm²] 
Em,0 

[N/mm²] 
Em,90 

[N/mm²] 
Et/c,0 

[N/mm²] 
Et/c,90 

[N/mm²] 
65.9 10.6 31.8 20.2 45.8 29.2 16471 1029 10694 6806 

 

By bending and restraining the plates, forces are introduced into 
the elements. Figure 6.3 shows the force diagrams of both 
systems. The internal axial forces that are induced by the boundary 
conditions affect the structural behaviour due to second order 
effects. The following sections explain what this means for the 
systems with reference to several design variants. 

 

Table 6.1. Material properties for 
4mm birch 3-layered plywood (UPM, 
2007). 

 

Figure 6.1. Simple load tests on the 
hinged (top) and clamped (bottom) 
system. 
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Figure 6.3. Force diagrams of the 
basic hinged (left) and clamped  
(right) system.  
Blue=positive; red=negative 

Normal force diagram 

Shear force diagram 

Moment diagram 

compression compression 

tension 

Flat geometry 

Contract first set of cables to 
form the hinged system. 

Contract second set of cables 
to form the clamped system 

hinged 

clamped 

Figure 6.2. The systems were form-
found using the elastic cable 
method. The colours show the 
development of stresses is the outer 
layer. 
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6.2. PHYSICAL AND NUMERICAL COMPARISON OF TWO 
BASIC SYSTEMS 

6.2.1. HINGED SYSTEM 
Three different variants of the hinged system were built and 
analysed (Figure 6.5). Form-finding was done by using a set of 
contracting cables that moved the sliding support inwards (Figure 
6.2), after which the sliding support was updated to a hinge. A 
compressive normal force is present in the system due to the 
restraining horizontal force at the supports. The models were 
subjected to a point load in the centre of the system. Figure 6.4 
shows both the load-displacement curve from the geometrically 
nonlinear FE simulation in which all the residual stresses resulting 
from bending were taken into account (annotated with RS=100%), 
as the physical test values that were recorded immediately after 
the system was bent. From these graphs it is seen that the 
geometrically nonlinear calculation describes the physical 
behaviour quite accurately. 

  

The stresses in the system have an effect on the load-carrying 
behaviour. Figure 6.6 gives a comparison between the numerical 
models of the hinged systems including all residual stresses 
(RS=100%) and the stress-free geometries (RS=0%). The system 
becomes stiffer and the critical buckling load increases when the 
stresses perish. The absence of destabilising stresses resulting 
from the internal compression force explains this stiffening 
behaviour. The same effect was observed in the physical test set-
up, when the load test was repeated after the system was bent for 
approximately 7500 hours. Since the amount of stress-relaxation 
is dependent on the time, the load-displacement curve will tend to 
move from the RS100% graph to the RS0% graph during the 
system’s lifetime. 

Figure 6.5. Different test setups 
of the hinged system 
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Figure 6.4. Physical and numerical 
results of models H1, H2 and H3. 
The displacement is measured for a 
central point load. 
E0 = 11,500 N/mm²; t = 3mm 
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6.2.2. CLAMPED SYSTEM 
Two variants of the clamed system were analysed (Figure 6.7). 
The numerical form-finding consists of two bending steps. In the 
first step, the outer sets of cables are contracted. The second step 
contracts the inner sets of cables. This results in a parallel 
alignment of the strips. The two strips are tied with a kinematic 
constraint for both translation and rotation (Figure 6.2). The 
system is supported with a hinge and a roller support. Again, both 
the physical as the numerical system are loaded with a central 
point load. The results of both variants are shown in Figure 6.8. 
The physical and numerical test results show quite some 
resemblance with each other. However, model C2 has a slightly 
larger error than model C1. An explanation for this error might be 
the relatively larger contribution of the ground friction at the roller 
support in model C2. Although, friction was minimised by placing 
the timber on a smooth surface.  

 

 

 

 

 

 

         

 

Contrary to the hinged system, the clamped system decreases in 
stiffness when the residual stresses are not taken into account in 
the numerical analysis (Figure 6.10). This can be explained by 
looking at the average stresses in the longitudinal direction in the 
centre plane of the cross-section over the full length of the strips. 
This value is -0.08 N/mm² and +0.10 N/mm² for the top and 
bottom strip respectively (Figure 6.9). Because the surplus of 
tension stresses in the bottom strip is about 20% higher than the 
surplus of compression stresses in the bottom strip, this results in 

Figure 6.6. Load-displacement 
curves of the full stress and stress 
free systems H1-2-3, combined with 
physical measurements prior to and 
after relaxation. The figures show 
how the load-carrying capacity is 
increased over time. 
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Figure 6.8. Physical and numerical 
calculation of models C1 and C2. The 
figure shows the measured 
displacement for a central point 
load. 
E0 = 11,500 N/mm²; t = 3mm. 
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a positive stiffening effect in the stressed state (RS=100%). At the 
same time, because the compression stresses in the top strip 
perish, the buckling load of the system increases in the stress free 
state (RS=0%). This was also observed in the physical systems, 
which also showed an increase in maximum load after 7500 hours. 
Furthermore, the physical models also show a slight increase in 
stiffness. This is due to a more complex relaxation behaviour, 
which is further elaborated in the following section. 

 

6.3. STRESS-RELAXATION IN BENDING-ACTIVE SYSTEMS 
6.3.1. RELAXATION RATE 

The previous tests show that a changing stress state influences the 
structural behaviour of actively bent systems. When timber is 
used, it is important to take into account that the effects of stress-
relaxation can be significant. For a clear understanding of the 
structural behaviour of a system, the speed and magnitude of the 
relaxation should be known. This will be referred to as the 
relaxation rate. Relaxation tests, however, take a lot of time to 
carry out. Luckily, some information on relaxation can be obtained 
and reproduced from literature.  

The relaxation tests from Lienhard (2014) (Figure 2.10) were 
carried out on the hinged system. Although, exact information on 
stress levels is missing, some general conclusions can be 
reproduced from these graphs. If we assume that the rise to length 
ratios are translated to a strip with a 1 m length, the absolute value 
of the average stress levels over the length of the strip can be 
computed (Table 6.2). If the stress for f/L=0.09 is then normalised 
to be 1.00, one observes that the relation between the relaxation 
after 2000 hours and the average stress levels in the element after 
bending is somewhat linear (Figure 6.11). 

f/L Relaxation  
(t = 2000 h) 

|σavg| 
[N/mm²] 

Fraction of 
f/L=0.09 

0.09 30 % 9.8 1.00 σ0.09 

0.19 43 % 18.4 1.88 σ0.09 

0.22 53 % 20.4 2.08 σ0.09 

Table 6.2. Average stress values 
linked to the relaxation graph of 
Figure 2.10. 
L = 1 m; t = 3 mm; E = 11500 N/mm² 

Figure 6.11. Approximated curve 
drawn from of the average stress 
levels and relaxation rates from 
Table 6.2. 
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Figure 6.10. Load-displacement 
curves of the full stress (RS=100%) 
and stress free (RS=0%) systems  
C1-2, combined with physical 
measurements prior to (t=0) and 
after relaxation (t=7500h). 
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Figure 6.9. Section of system C2  
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plane of the cross-section. The 
values are given in N/mm². 
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In the clamped system, two elements are stressed simultaneously. 
Their bent shape is a direct result of the internal force equilibrium. 
Due to the differences in curvature, the bending moment, and 
therefore the stress, is larger in the top strip. As previously stated, 
the relaxation rate depends on the amount of stress that is present 
in an element. The top strip loses relatively more stress in a shorter 
time span than the bottom strip, resulting in a change in internal 
force equilibrium. This leads to small changes in the system’s 
shape. In the physical test setup, it was observed that the system 
elongated over time in the unloaded configuration (Figure 6.12). 
The horizontal elongation ux was no longer significantly increasing 
after approximately 2500 hours.  

The question that comes to mind is if this unequal relaxation can 
be simulated numerically. Since the magnitude of the stresses in an 
element can be controlled with the ‘FACL’ (= factor of loading) 
command in SOFiSTiK, it is possible to give different relaxation 
values to the top and bottom strip. Continuing from the 
assumption that the relaxation rate is related to the extent of the 
stresses in the strip, the relaxation values can for instance be 
chosen with respect to the ratio between the average stresses in 
both strips (Table 6.3). Table 6.4 shows the elongation for both 
systems under a constant relaxation value of 50% for one of the 
strips, and varying values for the other strip. The same kind of 
horizontal elongation is clearly observed in this simulation, 
however, since the extension under a given relaxation ratio does 
not coincide with the stress ratio, a predictive model cannot be 
made by using this approach.  

 

 

 

 

 
FACL  

bottom 
(GRP1) 

FACL 
top 

(GRP2) 

Relaxation 
bottom 

Relaxation 
top 

Relaxation 
ratio 

C1 
ux 

[mm] 

C2 
ux 

[mm] 

0.50 0.5 50% 50% 1.00 0.0 0.0 

0.60 0.5 40% 50% 1.25 0.9 2.0 

0.70 0.5 30% 50% 1.67 1.8 3.9 

0.80 0.5 20% 50% 2.50 2.7 5.7 

0.90 0.5 10% 50% 5.00 3.6 7.5 

1.00 0.5 0% 50% ∞ 4.4 9.3 

System |σavg,bottom| 
[N/mm²] 

|σavg,top|  
[N/mm²] 

Stress ratio 
top/bottom 

ux 
t=2500h 

[mm] 

C1 9.8 17.0 1.7 2.5 

C2 15.2 24.3 1.6 6.3 

Table 6.3. Stress levels and 
horizontal deformation in time of 
system C1 and C2 

Table 6.4. Horizontal elongation 
under different relaxation ratio’s 
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Figure 6.12. Measurements of the 
horizontal elongation ux of the 
unloaded systems C1 and C2 over 
time 
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FACL  
bottom 
(GRP1) 

FACL 
top 

(GRP2) 

Relaxation 
bottom 

Relaxation 
top 

Relaxation 
ratio 

C1 
ux 

[mm] 

C2 
ux 

[mm] 

0.50 0.50 50% 50% 1.00 0.0 0.0 

0.50 0.40 50% 60% 1.20 2.3 2.0 

0.50 0.30 50% 70% 1.40 4.5 4.0 

0.50 0.20 50% 80% 1.60 6.6 6.0 

0.50 0.10 50% 90% 1.80 8.7 7.9 

0.50 0.00 50% 100% 2.00 10.7 9.9 

 

6.3.2. ITERATIVE APPROACH 
The relaxation curves from Figure 2.10 show that stress-
relaxation was most severe in the early stages of the test. This can 
be explained by the iterative nature of the phenomenon. As soon 
as the test started, stress starts to fade away. Since the relaxation 
rate is related to the amount of stress that is present, it can be 
concluded that the relaxation process slows down due to the lower 
stress levels in the elements. Furthermore, since changing stress 
levels have a constant effect on the internal force equilibrium in 
the clamped model, the relaxation rate is constantly changing. 
Hence, an iterative relaxation process should be carried out for an 
accurate simulation. In this process, the stress-relaxation in the 
bottom layer is set to a constant value. The relaxation in the top 
layer is given by the ratio between the average stress in the top and 
bottom layer. The magnitude of stress-relaxation in the top layer 
at a given time-step becomes: 

𝑆𝑆𝑅𝑅2,𝑖𝑖 = 𝑆𝑆𝑅𝑅1 �
𝑠𝑠2,𝑖𝑖−1
𝑠𝑠1,𝑖𝑖−1

� ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖 > 0   (6.1) 

In which: 

SR1 Stress-relaxation in the bottom layer 
SR2,i Stress-relaxation in the top layer at time-step i 
S1,i-1 Average stresses in the bottom layer at time-step i-1 
S2,i-1 Average stresses in the top layer at time-step i-1 

After each calculation, s1 and s2 should be computed for the newly 
found equilibrium condition. For both the system C1 as C2, the 
iterative procedure was carried out, using a constant relaxation in 
the bottom strip of 10% per time step (Table 6.5). In the graphs of 
Figure 6.14, the relaxation behaviour of system C2 is visualised. 
The horizontal elongation has the same tendency of converging 
towards a  steady state. 

The amount of stress relaxation that occurred in the physical 
systems can be approximated by using the plastically deformed 
strips (Figure 6.13) as the starting geometry in a new form-
finding simulation. Comparing the average stress values with the 
stress values at t = 0, gives an approximation of the amount of 
stress-relaxation after 7500 hours. From Table 6.6, it follows that 
the total amount of relaxation was approximately equal in systems 

Figure 6.13. The top picture shows 
the shape of the strips from systems 
H1-2-3 after 7500 hours of 
relaxation.  
The bottom picture shows the 
systems C1-2 after 7500 hours of 
relaxation. 

H1 
H2 

H3 

C1 

C2 
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H1-2-3. Furthermore, the relaxation in systems C1-2 have a value 
that roughly correlates with time step 3 in the iterative process. To 
visualise the effect of the stress-relaxation on the stiffness, the 
load-displacement graph at this time step is given in Figure 6.15.  

 
 

System C1 
Time Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
s1 [N/mm²] 9.6 8.5 7.4 6.6 5.8 5.2 4.6 4.1 3.6 3.2 2.9 2.6 2.3 2.0 1.8 1.6 
s2 [N/mm²] 17.0 14.2 11.9 10.1 8.7 7.4 6.4 5.6 4.9 4.2 3.7 3.2 2.9 2.5 2.2 2.0 
s2/s1 1.77 1.67 1.61 1.53 1.50 1.42 1.39 1.37 1.36 1.31 1.28 1.23 1.26 1.25 1.22 1.25 

 
SR1 [%] 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
SR2 [%] 0.0 17.7 16.7 16.1 15.3 15.0 14.2 13.9 13.7 13.6 13.1 12.8 12.3 12.6 12.5 12.2 

 
SR1,total [%] 0 11 23 31 40 46 52 57 63 67 70 73 76 79 81 83 
SR2,total [%] 0 16 30 41 49 56 62 67 71 75 78 81 83 85 87 88 

 
ux [mm] 0.0 0.7 1.3 1.7 2.1 2.4 2.6 2.8 3.0 3.1 3.2 3.3 3.4 3.5 3.5 3.6 

System C2 
Time Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
s1 [N/mm²] 15.2 13.4 11.8 10.4 9.3 8.2 7.3 6.5 5.8 5.1 4.6 4.1 3.6 3.3 2.9 2.6 
s2 [N/mm²] 24.3 20.6 17.6 15.1 13.0 11.3 9.8 8.6 7.5 6.6 5.8 5.1 4.5 3.9 3.5 3.1 
s2/s1 1.60 1.54 1.49 1.45 1.40 1.38 1.34 1.32 1.29 1.29 1.26 1.24 1.25 1.18 1.21 1.19 

 
SR1 [%] 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
SR2 [%] 0.0 16.0 15.4 14.9 14.5 14.0 13.8 13.4 13.2 12.9 12.9 12.6 12.4 12.5 11.8 12.1 

 
SR1,total [%] 0 12 22 32 39 46 52 57 62 66 70 73 76 78 81 83 
SR2,total [%] 0 15 28 38 47 53 60 65 69 73 76 79 81 84 86 87 

 
ux [mm] 0 1.2 2.1 2.8 3.5 4 4.4 4.8 5.1 5.3 5.5 5.7 5.8 6 6.1 6.2 

 

  

Table 6.5. Iterative relaxation 
process 

Figure 6.14. Relaxation behaviour of 
system C2 
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 System  

|σavg|  
t=0 

[N/mm²] 

|σavg| 
t=7500 h 
[N/mm²] 

Relaxation 
t=7500 h 

[%] 

H1  12.6 7.6 40 

H2  18.2 10.6 42 

H3  22.5 13.5 40 

 

C1 
bottom 9.6 6.2 35 

top 17 10 41 

C2 
bottom 15.2 11.2 26 

top 24.3 14.6 40 

 

 

6.3.3. CONCLUDING REMARKS 
The main purpose of these simple load tests was to gain confidence 
in the numerical simulation method. The tests show that the 
structural behaviour of the systems can be approached fairly 
accurately. Also stress-relaxation can be simulated to a certain 
extent, although the simulated elongation did not yet match the 
physical measurements. The elongation does, however, show the 
same tendency of converging towards a steady state. The error 
might be explained by two assumptions that were made in the 
iterative process.  

First, it was assumed that the stress-relaxation is the same over the 
entire length of the element. In reality, however, the stresses in an 
element vary greatly, resulting in different relaxation rates 
throughout the element. To be precise, an iterative process for this 
local stress-relaxation should also be adopted.  

The second assumption was that the relation between the 
relaxation rate and the stresses in the element is linear. This 
assumption was made from an interpretation of the relaxation 
tests from Lienhard (2014). Further experimental research is 
needed that would give a better understanding about the speed 
and severity of stress-relaxation in bending-active timber 
structures.  

Figure 6.15. Load displacement 
curves of system C1 (left) and C2 
(right), compared with the iterative 
relaxation step 3. The numerical 
simulations show the same 
behaviour as the physical tests. 
Iteration step 3 therefore roughly 
correlates with relaxation after 7500 
hours. 
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Furthermore, a smaller step size for the relaxation increments 
might increase the accuracy of the analysis. At this point, the 
iterative relaxation simulation is quite labour intensive. Stress 
levels have to be read and processed manually for each time-step 
and the relaxation values are computed accordingly. A numerical 
loop could be used to automate the process. This asks for an 
automated interpretation of the calculation results and a variable 
input for the ‘FACL’ command, what might be possible in SOFiSTiK 
with the right set of programming skills. This research, however, 
only aimed to highlight this phenomenon and will not go deeper 
into developing such a automated relaxation program.  
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7. A MODULAR SYSTEM 

7.1. INTRODUCTION 
It is still a large step to get from these simple basic systems to a 
fully working large scale bending-active solution. Although, all the 
case-study projects presented in the reference section (Annex A) 
show very innovative, and sometimes ground-breaking principles, 
most of them are still far away from an application in a ‘real’ 
structure. However, a lot can be learned from studying the 
principles on which they are designed and built. This reference 
study has resulted in the following design principles, which will be 
further elaborated in the next section.  

 Simplicity of design 
 3D configuration to improve stability 
 Closed modules for better handling on site 
 Use orthotropic timber properties 
 Vertical connection to improve structural qualities 
 Adequate structural behaviour through time 

This chapter proposes the design of an actively-bent timber roof 
system that shows potential to be used as a long-span solution in a 
building structure.  

7.2. DESIGN CONSIDERATIONS 
When bending timber for the design of a long-lasting load-carrying 
structure, the effect of stress-relaxation should always be taken 
into account. In an ideal scenario, the structural qualities would 
improve when the stresses perish. The advantageous stress-
stiffening effects caused by the tension stresses should be 
neglected, because this stiffening effect will fade away over time. 
The principle of active bending is therefore primarily used to 
develop a curved system that finds its structural qualities from the 
geometry.  

In the previous chapter, the effect of the relaxation on the simple 
systems was discussed. From this, we have seen that the 
predominant compressive stresses in the hinged system improve 
the structural qualities over time. The clamped system retains 
roughly the same stiffness, but increases in ultimate load after 
relaxation. These simple systems can be used as a starting point 
when designing an actively bent structure. The ICD/ITKE 2010 
research pavilion, for instance, is based on a multiplication of the 
basic hinged system. As explained in Chapter 3, the integrity of 
these structures is often determined by the geometry. Strategic 
positioning of weak points (Figure 7.1) and the use of (double) 
curvature are crucial to obtain sufficient stiffness.  

This research focuses on the clamped system as a starting point for 
the design of a roof structure. The system is stable by itself and 
does not rely on an auxiliary structure to retain its bent shape. This 

Figure 7.1. The weak links at the 
coupling between two clamped 
systems can altered in the adjacent 
section (A & B). Together they form 
a stable system (C). 

A 

B 

C 

Weak zones where the system 
tends to rotate around 
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offers the possibility for a unit based system, what improves the 
handling of the forces necessary for bending during construction 
since the units can be pre-bent prior to assembly. The structural 
qualities of these bending-active units, by themselves, can be 
greatly improved with simple enhancements (Figure 7.2). 

First of all, the plate thickness is restricted by the desired amount 
of curvature. The thickness should, however, be as high as possible 
to gain the maximum amount of rigidity. Secondly, struts can be 
added to create a coupling between the plates. The length of these 
struts can be increased to develop structural height in the system, 
resulting in increased prestress.  Thirdly, a shear connection can 
be made that makes the system behave as a truss. In the clamped 
system, a shear connection is already present where the plates are 
joined. Contrary to using diagonals, a shear connection in the 
middle can for instance be made through lateral couplings. At last, 
an additional layer can be added on top of the previous layer. 
Again, shear connections between these layers should be present 
to fully utilise the newly attained plate thickness. This last option, 
however, should only be used as a last resort, since it doubles the 
amount of material and asks for a lot of additional fasteners. 
Figure 7.4 shows the improvements in load-carrying behaviour 
that can be made to system C2 by adding bar elements.  

 

 

 

 

Figure 7.2. Methods to strengthen 
the basic clamped system: A) with a 
single strut; B) with a single 
prestressed strut; C) by creating a 
truss; D) by adding an extra layer. 
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7.3. A 3D MODULE 
Following the design principles outlined in the previous 
paragraph, a unit based system has been developed. The unit 
shows similarity with the simple clamped system. However, a 
connection is made in two directions. This results in an extra shear 
connection halfway through the unit. The difference in Young’s 
moduli for the longitudinal and lateral plate directions result in 
different allowable curvatures. The stiffness in the lateral direction 
is lower and the plate length can therefore be smaller. The height 
of the system is determined by struts that connect both plates and 
drastically increase the stiffness. Figure 7.5 shows both the flat as 
the bent geometry. Some of the most important input and output 
parameters are given in the drawing.  

The units are combined to form an arched structure (Figure 7.8), 
where every end-point is supported by the midpoint of a 
neighbouring unit. This stabilises the weak connections in the 
longitudinal cross-section. The design of the unit defines the shape 
of the arch. Figure 7.6 gives the relation between the unit’s angle 
with the ground plane α, the unit length L0 and the length of the 
connection Lc,0 with the arches radius R. The modular approach 
maximises efficiency in fabrication, ease of construction and 
simplicity in the design phase. Structural detailing can be kept to 
one standard.  

 

Figure 7.3. Form-finding of the unit, 
from flat to bent, and stress build-
up. The red and blue zones indicate 
the locations with the highest 
amount of stress. 

Figure 7.4. Load-displacement 
graphs of the original system C2 
with no additions (O) compared to 
the enhancements (A, B & C) from 
Figure 7.2 for a central point load. 
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The form-finding process of the unit is similar to the form-finding 
of the two-dimensional clamped system (Figure 7.3). Two form-
finding jobs are programmed into SOFiSTiK, where the first job 
contract the outer set of cables, and the second job contracts the 
inner set of cables, resulting in a parallel plate alignment. The 
accuracy of the form-finding is tested with an image overlay. 
Figure 7.7 shows a picture of a physical model of the bending-
active unit. The blue lines represent the form-found geometry. The 
virtual geometry follows the same curvature as the physical model. 
It can therefore be assumed that the simulations give an accurate 
representation of the real bent shape. 

 

 

 

 

 

 

Figure 7.7. The form found 
geometry gives an accurate 
representation of the real bent 
shape 
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Figure 7.6. The radius of the arch 
depends on the angle α, the unit 
length L0 and the length of the 
connection Lc,0. 
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Figure 7.8. Multiple units form an arch 
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7.4. PARAMETER STUDY 
Small alterations in the dimensions of an element can already have 
a huge impact on the geometry and the behaviour of the structure. 
This paragraph focuses solely on the influence of the dimensional 
parameters on the geometry. It is assumed that the material will 
not fail under the imposed curvatures. The structural behaviour 
will be discussed in the next section. The parameters are described 
as input and output parameters. The input parameters contain all 
the dimensions of the initial flat geometry prior to bending. The 
output parameters describe the dimensions of the unit in its bend 
state. All the parameters are listed in Table 7.1.  
 

INPUT PARAMETERS OUTPUT PARAMETERS 
Em,0/Em,90 Ratio between the orthogonal 

flexural moduli  
L0 Length of the unit in longitudinal 

direction 
t Plate thickness L90 Length of the unit in lateral 

direction 
L1 Longitudinal length of the 

bottom plate 
α Angle between the strips and the 

ground plane 
L2 Longitudinal length of the top 

plate 
H0 Height of the unit from the 

ground plane 
L3 Lateral length of the top and 

bottom plate 
H1 Height of the central strut 

R1/2 Radii of the corner  H2 Height of the side struts 
H1 Height of the central strut RA Arch radius 
H2 Height of the side struts tcon Thickness of the connection 
xS,1 Strut distance from centre on 

bottom plate 
 

xS,2 Strut distance from centre on 
top plate 

Lc,0 Connection length in 
longitudinal direction 

Lc,90 Connection length in lateral 
direction 

 
PARAMETER DOMAIN CODE 

Longitudinal plate length ratio 
(L2/L1) 

1.02 – 1.10 A102 - A110 

Lateral plate length ratio 
(L3/L1) 

0.45 – 0.55 B45 – B55 

Elongation of  the central strut 0% – 80% M0 – M80 

 
7.4.1. INFLUENCE OF THE PARAMETERS ON FINAL GEOMETRY 

The dimensions of the arch are determined by the parameters L0, 
Lc,0 and α, which are indicated in Figure 7.8. The unit length L0 only 
fluctuates very little if L1 is held constant and other parameters are 
varied. For α < 30°, this parameter is assumed to be constant. 
Figure 7.6 shows the relation between α and the arch radius RA. 
The connection length Lc,0 is held constant during the analysis. This 
means that the angle α will almost solely determine the form of the 
geometry. In the following paragraphs, the effect of the different 
input parameters on α will be elaborated. The units were build-up 
step by step, starting with the influence of the longitudinal plate 
lengths, following with the lateral plate lengths, then the central 
struts and finally the struts at the side. The parameters that were 
varied for this analysis are listed in Table 7.2. This table also 
shows the coding method that will be used to describe the systems. 

Table 7.1. Input and output 
parameters. See Figure 7.5 and 
Figure 7.8 for a visual 
representation. 

Figure 7.10. Influence of the 
longitudinal plate length ratio L2/L1 
on α.  
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 Table 7.2. Parameter domain and 
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Figure 7.9. The angle of the unit 
with the ground plane is indicated 
by α, which determines the arch 
radius RA. 



57 
 

7.4.2. INFLUENCE OF THE LONGITUDINAL PLATE LENGTHS 
By increasing the ratio between the lengths of the top and the 
bottom plate (L2/L1), the curvature in the plates increases. 
Consequently, the height and the angle of the system both increase. 
Figure 7.10 shows how α is related to difference in plate lengths. 

7.4.3. INFLUENCE OF THE LATERAL PLATE CONNECTION 
The connection of the lateral plates account for stability of the 
system. The central shear connection also increases the angle α. 
For a longitudinal plate length ratio between 1.03 and 1.08, which 
a very common ratio’s for this system, the change in α is very 
accurately related to the ratio between the lateral plate length 
L3/L1 and the longitudinal plate length ratio L2/L1, which is the 
ratio L3/L2.  The increase in α can therefore accurately be predicted 
using Figure 7.11. For this analysis, the E0/E90 ratio was chosen to 
be 10. If this ratio is lowered, stiffness in the lateral direction 
increases, what further increases α. 

7.4.4. INFLUENCE OF THE CENTRAL STRUT 
For a lateral plate length ratio of 0.45, Figure 7.12 shows how the 
longitudinal plate length ratio influences the structural height of 
the unit. The stiffness of the system can be improved significantly 
by the addition of a strut to connect the midpoint of the top and 
bottom plates. When the strut length is increased, it pushes both 
plates outwards. The bottom plate is the least resistant to this load 
and deforms the most. Figure 7.14 shows how the systems A103 
and A105 deform when the strut length is increased by a 
percentage of 20 and 40. The total height of the system slightly 
decreases and α becomes smaller (Figure 7.13). The addition of 
the strut gives more dimensional control over the system because 
it gives a fixed distance between the two plates. By altering this 
distance, small changes in curvature can be made to the arch. 

7.4.5. INFLUENCE OF THE SIDE STRUTS 
Although some minor geometric alterations can be made by 
altering the length of the side struts, their main contribution comes 
to the stability of the system. They prevent the top plate from 
buckling under an external load, while at the same time, they 
improve the stiffness near the support. Their location should be 

10

25

40

55

70

0.35 0.4 0.45 0.5

In
cr

ea
se

 in
 α

[%
]

L3/L2

A102
A103
A104
A106
A108

Figure 7.11. Influence of the lateral 
plate length on the increase in α. 
 
𝐿𝐿3/𝐿𝐿1 
𝐿𝐿2/𝐿𝐿1

= 𝐿𝐿3/𝐿𝐿2   

 
 

0

10

20

30

40

50

0 20 40 60 80 100

De
cr

ea
se

 in
 α

[%
]

Increase in H1 [%]

A102_B45
A104_B45
A106_B45
A108_B45

Figure 7.13. Influence of the 
increase in central strut length on 
the decrease in α for L3/L1 = 0.45 
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chosen, so it sufficiently stabilises the system at both sides of the 
strut. This will be discussed in the next section.  

7.4.6. STRUCTURAL ANALYSIS 
In addition to the direct effect that the parameters have on the 
geometry, they also have a large effect on the structural behaviour 
of the system. The influence of the geometrical parameters on the 
stiffness and strength was analysed for the systems of Figure 7.14. 
The position and length of the struts were altered according to 
Figure 7.15. Table 7.3 gives an overview of  all the parameters 
that were varied for the analysis. The combination of the variables 
led to the analysis of 54 different models in total, that could be 
modelled fairly quickly due to the parametric input in SOFiSTiK. 
Every model is named by a code, e.g. A103_M20_S03-20. 

PARAMETER VALUES CODE 
Length of the bottom plate (L1) 1.0 m - 
Longitudinal plate length ratio 
(L2/L1) 

1.03; 1.05 A103; A105 

Lateral plate length ratio 
(L3/L1) 

0.45 B45 (excluded 
from model name) 

Elongation of  the  
mid strut 

0%; 20%; 40% M0; M20; M40 

Position of side struts from 
support 

0.3 * L1/2 
0.4 * L1/2 
0.5 * L1/2 

S03 
S04 
S05 

Elongation of side struts For A103: 
0%; 20%; -20% 
For A105: 
0%; 10%; -10% 

For A103: 
S…-0; S…+20; S…-
20 
For A105: 
S…-0; S…+10; S…-
10 

 

Table 7.3. Varying parameters for 
stiffness analysis. For the analysis a 
constant value of 1.0m is chosen for 
L1. 
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Figure 7.15. Different values for the 
location and elongation of the side 
struts in model A103_B45_M20 
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The systems are tested for two different load cases (LC) (Figure 
7.16). LC 1 is a central point and LC 2 a variable line load, where 
the largest part of the load is applied to the weakest part of the 
system near the support. A hinged and a roller support are 
modelled as boundary conditions. Further properties of the model 
are given below: 

 E0 = 10,000 N/mm² 
 E90 = 1,000 N/mm² 
 t = 3mm 
 Step size LC1 is 0.1 kN 
 Step size LC2 is 0.2 kN/m 

For each load case, the maximum load and the displacement at the 
centre (L0/2) were measured. A stiffness factor k is calculated for 
both load cases from the load and vertical displacement uz in the 
first load step by: 

𝑘𝑘1 = 𝑃𝑃
𝑢𝑢𝑧𝑧,1

; 𝑘𝑘2 = 0.75𝑞𝑞𝑞𝑞
𝑢𝑢𝑧𝑧,2

      (7.1) 

The mean values of the results are given in Table 7.4. The 
deviation from this mean value is calculated and averaged for both 
load cases and is indicated with a maximum load factor Fmax and a 
stiffness factor K. The results are given in Table 7.5. A value of 1.0 
means that the factor correlates with the average results from 
Table 7.4. Higher values are therefore preferred. For every system 
n, the values for Fmax and K are computed using: 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 1
2
� 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 +  𝑞𝑞𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛
𝑞𝑞𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

�    (7.2) 

𝐾𝐾 = 1
2
� 𝑘𝑘1,𝑛𝑛
𝑘𝑘1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑘𝑘2,𝑛𝑛
𝑘𝑘2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�     (7.3) 

A full overview of the results is given in the Annex C. The main 
conclusions of the analysis are stated below: 

 The systems with a longitudinal plate length ratio of 1.05 
all behave stiffer and have significantly higher failure 
loads than their 1.03 equivalents.  

 By increasing the length of the central strut, the stiffness 
is greatly increased. The stiffness can be more than 
doubled when the length is increased by 40%.  

 Moving the side struts to the supports creates a more 
favourable system for a divided load. The system is better 

P ql 
0.5 ql 

Load case 1 Load case 2 

uz,1 uz,2 
Figure 7.16. Load cases for stiffness 
analysis 

Table 7.4. Mean values of the results 
from Annex C. 

  Mean value 
LC1 Pmax [kN] 0.5 

k1 [N/mm] 24.9 
LC2 qlmax [kN/m] 0.7 

k2 [N/mm] 36.5 
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in resisting the part of the load that covers the plates near 
the support.  

 By moving the side struts to the centre, the moment 
resistance of the system around the centre is increased 
and the system becomes more favourable to resist a 
central point load.  

 The most optimal strut location for both load cases is 
therefore halfway through the plate. 

 Decreasing the lengths of the side struts always results in 
less favourable geometries to resist divided loads. For 
some cases, however, the system’s geometry becomes 
better in resisting a central point load (A103_M0_S03 – 
A105_M(0-20)_S05) 

 Increasing the lengths of the side struts always resulted in 
more favourable geometries to resist divided loads. This 
is explained by the stiffening of the plates near the 
supports. 

 

A103 
S03 S04 S05 

-20 0 +20 -20 0 +20 -20 0 +20 

M0 
Fmax 0.70 0.84 0.75 0.56 0.56 0.70 0.70 0.75 0.79 

K 0.45 0.36 0.35 0.37 0.58 0.68 0.56 0.82 0.69 

M20 
Fmax 0.79 0.93 1.07 0.65 0.75 0.93 0.42 1.02 0.89 

K 0.46 0.63 0.82 0.56 0.97 1.13 0.80 1.15 1.07 

M40 
Fmax 0.89 1.12 1.40 0.65 0.89 1.12 0.42 0.75 1.07 

K 0.71 0.95 1.29 0.77 1.27 1.53 0.90 1.43 1.76 
 

A105 
S03 S04 S05 

-10 0 +10 -10 0 +10 -10 0 +10 

M0 
Fmax 0.98 0.98 0.98 0.79 0.93 0.93 1.16 1.07 1.12 

K 0.35 0.40 0.45 0.58 0.68 0.73 0.83 0.95 0.89 

M20 
Fmax 1.17 1.31 1.45 0.98 1.12 1.12 1.35 1.35 1.30 

K 0.61 0.73 0.83 0.97 1.23 1.37 1.30 1.40 1.23 

M40 
Fmax 1.35 1.35 1.49 0.98 1.35 1.45 0.98 1.35 1.49 

K 0.90 1.10 1.33 1.20 1.58 1.73 1.56 1.72 1.78 

 

7.4.7. INFLUENCE OF THE MATERIAL AND THICKNESS 
In general, it was noticed that the systems where the plates were 
stressed to the largest extend, often possessed the most favourable 
structural qualities. The additional structural height and curvature 
increase the stiffness of these systems. The material should, 
however, allow these levels of curvature to exist without 
developing fractures. At the same time, the used material should 
always be sufficiently stressed to improve the structural height 
and reach the highest possible structural qualities that can be 
achieved with a certain plate thickness. Relatively thicker plates 
can therefore be used for units with a smaller curvature. Figure 
7.17 gives the relation between the stress development in a unit 

Table 7.5. Deviation from the 
average result.  A value of 1.00 
means that the response to LC1 and 
LC2 for the system is corresponding 
with the average results. 
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when the longitudinal plate length ratio increases. This relation is 
almost linear. Equation (2.2-2.4) explain that the bending stress 
has a linear relation with the cross-sectional height h, which is 
restated in equation (7.4). The stress build-up in the units can 
therefore be predicted with some accuracy. Increasing the central 
strut length did not result in higher average stresses, however, 
peak stresses were increased that should be taken into 
consideration. 

𝜎𝜎𝑀𝑀 = 𝐸𝐸∙ℎ
2∙𝑟𝑟

       (7.4) 

When designing an arch that has a certain radius, it is the question 
if either more structural height, or a thicker plate is favourable. A 
comparison was made between two models with different 
longitudinal plate length ratio’s, resulting in different curvatures 
and heights. The models that were compared are given in Figure 
7.18. They have approximately equal values for α, so they result in 
the same arch radius. The average and peak stresses in the 3mm 
and 4mm model are roughly the same, so a fair comparison can be 
made. Figure 7.19 shows that the A103_..._4mm model had a 
better load-carrying ability than the A105_..._3mm model.    

 

In this example, however, it was assumed that the mechanical 
properties remained constant with increasing plate thicknesses. In 
reality, finding the right balance between plate thickness and the 
chosen dimensional parameters can be quite tricky. For off-the 
shelf plywood plates, the mechanical properties differ quite a lot 

1.0

1.2

1.4

1.6

1.8

2.0

1.02 1.04 1.06 1.08

Fa
ct

or
 o

f a
ve

ra
ge

 s
tr

es
s

L2/L1

Top plate
Bottom plate

Figure 7.17. Development of 
average stresses with increasing 
longitudinal plate ratio's. The lateral 
plate length ratio is 0.45. The 
average stresses for L2/L1 are 
normalised to be 1.0. 

A103_M20_S03-0  
α = 17° 
t = 4mm 

A105_M40_S03+10 
α = 18° 
t = 3mm 

Figure 7.18. Two models with 
different plate thickness for 
comparison. 
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when the thickness increases, because the E0/E90 ratio changes 
with the addition of layers. In the case of the 4 mm plate, the 
additional thickness is provided for by using thicker veneers for 
the two outer layers. These outer layers have the main 
contribution to the longitudinal bending stiffness. E0 is therefore 
higher, i.e. 16,000 N/mm². When the plate thickness is increased 
further, additional veneer layers are added in a cross-wise fashion, 
what increases the contribution to the bending stiffness 
perpendicular to the grain direction. The mean thickness of these 
plates is 3.6 mm. The load-carrying behaviour for these material 
properties is also given in Figure 7.19. 

The previous sections show that the geometrical and structural 
design of the system are very closely related to each other. The 
material properties are exhausted by stressing the plywood to its 
limits to find geometrically efficient shapes, where small 
dimensional alterations to the flat plate configurations can have a 
significant effect on the geometry and load-carrying behaviour. 

7.5. COMBINING THE MODULES 
The numerical form-finding of a single unit can be done in a rather 
fast and controlled manner. However, when multiple units are bent 
simultaneously, some problems occur in the simulation. Undesired 
movements of the plates can no longer be sufficiently restricted 
during bending. This results in kinetic mechanisms that cannot be 
solved in a finite element analysis. Although, the form-finding of an 
arch where two units are linked in the longitudinal direction was 
accomplished after a painful and slow modelling process (Figure 
7.21). Analysis of this arch for three different load cases, shows 
that the system behaves somewhat stiffer in the fully stressed 
configuration compared to the fully relaxed model (Figure 7.22). 
Taking into account that the system is based on a repeating unit, 
the question arises if it is really necessary to form-find the whole 
system. Perhaps a simplification of the system can be made that 
would give an accurate lower-bound calculation of the stiffness  of 
the arch with several combined units. This section briefly 
describes two methods.   

The system can be simplified as a line model with one-dimensional 
beam elements. Rhino uses NURBS curves that accurately describe 
the shape of a bent curve with only a few control points. In this 
way, a single unit can be drawn according to Figure 7.20, that can 
easily be multiplicated to form a barrel vault. In this way, a 
completely automated optimisation process could be developed 
using Karamba for FEA. From an in-depth investigation it was 
concluded that this simplification by 1D beam elements did not 
result in satisfying results for varying dimensional parameters, 
what made the tool not very reliable.  

Figure 7.20. Simplification of the 
geometry by 1D beam elements. 

original geometry using 
2d shell elements 

simplified geometry 
using 1D beam elements 
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Figure 7.21. Form-finding of the 
arch with two units linked in the 
longitudinal direction. 

Flat geometry is drawn in Rhino. 
The contracting cables are blue, 
green and purple coloured. 

The geometry is imported to 
SOFiSTiK. 

The cables are all contracted at once. 
The colours show the stress build-up 
in the top of the plate elements. 

When the form-finding simulation is 
finished, the plates are connected by 
setting kinematic constraints to the 
nodes of the top and bottom plates. 
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Since the simulations in SOFiSTiK has turned out to give quite an 
accurate representation of the real structural behaviour, ideally 
the full geometrical model follows the same modelling approach. A 
semi-automated parametric model has therefore been developed 
that uses the form-found mesh as a starting point (see Annex D). 
Rhino and Grasshopper are used to translate and rotate the unit. 
From a single mesh, a barrel vault can therefore quickly be 
modelled an exported to SOFiSTiK for structural analysis. The next 
chapter discusses a case-study that followed this modelling 
procedure. 

 

 

 

 

  

Figure 7.22. Comparing the load 
carrying behaviour of the form-
found arch in the fully stressed 
condition (RS=100%) with the 
stress free condition (RS=0%) for 
three different load cases. 

Figure 7.23. Design options 
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8. STRUCTURAL ANALYSIS AND FURTHER 
DEVELOPMENT 

8.1. INTRODUCTION 
For bringing theoretical concepts into the practical and tangible 
spectrum, prototyping is an important step in all design fields. This 
chapter explains the development of the modular concept towards 
a large-scale prototype. This case-study offered the chance to go 
deeper into the structural behaviour of the system. The structure 
was on display as part of the Mind the Step exposition during the 
2018’s Dutch Design Week in Eindhoven (Figure 8.1). The 
exposition offered the possibility to bring attention to bending-
active structures and lightweight design to the general public. The 
prototype shows how structural geometry as a result of bending 
can be used as the driving factor for the design of load-carrying 
systems. Furthermore, it aspires to promote the use of wood in 
construction by presenting a new method of using a thin off-the-
shelf plywood sheet. An element that, because of its flexibility, 
would normally not be used for any structural purpose in load-
carrying systems.  

 

8.2. DESIGN PROCESS 
The prototype is designed as a free standing system. It does not 
rely on any other supporting structures or anchoring. A steel strip 
is used as a tension bar to take the horizontal thrust caused by the 
dead load. For the purpose of the exhibition, it was important to 
give the viewers the sensation of being covered by the structure. 
The prototype is large enough for people to be able to stand 
beneath it. Efficiency in transportation and construction are also 
key points for the design. The standardised design elements enable 
an easy building process. Construction can be done on site with a 
limited amount of tools and time. The total material is roughly 65 
kg and the volume is remarkably small. The elements can easily be 
transported in the trunk of a small car. Furthermore, bolts are used 
for the connections, which enables disassembling and rebuilding 

Figure 8.1. The prototype was on 
display during 2018's Dutch 
Design Week in Eindhoven 
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at a different site. The design of the units is optimised to limit 
material wastage. Starting point was a 3.6 mm birch plywood sheet 
with dimensions of 1.53 × 1.53 m². Every sheet nests three cross-
shaped plates. The remaining material at the borders is used for 
the connection elements (Figure 8.2). Due to the repetitive design, 
multiple sheets could be cut simultaneously by a CNC milling 
machine, which minimised the required machine time.  

 
The unit was designed according to the findings of Chapter 7. In 
Table 8.1, the parameters that are used for the unit are given. It 
was important that the stresses remained in the elastic spectrum 
of the material during construction. At some locations, however, 
the characteristic value for bending strength perpendicular to the 
grain is exceeded (Figure 8.4). A physical test on a strip indicated 
that the measured values for the flexural strength are two times 
higher than the characteristic value (Table 8.3). If there are no 
material defects at the location of these peak stresses, this 
exceedance should therefore not cause any problems. 
Furthermore, due to stress-relaxation, these peak stresses fade 
away rather quickly. No problems regarding these high stresses 
did occur  in the prototype.  

  

Table 8.1. Chosen parameters for 
the unit design 

Figure 8.2. Picture of the plate 
after the CNC milling process. 
Material waste was kept to a 
minimum. 

Input parameters 
t 3.6 mm 
E0 16,471 N/mm² 
E90 1,029 N/mm² 
L1 1175 mm 
L2 1215 mm 
L3 520 mm 
H1 115 mm 
H2 65 mm 
xs,1,2 0.4 * L1/2 = 235 mm 
L2/L1 1.034 
L3/L1 0.443 
 
Output parameters 
α 15° 
RA 2618 mm 
tcon 17 mm 

 

Figure 8.3. Design of the prototype. 

5.10 m 0.70 m 0.70 m 

2.
10

 m
 

steel strip 
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Figure 8.4. Stresses in the unit. The 
highlighted locations should not 
possess material defects. 
+  = tension 
–  = compression 

Stresses in the longitudinal direction 
fk,m,0 = 65.9 N/mm² 
 
σ0 in the top of the cross-section 
 
Top plate 
σ0,max = 63.5 N/mm² 
σ0,min = -47.2 N/mm² 
 
Bottom plate 
σ0,max = 48.4 N/mm² 
σ0,min = -25.2 N/mm² 
 

σ0 in the bottom of the cross-section 
 
Top plate 
σ0,max = 46.4 N/mm² 
σ0,min = -63.6 N/mm² 
 
Bottom plate 
σ0,max = 32.8 N/mm² 
σ0,min = -48.4 N/mm² 
 

Stresses in the lateral direction 
fk,m,90 = 10.6 N/mm² 
 
σ90 in the top of the cross-section 
 
Top plate 
σ90,max = 15.7 N/mm² 
σ90,min = -12.6 N/mm² 
 
Bottom plate 
σ90,max = 12.3 N/mm² 
σ90,min = -6.7 N/mm² 
 
 

σ90 in the bottom of the cross-section 
 
Top plate 
σ90,max = 12.4 N/mm² 
σ90,min = -15.7 N/mm² 
 
Bottom plate 
σ90,max = 7.5 N/mm² 
σ90,min = -12.4 N/mm² 
 
 

σ90 = 15.7 N/mm²  
 
 

σ90 = -12.6 N/mm²  
 
 

σ90 = -15.7 N/mm²  
 
 

σ90 = 12.4 N/mm²  
 
 

12.4                                                       0 -15.7
 
   

15.7                                                       0 -12.6
 
   

46.6                                                       0 -63.6
 
   

63.5                                                       0 -47.2
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8.3. STRUCTURAL DETAILING 
The system is designed taking consideration of a construction 
process that maximises ease of building. It is essential that the 
units are closed before they are assembled. The system needs 
attention to detailing at unit level, for transferring the forces 
resulting from bending between the top and bottom plate, and at 
global level, for transferring forces resulting from applied loading.  

8.3.1. UNIT LEVEL 
At unit level, two different connections can be observed. The forces 
that have to be transferred by the connections are given in Table 
8.2. At the longitudinal connection (Figure 8.5), the membrane 
forces in the plates are transferred by a single shear connection. 
The Yield moment of the bolt and the embedment strength of a 
plywood plate are calculated conform EN 1995-1-1 by: 

𝑀𝑀𝑦𝑦,𝑅𝑅𝑅𝑅 = 0.3𝑓𝑓𝑢𝑢,𝑘𝑘𝑑𝑑2.6     (8.1) 
            = 0.3 × 235 × 52.6 = 4,629 𝑁𝑁𝑁𝑁𝑁𝑁  

In which: 
My,Rk  is the characteristic yield moment of the bolt 
fu,k is the tensile strength of the bolt = 235 N/mm² 
d is the bolt diameter = 5 mm 
 
𝑓𝑓ℎ,𝑘𝑘 = 0.11(1 − 0.01𝑑𝑑)𝜌𝜌𝑘𝑘     (8.2) 
        = 0.11(1 − 0.01 × 5) × 630 = 65.8 𝑁𝑁/𝑚𝑚𝑚𝑚2  

In which: 
fh,k  is the characteristic value of the embedment strength
 in N/mm² 
d  is the bolt diameter = 5 mm 
ρk is the characteristic value of the density = 630 kg/m³ 
 
The resistance per bolt can now be computed using the minimal 
value of equations (8.3 & 8.4) (Jorissen, 2016): 
 
𝐹𝐹𝑣𝑣,𝑅𝑅𝑅𝑅 = �√2 − 1� 𝑓𝑓ℎ,𝑘𝑘𝑡𝑡𝑡𝑡     (8.3) 
           = 0.414 × 65.8 × 3.6 × 5 = 486 𝑁𝑁    
      

𝐹𝐹𝑣𝑣,𝑅𝑅𝑅𝑅 = �2𝑀𝑀𝑦𝑦𝑓𝑓ℎ𝑑𝑑     (8.4) 
    = �2 × 4,629 × 65.8 × 5 = 1,745 𝑁𝑁   

 
Two bolts are used at the connection, what makes the total 
bearing strength: 

𝐹𝐹𝑣𝑣,𝐸𝐸𝐸𝐸,𝑅𝑅𝑅𝑅 = 𝑛𝑛𝑒𝑒𝑒𝑒𝐹𝐹𝑣𝑣,𝑅𝑅𝑅𝑅 = 2 × 486 = 972 𝑁𝑁   (8.5) 

In the lateral connection (Figure 8.6), a tension force is present in 
the bolt. Due to the curvature in the plate, the washer is pressed 
into the wood. The tension force is therefore concentrated at the 
red dot. For a thin plate, this might result in punching shear. It is 

Table 8.2. Forces that are 
transferred by the connection. 

Figure 8.5. Detail and failure mode 
of the longitudinal plate connection. 
The membrane forces in the plates 
are transferred by a single shear 
connection. 

 Longitudinal 
connection 

Lateral 
connection 

Shear 
force 

337 N 21 N 

Axial 
force 

35 N 77 N 
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assumed that the shear plane acts under 1/6th of the circumference 
of the washer. The shear strength of this 3-layered panel is not 
given in literature. For a 5-layered panel, the characteristic 
strength for shear out of plane perpendicular to the grain fr,90 is 
1.78 N/mm² (UPM, 2007). A value of 1.5 N/mm² is therefore 
approximated. 

The resistance to punching shear in the connection becomes: 

𝐹𝐹𝑣𝑣,𝑅𝑅𝑅𝑅 = 1
6
𝐴𝐴 𝑓𝑓𝑟𝑟,90 = 1

6
× 2 𝜋𝜋 𝑟𝑟 𝑡𝑡 𝑓𝑓𝑟𝑟,90    (8.6) 

           = 1
6

× 2𝜋𝜋 × 7.5 × 3.6 × 1.5 = 42 𝑁𝑁  

In which: 

A is the shear plane 
fr,90 is the shear strenght out of plane perpendicular  

to the grain = 1.5 N/mm² 
r is the radius of the washer = 7.5 mm 
t is the thickness of the plate = 3.6 mm 
 
At least two bolts are needed to resist the tension force of 77 N.  

8.3.2. UNIT-TO-UNIT CONNECTION 
The connection pieces are made from the rest material in the 
plywood sheets. The nodes are therefore build up from thin plate 
elements. Figure 8.8 shows how the different pieces are joined. 
The units are first joined laterally before they are joined in the 
longitudinal direction. Figure 8.9 shows this sequence. There is 
some eccentricity in the node, because the longitudinal and lateral 
plate direction do not fall in the same plane. Forcing both 
directions into the same plane is possible but will affect the arch 
radius and further stresses the units. Because the elements are 
already highly stressed, it is chosen to construct the joint with this 
eccentricity. The joint is schematised in the FE model using beam 
elements. First an end beam is modelled to the plates to decrease 
high peak stresses in the model. The beam elements that connect 
the units are modelled as circular beams with a dimeter that is 
equivalent to the height of the node. The beams are connected with 
moment stiff joints (Figure 8.7).  

  

Figure 8.6. Detail of the lateral plate 
connection. The shear stresses are 
concentrated at the washer. 

Figure 8.7. Schematisation of the 
connection in the FE model. 

eccentricity 
 
 

end beam 
 
 

Figure 8.8. The unit-to-unit 
connection is constructed from 
multiple thin plates. The places 
where the units are positioned are 
indicated in the picture. 

space for longitudinal 
connection 

space for lateral 
connection 
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Figure 8.9. Assembly sequence. 

4 

3 

2 

1 
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8.3.3. SUPPORTS 
The supporting structure should be able to take a horizontal force 
due to the horizontal thrust that builds up in the arch. Half a unit is 
positioned at the ends for a tight connection with the ground plane. 
This adds the possibility to choose between a single hinged, or a 
double hinged connection. It should be taken into account that the 
double hinged connection introduces a bending moment into the 
supporting structure. For the prototype, a steel strip was used to 
connect both ends.  

8.4. TESTING THE UNIT 
A three point bending test was carried out on a single unit. The unit 
was loaded multiple times with varying strut lengths to indicate 
the effects of the strut length on the stiffness. The load tests were 
carried out directly after bending the unit into shape. It is assumed 
that no stress-relaxation has taken place prior to the load tests. 
Because the largest part of the deformation will come from 
bending, the Young’s modulus in bending will be used in the 
numerical model. Em,0 and Em,90 were first tested for a flat strip to 
see if these results coincided with the values from literature 
(Table 6.1). As shown in Table 8.3, these values roughly 
coincided. The measured values were used in the numerical model.  

 

 Literature values Measured values 
t 3.6 mm 

(mean value) 
3.8 mm 

Em,0 16,471 N/mm² 
(mean value) 

16,000 N/mm² 

Em,90 1,029 N/mm² 
(mean value) 

1,000 N/mm² 

fm,0 65.9 N/mm² 
(characteristic value) 

117 N/mm²  
(no material defects) 

fm,90 10.6 N/mm² 
(characteristic value) 

21 N/mm²  
(no material defects) 

G 620 N/mm² 
(mean value) 

- 

G90 620 N/mm² 
(mean value) 

- 

ρ 680 kg/m³ 
(mean value) 

- 

 

The unit was simply supported in the test set-up and had a span of 
115 cm. In total, the unit was loaded eight times. The first five tests 
were loaded to about 0.7 kN. The sixth test was loaded to the 
critical buckling load. The seventh test was carried out to check if 
the buckling failure had weakened the material. The eight test was 
again loaded to the critical buckling load. The deformation of the 
system during this last test is visible in Figure 8.11. The 
specifications of all the load tests are given in Table 8.4. The height 
of the central strut H1 and the side struts H2 was measured from 
the heart of the plate.  

 

Table 8.3. Literature values (UPM, 
2007) and measured values of a 
4mm birch plywood strip. 

Figure 8.11. Test set-up for system F 

Figure 8.10. Optional boundary 
conditions 
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System H1 [cm] H2 [cm] F [kN] Type Test sequence 
A 102 57 0.69 Elastic behaviour 1 
B 112 57 0.69 Elastic behaviour 2 
C 102 67 0.73 Elastic behaviour 4 
D 112 67 0.79 Elastic behaviour 3 
E 112 77 0.83 Elastic behaviour 5 
F 122 67 0.95 Maximum load 8 

G 122 77 
1.04 Maximum load 6 
0.31 Elastic behaviour 7 

 

 

Figure 8.13 shows that an increase in structural height has a 
positive effect on the system’s stiffness. The height of the side 
struts should be chosen in accordance with the height of the centre 
strut. For systems E and G, it was observed that due to the larger 
side struts, the stiffness near the supports increased while the 
stiffness at the centre decreased, resulting in a larger deformation. 
Furthermore, the load-displacement curve of both tests on system 

Table 8.4. Specifications of the load 
tests. 

 

 

 

Figure 8.13. Load displacement 
curves from the load tests. The 
curves are named by the system’s 
capital letter, followed by the length 
of the centre strut (H1) and the 
length of the side struts (H2) in 
accordance with Table 8.4. These 
tests show that increasing the strut 
lengths, and therefore the structural 
height, significantly increases the 
structures load-carrying capacity. 
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Figure 8.12. System F in the 
unloaded (left) and loaded (right) 
state. The buckled region is 
highlighted in the picture. 
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G follow the same elastic behaviour, which indicates that the 
material was not fractured when the system was loaded to the 
maximum load. 

A numerical model of systems G and F was made in SOFiSTiK. The 
models assume linear elastic material behaviour and take 
geometrically nonlinear effects resulting from the residual stress 
into account. Especially the numerical load-displacement curves of 
system G show a good correlation with the physical test results 
(Figure 8.14). It is remarkable that where the physical test of 
system F behaves stiffer than system G, the numerical calculation 
behaves less stiff. Furthermore, the nonlinear behaviour of the 
system was not simulated very accurately. In general, however, the 
numerical simulation gives a fairly accurate representation of the 
physical behaviour in the linearly elastic spectrum of the system. 

  

 

 

 

 

Figure 8.14. Lab and numerical 
results of systems F and G 
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The load test on system G was repeated after approximately 1000 
hours. The results are shown in Figure 8.17. For the numerical 
model, stress relaxation was calculated following the iterative 
process described in Chapter 6. The process was carried out for a 
step-size of 5% relaxation in the bottom strip. Taking the 
relaxation rate in consideration, it was assumed that the relaxation 
after 1000h is comparable to time-step 5 in the iterative process, 
where relaxation in the top and bottom plate is 35% and 28% 
respectively (Figure 8.15). Figure 8.17 shows that the load-
carrying behaviour at this time-step has the tendency of diverging 
from the linear elastic line at about 0.5 kN, what was also observed 
in the lab results. This figure also shows that the stiffness of the 
system is decreased when the stresses are fully relaxed.  

  

Figure 8.17. Lab and numerical 
results of system G before and after 
stress-relaxation. The graph shows 
both the behaviour in iterative 
relaxation step 5 and in the 
completely relaxed state. 
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Figure 8.15. Stress-relaxation in the 
top and bottom plate following the 
iterative relaxation procedure with a 
step size of 5% in the bottom plate. 
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8.5. STRUCTURAL ANALYSIS AND FURTHER DEVELOPMENT 
8.5.1. ANALYSIS METHOD 

Taking the prototype as a starting point for the analysis, this 
section will discuss the possibilities to further develop the 
prototype towards a roof system. The analysis and development 
has been carried out by the following steps: 

1) The accuracy of the FE model is verified by comparing the 
measured deflection in the prototype that was caused by a 
central point load with the numerical results.  

2) Geometrical enhancements that increase the stiffness of 
the arch will be discussed and tested for two different 
load cases.  

3) A proposition is made for a large-span roof design, 
following one of the enhanced models.  

4) The design is tested for three different plate thicknesses.  

8.5.2. ANALYSIS OF THE PROTOTYPE   
The prototype was loaded by a central point load, applied by the 
weight of the author (Figure 8.18). The vertical displacement at 
the edge of the arch could be measured from the picture and is 58 
mm under a weight of 0.78 kN. In the numerical model, this same 
location showed a displacement of 47 mm when the same load was 
applied to the system. This test indicates that the numerical models 
behaves 23% stiffer than the prototype. This deviation might be 
explained by the stiffness of the connection, that is modelled as 
infinitely stiff. Although the connection in the physical model are 
sufficiently stiff, a completely moment stiff connection can hardly 
be made with mechanical fasteners in timber structures. The 
connection will always have some ability to rotate because the 
connection loses some stiffness after the washers are pressed into 
the wood.  

Although the prototype shows some interesting structural and 
architectonical qualities, in the current form, the structure is still 
too flexible to be used in a real structure. There are, however, still 
multiple ways to improve the structural qualities from a 

Figure 8.18. The load test on 
prototype was performed at the 
expo site by hanging underneath it. 
The weight was applied to the centre 
of the arch. 

0.78 kN 

58 mm 
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geometrical point of view. The next section explains some 
improvements that could be made to the system. The enhanced 
systems were tested for their behaviour in two load cases, i.e. a 
central point load and an asymmetrical point load. Figure 8.23 
shows the numerical simulations of the behaviour of these 
systems, compared to the numerical model of the prototype.  

8.5.3. GEOMETRICALLY ENHANCED SYSTEMS 
The first enhancement is based on a three-unit design where 
differences in lateral plate length of the top and bottom plates adds 
curvature in the lateral direction. In this way, double-curved units 
are constructed that add corrugations to the barrel vaulted 
structure.  (Figure 8.19). This corrugation significantly increases 
the stiffness of the system, resulting in almost twice as stiff 
response to an asymmetrical point load (Figure 8.23). 

 

 

Front view of the units 

module A module B module C 

module A 

module B 
module C 

Figure 8.19. The corrugated barrel 
vault is based on the repetition of 
three different modules. 
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Almost no structural height is present where the two plates are 
joined and the unit is closed. This is by far the weakest location in 
the structure. The second enhancement increases the stiffness of 
the system by creating a gap between the plates (Figure 8.20). A 
rigid element should then be added where the units are joined. As 
a result of this gap, the curvature in the plates is lowered, what 
decreases the stresses in the elements. The strut lengths can 
therefore be elongated until the plates reach the same levels of 
curvature (Figure 8.21). For a gap of 30 mm, a stiffness analysis 
was made for both the model with similar strut lengths as the 
prototype (115-65mm) as a model with increased strut lengths 
(150-100mm). In the latter model, the stiffness was more than 
doubled (Figure 8.23). Of course, an adequate structural detail 
should be designed to transfer the forces in the connection. 

 

 

If both these enhancements are combined, the stiffness of the arch 
can be increased even further (Figure 8.22). It should be noted 
that this stiffness increase is obtained with almost no additional 
need for material. Only a little bit of extra timber is required to 
make up for the larger timber dimensions in the structural nodes. 
Figure 8.23 shows the stiffness analysis of all the enhanced 
systems. The systems have an equal span of 5.10 m. Further 
increasing the gap or expanding the level of corrugation will of 
course result in even stiffer systems. 

Figure 8.21. The strut length can be 
increased further to get the same 
amount of curvature. The strut 
length is indicated in the figure 
between parentheses (H1-H2).  

Normal unit  
(115-65) 

Gap 30 mm  
(115-65) 

Gap 30 mm  
(150-100) 

gap 

Figure 8.20. The stiffness of the 
system can be increased by 
creating a gap between the two 
plates. 



78 
 

 

 

Figure 8.22. Gap and corrugation 
combined 

front view side view 

top view 

isometric view 
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Figure 8.23. Vertical displacement 
measured at the location of the 
applied force for a central point load 
(top) and an asymmetrical point 
load (bottom). The strut length is 
indicated in the figure between 
parentheses (H1-H2). 
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8.5.4. STRUCTURAL DESIGN OF THE ROOF SYSTEM 
For the sake of comparison, the previous designs all followed a 
shape that was similar to the prototype. However, a shallow arch 
would be more promising for a sufficiently stiff roof structure. A 
roof system where 4 units with gap are joined in the longitudinal 
direction is chosen for further analysis on different scales. The 
span is therefore decreased by one unit. The difference in stiffness 
compared to the 5 unit prototype for load case 1 and 2 is given in 
Figure 8.26. It is assumed that the unit-to-unit connection can be 
made moment stiff. The connection is modelled by using beam 
elements according to Figure 8.24. The arch is restrained by 
hinges at the end points of the full and half units (Figure 8.25).   

 

 

For a fair comparison with the small-scale structure, it is assumed 
that the large-scale models will also be constructed from standard 
available birch plywood. Upscaling of the structure is done by 
following the material properties from (UPM, 2007).  This means 
that material properties will change with increasing plate 
thickness. This is primarily the result of the addition of extra cross-
oriented plies, i.e. veneer layers. By increasing the plate thickness, 
the Em,0/Em,90 ratio decreases. This will have an effect on the lateral 
unit length. Furthermore, the units are restricted in length by the 
plate dimensions that are available. Creating the gap between the 
plates would therefore always have been necessary to close the 

Figure 8.25. FE model of the arch 
with 4 units and a gap. 
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Figure 8.26. 4 unit gap design 
compared to 5 unit gap design and 
prototype for LC1 (left) and LC2 
(right). The strut length is indicated 
in the figure between parentheses 
(H1-H2). 

Figure 8.24. FE model of the 
connection in the model with gap. 
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unit with sufficient structural height. This section discusses the 
designs constructed from 3.6, 6.4 and 9.2 mm birch plywood. 
Table 8.5 gives flexural moduli and strength for these thicknesses 
birch plywood plates.  

 

Number 
of plies 

t 
mean 
[mm] 

fm,0 

[N/mm²] 

fm,90 

[N/mm²] 
Em,0 

[N/mm²] 
Em,90 

[N/mm²] 
Plate 

dimensions 
[cm] 

3 3.6 65.9 10.6 16471 1029 153 × 153 
250 × 125 

5 6.4 50.9 29.0 12737 4763 153 × 153 
250 × 125 

7 9.2 45.6 32.1 11395 6105 250 × 125 

 

Figure 8.27 shows the designs of the units on the three scales. The 
units were designed with respect to the characteristic flexural 
material strength (see Annex E). The analysis of the arches was 
carried out for three different load cases, i.e. an equally divided 
load in vertical direction, an asymmetrically applied load in 
vertical direction and a load coming from the side (Figure 8.28). 
For each load case, the surface load is translated to a line load 
applied to the heart of the units. Because there is no specific 
location or definite design of the structure, the magnitude of the 
loads will not be computed precisely. However, it is assumed that 
the structure should be able to take surface loads between 1.0 and 
2.0 kN/m². These load magnitudes represent permanent loads 
caused by cladding and secondary structures, and variable loads 
coming from wind or snow. Self-weight of the main structure is 
taken into account in every analysis. The values that correspond 
with a maximum deflection of L/200 are given in Table 8.6.  

Table 8.5. Material properties for 
different thicknesses birch plywood 
(UPM, 2007). 

Figure 8.27. Three units 
constructed from plates with 
different thicknesses. The cutting 
patterns are visualised above the 
units. 
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t  

[mm] 
L  

[m] 

umax 
(L/200)  

[mm] 
LC3max 

[kN/m²] 
LC4max 

[kN/m²] 
LC5max 

[kN/m²] 
3-Ply 3.6 4.5 22.5 0.85 0.55 0.70 
5-Ply 6.4 5.0 25 1.95 1.40 1.40 
7-Ply 9.2 8.5 42.5 1.25 0.95 0.95 

 

Although snap-through buckling is often the governing failure 
mode for bending-active systems (Lienhard, 2014), a stress check 
was carried out to investigate if the stresses in the material would 
not exceed the design values of the material properties. The 6.4 
mm and 9.2 mm systems were tested for a variable line load of 1.0 
kN/m² conform LC3 and self-weight of the structure multiplied by 
a factor of 1.5. It is assumed that the structure is designed for 
standard indoor conditions. Therefore, the values attributed to 
plywood in climate class 1 can be adopted. The design values of the 
Young’s modulus and the mechanical strength are computed using: 

𝐸𝐸𝑑𝑑 = 𝐸𝐸𝑚𝑚
𝛾𝛾𝑚𝑚

  

𝑓𝑓𝑑𝑑 = 𝑓𝑓𝑘𝑘
𝛾𝛾𝑚𝑚
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘ℎ𝑘𝑘𝑙𝑙  

In which: 

Ed is the design value of the Young’s modulus 
Em is the mean value of the Young’s modulus 
γm is the material factor. This is 1.2 for plywood 
fd  is the design value of the mechanical strength 

Table 8.6. Maximum deflection 

 

Figure 8.28. Response to LC3-4-5 on 
three scales. The loads are applied 
as surface loads translated to line 
loads over the heart of the units 
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fk is the characteristic value of the mechanical strength 
kmod is the load duration factor. This value is assumed 0.90 for 

short load duration. 
kh; kl are volume factors. These are 1.0 for plywood. 
 
The design values were only exceeded around the edge beams at 
the unit-to-unit connection, which can be explained due to 
modelling errors. An overview of the results is given in Annex E. 
The tests show that stresses in the structure are likely to remain 
below the ultimate strength upon external loading.  

8.5.5. CONCLUDING REMARKS 
Considering the maximum deflections under the given loading 
conditions, the 6.5 mm system with a span of 5.0 m, and the 9.2 mm 
system with a span of 8.5 m show promise to be used as a roof 
system. A quick stress test has indicated that the stresses are likely 
to remain below the design values of the material for these 
systems. However, it should be noted that these tests were carried 
out in the stress-free state. Follow-up research should also 
consider that there are already stresses present from bending the 
units. Although it can be assumed that a large part of these stresses 
will relax away rather quickly, it should be checked if the stresses 
coming from external loading will not exceed the design values 
when a part of this prestress is added to the system. 

Furthermore, this analysis has only considered one design option. 
The system could still be enhanced by further increasing the gap 
between the plates or by adding a corrugation to the arch by 
following the three-module design. Another way forward can be to 
develop a dome system that spans in two directions (Figure 8.29). 
Also irregularities can be added to the unit that let the system 
deviate from a circular arrangement and that might increase the 
load-carrying capacity even further. 

 

Figure 8.29. Concept of structure 
spanning in two directions. 
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9. CONCLUSIONS 

9.1. CONCLUDING THE RESEARCH 
The research has discussed the possibility of using off-the-shelf 
plywood sheets to create a spatial roof system. It started from the 
authors curiosity to the possibility of applying the principle of 
active-bending to timber plates for developing a system that has 
sufficient stiffness to be used as a long-lasting load-carrying 
structure in a large spanning roof system. This led to the necessity 
of obtaining in-depth knowledge on material specific and method 
specific behaviour, and the ability to accurately describe and 
predict this with numerical tools. What followed, was a design 
exploration where the material and bending behaviour and 
properties were investigated for numerous bending-active 
systems. This gave rise to the design of a unit-based actively-bent 
roof system. The system has been thoroughly tested and 
researched, both numerically as physically, to come towards an 
optimised solution in which the material is pushed to its 
boundaries for a suitable application in a building structure. The 
stages of this process, together with their findings are briefly 
discussed below.  

MATERIAL, BENDING AND LOAD-CARRYING BEHAVIOUR 
It is evident that the highly prestressed parts lose roughly half of 
their stresses in the first year after construction due to stress-
relaxation in the wood. This process is likely to continue 
throughout the lifetime of the structure, however, the extent of this 
long-term relaxation has not yet been researched. The investigated 
systems have shown that these stresses influence the load-
carrying behaviour in either a positive or a negative way, 
depending on either predominant tensile or compressive stresses 
respectively. It is a safe assumption to say that the structure’s 
strength and stiffness should therefore be sufficient in the stress-
free state. Hence, it is not possible to rely on tension stiffening 
effects caused by the residual tension stresses. Elastic bending is 
primarily used as a means to develop structural geometries where 
the main contribution of stiffness comes from the (double) curved 
elements and efficient couplings.  

NUMERICAL COMPUTATION 
The exploration of the material and behaviour goes hand in hand 
with developing the necessary skill-set to accurately simulate and 
predict the bending and load-carrying behaviour. The structure’s 
geometry is always a direct result of internal force equilibrium. 
Finding the right computation method was therefore necessary to 
accurately describe the structure’s shape. From three different 
approaches that were studied, the method based on finite element 
analysis was found most suiting. A constant exchange between 
numerical and physical results has built the confidence that the 
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predictive models for both the form-finding and the structural 
analysis as well as the simulation of stress-relaxation were 
sufficiently accurate. This gave enough knowledge for the design 
and analysis of an actively-bent timber plate structure. 

THE SYSTEM 
A system was developed that is based on a repeating module. This 
enables pre-bending of the units. The system harnesses the 
qualities that timber, and bending-active structures in general, 
have to offer. The geometric design of the units is led by the 
properties of the material. The orthotropic nature of the plywood 
panels was a leading factor for this design. It gave the preference 
to a primary, main, and secondary, supportive, load-carrying 
direction. The material properties are exhausted by stressing the 
plywood to its limits to find geometrically efficient shapes. Small 
dimensional alterations to the flat plate configurations affect the 
final geometry significantly. These relations have been thoroughly 
researched. Using numerical form-finding, the bent shape of the 
module is accurately predicted. The most important shape 
parameter is the angle with the horizontal axis. Together with the 
unit length, this angle determines the arch radius. 

Snap-through buckling seems to be the governing failure mode for 
both the unit and the arch. Resistance to buckling is increased by 
choosing optimal dimensional parameters and strut locations. 
When designing this system, a trade-of between two parameters 
has to be made. On one end, the plate thickness should be thin 
enough to allow for large curvatures and gain in structural height, 
on the other hand, the plates should be thick enough to prevent the 
plates from buckling locally and increase the stiffness of the 
system. It was shown that choosing a thicker plate is usually the 
better option when more stiffness is desired.  

Numerical form-finding was combined with a semi-parametric 
geometrical modelling script that translates the form-found 
geometry to a structural model of the combined units. This allowed 
for a relatively quick way of generating a variety of models for 
comparison of the structural qualities, however information on 
stress-levels in the elements gets lost. Tests have shown that the 
arch behaves less stiff when the stress-free geometry is analysed. 
This method therefore gives a lower bound stiffness analysis that 
has a relation to the completely relaxed state.  

PROTOTYPE AND ENHANCEMENTS 
Developing the prototype was invaluable for testing the 
construction process and structural behaviour in the physical 
world. It has shown that the building method works without 
resulting in fractures or formability issues. On unit level, the 
numerical model describes the load-carrying behaviour very 
accurately. Also the somewhat lower stiffness after stress-
relaxation was in line with the simulations. It was shown that the 
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model could be pressed in its buckled shape without resulting in 
fractures. Load calculations on the arch were made in the stress-
free state, this calculation was expected to be on the safe side. The 
numerical model of the prototype, however, behaved somewhat 
stiffer then the physical model. The joints were modelled as 
continuous plates, where in reality, they were clamped with bolts. 
These bolts had loosened prior to loading and were therefore able 
to rotate a little.  

The prototype did show that the system has potential, especially 
when the joint and geometrical design would be further optimised. 
By further increasing the geometrical aspects of the system, a 
design was made that would more than double the stiffness and 
critical buckling load of this prototype. Moving forward from these 
findings, a design that showed potential for an application in a real 
structure was made and analysed for three different scales and 
plate thicknesses.  

The method finds its beauty in its simplicity for creating complex 
forms through a modular approach. During the exposition, it was 
noticed that the structure was found appealing by a lot of people. 
This was also expressed in the appreciation of the lightness of the 
structure, the natural material and curvatures and the interesting 
shadow play and possibilities for daylighting. When looking for a 
solution to cover the structure and make it weather tight, these 
qualities should ideally be preserved. 

APPLICABILITY TO LARGE SCALE DESIGNS 
The proposed building method and system show some qualities 
that could be of interest while being adopted for developing spatial 
building structures. When complex shapes are desired, this often 
results in expensive structures. A building method that relies on 
standardised flat elements for developing these (double) curved 
shapes, therefore shows a lot of promise. Due to the limited volume 
and weight of the structural elements, bending-active systems 
could be ideal for temporary structures or structures at remote 
locations, but also as long-lasting roof systems where low self-
weight is desired. The research has shown that the system has 
potential to be used in roof systems of at least 8.5 metres span. The 
structure was tested for load cases with load magnitudes that can 
be expected for roof structures. It was shown that deformations 
and stress-levels could be kept below acceptable values.  

9.2. DISCUSSION 
The research from this report was divided into two main parts. The 
first part (Chapters 1-6) has discussed the general behaviour of 
bending-active systems and has shown how these systems should 
be approached when using timber for the design of an actively bent 
roof structure. The second part (Chapters 7-8) has shown the 
development and optimisation of a design concept, where the 
author has given his personal twist to the way how bending-



87 
 

activity should be approached in timber engineering. A large part 
of the research has been a search for a system that shows potential 
for large-scale designs. Where this search would eventually lead to 
could not have been clear from the start of the project. The report 
has discussed the process of the study and emphasises on some 
parts that were deemed most important for the current stage of 
development. During the design process, the author has made 
several side steps from the red thread. Not all of them had the 
possibility to be explained with the same amount of detail and it 
was inevitable that the research would be finished leaving some 
gaps open. However, the report is intended as a framework which 
can be followed for a bending-active design and as a means to bring 
enthusiasm to and show the potential of this interesting building 
method. It was therefore deemed important to highlight as much 
as was said. Some of the topics that were left undiscussed and 
would be necessary for further development from the authors 
point of view are briefly pointed out in the following section. 

9.3. RECOMMENDATIONS 
Looking at possibilities for further research, this can be 
approached in three ways, i.e. additional research to bending-
active timber systems in general, additional research to the current 
system and research to new ways of combining elements and form 
systems. For every area, a short elaboration is given below. 

RESEARCH TO BENDING-ACTIVE TIMBER 
Thin plates tend to buckle easily. It could be beneficial to use a 
timber species with a lower Young’s modulus to achieve thicker 
sections. In-depth research to applicable timber species should 
therefore be carried out. Apart from material specific alterations, 
the relation between curved configurations and their critical 
buckling load could shine light on new ways of using bending and 
twisting to develop more efficient shapes from flat plate 
configurations. This research should take into account the 
structural behaviour with respect to the prestress resulting from 
bending and the effects of stress-relaxation.  

Stress-relaxation can result in movements and shape alterations. A 
predictive simulation can be programmed that bases the amount 
of relaxation on the stress-levels in the elements. Following the 
iterative procedure, and by adding local stress differences to this 
procedure, the relaxation process can be accurately predicted. This 
asks for the necessity of an automated process. For a better 
simulation of the process, additional research to the relaxation rate 
with respect to the stress levels in the elements is necessary.  

ADDITIONAL RESEARCH TO THE MODULAR SYSTEM 
For developing the system using thicker plates, experimental tests 
should be carried out to verify the formability of these plates. The 
necessary force to bend these thicker plates becomes higher as 
well. Consequently, tools should be used for bending and the 
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mechanical connection is stressed to a larger extent. These 
implications should be studied when designing for large-span 
structures. Furthermore, the joint design could be improved for a 
more optimised construction process and a stiffer connection. This 
raises questions to the applicability of bolts. However, when the 
structure does not need the possibility to be easily dismantled, an 
alternative to bolts can be proposed. Also a connection detail for 
the design where the gap is included between the plates should be 
developed.  

Additional research is still needed to guarantee the safety of the 
structure conform building regulations in the ultimate limit state 
(ULS) and the serviceability limit state (SLS) design. Although it 
was demonstrated that the absence of residual stresses lowers the 
stiffness and buckling load, it should be checked if stress levels are 
not exceeded when the residual stress is (partly) taken into 
account. Furthermore, it is questionable if these systems can be 
constructed fire safe. Using fire retardant adhesives with a high 
environmental impact goes against the vision of developing of a 
sustainable lightweight timber system. Therefore, it can be argued 
that the system could only be used for functions where there are 
no special requirements regarding fire safety. On the other hand, 
sprinkler systems could also be used to guarantee fire safety. 

The qualities of the current system could still be improved by 
increasing the gap between the plates or by increasing the level of 
corrugation. Furthermore, from an architects and an engineering 
point of view it is interesting to deviate from the imposed circular 
form. The three-unit design of the corrugated barrel vault already 
showed one design possibility that can be made by slightly altering 
parameters in the flat plate configuration. However, ideally a free-
form geometry could be approached with the construction system. 
A possible design solution is briefly presented below. 

Every unit has a certain base length, width and angle. In the report, 
these are indicated with L0, L90 and α. These parameters are also 
clearly visible when a rectangular mesh is used to approach a 
double-curved surface. In such a mesh, every rectangle has a 
certain length, width and an angle with its neighbouring rectangle. 
It might be possible to use these parameters as boundary 
conditions for the design of the bending-active units. In this way, a 
double-curved surface could be approached by first using a 
rectangular mesh to approach the surface, and then use bending-
active units with varying parameters to fill the rectangular planes. 
The parameter relations that were discussed in Chapter 7 could 
be used for forming the modules.  

RESEARCH TO NEW SYSTEMS 
Following the more general research of Chapters 1-6, other 
bending systems could be developed. The main challenge for these 
structures is how to achieve stiff configurations from flexible 
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sheets and how to approach free-form geometries with bent 
elements that acquire their shape from internal force equilibrium.  

New ways could be found that create double curvature from single 
curved bent elements. A field which is less highlighted in this 
report is twisting of members. However, it is a question if twisting 
is favourable in timber systems, because these systems lose a lot of 
stiffness due to stress-relaxation. On the other hand, twisting, 
could also greatly increase the second moment of area of a cross-
section and therefore might have potential for bending-active 
timber systems.  
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I. PLYDOME – 1957   

 

In his research to geodesic domes, Buckminster Fuller has 
developed a principle of using flat plywood sheets, that had only 
found their way into the industry by the 20th century, for creating 
a double-curved dome structure. These so-called plydomes 
(Figure I.1) were the first structures on record that actively used 
the flexibility of the plates to construct a spatial structure from off-
the-shelf timber plate elements. Figure I.2 shows a large dome as 
constructed by Thomas R. Moore to Fuller’s patent.  

SYSTEM’S PRINCIPLE 
The structure uses standard plywood sheets. The plates are most 
easily bent at the corner points of the plates. Every other plate is 
used in the system to restrain the plates into their curved shape, 
resulting in a closed system that finds its equilibrium globally. 

ASSEMBLY METHOD 
The plates are assembled one-by-one, starting from the centre 
point of the dome. A pole was used as a temporary supporting 
structure (Figure I.3). With the addition of every sheet, the dome 
shape is further approached (Figure I.4). 

ARCHITECTURAL EXPRESSION 
The construction results in a dome that can achieve full coverage 
of the roof. Some holes are still present for possibilities of 
daylighting. Optionally, these openings could be enlarged. The 
sheets are still clearly visible in the final design, giving a close 
relation in the final structure to the standard plate element.  

 

  

Figure I.1. Plywood dome 
constructed by Thomas Moore in 
1957 at Washington Square in San 
Francisco. 

Figure I.2. Plydome by Buckminster 
Fuller constructed in des Moines, 
Iowa in 1957. 

Figure I.3. The structure is 
supported by a central pole during 
construction. 

Figure I.4. With the addition of 
every plywood sheet, the final shape 
is further approached. 
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II. MULTIHALLE MANNHEIM – 1975  

The first, and still only one of the few, large-scale bending-active 
timber structure that has been build is the Multihalle in Mannheim, 
designed by Frei Otto (Figure II.1). Construction was finished in 
1975. Although currently propped, the building is still standing 
today.  

SYSTEM’S PRINCIPLE 
Contrary to the other discussed projects, this structure uses a grid 
of one-dimensional laths the form a shell. The system is commonly 
referred to as a gridshell structure. However, since this structure 
is one of the few bending-active systems that has been built on a 
large-scale, a lot can be learned from this example that can be 
adopted in timber plate systems.  

STRUCTURAL QUALITY 
Physical form-finding models have been used to design a funicular 
shell where double-curvature is added to resist buckling (Figure 
II.2). Cables were added to resist in-plane deformations. Multiple 
layers are used to overcome the curvature limitations of thicker 
cross-sections; Also the effects of creep and relaxation were noted, 
but were mainly seen as positive, since it would lower the stress 
where a large curvature is present over time, increasing the 
ultimate strength (Happold and Liddell, 1975).   

ASSEMBLY METHOD 
The structure is built by erecting a rectangular mesh of flexible 
timber rods and fixing it to the foundation. he connection allows 
for some sliding to occur between the layers during construction. 

ARCHITECTURAL EXPRESSION 
The construction method offers the possibility to develop a large 
variety of double-curved free-formed shapes from one-
dimensional laths. This gives the possibility to develop numerous 
designs using the same construction method. Furthermore, grid 
pattern gives a very characteristic identity to the structure.  

Figure II.1. Photograph of the 
interior of the Multihalle in 
Mannheim. 

Figure II.2. A hanging chain model 
was used for the form-finding. 
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III. ICD/ITKE RESEARCH PAVILION – 2010  

Every year, the Institute for Computational Design (ICD) and the 
Institute of Building Structures and Structural Design (ITKE) at the 
University of Stuttgart collaborate on the design and construction 
of a research pavilion to showcase research carried out at both 
faculties. The pavilion is build up from 80 unique strips of 6.5mm 
birch plywood that are robotically manufactured. The strips are 
elastically bent and restrained into a torus shape with an 
approximate span of 4 meters. 

SYSTEM’S PRINCIPLE 
The pavilion is built from a sequence of elastically bent strips that 
keep each other into place. The curved segments are constrained 
by the straight parts of each of the neighbouring strips. 
Consequently, a two-dimensional system appears in which the 
curved parts are in bending and compression and the straight 
parts are in tension. At the intersections hinges occur. The different 
strips are positioned following a radial grid.  

STRUCTURAL QUALITY 
On their own, a cross-section is not very stable to resist external 
loads because a mechanism would form due to the weak 
intersections. This is prevented, however, by changing the location 
of the hinges in each successive element. Also, the radial 
orientation of the two-dimensional elements further increases the 
structure’s stiffness and stability (Figure III.2).  

ASSEMBLY METHOD 
The structure was assembled fairly easy by hand with the help of 
numerous workers. The strips were bent and interlocked at the 
construction site one by one (Figure III.3). 

ARCHITECTURAL EXPRESSION 
The form and interplay of the strips give a very interesting display 
of light inside the structure. The curves that result from force 
equilibrium follow a shape that seems very natural. Aesthetically 
pleasing structure for the eye (Figure III.4).  

 

Figure III.2. Photograph of the 
pavilion in Stuttgart. 

Figure III.3. Plywood strips are 
added one-by-one. 

Figure III.1. The plate intersections 
are varied over the width of the 
structure. 

Figure III.4. Architectural expression 
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IV. TIMBERFABRIC MODULE – 2010  
Research to Timberfabric at IBOIS EPFL comes from the idea to 
incorporate qualities of fabric, such as friction in a weaving 
pattern, to timber structures. In textiles multiple elements work 
together to create one coherent structure. This ‘social behaviour’ 
can be compared to yarn in fabric (Hudert, 2014).  

SYSTEM’S PRINCIPLE 
A single timberfabric module is constructed by entwining two 
identical planar strips (Figure IV.2). The helical order in which the 
plates are rearranged is similar to twisting of yarn. What follows is 
a closed module that can be extended into a barrel vault by forming 
an array in the axial and tangential direction (Figure IV.4). 
Changing the strip dimensions and the properties of the 
connection alters the curvature of the arch.  

STRUCTURAL QUALITY 
A multi-layered system can be made to improve the structure’s 
rigidity. Several rigid connecter pieces has been developed for 
joining the extra layer to the base layer. By analysing a freely 
supported timber fabric module with a central vertical force acting 
on it, an interesting self-stabilising effect can be observed. While 
the span increases in length, the total width of the cross-section 
decreases. This results in an increase in cross-sectional height of 
the central triangular cross-section.  

ASSEMBLY METHOD 
The system is based on closed modules. Connector pieces are used 
to facilitate joints with additional layers (Figure IV.3).   

  

Figure IV.1. Prototype of the 
Timberfabric system. 

Figure IV.2. A single Timberfabric 
module. 

Figure IV.4. Connection elements 
are used to form a multi-layered 
system. 

Figure IV.3. The system follows a 
circular arrangement. 
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V. AA/ETH PAVILION – 2011 

 
The AA/ETH pavilion has been made as a collaboration between 
the EmTech Programme at the AA School in London and the 
DARCH Chair of Structural Design at ETH Zurich. The project had 
the goal to build a short-term lightweight sun-shading plywood 
pavilion, which evolved into a meeting place. The used panels have 
a thickness of 18mm and are build-up from six layers of spruce 
veneer, from which four layers are oriented with the fibres in 
longitudinal direction and two in lateral direction. Spruce has been 
favoured over the frequently used birch, which has superior 
mechanical qualities and is often used in similar projects, because 
of the lower Young’s modulus that spruce possesses. The structure 
is constructed from of three bent panels with dimension up to 2.3m 
in width and 10.3m in length and facilitates a maximum span of 
8.5m (D’Acunto and Kotnik, 2013). 

SYSTEM’S PRINCIPLE 
The triangular shape of the panels and the parabola shaped cuts 
alter the bending stiffness over the longitudinal axis and thus 
control the shape which the plates take when bent. The stiffness 
distribution is designed to let the plates bent into their funicular 
shape. The three panels are connected together by pre-stressed 
steel cables that stabilise the overall structure and evenly transfer 
external forces though the system.  

STRUCTURAL QUALITY 
The pre-stressed cables sustain stability under external loads 
(Figure V.2). The flexible lamellas that are a result of the cuts not 
only facilitate the bending, but also dissipate a portion of the wind 
loads through vibration. Although no test were performed on the 
time dependent material behaviour, the plywood elements did 
show significant deformations after demolishing the structure. 
Furthermore, the steel cables had to be tensioned a few times over 
the year the pavilion was standing due to the loss of pre-stress.  

 

Figure IV.1. Photograph of the 
pavilion. 

Figure V.2. The plates are connected 
by prestressed cables. 

Figure V.3. The large plate elements 
are first bend and then restrained. 
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VI. BERKELEY WEAVE – 2014  

Double curved surfaces can normally not be approached with 
planar elements. The Berkeley Weave follows from research that 
describes a method to create double curved surfaces from an 
assembly of single curved elements (Schleicher and La Magna, 
2016). This method is referred to as form-conversion. The 
prototype follows a weaving pattern of four layers of 3mm birch 
plywood. In total, 480 different parts were used. 

SYSTEM’S PRINCIPLE 
The structure is designed by approximating a free-form double 
curved geometry with a quadrilateral mesh. From this mesh a 
weaving pattern is derived. The intersections contain the stiffer 
parts of the structure. The Gaussian curvature of these parts is 
therefore set to zero. The more flexible intermediate parts will still 
have a small Gaussian curvature, but, this can be taken by twisting 
the strip (Figure VI.2). The structure that follows, essentially is a 
meshed shell structure that is built up from two layers of unique 
plywood elements each direction.  

STRUCTURAL QUALITY 
Double curved shells have superb structural qualities. For wood, 
funicular shells can be desired to counter creep deformations. The 
form-conversion method allows for the generation of these kind of 
double curved geometries. Also, structural rigidity can simply be 
improved by adding an additional layer to the system.  

ASSEMBLY METHOD 
Mass customisation techniques have been used to fabricate the 
massive variety of unique parts. During assembly, the elements are 
connected one by one, bending itself into shape (Figure VI.3). The 
layers are  bolted together at the intersections.  

ARCHITECTURAL EXPRESSION  
The designer takes charge and can therefore impose his will upon 
a structure. This prototype shows that the possibilities are endless. 
As a nice touch, all the joints has been hidden in the mid layers, 
making it look like a seamlessly woven structure.  

Figure VI.1. The Berkeley Weave 
prototype 

Figure VI.2. The curvature is taken 
by twisting and bending the 
intermediate parts, annotated by a 
red colour to describe the level of 
curvature. 

Figure VI.3. The system is 
assembled by connecting plates to 
the system one-by-one. 
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VII. BEND9 – 2014  

 
The Bend9 pavilion follows from the same research as the Berkeley 
Weave. Again, 3mm birch plywood has been used for construction. 
In total, 196 unique parts have been used to construct the pavilion.  

SYSTEM’S PRINCIPLE 
Also in the Bend9 project, the form-conversion method has been 
used to approach a user defined free-form geometry. Contrary to 
the previous project, a triangulated mesh has been used to form 
the base element grid (Figure VII.2). By offsetting the triangles 
inward, and connecting their edges, rectangles are formed that 
account for most of the bending.  

STRUCTURAL QUALITY 
Again, the double curved shape greatly improves the stiffness of 
the flexible panels. Additional rigidity has been acquired by adding 
an extra layer (Figure VII.3). Where in the Berkeley Weave 
additional layers where placed directly onto the previous one, the 
Bend9 pavilion uses connector pieces between the layers. This 
increases the overall bending resistance of the pavilion. 

ASSEMBLY METHOD 
The triangular orientation of elements causes a decrease in the 
amount of parts compared to the rectangular grid of the Berkeley 
Weave. The unique elements were constructed though mass 
customisation techniques and were connected one by one to 
approach the double-curved geometry.   

Figure VI.1. Bend9 prototype 

Figure VII.2. A triangular mesh is 
used to approach the curvature of 
the system. 

Figure VII.3. Connection pieces are 
used to create a double-layered 
structure. 
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VIII. SCHONENBRUNNER – 2015  

 

This project demonstrates a way to develop a rather complex 
double curved geometry from triangularly oriented planar 
elements that fit on a hexagonal grid. 

SYSTEM’S PRINCIPLE 
Closed modules are formed by connecting two plates to each other. 
These modules have a hexagonal layout and can therefore be 
mapped on a freeform geometry that has a hexagonal penalisation 
(Figure VIII.2). The final shape is determined by an extra layer 
that bends the  

STRUCTURAL QUALITY 
The coupled system remained quite flexible because of the hinges 
around the modules. An additional layer was added to prevent 
these hinges axis from reducing the structural capacity (Figure 
VIII.3). In a two-dimensional abstraction of the system, it can be 
explained that the two initial layers work as a hinged chain that can 
be deformed and locked by a third layer. Additional layers could be 
added to further increase the structure’s rigidity. 

ASSEMBLY METHOD 
Unique elements are manufactured and put together to create the 
closed modules. These modules can be joined together to form the 
first two layers of the free-from structure. When the third layer is 
connected, the structure is locked in its final shape. 

 

 

  

Figure VII.1. Picture of the 
prototype. 

Figure VIII.2. The modules follow a 
hexagonal arrangement. 

Figure VIII.3. The three-layered 
arrangement rigidifies the system. 
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IX. ICD/ITKE RESEARCH PAVILION – 2015 

 

SYSTEM’S PRINCIPLE 
Custom lamination is used to control the curvature of the elements 
(Figure IX.4). Connections between elements are made by finger 
joints that are tied together using laces (Figure IX.2). This 
connection is similar to the fibrous connection that can be found in 
the exoskeleton of sea urchins (Bechert et al., 2016). The 
connection allows for some tolerance due to its flexibility. Due to 
the fact that the elastic bending behaviour of wood cannot be 
modelled with great precision, the flexibility in the connection lets 
the elements be rearranged in the shape that is desired by the 
material.  

STRUCTURAL QUALITY 
Especially where a connection is needed between thin sheets, this 
fibrous connection is favourable for its quality. The continuous 
connection facilitates an even distribution of stress over the cross-
section. Furthermore, a relatively large structural height is present 
in the units. 

ASSEMBLY METHOD 
The bending-active modules are first closed and then connected to 
each other (Figure IX.3). The different modules are connected 
using laces. 

ARCHITECTURAL EXPRESSION 
The bending-active system follows a cellular structure that has a 
close relation to forms and principles that can be found in nature. 

  

Figure IX.1. Picture taken from the 
inside of the pavilion. 

Figure IX.2. The fibrous connection 
refers to nature. 

Figure IX.3. The modules are first 
closed before they are connected to 
each other. 

Figure IX.4. Custom lamination of 
plates results in varying stiffness 
over the length of the elements. 
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X. BENDING-ACTIVE SEGMENTED SHELL – 2017  

 

SYSTEM’S PRINCIPLE 
A double curved geometry is approximated by a sequence of single 
curved strips (Brütting et al., 2017). By unrolling these single 
curved strips, the shape of each flat strips is found. Once bent into 
shaped, the strips are connected laterally to form a coherent shell. 
The shapes of the bent strips are controlled by altering the stiffness 
over the longitudinal axis and are therefore not limited to the 
elastica curve.  

STRUCTURAL QUALITY 
This method for constructing bending-active structures results in 
closed thin shells that can be assembled fairly easily from planar 
strips. The thin shell has structurally superb qualities because it 
can transfer forces through membrane action. Although this 
method shows potential, it has not yet been tested in a project 
using timber panels. When used in a real project, questions about 
the structural capacity and also about its detailing should be 
further elaborated on. 

ASSEMBLY METHOD 
The panels are bent by moving the endpoints of the elements 
inward and joining them to the foundation. The strips are 
connected to its neighbour, one strip at the time.  

  

Figure X.1. Bending-active 
segmented shell model. 

Figure X.2. Stirps are bent 
separately 

Figure X.3. This method allows for 
different orientations of the shell. 



105 
 

XI. STUDIO ONE RESEARCH PAVILION – 2017  

 

The design of the Studio One Research Pavilion is part of research 
at UC Berkeley into bending-active structures (Schleicher and La 
Magna, 2017). The pavilion will be constructed from 18 unique 
panels of fibreglass and raisin composite material. Although not 
yet been built, proof of concept was delivered by the team by 
constructing and bending the most challenging panel into the 
desired shape.  

SYSTEM’S PRINCIPLE 
The principle of the system is quite similar to the bending-active 
segmented shell, however, in this structure an extra sheet layer 
and a corrugated layer in-between are added to form a sandwich 
panel (Figure XI.3). The corrugated layer is designed to still allow 
bending of the panel.  

STRUCTURAL QUALITY 
Independently, the flat sheets still behave very flexible, however, 
when cross connected to form a sandwich panel, structural rigidity 
is won. When these strips are laterally connected, one coherent 
shell is formed that has good structural qualities.  

ASSEMBLY METHOD 
The panels are bent by moving the endpoints of the elements 
inward and joining them to the foundation. The strips are 
connected to its neighbour, one strip at the time.  

  

Figure XI.1. Impression of the 
Studio One research pavilion. 

Figure XI.2. The pavilion follows a 
segmented arrangements of 
bending-active sandwich panels. 

Figure XI.3. The multi-layer 
arrangement increases the stiffness 
but still allows the bending. 

Figure XI.4. Bending the most 
curved element was tested. 
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ANNEX B – SCRIPT FOR NUMERICAL FORM-FINDING  
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!+!CHAPTER: Model preparation 
-PROG AQUA 
HEAD 'Materials & sections' 
 
$Materials 
TIMB  NO 1  TYPE PLY EP 11500 G 620 E90 1000 G90 170  GAM 6.7   TITL 'PLY' 
MATE  NO 2  E 210000 MUE 0.3  GAM 78.5                          TITL 'STEEL' 
 
$Sections 
TUBE  NO 1  D 5   MNO 2                                         TITL 'CABL' 
END  
$__________________________________________________________________________________ 
 
 
$__________________________________________________________________________________ 
-PROG SOFIMSHC 
HEAD 'System definition' 
 SYST SPAC GDIV 1000 GDIR NEGZ 
 
 #include $(project)_msh.dat 
END 
$__________________________________________________________________________________ 
 
 
!+!CHAPTER: STEP 1 Contract 1st set of cables 
$ ______________________incremental load/displacement______________________ 
$ Brought to you by Dr.-Ing. Riccardo La Magna & Dr.-Ing. Julian Lienhard 
$ Attribution and feedback is always appreciated. 
 
-PROG TEMPLATE 
HEAD 'Variables definition' 
 #define ini = 1         $load/displacement first increment 
 #define max = 1         $final value of load/displacement 
 sto#l 900               $Reference Loadcase 
 sto#lc 1                $Start Loadcase 
 sto#x 1000              $maximum iteration loops 
 sto#I 50                $optimal number of inner iterations 
END 
$__________________________________________________________________________________ 
 
 
$__________________________________________________________________________________ 
-PROG SOFILOAD 
HEAD 'Load' 
 ECHO val off 
 lc no #l 
 
 $Loads definition 
 CABL from GRP 5  type ex -0.99*1000.0 
END 
$__________________________________________________________________________________ 
 
 
$__________________________________________________________________________________ 
-PROG ASE  
HEAD 'Solve' 
 ECHO val off 
 
 let#n 0.001       $initial load factor 
 let#iter 0        $iteration counter 
 let#plc  0        $initial primary load case 
 let#s #n 
 
 let#lambda0 0.0   $initial factor for adaptive increments 
 let#lambda  0.0 
 let#lambdaInc #n  $sum of the increments 
 
 let#tol -0.001 
 
<TEXT,FILE=loadIncrement.txt> 
'Iteration / Convergence / Lambda / Lambda increment' 
 
</TEXT> 
 
 loop #x 
  let#break 1 
   loop 
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    SYST  prob th3  iter 500  plc #plc  fmax 0.5  tol #tol  
    CTRL iter val 3  v2 1          $ update tangential stiffness by each iteration 
    $CTRL iter v4 10 
    $CTRL solv 4 
    CTRL opt cabl 0 
    CTRL opt beam 5 
 
    GRP - 
    GRP 6 off 
    let#lambda ($(ini)*#n) 
    LC  no #lc  dlz  -0.3  titl 'iter #iter, lambda #(#lambda,.3)' 
     $LCC  no #l  fact #n 
     LCC  no #l  fact #lambdaInc 
    end 
 
    @key LC_CTRL #lc 
    let#converge @cri1 
     if (#converge > 0) 
      let#break 0 
 
<TEXT,FILE=+loadIncrement.txt> 
#lc       'yes'           #(#lambda,.3)    #(#lambdaInc,.3) 
</TEXT> 
     else 
      let#n (#n-0.5*#s) 
      let#s 0.5*#s 
      let#lambdaInc #s/(1.0-#n0) 
 
<TEXT,FILE=+loadIncrement.txt> 
#lc       'no'            #(#lambda,.3)    #(#lambdaInc,.3) 
</TEXT> 
     endif 
 
    endloop #break 
 
    $__________options of increasing increments__________ 
    if #lambda < $(max) 
     $let#n   #n+0.01                $ linear increment 
     $let#n   #iter*#iter            $ quadratic increment 
     $let#n   #n*1.1                 $ nonl increment 
 
     @key LC_CTRL #lc                $ adaptive increments 
     let#Ik @cri1 
     let#s0 #lambda-#lambda0 
     let#lambda0 #lambda 
     let#s (#s0*(#I/#Ik)^0.2) 
     let#n0 #n 
     let#lambdaInc #s/(1.0-#n) 
     let#n #s+#n 
    $____________________________________________________ 
 
     $set exact displacement 
     if ($(ini)*#n) > $(max) 
      let#n $(max)/$(ini) 
      let#lambdaInc 1.0 
     endif 
 
     let#plc #lc     $ use previous lc as primary 
 
    elseif ($(ini)*#n) == $(max) 
     end 
    endif 
 
    let#iter #iter+1 
    let#lc #lc+1 
 
  endloop 
 
END 
$__________________________________________________________________________________ 
 
 
-sys copy $(projekt).cdb $(projekt)_step1.cdb 
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$__________________________________________________________________________________ 
-PROG TEMPLATE  
HEAD 'Variables definition' 
 
 sto#PLC_1 22 
END 
$__________________________________________________________________________________ 
 
$__________________________________________________________________________________ 
-PROG ASE  
HEAD 'System update' 
   SYST plc #PLC_1 stor yes 
END 
$__________________________________________________________________________________ 
 
$__________________________________________________________________________________ 
-PROG SOFIMSHA 
HEAD 'Geometry update: connect plates' 
   SYST type rest 
   CTRL opt rest 2 
 
GRP NO 51 
NODE NO 201 NR1 101 FIX KP 
NODE NO 202 NR1 102 FIX KP 
NODE NO 203 NR1 103 FIX KP 
 
NODE NO 211 NR1 111 FIX KP 
NODE NO 212 NR1 112 FIX KP 
NODE NO 213 NR1 113 FIX KP 
END 
 
!+!CHAPTER: STEP 2 Contract 2nd set of cables 
$ ______________________incremental load/displacement______________________ 
$ Brought to you by Dr.-Ing. Riccardo La Magna & Dr.-Ing. Julian Lienhard 
$ Attribution and feedback is always appreciated. 
 
-PROG TEMPLATE 
HEAD 'Variables definition' 
 #define ini = 1         $load/displacement first increment 
 #define max = 1         $final value of load/displacement 
 sto#l 900               $Reference Loadcase 
 sto#lc 101              $Start Loadcase 
 sto#x 1000              $maximum iteration loops 
 sto#I 50                $optimal number of inner iterations 
END 
$__________________________________________________________________________________ 
 
 
$__________________________________________________________________________________ 
-PROG SOFILOAD 
HEAD 'Load' 
 ECHO val off 
 lc no #l 
 
 $Loads definition 
 CABL from GRP 6  type ex -0.99*1000.0 
END 
$__________________________________________________________________________________ 
 
 
$__________________________________________________________________________________ 
-PROG ASE  
HEAD 'Solve' 
 ECHO val off 
 
 let#n 0.001       $initial load factor 
 let#iter 0        $iteration counter 
 let#plc  #PLC_1         $initial primary load case 
 let#s #n 
 
 let#lambda0 0.0   $initial factor for adaptive increments 
 let#lambda  0.0 
 let#lambdaInc #n  $sum of the increments 
 
 let#tol -0.001 
 
<TEXT,FILE=loadIncrement.txt> 
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'Iteration / Convergence / Lambda / Lambda increment' 
 
</TEXT> 
 
 loop #x 
  let#break 1 
   loop 
    SYST  prob th3  iter 500  plc #plc  fmax 0.5  tol #tol  
    CTRL iter val 3  v2 1          $ update tangential stiffness by each iteration 
    $CTRL iter v4 10 
    $CTRL solv 4 
    CTRL opt cabl 0 
    CTRL opt beam 5 
 
    GRP - 
    GRP 5 off 
    let#lambda ($(ini)*#n) 
    LC  no #lc  dlz  0.0  titl 'iter #iter, lambda #(#lambda,.3)' 
     $LCC  no #l  fact #n 
     LCC  no #l  fact #lambdaInc 
    end 
 
    @key LC_CTRL #lc 
    let#converge @cri1 
     if (#converge > 0) 
      let#break 0 
 
<TEXT,FILE=+loadIncrement.txt> 
#lc       'yes'           #(#lambda,.3)    #(#lambdaInc,.3) 
</TEXT> 
     else 
      let#n (#n-0.5*#s) 
      let#s 0.5*#s 
      let#lambdaInc #s/(1.0-#n0) 
 
<TEXT,FILE=+loadIncrement.txt> 
#lc       'no'            #(#lambda,.3)    #(#lambdaInc,.3) 
</TEXT> 
     endif 
 
    endloop #break 
 
    $__________options of increasing increments__________ 
    if #lambda < $(max) 
     $let#n   #n+0.01                $ linear increment 
     $let#n   #iter*#iter            $ quadratic increment 
     $let#n   #n*1.1                 $ nonl increment 
 
     @key LC_CTRL #lc                $ adaptive increments 
     let#Ik @cri1 
     let#s0 #lambda-#lambda0 
     let#lambda0 #lambda 
     let#s (#s0*(#I/#Ik)^0.2) 
     let#n0 #n 
     let#lambdaInc #s/(1.0-#n) 
     let#n #s+#n 
    $____________________________________________________ 
 
     $set exact displacement 
     if ($(ini)*#n) > $(max) 
      let#n $(max)/$(ini) 
      let#lambdaInc 1.0 
     endif 
 
     let#plc #lc     $ use previous lc as primary 
 
    elseif ($(ini)*#n) == $(max) 
     end 
    endif 
 
    let#iter #iter+1 
    let#lc #lc+1 
 
  endloop 
 
END 
$__________________________________________________________________________________ 
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-sys copy $(projekt).cdb $(projekt)_step2.cdb 
 
 
$__________________________________________________________________________________ 
-PROG TEMPLATE 
HEAD 'Variables definition' 
 
 sto#PLC_2 134 
END 
$__________________________________________________________________________________ 
 
 
$__________________________________________________________________________________ 
-PROG ASE 
HEAD 'System update' 
   SYST plc #PLC_2 stor yes 
END 
$__________________________________________________________________________________ 
 
 
$__________________________________________________________________________________ 
-PROG SOFIMSHA 
HEAD 'Geometry update: parallel plate connection' 
   SYST type rest 
   CTRL opt rest 2 
 
GRP no 52 
NODE NO 201 NR1 101 FIX KF 
NODE NO 202 NR1 102 FIX KF 
NODE NO 203 NR1 103 FIX KF 
NODE NO 204 NR1 104 FIX KF 
NODE NO 205 NR1 105 FIX KF 
NODE NO 206 NR1 106 FIX KF 
NODE NO 207 NR1 107 FIX KF 
NODE NO 208 NR1 108 FIX KF 
 
NODE NO 211 NR1 111 FIX KF 
NODE NO 212 NR1 112 FIX KF 
NODE NO 213 NR1 113 FIX KF 
NODE NO 214 NR1 114 FIX KF 
NODE NO 215 NR1 115 FIX KF 
NODE NO 216 NR1 116 FIX KF 
NODE NO 217 NR1 117 FIX KF 
NODE NO 218 NR1 118 FIX KF 
END 
$__________________________________________________________________________________ 
 
!+!CHAPTER: SYSTEM 
$__________________________________________________________________________________ 
-PROG SOFIMSHA 
HEAD 'Geometry update: update BCs' 
   SYST type rest 
   CTRL opt rest 2 
 
NODE NO (100 300 1) FIX -PPMM 
NODE NO 101 FIX PP 
NODE NO (102 103 1) FIX PXPZ 
NODE NO 111 FIX PYPZ 
NODE NO (112 113 1) FIX PZ 
END 
$__________________________________________________________________________________ 
 
$__________________________________________________________________________________ 
-PROG ASE 
HEAD 'Relaxation 40%-50%' 
ECHO Full 
 
ctrl iter 3 v2 1 
ctrl cabl 0 
CTRL WARN 398 
SYST PROB TH3  ITER 100  PLC #PLC_s 
GRP 5,6,51 off 
 
LC 300 
GRP no 1 FACL 0.6 
GRP no 2 FACL 0.5 
END 
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ANNEX C – RESULTS FROM PARAMETER STUDY 
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Results for load case 1 

A103 
S03 S04 S05 

-20 0 +20 -20 0 +20 -20 0 +20 

M0 
Pmax [kN] 0.3 0.3 0.2 0.3 0.3 0.3 0.6 0.5 0.4 

k1 [N/mm] 16.4 9.8 6.8 10.9 15.1 15.8 15.5 19.7 15.7 

M20 
Pmax [kN] 0.4 0.4 0.4 0.4 0.5 0.4 0.3 0.8 0.5 

k1 [N/mm] 13.5 16.9 20.0 16.9 25.5 26.3 23.7 29.1 24.8 

M40 
Pmax [kN] 0.5 0.6 0.6 0.4 0.5 0.6 0.3 0.5 0.7 

k1 [N/mm] 20.7 25.3 30.2 23.4 33.7 35.4 28.6 36.8 39.2 
 

A105 
S03 S04 S05 

-10 0 +10 -10 0 +10 -10 0 +10 

M0 
Pmax [kN] 0.3 0.3 0.3 0.4 0.4 0.4 0.8 0.7 0.6 

k1 [N/mm] 9.7 10.6 11.3 15.1 16.5 16.9 20.6 21.7 19.7 

M20 
Pmax [kN] 0.5 0.5 0.5 0.6 0.6 0.6 1.0 1.0 0.8 

k1 [N/mm] 16.6 18.9 20.6 26.1 30.1 31.2 32.8 33.3 28.8 

M40 
Pmax [kN] 0.7 0.7 0.7 0.6 0.7 0.8 0.6 1.0 1.0 

k1 [N/mm] 24.8 28.5 32.2 33.6 40.2 40.7 41.5 41.4 40.1 

 

Results for load case 2 

A103 
S03 S04 S05 

-20 0 +20 -20 0 +20 -20 0 +20 

M0 
qlmax [kN] 0.6 0.8 0.8 0.4 0.4 0.6 0.2 0.4 0.6 

k2 [N/mm] 9.2 12.3 16.1 11.1 20.7 27.0 18.4 32.0 27.8 

M20 
qlmax [kN] 0.6 0.8 1.0 0.4 0.4 0.8 0.2 0.4 0.6 

k2 [N/mm] 14.5 21.7 31.1 16.5 34.2 44.6 23.9 42.6 42.9 

M40 
qlmax [kN] 0.6 0.8 1.2 0.4 0.6 0.8 0.2 0.4 0.6 

k2 [N/mm] 22.2 33.1 51.2 22.6 44.2 61.5 24.7 51.5 72.9 
 

A105 
S03 S04 S05 

-10 0 +10 -10 0 +10 -10 0 +10 

M0 
qlmax [kN] 1.0 1.0 1.0 0.6 0.8 0.8 0.6 0.6 0.8 

k2 [N/mm] 12.0 14.3 16.5 20.4 25.8 29.5 31.1 38.3 36.9 

M20 
qlmax [kN] 1.0 1.2 1.4 0.6 0.8 0.8 0.6 0.6 0.8 

k2 [N/mm] 20.4 26.0 31.4 33.2 46.5 55.2 48.1 54.8 48.3 

M40 
qlmax [kN] 1.0 1.0 1.2 0.6 1.0 1.0 0.6 0.6 0.8 

k2 [N/mm] 30.1 39.3 51.1 39.0 58.1 68.3 54.2 66.2 72.4 
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ANNEX D – MODELLING APPROACH 
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The flat geometry is drawn and meshed in Rhino. 

 

The flat geometry is imported into SOFiSTiK and the cables for the side struts 
and the outer sets of cables are contracted. 

 

 
The edges of the plates are connected with hinges and the side struts are 
connected to the bottom plate. 

 

 
The inner sets of cables are contracted. 

 

plate group 1 

plate group 2 

outer set of cables 

inner set of cables 
cable for side strut 
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The form-found mesh is imported into Rhino via the STiKbug plug-in for 
Grasshopper. 

 

 

The unit is translated and rotated using a Grasshopper script to form the arch 
structure. 

 

 
With only little 3D modelling effort, this geometry can be turned into a 
structural model using the SOFiSTiK interface for Rhino. This model can be 
imported into SOFiSTiK for structural analysis. During these steps, however, 
the history of the stresses gets lost. 
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UNIT DESIGN 
DESIGN FOR 6.4 MM PLATE 

Mechanical properties of birch plywood with a thickness of 
6.4 mm (UPM, 2007) 

 Characteristic value Design value 
fm,0 50.9 38.2 
fm,90 29.0 21.8 
ft,0 42.2 31.7 
ft,90 32.8 24.6 
fc,0 29.3 22.0 
fc,90 22.8 17.1 

 

Stresses in the longitudinal plate direction 

Characteristic bending strength fk,m,0 = 50.9 N/mm² 

 

σ0 in the top of the cross-section 
 
σ0,max = 50.9 N/mm² 
σ0,min = -29.3 N/mm² 
 
Unity check: 
Bending strength 50.9

50.9
= 1.00 

 

σ0 in the bottom of the cross-section 
 
σ0,max = 28.7 N/mm² 
σ0,min = -60.0 N/mm² 
 
Unity check: 
Bending strength 60.0

50.9
= 1.18 

 
Only exceedence at corners 
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Stresses in the lateral plate direction  

Characteristic bending strength fk,m,90 = 29.0 N/mm² 

 

 

  

σ90 in the top of the cross-section 
 
σ90,max = 32.4 N/mm² 
σ90,min = -30.9 N/mm² 
 
Unity check: 
Bending strength 32.4

29.0
= 1.12 

 
Only very small exceedances and 
due to peak stress at strut 
connection 
 

σ90 in the bottom of the cross-section 
 
σ90,max = 29.9 N/mm² 
σ90,min = -32.2 N/mm² 
 
Unity check: 
Bending strength 32.2

29.0
= 1.11 

 
Only very small exceedances 
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DESIGN FOR 9.2 MM PLATE 
Mechanical properties of birch plywood with a thickness of 
9.2 mm (UPM, 2007) 

 Characteristic value Design value 
fm,0 45.6 34.2 
fm,90 32.1 24.1 
ft,0 40.8 30.6 
ft,90 34.2 25.7 
fc,0 28.3 21.2 
fc,90 23.7 17.8 

 
Stresses in the longitudinal plate direction 

Characteristic bending strength fk,m,0 = 45.6 N/mm² 
 

 

 

σ0 in the top of the cross-section 
 
σ0,max = 37.7 N/mm² 
σ0,min = -17.3 N/mm² 
 
Unity check: 
Bending strength 37.7

45.6
= 0.83 

σ0 in the bottom of the cross-section 
 
σ0,max = 20.8 N/mm² 
σ0,min = -44.7 N/mm² 
 
Unity check: 
Bending strength 44.7

45.6
= 0.98 
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Stresses in the lateral plate direction  

Characteristic bending strength fk,m,90 = 32.1 N/mm² 

  

σ90 in the top of the cross-section 
 
σ90,max = 32.3 N/mm² 
σ90,min = -30.3 N/mm² 
 
Unity check: 
Bending strength 32.3

32.1
= 1.01 

 
Only very small exceedance 

σ90 in the bottom of the cross-section 
 
σ90,max = 29.9 N/mm² 
σ90,min = -32.8 N/mm² 
 
Unity check: 
Bending strength 32.8

32.1
= 1.02 

 
Only very small exceedance 
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DESIGN OF THE ARCH 
1.5 times dead weight 

1.0 kN/m² variable load conform LC 3 

DESIGN FOR 6.4 MM PLATE 
 
Stresses in the longitudinal plate direction  

Design value of the bending strength   fd,m,0 = 38.2 N/mm² 
Design value of the tension strength   fd,t,0 = 31.7 N/mm² 
Design value of the compression strength  fd,c,0 = -22.0 N/mm² 

 

σ0 in the top of the cross-section 
 
σ0,max = 13.2 N/mm² 
σ0,min = -23.0 N/mm² 
 
Unity check: 
Bending strength  23.0

38.2
= 0.60 

 
Tension strength:  13.2

31.7
= 0.42 

 
Compression strength:  −23.0

−22.0
= 1.05 

 
Sligth exceedance in compression 
at peak stress at end beams 

σ0 in the bottom of the cross-section 
 
σ0,max = 14.7 N/mm² 
σ0,min = -9.9 N/mm² 
 
Unity check: 
Bending strength  14.7

38.2
= 0.38 

 
Tension strength:  14.7

31.7
= 0.46 

 
Compression strength:  −9.9

−22.0
= 0.45 
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Stresses in the lateral plate direction  

Design value of the bending strength   fd,m,90 = 21.8 N/mm² 
Design value of the tension strength   fd,t,90 = 24.6 N/mm² 
Design value of the compression strength  fd,c,90 = -17.1 N/mm² 

 

 

 

 

 

σ90 in the top of the cross-section 
 
σ90,max = 6.5 N/mm² 
σ90,min = -6.7 N/mm² 
 
Unity check: 
Bending strength  6.7

21.8
= 0.31 

 
Tension strength:  6.5

24.6
= 0.26 

 
Compression strength:  −6.7

−17.1
= 0.39 

 

σ90 in the bottom of the cross-section 
 
σ90,max = 7.8 N/mm² 
σ90,min = -4.1 N/mm² 
 
Unity check: 
Bending strength  7.8

21.8
= 0.36 

 
Tension strength:  7.8

24.6
= 0.32 

 
Compression strength:  −4.1

−17.1
= 0.24 
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DESIGN FOR 9.2 MM PLATE 
 
Stresses in the longitudinal plate direction  

Design value of the bending strength   fd,m,0 = 34.2 N/mm² 
Design value of the tension strength   fd,t,0 = 30.6 N/mm² 
Design value of the compression strength  fd,c,0 = -21.2 N/mm² 

 

 

  

σ0 in the top of the cross-section 
 
σ0,max = 18.3 N/mm² 
σ0,min = -38.3 N/mm² 
 
Unity check: 
Bending strength  38.3

34.2
= 1.12 

 
Tension strength:  18.3

30.6
= 0.60 

 
Compression strength:  −38.3

−21.2
= 1.81 

 
Exceedance in stresses due to large 
peak stresses at edge beams 

σ0 in the bottom of the cross-section 
 
σ0,max = 25.8 N/mm² 
σ0,min = -22.7 N/mm² 
 
Unity check: 
Bending strength  25.8

34.2
= 0.75 

 
Tension strength:  25.8

30.6
= 0.84 

 
Compression strength:  −22.7

−21.2
= 1.07 

 



126 
 

Stresses in the lateral plate direction  

Design value of the bending strength   fd,m,90 = 24.1 N/mm² 
Design value of the tension strength   fd,t,90 = 25.7 N/mm² 
Design value of the compression strength  fd,c,90 = -17.8 N/mm² 

 

 

 

  

σ90 in the top of the cross-section 
 
σ90,max = 14.1 N/mm² 
σ90,min = -11.8 N/mm² 
 
Unity check: 
Bending strength  14.1

24.1
= 0.59 

 
Tension strength:  14.1

25.7
= 0.55 

 
Compression strength:  −11.8

−17.8
= 0.66 

 

σ90 in the bottom of the cross-section 
 
σ90,max = 15.0 N/mm² 
σ90,min = -9.6 N/mm² 
 
Unity check: 
Bending strength  15.0

24.1
= 0.62 

 
Tension strength:  15.0

25.7
= 0.58 

 
Compression strength:  −9.6

−17.8
= 0.54 
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ANNEX F – PICTURES OF PHYSICAL EXPLORATIONS 
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Construction sequence of a scale model of the 
modular system with 2 units in the longitudinal 
direction. 

A three layered clamped system with (bottom) and 
without (top) strut. 

Model constructed from 4 bent plywood strips with 
the grain direction perpendicular to the longitudinal 
direction. 

Model constructed from 3 bent plywood strips with 
the grain direction parallel to the longitudinal 
direction. 
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The image sequence shows the construction of the 
prototype, from milling to bending to assembling. 
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