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Abstract

In this paper we will analyze the behaviour of rational binomial coefficients as well as finding some
ways to find rational binomial collisions. When analyzing the behaviour, we will state a concrete
formula which can be worked with as well as an approximation using Stirling’s approximation
of factorials. Also, we will find an expression of the denominator, indirectly also giving us an
expression for the numerator. The collision-problem will be tacked in three ways: trivial collisions,
setting the numerator of the binomials and the utility of elliptic curves. The results in this article
may contribute to a better understanding of rational binomial collisions as well as provide some
nice properties which can be used in number theory.
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1 Introduction

The binomial coefficient is an often seen mathematical object, most commonly known for its role
in combinatorical problems. It also makes appearances outside of the field of combinatorics, for
instance when speaking about the binomial expansion.
The coefficient can be interpreted in many different ways. One of them is the amount of different
sequences consisting of k A’s and n − k B’s. Likewise, it can be thought of as the number of
different routes between two points in a grid of which k steps need to be made west and n need
to be made to the north. These are just some examples, but far from all applications.
The ordinary binomial coefficient is defined by:

(
n

k

)
=

n!

(n− k)!k!
=
n

1
· n− 1

2
. . .

n− k + 1

k
.

Where n, k ∈ N. Many studies have already explored the many properties of the binomial coeffi-
cient. We will not do that here. Instead, we are interested in the behaviour of the coefficient if
n ∈ Q.
In this report we will start with analyzing the behaviour of the coefficient if n ∈ Q. We will pay
special attention to the overall number, but also to the denominator specifically. Indirectly, we
thus also look at the numerator specifically.
Next, we are interested in so-called binomial collisions. These occur when the value of the coeffi-
cients are equal in value. Inspired by binomial collisions and near collisions [1], this report will
explore the collisions of rational binomials.
A common method of exploration in this report will be the following approach: firstly a property is
explored by adding a half to the n in the binomial coefficient above. Later, this will be generalized
to any fraction.
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2 Add a halve

We start by taking the following binomial coefficient where n ∈ Z:

(
n+ 1

2

k

)
.

These binomial coefficients have already been defined, namely as follows:

(
n+ 1

2

k

)
=
n+ 1

2

1
·
n− 1 + 1

2

2
. . .

n− k + 3
2

k
.

In this report, we will sometimes use the notation C[n, k] to denote the coefficient. Please do note
that if the additional fraction is not 1

2 , but any fraction, we can find the value of the coefficient
in a similar way. Our goal in this section is to derive some nice results, as well as get a feeling of
how the binomial coefficient now behaves. In the next section, we will generalize the results we
obtain in this section for any fraction in general if possible.

Figure 1: Plots for n = 7, n = 11 and n = 15

Note that the vertical axis displays a logarithmic value. In the figure above, we have plotted the
absolute value of several coefficients with fixed n against several values of k. In the plot, C[ 152 , k]

represents the binomial coefficient

( 15
2

k

)
. Similarly, C[ 232 , k] represents

( 23
2

k

)
and C[ 312 , k] repre-

sents

( 31
2

k

)
. The general behaviour of the coefficients seems the same. Firstly they increase, only

to decrease and converge to 0 as the value of k increases (since x goes to 0 when log(x) goes to
minus infinity).
This behavior is not odd or unexpected. Writing out a sequence shows that ultimately, we multiply
with numbers less then 1, so naturally, the sequence is bound to decrease in absolute value.

2.1 A general formula

The definition given is hard to properly work with. That is why we firstly like to derive a formula
instead of a definition to work with. We will derive a formula in two parts, one for the case where
n ≥ k, and one for when n < k. The reason why we do this will become apparent when we get
there. Firstly the case n ≥ k:
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(
n+ 1

2

k

)
=
n+ 1

2

1
·
n− 1 + 1

2

2
. . .

n− k + 3
2

k

=
1

k!
·
(
n+

1

2

)
·
(
n− 1

2

)
. . .

(
n− k +

3

2

)
=

1

2kk!
· (2n+ 1) · (2n− 1) . . . (2n− 2k + 3)

=
1

2kk!
· (2n+ 1) · 2n · (2n− 1) · (2n− 2) . . . (2n− 2k + 3) · (2n− 2k + 2)

2n · (2n− 2) . . . (2n− 2k + 2)

=
1

2kk!
· (2n+ 1)!

(2n− 2k + 1)!
· 1

2n · (2n− 2) . . . (2n− 2k + 2)

=
1

2kk!
· (2n+ 1)!

(2n− 2k + 1)!
· 1

2k · n · (n− 1) . . . (n− k + 1)

=
1

2kk!
· (2n+ 1)!

(2n− 2k + 1)!
· (n− k)!

2k · n!

=
1

4kk!
· (2n+ 1)!

(2n− 2k + 1)!
· (n− k)!

n!

This is true only if n ≥ k, as (n− k)! would otherwise give rise to problems, though if we were to
replace any of such ’problematic’ terms by an approximation by using e.g. Stirling’s formula, we
might still be able to utilize this function for the case n < k. Still, we handle this problem as a
separate case and try to derive a separate result. Now we try to find a similar result for n < k:

(
n+ 1

2

k

)
=

(
n+ 1

2

n

)
·

1
2

n+ 1
·
− 1

2

n+ 2
. . .

n− k + 3
2

k

=

(
n+ 1

2

n

)
· 1

2n+ 2
· (n+ 1)!

k!
·
(
−1

2
· −3

2
. . .

(
n− k +

3

2

))
=

(
n+ 1

2

n

)
· (−1)n−k−1

2n+ 2
· (n+ 1)!

k!
· 1

2k−n−1
· (1 · 3 . . . (2k − 2n− 3))

=

(
n+ 1

2

n

)
· (−1)n−k−1

2n+ 2
· (n+ 1)!

k!
· 1

2k−n−1
· (2k − 2n− 2)!

2 · 4 . . . (2k − 2n− 2)

=

(
n+ 1

2

n

)
· (−1)n−k−1

2n+ 2
· (n+ 1)!

k!
· 1

2k−n−1
· (2k − 2n− 2)!

2k−n−1 · (k − n− 1)!

=
1

4nn!
· (2n+ 1)!

n!
· (−1)n−k−1

2n+ 2
· (n+ 1)!

k!
· 1

4k−n−1
· (2k − 2n− 2)!

(k − n− 1)!

=
(2n+ 1)!

4k−1 · 2 · n! · k!
· (−1)k−n−1 · (2k − 2n− 2)!

(k − n− 1)!

So ultimately, we receive the following result:

(
n+ 1

2

k

)
=


1

4kk!
· (2n+ 1)! · (n− k)!

(2n− 2k + 1)! · n!
if n ≥ k

(−1)k−n−1 · (2n+ 1)! · (2k − 2n− 2)!

4k−1 · 2 · n! · k! · (k − n− 1)!
if n < k

. (1)
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2.2 An approximate formula

Now that we have constructed a more usable formula with which we can calculate the value of
the binomial coefficients, we want to implement it to the observations stated above. However,
regardless which of n or k is larger, we need to first calculate 5 factorials, as both parts of the
formula contain a factorial. This is a lot of work. Therefore, we will first use Stirling’s Theorem
to approximate the value of the coefficient using the formula above.

Theorem (Stirling’s approximation): n! ∼
√

2πn
(n
e

)n
.

The proof can be found in many books on analysis and will be left out for the moment. We now
implement it in the formula found above. Firstly for n ≥ k:

(
n+ 1

2

k

)
=

1

4kk!
· (2n+ 1)! · (n− k)!

(2n− 2k + 1)! · n!

≈ 1

4k
· e

k

kk
· (2n+ 1)2n+1

e2n+1
· (n− k)n−k

en−k
· e2n−2k+1

(2n− 2k + 1)2n−2k+1
· e

n

nn
·

√
2π(2n+ 1) · 2π(n− k)

2πk · 2π(2n− 2k + 1) · 2πn

=
1

4kkk
· (2n+ 1)2n+1

nn
· (n− k)n−k

(2n− 2k + 1)2n−2k+1
· e

k+(2n−2k+1)+n

e2n+1+(n−k) ·

√
(2n+ 1)(n− k)

2πk · n(2n− 2k + 1)

=
1

4kkk
· 2n+ 1

2n− 2k + 1
· (2n+ 1)2n

nn
· (n− k)n−k

(2n− 2k + 1)2n−2k
·

√
(2n+ 1)(n− k)

2πk · n(2n− 2k + 1)

≈ 1

4kkk
· 2n+ 1

2n− 2k + 1
· (4n+ 4)n

(4n− 4k + 4)n−k
·

√
(2n+ 1)(n− k)

2πk · n(2n− 2k + 1)

=
1

kk
· 2n+ 1

2n− 2k + 1
· (n+ 1)n

(n− k + 1)n−k
·

√
(2n+ 1)(n− k)

2πk · n(2n− 2k + 1)

Similarly, for the other case:

(
n+ 1

2

k

)
=

(2n+ 1)! · (−1)k−n−1 · (2k − 2n− 2)!

4k−1 · 2 · n! · k! · (k − n− 1)!

≈ (−1)k−n−1 · (2n+ 1)2n+1 · (2k − 2n− 2)2k−2n−2 · en · ek · ek−n−1

4k−1 · 2 · nn · kk · (k − n− 1)k−n−1 · e2n+1 · e2k−2n−2
·

√
2π(2n+ 1) · 2π(2k − 2n− 2)

2πn · 2πk · 2π(k − n− 1)

=
(−1)k−n−1 · (2n+ 1)2n+1 · (2k − 2n− 2)2k−2n−2

4k−1 · 2 · nn · kk · (k − n− 1)k−n−1
·
√

2n+ 1

πnk

≈ (−1)k−n−1

4k−n−1kk
· n(4n+ 4)n · 22k−2n−2 · (k − n− 1)k−n−1 ·

√
2n+ 1

πnk

=
(−1)k−n−1 · n(4n+ 4)n · (k − n− 1)k−n−1

4n · kk
·
√

2n+ 1

πnk

So ultimately, we receive the following formula to approximate the value of a rational binomial
coefficient:

(
n+ 1

2

k

)
≈


1

kk
· 2n+ 1

2n− 2k + 1
· (n+ 1)n

(n− k + 1)n−k
·

√
(2n+ 1)(n− k)

2πk · n(2n− 2k + 1)
if n ≥ k

(−1)k−n−1 · n(4n+ 4)n · (k − n− 1)k−n−1

4n · kk
·
√

2n+ 1

πnk
if n < k

. (2)
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3 Any fraction

The first thing we want to do now that we have found a nice formula for the case

(
n+ 1

2

k

)
, is to

generalize this. Can we find a nice formula for

(
n+ p

q

k

)
, or is it merely luck that we were able to

derive results when adding
1

2
?

Pick any n, p, q, k ∈ N, such that q does not divide p and p < q. We make these constraints such
that the fraction cannot be simplified and therefore gives unique results.
Like we did for the case 1

2 , we start from the definition:

(
n+ p

q

k

)
=
n+ p

q

1
·
n− 1 + p

q

2
. . .

n− k + 1 + p
q

k

=
1

k!
·
(
n+

p

q

)
·
(
n− 1 +

p

q

)
. . .

(
n− k + 1 +

p

q

)
=

1

k! · qk
· (nq + p) · (nq − q + p) . . . (nq − (k − 1)q + p)

Now substitute nq + p by x:

=
1

k! · qk
· x · (x− q) . . . (x− (k − 1)q)

We note that this multiplication is similar to the falling factorial [5]. Therefore we can rewrite
this to:

=
1

k! · qk
k∑
i=0

s(k, i)xiqk−i

=
1

k! · qk
k∑
i=0

s(k, i)(nq + p)iqk−i

Here, s(k, i) denotes the Stirling number of the first kind. The equality holds as a property of
the falling factorial. This result cannot easily be converted into an easier to use formula and will
therefore be left as it is. The result itself is nice, but may be hard to work with. Nevertheless,
a computer will undoubtedly know the Stirling numbers for many of the binomials we can ask
and therefore, this formula is reasonably easy to implement. A table containing the first Stirling
numbers can be found in appendix A.
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4 Behavior of the numerator and denominator

When working with rational binomials, we have seen seen rational results. As a result, we are
interested in the size of the numerator and denominator. If we can find an expression for one, we
also have the other. This is due to the fact that we already have a formula for the entire coeffi-
cient. Multiplying the whole thing by the denominator results in the numerator, and dividing the
numerator by the whole thing results in the denominator.

It is a known result that the denominator of

(
n+ 1

2

k

)
is 22k−[k]2 , where [k]2 is the binary weight

of k.

Proof:

(
n+ 1

2

k

)
=
n+ 1

2

1
·
n− 1

2

2
. . .

n− k + 3
2

k
=

(2n+ 1)(2n− 1) . . . (2n− 2k + 3)

2kk!
.

It may be obvious that the numerator is not divisible by 2, as we only multiply odd numbers there.
Therefore the 2k will remain in the denominator. Most of k! will divide away, as is the case too
with the integer-version of the coefficient. Only the factors 2 will not. We are now left with the
question how many factors 2 are in k!. Every second number of k! has a factor two. If we write k
in base 2, then k = k0 + 2k1 + 4k2 + 8k3 + 16k4 + . . ., with ki ∈ {0, 1}. Then:⌊

k

2

⌋
= k1 + 2k2 + 4k3 + 8k4 + . . .

Likewise, every fourth number in k! contains an additional 2, and every eighth again contain an
extra. We find: ⌊

k

4

⌋
= k2 + 2k3 + 4k4 + . . .⌊
k

8

⌋
= k3 + 2k4 + . . .⌊
k

16

⌋
= k4 + . . .

Now, the amount of factors 2 in k! thus equals the sum of these all, so

⌊
k

2

⌋
+

⌊
k

4

⌋
+

⌊
k

8

⌋
+

⌊
k

16

⌋
+ . . . = k1 + 3k2 + 7k3 + 15k4 + . . .

= (1− 1)k0 + (2− 1)k1 + (4− 1)k2 + (8− 1)k3 + (16− 1)k4 + . . .

= k0 + 2k1 + 4k2 + 8k3 + 16k4 + . . .− k0 − k1 − k2 − k3 − k4 − . . .

= k − [k]2

Thus, we have 2k and 2k−[k]2 in the denominator, resulting in 22k−[k]2 . �

It can actually be shown that similar results are true for any prime p, such that(
n+ q

p

k

)
=

(np+ q) · ((n− 1)p+ q) · . . . · ((n− k + 1)p+ q)

pkk!
.

After we have proven that comparable expressions can be derived for any prime, we will generalize
to any given number, albeit prime or not.
Similarly to the case where p = 2, we are left asking ourselves how many factors p there are in k!.
The approach is the same also:
We first begin by defining [k]p. Write k in base p, so k = k0 + pk1 + p2k2 + . . ., then [k]p =
k0 + k1 + k2 + . . . is the analogue of the binary weight used above.
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k = k0 + pk1 + p2k2 + p3k3 + p4k4 + . . .⌊
k

p

⌋
= k1 + pk2 + p2k3 + p3k4 + . . .⌊
k

p2

⌋
= k2 + pk3 + p2k4 + . . .⌊
k

p3

⌋
= k3 + pk4 + . . .⌊
k

p4

⌋
= k4 + . . .

Then adding these all results in⌊
k

p

⌋
+

⌊
k

p2

⌋
+

⌊
k

p3

⌋
+

⌊
k

p4

⌋
+ . . .

= k1 + (p+ 1)k2 + (p2 + p+ 1)k3 + (p3 + p2 + p+ 1)k4 + . . .

=
1− 1

p− 1
k0 +

p− 1

p− 1
k1 +

p2 − 1

p− 1
k2 +

p3 − 1

p− 1
k3 +

p4 − 1

p− 1
k4 + . . .

=
1

p− 1
(k0 + pk1 + p2k2 + p3k3 + p4k4 + . . .− k0 − k1 − k2 − k3 − k4 − . . .)

=
1

p− 1
(k − [k]p)

Therefore, the denominator would now be pk · p
1
p−1 (k−[k]p) .

From this result, the step towards all other added fractions is easily made. Say we pick a non-prime
number r, as the value of the denominator of the fraction we add in the coefficient. Then we can
decompose it into its prime factorization: r = pa11 p

a2
2 . . . pann , p1 6= p2 6= . . . 6= pn, a1, a2, . . . , an ∈

N. The denominator would contain rk, as we multiply k times by a fraction with a factor r in the
denominator. We now ask ourselves the question how many times each different prime of p1, p2,
. . ., pn appears in k!. This is the result we derived above. Thus, the denominator is

rk ·
n∏
i=1

pαii , with αi =
1

pi − 1
(k − [k]pi) . (3)

Checking these results with Wolfram Alpha gives us a confirmation that these results are correct.
The code is added in the appendix.

As we stated at the beginning of this section, we now not only have the denominator, but also the
numerator. Multiplying the entire coefficient by its denominator results in the numerator.
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5 Analysis of the minimum and maximum

As stated earlier, we are interested in the minimum and maximum among other things. The
approximation-formula may be rather hard to derive nice results from. It is because of that reason
that we will first use a somewhat rougher version of Stirling’s approximation, namely, the one
forgetting about the root-term.

We firstly note that we know the coefficient converges to zero. This means that ultimately the
denominator becomes significantly larger than the numerator. We therefore want the numerator
only. As always, we start by adding the fraction 1

2 to the upper number of the binomial coefficient
and analyze the behavior of the numerator. We firstly start with the maximum it attains when
n > k:

(
n+ 1

2

k

)
· 22k−[k]2 =

1

4kk!
· (2n+ 1)! · (n− k)!

(2n− 2k + 1)! · n!
· 22k−[k]2

≈ 1

kk
· (2n+ 1)2n+1(n− k)n−k · e2n−2k+1 · en · ek

(2n− 2k + 1)2n−2k+1nn · e2n+1 · en−k

=
1

kk
· (2n+ 1)2n+1(n− k)n−k

(2n− 2k + 1)2n−2k+1nn

≈ (2n)2n(n− k)n−k

kk(2n− 2k)2n−2knn

=
4n · n2n · (n− k)n−k

kk · 4n−k · (n− k)2n−2k · nn

=
4k · nn

kk · (n− k)n−k
.

Lets assume that the position of the maximum is only dependent on the size of k compared the
the value of n, as we have seen some general behavior of the coefficients. Assume k = κn:(

n+ 1
2

k

)
· 22k−[k]2 ≈ 4(κn) · nn

(κn)κn · (n− κn)n−κn
.

Since every term has a power n, we can take the n-th root. This will not influence the results we
want to derive due to the fact that the n-th power is a strictly increasing function:

n

√(
n+ 1

2

k

)
· 22k−[k]2 ≈ 4κ · n

(κn)κ · (n− κn)1−κ

=
4κ · n

κκ · nκ · n1−κ · (1− κ)1−κ

=
4κ

κκ · (1− κ)1−κ
.

Maximizing this function with Mathematica gives κ = 4
5 , so choosing k = 4

5n gives a good
indication of the maximum of the denominator. It should be noted that there is, of course, a
small error in this value for κ. As we used Stirling’s approximation, we have made an error that
asymptotically goes to zero. Also, we made a little error at the fourth line of the above derivation,
neglecting some +1. This too is an error which becomes smaller as our binomials increase. In the
end, the errors do not have much significance but they should be kept in mind.
The fact that κ has such a nice value suggests to us that finding the optimal value for κ can easily
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be done by hand. This is indeed the case, as we will show. Maximizing a functions requires taking
the derivative and equation it to zero. We firstly rewrite the found expression.

4κ

κκ · (1− κ)(1− κ)
= elog (4κ)e− log(κκ)e− log((1−κ)1−κ) = elog(4

κ)−κ log(κ)−(1−κ) log(1−κ) .

Optimizing this comes down to optimizing the exponent, so we find:

d

dκ

(
κ log(4)− κ log(κ)− (1− κ) log(1− κ)

)
= 0

log(4)− log(κ)− 1 + log(1− κ) + 1 = 0

log

(
4

κ

)
= − log(1− κ) = log

(
1

1− κ

)
⇒ 4(1− κ) = κ⇒ 5κ = 4→ κ =

4

5
.

Indeed, this wasn’t a hard exercise.

Similarly, we may be interested in the minimum when n < k. In that case, we apply the same
tactic as we did above, namely: use a rough approximation of Stirling’s formula. Since these
value’s can become negative, we take absolute values.

∣∣∣∣(n+ 1
2

k

)
· 22k−[2]2

∣∣∣∣ =
(2n+ 1)! · (2k − 2k − 2)!

4k−1 · 2 · n! · k! · (k − n− 1)!
· 22k−[k]2

≈ (2n+ 1)2n+1 · (2k − 2n− 2)2k−2n−2 · en · ek · ek−n−1 · 22k−[k]2

2 · 4k−1 · nn · kk · (k − n− 1)k−n−1 · e2n+1 · e2k−2n−2

=
(2n+ 1)2n+1 · (2k − 2n− 2)2k−2n−2 · 22k−[k]2

2 · 4k−1 · nn · kk · (k − n− 1)k−n−1

≈ 21−[k]2 · (2n)2n · 22k−2n · (k − n)2(k−n)

nn · kk · (k − n)k−n

=
21−[k]2 · nn · 22k · (k − n)k−n

kk
.

Again assume k = κn, then:∣∣∣∣(n+ 1
2

k

)
· 22k−[2]2

∣∣∣∣ ≈ 21−[k]2 · nn · 22κn · ((κ− 1)n)(κ−1)n

(κn)κn
.

We now again that the nth root, with similar intentions as before:

n

√∣∣∣∣(n+ 1
2

k

)
· 22k−[2]2

∣∣∣∣ ≈ n · 22κ · ((κ− 1)n)κ−1

(κn)κ

=
4κ · (κ− 1)κ−1

κκ
.

Minimizing this result gives κ = 4
3 , so by choosing k = 4

3n, we can get an estimate for the minimum
of the coefficient. Here too we note that there is a small error due to the usage of Stirling’s
approximation and neglecting some +1’s along the way. Also in this case, asymptotically this
error is marginal.
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Again we suspect we could have done this by hand. We take the same approach by first rewriting
the found expression and then equating the derivative of the exponent to zero.

4κ(κ− 1)κ−1

κκ
= elog(4

κ)elog((κ−1)κ−1)e− log(κκ) = eκ log(4)+(κ−1) log(κ−1)−κ log(κ)

Now for the optimization part:

d

dκ

(
κ log(4) + (κ− 1) log(κ− 1)− κ log(κ)

)
= 0

log(4) + log(κ− 1) + 1− log(κ)− 1 = 0

log(4κ− 4) = log(κ)

⇒ 4κ− 4 = κ⇒ 3κ = 4⇒ κ =
4

3

Indeed this formula too was easily optimizable.

Now, as the general formula for a binomial coefficient with other fractions was dependent on the
Stirling numbers of the first kind, it may become rather difficult to retrieve a nice estimate for the
minimum and the maximum value of the numerator. However, we do know the exact value of the
denominator, so ultimately combining these two will result in formula which may be minimizable
and maximizable.
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6 Collisions

As noted in the introduction, we are interested in binomial collisions. Some research has already
been done on this topic. In [1], a definition is given for binomial collisions with integer coefficients.
In order to use this concept for rational coefficients, we define a binomial collision by the following
relation: let n,m ∈ Q\N, n 6= m and k, l ∈ N. A rational binomial collision occurs when(

n

k

)
=

(
m

l

)
.

In this section, we will explore the various ways a binomial collision can occur for different values
of n,m ∈ Q\N, k, l ∈ N. For an analysis of cases n,m, k, l ∈ N, I would like to refer to the paper
by Blokhuis, Brouwer and De Weger [1].
We will start with some obvious collisions. The most obvious being the case n = m and k = l,
though by the way we defined a collision, this cannot be.

So what if n 6= m, but k = l? Like we did for previous results, we first explore the case when we
add a halve to the upper number. We get:(

n+ 1
2

k

)
=

(
m+ 1

2

k

)
(
n+ 1

2

) (
n− 1

2

)
. . .
(
n− k + 3

2

)
k!

=

(
m+ 1

2

) (
m− 1

2

)
. . .
(
m− k + 3

2

)
k!

(2n+ 1)(2n− 1) . . . (2n− 2k + 3)

2kk!
=

(2m+ 1)(2m− 1) . . . (2m− 2k + 3)

2kk!

For a collision to occur, the numerators too have the be the same. This is hard to realize, but not
totally impossible. Observe, for instance, that(

8 1
2

4

)
=

17
2 ·

15
2 ·

13
2 ·

11
2

4!

=
(−1)4 · 172 ·

15
2 ·

13
2 ·

11
2

4!

=
−17
2 ·

−15
2 ·

−13
2 ·

−11
2

4!

=
−11
2 ·

−13
2 ·

−15
2 ·

−17
2

4!
=

(
−5 1

2

4

)
.

This reminds us of a kind of symmetry that occurs when n, k ∈ N, given by the relation

(
n

k

)
=(

n

n− k

)
. Though not completely the same case, such a relation might be playing a role here. So

we have the suspicion that

(
n+ 1

2

k

)
=

(
k − n− 3

2

k

)
. That is, as long as k is even, as we would

otherwise be left with a factor −1.
Lets make a formal proof out of this. Assume k is even, n, k ∈ N.(

n+ 1
2

k

)
=

(2n+ 1)(2n− 1) . . . (2n− 2k + 5)(2n− 2k + 3)

2kk!

=
(−2n− 1)(−2n+ 1) . . . (−2n+ 2k − 5)(−2n+ 2k − 3)

2kk!

=
(2k − 2n− 3)(2k − 2n− 5) . . . (−2n+ 1)(2n− 1)

2kk!
=

(
k − n− 3

2

k

)

13



This is already a neat result! However, as before, we now want to generalize to any added fraction.
Again, lets assume k to be even, as in the case it is not we have a difference of a factor −1:(
n+ q

p

k

)
=

(np+ q) · ((n− 1)p+ q) . . . ((n− k + 2)p+ q) · ((n− k + 1)p+ q)

pkk!

=
((k − n− 1)p− q) · ((k − n− 2)p+ q) . . . ((−n+ 1)p− q) · (−np− q)

pkk!
=

(
k − n− 1− q

p

k

)

Luckily, when choosing
q

p
=

1

2
, we obtain the same result as we had previously. Once more we

note: this result is only true if k is even. If this is not the case, there is only a factor −1 difference.

Until now, we have always used the condition that k must be the same. However, this is very
limiting. So when can we have a whole binomial collision when this number may not be the same?
The first thing that comes to mind is that the denominator of the binomial coefficient is known,
as we have proven earlier. It consists of a certain amount of the same prime number(s), depending
on the fraction we add. So at the moment, we assume that if we want to find a simple collision,

we must carefully choose a correct fraction. As an example, when can

(
n+ 1

2

k

)
=

(
m+ 1

4

l

)
? We

can calculate, for each value of k and l, what the denominators will be.

k / l denominator

(
n+ 1

2

k

)
denominator

(
m+ 1

4

l

)
1 2 4
2 8 32
3 16 128
4 128 2048
5 256 8192
6 1024 65536
7 2048 262144

Table 1: Values of various rational binomials

So according to this table, we can have a collision by choosing k = 4 and l = 3, as this would result
in the same denominator (being 128 when simplified). Although we do not know what values we
must pick for n and m, we can now know whether or not we are doing work for nothing. Also
note that by choosing k = 7 and l = 4 we may get a collision because of similar reasons.
To continue the example, what values for n and m must we choose? If we write out what the
coefficients would be, we get: (

n+ 1
2

4

)
=

(
m+ 1

4

3

)
(2n+ 1)(2n− 1)(2n− 3)(2n− 5)

4! · 24
=

(4m+ 1)(4m− 3)(4m− 7)

3! · 43

(2n+ 1)(2n− 1)(2n− 3)(2n− 5)

384
=

(4m+ 1)(4m− 3)(4m− 7)

384

(2n+ 1)(2n− 1)(2n− 3)(2n− 5) = (4m+ 1)(4m− 3)(4m− 7)

Using the computer program Mathematica to solve this equation (type: Solve[(2n+1)(2n−1)(2n−
3)(2n−5) == (4m+ 1)(4m−3)(4m−7), {n,m}, Integers]), we get two pairs of n and m being an
integer solution, namely n = 0∧m = 1 and n = 2∧m = 1. Checking what the binomial values are,

indeed, we see:

( 1
2

4

)
=

(
1 1
4

3

)
=
−5

128
and

(
2 1
2

4

)
=

(
1 1
4

3

)
=
−5

128
These are thus indeed binomial
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collisions. Perhaps by pure coincidence, we have found a triple collision, where three coefficients

are the same. The fact that

( 1
2

4

)
=

(
2 1
2

4

)
is due to the symmetric property found above.

The equation (2n+ 1)(2n− 1)(2n− 3)(2n− 5) = (4m+ 1)(4m− 3)(4m− 7) derived above looks
rather hard to solve by hand. If we look closely, we might recognize the form of an elliptic curve
in it. We first rewrite the equation:

(2n+ 1)(2n− 1)(2n− 3)(2n− 5) = (4m+ 1)(4m− 3)(4m− 7)

((2n− 2)2 − 32)((2n− 2)2 − 12) = ((4m− 3)2 − 42)(4m− 3)

((2n− 2)2 − 9)((2n− 2)2 − 1) = ((4m− 3)2 − 16)(4m− 3)

((2n− 2)2 − 5)2 − 42 = ((4m− 3)2 − 16)(4m− 3)

((2n− 2)2 − 5)2 = (4m− 3)3 − 16(4m− 3) + 16

Now we substitute y = (2n− 2)2 − 5 and x = 4m− 3 to get

y2 = x3 − 16x+ 16 .

This is an elliptic curve of the so-called Weierstrass form, which is an equation in the form
y2 = x3 + ax + b where a and b are integers. Although we will not dive too deeply into the
theory of elliptic curves, we do want to address the topic a little.
The idea of using elliptic curves to find binomial collisions of rational binomials has been used
before [4]. Using elliptic curves, we can find binomial collisions without firstly setting the lower
number of the binomial coefficients. This option is limited to a few nice cases in which the equation
we get when writing out the coefficients is reducible to an elliptic curve.
One of this nice cases is k = 2 ∧ l = 3. What do we get? Now, let n,m ∈ Q:(

n

2

)
=

(
m

3

)
n(n− 1)

2
=
m(m− 1)(m− 2)

6

6n(n− 1) = 2m(m− 1)(m− 2)

26 · 34n(n− 1) = 26 · 33m(m− 1)(m− 2)

72n(72n− 72) = 12m(12m− 12)(12m− 24)

(72n− 36)2 − 362 = (12m− 12)
(
(12m− 12)2 − 122)

)
Now substitute y = 72n− 36 and x = 12m− 12. We get:

y2 − 1296 = x(x2 − 144)

y2 = x3 − 144x+ 1296

This again is an elliptic curve of the so-called Weierstrass form. Solving this equation with a solver
like Mathematica will probably result in y being equal to the root of the right-hand-side. This is
not what we want. We want to have integer solutions to the problem, or perhaps rational. For
this, MAGMA is a useful solver.
Solving this problem using MAGMA gives us x = −15 and y = −9. Using that y = 72n − 36

and x = 12m − 12, we get n =
3

8
and m =

−1

4
. Checking this indeed shows a collision:

( 3
8

2

)
=(−1

4

3

)
=
−15

128
.
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But this is far from the only solution we get! MAGMA provides us with a bunch of solutions to
the equation we received. In the table below, many of the results will be presented.

x y n m

(
n

2

)
=

(
m

3

)
-15 -9

3

8

−3

12

−15

128
-12 36 1 0 0

-8 -44
−1

9

1

3

5

81
0 -36 0 1 0

4 28
8

9

4

3

−4

81

9 27
7

8

7

4

−7

128
12 -36 0 2 0

24 -108 -1 3 1

40 -244
−26

9

13

3

455

81
48 324 5 5 10

108 -1116 -15 10 120

252 -3996 -55 22 1540

420 8604 120 36 7140

4953 -348579
−38727

8

1655

4

1500090345

128

Table 2: Collisions found by elliptic curves

So what do we see? We see some integer collisions, which are interesting enough on their own.
Furthermore, we see some rational binomials occurring.
These numbers are the case when we want x and y, the substitute variables from the elliptic curve,
to be in Z. If we allow them to be in Q as well, then in MAGMA we can preset the prime factors

dividing them. Other results can then be: x =
−527

36
⇒ m =

−95

432
, y =

−3529

216
⇒ n =

4247

15552
and

indeed the binomials are then the same, both having the value
−48012335

483729408
, so the results in the

table are not the only results possible.

We want to note one more nice result we get by using elliptic curves, but firstly, we need to tell a
little something about how the curves work. In the image below, we can see an elliptic curve with
two points P and Q. The line through these points intersect the elliptic curve in a third point,
which we will name P ∗Q. Then, P +Q is defined to be −(P ∗Q), which is the projection through
the x-axis.
In the case where you do not have two points, but only one, you can take the tangent line to that
point to find another intersection point. This method adds a point P to itself P . So, given any
point or two points, we can add them.
What is so nice now, is that there is a theorem called Mordell’s theorem, stating if a non-singular
rational cubic curve, then there is a set of rational points which is finite, such that we can get all
other rational points by the addition of several points with each other, as we described above. In
other words; If we have some particular solutions, we know we have them all. Before we prove
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Figure 2: Addition of points on elliptic curve

Mordell’s theorem, we want to point out that the previously mentioned solver MAGMA can find
these particular solutions. We will give an example after the proof.
We will demonstrate part of the proof of this theorem as is done in Rational points on elliptic
curves by Silverman and Tate [2]. Firstly we need to accept that the zero element is the point at
infinity. Now we can proof that the set of solutions to the curve is a group. We need to show the
following four properties:

1. If P and Q lie on the curve, then so does P +Q;

2. Associativity: P + (Q+R) = (P +Q) +R;

3. 0 + P = P ;

4. P +−P = 0, i.e. the existence of an inverse.

By definition, P +Q is again an element on the curve, so this property holds. Also, if we believe
infinity is the zero-element and we say P = (xP , yP ), then P ∗ 0 is the intersection point of the
curve with the vertical line through P , so the point (xP ,−yP ), as the curve is symmetric in the
x-axis. But then P + 0 = (xP ,−− yP ) = (xP , yP ) = P .
Also, picking −P to be (xP ,−yP ), we can say P + −P becomes the zero element, as the line
through P and −P is a vertical line.
Associativity is a rather complicated proof as it requires a bit more knowledge of elliptic curves
and will for the sake of this paper be emitted, though it is proven in the book. In the end, Mordell’s
theorem holds and thus we know we have all solutions to the problem!
Since we don’t go into elliptic curves too much, we would like to refer to Silverman and Tate [2] or
Tzanakis [3], which are good sources when one may want to have a better understanding of this
subject.
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As an example we take the equation we found earlier: y2 = x3− 144x+ 1296, where y = 72n− 36
and x = 12m − 12. We will show how to use MAGMA to find the generators of the group, thus
finding all solutions to the problem. Using the MAGMA code below we find pairs (x, y) which
suffice the equation by using the generators of the group. In this case there are two, but if there
had been any other amount we could use any linear combination of them to get our answers. The
list of pairs is not complete, as we only printed the combinations aP + bQ where P and Q are the
two generators and a and b are 0, 1, ..., 4. We do know there are more but at the moment we only
want to show how to implement the theory. This way, we get 25 points.

Figure 3: MAGMA code for generating solutions (x, y)

Figure 4: MAGMA results
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In the code we define the elliptic curve, find the generators, give the first generator the symbol
P and the second Q. Next we make a for-loop in which the 25 combinations of P and Q are
calculated. The results have been processed in the table below.

x y n m

(
n

2

)
=

(
m

3

)
0 36 1 1 0

4 -28
1

9

4

3

−4

81
252 3996 56 22 1540

−248

49

14932

343

3410

3087

85

147

550715

9529569
24 -108 -1 3 1

12 36 1 2 0
-12 -36 0 0 0
48 -324 -4 5 10

33

4

207

8

55

64

27

16

−495

8192
52

9

−692

27

35

243

40

27

3640

59049
108 1116 16 10 120

-8 44
10

9

1

3

5

81

9 -27
1

8

7

4

−7

128

40 244
35

9

13

3

455

81
−15708

1681

2944836

68921

−6440

68921

372

1681

242662420

4750104241
3936

49

244476

343

−3224

343

377

49

5750004

117649
105

16

1611

64

435

512

99

64

33495

524288
−96

25

−5292

125

−11

125

17

25

748

15625
420 -8604 -119 36 7140

−2915480

269361

5568454036

139798359

1325149370

1258185231

79213

808083

44368743304221215

1583030075506523361
144801

13225

−48855951

1520875

655061

12167000

101167

52900

7541022273279

296071778000000
26680

961

4073516

29791

643249

268119

9553

2883

120650998685

71887798161
105

16

1611

64

435

512

99

64

33495

524288
−12276

841

413748

24389

17941

24389

−182

841

57841784

594823321
1972

121

−76204

1331

−3536

11979

856

363

27430520

143496441

Table 3: Collisions found by the generators of elliptic curves
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Comparing the results we found to the results we found earlier, one may note that we get many
new collisions. It is striking that there does not seem to be many similar collisions. This may be
the case because we only added P and Q to each other a maximum of four times each. Perhaps,
if we had added P to itself more times than four, we may have gotten other results. Nonetheless,
adjusting the code by increasing the for-loops does result in more collisions, thus giving an idea
of how to find them.

In short we can conclude that there are various approaches to finding collisions. A few of them we
showed, being the somewhat trivial symmetric property, the comparing of the denominators and
the use of elliptic curves.
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7 Summary

In this article we analyzed

(
n+ p

q

k

)
=
n+ p

q

1
·
n− 1 + p

q

2
. . .

n− k + 1 + p
q

k
.

We found that

(
n+ 1

2

k

)
=


1

4kk!
· (2n+ 1)! · (n− k)!

(2n− 2k + 1)! · n!
if n ≥ k

(−1)k−n−1 · (2n+ 1)! · (2k − 2n− 2)!

4k−1 · 2 · n! · k! · (k − n− 1)!
if n < k

.

and more generally (
n+ p

q

k

)
=

1

k! · qk
k∑
i=0

s(k, i)(nq + p)iqk−i

where s(k, i) are the Stirling numbers of the first kind.

We found an approximation for
(n+ 1

2
k

)
given by

(
n+ 1

2

k

)
≈


1

kk
· 2n+ 1

2n− 2k + 1
· (n+ 1)n

(n− k + 1)n−k
·

√
(2n+ 1)(n− k)

2πk · n(2n− 2k + 1)
if n ≥ k

(−1)k−n−1 · n(4n+ 4)n · (k − n− 1)k−n−1

4n · kk
·
√

2n+ 1

πnk
if n < k

.

Next we found a formula for the value of the denominator of a
(n+ p

q

k

)
given by

denominator = qk ·
n∏
i=1

pαii , withαi =
1

pi − 1
(k − [k]pi) .

Using this result we were able to find the minimal and maximal value of the numerator. The

maximum (given n > k) occurs when k ≈ 4

5
n, and the minimum (given n < k) occurs when

k ≈ 4

3
n. We were interested in the minimum and maximum of the numerator specifically as the

value of the whole coefficient converges to zero.

Then we moved to collisions. We found a triplet of ways to find these. First of all(
n+ q

p

k

)
=

(
k − n− 1− q

p

k

)
if k is even. Secondly we can set use the formula for the denominator to find two numbers which
can result in the same numerator and then derive an equation by using the definition of the
binomial coefficient. Thirdly, we can make use of elliptic curves by rewriting certain nice cases of
coefficients. This last method was not explored as thoroughly as one may prefer, as the field of
elliptic curves is rather large and not entirely relevant to this paper. Though, when having more
knowledge on this topic, undoubtly some great results can be found.
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8 Suggestions for further research

Firstly I would like to note that we did not thoroughly explore the last topic addressed in this
paper, being the application of elliptic curves. When diving more deeply into this topic there
might be some surprising results that may make it easier to find collisions, that can find multiple
collisions or even provide us with a family of collisions.

In this article we have added fractions, but what also could be interesting is a binomial of the form(
n+ a

√
b

k

)
. It is not hard to see that this will result in a similar number

ñ+ ã
√
b

k̃
. Can we find

nice formula’s or collisions with these kind of binomial coefficients? We have restricted ourselves
to the rational binomial coefficients because we wanted a better understanding of how these work.
It could be that these can be generalized, however, that was not what we were interested in.

Similarly, we could take a look at complex binomials. Imagine working with

(
n+ bi

k

)
. Can we

describe something about the behaviour of such numbers, and can we find a way to find collisions?
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Appendix

Appendix A: Stirling numbers

The following table of unsigned Stirling numbers can be found at [5], or in books containing
common sets of numbers.

s(k,i) 0 1 2 3 4 5 6 7 8 9
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1
7 0 720 1764 1624 735 175 21 1
8 0 5040 13068 13132 6769 1960 322 28 1
9 0 40320 109584 118124 67284 22449 4536 546 36 1

Appendix B: Some mathematica code

In this paper I often note that checks with Wolfram Mathematica suggest that results we found
are right. Some of that code will be presented here for the reader.

Figure 5: Code to calculating the denominator
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Figure 6: Code to approximate the maximum

Figure 7: Code to approximate the minimum
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