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Abstract

Thermal infrared imagery acquired via remote sensing provide essential information in
agriculture and water management. However, with present-day sensors high spatial resolution
(∼ 30m) images are not regularly available. Sensors currently provide either low spatial
resolution (∼ 300m) imagery at a high temporal frequency or high resolution imagery at a low
temporal frequency. In this research a model to sharpen imagery to higher spatial resolutions
is examined with data of an arable area in South Africa. The model uses multiple linear
regression to predict the higher resolution imagery. The model assumes there is a unique and
sufficiently linear relation between thermal and non-thermal imagery. The latter of which is
available frequently and at high resolution. A low resolution VIIRS image is used for the
prediction and this prediction is evaluated by a high resolution Landsat image of the same
area. Both raw non-thermal data as well as transformed non-thermal data is used. The results
show that the transformed data outperforms the raw data with mean squared errors (MSE) of
4.7135K2 and 6.7382K2 respectively. These results show that transformations of non-thermal
data that increase the collinearity with the thermal data have the potential to improve the
spatial resolution of thermal imagery. Further research is necessary to decrease the issues of
collinearity between independent variables. Additionally, the model could be further developed
by adding unique variables that have a strong linear correlation with the thermal data.
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1 Preface
This research has been executed as a thesis project for the Applied Mathematics bachelor program
of the TU/e. The assignment was commissioned by eLEAF, a company based in Wageningen, the
Netherlands, which provides data and applications mainly on agriculture and water management.
The aim of this research is to improve the algorithms used in the eLEAF applications. These ap-
plications include the support of sustainable water use, increase of food production and protection
of environmental systems.

All satellite-based data used in this research was provided by eLEAF. The data represents
reflectances of several ranges of the electromagnetic spectrum and land surface temperatures; all
of the same area in South Africa.
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2 List of abbreviations
The abbreviations in alphabetical order.

ET Evapotranspiration
GVMI Global vegetation moisture index
LSC Land surface characteristic
LST Land surface temperature
LWCI Leaf water content index
MSI Moisture stress index
NDVI Normalized difference vegetation index
NDWI Normalized difference water index
NIR Near-infrared
PSRI Plant senescence reflectance index
RGB Red-green-blue
SIMI Shortwave infrared moisture index
SMC Soil moisture content
SWCI Surface water capacity index
SWIR Shortwave infrared
TIR Thermal-infrared
VIS Visible
VSDI Visible and shortwave infrared drought index
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3 Introduction

3.1 Remote Sensing
Remote sensing is described as the acquisition of information about objects or phenomena at a
non-intrusive distance from those objects or phenomena. The term most commonly refers to earth
observations, either via satellite or aircraft. This paper will mostly focus on multi-spectral images
taken with satellite-based sensor technologies. More specifically, sensors of the visible and near-
infrared (VIS/NIR) spectrum, sensors of the shortwave infrared (SWIR) spectrum and sensors of
the thermal-infrared (TIR) spectrum. Imagery from each spectrum is used to improve agricultural
applications.

TIR remote sensing is the primary tool used for acquiring a land surface temperature (LST) of
a geological surface area. LSTs provide valuable information for estimating soil moisture content
(SMC) and evapotranspiration (ET). Up-to-date data on SMC and ET is of crucial importance in
agricultural industries to enhance crop production and sustainable water management.

The issue, however, is that current sensors either lack the spatial resolution or temporal fre-
quency to provide sufficiently useful information. Typically, satellites with a higher image resolu-
tion have a lower fly over rate and vice versa. As low resolution thermal data is available more
regularly, naturally the question arises if high resolution LSTs can be accurately estimated using
low resolution LSTs.

4 Theory

4.1 Land Surface Characteristics
To find so-called thermal sharpening methods, prior research has modeled relationships between
other land surface characteristics (LSCs) and LSTs. Many of these LSCs are determined by non-
TIR remote sensing. Imagery of non-TIR spectral ranges are generally available at higher resolution
and higher temporal frequency. Consequently, accurate relationships between LSCs and LSTs are
of invaluable importance. The next subsections will be dedicated to describing and defining the
LSCs that are used in this research.

Figure 1: RGB image of area of research

Figure 1 represents the area in South Africa all data refers to in red-green-blue (RGB) colors.
To get an indication of how the LSCs are correlated to the LST of this area, graphs of the provided
data are added. These graphs can be seen in Figures 2-11. The data with which the LSCs are
calculated can be found in Appendix A which contains the 13 spectral bands of satellite Sentinel-2.
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Due to the way the concerning LSCs are defined, they all present a ratio of reflectance. As such,
the LSCs discussed in this research are all dimensionless.

NDVI

A popular thermal sharpening method in recent years is TsHARP, a model that finds a relationship
between the normalized difference vegetation index (NDVI) and the LST. The NDVI is an indicator
that is used to analyze how much vegetation a surface area contains (Gandhi et al., 2015). This
indicator is determined by reflectance from the VIS/NIR spectrum as follows:

NDV I =
RNIR −RRED
RNIR +RRED

. (1)

Here, RNIR and RRED stand for the value of the NIR and red spectral reflectance respectively.
As the spectral reflectance is a ratio of the reflected radiation over the incoming radiation, the
values of NIR and R lie between 0 and 1. Consequently, the NDVI ranges between −1 and 1.

Figure 2: Temperature (in K) versus NDVI

Figure 2 shows that within the data a higher NDVI generally translates to a lower temperature.
NDVI values around 0 (between −0.1 and 0.1) generally indicate a barren land surface. Higher
positive values indicate thicker vegetation.

Albedo

Albedo is the ratio of reflected solar radiation out of the total incoming solar radiation (Coakley,
2003). Whereas most LSCs are defined by a spectral reflectances of a specific range of the electro-
magnetic spectrum, Albedo is defined by the reflectance of the entire electromagnetic spectrum.
As such, Albedo is defined as a ratio with values between 0 and 1. An Albedo value of 0 indicates
all light is absorbed, while a value of 1 indicates all light is reflected.

Figure 3: Temperature (in K) versus Albedo

Figure 3 captures a positive relation between Albedo and temperature of the provided data.
As can be seen, the Albedo values range between 0.05 and 0.35, which indicate surface types like
grass, forest and barren lands. Generally Albedo values between 0.5 and 0.9 indicate very high
reflectance, only possible on surface types as ice or snow.
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PSRI

The plant senescence reflectance index (PSRI) is used to detect stress or aging in plants (Merzlyak
et al., 1999). Similarly to NDVI, this indicator is also determined by reflectance of the VIS/NIR
spectrum. PSRI is determined as follows:

PSRI =
RRED −RBLUE

RV RE5
. (2)

RBLUE and RV RE5 represent values of the blue and vegetation red edge (band 5) spectral
reflectance respectively. As there are multiple wavelength ranges in the vegetation red edge spec-
trum, clarification is given that it concerns band 5 of Sentinel-2. The vegetation red edge spectral
range is a specific range of the NIR spectrum for which healthy vegetation has high reflectance.
Consequently, higher PSRI values indicate distress in the vegetation.

Figure 4: Temperature (in K) versus PSRI

As can be seen in Figure 4, higher temperatures correlate with higher PSRI in a rather linear
relation. Healthy vegetation is well-hydrated, and thus generally more cool.

LWCI

The leaf water content index (LWCI) has similar applications as the PSRI. Both the LWCI and
the PSRI are used to monitor vegetation health. More specifically, LWCI is used to monitor the
relative water content of vegetation (Hunt Jr and Rock, 1989).

LWCI =
−ln[1− (RNNIR −RSWIR11)]

−ln[1− (RNNIR − 0.2)]
. (3)

RNNIR and RSWIR11 represent values of the narrow NIR and SWIR (band11) spectral re-
flectance respectively. Narrow NIR is a spectral range within the NIR spectrum used for classifying
vegetation. SWIR reflectance is used for measuring SMC.

Figure 5: Temperature (in K) versus LWCI

Figure 5 shows that the LWCI for the extreme values in the temperature data set appears to
approach zero. No clear relation with the LST is to be seen as of yet. Due to the logarithmic
nature of the formula, the values of the LWCI have a very broad range.



4 THEORY 5

MSI

The moisture stress index (MSI) is used, besides vegetation health monitoring, for fire hazard and
drought analysis (Hunt Jr and Rock, 1989). The typical range of the MSI is between values of 0 and
3. Vegetation with an MSI value between 0.4 and 2 generally indicate green, healthy vegetation.

MSI =
RSWIR11

RNNIR
. (4)

Figure 6: Temperature (in K) versus MSI

In Figure 6 can be seen that no clear relation between the LST and MSI is observable. It is
noteworthy that all data falls in the green vegetation range of 0.4 to 2.

GVMI

The global vegetation moisture index (GVMI) is an indicator used to retrieve the water content of
vegetation reliably. While the NDVI also provides information about the greenness of vegetation,
the GVMI solely focuses on the quantity water in vegetation (Ceccato et al., 2002). A higher
GVMI indicates higher water content in vegetation.

GVMI =
(RNNIR + 0.1)− (RSWIR11 + 0.02)

(RNNIR + 0.1) + (RSWIR11 + 0.02)
. (5)

Figure 7: Temperature (in K) versus GVMI

As seen in Figure 7, there appears to be an inverse correlation between GVMI and tempera-
ture. This is unsurprising, as higher water content would logically relate to a lower temperature.
However, from the data it is unclear if this inverse relation continues to be valid for GVMI values
higher than 0.2.
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NDWI

The normalized difference water index (NDWI) is used for detecting water bodies. Whereas the
NDVI gives an indication of the amount of vegetation in an area, the NDWI gives an indication
of how much water is in an area (Hardisky et al., 1983). NDWI values over 0.5 represent water
bodies, while vegetation and soil have much smaller values, making it easy to distinguish the water
bodies.

NDWI =
RNNIR −RSWIR11

RNNIR +RSWIR11
. (6)

Figure 8: Temperature (in K) versus NDWI

No sufficiently large water bodies are detected in the data set. Consequently, the NDWI values
are below 0.5 for the data set. In Figure 8, a clear relation between NDWI and the temperature
cannot be directly determined.

VSDI

The visible and shortwave infrared drought index (VSDI) is used for monitoring moisture content
for both vegetation and soil using SWIR and VIS spectral ranges. As stated by Zhang et al. (2013)
"VSDI is theoretically based on the difference between moisture-sensitive bands (SWIR and red)
and moisture reference band (blue)" (p. 4585). Generally, VSDI values between 0 and 1 indicate
soil, vegetation or a combination, with higher values indicating higher moisture content. Values
over 1 indicate bodies with high moisture content like water, snow or clouds. The formula for the
VSDI is as follows:

V SDI = 1− [(RSWIR11 −RBLUE) + (RRED −RBLUE)]. (7)

Figure 9: Temperature (in K) versus VSDI

No clear conclusion can be drawn from Figure 9. For the VSDI values between 0.4 and 1.0 it
appears that the VSDI has a negative correlation with the temperature. However, it can be seen
that there are VSDI values of over 1.0 that do not align with this conclusion. As the data from the
NDWI concluded there are no large water bodies, therefore this is most probably an indication of
clouds over the research area.
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SWCI

The surface water capacity index (SWCI) is used for the monitoring of SMC. SWCI is used to
monitor large areas where the vegetation coverage stays mainly consistent over time (Chen et al.,
2009). Higher values indicate higher moisture content. The formula for SWCI is as follows:

SWCI =
RSWIR11 −RSWIR12

RSWIR11 +RSWIR12
. (8)

The SWCI uses two different SWIR reflectance ranges. Whereas previously discussed LSCs
used only band 11 of the Sentinel-2 SWIR range, the SWCI uses both band 11 and band 12.

Figure 10: Temperature (in K) versus SWCI

The relation that can be seen in Figure 10 is in form very similar to the relation found for
NDVI in Figure 2. Figure 2 and 10 indicate negative correlations with temperature, both of which
are approximately linear relationships.

SIMI

The shortwave infrared moisture index (SIMI) makes use of reflectances in the SWIR spectrum to
monitor SMC (Yao et al., 2011). Similarly to the SWCI, the SIMI uses two different ranges of the
SWIR spectrum (band 11 and band 12). Unlike the SWCI, the SIMI has a negative correlation
with SMC. The formula for the SIMI is as follows:

SIMI =

√
R2
SWIR11 +R2

SWIR12

2
. (9)

Figure 11: Temperature (in K) versus SIMI

Figure 11 shows a positive correlation between the SIMI and temperature. The relation appears
to be of square root nature.
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5 Method

5.1 Multiple Linear Regression
A statistical-based thermal sharpening tool, like TsHARP, is based on the assumption that there
is a unique relationship between land surface characteristics (LSC) and thermal data (LST). For
instance, the TsHARP algorithm uses NDVI to find such a relationship. By a similar approach,
that relationship could be expanded by adding more LSCs to the equation.

Using linear regression analysis such a relationship can be found between LSCs and an available
low resolution thermal image. Data of the LSCs should be transformed to the coarser resolution
size of the LST, such that:

LSTlow = f(LSClow) + ε. (10)

Here, ε represents an error variable, which is assumed to be independent and identically dis-
tributed for all data. The function f is a depiction of the desired relationship.

For a single data point {yi, X1, X2, ..., Xr}, with yi = LSTlow,i as dependent variable and
X1, X2, ..., Xr as the r independent variables (or regressors) of the function f , a linear function
model can be determined. By choosing a multiple linear regression model, the function for LSC
then takes the form:

f(LSC) = β01 + β1X1 + β2X2 + · · ·+ βrXr = xT · β. (11)

To the regressor vector X̄ a constant is added. Then it follows that β is an (r+ 1)-dimensional
parameter vector, with r the number of independent variables (excluding the constant) on which
LSTlow is dependent. Then x and β take the form:

x =


1
X1

X2

...
Xr

 and β =


β0
β1
β2
...
βr

,

such that:

yi = xTi · β + εi. (12)

An image consists of a data set of p rows and q columns. With a total of n = pq data points
of the form {yi, Xi,1, Xi,2, ..., Xi,r}ni=1, it then follows that the model given in (3) can be expanded
for the complete data set such that:

Y = X · β + ε, (13)

with:

Y =


y1
y2
...
yn

 , X =


xT1
xT2
...
xTn

 =


1 X1,1 · · · X1,r

1 X2,1 · · · X2,r

...
...

. . .
...

1 Xn,1 · · · Xn,r

 and ε =


ε1
ε2
...
εn

.

Now, a multiple linear regression analysis can be done to find a fitting relation between the
dependent variable Y and the independent variables of regressor matrix X. As a result, the values
for the so-called regression coefficients β1, ..., βr of parameter vector β are estimated. Note that
an independent variable Xi,k can be a non-linear function of another variable Xi,l, but the model
remains linear in parameter vector β.

Finally, using the found values of the regression coefficients, a higher resolution thermal image
can be predicted, such that:
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LSThigh = f(LSChigh) + ε. (14)

Note that this method can obtain a resolution no better than the highest resolution the LSCs
are available in. Typically, downscaling the LSC images to match the lower resolution of the LST
is not an issue as will be discussed in the next section.

5.2 Bilinear Interpolation
A technique that is commonly used to resample imagery is bilinear interpolation. It can be used to
both upscale and downscale the resolution of an image, though in this research it will only be used
to downscale high resolution imagery. The basic principle of bilinear interpolation is that linear
interpolation is performed twice in different directions. In Figure 12 an example is shown of linear
interpolation.

Figure 12: Example of linear interpolation (Berland, 2007)

Performing linear interpolation twice is a rather time consuming and devious approach. There
is an alternative approach that renders a more elegant equation, namely:

f(x, y) = α0 + α1x+ α2y + α3xy. (15)

Using linear algebra, the coefficients can be found by solving the following system:
1 x1 y1 x1y1
1 x1 y2 x1y2
1 x2 y1 x2y1
1 x2 y2 x2y2



α0

α1

α2

α3

 =


f(P11)
f(P12)
f(P21)
f(P22)

.

The error in bilinear interpolation is dependent on the interpolated function. In this case,
the interpolated functions are the images representing the LSTs and LSCs. These images are of
a highly erratic nature. Due to the unpredictable behavior of the LST and the LSCs, bilinear
interpolation is an inadvisable approach for upscaling the resolution of these images. However, as
stated previously, this interpolation method will be used for downscaling these images.
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6 Implementation

6.1 Data
Using linear regression as explained previously, a relation will be found between the given LST
of an area of land and data of different bands of spectral ranges in that same area of land. The
LST image provided by eLEAF has been generated by the Visible Infrared Imaging Radiometer
Suite (VIIRS), a commonly used thermal sensor. VIIRS provides eLEAF with low resolution LST
images. The LST image that will be used for the linear regression can be seen in Figure 13.

Figure 13: Low resolution (300m) image of LST (in K) generated by VIIRS

The pixels in Figure 13 represent a square surface area of 300m by 300m. Hence, the spatial
resolution of the image is 300m. In comparison, the much higher resolution images of the Landsat,
another commonly used thermal sensor, have a spatial resolution of 30m. Landsat provides eLEAF
with high resolution LST images, although at a much lower frequency than VIIRS. In Figure 14
such a high resolution image of the same area is shown, taken by Landsat at approximately the
same moment as the VIIRS image.

Figure 14: High resolution (30m) image of LST (in K) generated by Landsat

As can be seen in Figure 14, there are a number of circular yellow dots spread over the image.
These are of high interest for eLEAF, as these dots represent agricultural areas. Also note how
these dots are not visible in Figure 13. A model that can give reliable information on these areas
would be useful. To be clear, the information given in Figure 14 will not be used to construct the
model, but it will function as a reference.
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The input for the independent variables in the model will be given by 13 different spectral
bands. In Figure 15 all the spectral bands and their respective range on the electromagnetic
spectrum can be seen. The 13 different spectral bands do not all have the same spatial resolution.
As can be seen in Figure 15, there are three categories of spatial resolutions, namely resolutions of
10m, 20m and 60m.

Figure 15: The 13 different spectral bands of Sentinel-2 that will be used as input (ESA, 2015)

eLEAF provided the imagery of all the 13 spectral bands in a spatial resolution of 20m. So
that means eLEAF uses a form of resampling to make all bands of identical resolution. These
images represent the ratio between reflected and incoming radiation for a certain range in the
electromagnetic spectrum. This ratio is given in prodecimille, so a pixel value of 1250 prodecimille
corresponds with a reflection ratio of 0.125.
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Bilinear interpolation will be used to resample the bands to the same resolution as the LST
images. Consequently, a 300m resolution and a 30m resolution image is constructed for every
spectral band. In Figure 16 an example can be seen of these resamples.

(a) Band 8a (resolution 20m)

(b) Band 8a (resolution 30m) (c) Band 8a (resolution 300m)

Figure 16: Spectral reflectance (in prodecimille) of band 8a in different spatial resolutions

The spectral band images with a resolution of 300m will be used to perform the linear regression.
Then, the spectral band images with a resolution of 30m will be used to predict the LST at that
high resolution. Two models are used to make this prediction. These two models will be discussed
in the next subsections.
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6.2 Model 1
For the first model all the spectral bands are directly inserted in the model. As the computing time
for finding a fitting model with 13 independent variables rapidly increases with each added degree,
the variables are limited to at most the second degree. This also significantly reduces the number
of the possible combinations in comparison with higher degrees and therefore the complexity of
the formula. The resulting formula can be seen in (16). Note that the relation ∗ is defined as:
α ∗ β = α+ αβ + β.

Temp ∼ band1∗(band2 + band3 + band4 + band5 + band6 + band7 + band8

+ band8a+ band9 + band10 + band11 + band12)

+ band2∗(band3 + band4 + band5 + band6 + band7 + band8

+ band8a+ band9 + band10 + band11 + band12)

+ band3∗(band4 + band5 + band6 + band7 + band8 + band8a

+ band9 + band10 + band11 + band12)

+ band4∗(band5 + band6 + band7 + band8 + band8a+ band9

+ band10 + band11 + band12)

+ band5∗(band6 + band7 + band8 + band8a+ band9 + band10

+ band11 + band12)

+ band6∗(band7 + band8 + band8a+ band9 + band10 + band11

+ band12)

+ band7∗(band8 + band8a+ band9 + band10 + band11 + band12)

+ band8∗(band8a+ band9 + band10 + band11 + band12)

+ band8a ∗ (band9 + band10 + band11 + band12)

+ band9∗(band10 + band11 + band12)

+ band10 ∗ (band11 + band12)

+ band11 ∗ band12

(16)

After further studying the model, not all variables were found to be of sufficient significance.
Using stepwise regression, a more fitting model can be found. Stepwise regression is a selection
method used in statistics to find all variables that exceed a significance threshold. Using this for
the formula described in (16), a new formula is found. This new formula can be seen in (17).
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Temp ∼ band1 + band2 + band3 + band4 + band5 + band6

+band7 + band8 + band8a+ band9 + band10 + band11 + band12

+band1 · band2 + band1 · band3 + band1 · band5 + band1 · band6 + band1 · band8

+band1 · band8a+ band1 · band9 + band1 · band10 + band1 · band12

+band2 · band3 + band2 · band4 + band2 · band5 + band2 · band6 + band2 · band7

+band2 · band8 + band2 · band8a+ band2 · band9 + band2 · band10

+band2 · band11 + band2 · band12 + band3 · band5 + band3 · band6

+band3 · band7 + band3 · band8 + band3 · band8a+ band3 · band9

+band3 · band10 + band3 · band11 + band3 · band12 + band4 · band5

+band4 · band6 + band4 · band7 + band4 · band8a+ band4 · band9

+band4 · band11 + band4 · band12 + band5 · band6 + band5 · band7

+band5 · band8a+ band5 · band10 + band5 · band11 + band5 · band12

+band6 · band7 + band6 · band8 + band6 · band8a+ band6 · band9

+band6 · band10 + band6 · band11 + band6 · band12 + band7 · band8

+band7 · band8a+ band7 · band9 + band7 · band10 + band7 · band11

+band7 · band12 + band8 · band8a+ band8 · band9 + band8 · band10

+band8 · band11 + band8 · band12 + band8a · band9 + band8a · band11

+band8a · band12 + band9 · band11 + band9 · band12 + band10 · band11

+band10 · band12 + band11 · band12

(17)

The found coefficients for the model are presented in Appendix B.

6.3 Model 2
For Model 2, the spectral bands will not be directly implemented in the formula. Instead they
will be preprocessed to represent the LSCs mentioned in Section 4. An implication of this is that
not all available spectral bands will be used, as not all spectral bands are used for the concerning
LSCs. This formula can be seen in (18).

Temp ∼ NDV I ∗ (Albedo+ PSRI + LWCI +MSI +GVMI

+NDWI + V SDI + SWCI + SIMI)

+Albedo ∗ (PSRI + LWCI +MSI +GVMI +NDWI

+ V SDI + SWCI + SIMI)

+PSRI ∗ (LWCI +MSI +GVMI +NDWI + V SDI

+ SWCI + SIMI)

+LWCI ∗ (MSI +GVMI +NDWI + V SDI + SWCI

+ SIMI)

+MSI ∗ (GVMI +NDWI + V SDI + SWCI + SIMI)

+GVMI ∗ (NDWI + V SDI + SWCI + SIMI)

+NDWI ∗ (V SDI + SWCI + SIMI)

+V SDI ∗ (SWCI + SIMI)

+SWCI ∗ SIMI

(18)

Similarly as with Model 1, stepwise regression is used to find the variables that exceed a
significance threshold. The resulting formula can be found in (19)
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Temp ∼ NDV I +Albedo+ PSRI + LWCI +MSI +GVMI

+NDWI + V SDI + SWCI + SIMI +NDV I ·Albedo
+NDV I · PSRI +NDV I ·GVMI +NDV I ·NDWI +NDV I · V SDI
+NDV I · SIMI +Albedo · PSRI +Albedo ·MSI +Albedo ·NDWI

+Albedo · V SDI +Albedo · SIMI + PSRI ·MSI + PSRI ·GVMI

+PSRI ·NDWI + PSRI · V SDI + PSRI · SWCI + PSRI · SIMI

+LWCI ·MSI + LWCI ·GVMI +MSI ·GVMI +MSI · V SDI
+MSI · SIMI +GVMI ·NDWI +GVMI · V SDI +GVMI · SWCI

+GVMI · SIMI +NDWI · V SDI +NDWI · SWCI +NDWI · SIMI

+V SDI · SWCI + SWCI · SIMI

(19)

The found coefficients for this model can also be found in Appendix B.

6.4 Compensating Operations
Now, using these models, two predictions will be performed with each. First the low resolution
image will be reconstructed, then the high resolution image will be constructed. The results of
these predictions will have outliers, as one would expect from a statistical model. As nonsensical
outliers do not provide eLEAF with useful information (e.g. negative temperatures on the Kelvin
scale), these outliers will be filtered out. Outliers in a prediction will be defined as elements that
are respectively higher or lower than the maximum or minimum temperature of the low resolution
image. These outliers will be replaced by the average of their neighbor elements. Simply leaving
out the outliers would produce unwanted static on the resulting prediction. Therefore the choice
is made to provide eLEAF with a reasonable indication of these areas, as it is essential to provide
some statement on these areas. Implications of this will be discussed in the conclusion.

A final adjustment will also be added to the high resolution prediction. As the original low
resolution and high resolution LST images by VIIRS and Landsat respectively were not taken at the
same moment the temperatures differ slightly. The model will compensate that slight temperature
deviation by adding the average difference of the prediction to all the values of the prediction.
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7 Results

7.1 Prediction
Naturally, the question remains now to see how well the models can predict temperature based on
the given input. Before making predictions on the high resolution temperatures, it makes sense to
first try and reconstruct the image on which the model was based. First will be shown how both
models can predict the low resolution image from which the relations are determined.

(a) Model 1 (b) VIIRS Observation

Figure 17: Low resolution (300m) comparison of Model 1 and VIIRS (in K)

In Figure 17, it can be seen how the first model, based purely on the direct input of all available
spectral bands, can reproduce the low resolution image. Qualitatively, Figure 17a and Figure 17b
appear to be similar images, but not exactly the same. It could be that the difference between the
model and the reality further expand as the resolution gets higher. To get an indication on the
error of the models the Mean Squared Error is computed. Its value is:

MSEModel1,low = 1.4429.

Now the results of Model 2 will be examined. Similarly as with Model 1, first the reconstruction
of the low resolution image is shown.

(a) Model 2 (b) VIIRS Observation

Figure 18: Low resolution (300m) comparison of Model 2 and VIIRS (in K)

In Figure 18, it can be seen how the second model, based on LSCs, reproduces the low reso-
lution image. Comparing Figure 17a and Figure 18a it is clear that there are many similarities.
However, there are also clearly some minor differences. From these first images it is not yet clear if
Model 1 or Model 2 performs better in reproducing the low resolution image of the VIIRS satellite.
Here, the Mean Squared Error is:
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MSEModel2,low = 1.9120.

For Model 2, the Mean Squared Error is higher than for Model 1. It could be that not including
all spectral bands in this model results in a lower accuracy. Next, the higher resolution images will
be presented.

(a) Model 1 (b) Landsat Observation

Figure 19: High resolution (30m) comparison of Model 1 and Landsat (in K)

Even more interesting than reproducing the low resolution image is to predict the high reso-
lution image. Figure 19 and Figure 20 show the comparison of the Landsat image and Model 1
and Model 2 respectively. In Figure 19 it can be seen that the model can produce roughly similar
strokes of warm and cold areas as in the Landsat Image. However, there seems to be some noise in
the form of small dots. Especially in cases where higher levels of detail are required, it would be
difficult to make conclusions based on the image. The Mean Squared Error here is also substan-
tially higher than in the lower resolution image:

MSEModel1,high = 6.7382.

It is not surprising that the Mean Squared Error is higher for the high resolution image than
for the low resolution image. Nonetheless, it is preferable to keep the Mean Squared Error lower
rather than higher. Interesting is now to see how Model 1 performs in comparison to Model 2.

(a) Model 2 (b) Landsat Observation

Figure 20: High resolution (30m) comparison of Model 2 and Landsat (in K)

Most interesting to note in Figure 20 is that a high percentage of the low temperature dots
from the Landsat image also appear in the Model 2 prediction. Also the edges of warm and cold
areas appear to be sharper for Model 2 in comparison to Model 1. Thus, Model 2 seems to produce
a more accurate image than Model 1 at this higher resolution. This is also reflected in the Mean
Squared Error:
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MSEModel2,high = 4.7135.

Surprisingly, the Model 2 Mean Squared Error performs worse for the low resolution. For the
high resolution it performs significantly better.

(a) Difference of Model 1 (b) Difference of Model 2

Figure 21: Differences of the low resolution predictions and observations

Figure 21 shows a graph of the difference between the model and observation of the low res-
olution images. Darker red colors indicate the model overestimate the temperature, while lighter
yellow colors indicate the model underestimate the temperature. Interesting to see is that the
colors are not uniformly distributed over the image, but rather cluster in groups. The maximum
difference in temperature from the observation is approximately 6K.

(a) Difference of Model 1 (b) Difference of Model 2

Figure 22: Differences of the low resolution predictions and observations

Similarly, the difference between the model and observation of the high resolution images can
be seen in Figure 21. Here the maximum difference in temperature is approximately 18K, which
is very significant. It is interesting to note that Figure 21a and 21b as well as Figure 22a and 22b
show similar patterns. However, the patterns of Figure 21 and 22 do not appear to have similar
patterns.
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7.2 Diagnosis
To get better insights on how well the data fits a linear regression model, a look is taken at
the diagnostics of both models. Consequently, further conclusions can be drawn on which model
performs better.

Model 1

From the diagnostics of Model 1, presented in the three plots in Figures 23, 24 and 25, it can be
concluded that the model is not perfect, but does sufficiently fit a linear regression model.

Figure 23: Standardized Residuals plot of Model 1

There are a bunch of outlying data points, as can be seen in Figure 23. Ideally, the points
would be distributed in such a way that a horizontal band of points near the 0 line is formed. The
red lines can be used as a reference to see how well this horizontal band is formed. All points
outside this band formed by the red lines indicate a very high relative difference in the prediction
versus the actual value. The band of points also shows a slight curve that gives cause for concern.
There is one point with a value of approximately -6 which indicates a large outlier.

Figure 24: Normal Q-Q plot of Model 1

For the Normal Q-Q plot it is tested if the error components of the data are approximately
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normally distributed. The data points should follow the diagonal dashed line and in Figure 24 the
points sufficiently follow this line. Near the ends of the quantiles there is a curve, which again
gives cause for concern.

Figure 25: Cook’s Distance plot of Model 1

Cook’s Distance is a statistical tool used to check if there are data points that leverage the val-
ues of the fitted model. Figure 25 shows that all data falls within Cook’s Distance. The conclusion
that can be drawn is that the data points do not significantly leverage the model. However, some
points do have a relatively high leverage value, even though they still are within Cook’s Distance.

Temp b1 b2 b3 b4 b5 b6 b7 b8 b8a b9 b10 b11 b12
Temp 1.00 0.56 0.58 0.63 0.71 0.70 0.65 0.64 0.64 0.64 0.63 0.76 0.77 0.75

b1 0.56 1.00 0.99 0.96 0.91 0.89 0.81 0.79 0.79 0.78 0.81 0.86 0.86 0.88
b2 0.58 0.99 1.00 0.98 0.94 0.92 0.85 0.82 0.82 0.82 0.84 0.88 0.89 0.91
b3 0.63 0.96 0.98 1.00 0.98 0.97 0.92 0.90 0.90 0.90 0.91 0.91 0.94 0.95
b4 0.71 0.91 0.94 0.98 1.00 0.99 0.94 0.92 0.92 0.91 0.92 0.93 0.97 0.98
b5 0.70 0.89 0.92 0.97 0.99 1.00 0.97 0.95 0.95 0.95 0.95 0.92 0.97 0.97
b6 0.65 0.81 0.85 0.92 0.94 0.97 1.00 1.00 1.00 1.00 0.99 0.86 0.91 0.90
b7 0.64 0.79 0.82 0.90 0.92 0.95 1.00 1.00 1.00 1.00 0.99 0.84 0.89 0.87
b8 0.64 0.79 0.82 0.90 0.92 0.95 1.00 1.00 1.00 1.00 0.99 0.84 0.89 0.87
b8a 0.64 0.78 0.82 0.90 0.91 0.95 1.00 1.00 1.00 1.00 0.99 0.84 0.89 0.87
b9 0.63 0.81 0.84 0.91 0.92 0.95 0.99 0.99 0.99 0.99 1.00 0.87 0.90 0.88
b10 0.76 0.86 0.88 0.91 0.93 0.92 0.86 0.84 0.84 0.84 0.87 1.00 0.95 0.94
b11 0.77 0.86 0.89 0.94 0.97 0.97 0.91 0.89 0.89 0.89 0.90 0.95 1.00 0.99
b12 0.75 0.88 0.91 0.95 0.98 0.97 0.90 0.87 0.87 0.87 0.88 0.94 0.99 1.00

Table 1: Correlations of all 13 bands with each other and the LST (Temp)

Table 1 shows that all bands are moderately to strongly correlated with the temperature.
However, all bands are also strongly correlated with each other. The consequence is that the
model could overfit the data. This means that in determining the coefficients there are more
equations than unknowns. The result is that there are inconsistencies in the model. This is also a
probable explanation for the noise that appears in the Model 1 prediction seen in Figure 19.
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Figure 26: Scatterplots of variables of Model 1 versus LST

In Figure 26 can be seen that all bands have a very similar relation with the LST. Looking at
the relations, it is not surprising that all bands have such a strong correlation with each other as
seen in Table 1. None of the bands have a perfectly linear relation with the LST, but there seems
to be a trend that the higher bands (especially, Band 10, 11 and 12) are more linear.
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Model 2

For the diagnostics of Model 2, the three plots in Figures 27, 28 and 29 show that the data is still
not perfect. However, it does further affirm that Model 2 performs better than the first model.

Figure 27: Standardized Residuals plot of Model 2

In Figure 27, the residuals form a slightly more uniform band than in Figure 23. There are
still a lot of points with a standardized residual value outside the band formed by the red lines.
Ideally, all points lie within the −2.5 and 2.5 horizontal band.

Figure 28: Normal Q-Q plot of Model 2

In Figure 28, the data points follow the diagonal dashed line very well. In comparison with
Figure 24 there is a significant improvement. Also in this plot, tear the ends of the quantiles there
is a slight curve, but it is less significant than can be seen in Figure 24.
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Figure 29: Cook’s Distance plot of Model 2

Figure 29 shows that there is a point that falls outside Cook’s Distance. This point and the
other points with a relatively high leverage could be further investigated to find a cause for their
behavior. In comparison with 25 there are less points in

Temp NDVI Albedo PSRI LWCI MSI GVMI NDWI VSDI SWCI SIMI
Temp 1.00 -0.70 0.68 0.83 -0.00 0.18 -0.59 -0.18 -0.79 -0.67 0.76
NDVI -0.70 1.00 -0.71 -0.76 -0.01 -0.53 0.87 0.55 0.75 0.90 -0.80

Albedo 0.68 -0.71 1.00 0.87 -0.01 -0.13 -0.42 0.10 -0.93 -0.81 0.96
PSRI 0.83 -0.76 0.87 1.00 -0.01 0.01 -0.56 -0.04 -0.94 -0.80 0.91
LWCI -0.00 -0.01 -0.01 -0.01 1.00 0.02 -0.01 -0.02 0.01 0.00 -0.01
MSI 0.18 -0.53 -0.13 0.01 0.02 1.00 -0.81 -0.99 -0.04 -0.32 0.09

GVMI -0.59 0.87 -0.42 -0.56 -0.01 -0.81 1.00 0.83 0.58 0.74 -0.62
NDWI -0.18 0.55 0.10 -0.04 -0.02 -0.99 0.83 1.00 0.07 0.35 -0.11
VSDI -0.79 0.75 -0.93 -0.94 0.01 -0.04 0.58 0.07 1.00 0.82 -0.98
SWCI -0.67 0.90 -0.81 -0.80 0.00 -0.32 0.74 0.35 0.82 1.00 -0.87
SIMI 0.76 -0.80 0.96 0.91 -0.01 0.09 -0.62 -0.11 -0.98 -0.87 1.00

Table 2: Correlations of all 10 LSCs with each other and the LST (Temp)

Table 2 is very different from Table 1. Whereas all bands are strongly positively correlated with
each other, here it can that the LSCs have more unique correlations. Immediately can be seen
that MSI and NDWI are very weakly correlated to the temperature and LWCI is not correlated at
all. The LSCs that are strongly correlated to temperature, either positively or negatively, are also
strongly correlated to each other. Most of these LSCs are used for monitoring SMC, so it is not
surprising that they are correlated to each other. The mutual correlations in 2 are not as high as
in 1 though, so that explains why there is less noise in the Model 2 prediction as seen in 20.
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Figure 30: Scatterplots of variables of Model 2 versus LST

Unlike Figure 26, in Figure 30 can be seen that there are multiple unique relations with the
LST. PSRI stands out, because of its linear relation with the LST. Unsurprisingly, PSRI also has
the highest correlation with the LST as seen in Table 2. NDVI, SWCI and VSDI also have a
moderately linear relationship with the LST.
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8 Conclusion
In this conclusion, first a few shortcomings of the model will be examined. Then, also based on
these shortcomings, recommendations for further research will be given.

8.1 Shortcomings
The reference material

The high resolution image provided by Landsat was used as reference material for the quality of
the model. The goal was to provide eLEAF with a high resolution image of the LST, making use
of the low resolution image of the LST. In the model, values for the prediction are shifted by the
average difference between the prediction and the original high resolution image. In practice this
would not be possible, as the high resolution would normally not be available. However, as previ-
ously mentioned, the images were not taken at exactly the same moments, but approximately 30
minutes apart. The extra solar exposure seems a good explanation for the average 2.44K difference
in temperature between the two images.

It is unclear how the time in between the taking of the images has affected the LST. Logically,
more solar exposure would result in higher temperatures, but it is unknown how exactly this affects
every different surface type. As a consequence the high resolution image by Landsat might differ
in unexpected ways from the low resolution image by VIIRS. This could be a reason why the Mean
Squared Error for the high resolution images is higher than for the low resolution images.

Reliability of the input

In the original images of the spectral bands there are a few data points that have extremely high
values. This could be due to a fault in the sensor, or a rare surface type. Whatever the cause, these
points could have an influence on the model, though it is unclear how much they would affect it.
After resampling with bilinear interpolation, most of these points seem to have been filtered out.
However, there are some, although very few, data points on the edge of the image that do not get
filtered out in the resampling to a spatial resolution of 30m.

The question is how much these points influence the model. It is clear that these points cause
outliers in the prediction. It is unclear what their effect is on determining the coefficients of the
model. As previously stated, these data points seem to get flattened out in the resampling to
the low spatial resolution of 300m. However, the outliers could still influence the values of the
resampled images.

Approach to outliers in the prediction

As discussed in section 3.4, outliers in the prediction are replaced by the average of their neighbor-
ing data points. However, this can be a very inaccurate approach, especially at lower resolutions.
Due to the non-linear behavior of temperature, a singular peak in temperature could occur in the
concerning data point that the neighboring data points do not capture. The lower the resolution,
the higher the chance of such a peak occurring. Additionally, such peaks could very well be the
cause of outliers in the model in the first place. Consequently, using this approach on a cluster of
outliers would even further decrease the accuracy of the prediction.

In reality, LST is represented by a continuous 2D-grid instead of a discrete 2D-grid of pixels
used in this research. So if the distribution of outliers on a discrete grid is sufficiently uniform
and the grid is at a sufficiently high resolution, the approach of averaging neighbors is effective.
However, for this research the expertise on the behavior of LST is too limited to draw a concrete
conclusion of the effectiveness of this approach.
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8.2 Recommendations
Testing on more data

The most urgent suggestion for new research is to test this model on different datasets. There is
a wide variety of options to research.

Firstly, the same area grid should be tested at different times. Further research might compare
if the LSCs still have the same relation with temperature at various times of the day. Additionally,
even broader time gaps should be compared to observe the consequences of seasonal shifts. Sec-
ondly, it is advised the model is tested on different areas of interest. On the one hand, it should
be researched if the models of this research are indeed effective in other similar landscapes. On
the other hand, further research should also consider dissimilar landscapes. Different surface types
could influence the relation of the LST with the LSCs. If so, additional research would answer how
large the differences are.

If possible, the ultimate goal should be to find a universal model that accurately predicts the
LST for any surface type at any time of day.

Filtering out outliers of the input

A suggestion for further research is that the input data is filtered so that outliers do not get taken
into account in the model.

The input data has outliers as previously stated. In the results presented in this research, these
outliers are used in the fitting of the model. As a result, these outliers could lever the coefficients
to their favor. As seen in Figure 25 and 29, there are data points in both models that potentially
influence the model. Further research on these data points can determine if the data points are
indeed erroneous outliers that can be filtered out of the input data.

Testing different models

In both Model 1 and Model 2 a linear regression model is formed with stepwise selection. In further
research additional statistical models could considered. A few options are discussed below.

Box-Cox transformation
Looking at Figure 26, the relations all are similar to a square root relation. Consequentially, a
Box-Cox transformation quickly comes to mind, with the goal to normalize the non-linear relation
between the spectral bands and the LST. Such a power transformation takes the form:

Y λ = X · β + ε, (20)

with λ ∈ R. Preferably for Box-Cox transformations, λ takes a value between −2 and 2.
However, in the case of Model 1, an optimal λ takes a relatively high value of around 6. The
consequence is that such a high exponent increases the gap between outliers immensely. In this
data set, as seen in Figure 23 there are a lot of outliers. As such, this is not a recommended
statistical model for the data set.

Nonlinear regression
As shown in the Figures 26 and 30, many of the used independent variables do not have a linear
relation with the dependent variable: the LST. Consequently, a nonlinear combination of the in-
dependent variables could be a better fitting model for the observational data.

Ridge regression & LASSO
An issue with the current model is that there is a high collinearity between the independent vari-
ables. Variable selection via stepwise regression, which is used in this research, can be inadequate
at taking the effects of strong correlations into account. There are other methods that are better
suited for dealing with collinearity in linear regression models. High collinearity can lead to an ill-
posed set of equations - a non-unique solution. Standard linear regression as used in this research
then leads to overfitting. Ridge regression uses Tikhonov regularization to prevent overfitting.
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Least absolute shrinkage and selection operator (LASSO) uses both regularization and variable
selection to prevent overfitting.

The gain of applying either ridge regression or LASSO is that the prediction produces less noise.
In practice, this means clearer images. Thus, it is recommended to further research the potential
of applying ridges regression or LASSO.

Finding more suitable variables

As shown in Table 1 and 2, there is high collinearity between all the independent variables that
also have a strong correlation with the dependent variable. The consequence of this is overfitting,
which produces noise in the prediction. As discussed earlier, ridge regression or LASSO could
provide a solution for overfitting. However, as seen in Figure 22 there are clusters of large dif-
ferences between the model and the observation that indicate the model missed low temperature
agricultural areas. Although there are slight differences for the two models, it appears that some
of these errors appear in the same clusters of data. Also, these clusters involve relatively large sets
of data, which could be an indication that the error in the prediction is not due to overfitting. In
stead, it could indicate that an essential independent variable for accurate predictions is missing
in the model.

To improve the current model, a more suitable set of variables could be used for the linear
regression. It is recommended to research if there are other variables that have a strong correlation
with the LST, while having little collinearity with the other independent variables. Such variables
have the potential to greatly increase the accuracy of the model.
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10 Appendix

10.1 A: Input

Figure 31: Spectral reflectance (in prodecimille) of band 1

Band 1 is referred to as the coastal aerosol band and has a central wavelength of 0.443 µm.
The values can be seen in Figure 31.

Figure 32: Spectral reflectance (in prodecimille) of band 2

Band 2 is referred to as the blue band and has a central wavelength of 0.490 µm. The values
can be seen in Figure 32.
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Figure 33: Spectral reflectance (in prodecimille) of band 3

Band 3 is referred to as the green band and has a central wavelength of 0.560 µm. The values
can be seen in Figure 33.

Figure 34: Spectral reflectance (in prodecimille) of band 4

Band 4 is referred to as the red band and has a central wavelength of 0.665 µm. The values
can be seen in Figure 34.
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(a) Band 5 (b) Band 6

(c) Band 7

Figure 35: Spectral reflectance (in prodecimille) of band 5, 6 and 7

Band 5, 6 and 7 are referred to as the vegetation red edge bands and have a central wavelength
of 0.705 µm, 0.740 µm and 0.783 µm respectively. The values can be seen in Figure 35.
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Figure 36: Spectral reflectance (in prodecimille) of band 8

Band 8 is referred to as the NIR band and has a central wavelength of 0.842 µm. The values
can be seen in Figure 36.

Figure 37: Spectral reflectance (in prodecimille) of band 8a

Band 8a is referred to as the narrow NIR band and has a central wavelength of 0.865 µm. The
values can be seen in Figure 37.
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Figure 38: Spectral reflectance (in prodecimille) of band 9

Band 9 is referred to as the water vapour band and has a central wavelength of 0.945 µm. The
values can be seen in Figure 38.

Figure 39: Spectral reflectance (in prodecimille) of band 10

Band 10 is referred to as the SWIR-Cirrus band and has a central wavelength of 1.375 µm.
The values can be seen in Figure 39.
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(a) Spectral reflectance (in prodecimille) of band 11

(b) Band 12

Figure 40: Spectral reflectance (in prodecimille) of band 11 and 12

Band 11 and 12 are referred to as the SWIR bands and have a central wavelength of 1.610 µm
and 2.190 µm respectively. The values can be seen in Figure 40.
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10.2 B: Model Values

Coefficients
(Intercept) 2.926E+02

band1 -4.405E+02
band2 9.632E+02
band3 -6.603E+02
band4 -1.009E+03
band5 2.457E+03
band6 -3.864E+03
band7 4.869E+03
band8 -9.754E+01
band8a -1.780E+03
band9 -4.549E+02
band10 -1.830E+04
band11 1.691E+02
band12 -2.617E+02

band1:band2 -2.136E+03
band1:band3 7.002E+03
band1:band5 -7.741E+03
band1:band6 -1.673E+04
band1:band8 2.799E+04
band1:band8a -1.911E+04
band1:band9 1.761E+04
band1:band10 6.916E+05
band1:band12 3.542E+03
band2:band3 -6.908E+03
band2:band4 1.021E+04
band2:band5 -1.893E+04
band2:band6 9.026E+04
band2:band7 -6.145E+04
band2:band8 -5.033E+04
band2:band8a 4.599E+04
band2:band9 -1.704E+04
band2:band10 -8.557E+05
band2:band11 3.895E+03
band2:band12 -7.018E+03
band3:band5 1.709E+04
band3:band6 -5.550E+04
band3:band7 3.921E+04
band3:band8 2.433E+04
band3:band8a -1.831E+04
band3:band9 -7.214E+03
band3:band10 4.055E+05

Table 3: Coefficients of Model 1 (part 1)
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Coefficients
band3:band11 -6.698E+03
band3:band12 4.921E+03
band4:band5 -6.640E+03
band4:band6 -7.272E+03
band4:band7 1.159E+04
band4:band8a -9.207E+03
band4:band9 1.270E+04
band4:band11 1.004E+04
band4:band12 -7.823E+03
band5:band6 1.794E+04
band5:band7 -1.658E+04
band5:band8a 2.930E+03
band5:band10 -4.254E+05
band5:band11 -9.530E+03
band5:band12 1.073E+04
band6:band7 2.785E+03
band6:band8 -9.765E+03
band6:band8a 1.225E+04
band6:band9 -2.441E+04
band6:band10 9.805E+05
band6:band11 6.341E+03
band6:band12 -1.081E+04
band7:band8 8.143E+03
band7:band8a -1.549E+04
band7:band9 2.467E+04
band7:band10 -1.211E+06
band7:band11 -8.582E+03
band7:band12 1.076E+04
band8:band8a 3.158E+03
band8:band9 -2.098E+04
band8:band10 5.514E+05
band8:band11 -3.377E+03
band8:band12 2.742E+03
band8a:band9 1.494E+04
band8a:band11 8.749E+03
band8a:band12 -6.850E+03
band9:band11 -3.932E+03
band9:band12 2.466E+03
band10:band11 -5.809E+04
band10:band12 8.476E+04
band11:band12 -2.702E+02

Table 4: Coefficients of Model 1 (part 2)

In Tables 3 and 4 are the coefficients determined for Model 1. Generally, higher values indicate
a larger weight in the model.
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Df Sum Sq Mean Sq F value Pr(>F)
band1 1 30625.8 30625.8 20967.2 0.00E+00
band2 1 3031.3 3031.3 2075.3 0.00E+00
band3 1 11781.2 11781.2 8065.7 0.00E+00
band4 1 16312.9 16312.9 11168.3 0.00E+00
band5 1 11.4 11.4 7.8 5.21E-03
band6 1 546.5 546.5 374.1 6.59E-82
band7 1 3060.4 3060.4 2095.2 0.00E+00
band8 1 60.4 60.4 41.4 1.32E-10
band8a 1 185.6 185.6 127.1 2.64E-29
band9 1 1518.5 1518.5 1039.6 2.12E-217
band10 1 2958.3 2958.3 2025.3 0.00E+00
band11 1 973.2 973.2 666.3 2.00E-142
band12 1 748.6 748.6 512.5 8.76E-111
band1:band2 1 2060.2 2060.2 1410.5 1.94E-289
band1:band3 1 690.7 690.7 472.9 1.48E-102
band1:band5 1 2313.8 2313.8 1584.1 2.22E-322
band1:band6 1 30.7 30.7 21.0 4.57E-06
band1:band8 1 325.4 325.4 222.8 7.32E-50
band1:band8a 1 386.9 386.9 264.9 7.95E-59
band1:band9 1 240.0 240.0 164.3 2.49E-37
band1:band10 1 67.8 67.8 46.4 1.02E-11
band1:band12 1 101.4 101.4 69.4 8.98E-17
band2:band3 1 37.1 37.1 25.4 4.78E-07
band2:band4 1 66.7 66.7 45.7 1.46E-11
band2:band5 1 23.3 23.3 15.9 6.59E-05
band2:band6 1 138.5 138.5 94.8 2.58E-22
band2:band7 1 566.6 566.6 387.9 8.32E-85
band2:band8 1 25.6 25.6 17.5 2.90E-05
band2:band8a 1 40.8 40.8 28.0 1.27E-07
band2:band9 1 72.3 72.3 49.5 2.08E-12
band2:band10 1 24.2 24.2 16.6 4.74E-05
band2:band11 1 21.7 21.7 14.9 1.16E-04
band2:band12 1 48.1 48.1 32.9 9.89E-09
band3:band5 1 212.5 212.5 145.5 2.85E-33
band3:band6 1 75.7 75.7 51.8 6.55E-13
band3:band7 1 9.5 9.5 6.5 1.06E-02
band3:band8 1 93.6 93.6 64.1 1.31E-15
band3:band8a 1 23.8 23.8 16.3 5.55E-05
band3:band9 1 288.1 288.1 197.2 2.15E-44
band3:band10 1 5.0 5.0 3.4 6.35E-02

Table 5: Analysis of variance of Model 1 (part 1)
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Df Sum Sq Mean Sq F value Pr(>F)
band3:band11 1 2.4 2.4 1.6 1.99E-01
band3:band12 1 384.1 384.1 262.9 2.07E-58
band4:band5 1 186.5 186.5 127.7 1.98E-29
band4:band6 1 301.7 301.7 206.5 2.19E-46
band4:band7 1 58.8 58.8 40.3 2.29E-10
band4:band8a 1 26.6 26.6 18.2 2.02E-05
band4:band9 1 184.0 184.0 126.0 4.58E-29
band4:band11 1 251.4 251.4 172.1 5.31E-39
band4:band12 1 1.0 1.0 0.7 4.09E-01
band5:band6 1 102.8 102.8 70.4 5.50E-17
band5:band7 1 30.7 30.7 21.0 4.67E-06
band5:band8a 1 94.5 94.5 64.7 9.54E-16
band5:band10 1 56.3 56.3 38.6 5.50E-10
band5:band11 1 17.2 17.2 11.8 5.92E-04
band5:band12 1 25.5 25.5 17.4 2.99E-05
band6:band7 1 10.9 10.9 7.5 6.20E-03
band6:band8 1 39.5 39.5 27.1 2.01E-07
band6:band8a 1 118.9 118.9 81.4 2.13E-19
band6:band9 1 107.5 107.5 73.6 1.09E-17
band6:band10 1 18.3 18.3 12.5 4.03E-04
band6:band11 1 7.9 7.9 5.4 1.99E-02
band6:band12 1 43.3 43.3 29.7 5.27E-08
band7:band8 1 7.1 7.1 4.9 2.71E-02
band7:band8a 1 16.7 16.7 11.4 7.20E-04
band7:band9 1 106.8 106.8 73.1 1.40E-17
band7:band10 1 10.0 10.0 6.9 8.73E-03
band7:band11 1 212.7 212.7 145.6 2.62E-33
band7:band12 1 5.8 5.8 3.9 4.69E-02
band8:band8a 1 57.7 57.7 39.5 3.44E-10
band8:band9 1 40.0 40.0 27.4 1.73E-07
band8:band10 1 17.7 17.7 12.1 5.03E-04
band8:band11 1 0.0 0.0 0.0 9.58E-01
band8:band12 1 11.1 11.1 7.6 5.83E-03
band8a:band9 1 94.9 94.9 65.0 8.50E-16
band8a:band11 1 47.2 47.2 32.3 1.33E-08
band8a:band12 1 74.3 74.3 50.8 1.07E-12
band9:band11 1 41.1 41.1 28.1 1.16E-07
band9:band12 1 37.7 37.7 25.8 3.83E-07
band10:band11 1 14.3 14.3 9.8 1.75E-03
band10:band12 1 2.7 2.7 1.8 1.76E-01
band11:band12 1 48.0 48.0 32.9 1.00E-08
Residuals 10313 15063.7 1.5

Table 6: Analysis of variance of Model 1 (part 2)

The analysis of variance (ANOVA) of Model 1 as can be seen in Tables 5 and 6 is used as a
tool to determine the significance of a variable in the model. Most importantly, Pr(>F) values of
less than 0.05 typically indicate a significant relation between the independent and the dependent
variable.
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Coefficients
(Intercept) 1.387E+02

NDVI -4.356E+02
Albedo -1.892E+03
PSRI 7.245E+01
LWCI 9.292E-02
MSI 1.088E+03

GVMI -4.506E+03
NDWI 6.510E+03
VSDI -1.875E+01
SWCI -4.947E+02
SIMI 3.573E+02

NDVI:Albedo -1.688E+02
NDVI:PSRI 2.775E+02
NDVI:GVMI 5.686E+02
NDVI:NDWI -3.290E+02
NDVI:VSDI 3.478E+02
NDVI:SIMI 2.822E+02

Albedo:PSRI 4.460E+02
Albedo:MSI 4.200E+02

Albedo:NDWI 1.227E+03
Albedo:VSDI 1.360E+03
Albedo:SIMI 1.280E+03

PSRI:MSI -7.317E+01
PSRI:GVMI -3.870E+02
PSRI:NDWI -1.332E+02
PSRI:VSDI 8.508E+01
PSRI:SWCI -3.103E+02
PSRI:SIMI -4.834E+02
LWCI:MSI -6.626E-02

LWCI:GVMI -2.149E-01
MSI:GVMI 1.521E+02
MSI:VSDI -9.051E+02
MSI:SIMI -1.074E+03

GVMI:NDWI -2.128E+02
GVMI:VSDI 4.207E+03
GVMI:SWCI -1.630E+03
GVMI:SIMI 4.325E+03
NDWI:VSDI -5.833E+03
NDWI:SWCI 8.650E+02
NDWI:SIMI -6.565E+03
VSDI:SWCI 8.006E+02
SWCI:SIMI 3.286E+02

Table 7: Coefficients of Model 2

In Table 7 are the coefficients determined for Model 2. Generally, higher values indicate a larger
weight in the model.
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Df Sum Sq Mean Sq F value Pr(>F)
NDVI 1 48062.5 48062.5 25035.6 0.00E+00
Albedo 1 6425.4 6425.4 3347.0 0.00E+00
PSRI 1 15533.9 15533.9 8091.5 0.00E+00
LWCI 1 0.1 0.1 0.0 8.56E-01
MSI 1 852.1 852.1 443.9 1.64E-96
GVMI 1 344.1 344.1 179.3 1.53E-40
NDWI 1 881.6 881.6 459.2 1.01E-99
VSDI 1 723.8 723.8 377.0 1.60E-82
SWCI 1 212.2 212.2 110.5 1.01E-25
SIMI 1 384.1 384.1 200.1 5.27E-45
NDVI:Albedo 1 149.1 149.1 77.7 1.40E-18
NDVI:PSRI 1 67.4 67.4 35.1 3.24E-09
NDVI:GVMI 1 271.3 271.3 141.3 2.22E-32
NDVI:NDWI 1 51.3 51.3 26.7 2.36E-07
NDVI:VSDI 1 19.4 19.4 10.1 1.46E-03
NDVI:SIMI 1 535.5 535.5 278.9 8.22E-62
Albedo:PSRI 1 68.5 68.5 35.7 2.43E-09
Albedo:MSI 1 3.8 3.8 2.0 1.61E-01
Albedo:NDWI 1 0.3 0.3 0.2 6.77E-01
Albedo:VSDI 1 201.1 201.1 104.7 1.83E-24
Albedo:SIMI 1 524.5 524.5 273.2 1.36E-60
PSRI:MSI 1 526.8 526.8 274.4 7.54E-61
PSRI:GVMI 1 81.0 81.0 42.2 8.75E-11
PSRI:NDWI 1 38.5 38.5 20.1 7.59E-06
PSRI:VSDI 1 0.1 0.1 0.1 7.87E-01
PSRI:SWCI 1 833.2 833.2 434.0 1.87E-94
PSRI:SIMI 1 0.0 0.0 0.0 9.08E-01
LWCI:MSI 1 0.1 0.1 0.1 8.18E-01
LWCI:GVMI 1 21.6 21.6 11.3 7.99E-04
MSI:GVMI 1 0.4 0.4 0.2 6.38E-01
MSI:VSDI 1 20.1 20.1 10.5 1.22E-03
MSI:SIMI 1 62.6 62.6 32.6 1.17E-08
GVMI:NDWI 1 60.6 60.6 31.6 1.97E-08
GVMI:VSDI 1 27.5 27.5 14.3 1.56E-04
GVMI:SWCI 1 190.6 190.6 99.3 2.79E-23
GVMI:SIMI 1 10.6 10.6 5.5 1.90E-02
NDWI:VSDI 1 391.1 391.1 203.7 8.82E-46
NDWI:SWCI 1 42.5 42.5 22.2 2.54E-06
NDWI:SIMI 1 95.9 95.9 50.0 1.66E-12
VSDI:SWCI 1 184.1 184.1 95.9 1.53E-22
SWCI:SIMI 1 9.1 9.1 4.8 2.93E-02
Residuals 10353 19875.4 1.9

Table 8: Analysis of variance of Model 2

The analysis of variance (ANOVA) of Model 2 as can be seen in Table 8 is used as a tool to
determine the significance of a variable in the model. Most importantly, Pr(>F) values of less than
0.05 typically indicate a significant relation between the independent and the dependent variable.
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