
 Eindhoven University of Technology

BACHELOR

Dynamically adaptive age-based maintenance policies

Gösgens, M.M.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/99f0d9ee-0088-4fe4-a45f-f36e5f8534e4


Eindhoven University of Technology

Final Bachelor Project

2WH40, 2017-2018

Dynamically adaptive age-based
maintenance policies

Author:
Martijn Gösgens
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ABSTRACT

In this thesis, we model the lifetime of an asset as a Markov modulated fluid
model (MMFM) and find a replacement policy minimizing the total discounted
cost. We assume the cost of correctively repairing the asset is larger than the cost
of preventively repairing it. At each transition of the Markovian environment,
the fluid level instantaneously increases by a constant amount, where the amount
depends on the origin and destination state of the Markovian environment.
Numeric methods to compute the total discounted cost for a given stationary
replacement policy and iteration methods to find the optimal replacement policy
are presented. A method to estimate parameters of the MMFM from usage data
of the asset is also presented.



EXECUTIVE SUMMARY

Often, the defect of an asset comes with additional costs. This could be be-
cause the process halts, e.g. in the case of manufacturing machines, or because
additional damage or loss occurs when the asset breaks, e.g. data loss when a
computer breaks. In these cases, performing preventive maintenance might save
costs.

In this thesis, a method is derived that finds the optimal times to perform
preventive maintenance. The degradation of the asset was modeled by a Markov
modulated fluid model. This corresponds to an asset with the following charac-
teristics:

• There is a distinct set of activities that the asset is used for.

• The usage of the asset is recorded; at each time (in the past) it is known
for what activity it is used.

• No schedule is known; it is not certain for which activity the asset will be
used in the future.

• Maintenance restores the asset to a condition as good as new.

• When the asset is not maintained, the condition deteriorates over time
(Negative aging). This is in contrary to assets that get more reliable over
time.

• Optionally, the speed at which the asset wears out, depends on the activity
it is being used for.

• Optionally, between certain (fixed) activities, the condition of the asset
improves. For instance, when each time before a certain activity, the asset
is inspected and partial maintenance is performed.

In order to use the presented method, certain parameters of the degradation
model are needed. With sufficient usage data and records of the time at which
the asset broke, these parameters could be estimated using methods presented
in this thesis.

We present the following approach to determine the times at which preven-
tive maintenance should be performed:

• First, control limits for the various activities must be calculated. These
control limits could be interpreted in the following way: when the level
of wear of the asset exceeds the control limit corresponding to a certain
activity, the asset must be repaired before being used for that activity.

• When using the asset, data from its usage since the last repair are used
to determine whether the asset should be repaired at each moment.
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1. INTRODUCTION

When an essential asset within an organization fails, this can have big conse-
quences for the organization. For instance, if the machine of a manufacturer
breaks, the production may stop until it is (correctively) repaired. Hence, it
might be efficient to occasionally inspect and repair the machine before the
machine breaks. This motivates looking for preventive maintenance policies to
plan such repairs.

Preventive maintenance problems can be classified based on various aspects.
First of all, there is the distinction between perfect and imperfect maintenance.
For perfect maintenance, the asset has the same lifetime distribution after main-
tenance as a new asset. For imperfect maintenance, this is not always the case.
[9] summarizes results for various preventive maintenance problems with imper-
fect maintenance. Although imperfect maintenance might be more realistic in
practice, we will assume perfect maintenance for simplicity.

Another distinction can be made based on the options for moments at which
maintenance can be scheduled. For simplicity, we assume that the machine is
continuously monitored and we can decide to immediately repair the asset at
any given time. However, in practice, it might be that maintenance can only be
done at some discrete planned or unplanned moments [6].

The goal of preventive maintenance is usually to optimize a certain goal func-
tion. Chapter 4 of [12] discusses preventive maintenance aiming at maximizing
the availability of assets. In our problem definition, the cost of performing
corrective maintenance exceeds that of preventive maintenance and we aim at
minimizing the total (discounted) maintenance cost.

The solution to a preventive maintenance problem is a maintenance pol-
icy that prescribes when preventive maintenance should be performed. These
policies can be classified as either age-based or condition-based. In age-based
maintenance, the decision to perform preventive maintenance is done based only
on the age of the machine. Often, more aspects are observed that help predict
the fitness of the asset. When the decision to do preventive maintenance is
based on other quantities than the age of the machine, this is called condition-
based maintenance. [6] models the condition of the asset as a CTMC with
a failure state and states corresponding to a perfect condition and a satisfac-
tory condition. The decision to perform preventive maintenance is then done
based on the state the asset is in. In this thesis, we will opt for an age-based
maintenance policy that is dynamically adapted by observations of the asset.
Hence, this could be viewed as a hybrid between age-based maintenance and
condition-based maintenance.

Various mathematical models have been developed to model the degradation
of assets. [3] models the deterioration of the asset as a CTMC where there is
a drift towards the failure state. In this thesis, we will model the degradation
of the asset as a Markov Modulated Fluid Model (also known as a Markov
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modulated fluid queue or stochastic Fluid model) with jumps.
The research is motivated by the real-world problem of deciding when to

repair a Philips manufacturing machine. Usage data of this machine will be
analyzed in this thesis.

The remainder of this thesis is organized as follows: In chapter 2, some con-
cepts from the fields of dynamic programming and survival analysis are sum-
marized. In chapter 3, a simple age-based preventive maintenance problem is
addressed and methods to find the optimal maintenance policy are introduced.
This problem is extended in chapter 4 to include jumps that instantaneously
decrease the age of the machine by a constant. We prove that this problem is
equivalent to the age-based problem with an adjusted discount exponent. In
chapter 5, we change the degradation model to a MMFM with jumps. Results
from previous chapters are extended, resulting in a method to find the optimal
preventive maintenance policy for this problem. In chapter 6, the data of the
Philips machine is analysed and in chapter 7, a method is proposed to esti-
mate the parameters of an MMFM given usage data. Finally, the results are
summarized and some directions for further research are presented.



2. PRELIMINARIES

In this chapter, some preliminaries will be summarized. We will explain some
useful results and concepts from the fields of Markov decision theory and survival
analysis.

2.1 Markov decision theory

Markov Decision Theory provides the mathematical framework to make deci-
sions based on a Markov model. In a Markov Decision Process (MDP), the
evolution of the process depends on the chosen control action. The objective of
an MDP is usually to minimize costs (or, equivalently, maximize profit) in some
sense.

For a discrete MDP with state space X, when at the k’th decision epoch the
process is in state xk ∈ X, an action must be chosen out of a set U(xk) of allowed
actions. When the number of decision epochs that are considered is finite, the
MDP is said to be a finite-horizon probem. When the number of decision epochs
is infinite, it is an infinite-horizon problem. At every decision epoch, there is also
some random variable ωk which introduces the randomness in the process. The
process then evolves based on the current state xk, the chosen action uk ∈ U(xk)
and this random parameter ωk according to some function f , so that the next
state of the process is determined by xk+1 = f(xk, uk, ωk). When an action
uk ∈ U(uk) in a state xk ∈ X is chosen, a cost g(xk, uk) will be paid. For
infinite-horizon problems, the sum of the costs incurred over all decision epochs
could be infinite. This is often resolved by choosing a different aggregate of
the costs as a objective function. Often, this is done by either considering the
long-run average cost per decision epoch, or by multiplying costs in decision
epoch k by αk, where 0 < α < 1 is a discount factor. The latter cost is called
the discounted cost. In this thesis we will consider discounted costs. This has
the advantage over long-run average costs that the Bellman equations can be
used to solve the problem.

Admissible solutions to MDPs are policies that choose an allowed action for
each decision epoch and state, i.e. for each k there is some µk with µk(xk) ∈
U(xk) for all k, xk. A policy is said to be stationary if it does not depend on the
decision epoch, i.e. there is one µ and for every k µk = µ. The aim of Markov
decision theory is to find policies that choose actions in each decision epoch and
state so that the objective function is optimized. Section 6.2.4 of [10] proves
that for discounted infinite-horizon countable-state problems with cost-function
g independent of decision epoch k, there exists an optimal stationary policy.

In this thesis, we will aim at minimizing the total discounted cost for an
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infinite-horizon MDP, i.e. minimizing

V (µ) = E

[ ∞∑
k=0

αkg(xk, µ(xk))

]
,

for some stationary policy µ.



3. AGE-BASED MAINTENANCE

An asset is considered that is subject to deterioration over time. If no further
observations are made, any choice to repair the asset can only be based on its
age. In this chapter we will investigate methods to find an optimal preventive
maintenance policy in terms of total discounted cost.

3.1 Problem formulation and definition

In this section, the problem of choosing when to repair the asset is defined as a
Markov decision process. Calendar time is discretized in steps of size δ, i.e. the
k’th decision epoch is at time tk = kδ. We refer to the interval (kδ, (k + 1)δ]
as the k’th time interval. We denote the set of nonnegative integers by N0. At
epoch k ∈ N0, we denote the state of the asset by xk ∈ X = N0 and initially
x0 = 1. When xk = x, this means that after the k’th time interval, the asset
has age xδ.

The lifetime of the asset has a distribution function F . We denote the
reliability function by F̄ (x) := 1− F (x) and the conditional reliability function

by F̄ (x; y) = F̄ (x)
F̄ (y)

. We assume that this distribution function is continuously

differentiable so that the probability density function by f and the hazard rate

h(x) =
f(x)

F̄ (x)

are both continuous.

3.1.1 Degradation model

To model the degradation of the asset, we introduce random variables ωk :=
ωk(xk) at decision epoch k which only depend on xk.

ωk(xk) :=


1, if the asset will reach age δxk given

that it reached age δ(xk − 1) at time tk

0, otherwise.

If the lifetimes of the asset are i.i.d. random variables with distribution F then
for x > 0

P(ωk(xk) = 1) =
1− F (δxk)

1− F (δ(xk − 1))
.
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3.1.2 Control actions

At the k’th decision epoch, we shall choose an action uk from the action set
U(xk). Where

U(xk) :=

{
{aW , aR}, if xk > 0

{aR}, if xk = 0.

These actions are

• aR: Repair (or replace) the asset.

• aW : Wait.

3.1.3 State evolution

During a time interval, a few things can happen:

• If the asset is repaired, its age will be δ at the next stage.

• If the asset fails, its age will be 0 at the next stage.

• If the asset does not fail and no repair is done, the age of the asset will
increase by δ.

Hence, the state evolves in the following way

xk+1 = f(xk, uk, ωk) :=


1, if uk = aR

0, if uk = aW and ωk = 0

xk + 1, if uk = aW and ωk = 1.

For convenience, we define the random variable Z(xk) := f(xk, aW , ωk(xk)) to
denote the age of the asset one time interval after it was xk. Note that in the
above definition, repairing the asset takes exactly one time interval.

3.1.4 Costs and discounting

Preventively repairing the asset has a cost c > 0. When the asset needs to
be repaired correctively, an additional cost a > 0 needs to be paid. Hence,
when the process is in state xk and the action uk is chosen, the following cost
is incurred

g(xk, uk) :=


c+ a, if xk = 0

c, if xk > 0 and uk = aR

0, else.

Furthermore, a discount αδ is introduced such that costs n decision stages in
the future are discounted by αnδ . In the rest of the thesis, we will use a discount
factor

αδ = e−βδ

for some discount rate β > 0. We consider the expected total discounted cost
after decision epoch k, discounted to decision epoch k

Vδ(xk; k) =

∞∑
m=k

αm−kδ g(xm, um).
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3.1.5 Optimal stationary policy and the Bellman equations

As the problem defined above is a Markov decision process with g independent
of the decision epoch, there exists an optimal stationary policy [10]. Hence,
we want to find a stationary policy µ : X → {aW , aR} that chooses the action
uk = µ(xk) that minimizes the expected total discounted cost Vδ(x0, µ). For a
policy µ, Vδ(xk, µ) is given by

Vδ(xk, µ) = g(xk, µ(xk)) + αδE[Vδ(f(xk, µ(xk), ωk(xk)), µ)].

The Bellman equations for the optimal cost V ∗δ read

V ∗δ (xk) =

{
min{c+ αδV

∗
δ (1), αδE[V ∗δ (Z(xk))]}, if xk > 0

c+ a+ αδV
∗
δ (1), else.

(3.1)

Under the optimal policy, the total discounted cost Vδ(xk, µ) = V ∗δ (xk) for all
xk, k.

3.1.6 Continuous-time MDP

In the remainder of the chapter, we will consider a continuous-time MDP that
is obtained by letting δ → 0. We will occasionally return to the discrete MDP
to prove certain properties. For small δ the discount αδ is given by

αδ = 1− δβ + o(δ2).

When action aW is chosen, at age xk, the transition probabilities become

P(ωk(xk) = 1) =
1− F (δxk)

1− F (δ(xk − 1))
= 1− δh(δxk) + o(δ2),

and

P(ωk(xk) = 0) =
F (δxk)− F (δ(xk − 1))

1− F (δ(xk − 1))
= δh(δxk) + o(δ2).

For the value functions, we will write V ∗(x) := lim
δ→0

V ∗δ (bx/δc) and similarly

V (x, µ) := lim
δ→0

Vδ(bx/δc, µ). Moreover V ∗(0+) := lim
δ→0

V ∗δ (1). Note that we

have to write V ∗(0+) instead of V ∗(0) for a new asset as the latter corresponds
to the asset being broken.

Assumption 3.1. We assume the hazard rate h to be increasing. This corre-
sponds to an asset with a condition deteriorating over time.

3.1.7 Alternative models

The problem can be formalized in many different ways. We will briefly show
some alternatives to the modeling choices that were made in the above problem
definition.
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Instantaneous repairs

If we would want repairs to take zero time, we would have to change the defini-
tion of xk+1 to

xk+1 = f2(xk, uk, ωk) :=


0, if ωk = 0

2, if uk = aR and ωk = 1

xk + 1, if uk = aW and ωk = 1.

This would however, introduce the possibility of having to correctively repair
the asset twice in a row. However, when we let δ → 0, this would not make any
difference.

Stochastic inter-decision times

Another possibility would be to have positive random i.i.d. inter-decision times
∆k and to use a continuous discount such that costs at time t are discounted by
e−βt for β > 0. The state space could then be modeled as X = R+

0 ∪{xBREAK}
where xBREAK is the state where the asset is broken. The state evolution would
be as follows:

xk+1 = f(xk, uk, ωk,∆k) :=


∆k, if uk = aR

xBREAK , if uk = aW and ωk = 0

xk + ∆k, if uk = aW and ωk = 1.

The Bellman equations should then be changed to

V ∗(xk) =

{
min{c+ E[e−β∆V ∗(∆)],E[e−β∆V ∗(f(xk, aW , ωk,∆))], if xk 6= xf

c+ a+ E[e−β∆V ∗(∆)], else.

Where repair would again take one inter-decision time. Where ∆ is of the same
family of i.i.d. random variables as the ∆i’s.

3.2 Structure of optimal policy

In this section, we will establish that for the age-based maintenance problem,
the optimal policy is a stationary control limit policy. This means that repair
is chosen if and only if the age has exceeded a certain threshold µ∗ (the control
limit). If no repair is chosen, then we set µ∗ =∞.

3.2.1 Stationary policy

In [10], it is proven that for a discounted infinite-horizon countable-state MDP
where the cost function does not depend on the decision stage, there exists
a stationary policy that is optimal. This proves that there exists an optimal
stationary policy to this age-based preventive maintenance policy.
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3.2.2 Control limit

By letting δ → 0, we can see from the Bellman equations (3.1) that repair is
chosen whenever

c+ αV ∗(0+) ≤ V ∗(x). (3.2)

Now we can distinguish two cases:

1. There is no age x that satisfies (3.2) and preventive repair is never the
optimal choice. In this case we set control limit µ∗ =∞.

2. There are ages x1, x2, ... that satisfy (3.2). The control limit will now
simply be the smallest such age. What happens for ages greater than this
µ∗ is not relevant as these will never be reached.

Later in this chapter, we will prove that the right hand side of (3.2) is increasing
for x < µ∗. Hence, we have established that the optimal policy must be of
control limit type where the asset is repaired whenever its age exceeds some
threshold µ∗.

3.3 Computation of total discounted cost

In this section, the Bellman equations will be used to find the expected total
discounted cost of the optimal cost. From the discrete Bellman equations (3.1),
differential equations will be derived. The following Bellman equations will be
considered

V ∗δ (x) =

{
min{c+ αδV

∗
δ (1), αδE[V ∗δ (Z(x))]}, if x > 0

c+ a+ αδV
∗
δ (1), else.

We assume that for x

c+ αδV
∗
δ (0+) > αδE[V ∗δ (Z(x)δ)],

i.e. the optimal control limit µ∗ > δx. Now, we can write V ∗δ (x) in the following
way

V ∗δ (x) = αδF̄ (x;x− δ)(c+ a+ αδV
∗
δ (0+)) + αδF̄ (x;x− δ)V ∗δ (x+ δ)

We are now going to let δ approach zero.

lim
δ→0

V ∗δ (x) = lim
δ→0

(1− βδ + o(δ2))(δh(x) + o(δ2))(c+ a+ (1− βδ + o(δ2))V ∗δ (0+))

+ (1− βδ + o(δ2))(1− δh(x) + o(δ2))V ∗δ (x+ δ).

(3.3)

Gathering the terms of o(δ2), we get

lim
δ→0

V ∗δ (x) = lim
δ→0

δh(x)(c+ a+ V ∗δ (0+)) + (1− δβ − δh(x))V ∗δ (x+ δ) + o(δ2).

(3.4)

By moving one V ∗δ (x+ δ) to the left and dividing by −δ, we get

d

dx
V ∗(x) = lim

δ→0

V ∗δ (x+ δ)− V ∗δ (x)

δ

= lim
δ→0
−h(x)(c+ a+ V ∗δ (0+)) + (β + h(x))V ∗δ (x+ δ) + o(δ)

= −h(x)(c+ a+ V ∗(0+)) + (β + h(x))V ∗(x).

(3.5)
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Remark 3.1. The differential equation (3.5) seems counterintuitive as for high
hazard rates, the expected total discounted cost would be decreasing for increas-
ing age of the asset. We will return to this later on.

We will now try to solve this O.D.E. We use the method of the integrating
factor. Our integrating factor will be

e

x∫
0

(−β−h(q))dq
= e−βx−H(x).

Where H(x) is the cumulative hazard function. Note that

eH(x) = (e−H(x))−1 =
1

F̄ (x)
,

and
h(x)e−H(x) = f(x).

Hence, we get

V ∗(x) = eβx+H(x)[C +

x∫
0

e−βq−H(q)(−h(q)(c+ a+ V ∗(0+)))dq]

=
eβx

F̄ (x)
[C − (c+ a+ V ∗(0+))

x∫
0

e−βqf(q)dq].

C is an integrating constant and since lim
x→0

V ∗(x) = V ∗(0+) should hold, we find

C = V ∗(0+). We can rewrite the expression to

V ∗(x) =
eβx

F̄ (x)
[V ∗(0+)− (c+ a+ V ∗(0+))F (x)E[e−βQ0 |Q0 < x]].

When we combine this with the fact that repair is chosen whenever V ∗(x) ≥
c+V ∗(0+), we get the following expression for the value function corresponding
to the optimal policy:

Theorem 3.1. When the asset has age x, the expected remaining total dis-
counted cost equals

V ∗(x) = min{c+ V ∗(0+),

eβx

F̄ (x)
[V ∗(0+)− (c+ a+ V (0+))F (x)E[e−βQ0 |Q0 < x]]}

(3.6)

and preventive maintenance is chosen if and only if V ∗(x) ≥ c+ V ∗(0+).

Unfortunately, the value of V ∗(0+) depends on the optimal policy and it is
also difficult to solve V ∗(x) = c+V (0+) analytically for x. The control limit µ∗

is then chosen as the smallest positive x that satisfies V (x) = c+ V (0+) if such
x exist and µ∗ =∞ else. The policy that we just derived, schedules preventive
maintenance at time µ∗ if the asset has not already failed by then. We denote
the total discounted cost of this policy by V (0+, µ∗).
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For any (possibly sub-optimal) control limit µ, we can derive the expected
remaining total discounted cost. The length of one run of the asset is the
minimum of its lifetime Q0 ∼ F and the chosen control limit µ. At the end
of each run, at least c is paid. If the run ends because the asset broke (i.e.
Q0 < µ), an additional cost of a is paid. Hence, we get the following expression
for V (0+, µ)

V (0+, µ) = aF (µ)E[e−βQ0 |Q0 ≤ µ] + (c+ V (0+, µ))E[e−β(Q0∧µ)]. (3.7)

Where A ∧ B denotes the minimum af A and B. We get a similar expression
for V (x, µ):

Theorem 3.2. Given control limit µ and an asset of age x, the expected re-
maining total cost equals

V (x, µ) = aF (µ;x)E[e−βQ0 |x < Q0 ≤ µ] + (c+ V (0+, µ))E[e−β(Q0∧µ)|Q0 > x].
(3.8)

Remark 3.2. By taking the derivative of (3.8), one can see that this also ad-
heres to the differential equation (3.5) that resulted from the Bellman equations.

Remark 3.3. In theorem 3.3, we will prove that for increasing hazard rates,
V (x, µ) is increasing for x < µ.

Remark 3.4. (3.7) can also be rewritten to get an explicit expression for
V (0+, µ):

V (0+, µ) =
aF (µ)E[e−βQ0 |Q0 ≤ µ] + cE[e−β(Q0∧µ)]

1− E[e−β(Q0∧µ)]
. (3.9)

Remark 3.5. If µ∗ =∞, then the expected total discounted cost equals

V (0+,∞) = E[e−βQ0 ](c+ a+ V (0+,∞)).

Which can be rewritten as

V (0+,∞) =
F̃ (−β)

1− F̃ (−β)
(c+ a),

where F̃ is the moment generating function of Q0.

Example 3.1. Let Q0 ∼ Exp(λ). Because of the memoryless property, we
would expect V (x, µ∗) to be constant. Filling this in into (3.5), we get

0 =
d

dx
V (x, µ∗)

= −λ(c+ a+ V (0+, µ∗)) + (β + λ)V (x, µ∗)

= −λ(c+ a+ V (0+, µ∗)) + (β + λ)V (0+, µ∗).

Where the last equality holds as V (x, µ∗) is constant. This can be rewritten to

V (0+, µ∗) =
λ

β
(c+ a)

which equals exactly the total discounted cost for control limit µ∗ =∞.
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3.4 Analysis of the optimal policy

Instead of finding the optimal control limit µ∗ by solving the Bellman equations,
we can also minimize V (0+, µ) by looking for critical points of the expected total
discounted cost. Although we could use (3.7) for the total discounted cost, we
will use a slightly different formula to simplify the analysis. Instead of using
V (0+, µ) on the right hand side of (3.7), we will use V (0+, µ∗). This corresponds
to minimizing the expected total discounted cost for an asset using control limit
µ in the first run and optimal control limit µ∗ afterwards. Obviously, this would
be minimized by µ = µ∗. We will look at critical points of

V̂ (0+, µ) = aF (µ)E[e−βQ0 |Q0 ≤ µ] + (c+ V (0+, µ∗))E[e−β(Q0∧µ)]. (3.10)

Note that

F (µ)E[e−βQ0 |Q0 ≤ µ] = E[1{Q0 ≤ µ}e−βQ0 ] =

µ∫
0

f(x)e−βxdx

So that
d

dµ

[
F (µ)E[e−βQ0 |Q0 ≤ µ]

]
= f(µ)e−βµ.

Furthermore,

E[e−β(Q0∧µ)] =

µ∫
0

f(x)e−βxdx+ F̄ (µ)e−βµ

⇒ d

dµ
E[e−β(Q0∧µ)] = −βF̄ (µ)e−βµ.

So that taking the derivative of (3.10) yields

d

dµ
V̂ (0+, µ) = af(µ)e−βµ − (c+ V (0+, µ∗))βF̄ (µ)e−βµ.

We are interested in the zeroes of this derivative:

af(µ)e−βµ − (c+ V (0+, µ∗))βF̄ (µ)e−βµ = 0

⇒ h(µ) =
f(µ)

F̄ (µ)
= β

c+ V (0+, µ∗)

a

.

Note that the right hand side of this equation is a constant and the left hand
side is increasing by assumption. Hence, there is at most one µ that satisfies
the above equation. From the above bounds it can also be seen that V̂ (0+, µ)
is decreasing when h(µ) is smaller than this constant and increasing when it is
larger. We will now establish that if there is one µ that satisfies the equation
above, it is also the global minimum of V̂ (0+, µ):

Lemma 3.1. If there is a µ̂ that satisfies

h(µ̂) = β
c+ V (0+, µ∗)

a
, (3.11)

then this µ̂ is the optimal control limit.
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Proof. From the previous derivation, it follows that this µ̂ is a stationary point
of V̂ (0+, µ). Since h is increasing by assumption, we know that

• µ < µ̂⇒ h(µ) < h(µ̂) so that d
dµ V̂ (0+, µ) < 0.

• µ > µ̂⇒ h(µ) > h(µ̂) so that d
dµ V̂ (0+, µ) > 0.

Which establishes that µ̂ is the global minimum of V̂ (0+, µ). Concluding the
control limit µ̂ that satisfies (3.11) equals the optimal control limit µ∗.

Corollary 3.1. From (3.11) and the fact that V̂ (0+, µ) is decreasing at µ = 0,
it follows that

h(0) < β
c+ V (0+, µ∗)

a
.

Corollary 3.2. If for all µ > 0

h(µ) < β
c+ V (0+, µ∗)

a
,

then V̂ (0+, µ) is strictly decreasing and has an asymptotic minimum, concluding
µ∗ =∞. Note that this also implies that for decreasing hazard rates µ∗ =∞.

Remark 3.6. Using the Bellman equations, it can also be proven without the
assumption of an increasing hazard rate that if there is an optimal control limit
µ∗, µ∗ must satisfy (3.11) and the hazard rate must be increasing at µ∗. For a
proof of this, we refer to appendix B.

Returning to remark 3.1: The differential equation (3.5) seemed counterin-
tuitive as the total discounted cost would be decreasing for high hazards.

Consider the cost of one run of the asset, we replace the repair cost by
c∗ = c + V (0+, µ∗) so that the expected discounted cost of the first repair
equals the expected total discounted cost of the original problem. V (x, µ∗) now
corresponds to the cost of this altered problem, but starting with an asset of age
x. If V (x, µ∗) were to be decreasing in the neighborhood of some x, this would
mean that for that x, the problem would have a lower expected optimal cost if
we started with a slightly older asset. This seems to conflict with the assumption
that h is increasing so that the asset deteriorates over time. However, we can
prove that V (x, µ∗) is increasing for x < µ∗:

Theorem 3.3. The expected total discounted cost (3.8) is nondecreasing for
x ≤ µ∗, i.e.

d

dx
V (x, µ∗) ≥ 0.

Proof. We will prove that d
dxV (x, µ∗) < 0 for some x implies d2

dx2V (x, µ∗) < 0 so
that V (x, µ∗) remains decreasing and will eventually be negative, contradicting
the fact that all costs are positive.

Let x′ ≤ µ∗, it holds that

V (x′, µ∗) ≤ V (µ∗, µ∗) = c+ V (0+, µ∗).
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Now we will prove that if d
dxV (x′, µ∗) < 0, this implies that d2

dx2V (x′, µ∗) < 0.
We take the derivative of (3.5):

d2

dx2
V (x, µ∗) = −h′(x)[c+ a+ V (0+, µ∗)− V (x, µ∗)] + (β + h(x))

d

dx
V (x, µ∗).

Note that, in order to take the derivative of h, we have to assume that h (or
equivalently f) is differentiable. We know that for our x′, d

dxV (x, µ∗) < 0 and
V (x, µ∗) ≤ c+ V (0+, µ∗). Furthermore, by assumption h′(x′) ≥ 0. Concluding

d2

dx2
V (x′, µ∗) < 0.

This implies that if d
dxV (x′, µ∗) < 0 for some x′, V (x, µ∗) is concave after x′ so

that for all x > x′

V (x, µ∗) < c+ V (0+, µ∗).

Hence no control limit will ever be reached and V (x, µ∗) will eventually become
negative. This contradicts the fact that all costs are positive so that it is proven
that for increasing hazard rates, V (x, µ∗) is nondecreasing for x ≤ µ∗.

Corollary 3.3. The remaining discounted cost V (x, µ∗) has the following lower
bound:

V (x, µ∗) ≥ h(x)

β + h(x)
(c+ a+ V (0+, µ∗)).

Proof. By theorem 3.3, d
dxV (x, µ∗) ≥ 0 holds. The lower bound then follows

from the differential equation of V (x, µ∗) 3.5.

3.5 Policy iteration

We know that for the optimal policy µ∗, (3.11) holds. This allows us to choose
a control limit based on the total discounted cost. Unfortunately, the total
discounted cost also depends on the control limit. Multiple numerical methods
could be used to find the optimal control limit. In this section we propose
a modified policy iteration method to find the optimal control limit and the
total discounted cost. Alternatively, value iteration could be used to solve the
Bellman equations or the expected total discounted cost (3.7) could simply be
minimized numerically for µ.

3.5.1 Description of iteration method

We know that if a control limit µ̂ satisfies

h(µ̂) = β
c+ V (0+, µ∗)

a
,

then µ̂ = µ∗. At the k + 1’th iteration, we will update the estimate of the
optimal control limit µ∗ by finding the µ̂(k+1) that minimizes

aF (µ̂(k+1))E[e−βQ0 |Q0 ≤ µ̂(k+1)] + (c+ V̂ (k))E[e−β(Q0∧µ̂(k+1))],
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where V̂ (k) is the current estimate of V (0+, µ∗). This could be found by looking
for the control limit that satisfies

h(µ̂(k+1)) = β
c+ V̂ (k)

a
. (3.12)

For convenience, we define the function µ(V̂ (k)) := µ̂(k+1). Note that by lemma
3.1

µ(V (0+, µ∗)) = µ∗. (3.13)

The estimation of the expected total discounted cost will be updated in the
following way:

V̂ (k+1) = aF (µ̂(k+1))E[e−βQ0 |Q0 ≤ µ̂(k+1)] + (c+ V̂ (k))E[e−β(Q0∧µ̂(k+1))].

We define an operator T to denote one iteration for the estimate of the expected
total discounted cost:

T (V̂ (k)) := V̂ (k+1).

Similarly:
Tm(V̂ (k)) = V̂ (k+m).

Note that Tm(V (0+, µ∗)) = V (0+, µ∗). For this iteration, we need an initial
value of the expected total discounted cost V̂ (0). This iteration can be inter-
preted in the following way: If the asset were to run just once and at the end
of the run (so either after paying c or c + a for preventive or corrective repair
respectively), a cost V̂ (k) will be paid, then µ̂(k+1) will be the control limit that
minimizes the expected total discounted cost for this scenario. In this way, we
can interpret V̂ (k) as the expected total discounted cost when in the first run
µ̂(k) will be used as the control limit, µ̂(k−1) will be used as control limit in the
second run, etcetera, µ̂(1) in the last run and afterwards the terminal cost V̂ (0)

will be paid.

3.5.2 Proof of convergence

The convergence of the proposed iteration method will now be proven. Let
αµ = E[e−β(Q0∧µ)] denote the expected discount over one run of the asset using
control limit µ. The expected cost that is incurred in one run when control limit
µ is used equals

g(µ) := aF (µ)E[e−βQ0 |Q0 ≤ µ] + cE[e−β(Q0∧µ)].

We can now write

V (0+, µ∗) =

∞∑
k=0

αkµ∗g(µ∗).

And we can rewrite T in the following way

T (V ) = g(µ(V )) + αµ(V )V.

Note that αµ is decreasing in µ since d
dµαµ = −βF̄ (µ)e−βµ < 0. For technical

reasons, we have to assume that for all V̂ k, µ(V̂ k) ≥ ε > 0. In practice, this
is not a big problem since we know that µ∗ > 0 as lim

µ→0
V (0+, µ) = ∞. Hence

we can pick a ε sufficiently small so that we are convinced that ε < µ∗ and just
adjust the definition of µ(V̂ (k)) to the maximum of ε and µ(V̂ (k)). For T , we
will prove the following properties:
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Lemma 3.2. For A1, A2 such that A1 ≥ A2 ≥ 0:

1. T (A1 +A2) ≤ TA1 + αεA2,

2. T (A1) ≥ T (A2),

3. T (A1 −A2) ≥ TA1 − αεA2.

Proof. 1.

T (A1 +A2) = g(µ(A1 +A2)) + αµ(A1+A2)(A1 +A2)

≤ g(µ(A1)) + αµ(A1)(A1 +A2)

≤ g(µ(A1)) + αµ(A1)A1 + αεA2

= TA1 + αεA2

(3.14)

where the first inequality follows from the fact that µ(A1 +A2) minimizes
g(µ) + αµ(A1 +A2) and the second from the fact that aε > aµ(A1+A2).

2.

T (A2) = g(µ(A2)) + αµ(A2)A2

≤ g(µ(A1)) + αµ(A1)A2

≤ g(µ(A1)) + αµ(A1)A1

= T (A1)

(3.15)

where the first inequality follows from the fact that µ(A2) minimizes g(µ)+
αµA2 and the second from A1 ≥ A2.

3.

T (A1 −A2) = g(µ(A1 −A2)) + αµ(A1−A2)(A1 −A2)

≥ g(µ(A1 −A2)) + αµ(A1−A2)A1 − αεA2

≥ g(µ(A1)) + αµ(A1)A1 − αεA2

= TA1 − αεA2

(3.16)

where the first inequality follows from aε > aµ(A1−A2) and the second from
the fact that µ(A1) minimizes g(µ) + αµA1.

Note that g(µ) < c+ a for all µ so that

V (0+, µ∗) =

∞∑
n=0

αkµ∗g(µ∗) ≤
∞∑
n=0

αkε (c+ a) =
c+ a

1− αε
.

If our initial 0 ≤ V̂ (0) < B, then the following inequality now holds

V (0+, µ∗)− c+ a

1− αε
≤ 0 ≤ V̂ (0) ≤ B ≤ V (0+, µ∗) +B.

If we now apply T k times on this inequality, we get

V (0+, µ∗)− αkε
c+ a

1− αε
≤ T k(V (0+, µ∗)− c+ a

1− αε
)

≤ T kV̂ (0) = Vk

≤ T k(V (0+, µ∗) +B)

≤ V (0+, µ∗) + αkεB.
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Where the first and last inequalities follow from Lemma 3.2. This proves that
V̂ (k) converges. Convergence in µ̂(k) follows from (3.13). Concluding:

Theorem 3.4. The modified policy iteration method as described in section
3.5.1 converges, i.e.

lim
k→∞

V̂ (k) = V (0+, µ∗),

and
lim
k→∞

µ̂(k) = µ∗.

3.6 Structural properties

The effect of changing problem parameters will be investigated in this section.

3.6.1 Effect on control limit

From (3.11), we can see what effects changing h, β, c and a has on the control
limit:

h(µ̂) = β
c+ V (0+, µ∗)

a
.

Remark 3.7. Decreasing a would result in an increase of the right hand side
(the hazard bound) of this equation, increasing the control limit. This is ex-
pected, as this would decrease the incentive to prevent the asset from failing.

Remark 3.8. Decreasing c would result in a decrease of the hazard bound,
decreasing the control limit. This is also natural as this would make a relatively
larger.

Remark 3.9. If we would multiply c and a by a constant, then the control
limit would not change as the sizes of these costs relative to each other remains
the same. This can be proven using remark 3.14.

Remark 3.10. Increasing β will result in an increase in hazard bound, resulting
in an increase in the control limit. This can be explained by the fact that with
a higher discount, costs further in the future weigh less so that you would want
to move costs as far into the future as possible.

Remark 3.11. A higher hazard (or a faster increasing hazard) results in a
lower control limit as expected.

Remark 3.12. If the hazard rate and the discount exponent are both multiplied
by a constant, then the hazard rate remains the same as this constant can just
be divided out of this equation.

3.6.2 Effect on expected total discounted cost

From (3.9), we can see what effects changing h, β, c and a has on the expected
total discounted cost:

V (0+, µ) =
aF (µ)E[e−βQ0 |Q0 ≤ µ] + cE[e−β(Q0∧µ)]

1− E[e−β(Q0∧µ)]
.
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Remark 3.13. Decreasing c or a results in a decrease of this total cost as
expected.

Remark 3.14. If we multiply both c and a by a constant, the cost will also be
multiplied by this constant. This is natural as changing the currency the costs
are expressed in should not be relevant.

Remark 3.15. A higher hazard would result in a higher expected value for the
discount, decreasing the denominator and increasing the total discounted cost.
This is natural as an asset that breaks quicker is more expensive to maintain.

Remark 3.16. Increasing the discount increases the denominator and the nu-
merator so that the discounted cost decreases, as expected.

For various parameters and distributions, the optimal control limit and total
discounted cost are summarized in appendix C.



4. SIMPLE FLUID MODEL WITH JUMPS

The problem of the previous chapter can be seen as a very simple Markov
modulated fluid model: Initially, the bucket has a random amount of fluid
Q0 ∼ F . The fluid decreases constantly with rate 1 and no fluid jumps occur.
In this chapter, we extend this model by allowing jumps to occur according to a
Poisson process with rate λ. The jumps all have the same constant (and known
size) J . In the real world, these fluid jumps could correspond to a partial repair
of the asset. The presence of jumps introduces the following complications:

• The hazard of the asset failing at some time t cannot be derived directly
from the age only but also depends on the number of jumps that occurred
before t.

• Furthermore, the times at which these jumps occurred also matter. When
a jump occurs at time t, it is certain that the fluid quantity is at least J
so that you know for certain that in the interval [t, t+J) the asset cannot
fail.

In this chapter, the expected total discounted cost is calculated and methods
are introduced to find the optimal replacement policy.

4.1 Problem formulation and definition

In this section, we extend the definition of age-based maintenance from section
3.1. First we define the underlying stochastic process of the the asset degrading
over time and instantaneously improve at the occurrence of jumps. After that,
we define a Markov decision process similarly to section 3.1.

4.1.1 Stochastic asset degradation

We define the random process Q(t) as the fluid level at age t. Initially, the
fluid level is given by Q(0) = Q0 ∼ F . Then over time this level decreases at a
constant rate of 1. The jumps occur according to a Poisson process with rate λ,
i.e. the time interval between two consecutive jumps is exponentially distributed
with rate λ. The fluid process is absorbing at Q(t) = 0 as this resembles the
asset failing. Hence, the asset breaks at time T ∗ given by

T ∗ = inf{t|Q(t) = 0}.

When the asset is repaired, it starts with an age of zero again, with an initial
fluid level from the same distribution F .

To derive the distribution of Q(t) for a certain t from the observed jumps, it
seems we need to keep track of the exact times at which these jumps occurred.
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This would be a very inconvenient format of the state of the asset. Luckily, this
information can be condensed into a simpler state description. First, we will
illustrate this with the following example:

Example 4.1. If the first jump of the process would occur at some time t (and
the fluid level did not reach 0 already), then we would know the following at
this time t:

1. Q(t) ≥ J . Hence, we have a lower bound on the current fluid level.

2. Initially, the fluid level was at least t, i.e. Q0 ≥ t. Hence, we have a
certain lower bound on the initial fluid level.

If now, after some time τ < J another jump occurs, we know that:

1. At time t + τ , Q(t) ≥ 2J − τ . The passage of time has hence decreased
our lower bound of the current fluid level by τ and the jump has increased
this bound by J .

2. Our lower bound of the initial fluid level has remained unchanged. When
our lower bound of the current fluid level is positive, our lower bound of
the initial fluid level remains the same.

This suggests that the only two parameters we need to keep track of, are the
lower bound of the current fluid level Lc(t) and the lower bound of the initial
fluid level L0(t). We will refer to this L0 as the drained initial fluid. The asset
cannot break if

Lc(t) > 0,

since we know with certainty that there is still remaining fluid. We will refer to
this quantity Lc(t) as the fluid buffer. The asset breaks whenever

L0(t) = Q0,

i.e. when the initial fluid level is drained. Hence, we maintain the two quantities
Lc(t) and L0(t) as the description of the state the asset is in.

X(t) = (L0(t), Lc(t)).

Initially
X(0) = xNEW := (0, 0).

Furthermore, we also define a state xBREAK for when the asset is broken. When
X(t) = xBREAK , L0(t) and Lc(t) are undefined. These two quantities evolve in
the following way:

• When a jump occurs at time t, Lc increases by J , i.e.

X(t+) = (L0(t), Lc(t) + J). (4.1)

• When no jump or failure occurs in a neighborhood of t, S(t) remains
constant and L0 and Lc evolve according to

d

dt
Lc(t) =

{
0 if Lc(t) = 0,

−1 else.

d

dt
L0(t) =

{
0 if Lc(t) > 0,

1 else.

(4.2)
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Note that we always have

d

dt
[Lc(t)− L0(t)] =

d

dt
Q(t) = −1. (4.3)

• When the fluid drains, i.e. Q(t) = 0 or equivalently L0(t−) = Q0, the
asset breaks so that

X(t) = xBREAK ,

until it is being repaired.

Theorem 4.1. Using the Lc(t) and the L0(t) as defined above. For x 6=
xBREAK , the fluid level is given by

Q(t) = Lc(t) +Q0 − L0(t). (4.4)

Proof. At the start of the process, X(0) = (0, 0) so that

Q(0) = 0 +Q0 − 0 = Q0.

When a jump occurs, we know that Q(t) increases by J . By (4.1), Lc also
increases by J such that jumps preserve (4.4). When no jump occurs, we have
by (4.3) that Q(t) and Lc(t)−L0(t) decrease at the same speed. This completes
the proof.

Example 4.2. For example, if we have the jump quantity J = 3, the initial
fluid level for a run of the asset equals 5 and after 1.5 and 2.5 time units a jump
occurred, Q,L0 and Lc would evolve as in figure 4.1. As you can see, when
Q(t) = 0, it holds that L0(t) = Q(0).
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Fig. 4.1: Q(t), L0(t), Lc(t) for example 4.2.
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Corollary 4.1. Theorem 4.1 implies that Q(t) ∼ FX(t), where

FX(t)(q) := P(Q(t) < q)

= P(Lc(t) +Q0 − L0(t) < q|Q0 > L0(t))

= P(Q0 < q + L0(t)− Lc(t)|Q0 > L0(t))

=
F (q + L0(t)− Lc(t))− F (L0(t))

F̄ (L0(t))
.

(4.5)

We use the same discretization tk = δk as in the previous chapter. For
xk = X(tk), we describe the random variables ωk = ωk(xk) of the Markov
decision process in the following way

ωk(xk) :=


ΩSURV IV E

if the asset does not break and no jump occurs

in the k’th time interval.

ΩBREAK if the asset breaks in the k’th time interval.

ΩJUMP

if the asset does not break and a jump occurs

in the k’th time interval.

Note that the asset can only break whenever Lc(t) = 0. Assuming only one
jump can occur in a time interval and letting xk = X(tk) = (l0, lc), we get the
following probabilities:

P(ωk(xk) = ΩSURV IV E) =

e
−λδ = 1− δλ+ o(δ2) if lc > 0,

e−λδF̄xk
(l0 + δ)

= 1− δh(l0)− δλ+ o(δ2)
if lc = 0.

P(ωk(xk) = ΩBREAK) =

0 if lc > 0,

e−λδFxk
(l0 + δ)

=δh(l0) + o(δ2)
if lc = 0.

P(ωk(xk) = ΩJUMP ) =

1− e−λδ if lc > 0,

1−e−λδ
=δλ+ o(δ2)

if lc = 0.

Where Fx is given by corollary 4.1.

4.1.2 Control actions

We introduce a state xBREAK for when the asset is broken. and in this state
the only available action is aR. In all other states, both actions aW and aR may
be chosen. The definitions of these actions remains the same as in the definition
of the age-based maintenance problem.

4.1.3 State evolution

Initially xNEW = (0, 0). The state of the Markov decision process now evolves
in the following way:

xk+1 = f(xk, uk, ωk) :=



xNEW if uk = aR,

(l0 + δ −min{lc, δ},
lc −min{lc, δ})

if uk = aW and ωk = ΩSURV IV E ,

(l0, lc + J − δ) if uk = aW and ωk = ΩJUMP ,

xBREAK if uk = aW and ωk = ΩBREAK .
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Here we assumed that jumps occur at the start of time intervals. For small δ,
this approximates the fluid model defined above. Again, we use the definition
of the random variable Z(xk) := f(xk, aW , ωk(xk)) as the state after xk.

4.1.4 Costs and discounting

The costs and discounting remain the same as in the age-based maintenance
problem.

4.1.5 Optimal policy and Bellman equations

In the next section, we will prove that the optimal policy is a stationary policy.
Hence, we want to find a stationary policy µ : X → {aW , aR} that chooses the
action uk = µ(xk) that minimizes the expected total discounted cost Vδ(xk, µ)
for each state. Similarly as in the definition of age-based maintenance, Vδ(xk, µ)
is given by

Vδ(xk, µ) = g(xk, µ(xk)) + αδE[Vδ(Z(xk), µ)].

The Bellman equations for the optimal cost Vδ(xk, µ
∗) read

Vδ(xk, µ
∗) =


c+ a+ αδVδ(xNEW , µ

∗), if xk = xBREAK ,

min

{
c+ αδVδ(xNEW , µ

∗),

αδE[Vδ(Z(xk), µ∗)]

}
, else.

(4.6)

µ is optimal if Vδ(x, µ) = Vδ(x, µ
∗) for all x. E[Vδ(Z(xk), µ∗)] when xk 6=

xBREAK is given by

E[Vδ(Z(l0, lc), µ
∗)]

=


(1− e−λδ)Vδ(l0, lc + J − δ, µ∗)
+ e−λδVδ(l0, lc − δ, µ∗),

If lc = 0,

e−λδF̄tk(l0 + δ)Vδ(l0 + δ, 0, µ∗)

+ e−λδFtk(l0 + δ)Vδ(xBREAK , µ
∗)

+ (1− e−λδ)Vδ(l0, J − δ, µ∗),
If lc > 0.

=


λδVδ(l0, lc + J − δ, µ∗)
+ (1− λδ)Vδ(l0, lc − δ, µ∗) + o(δ2),

If lc = 0,

(1− λδ − δh(l0))Vδ(l0 + δ, 0, µ∗)
+ δh(l0)Vδ(xBREAK , µ

∗)
+ λδVδ(l0, J − δ, µ∗) + o(δ2),

If lc > 0.

(4.7)

Similar to the previous chapter, we will consider a continuous MDP by letting
δ → 0.

4.1.6 Alternative models

The occurrence of fluid jumps can be modeled in many different ways. We
will briefly mention some alternatives to design choices that were made in the
definition above.
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Decisions at jumps only

We could also model the problem such that the choice to repair the asset can only
be made at the instant after a jump occurs. This might be more realistic as the
jump could be caused by some mechanic performing some partial maintenance
and a mechanic might be needed to completely repair the asset.

Jumps not according to a Poisson process

The time in between the jumps could also have another distribution than the
exponential distribution. This would, however, make the problem significantly
more complicated as the memorylessness simplifies the problem slightly.

4.2 Structure of optimal policy

In this section, we will establish that for the simple fluid model with jumps,
the optimal policy is a stationary policy to repair whenever the buffer is empty
(Lc(t) = 0) and the drained initial fluid L0(t) exceeds a certain control limit.
By this, we mean that there exists some optimal control limit µ∗ > 0 and repair
should be chosen whenever the buffer Lc(t) = 0 and L0(t) ≥ µ∗.

4.2.1 Stationary policy

Any discretization of L0 and Lc results in a countable state space and the cost
function is again independent of the decision epoch. Hence, by section 6.2.4 of
[10], any discrete approximation of the continuous-time MDP has a stationary
optimal policy.

4.2.2 Empty buffer

Repairing when Lc > 0 cannot be optimal since it is certain that the machine
will not break in the next L0 time units and waiting more would decrease the
cost. This proves that in the optimal policy Lc must be zero whenever repair is
chosen.

4.2.3 Control limit

The optimal policy is a control limit policy by the same argument as for the
age-based problem (see section 3.2.2).

Hence, we have established that the optimal policy is a control limit on the
drained initial fluid L0.

4.3 Computation of total discounted cost

In this section the expected total discounted cost is calculated corresponding
to following a control limit policy with control limit µ. As in the age-based
maintenance problem, we can use the Bellman equations to find differential
equations to which the total discounted cost adheres. But for this problem, we
will opt for the simpler approach of directly calculating the total discounted
costs corresponding to the policies.
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The challenge lies in calculating the discount over these costs. In the age-
based problem, this was simple as there were no jumps and the discount after
q fluid (age) was depleted was simply e−βq. In this problem, we need the
distribution of the time it takes until q initial fluid is depleted.

4.3.1 Time until control limit

Let Tt(q) be the random variable denoting the time until the fluid level has
decreased q with respect to Q(t), i.e.

Tt(q) = min{τ ≥ 0|Q(t+ τ) ≤ Q(t)− q}.

Note that, using this definition, T0(µ) equals the time until the control limit is
reached (L0(t) = µ) and T0(Q0) equals the time until the asset fails.

Lemma 4.1. For any A,B > 0: A ≤ B ⇔ Tt(A) ≤ Tt(B)

Proof. ⇒:

A ≤ B ⇒ Q(t)−B ≤ Q(t)−A
⇒ (Q(t+ τ) ≤ Q(t)−B ⇒ Q(t+ τ) ≤ Q(t)−A)

⇒ Tt(A) ≤ Tt(B)

⇐: We will prove that A > B ⇒ Tt(A) > Tt(B):
We know that

A > B ⇒ Q(t)−B > Q(t)−A.
Since Q(t) is piecewise continuous and does not decrease at the discontinuities,
we know that

Q(t+ Tt(B)) = Q(t)−B > Q(t)−A⇒ Tt(A) > Tt(B).

To find the distribution of Tt(q), we will condition on the number of jumps.
Let Nt(q) be the random variable denoting the number of jumps that occur in
the interval (t, t+Tt(q)]. We will now compute its distribution. The probability
that zero jumps occur equals the probability that the exponentially distributed
time interval is larger than q:

P(Nt(q) = 0) = e−λq.

The probability that exactly one jump occurs equals the probability that exactly
one Poisson event happens in the interval (t, t + q] while none happen in (t +
q, t+ q + J ]. Resulting in

P(Nt(q) = 1) = λqe−λqe−λJ = λqe−λ(q+J). (4.8)

For each k ≥ 0, by conditioning on the time until the first jump, we get the
following recursion

P(Nt(q) = k + 1) =

q∫
0

λe−λxP(Nt(q − x+ J) = k)dx

=

q∫
0

λe−λ(q−y)P(Nt(y + J) = k)dy,

(4.9)
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since after this first jump, the fluid level equals q − x + J and k jumps should
occur. The second equality follows after the substition y = q − x. The solution
of this recursion, is given by the following lemma.

Lemma 4.2. The probability that k jumps occur before the fluid is decreased
by q equals

P(Nt(q) = k) = λq
(λ(q + kJ))k−1

k!
e−λ(q+kJ).

Proof. By using k = 1, it can be seen that this satisfies (4.8). By substituting
this into (4.9), we see that the recursion is also satisfied.

Now we can define the quantity D(q) as the expected discount over the time
until q initial fluid is used in the following way

D(q) := E[e−βTt(q)] =

∞∑
k=0

e−β(q+kJ)P(Nt(q) = k). (4.10)

Note that this D does not depend on t because the time intervals in between
jumps are memoryless. This quantity has the following properties:

Lemma 4.3.
D(A)D(B) = D(A+B).

Proof.

D(A)D(B) =

[ ∞∑
k=0

e−β(A+kJ)P(Nt(A) = k)

][ ∞∑
m=0

e−β(B+mJ)P(Nt(B) = m)

]

=

∞∑
n=0

e−β(A+B+nJ)
n∑
k=0

P(Nt(A) = k)P(Nt(B) = n− k)

=

∞∑
n=0

e−β(A+B+nJ)P(Nt(A+B) = n).

(4.11)

The last step holds since on the second last line, the second sum equals the prob-
ability that n jumps occur before a fluid quantity A+B is drained, conditioned
on the number of jumps that occur before a quantity A is drained.

Lemma 4.4.
d

dA
D(A) = −(β + λ)D(A) + λD(A+ J)

Proof. This can be seen from taking the derivative of (4.10).

Using these lemmas we can find a simpler expression for D(q) than (4.10):

Theorem 4.2. The expected discount over the time until the fluid has decreased
by q, is given by

D(A) = e−(β+λ(1−D(J)))A.
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Proof. Using lemma 4.3, we can rewrite the derivative of D(A) given by 4.4 to

d

dA
D(A) = −(β + λ)D(A) + λD(A)D(J) = −(β + λ(1−D(J)))D(A).

Which leads to solution

D(A) = Ce−(β+λ(1−D(J)))A.

For some integration constant C. Since D(0) = 1, we know that C = 1, which
completes the proof.

Corollary 4.2. The value D(J) is now implicitly given by

D(J) = e−(β+λ(1−D(J)))J .

This quantity can be approximated by a method of successive approximation.
For the parameters that were used in appendix C, this quantity converged within
ten iterations up to five decimals.

Remark 4.1. From theorem 4.2, it can be seen that this expected discount
factor of the simple fluid model is actually the same as the discount factor for
the age-based model with adjusted discount exponent β∗ = β + λ(1 − D(J)).
That is,

D(q) = e−β
∗q.

Now we will derive the expected total discounted cost: If T0(Q0) ≤ T0(µ),
the asset will break in the first run and the expected value at which the corrective
repair cost is discounted is E[D(Q0)|T0(Q0) ≤ T0(µ)]. Note that P(T0(Q0) ≤
T0(µ)) = P(Q0 ≤ µ) by lemma 4.1. If T0(Q0) > T0(µ), the expected value
at which the preventive repair cost is discounted is D(µ). This results in the
following expression for the expected total discounted cost:

Theorem 4.3. The expected total discounted cost of an asset with control limit
µ, is given by

V (xNEW , µ) = F (µ)E[D(Q0)|Q0 ≤ µ]a+E[D(Q0∧µ)](c+V (xNEW , µ)). (4.12)

Corollary 4.3. Alternatively (4.12) can be written as

V (xNEW , µ) =
F (µ)E[D(Q0)|Q0 ≤ µ]a+ E[D(Q0 ∧ µ)]c

1− E[D(Q0 ∧ µ)]
. (4.13)

Remark 4.2. Using remark 4.1, we can see that (4.12) is again the same as
for the age-based maintenance problem (3.10) for the adjusted discount factor
β∗ = β + λ(1−D(J)).

4.4 Optimal policy

In this section, we will look for the optimal control limit µ∗. From remark 4.1,
it follows that if we use the adjusted discount β∗ = β+λ(1−D(J)), computing
the optimal policy is equivalent to computing the optimal policy of an age-based
maintenance problem. Hence, we can use (3.11) with this adjusted discount as
condition for the optimal control limit. The same properties proven in chapter
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3 also apply for this problem and the same modified policy iteration can also
be applied to compute the optimal control limit and corresponding expected
total discounted cost. There is one important conceptual difference between the
control limit of the age-based problem and this simple fluid problem: if λJ > 1,
the system is unstable and the fluid level can diverge to infinity. This means
that there is a positive probability that the control limit will never be reached
(i.e. Tt(Q0 ∧ µ) =∞) and that the asset will never fail.

4.5 Structural properties

In this section, the effect of changing the parameters to the expected total dis-
counted cost and the control limit are investigated. By the equivalence explained
in the previous chapter, the same structural properties as in section 3.6 for the
parameters c, a and h apply. Remarks 3.10, 3.12 and 3.16 also apply for the
adjusted discount β∗. Hence, we discuss the effect changing λ, J and β has to
the adjusted discount β∗.

β∗ = β + λ(1−D(J))

Remark 4.3. Obviously, increasing β will result in an increase in β∗.

Remark 4.4. Similarly, increasing λ will result in an increase in β∗ if J > 0
(J = 0 implies D(J) = 1). This means that frequent jumps increase the control
limit and decrease the total discounted cost, which seems natural.

Remark 4.5. Increasing J results in a decrease in D(J), which results in an
increase in β∗. This means that greater jumps, again, increase the control limit
and decrease the total discount cost, which also seems natural.

Then there is also another important subtlety: For the age-based mainte-
nance problem we needed to assume that the distribution of the age of the
asset has an increasing hazard rate. Similarly, we need the assumption that the
distribution of the initial fluid level has an increasing hazard rate. This does,
however, not mean that the lifetime distribution of this asset with fluid jumps
has an increasing hazard rate. For instance if the system is unstable (λJ > 1),
the probability of ever reaching an empty fluid level decreases as the fluid level
increases and the expected fluid level increases over its age so that the hazard
will be decreasing.

Appendix C contains computed values of the optimal control limit and the
corresponding expected total discounted cost.



5. MARKOV MODULATED FLUID MODEL WITH JUMPS

In this chapter, we extend the model of the simple fluid model with jumps from
the previous chapter to a Markov modulated fluid model (MMFM) with various
states, various fluid jump sizes and fluid rates. The fluid jumps occur when
a transition occurs in the underlying Markov chain. The MMFM that is used
is similar to the first-order fluid model considered in [4], with the addition of
constant jumps. The size of the jumps are constant. The various fluid rates,
transition rates and jump sizes introduce the following complications with regard
to computing the total discounted cost and the optimal policy:

1. The computation of the expected discount factors D(q) is more difficult
as we need to take multiple paths with different probabilities and jump
sizes into account. Moreover, it is also relevant from which state you start
and where you end.

2. There are different control limits µi for different states si, all depending
on each other.

3. A jump can cause the asset to be repaired when the amount of used fluid
has exceeded the control limit.

These complications will be explained and tackled in the following sections.

5.1 Problem formulation and definition

In this section, we extend the problem definition of preventive maintenance on
an asset modeled as the simple fluid model from the previous chapter. First we
extend the stochastic process from the last chapter to a MMFM, then we define
a Markov decision process.

5.1.1 Stochastic asset degradation

First, we define a left-continuous Continuous Time Markov Chain (CTMC) S(t)
with state space S = {s1, ..., sN}, initial state s1 and transition rates λij from
state si to sj , with λii = −

∑
j 6=i λij . Furthermore, we define λi = −λii for

convenience. In figure 5.1, a MMFM with states si, sj is drawn. We draw
MMFMs with multiple states in a similar way. We let S(t) denote the (index
of the) state the CTMC is in at time t. Similar to the previous chapter, we
represent the fluid level at time t by Q(t) with Q(0) = Q0 ∼ F . When the
CTMC is in state si, the fluid level Q(t) decreases with rate ri > 0:

d

dt
Q(t) = −rS(t).
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si : ri sj : rj

λij : Jij

λji : Jji

Fig. 5.1: A drawing of a MMFM with two states si and sj with fluid rates ri and rj
respectively. The transition from si to sj has rate λij and jump quantity Jij .
Similarly, the transition from sj to si has rate λji and jump quantity Jji

When a transition from si to sj occurs, the fluid rate instantaneously increases
by Jij ≥ 0. Again, the asset breaks when the fluid reaches zero so that the
process is absorbing at Q(t) = 0. When the asset is repaired, the process is
restarted with an initial fluid level with distribution F .

Similar to the simple fluid model, the state information can be condensed
with a few variables. These are the amount of drained initial fluid L0(t), the
buffer level Lc(t) and the current CTMC-state S(t). The definitions of L0 and
Lc are exactly the same as in the previous chapter:

1. L0(t) is the lower bound of the initial fluid level Q0 known at time t.

2. Lc(t) is the lower bound of the current fluid level Q(t) known at time t.

Hence,
X(t) = (S(t), L0(t), Lc(t)),

when the asset is not broken (i.e. the fluid level is positive) and initially X(0) =
xNEW = (1, 0, 0). Again, we define a special state xBREAK for when the asset
is broken. When X(t) = xBREAK , the quantities L0(t) and Lc(t) are undefined.

The values L0 and Lc evolve in a similar way as in the previous chapter:

• When a transition from si to sj occurs at time t, the buffer Lc increases
by Jij :

X(t+) = (j, L0(t), Lc(t) + Jij). (5.1)

• When no jump occurs in a neighborhood of t, S(t) remains constant and
L0 and Lc evolve according to

d

dt
Lc(t) =

{
0 if Lc(t) = 0,

−rS(t) else.

d

dt
L0(t) =

{
0 if Lc(t) > 0,

rS(t) else.

(5.2)

Note that we then always have

d

dt
[Lc(t)− L0(t)] =

d

dt
Q(t) = −rS(t).

• When the asset breaks (i.e. whenever Q(t) = 0 or equivalently L0(t−) =
Q0) the process moves to xBREAK :

X(t) = xBREAK .
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s1 : 1 s2 : 4

s3 : 2

1 : 3

2 : 02 : 0

Fig. 5.2: Depiction of the MMFM for example 5.1.

With these definitions, Q(t) is again given by (4.4) and it has distribution
FX(t)(q), again given by (4.5).

Example 5.1. Consider the MMFM depicted by figure 5.2. Now consider the
following run of the asset:

• The asset starts in s1 with initial fluid level 5

• After 1 time unit, a transition to s2 occurs

• The asset stays in s2 for half a time unit, then it transitions to s3

• It stays in this state for 1.5 time units before transitioning to s1 again.

• Here it breaks after 2 time units.

Figure 5.3 shows the evolution of the quantities Q(t), L(t) and Lc(t) over this
time period. As you can see, L0(t) is nondecreasing and the asset breaks when
L0(t) = Q(0).
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Fig. 5.3: Q(t), L0(t), Lc(t) for example 5.1.
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Now, for defining the MDP, we will briefly return to discretized time. For
xk = X(tk), we describe the random variables ωk = ωk(xk) of the Markov
decision process as the (index of the) state of the continuous Markov chain at
the next decision stage or ΩBREAK if the asset will break before then:

ωk(xk) :=

{
ΩBREAK , if the asset breaks,

S(tk+1), else.

A jump then occurs when the CTMC transitions to another state and the asset
does not fail, i.e. S(tk) 6= ωk(xk) 6= ΩBREAK . Assuming only one jump can
occur in a time interval, ωk has the following probabilities:

P(ωk(i, l0, lc) = ΩBREAK) =

0 if lc > 0,

e−λiδFxk
(l0 + riδ)

= δrih(l0) + o(δ2)
if lc = 0,

P(ωk(i, l0, lc) = i) =

e
−λiδ = 1− δλi + o(δ2) if lc > 0,

e−λiδF̄xk
(l0 + riδ)

= 1− δrih(l0)− δλi + o(δ2)
if lc = 0,

P(ωk(i, l0, lc) = j) =


λij

λi
(1− e−λiδ) = δλij + o(δ2) if lc > 0,

λij
λi

(1− e−λiδ)F̄xk
(l0 + riδ)

= δλij + o(δ2)
if lc = 0,

where i 6= j.

5.1.2 Control actions

Similar to the previous chapter, we have a repair action aR and a wait action
aW and aW may only be chosen whenever xk 6= xBREAK . The definitions of
these actions remain the same as in the definition of the age-based maintenance
problem.

5.1.3 State evolution

Initially, xNEW = (s1, 0, 0). For xk = (i, l0, lc), the state of the Markov decision
process now evolves in the following way:

xk+1 = f(xk, uk, ωk) :=



xNEW if uk = aR,

(i, l0 + riδ −min{lc, riδ},
lc −min{lc, riδ})

if uk = aW and ωk = i,

(j, l0, lc + Jij − rjδ) if uk = aW and ωk = j 6= i,

xBREAK if uk = aW and ωk = ΩBREAK .

In this definition, we assumed that jumps occur at the start of time intervals.
Again, we use the definition of the random variable Z(xk) := f(xk, aW , ωk(xk))
as the state after xk.

5.1.4 Costs and discounting

The costs and discounting remain the same as in the age-based maintenance
problem.
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5.1.5 Optimal policy and Bellman equations

We want to find a stationary policy π = {µ1, ..., µN} that chooses the action
uk = π(xk) = µi(i, l0, lc) that minimizes the expected total discounted cost
Vδ(xk, π) for each state xk = (i, l0, lc). Similarly as in the definition of age-
based maintenance, Vδ(xk, π) is given by

Vδ(xk, π) = g(xk, π(xk)) + αδE[Vδ(Z(xk), π)].

The Bellman equations for the optimal cost Vδ(xk, π
∗) read

Vδ(xk, π
∗) =


c+ a+ αδVδ(xNEW , π

∗), if xk = xBREAK ,

min

{
c+ αδVδ(xNEW , π

∗),

αδE[Vδ(Z(xk), π∗)]

}
, else.

(5.3)

π is optimal if Vδ(x, π) = Vδ(x, π
∗) for all x ∈ X. E[Vδ(Z(xk), π∗)] when

xk 6= xBREAK is given by

E[Vδ(Z(i, l0, lc), π
∗)]

=



∑
j 6=i

(1− e−λiδ)Vδ(j, l0, lc + Jij − rjδ, π∗)

+ e−λiδVδ(i, l0, lc − riδ, π∗),
If lc > 0,

e−λiδF̄tk(l0 + riδ)Vδ(i, l0 + riδ, 0, π
∗)

+ e−λiδFtk(l0 + riδ)Vδ(xBREAK , π
∗)

+
∑
j 6=i

(1− e−λiδ)Vδ(j, l0, Jij − rjδ, π∗),
If lc = 0.

=



∑
j 6=i

λijδVδ(j, l0, lc + Jij − rjδ, π∗)

+ (1− λiδ)Vδ(i, l0, lc − riδ, π∗) + o(δ2),
If lc > 0,

(1− λiδ − δrih(l0))Vδ(i, l0 + riδ, 0, π
∗)

+ δrih(l0)Vδ(xBREAK , π
∗)

+
∑
j 6=i

λijδVδ(j, l0, Jij − rjδ, π∗) + o(δ2),
If lc = 0.

(5.4)

5.1.6 Continuous-time MDP

Again, we will consider a continuous-time MDP by letting δ → 0.

Remark 5.1. Note that the simple fluid model of the previous chapter corre-
sponds to a MMFM model with two states, both with fluid rate 1, transition
rate λ and jump size J . This MMFM is drawn in figure 5.1.

s1 : 1 s2 : 1

λ : J

λ : J

Fig. 5.4: The MMFM corresponding to the simple fluid problem from the previous
chapter.
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5.1.7 Alternative models

Again, there are various alternatives to the design choices that were made in
the definition of the MMFM above. We will briefly mention some alternatives
with their characteristics.

Decisions as jumps only

Again, we could model the problem so that the choice to repair the asset can
only be made at the instant that a transition occurs. This might be more
realistic for similar reasons as for the simple fluid model: The jump could be
caused by some mechanic performing some partial maintenance and a mechanic
might be needed to completely repair the asset so that CTMC-transitions are
the only opportunities to repair the asset.

Transitions to the same state

We could also allow transitions from certain CTMC-states to themselves (again
at exponentially distributed time intervals). This could simply be modeled by
adding a copy s′ for each of these states s to the CTMC (with the same outgoing
transitions) and transitions between s and s′ with the desired transition rate
and jump size.

5.1.8 Transitions in a semi-Markov process

Instead of exponentially distributed time intervals between transitions we could
also consider a semi-Markov model where the distributions of the transition
times are not exponential. This complicates the model as we lose the memory-
lessness property, so that we must keep track of the time from the last transition.

Second-order fluid model

Similarly to the second-order fluid model of [4], we could model the depletion
of fluid (in between jumps) as Brownian motion. This would make the model
more complicated but might also make it more realistic.

5.2 Structure of optimal policy

In this section, we will establish that for the MMFM preventive maintenance
problem, the optimal policy is a stationary policy to repair in CTMC-state si
whenever the buffer Lc is empty and the drained initial fluid L0 exceeds a certain
control limit µ∗i . Note that ’stationary’ in this sense means independent of the
time. The control limit does depend on the state of the CTMC.

5.2.1 Stationary policy

By the same reasoning as for the previous chapter, we can prove that every
discrete approximation of the continuous-time MDP has a countable state space
so that section 6.2.4 of [10] again proves that the there exists a stationary policy
that is discount-optimal.
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5.2.2 Empty buffer

By the same reasoning as for the simple fluid problem, an optimal policy will
never perform preventive maintenance if the buffer Lc is non-empty.

5.2.3 Control limit

Compared to the previous problem, proving that the optimal policy is a control
limit policy is slightly more difficult: In the simple fluid problem, it was never
possible to reach states ’after the control limit’ so that it wasn’t relevant whether
for higher fluid levels repair should also always be chosen. For this problem,
it is possible that these states are reached. This is illustrated by the following
example:

Example 5.2. Consider a MMFM with two states and control limits µ1 < l <
µ2 for some q. If at some time t, X(t) = (2, l, Lc(t)), then it is possible that
for some t′ > t, X(t′) = (1, l, 0) so that L0(t′) > µ1 and the control limit is
exceeded.

Although no rigorous proof was found that asserts the optimal policy is a
control limit policy, results from value iteration seem to suggest that this is
always the case. This also seems natural as for states with drained initial fluid
L0 higher than the control limit, the asset is in a worse condition than at the
control limit and is more likely to fail earlier so that repair would still be chosen
after the control limit.

Hence, we will consider stationary policies of the form π = [µ1, ..., µN ], where
preventive repair is chosen in states x = (i, l0, lc) ∈ X if and only if lc = 0 and
l0 ≥ µi.

5.3 Computation of total discounted cost

In this section, the expected total discounted cost when using a control limit
policy π = [µ1, ..., µN ] is calculated.

Similar to (4.10), but keeping in mind that there are multiple CTMC-states,
we define

Dt
i(q) := E[e−βTt(q)|S(t) = i],

as the expected discount over the time until the fluid level Q(t) is decreased by
q, given that the CTMC was in si at time t. In this definition, we disregard
failures and policies (i.e. we briefly assume that Q0 =∞ and all control limits
µi =∞). Furthermore, we define

Dt
ij(q) := E[e−βTt(q)1{S(t+ Tt(q)) = j}|S(t) = i].

Note that these expectations do not depend on calendar time but only on the
state of the background CTMC when the fluid is at level Q(t). Hence, we will
omit t in these notations. Note that

Di(q) =
∑
j

Dij(q).
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When we take the policy π = [µ1, ..., µN ] into account, states cannot be reached
via paths that go over a control limit. We define similar quantities:

Dt
ij(q, π, l)

:= E

e−βTt(q)1


S(t+ Tt(q) = j),

∀τ ∈ [t, t+ Tt(q)) :
Lc(τ) > 0

or L0(τ) < µS(τ)


∣∣∣∣∣∣∣S(t) = i, L0(t) = l

 ,
and

Dt
i(q, π, l) :=

∑
j:µj≤l+q

Dt
ij(q, π, l).

Where these are similar to the earlier defined Dij but without the asset being
repaired before fluid level Q(t) − q is reached. These expectations also do not
depend on t. Hence, t will again be omitted in the notation. If preventive repair
is chosen, then it is chosen when L0 equals some random variable R. We define
the following quantity

Γti(q, π, l) := lim
δ→0

1

δ
P(q ≤ R < q + δ|S(t) = i, L0(t) = l)

× E[e−βTt(R)|q ≤ R < q + δ, S(t) = i, L0(t) = l].

The interpretation of this quantity can be difficult, it could be seen as the density
of R multiplied by the expected discount factor given that repair is chosen at
this level of L0. Note that Γti(q, π, l) also does not depend on t so that t will
again be omitted in the notation.

Remark 5.2. These defined quantities should be interpreted as neither prob-
abilities nor discount factors but more as a combination of these two: The
expected discount factor given some event, multiplied by the probability (or
density) of this event. We will refer to Dij(q), Dij(q, π, l) and Di(q, π, l) as
’discounted probabilities’ and Γi(q, π, l) as a ’discounted density’.

These discount quantities will be computed in the next section. We will now
derive the expected total discounted cost of a policy π. Each run of the asset
can end in two ways:

1. The asset breaks,

2. or preventive maintenance is chosen.

We will split the total discounted cost in terms corresponding to these two
scenarios.

The asset breaks

When the asset breaks, it means that L0(t) has reached Q0 without encountering
a control limit. Hence, the repair costs are discounted at D1(Q0, π, 0). The
expected value of this, is given by

E[D1(Q0, π, 0)] =

∞∫
0

f(q)D1(q, π, 0)dq.

We get the following term in the expression of the total discounted cost

E[D1(Q0, π, 0)](c+ a+ V (xNEW , π)).
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5.3.1 Preventive maintenance is chosen

When preventive maintenance is chosen, it can either be chosen in a state x =
(i, l0, 0) ∈ X where

1. l0 = µi, preventive maintenance is chosen ’at the control limit’;

2. or l0 > µi, preventive maintenance is chosen ’after the control limit’.

We will again split the total discounted cost in terms corresponding to these
two scenarios.

Preventive maintenance is chosen at the control limit

In this case, repair is chosen in a state si with l0 = µi. For this to happen, it
must be the case that Q0 > µi, with probability F̄ (µi). Preventive maintenance
has a cost c, discounted at Di(µi, π, 0). Hence, we get the following term:∑

i

F̄ (µi)Di(µi, π, 0)(c+ V (xNEW , π)).

Preventive maintenance is chosen after the control limit

In this case, repair is chosen in some CTMC-state si and l0 > µi. For this
to be able to happen, Q0 > l0 must hold with probability F̄ (l0). This event
would have cost c and discounted density Γ0(l0, π, 0). Hence, this results in the
following term:  ∞∫

1

F̄ (q)Γ0(q, π, 0)dq

 (c+ V (xNEW , π)).

Concluding:

Theorem 5.1. The expected total discounted cost of a policy π is given by

V (xNEW , π) =E[D1(Q0, π, 0)] (c+ a+ V (xNEW , π))

+

 ∞∫
0

F̄ (q)Γ1(q, π, 0)dq +
∑
i

F̄ (µi)Di(µi, π, 0)

 (c+ V (xNEW , π)) .

(5.5)

5.4 Computation of discounted probabilities

In this section, we will show how to compute the discounted probabilitiesDij(q, π, l)
and Di(q, π, l) and the discounted density Γi(q, π, l). We will do this, by first
deriving Dij(q).

Remark 5.3. Note that

Dt
i(q) = E[e−βTt(q)|S(t) = i]

equals the value of the moment generating function of Tt(q) (conditioned on
S(t) = i) evaluated at −β. Furthermore, when all jump quantities are 0 (i.e.
Jij = 0 for all i, j), Tt(q) corresponds to the busy period of the fluid flow process
considered in [1]. [1] derives the moment generating function of this busy period,
which also corresponds to our results.
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5.4.1 Disregarding failures and policies

We repeat the definition of Dij(q):

Dt
ij(q) := E[e−βTt(q)1{S(t+ Tt(q)) = j}|S(t) = i].

We will now prove a few properties regarding Dij(q):

Lemma 5.1.
Dij(A+B) =

∑
k

Dik(A)Dkj(B)

Proof. At the time when the fluid level has decreased by A, the process must
be in some CTMC-state sk. Furthermore, the time until the fluid is decreased
by A is independent of the time until the fluid is decreased by A because of the
Markov property.

Lemma 5.2. For small δ, Dij(δri) is given by

Dij(δri) = (1− δλi − δβ)1{i = j}+
∑
k 6=i

δλikDkj(Jik) + o(δ2).

Proof. In a time period of length δ, either a transition occurs to some state
sk (k 6= i) or no transition occurs. These have probabilities δλik + o(δ2) and
1 − δλi + o(δ2) respectively. When a transition from si to sk occurs, the fluid
level increases by Jik. Over this time interval, the discount factor is 1 − δβ.
Furthermore, Dij(0) = 1{i = j}. Putting these together results in

Dij(δri) = (1− δλi)(1− δβ)1{i = j}+
∑
k 6=i

δ(1− δβ)λikDkj(Jik) + o(δ2)

= (1− δλi − δβ)1{i = j}+
∑
k 6=i

δλikDkj(Jik) + o(δ2).

Lemma 5.3. Dij adheres to the following differential equation:

ri
d

dq
Dij(q) =

∑
m

∑
k 6=i

λikDkm(Jik)

Dmj(q)− (λi + β)Dij(q) (5.6)

Proof. First we write

Dij(q + δri) =
∑
m

Dim(δri)Dmj(q)

=
∑
m

(1− δλi − δβ)1{i = j}+
∑
k 6=i

δλikDkj(Jik) + o(δ2)

Dmj(q)

= (1− δλi − δβ)Dij(q) +
∑
m

∑
k 6=i

δλijDkj(Jik)

Dmj(q) + o(δ2)

= Dij(q) + δ

∑
m

∑
k 6=i

λikDkm(Jik)

Dmj(q)− (λi + β)Dij(q)

+ o(δ2).
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If we then subtract Dij(q) from both sides, divide by δ and let δ → 0, we get

lim
δ→0

Dij(q + δri)−Dij(q)

δ
= ri

d

dq
Dij(q)

=
∑
m

∑
k 6=i

λikDkm(Jik)

Dmj(q)− (λi + β)Dij(q).

Hence, the derivative of Dij is a linear combination of Dkj . This suggests
defining the following matrix:

ΛDim :=


∑
k 6=i

λik

ri
Dkm(Jik)− (λi+β)

ri
if i = m∑

k 6=i

λik

ri
Dkm(Jik) else.

(5.7)

Furthermore, if we let D(q) be the matrix with entries Dij(q), we can solve the
differential equation (5.6) in the following way:

Theorem 5.2. For ΛD as defined above, the solution to differential equation
(5.6) is given by

D(q) = eΛDq. (5.8)

So that the discounted probability of going from state i to j while Q(t) decreases
by q, is given by

Dij(q) =
(
eΛDq

)
ij
. (5.9)

Proof. The differential equation (5.6) can be rewritten to

d

dq
Dij(q) =

∑
m

ΛDimDmj(q).

So that for the matrix D(q), we have the following matrix differential equation

d

dq
D(q) = ΛDD(q),

of which (5.8) is a solution. This combined with D(0) = I completes the proof.

Remark 5.4. To compute (5.8), we still need the constants Dkm(Jik). These
N3 values can be estimated using a method of successive approximation where
iteratively these values Dkm(Jik) are calculated using (5.8). For the problem pa-
rameters that we used, ten iterations were enough to make these values converge
for up to five decimals.

Remark 5.5. As L0(t) increases continuously when Lc(t) = 0 and is constant
when Lc(t) > 0, we know that in each run of the asset for each value l0 ≥ 0,
there exists a t so that L0(t) = l0. If we omit all time intervals where Lc(t) > 0,
we can view the asset as a CTMC over L0. That is, for the first run of the asset,
we consider a CTMC S∗(l0) where

S∗(l0) := S(min{τ |Lc(τ) = 0 and L0(τ) = l0}).
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When we would start in a state si and pay a certain cost when X(t) = (i, l0, 0),
the expected value at which this cost would be discounted, would correspond

to (5.9). Transition probabilities of S∗ are given by generator eΛD

for β = 0.
Viewing the process as this adjusted CTMC helps understanding the problem.

5.4.2 Taking policies into account

When we take policies into account, the following complication arises in com-
puting Dij(q, π, l): In the path from si to sj , no state sk must be visited when
L0(t) > µk. This is summarized by the following lemma.

Lemma 5.4. Similar to lemma 5.1, we have

Dij(A+B, π, l) =
∑

µk>l+A

Dik(A, π, l)Dkj(B, π, l +A)

Proof. The reasoning is the same as for lemma 5.1, but with the addition that
we also need to keep into account that L0 has been increased by A, this explains
the l +A on the right hand side.

Lemma 5.5. For small δ, we have

Dij(riδ, π, l) = (1− δλi)1{i = j}+
∑

µk>l+riδ

δλijDkj(Jik) + o(δ2).

Proof. The reasoning is the same as in lemma 5.2, but now we know that for
µk ≤ l + δri, we have that Dkj(Jik, π, l + δri) = 0.

Which suggests that we should replace the generator ΛD by a ΛD(l0) depen-
dent of the amount of used fluid l0:

ΛDim(l0, π) :=

{
0 if µi < l0

ΛDim else.
(5.10)

Dij(q, π, l) can now be calculated in the following straightforward way:

Theorem 5.3. The discounted probabilities Dij(q, π, l) are given by

Dij(q, π, l) =
(
e
∫ l+q
l

ΛD(x,π)dx
)
ij
.

Now we will calculate the discounted density Γi(q, π, l): Γti(q, π, l) corre-
sponds to repairing when the fluid level Q(t) reaches Q(t)− q. The discounted
probability of reaching fluid level Q(t)− q in state sj equals Dij(q, π, l). When
the process reaches this state, the asset can be repaired by transitioning to a
CTMC-state sk where the control limit has already been exceeded. However,
the presence of jumps complicates this: If the transition from sj to sk has a
fluid jump, then repair won’t be chosen immediately. This problem is solved by
using transition rates ΛDk j instead of λkj since, referring back to remark 5.5, are
not interested in time intervals where the buffer Lc is nonempty. Concluding:

Theorem 5.4. The discounted density corresponding to repairing when L0(t) =
l + q given that initially the process is in CTMC-state si with drained initial
fluid l is given by

Γi(q, π, l) =
∑

µj>l+q

Dij(q, π, l)
∑

µk<l+q

ΛDjk.



5. Markov Modulated Fluid Model with jumps 41

5.5 The optimal policy

In this section, we will analytically derive the control limits for the optimal
MMFM maintenance policy. This will be done using the Bellman equations.

If the optimal control limit in state si is given by µ∗i , then in the state
x = (si, µ

∗
i , 0) where repair is chosen, it holds that the expected cost of waiting

one more time step of size δ is at least as large as the expected cost of repairing.
The repair cost equals c+V (xNEW , π

∗) and by (5.4), the cost of waiting equals

(1− λiδ − δrih(µ∗i ))Vδ(i, µ
∗
i + riδ, 0, π

∗)

+ δrih(µ∗i )Vδ(xBREAK , π
∗)

+
∑
j 6=i

λijδVδ(j, µ
∗
i , Jij − rjδ, π∗) + o(δ2).

So we know that

c+ V (xNEW , π
∗) ≤(1− λiδ − δrih(µ∗i ))Vδ(i, µ

∗
i + riδ, 0, π

∗)

+ δrih(µ∗i )Vδ(xBREAK , π
∗)

+
∑
j 6=i

λijδVδ(j, µ
∗
i , Jij − rjδ, π∗) + o(δ2).

Also, Vδ(xBREAK , π
∗) = c + a + Vδ(xNEW , π

∗) and Vδ(i, µ
∗
i + riδ, 0, π

∗) = c +
Vδ(xNEW , π

∗) as repair is chosen next. Substituting this, we get

c+ V (xNEW , π
∗) ≤(1− λiδ − δrih(µ∗i ))(c+ V (xNEW , π

∗))

+ δrih(µ∗i )(c+ a+ V (xNEW , π
∗))

+
∑
j 6=i

λijδVδ(j, µ
∗
i , Jij − rjδ, π∗) + o(δ2).

Subtracting c+V (xNEW , π
∗) from both sides, dividing by δ and rewriting yields

rih(µ∗i )a+
∑
j 6=i

λijVδ(j, µ
∗
i , Jij − rjδ, π∗) ≥ (β + λi)(c+ V (xNEW , π

∗)) + o(δ).

If we were to do the same but starting at a state x′ = (si, µ
∗
i − riδ, 0) (i.e. just

before the control limit is reached) so we know that the cost of waiting is smaller
than the cost of preventive maintenance, we would get

rih(µ∗i )a+
∑
j 6=i

λijVδ(j, µ
∗
i , Jij − rjδ, π∗) < (β + λi)(c+ V (xNEW , π

∗)) + o(δ).

Which together proves the following theorem:

Theorem 5.5. If for the optimal control limit policy π∗ = [µ∗1, ..., µ
∗
N ] the

control limit in CTMC-state si is finite (i.e. µ∗i < ∞), then the following
equation holds

rih(µ∗i )a+
∑
j 6=i

λijV (j, µ∗i , Jij , π
∗) = (β + λi)(c+ V (xNEW , π

∗)). (5.11)
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Remark 5.6. We can rewrite the expected costs V (j, µ∗i , Jij , π
∗) in (5.11) to

V (j, µ∗i , Jij , π
∗) =

∑
k

Djk(Jij , π, µ
∗
i )V (j, µ∗i , 0, π

∗),

using the discounted probability Djk(Jij , π, µ
∗
i ) that the process will be in

CTMC-state sk when the buffer Lc is emptied.

Remark 5.7. It is difficult to compute the control limits µ∗i analytically since
the total discounted costs depend on the control limit and the control limit
depends on the total discounted costs.

Remark 5.8. Note that using the generator matrix ΛD defined by (5.7), equa-
tion for the optimal policy (5.11) could also be written as

h(µ∗i )a+
∑
j

ΛDijV (j, µ∗i , 0, π
∗) = 0. (5.12)

Remark 5.9. Note that equation (5.11) is similar to the equation for the op-
timal control limit of the previous problems in the sense that it has a constant
right-hand side and an increasing left hand side.

5.6 Structural properties

In this section, the effect of changing the parameters to the expected total
discounted cost and the control limits are investigated. These structural prop-
erties are mostly similar to the simple fluid problem. The main difference is
that there are multiple control limits for the various CTMC-states and that the
control limit in a certain state is also influenced by the costs in other states.

Remark 5.10. Referring back to the equation for the optimal control limit µ∗i
for a CTMS-state si (5.12): if some change of the parameters would cause an
increase in the expected remaining cost for some state sj that neighbors si in
the CTMC defined by the generator ΛD (i.e. if ΛDij > 0), then ΛDijV (j, µ∗i , 0, π

∗)
would increase so that the hazard at which repair is chosen must decrease. This
results in a lower control limit.

Furthermore, there are also different fluid rates for different CTMC-states:

Remark 5.11. An increase in the fluid rate ri for some state si increases the
hazard in that state. This results in a lower control limit, as one would expect
as a higher fluid rate corresponds to the asset deteriorating quicker in that state.

Again, appendix C contains computed values of the optimal control limit
and the corresponding expected total discounted cost.

5.7 Heuristic policies

As it is difficult to find an optimal policy that satisfies (5.12), it might be
useful to find heuristic policies that minimize the expected total discounted
cost reasonably well.
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5.7.1 Uniform control limit

If the CTMC-states are similar to each other (i.e. similar fluid rates, transition
rates and jump sizes), then we could also just use the same control limit µ for all
the CTMC-states. This would simplify the expressions Finding the policy that
minimizes the cost within this class of control limit policies would be relatively
easy. The expected total discounted cost would be

V (xNEW , µ) =

µ∫
0

f(x)D0(x)dx(c+a+V (xNEW , µ))+F̄ (µ)D0(µ)(c+V (xNEW , µ)),

which is easier to minimize numerically than (5.5). This heuristic would be a
crude estimation of the optimal policy if the CTMC-states are not very similar.
The heuristic was implemented in Matlab and the resulting policies and total
discounted costs were compared with the exact solutions. The results can be
found in appendix C.

5.7.2 Assuming no jumps before the next failure

When we compare the equation for the optimal policy of age-based maintenance
(3.11) with that of the MMFM problem (5.11), we see that these two differ
mostly by the term ∑

j 6=i

λijV (j, µ∗i , Jij , π
∗).

This term is caused by the possibility that a jump would occur around the time
the control limit is reached. If we would simply assume that no jump would
occur before the next failure, we could omit this term and the problem would
be easier to solve. This heuristic results in an adjusted equation for the optimal
control limits:

rih(µ∗i )a = β(c+ V (xNEW , π
∗)).

Remark 5.12. Note that using this heuristic, all states with the same fluid
rate would have the same control limit, regardless of their outgoing edges.

This heuristic was implemented in Matlab and the resulting policies and
total discounted costs were compared with the exact solutions. The results can
be found in appendix C. It turns out that the performance of this heuristic
depends a lot on the size and frequencies that jumps would otherwise occur at.
For instance, if transitions would occur frequently and the jump sizes are large,
then this heuristic is would be crude and the difference in control limit and cost
would be significant.

5.8 Computing the optimal control limits

In this section, a numeric method will be introduced to compute control limits
that satisfy (5.11). The expected total discounted cost will also be computed.
The method is similar to the successive approximation method that has been
presented in section 3.5 for the problem of age-based maintenance.
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From (5.12), we know that if a policy π̂ = [µ̂1, ..., µ̂N ] µ̂ satisfies

h(µ̂i)a+
∑
j

ΛDijV (j, µ∗i , 0, π
∗) = 0,

then π̂ = π∗. The total discounted cost would then be given by (5.5). This
suggests the following iteration method: At the k + 1’th iteration, we will up-

date the estimates of the optimal control limits µ∗i by finding the π̂
(k+1)
i =

[µ̂
(k+1)
i , ..., µ̂

(k+1)
i ] that minimizes

V̂ (k+1) =E[Di(Q0, π̂
(k+1), 0)](c+ a+ V̂ (k))

+

 ∞∫
0

F̄ (q)Γ0(q, π̂(k+1), 0)dq +
∑
i

F̄ (µ̂
(k+1)
i )Di(µ̂i, π̂

(k+1), 0)

 (c+ V̂ (k)),

where V̂ (k) is the current estimate of V (0+, π∗). This could be found by looking
for the control limits that satisfy

h(µ̂i)a+
∑
j

ΛDij V̂ (j, µ
(k)
i , 0, π(k)) = 0. (5.13)

For this iteration, we also need an initial value of the expected total discounted
cost V̂ (0). Although we do not have a proof for the convergence of this iteration
method, for the problem parameters that were used, it did converge to solutions
similar to those attained via value iteration.



6. DATA ANALYSIS

In this chapter, the data from the Philips machine will be investigated. First,
the data will be described and visualized, then we will attempt to fit the lifetimes
of the machine to various lifetime distributions.

6.1 Data description

The data from the Philips machine contains information about which operation
the machine was performing at each time. The data is anonimized so that for
each operation, no name or description is given, but only an identifier.

6.1.1 Data format

Each run of the machine is represented by a trace. A trace is a sequence of
events. These events are either the start or the end of an operation. Each event
has a timestamp and an integer representing the identifier of the operation. The
breakdown of the machine is represented by the end of a trace. The lifetime of
the machine is then the length of the time interval between the start of the first
event and the end of the last event.

6.1.2 Cleaning

Before the data could be used, it first needed to be cleaned. Because of the
transitions between summer and winter time, a few events ended before they
started. We resolved this by simply ignoring the traces for which there was such
an event. Furthermore, there were some other events with a time length of −1
seconds, these traces were also ignored.

6.1.3 Visualization

We will now visualize the distribution of the lengths of the runs of the machine.
In figure 6.1, the empirical cumulative distribution function and the probability
density function are plotted. In these plots it is visible that the distribution
has its mode around five days and has a part with a less steep downward slope
around 6.5 days. This part on the right hand side of the mode could be caused
by intermediate repairs.
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Fig. 6.1: The empirical cumulative distribution function and the probability density
function of the lifetime of the machine.

For survival analysis, the hazard rate of the lifetime is important. The
observed hazard rate over time is plotted in figure 6.2. As you can see, the
hazard rate is increasing for lifetimes shorter than 6.5 days. For lifetimes larger
than 6.5 days, the hazard rate seems to jump up and down a lot. This is likely
because these large lifetimes did not occur frequently enough in the dataset to
smoothen out the hazard rate. Hence, we can safely assume that the lifetime
has an increasing hazard rate.
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Fig. 6.2: The hazard rate of the lifetime of the machine.

6.2 Fitting lifetime distributions

To be able to predict the remaining time until a failure, it is helpful to know
how the lifetime of the machine is distributed. In this section we will attempt
to fit the lifetime to a distribution.

[7] mentions a few common lifetime distributions. We tried to fit these distri-
butions over the observed lifetimes of the machine (using maximum likelihood
estimation). The Gamma distribution and the log-normal distribution fitted
the data best, although still not very well. The probability densities of these
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distributions are plotted over the density of the observed lifetimes in figure 6.2.
As you can see, these estimations are still not very accurate as they do not
include the blob on the right side of the mode.
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Fig. 6.3: The probability densities over the density of the observed lifetimes.

6.2.1 Phase-type

As the class of Phase-Type distributions is dense in the space of positive con-
tinuous distributions [8], a Phase-Type distribution could also be used to model
the lifetimes. However, Phase-Type distributions have a few disadvantages:
the number of parameters grows quadratically with the amount of states and
most of these parameters are redundant. Furthermore, convergence of the EM-
algorithm (to estimate the parameters) is slow and can get stuck in saddle points
and local maxima [2]. Because of this, we will not use a Phase-type distribution
to model the lifetime of the machine.

6.3 Transition times

In order to model the transitions between the events as a Markov chain, we need
to find out whether the transition times (i.e. the length of the time intervals
between the start and end of an event) are exponentially distributed. It turns out
that the exponential distribution fits the transition times reasonably well. This
justifies modeling the transition times as exponential. An example of an event
of which the time length fits an exponential well is given by 6.3. An example
of an event of which the time length does not fit an exponential distribution is
given by 6.3.
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Fig. 6.4: An exponential distribution fitted over the distribution of the time length of
a certain event. The hypothesis that this distribution is exponential is not
rejected with p = 0.9588.
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Fig. 6.5: The estimated probability density function for the time length of a certain
event. The hypothesis that this distribution is exponential is rejected at
p = 5 × 10−4.



7. PARAMETER ESTIMATION

In this chapter, we will discuss methods for estimating the parameters of the
Markov modulated fluid model. These parameters are the following:

• First of all, we need the parameters of the CTMC. These are the transition
rates λij between the states si and sj .

• For the fluid model, we also need a rate ri > 0 for each state si and we
need the size of the fluid increases Jij for transitions from si to sj .

This results in N2 +N +N2 = 2N2 +N parameters. Furthermore, we need a
distribution for the initial fluid level.

7.1 CTMC Estimation

When we have the trace data, it is not difficult to estimate the transition rates.
We have continuous observations over the Markov chain as for each time, we
know exactly in which CTMC-state the process was. Let Ti be the total time the
process was observed to be in CTMC-state si and let Nij be the total number
of transitions that occurred from si to sj . The maximum likelihood estimator
of the rates λij is simply given by [5]

λ̂ij =
Nij
Ti

.

7.2 Estimating fluid rates and jump quantities

Estimating the fluid rates and jump quantities is more difficult as we do not
observe the fluid level at each time, but only the time at which the fluid level
reaches zero (i.e. when the asset breaks). In this section we will first compute
the log likelihood of rate and jump parameters given trace data and discuss
maximizing this likelihood. Then we will propose an alternative method to
estimate the parameters.

7.2.1 Likelihood

Suppose we have observed a run of the process and have seen that it started in
state si1 , stayed there for a period time of length τ1. Suppose also that after
this time, a transition occurred to si2 and the process stayed there for a time
τ2 and so forth. Hence we have observations in the following form

σ = [(i1, τ1), ..., (iL, τL)] .
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We assume that no preventive maintenance had been done so that after the
last observation in the trace, the asset failed. We also assume that the initial
distribution is known and has probability density function f .

For a given MMFM model M with rates ri and jump quantities Jij , this
would mean that initially the fluid level was

q0(M,σ) = τ1ri1 +

L∑
l=2

τlril − Jil−1il (7.1)

So that the likelihood of this trace would be

L(M,σ) = f(q0(M,σ))

[
L−1∏
l=1

λilil+1
e−λil

τl

]
e−λiL

τL

using λi =
∑
j λij . If we have a set of traces Σ = [σ1, ..., σK ] with

σ(k) =
[
(i

(k)
1 , τ

(k)
1 ), ..., (i

(k)

L(k) , τ
(k)

L(k))
]
,

then the log-likelihood would be

L(M,Σ) =

K∑
k=1

logL(M,σk)

=

K∑
k=1

log f(q0(M,σk)) + log

([
L−1∏
l=1

λikik+1
e−λik

τk

]
e−λiL

τL

)
.

(7.2)

7.2.2 Maximizing likelihood

To maximize the log-likelihood (7.2), we take partial derivatives to the fluid
rates and jump quantities. Let us first define some quantities: Let τ(i, σ) be
the total time the process was in state si for trace σ, i.e.

τ(i, σ) =
∑
k|ik=i

τk.

Furthermore, let #(i, j, σ) be the number of times a transition from si to sj
occurred in trace σ. We will now introduce two lemmas:

Lemma 7.1. The derivative of the initial level q0(M,σ) with respect to the
fluid rate ri is given by

∂

∂ri
q0(M,σ) = τ(i, σ).

Proof. The proof is straightforward:

∂

∂ri
q0(M,σ) =

∂

∂ri

[
τ1ri1 +

L∑
l=2

τlril − Jil−1il

]
=
∑
il=i

τl = τ(i, σ).

And similarly, for the jump quantity Jij :
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Lemma 7.2. The derivative of the initial level q0(M,σ) with respect to the
jump quantity Jij is given by

∂

∂Jij
q0(M,σ) = #(i, j, σ).

Proof. Again:

∂

∂Jij
q0(M,σ) =

∂

∂Jij

[
τ1ri1 +

L∑
l=2

τlril − Jil−1il

]
= −#(i, j, σ).

Before we take the derivative of (7.2) with respect to ri, we note that only
log f(q0(M,σ)) depends on ri so that the other term vanishes. Hence:

∂

∂ri
logL(M,Σ) =

∂

∂ri

∑
k

log f(q0(M,σ(k))) =
∑
k

f ′(q0(M,σ(k)))

f(q0(M,σ(k)))
τ(i, σ(k)).

Similarly, for the jump quantities Jij , we get

∂

∂Jij
logL(M,Σ) =

∂

∂Jij

∑
k

log f(q0(M,σ(k))) = −
∑
k

f ′(q0(M,σ(k)))

f(q0(M,σ(k)))
#(i, j, σ(k)).

The maximum likelihood estimators r̂i and Ĵij are then a solution to the set of
equations

∂

∂ri
logL(M,Σ) = 0,

and
∂

∂Jij
logL(M,Σ) = 0,

for all i, j ∈ {1, ..., N}.

Remark 7.1. Note that this maximum likelihood estimator for the fluid rates
and jump quantities does not depend on the transition rates of the CTMC.

Remark 7.2. It may be difficult to find a solution to these equations. Alter-
natively, we could also find estimates by numerically maximizing the likelihood
(7.2).

7.2.3 Minimizing variance

We will now propose an alternative method to estimate the fluid rates and
jump quantities. The asset is likely produced by a manufacturer that strives for
a constant quality of the produced goods (i.e. wants to maintain continuity).
Hence, we could expect the initial fluid level, which corresponds to the initial
fitness of the asset, to have a low variance. Given trace data, we will therefore
try to find MMFM parameters that minimize the variance of the initial fluid
level. From (7.1) we can find the initial fluid levels for given parameters. We
then still need to fix an average initial fluid level q̄. Note that it does not matter
which value we choose for q̄ as (7.1) is linear so that multiplying q̄ by a constant
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will merely result in the parameters being multiplied by the same constant. We
then compute the variance for given parameters and trace data by squaring the
difference between the initial level and the average q̄. Hence, we will minimize
the following goal function:

G(M,Σ) =
1

K

∑
k

(
q̄ − q0

(
M,σ(k)

))2

. (7.3)

7.2.4 Results

Although we haven’t been able to analyze the method of minimizing variance,
we have implemented it in Matlab. We have tested it with simulated trace data
and compared the resulting parameters with the original parameters. The per-
formance of the method depends a lot on the variance of the initial distribution.
For distributions with large variance, it often occurs that the method manages
to minimize the goal function (7.3) below the actual variance of the distribution.
This results in incorrect parameters. However, the accuracy seems to improve
for smaller variances.



8. CONCLUSION

In this thesis, discounted preventive maintenance problems were considered. We
used the following parameters: a cost c is paid for maintenance. For corrective
maintenance an additional cost a must be paid. Costs at time t in the future
are discounted by the discount factor e−βt. We assumed that the distribution of
the initial fitness of the asset (its lifetime or initial fluid level) has an increasing
hazard rate h.

We showed that for the age-based preventive maintenance problem, the op-
timal policy is a stationary control limit policy where maintenance is chosen
whenever the age reaches the optimal control limit µ∗. If µ∗ <∞, then this µ∗

is the solution to the equation

h(µ∗) = β
c+ V (0+, µ∗)

a
, (8.1)

where V (0+, µ∗) denotes the expected total discounted cost. A policy iteration
method was introduced and its convergence was proven.

For the simple fluid problem, we proved that the optimal policy is a station-
ary control limit policy where maintenance is chosen when the amount of used
initial fluid exceeds a certain threshold µ∗. We showed that this problem can be
reduced to the age-based maintenance problem by changing the discount factor.
For fluid jumps happening at rate λ with size J , this adjusted discount is given
by

β∗ = β + λ(1−D(J)),

where D(J) denotes the expected value of the discount factor over the period
in which the fluid level decreases by J . D(J) can be computed using a method
of successive approximation. Because of the equivalence between this problem
and the age-based maintenance problem, the same equation for the control limit
holds and the same policy iteration method can be used.

We extended this simple fluid problem to a problem where the degradation
of the asset is modeled by a MMFM with jumps. Results from value iteration
suggest that the solution is a stationary policy with control limits µ∗i for CTMC-
state si. Ways to calculate the expected total discounted cost were presented
and an equation was derived to which the optimal control limit adheres. A policy
iteration method similar to the one for age-based maintenance was presented.

Also, a method to estimate the fluid rates and the jump quantities was
presented that assumes the distribution of the initial fluid level has a small
variance.

8.1 Further research

We expect that the obtained results can be extended to models allowing states
with zero fluid rates or fluid rates of opposite sign. The results might also be
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extended to initial distributions without monotonously increasing hazard rates.
The model that was considered in this thesis was simplified in order to make

the analysis feasible. It could be made more realistic in one of the following
ways: the model could be extended to allow non-exponential transition times,
i.e. by replacing the Markov chain by a semi-Markov process. The jump sizes
could also be modeled as random variables. With the extra randomness in the
jump sizes, the distribution of the current fluid level can no longer be described
using the two state variables L0 and Lc, as it would not be certain how much
fluid is in the buffer at each time. Also, similar to the second order fluid model
as considered in [4], the fluid decrease could be modeled as Brownian motion.
Again, with this extra randomness, we would lose certainty of the amount of
fluid that is inside the buffer Lc at each time.

Better methods for estimating the fluid parameters (fluid rates and jump
sizes) from trace data could also be researched.



9. DISCUSSION

We briefly discuss the assumptions on which this thesis relies and what happens
when these assumptions fail. The effect of small changes in problem parameters
is also discussed.

9.1 Assumptions

We assumed perfect repairs. This means that after preventive or corrective
maintenance, the fitness of the asset has the same distribution as a new asset.
If this assumption were to be violated, the optimal policy would no longer be
stationary as it would depend on the number of repairs that have occurred.

We also assumed the cumulative distribution function of the initial fitness
of the asset to be continuously differentiable. If this were to fail, the hazard
rate (and the derivative of the value function) might be undefined or infinite at
points where the distribution would not be continuous or differentiable.

The hazard rate was also assumed to be increasing and continuous. Discon-
tinuities in the hazard rate could result in the equations for the control limits
((3.11) and (5.12)) not having solutions. However, as long as the hazard rate is
increasing, the optimal control limit would simply be the infimum of control lim-
its that exceed the hazard bound. If the hazard rate would not be monotonously
increasing, then the equations for the control limit might have multiple solutions
and the policy iteration might get stuck in a local optimum.

It was also assumed that the transitions in the Markovian environment oc-
cur independent of the condition (age or fluid level) of the asset. In practice,
this assumption might fail as the degradation of the asset might be visible in
its behavior. [11] discusses models where the transitions in the Markovian en-
vironment do depend on the fluid level.

The assumption of constant known fluid jump sizes might also be unrealistic.
This assumption was mainly made to simplify the problem. The same holds for
the assumption of exponential transition times.

9.2 Robustness

Small errors in the problem parameters could be caused by changes in the en-
vironment. For example, if the cost of maintenance would turn out to be larger
than the cost c that was used during the computation of the policy, this would
result in the real total discounted cost being larger than calculated. Further-
more, the chosen control limit would be too high.

Most of the effects varying parameters are covered in sections 3.6, 4.5 and 5.6
for the age-based problem, the simple fluid problem and the MMFM problem
respectively.
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Appendix A

LIST OF SYMBOLS AND NOTATION

The symbols and notation that are used in chapters 3, 4 and 5 are listed in the
table below.

Symbol Meaning
X State space of the MDP.
X(t) State of the process at time t
ωk Random variable for the evolution of the stochastic process at

time tk.
xBREAK State for when the asset is broken.
xNEW State for when the asset is new.
U(x) Set of available actions in state x.
aW Action corresponding to doing nothing.
aR Action corresponding to repairing (performing maintenance).
g(x, u) Cost of performing action u in state x ∈ X.
c Cost for maintenance.
a Additional cost for corrective maintenance.
αδ Discount over a period δ. In this thesis, we use αδ = e−βδ for

discount coefficient β > 0.
µ Control limit. µ∗ denotes the optimal control limit.
π The policy for the MMFM-problem. π = {µ1, ..., µN} where µi

denotes the control limit in CTMC-state si. π
∗ denotes the

optimal policy.
x ∧ y The minimum of x and y.
x ∨ y The maximum of x and y.
Q0 Distribution of the initial fitness (lifetime or fluid level) of the

asset.
Q(t) Fluid level at time t.
L0(t) Amount of drained initial fluid at time t.
Lc(t) Amount of fluid inside the buffer at time t.
F CDF of Q0.
FX(t) CDF of Q(t)
F̄ (x) Reliability function corresponding to F . Furthermore

F̄ (x; y) = F̄ (x)
F̄ (y)

.

h Hazard rate of Q0.
Vδ(x, µ) Expected total discounted cost at state x with time-step δ,

using control limit µ. δ is omitted than for the continuous
MDP. For the MMFM we write Vδ(x, π) with policy π.

λij Transition rate from state si to sj . Also λi = −
∑
j 6=i λij . λ is

used for the simple fluid model.
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Jij Jump quantity when transitioning from si to sj . J for the
simple fluid model.

N Number of CTMC-states for the MMFM problem.
Tt(q) Random variable denoting the time until the fluid level has

decreased by q, i.e. min{τ − t > 0|Q(τ) = Q(t)− q}.
Nt(q) The number of jumps that occur during the time that the

fluid decreases by q.
Dt
ij(q, π, l) Expected value of the discount factor over the time period

that the process reaches state sj while the fluid level decreases
by q without a control limit from π being encountered, given
that at time t the process was in X(t) = (i, l, 0). For the
simple fluid problem, D(q) denotes the discount over the time
that the fluid decreases by q.

ΛD The generator matrix for Dij .



Appendix B

PROOF OF PROPERTIES OF OPTIMAL AGE-BASED
CONTROL LIMITS

Without the assumption of increasing hazard rates, it can also be proven that
if an optimal control limit µ∗ exists, µ∗ must satisfy (3.11) and the hazard rate
must be increasing at µ∗. This can be proven using the Bellman equations. For
this, we will briefly return to discretized time: If the control limit equals µ∗,
then one time interval earlier, c+ Vδ(δ, µ

∗) ≥ Vδ(µ∗ − δ, µ∗) holds since else the
control limit would be smaller than µ∗. Using (3.4), we get

c+ Vδ(0
+, µ∗)

≥Vδ(µ∗ − δ, µ∗)
=δh(µ∗)(c+ a+ Vδ(0

+, µ∗)) + (1− δβ − δh(µ∗))Vδ(µ
∗, µ∗) + o(δ2).

Since we repair at age µ∗, Vδ(µ
∗, µ∗) = Vδ(0

+, µ∗) + c and we can write

c+Vδ(0
+, µ∗) ≥ δh(µ∗)(c+a+Vδ(0

+)) + (1− δβ− δh(µ∗))(c+Vδ(0
+)) + o(δ2).

Which simplifies to

0 ≥ ah(µ∗)− β(c+ Vδ(0
+, µ∗)) + o(δ2)

and can be rewritten as

h(µ∗) ≤ β c+ Vδ(0
+, µ∗)

a
+ o(δ2)→ β

c+ Vδ(0
+, µ∗)

a
.

If instead of looking a decision stage before the control limit, we now look at
the decision stage where the control limit µ∗ is reached, the Bellman equations
yield

c+Vδ(0
+, µ∗) ≤ Vδ(µ∗−δ, µ∗) = δh(µ∗)(c+a+Vδ(0

+, µ∗))+(1−δβ−δh(µ∗))Vδ(µ
∗+δ)+o(δ2)

And using the same steps, we get

h(µ∗) ≥ β c+ Vδ(0
+, µ∗)

a
+ o(δ2)→ β

c+ Vδ(0
+, µ∗)

a

such that the result is proven when δ approaches zero. From the above, it
also follows that the hazard rate is increasing at the control limit. This can be
summarized in the following theorem:
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Theorem B.1. Whenever the optimal policy is to repair when the age reaches
control limit µ∗ <∞, it holds that the hazard rate is increasing at µ∗ and

h(µ∗) = β
c+ V (0+, µ∗)

a
.

Corollary B.1. If the hazard rate of the lifetimeQ0 of the asset is monotonously
decreasing, preventive repair will never be the optimal choice.
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TOTAL DISCOUNTED COSTS FOR VARIOUS PROBLEM
PARAMETERS AND POLICIES

C.1 Age-based problem

Below optimal control limits and corresponding total discounted costs of the age-
based maintenance problem are listed for a few parameters. These control limits
and total discounted costs were obtained using the iteration method presented
in this thesis. The scale 20/π for the Weibull distribution was chosen so that
the mean lifetime is the same for both distributions.

c a β Lifetime µ∗ V (0+, µ∗)
1.000 100.000 1.000 Weibull(20/π, 2) 1.388 1.181
1.000 100.000 1.000 Gamma(2, 5) 2.349 0.233
1.000 5.000 1.000 Weibull(20/π, 2) 13.897 0.091
1.000 5.000 1.000 Gamma(2, 5) 10.298 0.025
1.000 100.000 0.500 Weibull(20/π, 2) 1.246 2.916
1.000 100.000 0.500 Gamma(2, 5) 2.123 0.838
1.000 100.000 2.000 Weibull(20/π, 2) 1.760 0.383
1.000 100.000 2.000 Gamma(2, 5) 2.831 0.030

C.2 Simple fluid problem

Below optimal control limits and corresponding total discounted costs of the sim-
ple fluid model maintenance problem are listed for a few parameters. These con-
trol limits and total discounted costs were obtained using the iteration method
presented in this thesis.

c a β Initial fluid λ J µ∗ V (0+, µ∗)
1 100 1 Weibull(20/π, 2) 1.000 0.500 1.572 0.608
1 100 1 Gamma(2, 5) 1.000 0.500 2.607 0.075
1 5 1 Weibull(20/π, 2) 1.000 0.500 54.762 0.039
1 5 1 Gamma(2, 5) 1.000 0.500 ∞ 0.005
1 100 0.5 Weibull(20/π, 2) 1.000 0.500 1.341 1.495
1 100 0.5 Gamma(2, 5) 1.000 0.500 2.276 0.335
1 100 2.0 Weibull(20/π, 2) 1.000 0.500 2.114 0.209
1 100 2.0 Gamma(2, 5) 1.000 0.500 3.176 0.009
1 100 1.0 Weibull(20/π, 2) 0.500 1.000 1.513 0.730
1 100 1.0 Gamma(2, 5) 0.500 1.000 2.528 0.104
1 5 1.0 Weibull(20/π, 2) 0.500 1.000 18.346 0.049
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1 5 1.0 Gamma(2, 5) 0.500 1.000 ∞ 0.008
1 100 0.5 Weibull(20/π, 2) 0.500 1.000 1.319 1.698
1 100 0.5 Gamma(2, 5) 0.500 1.000 2.241 0.403
1 100 2.0 Weibull(20/π, 2) 0.500 1.000 1.970 0.259
1 100 2.0 Gamma(2, 5) 0.500 1.000 3.045 0.014

C.3 Markov Modulated fluid model

For the following two MMFMs we calculated the total discounted costs of the
preventive maintenance problem. In addition to calculating the exact solution
via the iteration method presented in the thesis, we also computed the policies
for the heuristics discussed in section 5.7. We denote the uniform control limit
by µu and the control limits that resulted from assuming no jumps will occur
before the next failure by µ′i, with corresponding total discounted costs Vu(µu)
and V (0+, π′) respectively.



A
p
p

en
d
ix

C
.

T
o
ta

l
d
isco

u
n
ted

co
sts

fo
r

va
rio

u
s

p
ro

b
lem

p
a
ra

m
eters

a
n
d

p
o
licies

6
4

C.3.1 MMFM 1

s1 : 1 s2 : 2
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Fig. C.1: Depiction of the MMFM corresponding to table C.4.

c a β Initial fluid µ∗1 µ∗2 µ∗3 V (0+, π∗) µu Vu(µu) µ′1 µ′2 µ′3 V (0+, π′)
1 100 1.0 Weibull(20/π, 2) 1.632 0.816 1.015 1.563 1.786 1.805 1.642 0.821 0.547 1.579
1 100 1.0 Gamma(2, 5) 2.493 1.965 2.114 0.459 2.514 0.494 2.500 1.971 1.728 0.471
1 5 1.0 Weibull(20/π, 2) 15.224 7.612 9.474 0.196 15.226 0.196 15.345 7.673 5.115 0.205
1 5 1.0 Gamma(2, 5) 11.053 6.231 7.233 0.094 11.069 0.096 11.138 6.258 4.946 0.102
1 100 0.5 Weibull(20/π, 2) 1.457 0.728 1.128 3.576 1.582 4.032 1.474 0.737 0.491 3.631
1 100 0.5 Gamma(2, 5) 2.276 1.807 2.086 1.255 2.298 1.316 2.292 1.818 1.599 1.299
1 100 2.0 Weibull(20/π, 2) 2.028 1.014 1.006 0.593 2.143 0.683 2.033 1.017 0.678 0.597
1 100 2.0 Gamma(2, 5) 2.916 2.267 2.261 0.114 2.929 0.126 2.918 2.268 1.978 0.116

Tab. C.4: Computations corresponding to the MMFM of figure C.1.
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C.3.2 MMFM 2

s1 : 1 s2 : 1

s3 : 3
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2 : 1

1 : 01 : 0

Fig. C.2: Depiction of the MMFM corresponding to table C.6.

c a β Initial fluid µ∗1 µ∗2 µ∗3 V (0+, π∗) µu Vu(µu) µ′1 µ′2 µ′3 V (0+, π′)
1 100 1.0 Weibull(20/π, 2) 2.196 2.333 0.445 0.344 2.497 0.531 0.887 0.887 0.296 0.393
1 100 1.0 Gamma(2, 5) 3.176 3.255 1.806 0.080 3.228 0.126 2.245 2.245 1.570 0.083
1 5 1.0 Weibull(20/π, 2) 34.338 ∞ 7.352 0.048 34.189 0.048 13.368 13.368 4.456 0.050
1 5 1.0 Gamma(2, 5) ∞ ∞ 6.321 0.019 ∞ 0.0195 10.247 10.247 4.751 0.020
1 100 0.5 Weibull(20/π, 2) 1.926 2.078 0.340 0.665 2.634 1.292 0.608 0.608 0.203 0.911
1 100 0.5 Gamma(2, 5) 2.913 3.003 1.616 0.226 3.039 0.373 1.864 1.864 1.325 0.242
1 100 2.0 Weibull(20/π, 2) 2.763 2.862 0.644 0.149 2.852 0.187 1.466 1.466 0.489 0.151
1 100 2.0 Gamma(2, 5) 3.636 3.692 2.102 0.017 3.646 0.024 2.817 2.817 1.919 0.017

Tab. C.6: Computations corresponding to the MMFM of figure C.2.



Appendix D

MATLAB ROUTINES

The relevant Matlab routines can be found in this git repository.

https://github.com/MartijnGosgens/preventive-maintenance.git
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