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Abstract

A polling system is a queuing system that consists of N stations, each with a corresponding
queue, which are served by a single server, in a fixed order. First we study a system with
exhaustive and gated service. From this the mean queue length, its variance and the covariance
between queue lengths of different stations were simulated. The mean queue length was also
compared to exact values. Then, for a system with glue periods, a system with deterministic
glue periods and exponential switch-over times and a system with exponential glue periods
and deterministic switch-over times were studied. For both systems the mean waiting times
were simulated and compared to exact values. Then, with a system with exponential glue
periods and deterministic switch-over times, the mean glue time was varied. Here the mean
queue length, the squared coefficient and correlation between queue lengths were simulated
and compared to figures from exact calculations. Also, for several systems used earlier, the
density of the waiting times were simulated. Lastly systems with a Uniform and Pareto glue
distribution were studied. It was observed that changes in the arrival rate and average service
time result in similar changes in queue length at all stations, while changes in mean retrial
time and mean glue period time result in mostly station specific changes in queue length.
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Chapter 1

Introduction

A polling system is a queuing system that consists of N stations, each with a corresponding
queue, which are served by a single server, in a fixed order. There are many real-life examples
of polling systems.
One of the first polling systems modeled was about a patrolling repairman. This repairman
would walk rounds and during these rounds visited machines that might need repairs. Here
the stations are the machines and the parts of these machines needed to be fixed are the
customers that are waiting to be ‘served’.
Another example of a polling system is a one-lane bridge, with on both sides a traffic signal.
Here there are two queues, namely the cars that want to go to the other side on each side
of the bridge. The server is the traffic light, which, if green, is serving a customer. Polling
systems are also used in data-networks where one server might need to receive and/or send
data to multiple other servers. Here the customers are the data-packages and the server is the
cable that transmits the signal from one server to the other.
Optical networks are another example. Polling system with glue periods, which will be studied
in this report, were inspired by this example. In an optical network light signals are used to
send messages between different locations. When one of this light messages arrives at a
location, this message either has to be received by the location within a short time or send
away to try again later. This because light cannot be queued, though it can be slowed down
a little. This means that if a message does not arrive shortly before the server starts serving,
the message will be send away to try again later. If it does arrive shortly before the start of
service, it will be ‘glued’ to the station queue, by slowing the customer down, and served.
Polling systems exist in many shapes and sizes. There are several parts that determine the
shape and size of the system.
First we discuss the service discipline. The service discipline decides which customers the
server is going to serve when it arrives at a queue. The discipline has rules to determine who
to serve. The two service disciplines that will be discussed in this report, are the exhaustive
and gated service disciplines. With exhaustive service the server serves all customers in the
queue of the station it is at and when the queue is empty the server moves on to the next
station. If the service discipline is gated, the server will serve only the customers that were
already present the moment the server arrived at the station. This means if a customer arrives
at a station where the server is serving, he will have to wait for the server to return to the
queue before he is served. Other service disciplines can have different rules or combinations
of rules. For example the server can only stay a certain time at a station (time-limited), or
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can only serve a certain maximum number of customers (k-limited).
Second, there are different types of customer behavior. The most basic is that the customer
arrives at a queue and waits till he is served, which is what will be studied at in this report.
It is also possible that if a queue is too long the customer will leave to try again later.
A system can also have something called ‘glue periods’. Only customers who arrive during a
glue period for the station they arrive for will go in the queue. If the customer does not arrive
during the glue period of the station they arrive at, he will leave to try again later. In this
report, the glue periods are located right after the switch-over and before the start of serving.
Last, there are the probability distributions determining the inter-arrival, switch-over, glue
and service times. Different types of distributions describe different behavior and thus can
describe different situations.
In Chapter 2 the polling model will be discussed. First a closer explanation of the studied
polling systems will be given, followed by the notation. Next the determination of the sation
sizes is discussed on. We continue by providing some information of branching processes and
lastly about the Pseudo-Conservation law.
In the next chapter, it is explained how the simulation is built. In Chapter 4 the results from
the simulation are given, starting with a system with gated or exhaustive service. After that
the result of a system with glue periods will be given, followed by the conclusion.
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Chapter 2

Model description

In this chapter the variations of a polling system with and without glue period will be de-
scribed. As mentioned in the introduction, a polling system is a system where one server serves
N different stations. Each station has its own queue, arrival rate and service time. There
are several important parts in a polling system. These are the service discipline, customer
behavior, the arrival, service and switch-over process and the server routing.
The service discipline determines which customers will be served and when the server will
move on to the next station. In this report we discuss the exhaustive and gated service disci-
pline. Exhaustive service simply means that the server will stay at a station serving customers
till the queue is empty, then the server will move to the next station. If the service discipline
is gated, then the server will only serve the customers that are at the station at the moment
the server arrives at the station. If the server is serving at a station, and a customer arrives at
this station, this customer will have to wait till the server returns to this station in the next
cycle.
The customer behavior is another important part of the system. Customer behavior deter-
mines how customers behave in certain situations. For example they might leave if they have
to wait longer than a certain time. In this report the customers will enter the queue the
moment they arrive, if this is possible. If there are glue periods entering the queue might not
be possible and the customer will try again later.
Next we have the arrival, service and switch-over processes. The duration time for each of
these processes are random variables. The arrival process is normally given by a Poisson dis-
tribution. Thi means that the inter-arrival times are exponentially distributed. The service
times are independent random variables, that may vary per station. In this report exponential
service times are used, that may have a different mean at different stations. The switch-over
times in this report are independent random variables with either an exponential distribution
or simply constants.
Later in the report systems with glue periods will be studied. When a customer arrives at
station i and at the moment of arrival it is a glue period of station i, the customer will be
‘glued’ to a temporary queue and wait to be served. If there is no glue period at the station
i, then this customer will leave and retry later. The glue period is located between the end of
a switch-over and the start of service.
The last part of the model is the server routing. In this report the server will follow the
stations in cyclic order, which can be seen in Figure 2.1.
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Figure 2.1: cyclic order

2.1 Notation

In this report the inter-arrival and service times are exponentially distributed. The arrival
process has an arrival rate λi for station i. The random variable for the service times is Bi for
station i. The random variable Si gives the switch-over time from station i to station i + 1,
where station N + 1 is station 1.
If the system has glue periods, there are two extra i.i.d. random variables Gi, the duration of
a glue period for station i, and Ri, the time between an arrival outside of the glue period and
the retrial. This return time is exponentially distributed with mean ν−1

i .
The utilization of the server at station i is ρi = λiE[Bi], where ρ =

∑N
i=1 ρi. Lastly there is

the cycle length, which is the time it takes for the server to complete a round past all stations.
The cycle length is here defined as the time between two successive arrivals of the server at
a station. To determine the mean cycle length, the mean idle time per cycle is determined,
which is

∑N
i=1(E[Gi] + E[Si]). This is the time that the server is not in a service period and

thus is in either glue or switch-over period. Since ρ is the part of the mean time the server is
serving, 1− ρ is the part of the mean time it is a glue or service period. This indicates thjat
the mean idle time per cycle can also be given by (1 − ρ)E[C] and that the mean cycle time
is as follows: E[C] = 1

1−ρ
∑N

i=1(E[Gi] + E[Si]).
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2.2 Station size of a system with glue periods

The results from the simulation with glue periods will be compared with results found in
article [1]. First we will describe how the authors of article [1] determined the waiting times
for systems with exponential glue periods.
First some extra notation, consistent with the notation in article [1]. The glue periods
are exponentially distributed, with E[Gi] = 1/γi. βi(z) is defined as follows: βi(z) :=
B̃i(
∑N

j=1 λj(1 − zj)), with B̃i(x) the Laplace Stieltjes transform of the service time distri-
bution at station i, where z = (z1, z2, . . . , zn). We also define σi(z) := S̃i(

∑N
j=1 λj(1 − zj)),

with S̃i(x) the Laplace Stieltjes transform of the switch-over time distribution from station i
to station i + 1. For a vector l of length N , |l| = l1 + l2 + . . . + lN . The inequality l′ ≤ l is
interpreted component-wise. Lastly Γ

(l)
i,m = 1

l!
δ|l|

δzl
((βi(z)− 1)mσi(z))|z=1−.

First the station size at arbitrary time points was determined. To do this the function φi(z;w)
was defined. Let Mo

i (t) be the number of customers in the orbit of station i at time t, for all
i and Υ(t) be the number of customers in the glue queue at time t. Then φi(z;w) is defined
as follows:

φi(z;w) =

∫ ∞
0

φi(z;w; t)dt,

with φi(z;w; t) as follows:

φi(z;w; t) = E[z
Mo

1 (τi+t)
1 · · · zM

o
N (τi+t)

N ωΥ(τi+t)1{Gi>t}].

Theorem 1 of article [1] gives that generating function φi(z;w) satisfies a differential equa-
tion, Equation (2.1), for i = 1, . . . , N .

νi(w − zi)
δ

δzi
φi(z;w)−

 N∑
j=1,j 6=i

(λj(1− zj)) + λi(1− w) + γi)

φi(z;w)

+γi−1φi−1(z;βi−1(z))σi−1(z) = 0 (2.1)

Next, let Rv,i(z, w), Rs,i(z) and Rg,i(z, w) be the generating function of the number of cus-
tomers in each station at an arbitrary time point in respectively a service (visit), switch-over
and glue period, where z = (z1, ..., zN ). Then Rv,i(z, w), Rs,i(z) and Rg,i(z, w) can be ex-
pressed in terms of φi(z;w).

Rv,i(z, w) =
γi

ρiE[C]

φi(z, w)− φi(z, βi(z))

w − βi(z)

1− βi(z)∑N
j=1 λj(1− zj)

, (2.2)

Rs,i(z) =
γi

E[Si]
φi(z, βi(z))

1− σi(z)∑N
j=1 λj(1− zj)

, (2.3)

Rg,i(z, w) = γiφi(z, w). (2.4)

These functions were determined with the generating functions of the number of customers in
each station at the start of each period type: R̃(i)

v (z, w) for the visit (service) period of station
i, R̃(i)

s (z) for the switch-over period from station i to station i + 1 and lastly R̃(i)
g (z, w) for

the glue period of station i. We refer to Proposition 1 of article [1] for the equations of these
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generating functions in terms of φi(z;w).
The number of customers at an arbitrary time point in a service period consists of two parts:
the number of customers who arrived between the start of the current service period and
the current time, and the number of customers at the start of the service period without the
ones already served, denoted by r̆1(z) and r̆2(z, w). The formulas for these two are given
respectively in Equations (2.5) and (2.6). In Equation (2.7) Rv,i(z, w) is given.

r̆1(z) =
1− βi(z)

E[Bi](
∑N

j=1 λj(1− zj))
(2.5)

r̆2(z, w) =
R̃

(i)
v (z, w)− R̃(i)

v (z, βi(z))

E[Y
(iq)
i ](w − βi(z))

=
γi

E[Y
(iq)
i ]

φi(z, w)− φi(z, βi(z))

w − βi(z)
(2.6)

Rv,i(z, w) = r̆1(z) · r̆2(z, w) (2.7)

Equation (2.3) gives the generating function of the number of customers at an arbitrary time
moment during the switchover. This number of customers also consists of two parts: customers
that had already arrived before the start of the switchover period and the customers that
arrived during the part of the switchover period that already passed. The generating function
of the number of customers that arrived during the part of the switchover period that already
passed is given by 1−σi(z)

E[Si](
∑N

j=1 λj(1−zj))
. The generating function of the customers that arrived

before the switchover period can be given by R̃(i)
s (z). Since both numbers of customers are

independent the generating function Rs,i(z) is found by multiplication of the two generating
functions.
The generating function of the number of customers at an arbitrary time point in a glue period
can be found in Equation (2.4). This was calculated by the theory of Markov regenerative
processes.

R(i)
g (z, w) = γi

∫ ∞
0

φi(z, w; t)dt (2.8)

To determine the moments, the generating functions Rv,i(z, w), Rs,i(z) and Rg,i(z, w) are first
scaled, as seen respectively in Equations (2.9), (2.10) and (2.11).

ψ
(l,m)
v,i =

1

l!m!

δ|l|+m

δzlδwm
Rv,i(z, w)|z=1−,w=1−′ (2.9)

ψ
(l)
s,i =

1

l!

δ|l|

δzl
Rs,i(z)|z=1−,w=1−′ (2.10)

ψ
(l,m)
g,i =

1

l!m!

δ|l|+m

δzlδwm
Rg,i(z, w)|z=1−,w=1−′ (2.11)

Here for vectors z and l of lengthN , l! = l1!l2! · · · lN !, zl = zl11 z
l2
2 · · · z

lN
N and δzl = δzl11 δz

l2
2 · · · δz

lN
N .

Now let Mo
i be the number of customers in orbit of station i in steady state, Moq

i the number
of customers glued in the queue and orbit of station i in steady state andMi the total number
of customers for station i in steady state. Let Υ be the number of glued customers in steady
state. Define Iv,i, Ig,i and Is,i as indicator random variables, where Iv,i is 1 if the server is at
station i serving in steady state and else zero, Ig,i is 1 if station i is in glue period and else
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zero in steady state and lastly Is,i is 1 if the server is switching from station i to station i+ 1
in steady state and else zero. From this we get for i = 1, . . . , N ,

Mo
i =

N∑
k=1

Mo
i (Iv,k + Ig,k + Is,k),

Moq
i =Mo

i + Υ(Iv,i + Ig,i),

Mi =Moq
i + Iv,i.

Where Mo
i equals the sum of customers in orbit during the serving, glue and switch-over

period of all stations. Moq
i is the number of customers in orbit for station i and the number of

customers that are glued to the queue of station i. And lastly Mi is the number of customers
in orbit of station i and the number of customers glued to station i and the customer being
served, if it is a serving period for station i. The expectation of Mi can be calculated by using
the following formulas:

E[Mo
i Iv,k] =ρkψ

(1i,0)
v,k ,

E[Mo
i Ig,k] =

E[Gk]

E[C]
ψ

(1i,0)
g,k ,

E[Mo
i Is,k] =

E[Sk]

E[C]
ψ

(1i)
s,k ,

E[ΥIv,i] =ρiψ
(0,1)
v,i ,

E[ΥIg,i] =
E[Gi]

E[C]
ψ

(0,1)
g,i ,

E[Iv,i] =ρi.

Higher moments can be calculated similarly.

2.3 Branching process

Branching processes are also called Galton-Watson processes and are discrete time processes
Xn [3]. Here n denotes the generation and Xn the number of individuals in generation n.
In a branching process each individual produces a random number of offspring, according
to a distribution that is the same for each individual. The number of offspring generated
by two different individuals are independent. This is for two individuals of either the same
or different generations. Branching processes are discrete-time Markov chains, with only
nonnegative values for Xn.
In polling systems with exhaustive and gated service disciplines, the queue lengths at the start
and end of a service period are branching processes. Polling systems with this type of service
discipline satisfy the branching property and can be analyzed using theory from branching
processes. The branching property given below is defined by [4]. The Qi means station i and
ki denotes the number of customers in queue at station i. PGF is the probability generating
function.

Branching Property If the server arrives at Qi to find ki customers there, then during the
course of the server’s visit, each of these ki customers will effectively be replaced in an i.i.d.
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manner by a random population having PGF hi(z1, ..., zN ), which can be any N-dimensional
PGF.

Since polling systems with exhaustive and gated service satisfy this property, there are proba-
bility generating functions hi,e and hi,g for the random population that replace the customers
at a station for respectively exhaustive and gated service. For a system with the gated service
holds hi,g(z) = B̃i(

∑N
j=1 λj(1 − zj)). In a system with gated service, customers that arrive

during service will not be served till the next cycle starts. This means that if a customer is
served, this customer will be replaced by the customers that arrive during its service time. In
this report the service distribution is exponential, thus B̃i(s) = 1

1+E[Bi]s

For exhaustive service hi,e(z) = B̃P i(
∑

j 6=i λj(1 − zj)) holds, where B̃P i is the Laplace-
Stieltjes transform of a busy period distribution of a system with only type i customers and
B̃P i(s) = B̃i(λi+s+λiB̃P i(s)). Here all customers that arrive at station i during the service
period of station i will be served during this service period. This means that the customers
that were present at the begin of the service period will be replaced with the customers that
arrive during the whole service period (or busy-period) at the end of the service period, except
at station i where the queue will be empty at the end of service period.

2.4 The Pseudo-Conservation law

Determining the exact mean waiting time for each queue can be very difficult and complicated.
An example is the calculation of the mean waiting time for a system with glue periods at
Section 2.2. Here it can be seen that to calculate the mean some difficult calculation have to
be made, and as the number of stations grows the difficulty of the calculations will increase.
A better approach is to determine the weighted sum of the mean waiting times, otherwise
known as the pseudo-conservation law. Because the weighted sum of mean waiting times is
easier to determine, is it an important basis for approximations of the mean waiting times.
In article [1] the pseudo conservation law for a polling system with general glue period is given:

N∑
i=1

ρiE[Wi] = ρ

∑N
i=1 λiE[B2

i ]

2(1− ρ)
+ρ

E[(
∑N

i=1(Si +Gi))
2]

2E[
∑N

i=1(Si +Gi)]
+
E[
∑N

i=1(Si +Gi)]

2(1− ρ)
(ρ2−

N∑
i=1

ρ2
i )+

N∑
i=1

E[Fi]

(2.12)

This equation was found with the help of [2]. There it is also explained that the steady
state workload is in distribution the same as the sum of two independent quantities. The
first quantity is the steady state workload of the same queueing system, but then without the
switch-over and glue periods. The second quantity is the steady state workload at an arbitrary
time in a switch-over or glue period.
In Equation (2.12), E[Fi] is the amount of work left in station i at the end of a visit period to
station i. This is the only quantity that cannot directly be determined out of the distributions
of the inter-arrival, switch-over, service, glue or retrial time. To determine the work left at
this moment, first it is important to know that E[Fi] = E[Z

(i)
i ]E[Bi], where E[Z

(i)
i ] is the mean

number of customers for station i present in the system at the end of a visit to station i.
Now E[Z

(i)
i ] needs to be determined. In [1] this is done by deriving the relation between
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E[Z
(i)
i ] and E[Y

(iq)
i ], where E[Y

(iq)
i ] is the number of customers in the queue of station i at

the start of a visit period. E[Y
(iq)
i ] consists of three parts. First there are the customers that

were in the system before the last visit period to station i and who retry during this glue
period, (1− G̃i(νi))E[Z

(i)
i ]. As mentioned before E[Z

(i)
i ] is the mean number of customers for

station i present at the end of a visit to station i. This is multiplied by the fraction of the
number of customers that will retry during the glue period of station i, (1 − G̃i(νi)). Here
G̃i(s) is the Laplace-Stieltjes transform of the glue period distribution at station i. G̃i(νi) is
the probability that the retrial time is larger than the glue period time.
The second part of E[Y

(iq)
i ] is the mean number of customers that arrived in between the end

of the last visit to station i and the start of the glue period of this station and retry during
the glue period. Since λi((1− ρi)E[C]− E[Gi]) is the mean number of customers that arrive
from the end of the last visit to station i to the beginning of the glue period of station i, the
expression (1− G̃i(νi))λi((1− ρi)E[C]− E[Gi]) gives the number of people that retry during
this glue period.
The last part are the customers that arrive during this glue period, which equals λiE[Gi].
Combining these three parts gave Equation (2.13) for E[Y

(iq)
i ]. It is known that ρiE[C] =

E[Y
(iq)
i ]E[Bi], and thus E[Y

(iq)
i ] = λiE[C]. From this E[Z

(i)
i ] and E[Fi] can be determined.

E[Y
(iq)
i ] = (1− G̃i(νi))E[Z

(i)
i ] + (1− G̃i(νi))(1− ρi)λiE[C] + G̃i(νi)E[Gi]λi, (2.13)

E[Z
(i)
i ] = λiρiE[C] +

λiG̃i(νi)

1− G̃i(νi)
(E[C]− E[Gi]), (2.14)

E[Fi] = ρ2
iE[C] +

ρiG̃i(νi)

1− G̃i(νi)
(E[C]− E[Gi]). (2.15)

In Equation (2.15) there are two terms. The first term, ρ2
iE[C] is the amount of work of

customers who arrive at station i during its own visit period. The second part of the equation
equals the amount of work of customers for station i who were waiting to retry at station i at
the beginning of the visit period of station i. This can be found by rewriting the fraction:

ρiG̃i(νi)

1− G̃i(νi)
(E[C]− E[Gi]) =

∞∑
k=1

(G̃i(νi))
kρi(E[C]− E[Gi]). (2.16)

The mean number of customers arriving during a cycle, but not the glue period of a cycle, is
λi(E[C] − E[Gi]). (G̃i(νi))

kρi(E[C] − E[Gi]) is the amount of work of customers who arrived
during the kth previous cycle, but not during its glue period.
Now since E[C] = 1

1−ρ
∑N

i=1(E[Gi] + E[Si]), Equation (2.17) can be obtained from (2.12) and
(2.15).

N∑
i=1

ρiE[Wi] =ρ

(∑N
i=1 λiE[B2

i ]

2(1− ρ)
+

E[(
∑N

i=1(Si +Gi))
2]

2E[
∑N

i=1(Si +Gi)]

)
+

E[
∑N

i=1(Si +Gi)]

2(1− ρ)

(
ρ2 +

N∑
i=1

ρ2
i

)

+

N∑
i=1

ρiG̃i(νi)

1− G̃i(νi)

(
E[
∑N

i=1Gi + Si]

1− ρ
− E[Gi]

)
. (2.17)
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Since our glue period distribution is either exponentially distributed or deterministic, the
Laplace Stieltjes transform for these can be determined. If the distribution is exponential:

G̃i(νi) =
1/E[Gi]

1/E[Gi] + νi
=

1

1 + E[Gi]νi
. (2.18)

If the distribution is deterministic, Gi is a real number and G̃i(νi) = e−νi·Gi .
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Chapter 3

Simulation

In this chapter we will explain how the simulation works. The simulation is made in Java.

3.1 Polling system without glue periods

First the simulation without the glue periods will be explained. The simulation is made so that
it has either exhaustive or gated service. In this simulation there are three possible events,
the arrival of a customer, the end of a switch-over and the end of service of a customer. The
explanation of these events can be found below.

3.1.1 Arrival of a customer

At the start of the simulation the first arrival for each station is determined. From then on
the arrival of the next customer is planned when a customer arrives. When a customer for
station i arrives, the simulation determines the time the next customer for station i arrives.
The algorithm for the arrival of a customer is given in Algorithm 1.

Algorithm 1 Arrival of a customer
Require: time: current time, Qn: integer that gives which queue the customer arrives in, Queues: list

with the Arraylist of customers for each station, Eventlist: list of future events, arrivalDistribution:
list with the distributions for the inter-arrival times for each queue

Ensure: Updated Queues and Eventlist
c← newCustomer(time)
Queues.get(Qn).addCustomer(c) . adds customer to queue

t← arrivalDistribution.get(Qn).nextRandom() . determines the inter-arrival time
between the current and next customer
e← newEvent(Arrival, time+ t) . Make next arrival event
e.setQueue(QN) . set the queue the customer will arrive in
Eventlist.add(e) . add event to list of events in time order
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3.1.2 End of switch-over

At the end of a switch-over the server just finished going from station i− 1 to station i. First
the length of the queue of station i will be checked, if there are no customers in this queue, the
next end of switch-over event will be planned. What happens when there are customers
in the queue will differ for exhaustive and gated service. In case of exhaustive service the only
thing that will happen is that the end of service will be planned for the first customer in the
queue. In the case of gated service, a new temporary queue will be made. All the customers,
that are at queue i the moment the server arrives, will be transferred to this temporary queue:
gatedQ. After this the end of service for the first customer in this temporary queue will
be determined. The algorithms for the exhaustive and gated service can be seen respectively
in Algorithms 2 and 3.

Algorithm 2 End of switch-over, Exhaustive service
Require: time: current time, Qn: integer that gives which queue server is at, N: total number of

queues, Ncycles: number of rounds the server has made, Queues: list with the Arraylist of customers
for each station, Eventlist: list of future events, Result: object that saves wanted information,
serviceDistribution: list of distributions for service time of a customer, switchDistribution: list of
distributions of the switch-over times

Ensure: Updated Qn and Eventlist
if Qn ≥ N − 1 then . update the queue the server is at

Qn← 0
Ncycles← Ncycles+ 1

else
Qn← Qn+ 1

end if
Result.updateStart(Queues,Qn) . update result at start of a service period
if Size(Queues.get(Qn)) > 0 then . check if there are customers in the queue

t← serviceDistribution.get(Qn).nextRandom()
e← newEvent(EndOfService, time+ t)
Eventlist.add(e) . create first end of service

c← Queues.get(Qn).getF irstCustomer()
Result.updateRandom.(c, time, currentQ) . update result for random time

else
Result.updateEnd(Queues,Qn) . update results at end of service period
t← switchDistribution.get(Qn).nextRandom()
e← newEvent(EndOfSwitchover, time+ t)
Eventlist.add(e) . create the end of the next switch-over

end if
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Algorithm 3 End of switch-over, gated service
Require: time: current time, Qn: integer that gives which queue server is at, N: total number of

queues, Ncycles: number of rounds the server has made, Queues: list with the Arraylist of customers
for each station, Eventlist: list of future events, Result: object that saves wanted information,
serviceDistribution: list of distributions for service time of a customer, switchDistribution: list of
distributions of the switch-over times

Ensure: Updated Qn and Eventlist, makes temporary gatedQueue which stores to be served
customers
if Qn ≥ N − 1 then . update the queue the server is at

Qn← 0
Ncycles← Ncycles+ 1

else
Qn← Qn+ 1

end if
Result.updateStart(Queues,Qn) . update result at start of a service period
gatedQueue← Queues.get(Qn).copieQ()
Queues.get(Qn).emptyQueue() . move all customer from station Qn to temporary queue
if Size(gatedQueue) > 0 then . check if there are customers in the queue

t← serviceDistribution.get(Qn).nextRandom()
e← newEvent(EndOfService, time+ t)
Eventlist.add(e) . create first end of service

c← gatedQueue.getF irstCustomer()
Result.updateRandom.(c, time, currentQ) . update result for random time

else
Result.updateEnd(Queues,Qn) . update results at end of service period
t← switchDistribution.get(Qn).nextRandom()
e← newEvent(EndOfSwitchover, time+ t)
Eventlist.add(e) . create the end of the next switchover

end if

3.1.3 End of service

The end of service consists of two steps. First the customer that was served will be removed
from the queue that is being served, then the next event will be planned. If there are still
customers in the queue being served, the end of service of the next customer in the queue
will be planned. If the queue that is being served is empty the end of switch-over will be
planned. This is for both exhaustive and gated service, the only difference is which queue is
being served. If the service discipline is exhaustive, then the queue of the station the server
is at will be served. But if the service discipline is gated, then the temporary queue gatedQ
will be served instead. The algorithm for the end of service can be seen below. In case of
gated service, the servQueue will be the queue that was created at the end of switch-over,
gatedQueue. Otherwise it will be Queues.get(Qn), the queue of the station the server is
currently at.
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Algorithm 4 End of service
Require: time: current time, Qn: integer that gives which queue the server is at, servQueue: Queue

of customers that need to be served, Eventlist: list of future events, serverDistribution: list of distri-
butions for service time of a customer, switchDistribution: list of distributions of the switchovertimes

Ensure: Updated Queues, servQueue and Eventlist
Customer c← servQueue.getF irstCustomer() . get next customer to be served
Result.updateRandom(c, time, currentQ) . update result for random time
if size(servQueue) > 0 then . there are still customers that need to be served

t← serviceDistribution.get(Qn).nextRandom()
e← newEvent(EndOfService, time+ t)
Eventlist.add(e) . create next end of sevice

c← gatedQueue.getF irstCustomer()
Result.updateRandom.(c, time, currentQ) . update result for random time

else . no more customers to be served
Result.updateEnd(Queues,Qn) . update results at end of service period
t← switchDistribution.get(Qn).nextRandom()
e← newEvent(EndOfSwitchover, time+ t)
Eventlist.add(e) . create the end of the next switchover

end if

3.2 Polling system with glue periods

After the simulation of a polling system without glue periods, the simulation with glue periods
will be explained. As mentioned before, if a customer arrives at a station, and it is not a glue
period for this station, then the customer will leave and return after a certain time to try
again. If it is a glue period for the station the customer arrived at, then the customer will
enter a temporary queue. At the end of the glue period, all the customers that are in the
temporary queue will be served.
The simulation without glue periods has three events: arrival of a customer, the end of a
switch-over and the end of the service of a customer. The simulation of a system with glue
periods has these three events as well, and two more events are added to the simulation: the
return of a customer and the end of a glue period. The explanation of the five events can be
found below.

3.2.1 Arrival of a customer

At the arrival of a customer, first-time arriving customers of the system arrive. If a
customer for queue i arrives, and it is a glue period for queue i, then the customer will be
put in the ‘glue’ queue, where he will be waiting for service. If a customer arrives at station
i and it is not a glue period for station i, then the customer will be put in the ‘return’ queue
for station i. Also the event return of a customer will be planned for this customer.
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Algorithm 5 Arrival of a customer
Require: time: current time, Qn: integer that gives which queue the customer arrives in, Queues:

list with the Arraylist of customers for each station who are retrying, glueQueue: queue of glued
customer, Eventlist: list of future events, arrivalDistribution: list with the distributions for the inter-
arrival times for each queue, retryDistribution: list with the distributions for the retry time, glue(x ):
True if it is the glue period for queue x else False

Ensure: Updated Queues, glueQueue and Eventlist
Customer c← newCustomer(time)
if glue(Qn) then . Check if customer can join glue queue

glueQueue.addCustomer(c) . adds customer to glue queue
else . Customer will try again later

t← retryDistribution.get(Qn).nextRandom() . determines time till the customer
tries again (returns)

e← newEvent(Return, time+ t) . Make Return event
e.setQueue(QN) . set the queue the customer will arrive in
Eventlist.add(e) . add event to list of events in time order

c.setReturnT ime(time+ t)
Queues.get(Qn).addCustomer(c) . add customer in queue in return time order

end if
t← arrivalDistribution.get(Qn).nextRandom() . determines the inter-arrival time
between the current and next customer
e← newEvent(Arrival, time+ t) . Make next arrival event
e.setQueue(QN) . set the queue the customer will arrive in
Eventlist.add(e) . add event to list of events in time order

3.2.2 Return of a customer

This event is when a customer arrived at the system before, but had to leave because it was
not a glue period for the station. Here the same thing happens as at the first arrival of a
customer. If there is a glue period for the queue the customer arrived for, then he will be put
in the ‘glue’ queue. In case it is not a glue period for the station the customer arrived at, then
the customer will be placed back in the ‘return’ queue, and another return of customer
event for this customer will be planned.
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Algorithm 6 Return of a customer
Require: time: current time, Qn: integer that gives which queue the customer arrives in, servQueue:

Queue of customers that need to be served, Eventlist: list of future events, retryDistribution: list
with the distributions for the retry time, glue(x ): True if it is the glue period for queue x else
False

Ensure: Updated Queues, glueQueue and Eventlist
Customer c← Queues.getF irstCustomer(Qn)
if glue(Qn) then . Check if customer can join glue queue

glueQueue.addCustomer(c) . adds customer to glue queue
else . Customer will try again later

t← retryDistribution.get(Qn).nextRandom() . determines time till the customer
tries again (returns)

e← newEvent(Return, time+ t) . Make Return event
e.setQueue(QN) . set the queue the customer will arrive in
Eventlist.add(e) . add event to list of events in time order

c.setReturnT ime(time+ t)
Queues.get(Qn).addCustomer(c) . add customer in queue in return time order

end if

3.2.3 End of switch-over

At the end of a switch-over, the event end of glue period will be planned. Also, the
variable for at which queue the server is and the variable for indicating if it is a glue period
for the current queue, is updated.

Algorithm 7 End of switch-over
Require: time: current time, Qn: integer that gives which queue the customer arrives in, servQueue:

Queue of customers that need to be served, Eventlist: list of future events, glue(x ): True if it is
the glue period for queue x else False, glueDistribution: list of distributions for servertime of a
customer

Ensure: Updated Qn, glue(x ) and Eventlist
if Qn ≥ N − 1 then . update the queue the server is at

Qn← 0
Ncycles← Ncycles+ 1

else
Qn← Qn+ 1

end if
glue(Qn)← True
t← glueDistribution.get(Qn).nextRandom()
e← newEvent(EndOfGlue, time+ t)
Eventlist.add(e) . create the end of the glue period
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3.2.4 End of glue period

In comparison to the basic simulation, the service of customers now starts in the end of a
glue period. In case the ‘glue’ queue is not empty the event end of service of a customer is
planned. If the ‘glue’ queue is empty, the next end of switch-over will be planned.

Algorithm 8 End of glue period
Require: time: current time, Qn: integer that gives which queue server is at, N: total number of

queues, Ncycles: number of rounds the server has made, Queues: list with the Arraylist of customers
for each station, glueQueue: Queue with customers that arrived during glue period, glue(x ): True
if it is the glue period for queue x else False, Eventlist: list of future events, Result: object that
saves wanted information, serviceDistribution: list of distributions for service time of a customer,
switchDistribution: list of distributions of the switch-over times

Ensure: Updated Qn, glueQueue, glue(x ) and Eventlist
glue(Qn)← False
Result.updateStart(Queues,Qn) . update result at start of a service period
if Size(glueQueue) > 0 then . check if there are customers in the queue

t← serviceDistribution.get(Qn).nextRandom()
e← newEvent(EndOfService, time+ t)
Eventlist.add(e) . create first end of service

c← gatedQueue.getF irstCustomer()
Result.updateRandom.(c, time, currentQ) . update result for random time

else
Result.updateEnd(Queues,Qn) . update results at end of service period
t← switchDistribution.get(Qn).nextRandom()
e← newEvent(EndOfSwitchover, time+ t)
Eventlist.add(e) . create the end of the next switchover

end if

3.2.5 End of service

At the end of service of a customer, it is determined if the ‘glue’ queue is empty or not.
If it is empty then the event end of switch-over will be planned, otherwise, the end of
service for the next customer in the ‘glue’ queue will be determined and planned. This means
that the algortihm is the same as Algorithm 4, with the servQueue the glueQueue.
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Chapter 4

Results

In this chapter the results of the simulation will be showed and discussed. The results of
the simulation will be compared with results found in other research. We will start with the
system without glue periods, and later continue with the system with glue periods.

4.1 Results of the system without glue periods

First the simulation will be run with the same parameters as in examples 3.1 and 3.3 in arti-
cle [5]. The outcomes of the simulation can be compared with the examples. In these examples
both exhaustive and gated have two stations, where both the service and switch-over times
follow an exponential distribution with mean 1. The arrivals take place according to Poisson
processes with λ1 = 0.6 and λ2 = 0.2.
The mean waiting time determined in [5] can be seen in Table 4.1. The mean waiting time
for station i is E[Wi]. In this Table the mean queue length can also be seen, determined with
the following formula: E[Li] = λE[Wi] + λE[Bi], here E[Li] stands for the average number of
customers in the queue at station i and E[Bi] is the mean service time for a customer.
The simulation has the same parameters as the example. To calculate the mean waiting time
and its confidence interval the simulation will run 100 times, where in each run the server
makes 10.000 rounds.

Service discipline E[W1] E[W2] E[L1] E[L2]

Exhaustive 5.2 11.5 3.9 2.5
Gated 12.7701 9.6898 8.2320 2.1280

Table 4.1: Mean waiting time for the settings in Winands [5]

The results for the simulation can be found in Table 4.2. In this Table the 95% confidence
intervals for the queue lengths can be found as well. The exact values of the queue lengths lies
in the confidence interval, so the simulation gives a good approximation of the queue lengths.
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Confidence Interval
Service discipline E[L1] E[L2] E[L1] E[L2]

Exhaustive 3.8899 2.4939 (3.8702; 3.9096) (2.4762; 2.5116)
Gated 8.2595 2.1359 (8.2104; 8.3085) (2.1234; 2.1483)

Table 4.2: Values found for mean queue length through simulating

The queue length at specific moments in time is also determined, at the start and the end
of a service period. The random variables for the queue length at the start or at the end of
a service period are respectively Lsi and Lei . In Table 4.3 the mean queue lengths and the
variations of the queue lengths at specific moments for both the exhaustive and gated service
discipline can be seen.
Table 4.3 shows that the average queue length of station i at the end of service of station i is
zero. This is because the end of service with an exhaustive service discipline will only come
when the queue of that station is empty.
This means that the average queue length at station i at the end of service of station j gives
the average number of arrivals during the switchover time from station i to station j and ser-
vice of station j. It is interesting that with exhaustive service both of these are relatively close
(compared to their different arrival rates), which might be because the service period length
at station 1 is longer than at station 2, since there are more customers to serve (on average)
at station 1. During this longer service time, there is more time for station 2 customers to
arrive, leading to a relatively high end of service of station 1 queue length average. With gated
service the ratio between the average queue length of station i at the end of service of station
j is relatively the same as ratio between the arrival rates. This is because the customers in
the queue of station i at the end of the service period of the station j had a switch-over period
and the service periods of both station 1 and 2 to arrive. For which the average duration is
the same, no matter which station is started from, since the average switch-over time between
the stations is the same.
Some of the variations of the queue lengths are relatively high as compared to the average
queue length, it means that even though the average queue length is low it is possible (and
even likely) that a queue length occurs that is much higher than the mean.

Location At start of service At end of service
of server E[Ls1] E[Ls2] σ2[Ls1] σ2[Ls2] E[Le1] E[Le2] σ2[Le1] σ2[Le2]

Exhaustive Queue 1 2.40 0.20 8.16 0.24 0 1.40 0 6.00
Queue 2 0.60 1.60 0.96 6.24 1.80 0 7.20 0

Gated Queue 1 6.00 0.60 27.46 0.90 3.60 1.80 15.64 4.22
Queue 2 4.20 2.00 16.60 4.46 5.40 0.40 26.50 0.66

Table 4.3: Average queue length and variation at start and end of service

The covariance between the queue lengths at a random and specific time can be found in
Table 4.4.
The at end of service covariance of the queue length of the system with exhaustive service is
zero, which means that the correlation between the queue length of station 1 and station 2
also is zero. This is understandable since the queue length of one of the two stations is always
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zero at the end of a service period. The other covariances are positive, indicating that if the
queue length of one station are longer the queue length of the other station are also longer.

Location server Exhaustive Gated
Cov(L1, L2) − 2.25 5.71

Cov(Ls1, L
s
2) Queue 1 0.12 1.96

Cov(Ls1, L
s
2) Queue 2 0.12 5.30

Cov(Le1, L
e
2) Queue 1 0 5.19

Cov(Le1, L
e
2) Queue 2 0 1.84

Table 4.4: The co-variance for the length of the queues

4.2 Results of the system with glue periods

Next, the system with glue periods will be studied. The comparison in this part of the results
will be done with several numerical examples from the article [1].

4.2.1 Deterministic glue periods

First a polling system with two queues will be considered. The arrival process is a Poisson
process. The return, switch-over and service times times are also exponentially distributed,
but the glue periods are deterministic.
The parameters of queue 2 will be varied and the parameters of queue 1 will be fixed, λ1 = 1,
E[B1] = 0.45, E[S1] = 1, G1 = 0.5 and ν1 = 1. The values of the parameters of queue 2
can be found in Table 4.5. The exact values for the waiting time can be found in article [1].
The simulation runs 500 times, where the server makes 7500 full rounds each. The confidence
intervals are 95% confidence intervals. The results of this simulation, as well as the exact
results can be seen in Table 4.6.

Parameter parameters of the second station
set number λ2 E[B2] E[S2] G2 ν2

D1 1 0.45 1 0.5 1
D2 0.5 0.45 1 0.5 1
D3 0.5 0.2 1 0.5 1
D4 0.5 0.2 2 0.5 1
D5 0.5 0.2 2 1 1
D6 0.5 0.2 2 1 0.5

Table 4.5: The parameter sets for which the polling system will be studied
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Parameter exact values simulated values confidence intervals
set number E[W1] E[W2] E[W1] E[W2] E[W1] E[W2]

D1 71.61 71.61 71.3702 71.3671 (71.2370, 71.5033) (71.2345, 71.4997)
D2 21.44 20.34 21.4016 20.3190 (21.3787, 21.4245) (20.2958, 20.3421)
D3 15.18 13.96 15.1719 13.9483 (15.1582, 15.1857) (13.9340, 13.9626)
D4 20.52 18.82 20.4970 18.9086 (20.4784, 20.5156) (18.8907, 18.9265)
D5 23.01 11.48 22.9653 11.5756 (22.9460, 22.9847) (11.5654, 11.5859)
D6 22.97 20.31 22.9298 20.3858 (22.9111, 22.9485) (20.3678, 20.4038)

Table 4.6: Exact and simulated mean waiting times with deterministic glue periods,

In Table 4.6 it can be seen that halving the arrival intensity of one of the two stations more
than halves the average waiting time for both stations. The influence does not differ much for
the different stations, just as with lowering the average service time. Lowering service time
does not have as much influence as lowering the arrival rate did to the waiting times. Only
changing the glue time and the ν2 seem to result in a big difference in the average waiting
time for different stations (D5 and D6 in the table)

4.2.2 Exponential glue periods

Next a polling system with exponential glue periods and three stations will be considered.
Here the switch-over times are deterministic. The inter-arrival, return and service times are
exponentially distributed. The parameters of queue 1 stay fixed, as well as the switch-over
times and retrial rates. The parameters are λ1 = 1, E[B1] = 0.3, E[G1] = 0.5, S1 = S2 =
S3 = 1 and ν1 = ν2 = ν3 = 1. The rest of parameters are as shown in Table 4.7.
In Table 4.8 the results of the simulation are shown and in Table 4.9 the 95% confidence
intervals are given. As seen before the results seem to approximate the exact values closely.
Only with parameter set E4 the simulated values differ slightly more from the exact values.
Since the utilization rate is ρ = 0.95 with parameter set E4, the system is a very busy system.
Thus the waiting times will vary more than in other systems. Here the simulation runs 500
times with 6000 cycles each run.

Parameter parameters of the second and third station
set number λ2 E[B2] E[G2] λ3 E[B3] E[G3]

E1 1 0.3 0.5 1 0.3 0.5
E2 1 0.3 0.5 0.5 0.3 0.5
E3 1 0.3 0.5 0.5 0.1 0.5
E4 2 0.3 0.5 0.5 0.1 0.5
E5 2 0.15 0.5 0.5 0.1 0.5
E6 2 0.15 2 0.5 0.1 0.5
E7 2 0.15 2 0.5 0.1 1

Table 4.7: The parameter sets for which the polling system will be studied
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Parameter exact values simulated values
set number E[W1] E[W2] E[W3] E[W1] E[W2] E[W3]

E1 121.0 121.0 121.0 120.7477 120.8516 120.8550
E2 47.59 47.58 46.74 47.5016 47.5177 46.6693
E3 33.65 33.64 32.54 33.6512 33.6049 32.5098
E4 246.8 246.6 242.3 245.5609 252.5763 240.2830
E5 33.52 33.51 32.42 33.5127 33.4857 32.3607
E6 44.88 19.71 43.64 44.8606 19.7055 43.6039
E7 48.66 21.42 28.75 48.5913 21.4026 28.7138

Table 4.8: Exact and simulated mean waiting times with deterministic glue periods

parameter confidence interval
set number E[W1] E[W2] E[W3]

E1 (120.5674, 120.9280) (120.6648, 121.0384) (120.6737, 121.0363)
E2 (47.4477, 47.5554) (47.4628, 47.5727) (46.6086, 46.7300)
E3 (33.6151, 33.6873) (33.5684, 33.6414) (32.4710, 32.5486)
E4 (245.0357, 246.0861) (252.0456, 253.1071) (239.7559, 240.8101)
E5 (33.4791, 33.5463) (33.4530, 33.5184) (32.3245, 32.3969)
E6 (44.8116, 44.9097) (19.6917, 19.7193) (43.5535, 43.6543)
E7 (48.5389, 48.6437) (21.3881, 21.4172) (28.6840, 28.7436)

Table 4.9: Confidence interval for mean waiting time, exponential glue periods

In Table 4.8 it can be seen, similarly as with deterministic glue periods, that changes in arrival
rate and mean service time result into similar changes to all three stations. This while, by
changes in mean glue time and ν (retry time variable), the changes in queue length seem to
be opposite for the station the variables changed for and the other stations.

4.2.3 Queue lengths for varying mean glue time

Next the behavior of the queue length for several different mean glue times will be studied.
Here the queue length means the station size, thus all customers in orbit and glue queue for a
station. Not only the mean queue length will be determined but also the squared coefficient of
variation for each queue length and the correlation between queue lengths of different stations.
In Equations (4.1) and (4.2) the formulas for the squared coefficient of variation (SCV ) and
the correlation (Cor) are given.

SCV (Li) =
V ar(Li)

E[Li]2
. (4.1)

Cor(Li, Lj) =
E[LiLj ]− E[Li]E[Lj ]√
V ar(Li)V ar(Lj)

. (4.2)

In this simulation the switch-over times are deterministic, the glue periods are exponentially
distributed and there are five stations. The arrival rate of customers for station i is λi = 0.025
for all i. The mean service times, E[B1], E[B2], E[B3], E[B4] and E[B5], are respectively 1, 2,
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4, 8 and 16. The mean switch-over times, E[Si] are 1 for all i. The retrial rate is νi = 1, also
for all i. Lastly E[Gi]] = E[G], thus the mean glue length is the same for each queue.
In Figures 4.1, 4.2 and 4.3 the results are given, for the mean queue length, the squared
coefficient of variation and the correlation, respectively.

(a) E[Li], E[G] ∈ (0, 10)

(b) E[Li], E[G] ∈ (0, 600)

Figure 4.1: Mean queue length for varying E[G]

In Figure 4.1 the plots of the mean queue length can be seen. It is visible that if the mean
glue time is larger than 3 the mean queue length grows linear. You can also see that there is
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a minimum queue length, which takes place where the value of the mean glue time is around
1.3.

(a) SCV(Li), E[G] ∈ (0, 10)

(b) SCV(Li), E[G] ∈ (0, 600)

Figure 4.2: Squared coefficient of variation for varying E[G]

In Figure 4.2 the squared coefficient of variation can be seen. It shows that at a similar
location as the minimum waiting time, there is a maximum in squared coefficient of variation.
The SCV takes a value of higher than 1 for several queues. This means that here the variation
of the queue length is bigger than the mean queue length. Indicating that some queue lengths
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occur that are very high in comparison with the mean queue length. The squared coefficient
of variation seems to converge to a constant for a higher mean glue time.

(a) Cor(Li,Lj), E[G] ∈ (0, 10)

(b) Cor(Li,Lj), E[G] ∈ (0, 600)

Figure 4.3: Correlation between queue lengths for varying E[G]

In Figures 4.3a and 4.3b the correlation between several queue lengths can be seen, for values
of the mean glue time in respectively the intervals (0, 10) and (0, 600). The correlation between
the queue lengths for stations 1 and 2, 1 and 3, 1 and 4 and lastly 3 and 5 are given. For low
mean glue times it can be seen that the correlations seem to have similar values.
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The correlation between two queue lengths indicates how one queue length changes if the other
queue length changes. For low mean glue times the correlations are positive, This means that
the growth of the queue length of one station results in the growth of the queue length of
another station. For large mean glue time, there are two correlations that are negative,
meaning that if the queue length in one of the two stations grows, the queue length of the
other station decreases. Station sizes are continuously growing, except during the service
period of that station. Since the service periods of two successive station are close to one
another there is a long interval after the second service period for which the station sizes of
both stations are growing. Indicating that for a big part of the time the two stations behave
similarly, which might be the cause for the positive correlation. For two stations that are not
successive there are two shorter intervals in between the service periods, which might be the
reason the correlation is negative.

4.2.4 Waiting time distribution

Next the distribution of the waiting time will be studied. In Figures 4.4 - 4.10, the density and
cumulative distribution function for the waiting times at different stations are shown. In the
second plot there is zoomed in on the first part of the density plot. Each figure is made with
parameters from subsection 4.2.1 and 4.2.2, which can be found in Table 4.5 and 4.7. The
figures named with a ‘D’ have deterministic glue periods and exponential switch-over times,
and the ones named with an ‘E’ have exponential glue periods and deterministic switch-over
times. In Table 4.10 the approximated locations of the peaks are given.
The waiting time distributions for different parameters follow the same pattern, only the lo-
cations and heights of the peaks differ. As the waiting time approaches zero it seems that
the probability of that waiting time occuring also approaches zero. The only time when it
is possible that the waiting times are zero is if the server can start serving the customer the
moment they arrive. Here the server does not start serving until the end of the glue period,
where customers that will be served arrive in. This means that a customer always has to wait
at least until the glue period ends, even if he arrived almost at the end of a glue period.
Another thing that can be noticed is that the probability for a high waiting time is low. This
might be because this is only possible if the retries of a customer fall outside of the glue period
multiple times. The probability that the waiting time is longer than the waiting time at the
location of the peak of the graph is big because most of the area of below the graph is on the
right side of the peak.
In Figure 4.10 the waiting density of a polling system with parameter set E7 can be seen.
Here it clearly can be seen that different stations can have very different locations for the
peak, while the peaks for the other parameter sets seem to be at similar points, as can be seen
in Table 4.16. The average waiting times for different stations differ quite a bit as well, with
station 1 having the biggest waiting time of 48.66, and station 2 and 3 respectively having
average waiting times of 21.42 and 28.75. It is interesting that for location of the peaks in the
graph the peak for station 2 comes first, then station 1 and lastly station 3. And station 1
seems to have the biggest tail out of the three stations. This means that the steepness of the
graph after the peak can slightly differ depending on the parameters.
Figure 4.11 shows the density plot with different cycle lengths. Here it is seen that if the
simulation runs more cycles, the peak height is similar. The only difference is that if the cycle
length is longer, the graph is more smooth. Meaning that density is properly approximated
by the simulation.
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parameter Location of peak
set number W1 W2 W3

D1 20 20 -
D3 3 1 -
D5 5 1 -
E1 31 30 33
E3 8 8 8
E5 9 10 10
E7 13 10 16

Table 4.10: Approximate values for locations of the density peak
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(a) density of the waiting times

(b) first part of density of the waiting times

(c) cumulative distribution, waiting times

Figure 4.4: Waiting time distributions for parameters D1 from Table 4.7
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(a) density of the waiting times

(b) first part of density of the waiting times

(c) cumulative distribution, waiting times

Figure 4.5: Waiting time distributions for parameters D3 from Table 4.7
31



(a) density of the waiting times

(b) first part of density of the waiting times

(c) cumulative distribution, waiting times

Figure 4.6: Waiting time distributions for parameters D5 from Table 4.7
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(a) density of the waiting times

(b) first part of density of the waiting times

(c) cumulative distribution, waiting times

Figure 4.7: Waiting time distributions for parameters E1 from Table 4.7
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(a) density of the waiting times

(b) first part of density of the waiting times

(c) cumulative distribution, waiting times

Figure 4.8: Waiting time distributions for parameters E3 from Table 4.7
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(a) density of the waiting times

(b) first part of density of the waiting times

(c) cumulative distribution, waiting times

Figure 4.9: Waiting time distributions for parameters E5 from Table 4.7
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(a) density of the waiting times

(b) first part of density of the waiting times

(c) cumulative distribution, waiting times

Figure 4.10: Waiting time distributions for parameters E7 from Table 4.7
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Figure 4.11: Density E1 for different number of cycles

4.3 Different glue distributions

In this section, different distributions for the glue period will be studied. Here the switch-
over time distributions will be constant and the service distributions exponential. The same
mean values as used for the simulation of a system with exponential glue periods and constant
switch-over time will be used, which can be seen in Table 4.7. For both Uniform and Pareto
glue period the simulation runs 500 times with 2000 cycles each run.

4.3.1 Uniform glue periods

First the glue distribution will be the Uniform distribution on the interval [1
2E[Gi],

3
2E[Gi]].

The results can be seen in Table 4.11, with the 95% confidence intervals in Table 4.12.
When you compare the results with the system with exponential glue period in Table 4.8, it
can be seen that the average waiting times are less with an uniform glue period. The difference
between the waiting times for different stations for the same parameter set are similar for both
exponential and uniform glue periods. For example for both exponential and uniform glue
periods with parameter set E2, the average waiting time for station 1 and 2 is almost the
same and the average waiting time for station 3 follows closely behind.
In Figure 4.12 the waiting time density of the parameter sets E1, E3 and E5 can be seen.
Here it can be seen that with Uniform distributed glue period the shape of the waiting time
density stays the same. Though it looks like that the graph is a bit wider at the peak.
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parameter simulated values
set number E[W1] E[W2] E[W3]

E1 101.6685 101.6946 101.6716
E2 40.1807 40.2166 38.8924
E3 28.3874 28.4129 26.8236
E4 203.2859 216.2194 192.6411
E5 28.2297 28.2319 26.6744
E6 37.8618 14.3608 35.8125
E7 41.1010 15.5802 21.0856

Table 4.11: Simulated values for Uniform distribution of glue periods

parameter confidence interval
set number E[W1] E[W2] E[W3]

E1 (101.4370, 101.9001) (101.4646, 101.9247) (101.4427, 101.9004)
E2 (40.1243, 40.2371) (40.1583, 40.2748) (38.8340, 38.9508)
E3 (28.3504, 28.4244) (28.3778, 28.4480) (26.7851, 26.8621)
E4 (202.6275, 203.9443) (215.5296, 216.9091) (192.0324, 193.2498)
E5 (28.1975, 28.2619) (28.2004, 28.2633) (26.6413, 26.7074)
E6 (37.8236, 37.9001) (14.3489, 14.3728) (35.7723, 35.8528)
E7 (41.0589, 41.1431) (15.5675, 15.5929) (21.0640, 21.1071)

Table 4.12: Confidence intervals for Uniform distribution of glue periods

parameter Location of peak
set number W1 W2 W3

E1 28 23 23
E3 8 6 6
E5 8 6 5

Table 4.13: Approximate values for locations of the density peak, Uniform glue period
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(a) Parameter set E1

(b) Parameter set E3

(c) Parameter set E5

Figure 4.12: Waiting time density for different parameter sets, Uniform glue period
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4.3.2 Pareto glue periods

Lastly a system with Pareto distributed glue periods will be studied. The parameters will be
the same as in the system with exponential glue periods. The Pareto distribution has two
parameters α and xm. First α = 3 is chosen, to ensure that the mean and variance of the
glue period is not infinite. Since we know the mean glue period time from the parameters and
E[Gi] = xm·α

α−1 , xm can be determined.
In Table 4.14 and 4.15 the results and 95% confidence intervals can be found. Here it can be
seen that the means are slightly higher than with a Uniform glue period, but still lower than
with exponential glue periods.
Again the locations of the peak is almost the same as with the Uniform and Exponential glue
periods and the difference is mostly in the tail. Meaning that the probability on a higher
waiting time is bigger, even though the location of the peak is the same.

parameter simulated values
set number E[W1] E[W2] E[W3]

E1 104.3872 104.3621 104.4195
E2 41.2567 41.2708 39.9721
E3 29.1419 29.1081 27.5801
E4 207.9534 220.3041 220.3041
E5 29.0297 28.9987 27.4688
E6 38.9888 14.7163 37.0066
E7 42.2162 15.9454 21.8885

Table 4.14: Simulated values for Pareto distribution of glue periods

parameter confidence interval
set number E[W1] E[W2] E[W3]

E1 (104.1263, 104.6480) (104.1064104.6178) (104.1626104.6765)
E2 (41.1923, 41.3210) (41.2067, 41.3349) (39.9088, 40.0354)
E3 (29.1038, 29.1801) (29.0703, 29.1459) (27.5401, 27.6202)
E4 (207.2572, 208.6496) (219.5529, 221.0553) (196.8924, 198.2161)
E5 (28.9950, 29.0645) (28.9950, 29.0645) (27.4329, 27.5047)
E6 (38.9396, 39.0381) (14.7019, 14.7306) (36.9576, 37.0556)
E7 (42.1682, 42.2643) (15.9302, 15.9607) (21.8643, 21.9127)

Table 4.15: Confidence intervals for Pareto distribution of glue periods

parameter Location of peak
set number W1 W2 W3

E1 25 28 32
E3 7 7 7
E5 6 7 9

Table 4.16: Approximate values for locations of the density peak, Paret glue period

40



(a) Parameter set E1

(b) Parameter set E3

(c) Parameter set E5

Figure 4.13: Waiting time density for different parameter sets, Pareto glue period
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Chapter 5

Conclusion and Reflection

In this report, polling systems, with and without glue periods, were studied and simulations
of these systems were made. The simulation results were checked against known results of
polling systems and it was found that the simulated values approximated the exact values
properly. This means that the simulation accurately simulates the behavior of the systems.
What was noticed is that the changes in the arrival rate and mean service time resulted in
similar changes in the average waiting times for all stations. Changes in the mean glue time
and the retrial time caused opposite changes for the station the parameter changed for and
the other stations.
For glue periods of different types of distributions, similar waiting time densities and average
waiting times were found. The average waiting times for Uniform glue periods were the lowest,
with Pareto glue periods coming in second. Exponential glue periods have the longest average
waiting times.
A lot more can be learned of the behavior of polling systems, through simulation, when
calculating the exact values is too difficult. Different types of distributions for the inter-arrival,
switch-over times, service, glue and retrial times can be examined. The waiting time density
can also be studied more closely. For example the effects of changes in certain parameters can
be examined.
Another thing that can be studied is simulating polling systems with different types of serving
disciplines, for example time-limited or k-limited. Different type of customer behaviors can
also be integrated in the simulation, for example customers leave and try again later if the
queue is of a certain length, or they leave and try again later after waiting a certain time.
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Appendix A

Simulation

1. Polling1: Java,Simulation without glue periods, with exhaustive and gated service

2. Polling2: Java, Simulation with glue periods

3. Mathlab files:

(a) runPolling1.m: gives results for simulation with either exhaustive or gated service

(b) runPolling2.m: gives results for simulation with glue periods

(c) tableRun.m: function to determine mean waiting times and corresponding confi-
dense intervals

(d) plotWaitDist.m: function function to make graphs of density of the waiting times
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