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CHAPTER 1
Introduction

In the last decades, the amount of collected measurement data has grown exponentially and
businesses have become more and more data driven. All types of industries, from manufacturing,
pharmacology, medical to financial, use measurement data to make data-based decisions on the
quality of materials, products or processes. For example, measurement data is evaluated against
standards or criteria such as statistical control limits or used to investigate relationships between
responses and factors. The quality of these decisions is positively correlated with the quality
of the measurement data, which is a strong determinant for the quality of the measurement
system. To make high quality decisions, measurement data should be collected from a high quality
measurement system. The definition of a measurement system used by the (AIAG) (2010) is ”the
collection of instrument or gages, standards, operations, methods, fixtures, software, personnel,
environment and assumptions to quantify a unit of measure or fix assessment to the feature
characteristic being measured; the complete process used to obtain measurements”.

Measurement system analysis (MSA) is a vital part of various quality management method-
ologies and standards that have been developed over the years (Li & Al-Refaie, 2008). Among
others we have ISO 9001 from the International Standards Organization, Total Quality Manage-
ment (TQM) with many tools and techniques for quality control and Six Sigma, the management
strategy developed by Motorola in 1986. All methodologies have their own focus and ideology,
but are not mutually exclusive and can be used alongside each other as they are complementary
and synergistic. In specific, Six Sigma is a methodology that provides business with the tools to
improve the capability of their business processes. Here, a process could be a product or a ser-
vice that a company provides to outside customers, or it could be an internal process within the
company. It distinguishes five phases, namely Design, Measure, Analyze, Improve, and Control
(DMAIC) (Basem, 2008).

In order to improve the quality of decisions based on the measurement data, measurement
systems should be thoroughly evaluated. In a measurement system analysis, the measurement
system is assessed by means of an experiment that aims to both identify and quantify the dif-
ferent sources of variation in the product or process. In the controlled setting of an experiment,
randomness avoids confounding effects to influence the results of the analysis. The key statistical
properties on which a measurement system is evaluated are bias, linearity, stability, repeatability
and reproducibility ((AIAG), 2010). Where the first three characteristics are location related, the
latter two describe the variation (precision) of the measurement system. In particular, reproducib-
ility represents the variability with different units (operators/set-ups/time-periods), repeatability
is the variability from measurement instrument (on same units). Moreover, when the variation
of the measurement system is small relative to the total variation, the measurement system is
considered capable.
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CHAPTER 1. INTRODUCTION

1.1 MSA within ASML

ASML is the world leading manufacturer of lithography systems for the semiconductor industry
and is currently in a major technology transition by introducing extreme ultraviolet (EUV) litho-
graphy for high volume chip production. The high importance of quality at ASML makes that
the Six Sigma methodology is widely used within the organization and that measurement system
analyses are performed for many ASML projects. An example of measurement system analysis
for count data is the qualification of EUV pellicles.

One of ASML’s key priorities in the manufacturing of EUV machines is having reticles, which
contain the blueprint of the pattern for the chips, that are free of particles. To keep the reticles
clean of particles and bring them out of focus, an (EUV-)pellicle is placed in front of the reticle,
see Figure 1.1. The challenge for EUV is to manufacture clean and defect-free films (pellicles)
with high EUV transmission. In the manufacturing process of pellicles, defects such as holes can
be created and particles can be added or lost.

Figure 1.1: An extreme ultra violet (EUV) pellicle

These impurities on the surface are captured in an image that is constructed by a digital
microscope and processed by software into a set of classified defects. Finally, a summarizing
report of a pellicle, with for example total number of defects per size category and defect type, is
automatically produced. When the reported number of defects of two consequent measurements
performed at different steps in the process differs, a manual analysis will follow to determine the
cause of the difference. The main focus is on defects with a diameter size larger than 10 arbitrary
units (a.u.).1

In order to check the quality of a pellicle and the production process, pellicles are repeatedly
measured during the process. As a result of variation due to measurement system, discrepancies
between the true and observed number of defects might appear. The smaller this difference, the
better the measurement system is. In the ideal case, if the measurement system is perfect, the
number of defects measured will be the same for all repeats on that particular part, and equal to
the actual number of defects. In practice, the actual number of defects on a pellicle (larger than
a certain size) is unknown, however, by nature of a count, this number should follow a discrete
distribution. Besides, the conditions under which measurements are done could strongly vary,
due to the use of different operators, measurement systems etcetera. In order to quantify the
sources of variation and determine the contribution of the measurement system variation to the
total variation, an experiment should be performed. This experiment should involve repeated
measurements on different tools with various (randomly selected) parts and operators. The design
that is planned to be executed is as follows

6 parts × 3 tools × 2 operators × 3 repeats.

In absence of the data of a full sized gauge repeatability and reprodicubility (GR&R) experi-
ment, three historical datasets from ASML were analyzed to define a suitable underlying statistical

1For the sake of confidentiality of ASML technology, we use arbitrary units.
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CHAPTER 1. INTRODUCTION

model. The first dataset contains five repeated measurements on two tools each using the same
part. So conditional on an expected count on a tool, variation in the measurements is observed.
Due to the effect of the light intensity of the microscope on the size of the defects, the observed
number of defects larger than a certain diameter size can deviate from the actual number of de-
fects on a pellicle in both directions. A discrete distribution where the actual number of defects
is represented by the mean, such as a Poisson distribution or a binomial distribution, would be
straightforward. The binomial distribution was not considered as it requires the selection of a
maximum value.

When fitting a Poisson regression model on this data, a lack of fit was observed since the
Poisson distribution was not capable of capturing the severe under-dispersion present in the data.
This under-dispersion indicates that the variance is much smaller than one would expect based
on the (mean of a) Poisson distribution. A straightforward extension to the Poisson distribution
such that it can cope with under-dispersion is the quasi-Poisson model, that includes an additional
dispersion parameter. For the quasi-Poisson regression model, a dispersion of 0.019 was observed,
which implies that the variance is more than a factor 50 smaller than the mean. The second and
third dataset consist of a cross-sectional analysis of the number of defects larger than 10 a.u. of 141
pellicles. The hypothesis is that the distribution of the counts of defects on pellicles is described
by an (over-dispersed) Poisson (e.g. a negative binomial). More background on these findings and
a more thorough analysis of both datasets can be found in Chapter 4.

1.2 Statistical techniques for MSA

The statistical techniques that are mainly used for MSA in the Six Sigma framework to assess
the gauge’s reproducibility and repeatability are the analysis of variance (ANOVA) GR&R and
Average and Range (X̄ and R) ((AIAG), 2010). The ANOVA GR&R uses the ANOVA theory
that was developed by Sir Ronald Fisher to study agricultural experiments. Here, the significance
of model effects is assessed by means of an F-test using the mean squares that are obtained
by dividing the sum of squares with the corresponding degrees of freedom. Moreover, the %-
Contribution, %-Study Variation and %-Tolerance of the part to part and total gage, consisting of
all R&R model components, are presented. Three types of ANOVA can be distinguished, namely
fixed effects ANOVA, random effects ANOVA and mixed effects ANOVA. Note that all ANOVA
types strongly depends on normality of the residuals and fall under the category of linear (mixed)
models. The X̄ and R method only allows for a traditional two-factor design, does not provide
confidence intervals, and is more reliable for GR&R analysis when residuals are non-normal (Osma,
2011).

In case the underlying distribution of the response variable is not normally distributed, the
more sophisticated generalized linear models (GLMs) or generalized linear mixed models (GLMM)
could be applied (McCullagh & Nelder, 1989). These models that are not included in the Six
Sigma methodology, connect the mean via a link function to a linear combination of the model
parameters. If all model parameters are considered fixed constants we have a GLM and in presence
of random effects, we have a GLMM. Here, it is assumed that the random effects follow a normal
distribution. By relaxing the restricting of the random effect in the linear predictor of the GLM
to any distribution, a hierarchical generalized linear model (HGLM) is obtained (Lee & Nelder,
1996).

1.3 Thesis objectives and overview

Thesis objectives
In this thesis we aim to extend the existing framework for assessing the repeatability and repro-
ducibility for univariate count data, to the setting where the mean is significantly higher than
the variance, also called severely under-dispersed. Whereas a straightforward (quasi-)Poisson re-
gression model would suffice when individual parts are analyzed, the estimation of the maximum
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CHAPTER 1. INTRODUCTION

likelihood estimates becomes less trivial in case of multiple parts. Additional complexity is ob-
tained when the distribution of counts on parts is not normally distributed, but from some discrete
distribution. This connects to the concept of hierarchical generalized linear models. Now, condi-
tional on the true counts on these parts, which is considered a latent variable, a distribution for
under-dispersed count data is demanded. To model the severe under-dispersion within parts, we
mainly focus on the Conway Maxwell Poisson (CMP) distribution, due to some undesirable prop-
erties of alternatives that will be explained in the next chapter. The likelihood of this probability
model with a CMP distribution contains a normalization constant in terms of an infinite sum
that is dependent on the latent variable. This makes the estimation of the maximum likelihood
estimates a non-trivial problem that cannot be evaluated analytically. We will present various es-
timation methods to obtain approximations for the parameter estimates of the probability model.
By means of an extensive simulation study, these estimation techniques are compared and assessed
on their estimating and testing performance. Moreover, the adequacy of selecting a continuous
prior distribution, such as a normal or gamma distribution, is investigated. Furthermore, recom-
mendations on the experimental design are provided.

Outline thesis

The content of the remainder of this thesis is as follows. Chapter 2 starts with a thorough descrip-
tion of the literature on distributions for under-dispersed count data. Subsequently, the Conway-
Maxwell Poisson (CMP) and Generalized Poisson (GP) distribution are extensively described by
means of their parametrizations and (approximated) moments. For the CMP, also various approx-
imations of the normalization constant are listed. At the end of this chapter, this existing theory
is brought together to define two statistical models for count data with severe under-dispersion in
a repeated measurement setting. Here, the probability models with their likelihoods are presented
and the corresponding issues are addressed.

In Chapter 3, we consider estimation techniques based on (pseudo-)likelihood optimization
and the method of moments. Both approaches utilize the different approximations of the CMP
normalization constant. For the likelihood methods, a simplified model with a quasi-Poisson
repeated measurement and a normally distributed latent variable is included. This to prove
the added value of the new methods compared to this existing approach. For the methods of
moments, we assess the performance of the F-test, as used in ANOVA, on data that is not normally
distributed, but comes from a CMP distribution.

Chapter 4 discusses the case study where three datasets are considered: one with repeated
measurements of a single part on two tools and a two cross-sectional datasets. On the former
dataset the lack of fit of a Poisson distribution to model the repeated measurements is shown, a
CMP distribution is fitted and the tool effects are determined. The latter datasets are used to
derive the distribution of counts on parts and demonstrate a the heterogeneity of variances. The
main reason for this separate analysis was the absence of a full R&R experiment with repeated
measurements on multiple parts.

To examine the performance of the estimation techniques developed in Chapter 3, an extensive
simulation study is performed in Chapter 5. The generated datasets use the key findings of the case
study as input. The additional simulation settings and essential function used will be discussed in
detail. In particular, over 20 simulation scenarios are examined, involving different experimental
setups, main effects, latent variable distributions and levels of under-dispersion. Furthermore, the
analysis of these simulated experiments will be explained, as well as the selection of the starting
values. After this, all results are listed.

The conclusions and recommendations can be found in Chapter 5. In Appendix A, an overview
of all proofs of lemmas, propositions and extensive derivations of equations is provided. In addition,
some customized algorithms and functions written in the statistical software [R] are listed in
Appendix B. Appendix C is dedicated to the CMP normalization constant. Here, the original forms
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CHAPTER 1. INTRODUCTION

of the approximations of the CMP normalization, as well as the performance of the approximations
in case of severe under-dispersion are presented.
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CHAPTER 2
Underlying statistical model

In this chapter, we describe the characteristics of the statistical model for repeatedly measur-
ing counts on different subjects (parts). Firstly, we describe the Conway-Maxwell-Poisson and
Generalized Poisson distribution to model the situation that the expected mean count is signific-
antly higher than the expected variance of this count. After introducing these distributions with
its characteristics, the full probability model and the corresponding likelihoods will be presented.
Note that these models form the basis of the simulation study that will be performed in Chapter 5.

2.1 Literature overview on statistical count models

One of the most extensively studied and exploited distributions for count data is the Poisson
distribution (Shmueli et al., 2005). An important characteristic of the Poisson distribution is its
equi-dispersion, implying that the variance equals the mean. In practice however, this equivalence
does often not hold and the variation in the data is larger or smaller relative to the Poisson
distribution, respectively over-dispersed and under-dispersed. The negative binomial distribution,
which is a Gamma-Poisson mixture, is a popular alternative to the Poisson distribution in case
of over-dispersion, but is not able to capture under-dispersion. The same holds for some other
mixed Poisson models such as the Poisson-inverse Gaussian and Poisson-lognormal. Models that
are capable of handling both under- and over-dispersion are the Generalized Poisson (GP) (Consul
& Jain, 1973) and the Conway-Maxwell-Poisson (CMP) (Conway & Maxwell, 1962). Both models
have an additional parameter to model the dispersion and have the Poisson as a special case. In
addition, there is the quasi-Poisson, where dispersion parameter is not part of the likelihood but
derived by the ratio of the residual deviance and the residual degrees of freedom.

An appealing characteristic of the GP distribution is that the mean can directly be expressed
in terms of both parameters. Zamani & Ismail (2012) rewrite the GP to a more suitable form for
a regression model, with the mean is expressed by a single parameter. A disadvantage of the GP
however, is that for some levels of under-dispersion the distribution is truncated, making it not
a true probability model (Famoye, 1993). The data dependent support makes the estimation of
the GP parameters in a regression setting particularly problematic (Czado et al., 2007; Huang,
2016). The CMP distribution was initially developed for queuing models with state dependent
service rates. In contrast to the GP, CMP can cover a wide range of under-dispersion levels. A
downside of CMP is that due to the normalization constant, the expected value does in general
not have a simple form. However, various link functions that connect the linear combination of the
covariates with the expectation are suggested (Sellers et al., 2012). In addition, approximations
for the normalization constant are derived, see Paragraph 2.2.

Numerous examples exist of generalized linear models (GLM) for under-dispersed count data
using a Conway-Maxwell-Poisson distribution (Sellers & Shmueli, 2010; Jowaheer & Khan, 2009).
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CHAPTER 2. UNDERLYING STATISTICAL MODEL

Among others, in Jowaheer & Khan (2009), a CMP GLM was fitted using maximum likelihood
(ML) optimization and quasi-likelihood (QL) optimization using the first order approximations of
the moments. Next to the fact that the ML approach was significantly slower than QL, convergence
issues occurred for both methods, although more frequent for the ML. The non-convergence was
attributed to a combination of under-dispersion and small sample sizes. For large sample sizes
this convergence problem did not appear. Combined with a minor efficiency loss (1%) on the
estimates, the QL was considered the superior method. Even though that the maximum likelihood
estimates of a GLM do not have a closed form, the computational complexity remains gentle as
various bounded nonlinear minimization or optimization procedures could be employed. The ML
estimates can obtained with great accuracy using for example the procedures nlminb, nlm or
optim from the statistical software [R] (Sellers & Raim, 2016). Moreover, for under-dispersion the
summation of the CMP normalization constant quickly converges, requiring numerically only a
small number of terms to obtain accurate estimates.

However, despite a thorough literature review, nothing was found on the combination of
GLMMs and under-dispersed count data.

2.2 Conway-Maxwell-Poisson distribution

Parameterization
The probability mass function of the CMP distribution, as defined by Shmueli et al. (2005) is

P (X = x) = 1
Z(λ, ν)

λx

(x!)ν , x = 0, 1, 2, . . . (2.1)

with normalization constant

Z(λ, ν) =
∞∑
j=0

λj

(j!)ν , (2.2)

for a random variable X, where ν ≥ 0 is the dispersion parameter. For ν = 1, CMP reduces to the
Poisson distribution, since Z(λ, 1) = exp{λ}. Moreover, ν < 1 and ν > 1 denote over-dispersion
and under-dispersion, respectively. Two properties of the CMP distribution are that it belongs to
the exponential family and is part of the two parameter power series distributions. The moments
defined by Shmueli et al. (2005) are of the form

E(Xr+1) =
{
λ[E(X + 1)]1−ν r = 0
λ ∂
∂λE(Xr) + E(X)E(Xr) r > 0.

In particular, the expected value and variance are

E[X] = λ
∂ logZ(λ, ν)

∂λ
and Var(X) = ∂E(X)

∂ log λ .
(2.3)

Moreover, the first order approximations are E[X] ≈ λ1/ν − ν−1
2ν and Var(X) ≈ 1

νλ
1/ν . The

approximation for the mean is particularly accurate for ν ≤ 1 or λ > 10ν .

Reformulation of the CMP

Another parameterization of CMP that has proven to be particularly useful in the generalized
linear model setting was proposed by Guikema & Goffelt (2008). Here, we substitute ζ = λ1/ν in
(2.1) and (2.2) and obtain

P (X = x) = 1
S(ζ, ν)

(
ζx

x!

)ν
, x = 0, 1, 2, . . . (2.4)

8



CHAPTER 2. UNDERLYING STATISTICAL MODEL

with normalization constant

S(ζ, ν) =
∞∑
j=0

(
ζj

j!

)ν
. (2.5)

Note that we again have that S(ζ, 1) = exp{ζ}. The mean and variance of this reformulation are
defined by

E(X) = 1
ν

∂ logS(ζ, ν)
∂ log ζ =

∑∞
j=0 j

(
ζj

j!

)ν
∑∞
j=0

(
ζj

(j!)

)ν
Var(X) = 1

ν2
∂2 logS(ζ, ν)
∂ log2 ζ

=

[∑∞
j=0

(
ζj

j!

)ν]
·
[∑∞

j=0 j
2
(
ζj

j!

)ν]
−
[∑∞

j=0 j
(
ζj

j!

)ν]2
(∑∞

j=0

(
ζj

j!

)ν)2 .

The advantage of this representation is that the parameters ζ and ν have a direct link to the mean
and the variance, since their asymptotic approximations are E[X] ≈ ζ − ν−1

2ν and Var(X) ≈ ζ/ν.
The region for which this first order approximation of the mean is particularly accurate is ν ≤ 1
or ζ > 10. This parameterization will be hereafter used as the standard representation of CMP.

Approximation normalization constant
Over time, various approximation methods are proposed for the normalization constant defined
in (2.2). The first, which is the most simple version and that is suggested by Minka et al. (2003),
is a truncation of the infinite series at the mth term. For the reformulated normalization constant
(2.5), this gives

S(ζ, ν) =
m∑
j=0

(
ζj

j!

)ν
+Rm, (2.6)

where Rm =
∑∞
j=m+1

(
ζj

j!

)ν
is the absolute truncation error.

Secondly, an asymptotic approximation for Z(λ, ν) involving Laplace approximation of a (ν−1)-
dimensional integral representation was proposed by Shmueli et al. (2005). This integral represent-
ation only applies to positive integer values of ν. After substituting ζ = λ1/ν in the approximation
for S(ζ, ν) we obtain

S(ζ, ν) = ζ(1−ν)/2 · eνζ

(2π)(ν−1)/2√ν
{1 +O(1/ζ)}. (2.7)

In Gillispie & Green (2015), this first order approximation was compared with the truncated
summation (2.6). For small values of ζ = λ1/ν the truncated summation was found to be most
accurate way to calculate S(ζ, ν). However, for large ζ it was stated that the first order approxim-
ation might be better than the truncated variant, that requires a summation of a relatively high
number of terms, which could be incorrect due to aggregating multiple rounding errors.

Thirdly, in addition to the first order expansion in (2.7) that is restricted to integer values of ν,
Gaunt et al. (2016) provided an entire asymptotic expansion for Z(λ, ν) for all real non-negative
values of ν > 0. An important note on asymptotic expansions is that the approximations not
necessarily have to get better when the number of included terms gets higher. By substituting
ζ = λ1/ν in the full asymptotic expansion for Z(λ, ν) we obtain

S(ζ, ν) = ζ(1−ν)/2 · eνζ

(2π)(ν−1)/2√ν

∞∑
k=0

ck(νζ)−k, as ζ →∞ (actually ζν →∞) (2.8)

where the cj are uniquely determined by the expansion

(Γ(t+ 1))−ν = νν(t+1)/2

(2π)(ν−1)/2

∞∑
j=0

cj
Γ(νt+ (1 + ν)/2 + j) . (2.9)

9



CHAPTER 2. UNDERLYING STATISTICAL MODEL

In particular, c0 = 1, c1 = ν2−1
24 , c2 = ν2−1

1152 (ν2 + 23). More coefficients derived from the expan-
sion (2.9) can be found in Appendix D.5. This appendix also contains all the above mentioned
approximation methods of the original for of the normalization constant Z(λ, ν).

Moment approximations
By using the expansion of the approximation constant (2.8), Gaunt et al. (2016) derived more
accurate approximations of the expectation and variance of a Conway-Maxwell-Poisson random
variable. More specific, it uses the exact expressions for the expectation and variance of a CMP
random variable in (2.3) and substitutes the normalization constant with an order n asymptotic
expansion. The provided third order approximation of the moments in terms of ζ and ν are

E[X] =ζ
(

1− ν − 1
2ν ζ−1 − ν2 − 1

24ν2 ζ−2 − ν2 − 1
24ν3 ζ−3 +O(ζ−4)

)
,

Var(X) = ζ

ν

(
1 + ν2 − 1

24ν2 ζ−2 + ν2 − 1
12ν3 ζ−3 +O(ζ−4)

)
.

2.3 Generalized Poisson distribution

Parameterization
The concept of Generalized Poisson distributions (GP) was first introduced by Consul & Jain
(1973) with a probability distribution given by

P (X = x) =


θ(θ+λx)x−1

x! exp{−θ − λx} if λ ≥ 0 ∧ x = 0, 1, 2, . . .
or λ < 0 ∧ x = 0, 1, 2, . . . ,m

0 otherwise

where θ > 0, max(−1,−θ/m) ≤ λ < 1 and m(≥ 4) is the largest positive integers for which
θ+mλ > 0 when λ is negative. In this probability mass function, negative values of λ correspond
to under-dispersion, positive values to over-dispersion and GP reduces to a Poisson distribution
for λ = 0.

The GP parameters θ and λ are independent but the lower limits on λ and m ≥ 4 are imposed
to ensure that there are at least five classes with nonzero probability when λ is negative. Note that
truncation is applied for under-dispersion (λ < 0), causing the sum of all GP probability masses
to be slightly less than 1. This truncation error can be eliminated by a normalization where we
multiply P (X = x) with P (X ≤ m)−1 (Consul & Famoye, 2006; Consul & Shoukri, 1985). This
will be denoted by P ∗(X = x). In case of under-dispersion the moments are

E∗[X] =
∑
x xP (X = x)∑
x P (X = x) ,

Var∗(X) =
∑
x x

2P (X = x)∑
x P (X = x) −

(∑
x xP (X = x)∑
x P (X = x)

)2
.

(2.10)

For non-negative λ the mean and variance are E(X) = (1 − λ)−1θ and Var(X) = (1 − λ)−3θ,
respectively.

In Consul & Shoukri (1985), it was stated that the effect of the truncation on the moments
was substantial when the number of non-zero classes is only 3 or 4 and 0.7 ≤ θ ≤ 4.5. Therefore,
by using the lower limit λ = −1 in combination with an expected high count, we see that

Var(X) = E[X](1− λ)−2 ≥ 1/4E[X].

Finally, note that for all λ 6= 0, the GP distribution does not belong to the exponential family
even if the dispersion parameter λ is known.

10



CHAPTER 2. UNDERLYING STATISTICAL MODEL

Reformulation of the GP

Another parameterization for the GP distribution was suggested by Zamani & Ismail (2012) and
is obtained using θ = (1+ϕ)−1τ and λ = (1+ϕ)−1ϕ. The mean and variance for the untruncated
GP distribution are E(X) = τ and Var(X) = (1+ϕ)2τ , where ϕ denotes the dispersion parameter.
We have under-dispersion for ϕ < 0 and over-dispersion for ϕ > 0. The probability mass function
of the GP distribution is described by

P (X = x) =


τ(τ+ϕx)(x−1)

(1+ϕ)xx! exp{− τ+ϕx
1+ϕ } if ϕ ≥ 0 ∧ x = 0, 1, 2, . . .

or ϕ < 0 ∧ x = 0, 1, 2, . . . ,m
0 otherwise

where τ > 0, ϕ > max{−1/2,−τ/m}, and m(≥ 4) the largest integer x such that τ + ϕx > 0.
The truncated moments are defined by (2.10).

2.4 Statistical models for repeated measurements

In this paragraph, we aim to define a suitable statistical model that captures the behavior of
the full measurement setting that is used to detect a certain number of defects on EUV pellicles
(parts). The measurement system analysis consist of an experiment on the parts i = 1, . . . , I and
repeat j = 1, . . . , J , where a repeat represents a certain measurement setting of tool and operator.

Probabilistic models
Let Zi be a random variable representing the true count of defects on the parts i = 1, . . . , I and
Yij be the random variable that describes the measured count on part i in repeat j = 1, . . . , J .
Here, the repeat actually consist of various measurement settings of tools and operators that are
each measured k times. Note that these tools and operators are considered fixed effects. Moreover,
the true count on a part is unobserved and therefore a latent variable. Although, the true count
is a discrete random variable, we will use a general formulation such that Zi could represent any
random variable. We now have that

P (Yij = y;xij) =
∫ ∞
z=0

P (Yij = y|Zi = z,xij)dFZi(z)dz, (2.11)

where Yij |Zi denotes the conditional random variable representing the repeated measurements
given a true count and all Zi are independently and identically distributed. Note that xij =
xij1, . . . , xijp is the vector of binary values, that is used to indicate which covariates (or measure-
ment settings) are used to measure part i and repeat j. Hereafter, we will suppress this vector in
the notation of P (Yij = y) and P (Yij = y|Zi = z).

Based on historical data, see Chapter 4, we assume that repeated measurements are either dis-
tributed with a Conway-Maxwell-Poisson or Generalized Poisson distribution, denoted by CMP(ζ, ν)
and GP(τ, ϕ) respectively. Moreover, heterogeneity of the variances is detected, indicating a mul-
tiplicative effect where more variation in the repeated measurements is expected when the true
count is higher. Assuming that the measurement system is capable, we should have that true count
on a part equals the expected count on a certain measurement setting. These characteristics are
incorporated in the following probabilistic models for a CMP and GP distribution, defined by

P (Yij = y) =
∫ ∞
z=0

CMP(ζij(z), νij)dFZi(z)dz,

ζij(z) = z · exp{xTijβ} and νij = exp{xTijγ}.
(2.12)

for a CMP distribution and

P (Yij = y) =
∫ ∞
z=0

GP(τij(z), ϕij)dFZi(z)dz,

τij(z) = z · exp{xTijβ} and ϕij = exp{xTijγ}.
(2.13)

11
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for a GP distribution. Here, xij ∈ Rp×1, β ∈ Rp×1, γ ∈ Rp×1, with p the number of covariates that
are included in the model. Here, β is the vector with tool and operator effects on the location and
γ the vector with tool effects on the dispersion. Note that the latent variable value z is inherited
in the location parameters ζij(z) and τij(z) of the CMP and GP, respectively. In addition, the
location parameter is connected with the systematic part of the model by means of a logarithmic
link function. This logarithmic link function allows for a model that is based on the proportional
difference of tools and operators with the true count.

When γ = 0, with 0 ∈ Rp×1, we obtain equi-dispersion for both the CMP and GP distribution,
which transforms the probabilistic models (2.12) and (2.13) into a Poisson regression model with
the latent variable Zi.

Likelihood
Given the probability model for repeated measurements following a CMP distribution in (2.12),
the likelihood in the most general form is defined by

L(θ; y11, . . . , yIJ) =
I∏
i=1

∫ ∞
z=0

J∏
j=1

1
S(ζij(z), νij)

(
ζij(z)yij
yij !

)νij
dFZi(z)dz,

ζij(z) = z · exp{xTijβ} and νij = exp{xTijγ},

(2.14)

where θ = (β,γ, δ). Here, δ denotes the vector of parameters corresponding to the distribution
of the latent variable Zi. Since the counts are actually described by discrete distribution for the
latent variable Zi, we have that (2.14) reduces to

L(θ; y11, . . . , yIJ) =
I∏
i=1

∞∑
z=0

J∏
j=1

1
S(ζij(z), νij)

(
ζij(z)yij
yij !

)νij
P(Zi = z). (2.15)

Note that the normalization constant S, as defined in (2.5), is not a closed form expression for
ν 6= 1 and a function of the latent variable value z. Accordingly, we have that the (log-)likelihood,
and therefore also the maximum likelihood estimates, can not be evaluated in a closed form either.

In order to obtain parameter estimates of the probability model, various approximation meth-
ods could be employed. Firstly, a numerical approach, however, the downside is that the compu-
tational complexity of this likelihood is high, due to the summation of z from 0 to infinity and
the infinite sum of the normalization constant. Secondly, a pseudo-likelihood approach in which a
close approximation of the true likelihood is used that allows for simpler or even closed forms. This
pseudo-likelihood is than optimized as an approximation for the maximum likelihood estimates.
A more extensive overview of estimation methods will be provided in the next chapter.

When the GP distribution is employed to model under-dispersion, we will obtain the following
likelihood

L(θ; y11, . . . , yIJ) =
I∏
i=1

∫ ∞
z=0

J∏
j=1

µij(z)(µij(z) + ϕijyij)(yij−1)

(1 + ϕij)yijyij !

· exp{−µij(z) + ϕijyij
1 + ϕij

}1{yij ≤ m}fZi(z),

(2.16)

with θ = (β,γ, δ). Note that this likelihood has a data dependent support as a result of the
truncation. In particular, there is a restriction on the range of means which depends on the level
of underdispersion, and vice versa (Huang, 2016). Given the severe under-dispersion that was
observed in the case study (with a mean variance ratio of approximately 1:70) in the repeated
measurement setting, this dependence is especially unattractive in a regression setting. In this
thesis, we therefore solely use the GP to simulate data, but do not use this distribution for
estimation purposes.
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CHAPTER 3
Parameter estimation of the CMP

latent variable model

In this chapter, we distinguish two major estimation techniques to determine the estimates of
the probability model. The first technique is based on likelihood maximization and the second
uses the method of moments. Among the likelihood based methods, a situation with a different
repeated measurement distribution than the CMP is considered.

All estimation methods will be affected by the selection of the latent variable distribution.
Although the latent variable is discrete by nature, continuous forms are considered aiming to
obtain explicit estimates for the model parameters or computationally more efficient estimation
procedures.

3.1 Maximum likelihood estimation

In this section we aim to maximize the likelihood function as described in (2.14) and find the
corresponding parameters. The presence of the latent variable Zi in the normalization constant,
that itself has no closed form expression, results into a non-trivial estimation problem, where
the likelihood has no closed form either and cannot be evaluated analytically. Therefore, various
pseudo-likelihoods that are close approximations of the real likelihood will be examined. Among
others, we have iterative numerical methods using truncations of infinite sums (integrals) and
closed form solution using approximations of the normalization constant S(ζ, ν) in (2.5), with
ζ = ζij(z) = z · exp{xTijβ} and ν = νij = exp{xTijγ}. Note that these approximations can also
be an algorithmic solution, where the normalization constant is not equally defined for all z. We
denote the pseudo-log-likelihood by

l∗ = l∗(θ; y11, . . . , yIJ) =
I∑
i=1

log

∫ ∞
z=0

J∏
j=1

1
S̃zij(ζij(z), νij)

(
ζij(z)yij
yij !

)νij
fZi(z)dz

 ,

ζij(z) = z · exp{xTijβ} and νij = exp{xTijγ},

(3.1)

where θ = (β,γ, δ) and S̃zij(ζij(z), νij) is some to be defined approximation of the normalization
constant S(ζij(z), νij). Here, β is the vector with tool and operator effects on the location, γ the
vector with tool effects on the dispersion and δ the parameters of the distribution of the latent
variable Zi. Note that the tool and operator effects are considered fixed.
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The first method is a numerical solution, where we use a finite instead of an infinite upper
bound of the summation (or integral) of z and truncate the infinite series of the normalization
constant at the kth term as defined in (2.6). For both truncations, the term at which we truncate
is based on some relative contribution criteria, such that the relative improvement of adding an
extra term is lower than a certain threshold. Note that for this method only discrete latent variable
distributions are covered.

In the second approach, we aim to find closed form expressions by combining an order n
approximation of the normalization constant with selecting a latent variable distribution, such that
the latent variable integrates out of the likelihood. In case we do not find a closed form solution
when using a discrete latent variable distribution, we will additionally use a finite upper bound
for the summation of the latent variable in the likelihood, based on some relative contribution
criteria, to maximize the likelihood. For the continuous case, this approach involving the relative
contribution criteria will not be employed.

Method 1 - Truncated sums for the latent variable and normalization
constant
The first method is an algorithmic procedure, involving a numerical approximation of the pseudo-
log-likelihood (3.1) and a discrete latent variable distribution, that aims to find the set of parameter
θ that maximizes the pseudo-log-likelihood

l∗(kt)(θt; y11, . . . , yIJ) =
I∑
i=1

log

 kt∑
z=0

J∏
j=1

1
S̃(mt(z))(ζij(z), νij)

(
ζij(z)yij
yij !

)νij
P(Zi = z)


= Aθt +

I∑
i=1

log

 kt∑
z=0

J∏
j=1

1
S̃(mt(z))(ζij(z), νij)

(zyijνij )P(Zi = z)

 ,

(3.2)

where νij = exp{γj} and

Aθt =
I∑
i=1

J∑
j=1
−νij log(yij !) + xTijβyijνij . (3.3)

Provided that some starting values θ0 are selected, some unconstrained optimization algorithm
(e.g. the quasi-Newton based L-BFGS-B method) could be employed to maximize this pseudo-log-
likelihood. Here, in each iteration t, the value for the likelihood l∗(kt)(θt; y11, . . . , yIJ) is determined
for this new set of parameters θt. This procedure keeps increasing t until convergences has taken
place.

For each single iteration t, the value for l∗(kt)(θt; y11, . . . , yIJ) is determined, by truncating
the infinite series of the latent variable at a constant kt, such that the relative contribution of
the non-constant term R(a) is smaller than a minimal relative contribution threshold ε1. This
threshold should be selected with care, taking into account the magnitude of the value for R(a)

and the required precision for the optimization algorithm to function properly. The non-constant
term R(a) is defined by

R(a) =
I∑
i=1

log

 a∑
z=0

J∏
j=1

1
S̃(mt(z))(ζij(z), νij)

(zyijνij )P(Zi = z)

 . (3.4)

Now, the upper bound kt of the summation of the latent variable value z, which is taken equal for
all parts i, is determined by

kt := arg min
a>Ȳ··

(
R(a) −R(a−1)

R(a−1) < ε1

)
, (3.5)
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where Ȳ·· = 1
IJ

∑I
i=1
∑J
j=1 yij is the average of the data. Note that the summation of z is

performed in an increasing order and the relative contribution term is only checked for values of z
larger than Ȳ··. When this contribution criterion is met, the summation is stopped. The purpose
of the constraint a > Ȳ··, that requires the truncation term of the summation of the latent variable
z to be larger than the average, is twofold. Firstly, it is to reduce the number of checks in order
to save computation time and secondly to prevent the algorithm from stopping too soon when
parameters are selected poorly. Moreover, observe that the truncation term kt corresponds to
iteration t and is therefore allowed to differ from any other truncation term in iteration s, with
t 6= s.

Within each iteration t, the approximated normalization constant S̃(mt(z))(ζij(z), νij) is de-
termined for each value of the latent variable z, with z = 0, . . . , kt. This truncated normalization
constant, that strongly relies on the concept described in equation (2.6), is described by

S̃(mt(z))(ζij(z), νij) =
mt(z)∑
s=0

(
ζij(z)s

s!

)νij
. (3.6)

where mt(z) = {arg maxjmt,j(z)} and mt,j(z) is defined by

mt,j(z) := arg min
a>1,a∈Z

(
S̃(a)(ζij(z), νij)− S̃(a−1)(ζij(z), νij)

S̃(a−1)(ζij(z), νij)
< ε2

)
. (3.7)

Here, ζij(z) and νij are described by θ and mt(z) is an integer value. Note that we write mt,j(z),
since the upper bound of the finite sum of the approximated normalization constant is dependent
on the value of the latent variable z = 0, . . . , kt and the effect of the repeats j = 1, . . . , J . However,
instead of selecting an upper bound for each repeat j, we take a single upper bound mt(z) for all
repeats j = 1, . . . , J to simplify the numerical computation. More specific, mt(z) is the smallest
argument such that the contribution criterion ε2 is met for all repeats j = 1, . . . , J .

Recall from Section 2.3, that for equi-dispersion (ν = 1) the normalization constant is conver-
gent and equal to exp{ζij(z)}.

Proposition 3.1.1. Let ν ≥ 1 and z <∞. Then the normalization constant
∑∞
s=0

(
zs

s!
)n, which

is an infinite series, is a bounded, monotonic increasing series and therefore convergent.

A full proof of Proposition 3.1.1, that uses Stirling’s formula to define an upper bound, can
be found in Appendix A.1. Due to convergence of this normalization constant for z < ∞ and
equi-dispersion or under-dispersion (ν ≥ 1), the upper bound of the summation mt(z) is selected
based on a minimal relative contribution to the normalization constant ε2.

Summarizing, for each iteration t of the pseudo-log-likelihood maximization, the truncation
term kt for the latent variable is determined. Within this iteration we determine mtz for every
single z = 0, . . . , kt. Due to this double loop, this method becomes very computationally intensive.

Method 2 - Order n approximation of the normalization constant
In this method, the normalization constant is approximated by using the first n terms of the
asymptotic expansion of the normalization constant as described in (2.8). This order n approx-
imation is defined by

S̃(n)(ζij(z), νij) = ζij(z)(1−νij)/2 · eνijζij(z)

(2π)(νij−1)/2√νij

n∑
k=0

ck(νijζij(z))−k, (3.8)

where the constants cj are uniquely determined by the expansion in (2.9) and independent of
ζij(z). Now the general form of the pseudo-log-likelihood with latent variable Zi is defined in
Lemma 3.1.1.
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Lemma 3.1.1. Assume an order n expansion of the normalization constant (3.8) and take any
latent variable Zi, then the corresponding pseudo-log-likelihood (3.1) changes to

l∗ = A+
I∑
i=1

log
(∫ ∞

z=0
zBie−zCi · 1∏J

j=1 (
∑n
k=0 ck(νijζij(z))−k)

fZi(z)dz
)
, (3.9)

where

A =
I∑
i=1

J∑
j=1
−νij log(yij !) + xTijβyijνij + νij − 1

2 log(2π) + 1
2 log(νij) + xTijβ

(νij − 1)
2 ,

Bi =
J∑
j=1

yijνij + νij − 1
2 and Ci =

J∑
j=1

νije
xTijβ.

(3.10)

A proof of this lemma can be found in Lemma A.1 in Appendix A.1. We can find a closed
form expression for l∗, when for a certain combination of the latent variable Zi and order of the
normalization constant, the pseudo-log-likelihood does not involve z. Note that for n = 1, we have

J∏
j=1

(
n∑
k=0

ck (νijζij(z))−k
)

=
J∏
j=1

(
1 + c1 ·

(
νijze

xTijβ
)−1

)
=

J∏
j=1

zνij + c1e
−xTijβ

zνij
. (3.11)

From this it can be concluded that for higher order asymptotic expansions (n > 0) and more
than one repeat J > 1, the number of terms in the pseudo-log-likelihood will quickly grow to
unworkable sizes when increasing the number of repeats J and/or order of the approximation of
the normalization constant n.

In addition, increasing the order of the asymptotic expansion to infinity will not necessarily lead
to a more precise approximation of the true normalization constant and therefore not necessarily to
a more precise likelihood. Nevertheless, for an asymptotic expansion of the normalization constant
with fixed order n, we obtain convergence as stated in Proposition 3.1.2. A proof of this Proposition
can be found in Appendix A.1. Moreover, the effect of the order of the asymptotic expansion, in
case of under-dispersion, on the performance of the approximation of the normalization constant
is demonstrated in Chapter 6.1.

Proposition 3.1.2. Let us take an order n approximation of the normalization constant, with
0 ≤ n ≤ ∞. Then for finite νij ≥ 1 the pseudo-log-likelihood (3.9) is absolute convergent.

For a first order approximation of the normalization constant (n = 0), the product in (3.11)
becomes 1. As a result, the pseudo-log-likelihood (3.9) from Lemma 3.1.1 converts to

l∗ = A+
I∑
i=1

log
(∫ ∞

z=0
zBie−zCifZi(z)dz

)
. (3.12)

In the following two paragraphs, we will consider both discrete and continuous prior distributions,
in order to obtain a closed form expression for the pseudo-log-likelihood l∗.

(a) Discrete latent variable

When using a first order approximation of the normalization, the pseudo-log-likelihood (3.9) from
Lemma 3.1.1 converts to

l∗ : = A+
I∑
i=1

log
( ∞∑
z=0

zBie−zCiP(Zi = z)
)
, (3.13)

where A,Bi, Ci are defined in (3.10).
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Among the possible discrete distributions for latent variable Zi we considered the Poisson,
negative binomial and geometric distribution, but did not find a form such that for all possible
νij the pseudo-log-likelihood (3.13) does not involve z. Since, the complexity of the pseudo-log-
likelihood increases, the same was found for higher order approximations of the normalization
constant. Note that for the special case where the CMP distribution has νij = 1, we actually
describe a Poisson distribution. This implies that the for each order n expansion, the normal-
ization constant is defined by exp{ζij(z)}. Therefore, the pseudo-log-likelihood equals the true
log-likelihood. However, the selection of νij = 1, still does not provide a closed form.

In order to solve the pseudo-log-likelihood (3.9) with any order n > 0 of the normalization
constant and discrete latent variable, we could employ a numerical approach that uses the result
of Proposition 3.1.2. The suggested numerical approximation of the likelihood

l∗ = A+
I∑
i=1

log
( ∞∑
z=0

zBie−zCi · 1∏J
j=1 (

∑n
k=0 ck(νijζij(z))−k)

P(Zi = z)
)
, (3.14)

with A, Bi and Ci defined in (3.10) involves a truncation of the infinite summation of the latent
variable distribution at the term kt, described by

kt := arg min
a>Ȳ··

((
R(a) −R(a−1)

)
/R(a−1) < ε1

)
. (3.15)

Here, Ȳ·· = 1
IJ

∑I
i=1
∑J
j=1 yij is the empirical average of the data and

R(a) =
I∑
i=1

log
(

a∑
z=0

zBie−zCi
1∏J

j=1 (
∑n
k=0 ck(νijζij(z))−k)

P(Zi = z)
)
. (3.16)

In this way, the relative contribution to the non-constant part R(a) of the pseudo-likelihood is
controlled.

(b) Continuous latent variable distribution

Aiming to simplify the likelihood, various continuous distributions were considered for the latent
variable Zi. In particular, when selecting the Gamma as the prior distributions, a closed form was
obtained, see Proposition 3.1.3. A proof of this derivation is provided in Appendix A.1.

Proposition 3.1.3 (Gamma prior). Let us assume a Gamma(κ, λ) distribution for the latent
variable Zi. Now, given first order approximation of the normalization constant, we have the
pseudo-log-likelihood (3.9) from Lemma 3.1.1 obtains the form

l∗ =A+
I∑
i=1

log
(

λBiΓ(Bi + κ)
(1 + Ciλ)Bi+κΓ(κ)

)

=A+
I∑
i=1

Bi log(λ)− (Bi + κ) log(1 + Ciλ) + log(Γ(Bi + κ))− log(Γ(κ)).

(3.17)

with A,Bi and Ci defined in (A.2). Here, κ and λ are the shape and scale parameter of the Gamma
distribution.

Method 3 - Alternative repeated measurements model
Instead of the CMP latent variable model, we now assume that Yij |Zi is quasi-Poisson distributed,
with normally distributed random effects. Then we have

Yij |Zi ∼ Pois(µij , δ)
µij = exp(zi + xTijβ)

zi ∼ N (α0, σ
2),

(3.18)
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with β the vector of tool and operator effects and xij ∈ Rp×1 a vector of the design matrix contain-
ing indicator values, representing the setting under which that single measurement is performed.
Now, the moments of the conditional distribution are defined by

E [Yij |Zi] = µij and Var (Yij |Zi) = Var (µij) δ (3.19)

Note that in this approach, the latent random variable Zi has a continuous distribution, which
slightly changes the interpretation. Instead of the actual count, which is discrete, it can now be
explained as to the expected count under a specific tool and operator setting. Now for δ = 1, the
log-likelihood l = l(θ; y11, . . . , yIJ) of this generalized linear mixed model (GLMM) can be written
as

l = log

 I∏
i=1

∫ ∞
z=−∞

J∏
j=1

µ
yij
ij exp{−µij}

yij !
1√

2πσ2
exp{−1

2

(zi
σ

)2
}dzi


= A3 +

I∑
i=1

log

∫ ∞
zi=−∞

exp{
J∑
j=1

(
ziyij + ezi+xijβ

)
} 1√

2πσ2
exp{−1

2

(
zi − α0

σ

)2
}dzi

 ,

(3.20)

where

A3 =
I∑
i=1

J∑
j=1

(− log (yij !) + (xijβ)) . (3.21)

Observe that this is the log-likelihood of a GLMM with a regular Poisson distribution. The log-
likelihood of the model including the parameter δ, is defined by lδ = l/δ. Here, δ is determined
by the value of the residual deviance divided by the residual degrees of freedom. The residual
deviance equals -2 times the likelihood-ratio. When considering a main effects model with only
tool and operator effects, one of both effects is included in the intercept α0, obtaining a residual
degrees of freedom of IJ − (J − 2 + p), where p is the number of parameters of the latent variable
distribution.

Note that the parameter estimates β, α0 and σ are independent of the dispersion parameter
δ. Whereas the point estimates are equal for the Poisson and quasi-Poisson GLMM, the standard
errors of the estimates do differ for the quasi-Poisson GLMM. The standard errors for the quasi-
Poisson GLMM can be obtained by multiplying the standard errors of the Poisson GLMM with a
factor

√
δ. Therefore, a generalized linear mixed model with a Poisson distribution can be fitted

instead of quasi-Poisson distribution, after which the likelihood value and the standard errors
should be scaled. Fitting a Poisson GLMM is straightforward as it is implemented in the glmer
function of the ’lme4’ package of the statistical software [R] (Bates et al., 2015), whereas the
quasi-Poisson is not. Here, the Gauss-Hermite quadrature is used to approximate the integral
that is present in the log-likelihood.

Statistical inference
In the previous paragraphs of this chapter we defined various types of (pseudo-)log-likelihoods
for the probability model (2.14). By maximizing these (pseudo-)log-likelihoods, we obtain their
corresponding maximum (pseudo-)likelihood estimates. These are again approximations for the
probability model’s true ML estimates. Although it remains to be seen whether these (pseudo-
)likelihood estimates are asymptotically normal, we assume this to approximate the confidence
interval of the (pseudo-)ML estimates.

In the case that asymptotic normality of the ML estimates would hold, the confidence intervals
of these estimates follow from the Fisher information matrix I(θ), which is the variance of score
function. Here, the score function is the derivative of the log-likelihood. For the maximum likeli-
hood estimates, θ̂, the score function s(θ̂) = 0. Then the confidence intervals of the asymptotically
normal ML estimates can be derived using a first-order Taylor expansion of the score S(θ) around
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its estimator θ̂, obtaining that θ̂ − θ is approximately N(0, I−1(θ)). Then, the standard errors of
the estimates are the square roots of the diagonal of inverse Fisher Information.

Only for a Gamma prior distribution we obtained a closed form expression of the estimates. In
this situation, the ML estimates can be obtained by setting the score function to zero and deriving
the Fisher information. However, for all other (pseudo-)likelihoods some optimization procedure
needs to be employed to obtain the maximum likelihood estimates. To determine the confidence
intervals, we use the observed Fisher Information matrix Î(θ) = −∂

2l(θ)
(∂θ)2 , which is the Hessian

of the negative log-likelihood, as an approximation of the true Fisher information. The Hessian
is some approximation of the variation around an estimator. The Hessian matrix is obtained
by approximating the second partial derivatives evaluated at the maximum likelihood estimates
using finite differencing and multiplying with -1. Now, the inverse of the Hessian is the estimated
variance-covariance matrix, which can be used to establish the confidence intervals of the point
estimates (Dobson & Barnett, 2008).
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3.2 Method of moments

Probability model and its moments
For the moment based estimation, a different notation of the probability model (2.12) is preferred.
Contrary to the old notation, where a repeat was any measurement on the same part (so all
possible combinations of tool and operator), we now denote a repeat as number of repetitions on
a part with the same tool and operator. The model is now defined as follows

P (Yijkl = y) =
∫ ∞
z=0

P (Yijkl = y|Zi = z)dFZi(z)dz

=
∫ ∞
z=0

CMP(ζijk(z), νijk)dFZi(z)dz,
(3.22)

where Yijkl denotes the observed count on part i = 1, . . . , I, tool j = 1, . . . , J , operator k =
1, . . . ,K and repeat l = 1, . . . , L. Here, the true counts of the parts i are again assumed to be
independently and identically distributed with dFZi . For the location parameter of the CMP
we again have a multiplicative form, and for the dispersion we either take a constant or random
intercept. This gives

ζijk(z) = z · aj · bk and νijk = exp{γ0 + γj}. (3.23)

where aj = exp{αj} and bk = exp{βk}. Moreover, we denote ν0 = exp{γ0} and νj = exp{γ0 +γj},
Let us introduce constraints for the fixed effects 1

J

∑J
j=1 aj = 1 and 1

K

∑K
k=1 bk = 1 such

that the average effect of the tools and operators is 1. Without these constraints on the fixed
effects, the model becomes unidentifiable. Note that for the selected multiplicative structure, no
interaction term (ab)jk = exp{αβ}jk with a corresponding constraint 1

JK

∑J
j=1

∑K
k=1(ab)jk = 1

is included in ζijk(z). The main reason is that by including this term it does not necessarily hold
that 1

JK

∑J
j=1

∑K
k=1 ajbk(ab)jk = 1 when (ab)jk 6= 1,∀j, k. This was preferred to enforce that z

represents the average count over all tools.
Based on the full model described in (3.23), two scenarios that will be considered are described

in Table 3.1.

Table 3.1: Model scenarios for the method of moments

Scenario Location parameter ζijk(z) Dispersion parameter νijk
1 Main effects tool and operator Constant dispersion (νijk = ν0, ∀i, j, k)
2 Main effects tool and operator Dispersion per tool (νijk = νj , ∀i, j, k)

Approximation conditional expectation and variance

Analogue to the maximum likelihood estimation of the CMP parameters, we also apply different
approaches to determine the moment estimators. Since the moments of the CMP contain the
normalization constant, which cannot be evaluated in a closed form, we again use the order n
asymptotic expansion and the summation of a truncated series. Now, approximated moments of
the conditional distribution look as follows

E[Yijkl|Zi] = µijk ≈
1
νijk

∂ log S̃(ζijk(Zi), νijk)
∂ log ζijk

Var(Yijkl|Zi) ≈
1
ν2
ijk

∂2 log S̃(ζijk(Zi), νijk)
∂ log2 ζijk

,

(3.24)

where S̃(ζijk(Zi), νijk) is the approximation of the true normalization constant S(ζijk(Zi), νijk).
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Mean squares
According to the CMP latent variable model (3.22) and the defined scenarios in Table 3.1, variation
can be attributed to the measurement error, parts, tools or operators. For a balanced experiment,
we distinguish the mean square error (MSE), parts mean squares (MSP ), tool mean squares
(MST ) and operator mean squares (MSO). These mean squares are characterized by

MSE = SSError
IJK(L− 1) = 1

IJK(L− 1)

I∑
i=1

J∑
j=1

K∑
k=1

L∑
l=1

(Yijkl − Ȳijk·)2,

MSP =SSParts
I − 1 = JKL

I − 1

J∑
j=1

(Ȳ·j·· − Ȳ····)2,

MST =SSTool
J − 1 = IKL

J − 1

I∑
i=1

(Ȳi··· − Ȳ····)2,

MSO =SSOperator
K − 1 = IJL

K − 1

K∑
k=1

(Ȳ··k· − Ȳ····)2,

(3.25)

where

Ȳ···· = 1
IJKL

I∑
i=1

J∑
j=1

K∑
k=1

L∑
l=1

Yijkl,

Ȳi··· = 1
JKL

J∑
j=1

K∑
k=1

L∑
l=1

Yijkl, Ȳ·j·· = 1
IKL

I∑
i=1

K∑
k=1

L∑
l=1

Yijkl,

Ȳ··k· = 1
IJL

I∑
i=1

J∑
j=1

L∑
l=1

Yijkl, and Ȳijk· = 1
IJK

I∑
i=1

J∑
j=1

K∑
k=1

Yijkl.

(3.26)

Method 1 - Order n approximation of the normalization constant
In this paragraph, we aim to derive the moment estimates of the parameters for several model
scenarios and the latent variable distributions. Since the order of the asymptotic expansion ap-
proximation of the normalization constant (2.8) strongly affects the complexity of the moment
expressions, we first start with a first order approximation.

First order approximation (n=0)

Let us assume a first order approximation of the normalization constant (n=0). Then by the Law
of Iterated Expectations we have that the expected value of Yijkl is described by

E[Yijkl] = E [E[Yijkl|Zi]] ≈ E
[
ζijk(Zi)−

νijk − 1
2νijk

]
= E[Zi]ajbk −

νijk − 1
2νijk

. (3.27)

Moreover, the expectation of the conditional variance, which is part of the expected mean squares
is

E [Var (Yijkl)] ≈ E
[
ζijk(Zi)
νijk

]
= E[Zi]ajbk

νijk
(3.28)

We consider scenario 2, which is the most general scenario and contains scenario 1 as a special
case (νj = ν0,∀j). Recall that this scenario has main effects for the location and a different
dispersion per tool. By applying the Law of Iterated Expectations and the constraints for the
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fixed effects for tools and operators defined in 3.2 to the expectations of the averages Ȳ····, Ȳi···,
Ȳ·j·· and Ȳ··k· from (3.26) we obtain

E[Ȳ····] = E[Ȳi···] ≈E[Zi]
1
JK

J∑
j=1

K∑
k=1

ajbk −
νijk − 1

2νijk
= E[Zi]−

1
J

J∑
j=1

νj − 1
2νj

,

E[Ȳ·j··] ≈E[Zi]aj
1
K

K∑
k=1

bk −
νijk − 1

2νijk
= E[Zi]aj −

νj − 1
2νj

,

E[Ȳ··k·] ≈E[Zi]bk
1
J

J∑
j=1

aj −
νijk − 1

2νijk
= E[Zi]bk −

1
J

J∑
j=1

νj − 1
2νj

.

(3.29)

To determine the expected mean squares, we apply the Law of Total Variance, which is defined
in Appendix A.2 in Lemma A.2.1. From the mean squares in (3.25) we can derive the expected
mean squares

E[MSE ] = E [Zi]
1
J

J∑
j=1

aj
νj

E[MSP ] = E[MSE ] + JKL ·Var (Zi)

E[MST ] = E[MSE ] + IKL

J − 1

J∑
j=1

(a2
j − 1)

(
Var (Zi)

I

)

+ IKL

J − 1

J∑
j=1

E[Zi](aj − 1)− νj − 1
2νj

+ 1
J

J∑
j=1

νj − 1
2νj

2

E[MSO] = E[MSE ] + IJL

K − 1

K∑
k=1

(b2k − 1)
(
Var (Zi)

I
+ E[Zi]2

)
.

(3.30)

A full derivation of the expected mean squares can be found in Appendix A.2. The expected
first moments and mean squares for scenario 1 are presented in Proposition 3.2.1.

Remark 3.2.1. Let us take scenario 2 with a constant dispersion νijk = νj = ν0, such that we
obtain the special case scenario 1. Now, the expected first moments in (3.29) reduce to

E[Ȳ····] = E[Ȳi···] ≈E[Zi]−
ν0 − 1

2ν0
,

E[Ȳ·j··] ≈E[Zi]aj −
ν0 − 1

2ν0
,

E[Ȳ··k·] ≈E[Zi]bk −
ν0 − 1

2ν0
.

(3.31)

and the expected mean squares in (3.30) simplify to

E[MSE ] = E [Zi]
ν0

E[MSP ] = E[MSE ] + JKL ·Var (Zi)

E[MST ] = E[MSE ] + IKL

J − 1

J∑
j=1

(a2
j − 1)

(
Var (Zi)

I
+ E[Zi]2

)

E[MSO] = E[MSE ] + IJL

K − 1

K∑
k=1

(b2k − 1)
(
Var (Zi)

I
+ E[Zi]2

)
.

(3.32)
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Remark 3.2.2. Let us assume the CMP latent variable model with model scenario 2 from Para-
graph 3.2 with a first order approximation of the normalization constant and aj = bk = 1, ∀j, k.
Then, in case νj = ν0, ∀j we have that E[MSE ] = E[MST ] and E[MSE ] = E[MSO].

To obtain the moment estimators for the different scenarios of the probability model, we replace
the expected moments E[Ȳ····], E[Ȳ·j··], E[Ȳ··k·] and the mean squares E[MSE ], E[MST ], E[MSO],
E[MSP ] with their sample versions Ȳ····, Ȳ·j··, Ȳ·k··, MSE , MST , MSO and MSP , respectively.
However, first a latent variable distribution needs to be assumed. In the Proposition 3.2.1 we take
a negative binomial (θ, k) prior for Zi, which reduces to a Pois(θ) when the dispersion parameter of
the negative binomial k = 0. The full derivation of this proposition can be found in Appendix A.2.

Proposition 3.2.1 (Moment estimates scenario 1). Let us assume model scenario 1 with a first
order approximation of the normalization constant. Moreover, let the latent variable Zi follow a
negative binomial distribution, NBinom(θ, κ). Replacing the theoretical moments in Remark 3.2.1
with their sample versions, we obtain the moment estimators

ν̂0 = (1 + 2Ȳ···· − 2θ̂)−1, âj =

(
Ȳ·j·· − Ȳ···· + θ̂

)
θ̂

,

b̂k =

(
Ȳ··k· − Ȳ···· + θ̂

)
θ̂

, κ̂ = MSP −MSE − JKL · θ̂
JKL · θ̂2

,

(3.33)

where

θ̂ = 2Ȳ···· + 1
4 +

√
−MSE

2 + (Ȳ···· + 1)2

16 . (3.34)

Note that the tool and operator mean squares are not used, since model scenario 1 has a
constant dispersion. Although we formulate this paragraph in the more general setting of scenarios
2, a non-constant dispersion brings in heterogeneity of the variances. Whereas the first moment
are rarely influenced by this assumption, the mean squares are strongly affected. The situation
becomes particularly complex, when the design becomes unbalanced. For example, a weighted
least squares could be employed. Please note that this is outside the scope of this research.

Higher order expansions (n>0)

In the previous paragraph we derived the moment estimates for a first order approximation of the
normalization constant. Moreover, in Paragraph 2.2, the third order approximation of the mean
and variance of a CMP distribution were presented. In the notation of the probability model, we
have that

E[Yijkl|Zi] ≈ζijk(Zi)−
νijk − 1

2νijk
−
ν2
ijk − 1
24ν2

ijk

ζijk(Zi)−1 −
ν2
ijk − 1
24ν3

ijk

ζijk(Zi)−2

Var[Yijkl|Zi] ≈
ζijk(Zi)
νijk

+
ν2
ijk − 1
24ν3

ijk

ζ−1
ijk(Zi) +

ν2
ijk − 1
12ν4

ijk

ζijk(Zi)−2
(3.35)

Note that the derivation of the moment estimators requires calculating E[Yijkl] = E[E[Yijkl|Zi]].
For discrete distributions (i.e. Poisson or negative binomial distribution) with 0 in their domain,
this implies solving E[1/Zi] which is not possible. A higher order approximation is therefore not
considered.

Statistical inference
In this paragraph, we will discuss the construction of confidence intervals of the moment estimators
and an hypothesis test of the tool and operator effects based on the mean square ratios.
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Confidence intervals

To obtain the confidence intervals of the moment estimators from Proposition 3.2.1, we have to
derive the standard errors. Note that the moment estimators θ̂, κ, ν0, aj and bk are functions of
Ȳ····, Ȳ·j··, Ȳ··k·, MSE and MSP . Let T = g(X1, . . . , Xn) denote the moment estimator that is a
function of random variables X1, . . . , Xn. In order to determine the variances of these moment
estimators T , we consider the univariate Taylor expansions around the means of the random
variables µX1 , . . . , µXn . We then approximate the variance of this moment estimator by

Var(T ) ≈
n∑
i=1

(
∂g(µX1 , . . . , µXn)

∂ui

)2
σ2
Xi . (3.36)

By taking a first order approximation of the normalization constant with model scenario 1, the
variances of Ȳ····, Ȳ·j··, Ȳ··k· that are derived in Proposition A.2.2, convert into

σ2
Ȳ····

= Var(Ȳ····) = 1
I
Var (Zi) + 1

IJKL

E [Zi]
ν0

σ2
Ȳ·j··

= Var(Ȳ·j··) =
a2
j

I
Var (Zi) + 1

IKL

ajE [Zi]
ν0

σ2
Ȳ··k·

= Var(Ȳ··k·) = b2k
I
Var (Zi) + 1

IJL

bkE [Zi]
ν0

.

(3.37)

The variances of the mean squares are more complex and will be approximated by assuming
that the underlying data is i.i.d. normally distributed. Under this assumption, we have that
SSE/σ

2
E ∼ χ2

v1
and SSP /σ2

P ∼ χ2
v2
, where v1 and v2 denote the degrees of freedom of the sum of

squares error and parts, respectively. This gives

σ2
MSE = Var(MSE) = σ4

E

(IJK(L− 1))2Var
(
SSE
σ2
E

)
= 2σ4

E

IJK(L− 1)

σ2
MSP = Var(MSP ) = σ4

P

(I − 1)2Var
(
SSP
σ2
P

)
= 2σ4

P

I − 1

(3.38)

Now the Wald confidence interval of the moment estimators T , which is based on asymptotic
normality of its parameter estimators, is defined as T̂±z1−α/2SE(T̂ ), where z1−α/2 is the (1−α)th
quantile of the standard normal distribution (Wald & Wolfowitz, 1939).

The F-test

Although the fact that in our data is not normally distributed, but a mixed model with a CMP
distribution and a latent variable distribution Zi, we have by Remark 3.2.2 that for scenario 1
with aj = bk = 1,∀ j, k it holds that

E[MST ]
E[MSE ] = 1 and E[MSO]

E[MSE ] = 1.

Note that σ2
E = E[MSE ], σ2

T = E[MST ]. To test the null hypothesis, we could evaluate the statistic
F0 = MST /MSE with an F-distribution as in the analysis of variance (ANOVA) framework. In
this framework it is assumed that the data is independently and identically distributed (i.i.d.)
with a normal distribution.

To what extent applying the F-test is valid due to the violation of the underlying distribution,
will be shown in Section 5.4. In our case, the hypothesis test for the tool effect is H0 : aj = 1,∀j
and H1 : ∃j : aj 6= 1, where j = 1, . . . , J . Under H0, we have σ2

T = σ2
E and therefore the following

test statistic

F0 = MST
MSE

= v1σ
2
TMST /(σ2

T v1)
v2σ2

EMSE/(σ2
Ev2) = σ2

TSST /(σ2
T v1)

σ2
ESSE/(σ2

Ev2) = SST /(σ2
T v1)

SSE/(σ2
Ev2) .

(3.39)
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When we assume that SST /(σ2
T ) ∼ χ2

v1
and SSE/(σ2

E) ∼ χ2
v2
, we obtain that the test statistic F0

follows a central F-distribution with v1 = J − 1 numerator and v2 = IJK(L − 1) denominator
degrees of freedom. Now, for a level α the critical value is defined by Fcrit,α = {Fc | P(Fv1,v2 ≥
Fc) = α}. The null hypothesis H0 is rejected when F0 ≥ Fcrit,α and accepted if F0 < Fcrit,α. An
analogue hypothesis test to the one for the tool effect holds for the operator effect, where MST ,
σ2
T , v1 = J − 1 are replaced by MSO, σ2

O, v1 = K − 1, respectively.
When the alternative hypothesis is true and we assume a normal distribution of the data, the

tool and operator sum of squares follow a non-central chi-square distribution, χ2
J−1 (λTool) and

χ2
K−1 (λOperator), respectively. Then, for model scenario 1, the non-centrality parameter λ for the

test on tool or operator effect would be defined by

λTool = (J − 1)E[MST ]− E[MSE ]
E[MSE ] = IKL

E[MSE ]

J∑
j=1

(a2
j − 1)

(
Var (Zi)

I
+ E[Zi]2

)
,

λOperator = (K − 1)E[MSO]− E[MSE ]
E[MSE ] = IJL

E[MSE ]

K∑
k=1

(b2k − 1)
(
Var (Zi)

I
+ E[Zi]2

)
.

(3.40)

Now we obtainMST /MSE ∼ FJ−1,IJK(L−1)(λTool) andMSO/MSE ∼ FK−1,IJK(L−1)(λOperator).
Note that λ = 0 implies a central F-distribution. The power of this test is now described by
P(Fv1,v2,λ ≥ Fcrit,α).
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CHAPTER 4
Case study

In this chapter we consider a case study about the qualification of EUV pellicles with microscopes.
These microscopes provide a set of features of the observed defects (e.g. size and location) for each
measurement. In absence of a full experiment, we analyze three datasets. The first dataset is about
a single part that was measured five times on each of the two microscopes. This dataset is used
to demonstrate the lack of fit of a Poisson distribution as repeated measurement distribution, mo-
tivate the application of the CMP distribution and show the performance of the pseudo-likelihood
methods using the asymptotic expansion. The second dataset is a cross-sectional analysis of 141
parts measured a single time somewhere in time range T 1. The aim of this dataset is to determine
the underlying part to part distribution. The third dataset is about a series of three measurements
on each part, that is performed during the production process. Each measurement is conducted
by any available tool and operator, indifferent of where and by who the preceding measurement
(if any) is performed. The aim here is to validate the assumption of a proportional effect and
heterogeneity of the variances.

Note that for the first two datasets, two lower boundaries for the diameter size are used. The
selected threshold of 10 arbitrary units (a.u.), is derived from the region of interest in practice,
which are all defects larger than 10 a.u.. The second threshold of 4 a.u. originates from the fact
that everything below this threshold is considered noise of the microscope. The amount of defects
with a diameter size larger than this threshold, is taken as the output for each measurement. The
underlying distributions will be used as input for the simulation study in Chapter 5.

4.1 Repeated measurements on single part

A single part from an earlier stage than the time range T was measured five times on both
microscope A and microscope B. The observed counts of defects with a size larger than 4 a.u.
and 10 a.u. is presented in Figure 4.1. These five measurements on each tool are performed
without intermediate operator intervention. Operators were only involved in the placements on
the beginning of each sequence of measurements, the removal and placement on the other tool. A
fixed effects model was fitted to estimate the tool effects on a single part i with repeats j. Let us
define the likelihood of the CMP distribution by

L(θ; y11, . . . , yIJ) =
I∏
i=1

J∏
j=1

1
S(ζij(z), νij)

(
ζij(z)yij
yij !

)νij
ζij(z) = z · exp{xijβ} and νij = exp{wT

ijγ},

(4.1)

1For sake of confidentiality, no specific time range is mentioned.
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●●●● ●

0 100 200 300
NRDEFECTS > 4 a.u.

DSIZE > 4 a.u.

●●●●●

0 30 60 90 120
NRDEFECTS > 10 a.u.

DSIZE > 10 a.u.
Total measured count (1 part: 5x microscope A, 5x microscope B)

MICROSCOPE ● A B

Figure 4.1: Observed number of defects on pellicles larger than a certain diameter size (DSIZE),
measured in a certain time range T .

with β = (β0, β1) and constant dispersion νij = ν0. Moreover, β0 and β1 correspond to microscope
A and B, respectively. Note that in contrast to Chapter 3, z is considered fixed instead of random
as the dataset contains of only a single part. This implies that the normalization constant only
needs to be determined for every combination of i and j of a single z. Moreover, β0 is used as
reference level and set to zero and exp{β1} is the proportional difference of microscope B with A.
We distinguish the case with pre-fixed ν0 = 1, where the CMP reduces to a Poisson, and a freely
estimable ν0 > 0. Here, the Poisson distribution is a nested model of the CMP distribution. The
log-likelihood is defined by

l(θ; y11, . . . , yIJ) =
I∑
i=1

J∑
j=1
− log (S(ζij(z), νij)) + νijyij log(ζij(z))− νij log(yij !). (4.2)

To calculate the likelihood, we again use the convergence of the normalization constant for finite z
and ν > 1 as stated in Proposition 3.1.1. A finite summation until the nth term of the normalization
constant is used, where n is defined such that the gain of adding the (n+ 1)th term is lower than
10−10. Given a decimal precision of 10−5, this approximation is equal to the true values of the
log-likelihood and parameter estimates.

To assess the improvement of adding an extra estimable parameter ν, we check the Akaike
information criterion with a correction for small sample sizes (AICc). This is preferred over the
AIC given the low number of observations (n = 10). The difference in AICc between the Poisson
and CMP shown in Table 4.1 strongly motivates the application of the CMP as a method to model
repeated measurements that are severely under-dispersed. In addition, the pseudo-likelihoods that
use the expansion of the normalization constant are considered. It can be concluded that in these
cases the improvement of increasing the order of the expansion gets marginal as of order two.

28



CHAPTER 4. CASE STUDY

Table 4.1: Maximum likelihood estimates (z, β1, ν0) for the fixed effect model Table 4.2 on the
dataset in Figure 4.1. Note that CMP (ζ, 1) = Pois(ζ).

Likelihood
Method Norm constant DSIZE z β1 ν0 LLH AICc
Poisson Closed form > 4 a.u. 466.6 -0.16811 1 -39.6365 85.0
CMP Finite sum > 4 a.u. 467.1 -0.16792 36.2 -26.5568 63.1
Poisson Closed form > 10 a.u. 111.6 -0.22628 1 -32.2611 70.2
CMP Finite sum > 10 a.u. 112.1 -0.22516 91.8 -14.62 39.2

Pseudo-likelihoods
Method Norm constant DSIZE z β1 ν LLH
CMP Expansion O1 > 4 a.u. 467.1 -0.16792 36.2 -26.5216
CMP Expansion O2 > 4 a.u. 467.1 -0.16792 36.2 -26.5567
CMP Expansion O3 > 4 a.u. 467.1 -0.16792 36.2 -26.5568
CMP Expansion O4 > 4 a.u. 467.1 -0.16792 36.2 -26.5568
CMP Expansion O1 > 10 a.u. 112.1 -0.22516 99.5 -14.2237
CMP Expansion O2 > 10 a.u. 112.1 -0.22516 91.8 -14.6163
CMP Expansion O3 > 10 a.u. 112.1 -0.22516 91.8 -14.6236
CMP Expansion O4 > 10 a.u. 112.1 -0.22516 91.8 -14.6237

4.2 Cross-sectional analyses

Single measurement per part

In a certain time range T , 141 pellicles were analyzed using microscopes. A density function of the
diameter sizes of all defects combined is shown in Figure 4.2. The empirical cumulative density
functions (ECDF) of the observed number of defects on pellicles with a size larger than 4 a.u. and
10 a.u. is visualized in Figure 4.3. Note that these counts originate from measurements performed
by all microscopes and not corrected for the effect of variation caused by them. Observe that
number of defects larger than 4 a.u. is much better described by a negative binomial distribution
than a Poisson distribution. For the count with a diameter size larger than 10 a.u., the difference
in fit between a Poisson and negative binomial is much smaller. Here, the small over-dispersion
could be the effect of tools and operators.

0.0
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0.2

0.3

0.4

0.5

0 10 20 30 40 50
Diameter size (in a.u.)

D
en

si
ty

Density of the diameter size of all defects

Figure 4.2: Density of diameter size (DSIZE) on all pellicles. (Density of defects with a
DSIZE > 50 a.u. is approximately 0.002.)
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Figure 4.3: Empirical cumulative density function (ECDF) of the observed number of defects
on pellicles exceeding a certain size. All initial assessments from a certain time range T .

Three measurements per part
In this dataset, each of the three measurements is performed at any available tool, indifferent
of where the preceding measurement (if any) is performed. In Figure 4.4, empirical average of
the number of defects larger than 10 a.u. is plotted against the sample variance of the different
measurements. Note that the sample variance includes the effect of different tools and process
steps. Given the positive slope of the regression line in this plot, it can be derived that assumption
of a proportional effect seems reasonable.
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Figure 4.4: Empirical average of the number count on parts vs. the sample variance of the
measured count in repeats on the same part.
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CHAPTER 5
Simulation Study

In this chapter we define all the characteristics of the simulation study. The goal of this study
is to define which of the estimation techniques, that were described in Chapter 3, has the best
estimating performance and is most suitable for hypothesis testing. To do this, we will focus on
severely under-dispersed count data and simulate various kinds of experiments.

5.1 Context simulation study

In line with the planned experiment at ASML, we will take the experimental setup with 6 parts (P)
× 3 tools (T) × 2 operators (O) × 3 repeats (R) as a reference setting. This setup contains a lower
number of operators than tools, since a relatively low contribution to the variation of operator is
expected due to measurement setup. Besides, we also consider a larger setting with 10 parts, to
determine the gain in estimating and hypothesis testing performance for all methods. In line with
the case study in Chapter 4, two lower thresholds for the diameter size are considered, obtaining a
mean count of approximately 10 defects for a lower threshold of 10 a.u. and on average 50 defects
when considering a lower threshold of 4 a.u.. For the lower counts corresponding to the higher
diameter size threshold, a Poisson or negative binomial distribution seemed a good fit. Therefore,
the more simple Poisson distribution was selected in the simulation. For the higher average count
coming from a lower minimal diameter size threshold, a negative binomial distribution was used
since this distribution fitted much better than the Poisson. Additionally, the effect sizes of tool
and operator are derived from the repeated measurements dataset of the case study. Finally, the
robustness of the CMP based estimation methods to different underlying distributions is tested
by simulating from a GP distribution. In the simulation study, a somewhat less severe dispersion
level was used (mean = γ·variance, with γ = 8, 20) than the extreme level of under-dispersion that
was observed in the case study (mean = γ·variance with γ = 36, 92).

5.2 Generating data

In this section, we elaborate on the way the simulated data is generated. Firstly, we present
overview of all simulation scenarios that are considered in Table 5.1. Given a long analysis time
of some methods, the number of simulations is limited to 500 for all simulation scenarios. For
the method of moments analysis on the robustness of the F-test for data from a CMP repeated
measurements distribution and some discrete prior distribution (Poisson or negative binomial), a
total number of 10,000 simulations is performed.

In the explanation of the simulation setup, we use the same notation as was used for the method
of moments in Section 3.2. Recall that we denote the parts i = 1, . . . , I, the tools j = 1, . . . , J ,

31



CHAPTER 5. SIMULATION STUDY

Table 5.1: All simulation scenarios representing experiments with various settings. The exper-
iments have a certain number of parts (P), tools (T), operators (O) and repeats (R) and latent
variable describing the true count on the parts (Poisson(θ) and negative binomial NB(θ, κ), with
mean θ and variance θ + κθ2 (so the size parameter is 1/κ)).

Sim. Experiment Setup Part dist. Repeat V ar/ Tool Operator NSIMS
NR. (PxTxOxR) (LV) dist. mean effects effects

Pois(θ) (a1, a2, a3) (b1, b2)
1 6 x 3 x 2 x 3 Pois(10) GP 0.05 (1,1,1) (1,1) 500
2 6 x 3 x 2 x 3 Pois(10) GP 0.05 (1,1.15,0.85) (1.05,0.95) 500
3 6 x 3 x 2 x 3 Pois(10) GP 0.125 (1,1,1) (1,1) 500
4 6 x 3 x 2 x 3 Pois(10) GP 0.125 (1,1.15,0.85) (1.05,0.95) 500

5 10 x 3 x 2 x 3 Pois(10) GP 0.05 (1,1,1) (1,1) 500
6 10 x 3 x 2 x 3 Pois(10) GP 0.05 (1,1.15,0.85) (1.05,0.95) 500
7 10 x 3 x 2 x 3 Pois(10) GP 0.125 (1,1,1) (1,1) 500
8 10 x 3 x 2 x 3 Pois(10) GP 0.125 (1,1.15,0.85) (1.05,0.95) 500

9 10 x 3 x 2 x 3 Pois(10) CMP 0.05 (1,1,1) (1,1) 500
10 10 x 3 x 2 x 3 Pois(10) CMP 0.05 (1,1.15,0.85) (1.05,0.95) 500
11 10 x 3 x 2 x 3 Pois(10) CMP 0.125 (1,1,1) (1,1) 500
12 10 x 3 x 2 x 3 Pois(10) CMP 0.125 (1,1.15,0.85) (1.05,0.95) 500

NB(θ, κ) (a1, a2, a3) (b1, b2)
13 6 x 3 x 2 x 3 NB(50, 1/2) CMP 0.05 (1,1,1) (1,1) 500
14 6 x 3 x 2 x 3 NB(50, 1/2) CMP 0.05 (1,1.15,0.85) (1.05,0.95) 500
15 6 x 3 x 2 x 3 NB(50, 1/2) CMP 0.125 (1,1,1) (1,1) 500
16 6 x 3 x 2 x 3 NB(50, 1/2) CMP 0.125 (1,1.15,0.85) (1.05,0.95) 500

17 10 x 3 x 2 x 3 NB(50, 1/2) CMP 0.05 (1,1,1) (1,1) 500
18 10 x 3 x 2 x 3 NB(50, 1/2) CMP 0.05 (1,1.15,0.85) (1.05,0.95) 500
19 10 x 3 x 2 x 3 NB(50, 1/2) CMP 0.125 (1,1,1) (1,1) 500
20 10 x 3 x 2 x 3 NB(50, 1/2) CMP 0.125 (1,1.15,0.85) (1.05,0.95) 500

the operators k = 1, . . . ,K and repeats l = 1, . . . , L, where we use I ∈ {6, 10}, J = 3, K = 2
and L = 3. The simulation start by drawing the samples I from latent variable distribution
Z, describing the true counts on part i. This is either a Poisson distribution, Pois(θ) with the
probability mass function (PMF)

P (Z = z) =
{

θz

z! exp{−θ}, z = 0, 1, 2, . . .
0, otherwise (5.1)

or a negative binomial distribution, NB(θ, κ) with the PMF

P (Z = z) =
{

Γ(z+1/κ)
Γ(z+1)Γ(1/κ)

(θκ)z
(1+θκ)z+1/κ , z = 0, 1, 2, . . .

0, otherwise.
(5.2)

Given these true counts zi with i = 1, . . . , I, we simulate repeated measurements from a
CMP or GP distribution. For the CMP distribution we take a fixed dispersion parameter νsim ∈
{8, 20}, which is according to the first order approximations of the moments roughly described
by the ratio of the conditional variance and conditional mean (ν ≈ (E[Y |Z] + 0.5)/Var[Y |Z] ≈
(E[Y |Z])/Var[Y |Z]). Note that especially for high true counts, the difference between E[Y |Z]+0.5
and E[Y |Z] gets small.

We now take the simulation parameter ζsim,ijk = zi · aj · bk + (νsim,ijk − 1)/2νsim,ijk, where
aj is the effect of tool j and bk the effect of operator k. In case of the GP distribution, we
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have a fixed dispersion parameter that directly follows from the ratio of the conditional variance
and conditional mean, namely ϕsim =

√
var/mean − 1. Moreover, the simulation parameter

τsim,ijk = zi · aj · bk. Having defined the parameter settings for each part i, tool j and operator k
combination, we now draw three samples for each combination from either the CMP (ζsim,ijk, νsim)
or GP (τsim,ijk, ϕsim) distribution, obtaining the observations Yijk1, Yijk2 and Yijk3.

The full simulation study is performed in the statistical software [R], version 3.4.2. To generate
random values from a CMP distribution we could use the rCMP function of the ’COMPoissonReg’
Package in [R] (Sellers et al., 2017). However, this function falls short when using too large values
for λ(= ζν) due to a too low precision that is used in the calculation of the normalization constant.
As a result of this, all probability masses become 0 and therefore the quantiles can’t be determined.
To solve this precision issue, the rCMP-Paus function is applied. This function, which is shown
in Appendix B.1, is an adapted version of the rCMP function of the ’COMPoissonReg’ Package
in [R], where the internal precision is increased using the ’Rmpfr’ package (Maechler, 2016).

For generating random samples from the GP distribution, we use the GP-Paus function, which
is described in Appendix B.2. This new function uses the probability masses of the GP distribution
obtained by the dgenpois function in the ’VGAM’ package in [R] (Yee, 2017). Since the cumulative
distribution function (CDF) does not always sum to 1 in case of under-dispersion, due to the
truncation, we normalize the densities with the cumulative distribution function of the GP. In
the GP-Paus function, a random number is drawn from the uniform distribution U [0, 1], after
which the corresponding quantile is determined using the normalized probability masses, such
that q(u) = inf{x : F (x) ≥ u} = F−1(u). In addition, we relax the constraint lower limit of
the dispersion parameter λ ≥ −1, since this is overly conservative and not allowing for more
severe dispersion when the mean count is high. To assure that the probability mass sums to 1, we
structurally normalize the probability masses with the CDF.

5.3 Analysis simulated experiments

Analysis methods
The simulation scenarios from Table 5.1 are analyzed with various methods to determine the
estimation and testing performance. An overview of all analysis methods and the corresponding
settings can be found in Table 5.2. In the analysis, we make a distinction based on the latent
variable (L.V.) distribution used to simulate the data. The analysis methods with a Poisson L.V.
distribution are only applied on the simulated datasets (scenario 1-12 with a Poisson L.V.) and the
negative binomial L.V. analysis method only to the simulated datasets from the same distribution
(scenario 13-20). Moreover, two general models are considered for all simulated datasets, namely
analysis method 15 and 16. Notice that the truncation of the latent variable used for analysis
method (1-6 and 8-13) are flexible, in a sense that the truncation term is determined by the
relative contribution criterion, as described in (3.5), and the inserted parameter values of that
iteration step. Analysis method number 1 is considered the reference likelihood (Ref.LLH ) as
it is closest to the true likelihood of the probability model. Due to its double summation, the
number of calculation steps grows quadratically, making this procedure extremely inefficient for
large counts. Due to the high computation time of the reference likelihood for the datasets from
simulation scenarios 13-20 (average of 21 to 43 hours per dataset), we only apply this analysis
method for 100 out of the 500 simulated datasets. For the methods that use a truncation for either
the normalization constant or the latent variable distribution, a relative contribution criteria of
10−5 is applied.

Implementation in software
The maximization of the (pseudo) likelihood functions is actually a constrained optimization prob-
lem. To find the (pseudo) maximum likelihood estimates, the optim function of the [R] package
’stats’ was used (R Core Team, 2017). In order to reduce the computation time of the calculation of

33
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Table 5.2: Analysis methods that are used to analyze datasets from the different simulation
scenarios in Table 5.1, using different approximation methods for the normalization constant (NC)
and latent variable (L.V.) distributions representing the count on parts.

Distribution Convergence criteria
Nr. Name method 1 Method L.V. Repeats L.V. integral (z) Approximation NC
Simulated datasets with Poisson L.V. (Scenario 1-12)
1 Ref.LLH.poisson LLH Poisson CMP (ζ, ν) Truncation Truncation
2 Exp.O1.poisson LLH Poisson CMP (ζ, ν) Truncation Expansion (order 1)
3 Exp.O2.poisson LLH Poisson CMP (ζ, ν) Truncation Expansion (order 2)
4 Exp.O3.poisson LLH Poisson CMP (ζ, ν) Truncation Expansion (order 3)
5 Exp.O4.poisson LLH Poisson CMP (ζ, ν) Truncation Expansion (order 4)
6 Pois.nu1.poisson LLH Poisson CMP (ζ, 1) Truncation Closed form
7 MOM.poisson MoM Poisson CMP (ζ, ν) NA Expansion (order 1)

Simulated datasets with negative binomial L.V. (Scenario 13-20)
8 Ref.LLH.nbinom LLH NB CMP (ζ, ν) Truncation Truncation
9 Exp.O1.nbinom LLH NB CMP (ζ, ν) Truncation Expansion (order 1)
10 Exp.O2.nbinom LLH NB CMP (ζ, ν) Truncation Expansion (order 2)
11 Exp.O3.nbinom LLH NB CMP (ζ, ν) Truncation Expansion (order 3)
12 Exp.O4.nbinom LLH NB CMP (ζ, ν) Truncation Expansion (order 4)
13 Pois.nu1.nbinom LLH NB CMP (ζ, 1) Truncation Closed form
14 MOM.nbinom MoM NB CMP (ζ, ν) NA Expansion (order 1)

Simulated datasets with Poisson or negative binomial L.V. (Scenario 1-20)
15 Gamma LLH Gamma CMP (ζ, ν) Closed form Expansion (order 1)
16 QP.Norm LLH Normal Pois(θ, δ) GHQ NA

the maximum likelihood estimates, selecting proper starting values in the optimization is key. For
the method of moments approach, no starting values are required. Recall that a Poisson GLMM
was fitted with the glmer function in [R] and the deviance was scaled with the degrees of freedom
to obtain the dispersion parameter. Here, the function’s default procedure for starting values is
used. For the analysis methods 1− 6, 8− 13 and 15, starting values should be provided. A fixed
effects model could be used, however, the glm.cmp function of the [R] package ’COMPoissonReg’
(Sellers et al., 2017) has numerical problems for large values λ = ζν as stated in the previous
paragraph. We therefore use a fixed effects generalized model with a quasi-Poisson distribution
to determine starting values. Here, the estimates for tools and operators (βj) will be directly
used. Moreover, the reciprocal of the observed dispersion of the quasi-Poisson distribution, that
describes the ratio of the variance and the mean, is used as starting value for ν0. The starting
values for the parameters of the latent variable distribution are obtained by fitting the prior distri-
bution corresponding to the analysis method on the fixed effects estimates of the individual parts.
Moreover, to approximate the integral of the likelihood of the quasi-Poisson model with normal
random effects, the Gauss-Hermite quadrature (GHQ) technique is applied, as this is considered
the most reliable method among the implemented approximation procedures.

5.4 Performance measures

In order to assess the quality of the estimated models, we define a set of performance measures.
The obtained estimates are evaluated in terms of bias and mean square error (MSE). Firstly, the
bias describes the difference between expected value and the estimated value of the parameter
and is denoted by b(θ̂) = Eθ̂[θ̂ − θ]. Secondly, the mean square error of an estimator is defined
by MSE(θ̂) = Eθ̂[(θ̂ − θ)2]. In addition, the coverage probability of the estimates is determined.
This denotes the proportion of the times the true value for the parameter of interest is contained
in the 95%-confidence interval.
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Although the main focus of the simulation is on the quality of the estimators and hypothesis
tests, the deviation in terms of likelihood value for the asymptotic expansions compared to the
reference likelihood (which is the truncation approach). This will provide insight in the required
order of the expansion, to get a good approximation of the ’true likelihood’.

Based on the method of moments, we established an hypothesis test for the measurement
system’s tool and operator effect analogue to the F-test for ANOVA, see Paragraph 3.2. The
robustness of the F-test to the CMP latent variable model is assessed by a Kolmogorov-Smirnov
test. In this goodness of fit, the empirical cumulative distribution function (ECDF) of the observed
F-statistic F0 and the theoretical cumulative distribution function (CDF) of the (non-)central F-
distribution are compared. Note that the KS-test is actually a test for continuous distributions,
whereas ties could occur in the mean squares due to the discrete nature of the data. Nevertheless,
this test will give a good approximation of the goodness of fit. Finally, the Type I error given and
the observed power based of the test.
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CHAPTER 6
Results

In this chapter we will first elaborate on the performance of the asymptotic expansion based
approximation of the normalization constant. Secondly, the results of the simulation study will be
presented. Here, we visualize the performance measures for the twenty simulation scenarios that
represent realistic experiments. After this, the performance on some large sized experiments are
presented to get a brief idea of the asymptotic behavior of all methods.

6.1 Performance asymptotic expansion of the normalization constant

In this section we present a small study on the percentage error of the asymptotic expansion of
the normalization constant defined in (2.8) with the true normalization constant S(ζ, ν) in (2.5) in
case of under-dispersion. In Table 6.1, the percentage errors are provided for settings of the CMP
parameters ζ and ν for five different orders of the asymptotic expansion. Note that the constants
for the asymptotic expansion cn were defined in (D.5) and that c0 denotes a first order asymptotic
expansion, c0 − c1 a second order and so on.

Observe in Figure 6.1 the relation between the ratio of the CMP parameters ν and ζ and the
percentage error that is obtained. Here, the actual value of ζ is basically irrelevant in comparison
to the ratio, which can be derived from the fact that the percentage errors for a certain combination
of order n and ν/ζ ratio do overlap. When the ratio ν/ζ ≤ 1 the relative difference seems more
or less negligible for a second order asymptotic expansion or higher. A small difference becomes
visible for 1 < ν/ζ ≤ 5 (in particular for the first order asymptotic expansion) and the difference
becomes large when the ratio ν/ζ > 5, in particular for the higher order asymptotic expansions.
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Figure 6.1: Percentage errors for the order n asymptotic expansion of the normalization
constant. Here, the x-axis describes the ratio of the CMP parameters ν and ζ. Note that
for each ratio ν/ζ and asymptotic expansion order, various values for ζ are used, namely
ζ = {2, 5, 10, 20, 25, 50, 100, 200)}.
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Table 6.1: The percentage error of the asymptotic expansion approximation of the CMP nor-
malization constant S(ζ, ν) from (2.5) with the true normalization constant.
Note that the true normalization constant S(ζ, ν) is determined by summing until k such that the relative
improvement of adding the (k + 1)th term is lower than 10−15. Since the purpose is to determine the
difference with the asymptotic expansion method.

ν
ζ 2 5 8 20 50 100

c0 -1.312 -3.995 -6.422 -14.196 -8.911 48.052
c0 − c1 -0.078 -0.155 -0.281 0.068 29.028 171.417

5 c0 − c2 -0.009 -0.002 -0.003 1.326 37.005 222.937
c0 − c3 -0.001 0.001 0.000 1.383 38.077 237.130
c0 − c4 0.000 0.000 -0.001 1.382 38.173 239.991

c0 -0.639 -1.999 -3.247 -7.986 -15.567 -8.835
c0 − c1 -0.018 -0.039 -0.072 -0.338 2.016 29.147

10 c0 − c2 -0.001 0.000 0.000 -0.001 3.865 37.078
c0 − c3 0.000 0.000 0.000 0.007 3.989 38.171
c0 − c4 0.000 0.000 0.000 0.007 3.994 38.281

c0 -0.316 -1.000 -1.632 -4.076 -9.827 -15.552
c0 − c1 -0.004 -0.010 -0.018 -0.089 -0.438 2.039

20 c0 − c2 0.000 0.000 0.000 -0.001 0.055 3.876
c0 − c3 0.000 0.000 0.000 0.000 0.072 4.003
c0 − c4 0.000 0.000 0.000 0.000 0.072 4.009

c0 -0.125 -0.400 -0.655 -1.650 -4.080 -7.986
c0 − c1 0.000 -0.001 -0.003 -0.014 -0.085 -0.319

50 c0 − c2 0.000 0.000 0.000 0.000 -0.001 0.001
c0 − c3 0.000 0.000 0.000 0.000 0.000 0.010
c0 − c4 0.000 0.000 0.000 0.000 0.000 0.010

c0 -0.062 -0.200 -0.328 -0.828 -2.061 -4.081
c0 − c1 0.001 0.000 -0.001 -0.004 -0.022 -0.085

100 c0 − c2 0.001 0.000 0.000 0.000 0.000 -0.001
c0 − c3 0.001 0.000 0.000 0.000 0.000 0.000
c0 − c4 0.001 0.000 0.000 0.000 0.000 0.000

6.2 Simulation study

Firstly, we present an overview of the number of completed simulations in Table 6.2 and the
corresponding average computation time for the likelihood based methods in Table 6.3. A more
extensive overview of the optimization times can be found in Appendix C.1. An exponential
increase in the computation time when increasing the average count was observed for the analysis
methods that have no closed form expression (Exp.O1 to Exp.O4, Ref.LLH and Pois.nu1 ).

Subsequently, the bias, mean squared error and coverage probabilities of the estimators are
presented. Since the scale of the parameters differs, most parameters are presented individually,
however, the estimating performance of the parameters for the tools and operators are combined.
Note that the conclusions that can be directly drawn from the figures are contained in the caption
of that particular figure. More specific, the x-axis will contain the analysis method and the y-axis
the performance measure.
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Table 6.2: Number of completed observations out of the 500 performed simulations for all meth-
ods (exception: only 100 simulations for the Ref.LLH analysis of datasets 13-20).
Apart from the Gamma and QP.norm method, the suffix of the latent variable is suppressed. For dataset
1-12 this is Poisson and for 13-20 negative binomial.

Asymptotic expansion
Sim.sc O1 O2 O3 O4 Gamma Pois.nu1 QP.norm Ref.LLH MOM
Simulated datasets with Poisson prior
1 500 500 500 500 500 500 500 500 500
2 500 500 500 500 500 500 500 500 500
3 500 500 500 500 500 500 500 500 500
4 500 500 500 500 500 500 500 500 500
5 497 498 500 500 500 500 500 500 500
6 500 500 500 500 500 500 500 500 500
7 500 500 500 500 500 500 500 500 500
8 500 500 500 500 500 500 500 500 500
9 499 500 500 499 500 500 500 500 500
10 500 500 500 500 500 500 500 500 500
11 500 500 500 500 500 500 500 500 500
12 500 500 500 500 500 500 500 500 500

Simulated datasets with negative binomial prior
13 491 419 418 416 500 499 500 96 500
14 480 405 407 410 499 500 500 98 500
15 492 437 440 441 500 500 500 100 500
16 472 424 419 419 500 498 500 99 500
17 486 320 329 324 500 497 500 100 500
18 450 303 316 321 499 497 500 98 500
19 488 351 340 356 500 498 500 100 500
20 463 342 351 351 499 500 500 96 500

Table 6.3: Average computation times the simulated datasets 1-12 with a mean count of 10 and
the simulated datasets 13-20 with a mean count of 50 for the likelihood based analysis methods.

Exp.O1 Exp.O2 Exp.O3 Exp.O4 Gamma Pois.nu1 QP.norm Ref.LLH
Scenario 1-12 5.21 5.88 6.27 6.61 0.30 1.20 0.02 27.66
Scenario 13-20 26.01 25.54 28.73 31.18 0.25 13.98 0.02 1736.64

Ratio with the reference likelihood

In Figure 6.2, the ratios of the likelihood values of all likelihood based methods with the reference
likelihood (Ref.LLH) are visualized. The difference of the Ref.LLH with the analysis methods
Pois.nu1 and QP.norm is relatively large. For a better comparison between the expansion meth-
ods with the reference likelihood, see Figure C.2 in Appendix C.1. By comparing the simulation
scenarios with a Poisson latent variable with the negative binomial prior, it can be seen that if
the average count is higher, the relative differences compared to the reference likelihood are lower.
Moreover, for the asymptotic expansion of a second order (Exp.O2 ), the improvement of increas-
ing the order is negligible as this method already closely describes the reference likelihood. This
can be explained by means of the applied ratios of ν/ζ from the previous section, since a count on
a part near zero will imply a high ratio of ν/ζ. Since in our case we have νij/ζij(Zi), a Pois(10)
will more likely have low counts, compared to the NBinom(50, 1/2). In addition, the first order
expansion (Exp.O1 ) shows the same pattern as the one with the gamma prior (Gamma), although
more variation is observed for the Gamma.
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Figure 6.2: Ratio of the (pseudo)-log-likelihoods of all analysis methods with the reference
likelihood setting (dotted red line) for simulation scenarios 1 to 20. Number of simulations = 100.
1) Var/mean 0.05 vs. 0.125: More spread in the LLH value is observed when the under-dispersion
is more severe.
2) Experiment size (6× 3× 2× 3 vs. 10× 3× 2× 3): The larger the experiment, the smaller the
variation becomes relative to the Ref.LLH

Performance measures - Main effects (tools and operators)
The bias and mean squared error of the point estimates for the tool and operator effects are
presented in Figure 6.3 and Figure 6.4, respectively. Moreover, the coverage probabilities of the
tool and operator effects for a 95%-confidence interval are presented in Figure 6.5.
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Figure 6.3: Sampling bias of the estimates for the tool and operator effects of simulation scenario
1 to 20. All methods except the method of moments (MOM) present a bias of the covariates that
are in the log-link function. For the MOM the bias of aj and bk is presented (see (3.23)).
Number of simulations = 500 (only 100 for scenario 13-20 with Ref.LLH).
1) In general, a higher bias was obtained for the models with main effects. In particular, the expansion
methods (Exp.O1 to Exp.O4) and the reference likelihood have a relatively large bias compared to the
other methods, although small in absolute terms (max. 0.015). Where the Gamma, MOM, Pois.nu1 seem
unbiased in case of no main effects, the QP.norm seems always unbiased.
2) Considering the scale of the y-axis, a lower bias was found for the scenarios simulated from a negative
binomial distribution with a higher average count compared to the scenarios from a Poisson distribution
with a lower count.
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Figure 6.4: Mean squared error of the estimates for the tool and operator effects of simulation
scenario 1 to 20. Number of simulations = 500 (only 100 for scenario 13-20 with Ref.LLH).
1) L.V. distribution: the general level of the MSE is lower for the scenarios 13-20 with a negative
binomial prior compared to a Poisson prior in scenario 1-12. This implies that if the count is
higher, the effects can estimated in a better way.
2) Effect dispersion and average count (Sc. 13, 14, 17, 18 vs. 15, 16, 19, 20): For high average
count the point estimates are relatively more precise (smaller variance) for severe under-dispersion
(var/mean=0.05) than less severe under-dispersion (var/mean=0.125).
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Figure 6.5: Coverage probabilities for a 95 % confidence interval of the estimates for the tool
and operator effects of simulation scenario 1 to 20.
Number of simulations = 500 (only 100 for scenario 13-20 with Ref.LLH).
1) The Gamma and QP.norm basically have coverage probabilities of around 95% for all scenarios. The
Pois.nu1 is overly conservative for scenarios 1-12. 2) The expansion methods Exp.O1 to Exp.O4 and
the reference likelihood Ref.LLH are anti-conservative for all simulation scenarios. However, the coverage
probabilities are substantially higher for the scenarios with a higher count and negative binomial prior
compared to the Poisson scenarios with a lower count
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Performance measures - Dispersion and latent variable parameters
For the dispersion and latent variable parameters, the coverage probabilities are presented in
Figure 6.6 and Figure 6.8, respectively. Note that the QP.norm approach is not included for the
dispersion, since standard errors were derived for the dispersion parameter of the quasi-Poisson.
The bias and variances of the point estimate for the dispersion are shown in Appendix C.1. Here,
a significant bias for the Gamma approach was found, which explains the low coverage probability
for the scenarios with a Poisson distribution, combined with severe under-dispersion. Moreover,
the sampling bias of the mean of the latent variable is visualized in Figure 6.7. Finally note
that the coverage probability of the mean of the latent variable is not provided for the Gamma
approach, however, given the low observed bias, it is expected that this probability is near 0.95.
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Figure 6.6: Coverage probabilities for a 95 % confidence interval of the dispersion parameter
γ0 = log(ν0) of simulation scenario 1 to 20. Number of simulations = 500 (only 100 for scenario
13-20 with Ref.LLH).
Note that the MOM obtained a coverage probability of zero for all methods.
1) A low coverage probability for the Gamma is observed for low counts with severe under-dispersion. Also
the first order approximation Exp.O1 has a lower coverage probability.
2) The coverage probability seems to be closer to 0.95 in case of a higher count.
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Figure 6.7: Sampling bias for the expected value of the latent variable.
Number of simulations = 500 (only 100 for scenario 13-20 with Ref.LLH).
1) Whereas for the scenarios with a Poisson distribution seem approximately equal for all methods, the
QP.norm method obtains a large bias for negative binomial distribution, which is more skewed as a result
of the over-dispersion. Here the Gamma is more or less unbiased.
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Figure 6.8: Coverage probabilities for a 95 % confidence interval of the mean parameter of the
latent variable, for simulation scenario 1 to 20.
Number of simulations = 500 (only 100 for scenario 13-20 with Ref.LLH).
1) A low coverage probability was observed for the QP.norm approach, whereas the other methods per-
formed well.
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Asymptotic behavior of tool and operator estimates

In this paragraph, the results of some smaller simulations are presented to study the asymptotic
behavior when increasing the number of parts and/or repeats. The focus is here on the estimates
for the tool and operator effects, and not on the dispersion and latent variable parameter. In
Figure 6.9 and Figure 6.10, all methods are analyzed for the situation where only the number of
parts is increased. Given the fact that for almost all previous simulations the bias for Exp.O2
was similar to higher order asymptotic expansions Exp.O3, Exp.O4 and the reference likelihood
Ref.LLH, we will only use Exp.O2 in the comparison with the Gamma, QP.norm, MOM and
Pois.nu1 approaches in Figure 6.11 and 6.12, respectively.

For the latter two analyses, where both the number of parts and repeats are increased, a differ-
ence was found between using a relative contribution criterion of ε1 = 10−5 and ε1 = 10−20. This
difference can be explained by the term R(a) in kt := arg mina>Ȳ··

(
(R(a) −R(a−1))/R(a−1) < ε1

)
,

as defined in (3.4) for the Ref.LLH and in (3.16) for the asymptotic expansions Exp.O1 to Exp.O4
and Pois.nu1. Whereas the term R(a) scales linearly for an increasing number of parts due to
the summation, it scales non-linear for increasing the repeats as a result of the product of all
repeats. Therefore, in case of an increasing number of repeats, it is important to scale the relative
contribution criterion.
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Figure 6.9: Asymptotic bias for datasets simulated from a Pois(10) distribution with 5000 parts,
3 tools, 2 operators and 3 repeats. Note that vm denotes variance/mean.
1) Whereas a small bias is observed for the Gamma and MOM approach in the presence of main effects,
the bias is negligible when there are no main effects.
2) Observe an asymptotic bias for the expansion methods (Exp.O1-Exp.O4) and the reference likelihood
(Ref.LLH).
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Figure 6.10: Asymptotic bias for datasets simulated from a NBinom(50, 1/2) distribution with
1000 parts, 3 tools, 2 operators and 3 repeats. Note that vm denotes variance/mean.
1) For various settings, the second order asymptotic expansion (Exp.O2) and higher (Exp.O3 and Exp.O4)
did not converge.
The observed bias seemed small for all methods and although the Gamma and QP.norm seem slightly better
compared to the other methods, no clear superior method could be defined.
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Figure 6.11: Asymptotic bias for datasets simulated from a Pois(10) distribution with 500
parts, 3 tools, 2 operators and 50 repeats with a relative contribution criteria ε1 = 10−20 for the
summation of the latent variable. In addition for the asymptotic expansion, also ε1 = 10−5 and a
fixed truncation of the summation of the latent variable at z = 100 was simulated. Note that vm
denotes variance/mean.
1) For Exp.O2, the relative contribution criteria resulted into a truncation of the latent variable between
z=21 and z=23. This is far below the fixed truncation threshold of 100. Nevertheless, no difference in bias
was observed between the asymptotic expansion (Exp.O2) for the different truncation approaches.
2) A large asymptotic bias (between 0.025 and 0.04) was observed for the Exp.O2 method.
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Figure 6.12: Asymptotic bias for datasets simulated from a NBinom(50, 1/2) distribution with
500 parts, 3 tools, 2 operators and 50 repeats with a relative contribution criteria ε1 = 10−20.
Note that vm denotes variance/mean.
1) For the Exp.O2 approach, also a relative contribution criteria of ε1 = 10−5 and a fixed truncation of the
sum of the latent variable at z = 500 are applied. There is no visible difference between using a relative
contribution criteria of 10−20 and using a fixed truncation. Moreover, in this setting a clear difference is
visible between taking ε1 = 10−5 and ε1 = 10−20.
2) The two scenarios with a variance/mean of 0.05 did not converge for the ε1 = 10−5.
3) A small positive bias remains present in the for the asymptotic expansion methods without a closed
form.
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Method of moments - F-test
In this paragraph, the performance of the F-test for assessing the tool and operator effect in case
of a CMP latent variable model is presented. Since the method of moments is a computationally
fast approach, we extended the number of simulations to 10,000 datasets for each simulation
scenario for the purpose of this analysis. Due to the difference in degrees of freedom, the different
experiment sizes and the two (F-)statisticsMST /MSE andMSO/MSE are individually evaluated.

Firstly, the empirical cumulative distribution functions (ECDF) of the F-statistics of the (odd-
numbered) simulation scenarios without a tool and operator effect (aj = bk = 1,∀j, k) are shown in
Figure 6.13. These are compared with the corresponding theoretical F-distribution. In Table 6.4,
the Type I errors for a test with level ε = 0.05 and the p-values of the Kolmogorov-Smirnov (KS)
goodness of fit test are shown. For the F-test on the operator mean square and error mean square
ratio, the p-values of the KS test seem to contradict with the impression of a nearly perfect fit in
Figure 6.13. This can be explained by high proportion of MSO = 0, due to the low number of
tools in combination with the response being a count.

Secondly, the EDCFs of the F-statistics of the evenly numbered simulation scenarios, that
incorporate the presence of both a tool and operator effect, are presented in Figure 6.14. Here,
the observed Type II error β for a level α in the simulated scenarios is the area under the ECDF
curves left of the 95th quantile of the theoretical non-central F-distribution (red dotted vertical
line). The observed power (1−β) of the hypothesis test that all tool (or operator) effects are zero
is shown in Table 6.5. Moreover, the KS goodness of fit test provided p-values lower than 2 ·10−16

for all simulation scenarios, indicating that under the alternative hypothesis, the observed mean
square ratios do not follow a non-central F-distribution with the corresponding degrees of freedom
and noncentrality parameter.

Table 6.4: The p-value of the Kolmogorov-Smirnov (KS) goodness of fit test. Observed Type I
error when performing an F-test with a level of α = 0.05. Number of simulations = 10,000.

Type I error KS Test Proportion
Sim.Sc MST /MSE MSO/MSE MST /MSE MSO/MSE MST = 0 MSO = 0
1 0.0541 0.0508 0.478 <0.001 0.0042 0.0561
3 0.0493 0.0551 0.411 <0.001 0.0025 0.0334
5 0.0495 0.048 0.080 <0.001 0.0026 0.0435
7 0.0466 0.0515 0.723 <0.001 0.0007 0.0268
9 0.0527 0.0493 0.048 <0.001 0.0034 0.0395
11 0.0505 0.0486 0.777 <0.001 0.0014 0.0276
13 0.0569 0.0567 0.346 <0.001 0.0015 0.027
15 0.0557 0.055 0.300 0.006 0.0004 0.0154
17 0.0494 0.0467 0.464 0.0008 0.0005 0.0198
19 0.0485 0.0494 0.593 0.112 0.0003 0.012
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Table 6.5: Power of the F-test for simulation scenarios with both tool and operator effect with
level α = 0.05. Number of simulations = 10,000.

Observed power
Sim.Sc MST /MSE MSO/MSE
2 1 0.9524
4 1 0.6078
6 1 0.9958
8 1 0.835
10 1 0.9941
12 1 0.8167
14 1 1
16 1 0.9929
18 1 1
20 1 0.9998
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Figure 6.13: ECDF of F-statistic for simulation scenarios without tool and operator effects
compared with the true cumulative distribution function of the F-distribution.
Number of simulations = 10,000.
Note that the simulations scenarios that have the same degrees of freedom, and therefore the same central
F-distribution, are combined in a single plot. The four plots on the left describe the MS ratio MST /MSE

and the four on the right the MS ratio MSO/MSE.
1) Observe that under H0, the MS ratio MST /MSE and MSO/MST of the CMP latent variable model
follows an F-distribution.
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Figure 6.14: ECDF of F-statistic for simulation scenarios with both tool and operator effects
compared with the true cumulative distribution function of the F-distribution
Number of simulations = 10,000.
Note that the dotted red line represents the critical value of the F-statistic is rejected.
1) Observe that under H1 and a Poisson distribution, the MS ratio MST /MSE seems to be well described
by the theoretical non-central F-distribution (in red). For the ratio MSO/MSE this does not hold. 2)
Under H1 with a negative binomial distribution, both mean square ratios deviate significantly from the
theoretical non-central F-distribution (in red).



CHAPTER 7
Conclusions & Discussion

In this research we developed statistical techniques for measurement system analysis for under-
dispersed count data. In practice, this situation appears in a repeated measurement setting where
the measured count by some measurement system is determined by some unobserved true count
of a part or process. Here, the unobserved true count is considered a random variable.

Accordingly, we focused on the parameter estimation of the Conway-Maxwell-Poisson (CMP)
latent variable model. As a consequence of the presence of the latent variable in the normaliza-
tion constant of the CMP, that itself has no closed form expression, no closed form was obtained
for the likelihood. This results into a non-trivial estimation problem, that cannot be evaluated
analytically. In order to obtain the maximum likelihood estimates of the CMP latent variable
model, various estimation methods are presented. Two types of techniques can be distinguished,
namely the likelihood based methods and an approach based on the method of moments. Among
the pseudo-likelihood methods, we provided various algorithmic solutions, involving truncations
of both the latent variable and normalization constant based on some relative contribution cri-
teria and order n asymptotic expansions for the normalization constant. Here, the method with
a double truncation is considered the reference likelihood (Ref.LLH ), since this methods is the
closest approximation of the true likelihood of the CMP latent variable model. Although, by
definition of a count it would be straightforward to have a discrete latent variable, also a Gamma
prior distribution is applied in combination with a first order asymptotic expansion (denoted by
Gamma). A closed form expression of the likelihood of the CMP latent variable model was ob-
tained, making this method more computationally attractive compared to approaches involving
a truncation. Closed form expressions of the likelihood were not found for discrete distributions.
To examine whether this additional effort and complexity of analyzing the CMP latent variable
model is necessary, we also considered a quasi-Poisson generalized linear mixed model (GLMM),
involving normally distributed random effects.

In Section 6.1, we started with an assessment of the performance of the order n asymptotic ex-
pansion for the normalization constant, where n = 1, . . . , 5. Here, it is shown that the percentage
error of this asymptotic expansion of order n, compared with the true normalization constant is
almost completely determined by the ratio of the CMP parameters ν/ζ, which are the dispersion
and location parameter, respectively. Whereas in case of ν/ζ < 5, the relative error is small for
second to fifth order expansion, the percentage error grows exponentially when this ratio increases,
and grows even larger when increasing the order as well. For large ratios, a first order expansion
would be more suitable.

Through an extensive simulation study, consisting of twenty simulation scenarios with varying
settings that are based on a case study about counting particles on surfaces, the estimating per-
formance of all considered estimation methods is demonstrated. Next to the reference likelihood

53



CHAPTER 7. CONCLUSIONS & DISCUSSION

(Ref.LLH ), we applied the first to fourth order asymptotic expansion or the normalization con-
stant (Exp.O1 to Exp.O4 ) and the Gamma prior distribution (Gamma). Methods that are also
considered, are the quasi-Poisson GLMM with normal random effects (QP.norm) and a Poisson
latent variable model that is obtained by fixing the dispersion of the CMP model at νij = 1.

Firstly, it was shown that for data that is less severe under-dispersed or has a higher average
count (and therefore a lower ratio ν/ζ), the relative difference of the reference likelihood com-
pared to the asymptotic expansion methods is lower. In particular, the analysis methods using
second, third or fourth order asymptotic expansions, appeared to be good approximations of the
more computational intensive reference likelihood. Surprisingly, these methods were inferior to the
methods Gamma, MOM, QP.norm and even the Pois.nu1. With regard to the number of finished
analyses of the simulated datasets, the asymptotic expansions of order two to four perform poorly
(e.g. for simulation scenario 18, only 60.6% was completed for a second order asymptotic expan-
sion). This dissatisfactory behavior can be addressed as a convergence issue, which was observed
in literature before when fitting a CMP GLM model with both the full first moments as well as
the first order approximations (Jowaheer & Khan, 2009).

This convergence problem could be assigned to the selected relative contribution criterion,
that is used to determine where to truncate the summation of the latent variable value z, however,
this would imply a bad performance of the Pois.nu1 method as well. We investigated the effect
of truncating the summation of the latent variable in the log-likelihood at an iteration-specific
term kt, where kt is based on some relative contribution criterion ε1. In case a too stringent
relative contribution criterion is applied, it is expected that the same value of the truncation
term is selected in consequent iterations of the likelihood optimization procedure. On the other
hand, when using a too loose criterion, it is expected that the path of subsequently selected values
for the truncation term is subject to more variation. From Figure C.3, it was observed that for
higher counts, this path of truncation terms for successive iterations is more volatile than for the
scenarios from a Poisson distribution with a lower count. In Paragraph 6.2, this effect was ascribed
to the measure (R(a) − R(a − 1))/R(a), which is used when assessing the relative contribution
criterion. This measure scales linearly for the number of parts, but non-linear with the number
of repeats. We therefore recommend a more sophisticated alignment of this relative contribution
criteria based on the size of the experiment, the number of digits of the likelihood and required
precision for the estimates.

In existence of convergence problems and local optima for the asymptotic expansion methods
and the reference likelihood, as shown in Figure C.4, one could employ multiple starting values to
increase the probability of ending up in the global instead of local optimum. For example, by using
the function multistart of the [R] Package ’optimr’ (Nash, n.d.). Moreover, to avoid selection of
boundary parameters, for example a rate of zero for a Poisson, a logarithmic barrier penalty could
be implemented.

Regarding the performance measures, we considered the mean squared error, the bias and the cov-
erage probabilities for a 95% confidence interval. For the asymptotic expansion methods without a
closed form and the reference likelihood, a coverage probability of around 0.30 was observed for the
tool and operator estimates in case of the scenarios with a Poisson(10) prior and var/mean ratio
of 0.05. In contrast, a coverage probability of around 0.95 is observed for the Gamma, QP.norm
method, for all simulation scenarios. For low counts the Pois.nu1 was a bit conservative, where
for higher counts it was between 0.9 and 1.

A possible explanation for the low coverage probabilities could be a somewhat poor derivation
of the standard errors for the asymptotic expansion methods without closed form and the reference
likelihood. Note that the standard errors of the maximum likelihood estimates are based on the
observed Fisher Information, which is obtained by the Hessian of negative log-likelihood. This
derivation with the Hessian is more volatile than the theoretical Fisher Information derived from
a probability model. Nevertheless, the standard errors are unlikely to be the root cause of the low
coverage probabilities, since the Gamma and Pois.nu1 both use the same theory, but both have
high coverage probabilities. For the coverage probabilities of the moment estimators, it should be
noted that the standard errors were defined in a univariate setting by means of a Taylor expansion
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and therefore did not include any covariances between the moments.
With respect to estimation of the dispersion parameter, a low coverage probability for the

Gamma method was a result of a significant bias. This occurred in the setting with low counts
and severe under-dispersion. In absence of the standard errors for dispersion parameter of the
quasi-Poisson, no statements have been made about the coverage probability of this method. For
the mean parameter of the latent variable and the simulation scenario with a negative binomial
latent variable, a large bias was observed for the QP.norm. The other methods, and the Gamma
in particular, perform really well under a more skewed latent variable.

Furthermore, an hypothesis test on the effect of tools and operators is constructed based on the
ratio of the tool (or operator) mean squares with the mean square error, and evaluated according to
an F-distribution. Under the null-hypothesis, it was shown that the MST /MSE and MSO/MSE
followed an F-distribution with the degrees of freedom corresponding to the mean squares. Under
the alternative hypothesis, the ratio MST /MSE was only well described by a non-central F-
distribution for the main effects scenarios with a Poisson distribution. In contrast, a poor fit was
found in scenarios with a negative binomial latent variable, but also for the ratio MSO/MSE for
all datasets. Since the assumption of an F-test is normality of the data, the Poisson distribution
is expected to have a better fit than the negative binomial distribution, since for increasing rate,
the Poisson can be better approximated with a normal distribution.

Summarizing, the quasi-Poisson generalized linear mixed model and the CMP with a Gamma
distributed latent variable are considered the superior methods for estimating the parameters of
the CMP latent variable model for severely under-dispersed count data.

Further research

This thesis mainly focused on the Conway-Maxwell-Poisson as conditional distribution to model
repeated measurements. Moreover, the Generalized Poisson distribution is used for the simulation
of datasets. A distribution that was not considered is the hyper Poisson (hP) distribution (Bardwell
& Crow, 1964). In contrast to the CMP distribution, the expectation of the hP distribution
can be directly expressed in terms of its parameters. Note that the hP distribution involves
the Kummer confluent hypergeometric function (KCHF) (Georgiev & Georgieva-Grosse, 2005).
However, creating a model in which the KCHF contains the latent variable Zi will result in an
equally complex estimation problem as for the CMP, where the normalization constant involves the
latent variable. Additional research should be performed on the effectiveness of the hP distribution.
An analogue methodology could be applied, where an asymptotic expansion of the KCHF is used
(Georgiev & Georgieva-Grosse, 2005) to derive a pseudo-likelihood.

The current mathematical model, the effect of tools and operators are considered to be fixed.
Further research should be performed to extend this developed framework to the random effects
settings, which often appears in practice. Moreover, to keep the size of the simulation study
manageable, we considered two settings for the effect of the dispersion, distribution of the latent
variable, effect size and experimental size. More in depth simulation studies could be performed
focusing on the effect of number of repeats, more severe under-dispersion levels, as well as inclu-
sion of interaction effects. In addition, whereas we used a relative contribution criterion for the
truncation of both the normalization constant and the summation of the latent variable in the
likelihood, also a fixed truncation could be applied. For this situation, it should be investigated
at which term this truncation should occur in order to obtain stable estimates.

Although we simulated some large experiments next to the main simulation study, to get a
sense of the asymptotic behavior, we mainly focused on the finite setting. Therefore, a thorough
theoretical analysis of the asymptotic behavior of the likelihoods and moment estimators is needed,
when increasing the number of parts and repeats per unique measurement setting. Here, it remains
to be verified whether the moment estimators of the CMP latent variable model using a first order
approximation of the normalization constant are asymptotically normal.
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Recommendations for ASML
With regard to the measurement system analysis on microscopes that are used for counting the
defects on a surface, some key recommendations will be presented. First of all, in case of some
underlying distribution of the true counts on a part or in process, and a repeated measurement set-
ting that severely is under-dispersed, the use of a quasi-Poisson GLMM with normally distributed
random effects or a Conway-Maxwell-Poisson repeated measurement distribution with a Gamma
latent variable is advised. Although, in case the distribution of the latent variable is somewhat
skewed, the CMP model with a Gamma prior is more appropriate. A practical advantage of
the quasi-Poisson GLMM with normal random effects is that this method easily follows from the
Poisson GLMM, which is a standard implementation in the statistical software [R], as described
in Paragraph 3.1.

In addition, this study showed that inference based on a lower counts will result into a larger
bias and lower coverage probability. Therefore, in the setting of measuring defects of a certain
diameter size, it is recommended to use a smaller lower limit of the diameter size, to increase the
number of defects. In this case, the effects of tool and operators can be better discriminated. If
this is not possible the experiment size could be increased.

Moreover, the robustness of the F-test for a CMP latent variable model was assessed. In par-
ticular, under the null hypothesis that there are no tool (or operator effects) it seems appropriate
to evaluate the ratio of mean square tool and the mean square error with a central F-distribution.
The power of this test is defined by the effect size and the sample size. In this analysis it was found
that for a low number of degrees of freedom, it was harder to detect variation in the mean squares.
Therefore, reducing the number of repeats to two, as a measure to scale down the experiment size,
is discouraged in case of count data.
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Notation index

Pois(θ) the Poisson distribution with rate θ
Pois(θ, δ) the quasi-Poisson distribution with rate θ and dispersion parameter δ
CMP(ζ, ν) the Poisson distribution with rate θ
GP(τ, ϕ) the generalized Poisson distribution with parameters τ and ϕ
NBinom(θ,κ) the Negative binomial distribution with rate θ and size κ
N (µ, σ2) the Normal distribution with mean µ and variance σ2

Gamma(κ, λ) the Gamma distribution with shape κ and scale λ
Unif(a, b) the continuous uniform distribution on the interval [a, b]
MSE the mean square error
MST the tool mean squares
MSO the operator mean squares
MSP the part mean squares

a.u. arbitrary unit
p.m.f. probability mass function
p.d.f. probability density function
c.d.f. cumulative density function
i.i.d. independently and identically distributed
L.V. latent variable
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APPENDIX A
Proofs of theorems & lemmas

A.1 Maximum Likelihood Estimation

Proof of Lemma 3.1.1. Assume an order n expansion of the normalization constant (3.8) and take
any distribution for the latent variable Zi, then the corresponding pseudo-log-likelihood (3.1)
changes to

l∗ =
I∑
i=1

log

∫ ∞
z=0

J∏
j=1

1
S̃(n)(ζij(z), νij)

(
ζij(z)yij
yij !

)νij
dFZi(z)dz


= −A+B +

I∑
i=1

log

∫ ∞
z=0

zCi
J∏
j=1

1
S̃(n)(ζij(z), νij)

dFZi(z)dz


= −A+B +

I∑
i=1

log

∫ ∞
z=0

zCi
J∏
j=1

(
(2π)(νij−1)/2√νij · e−νijζij(z)

ζij(z)(1−vij)/2 ·
∑n
k=0 ck(νijζij(z))−k

)
dFZi(z)dz


= −A+B +D +

I∑
i=1

log

∫ ∞
z=0

zCi
J∏
j=1

(
e−νijζij(z) · ζij(z)(vij−1)/2∑n

k=0 ck(νijζij(z))−k

)
dFZi(z)dz


= −A+B +D + E +

I∑
i=1

log

∫ ∞
z=0

zCi
J∏
j=1

 e−νijze
xT
ij
β

z(vij−1)/2∑n
k=0 ck(νijζij(z))−k

 dFZi(z)dz


= −A+B +D + E +

∫ I

i=1
log

 ∞∑
z=0

zCi+Fie−zGi ·
J∏
j=1

(
1∑n

k=0 ck(νijζij(z))−k

)
dFZi(z)dz


(A.1)

where

A =
I∑
i=1

J∑
j=1

νij log(yij !), B =
I∑
i=1

J∑
j=1

xTijβyijνij , Ci =
J∑
j=1

yijνij ,

D =
I∑
i=1

J∑
j=1

log((2π)(νij−1)/2√νij), E =
I∑
i=1

J∑
j=1

xTijβ
(νij − 1)

2 , Fi =
J∑
j=1

νij − 1
2 ,

Gi =
J∑
j=1

νije
xTijβ.

(A.2)
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This form can be rewritten by merging the terms A,B,D,E and Ci, Fi such that

l∗ = A† +
I∑
i=1

log

∫ ∞
z=0

zB
†
i e−zC

†
i ·

J∏
j=1

(
1∑n

k=0 ck(νijζij(z))−k

)
dFZi(z)dz

 (A.3)

where

A† =
I∑
i=1

J∑
j=1
−νij log(yij !) + xTijβyijνij + νij − 1

2 log(2π) + 1
2 log(νij) + xTijβ

(νij − 1)
2

B†i =
J∑
j=1

yijνij + νij − 1
2 and C†i =

J∑
j=1

νije
xTijβ.

(A.4)

Convergence proofs
Proof of Proposition 3.1.1. Claim: The normalization constant

∑∞
s=0

(
zs

s!
)n, which is an infinite

series, is a convergent when 1 ≤ ν <∞ and 0 ≤ z <∞.

Let 1 ≤ ν < ∞ and z < ∞. Then by Stirling’s approximation we have the bound s! ≥√
2πsss exp{−s}. Therefore, we can derive the upper bound for normalization constant

∞∑
s=0

(
zs

s!

)ν
≤ 1 +

∞∑
s=1

(2π)− ν2
((

ez
s

)s
√
s

)ν
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∞∑
s=1

(2π)− ν2
((ez

s

)s)ν
≤ 1 +

∞∑
s=1

(
(ez)ν

s

)s
(A.5)

Let k = arg mina{(ez)ν < a)}, we have that

1 +
∞∑
s=1

(
(ez)ν

s

)s
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k∑
s=1

((
(ez)ν

s

)s)
+

∞∑
s=k+1

((
(ez)ν

s

)s)
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k∑
s=1

(
(ez)ν

s

)s
+

∞∑
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(ez)ν

k + 1

)s

≤ 1 +
k∑
s=1

(
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s

)s
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1− k+1
(ez)ν

(A.6)

Since 1 ≤ ν <∞ and 0 ≤ z <∞, we have that k <∞, thus

∞∑
s=0

(
zs

s!

)ν
≤

k∑
s=0

(
(ez)ν

s

)s
+ 1

1− k+1
ez

≤ ∞. (A.7)

Since
∑∞
s=0

(
zs

s!
)ν is bounded and monotonic increasing, it is a convergent series.
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Proof of Proposition 3.1.2. Let us first rewrite the likelihood (3.9) as

l∗ = A+
I∑
i=1

log
(∫ ∞

z=0
Q(z)dz

)
(A.8)

with

Q(z) = zBie−zCi
1∏J

j=1 (
∑n
k=0 ck(νijζij(z))−k)

dFZi(z). (A.9)

Moreover, the terms ck are determined by (2.9) and A,Bi, Ci are defined by

A =
I∑
i=1

J∑
j=1

−νij log(yij !) + xTijβyijνij + νij − 1
2 log(2π) + 1

2 log(νij) + xTijβ
(νij − 1)

2

Bi =
J∑
j=1

yijνij + νij − 1
2 and Ci =

J∑
j=1

νije
xTijβ.

(A.10)

Note that in case of (finite) under-dispersion (1 ≤ ν <∞) that A, Bi and Ci are non-negative
and finite for all i. Simultaneously, we have that dFZi(z) is a probability density function and
therefore bounded between 0 and 1. For a first order expansion of the normalization constant
(n = 0), we now have that

zBie−zCidFZi(z) � 0, if z →∞. (A.11)

since the rate of convergence of the exponent e−zCi to 0 is larger than the rate of divergence of
zBi . Now, except for the situation that dataset only contains zeros or that dFZi(z) is a point mass
in zero, we have that the log-likelihood l∗ is finite and exists.

For the situation that n > 0 we obtain as well that

Q(z) � 0, if z →∞ (A.12)

since again the rate of convergence of the exponent e−zCi to 0 is larger than the rate of divergence of
zBi and the fact that

∑n
k=0 ck(νijζij(z))−k is a finite constant for fixed k and for all j = 1, . . . , J .

The latter follows from the fact that the constants ck are finite for 1 ≤ ν < ∞, and therefore
1/(νijζij(z))k → 0 if ζij(z) → ∞. If z → ∞, we have that ζij(z) = z exp{xTijβ} → ∞, since β is
not allowed to be −∞.

Moreover, it can be concluded that Q(0) = 0 and 0 < Q(a) < ∞. For every probability
distribution with a (sub-)domain of z ≥ 0, (except dFZi(z = 0) = 1), we have that l∗ is bounded
and therefore absolute convergent.

Derivation closed forms pseudo-likelihoods

Proof of Proposition 3.1.3 (Gamma prior). Given a first order approximation of the normaliza-
tion constant and a Gamma distributed prior Zi, with Gamma(κ, λ), we have the pseudo-log-
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likelihood (3.9) from Lemma 3.1.1 obtains the form

l∗ = A+
I∑
i=1

log

(∫ ∞
0

zBi exp{−zCi}
(
λ−κzκ−1 exp{− z

λ
}
)

Γ(κ) dz

)
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log
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λ
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} 1
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dz

)
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log
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λ
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)κ
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)}( λ
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dz
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log

(
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λ
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dz

)

= A+
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log
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Γ(κ+Bi)λBi (Ciλ+ 1)−(κ+Bi)

Γ(κ)

)

= A+
I∑
i=1

Bi log(λ)− (Bi + κ) log(1 + Ciλ) + log(Γ(Bi + κ))− log(Γ(κ)),

where A,Bi, Ci are defined by

A =
I∑
i=1

J∑
j=1

−νij log(yij !) + xTijβyijνij + νij − 1
2 log(2π) + 1

2 log(νij) + xTijβ
(νij − 1)

2

Bi =
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yijνij + νij − 1
2 and Ci =

J∑
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νije
xTijβ.

(A.13)

Closed form expressions of the likelihood with different prior distributions
Other continuous prior distribution that resulted into closed form expressions, but were not in-
cluded in the simulation study are the Inverse Gamma and the Normal distribution, see Pro-
position A.1.1 and A.1.2. The results were obtained using Wolfram Mathematica, however, a
validating proof of this result remains to be provided.

Remark A.1.1 (Inverse Gamma prior). Let us assume the CMP latent variable model (2.12), with
a first order approximation of the normalization constant and an inverse Gamma latent variable,
Zi ∼ InvGamma(κ, λ). Then using Wolfram Mathematica, the pseudo-log-likelihood (3.9) from
Lemma 3.1.1 can be simplified to

l∗ =A+
I∑
i=1

log

∫ ∞
0

zBi exp{−zCi}

(
β
z

)κ
exp{−βz }

zΓ(κ) dz


l∗ =A+

I∑
i=1

log

∫ ∞
0

zBi exp{−zCi −
β

z
}

(
β
z

)κ
zΓ(κ) dz


l∗ =A+

I∑
i=1

log

BesselK
(
−Bi + κ, 2

√
Ciβ

)
2B

1
2 (Bi−κ)β

1
2 (Bi+κ)Γ(κ)

 ,

with A,Bi and Ci defined in (A.2) and BesselK the modified Bessel function of the second kind.
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Remark A.1.2 (Form for normally distributed prior). Let us assume the CMP latent variable
model (2.12), with a first order approximation of the normalization constant and a normally dis-
tributed latent variable, N (0, σ2). Now, for νij ≥ 1, we obtained by using Wolfram Mathematica
that the pseudo-log-likelihood (3.12) changes to

l∗ = A+
I∑
i=1

log

(
2
Bi
2 −1σBie

− µ2

2σ2
√
π

(
Γ
(
A+ 1

2

)
1F1
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2σ2

)
+

√
2
σ

Γ
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)(
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1F1

(
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2 ; 3
2 ;
(
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2σ2
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− log(π)
2 + (Bi2 − 1) log(2) +Bi log(σ)(− µ2
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)
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log

(
1F1

(
Bi + 1

2 ; 1
2 ;
(
µ− Ciσ2)2

2σ2

)
+

√
2
σ

Γ
(
Bi
2 + 1

)(
µ− Ciσ2)

1F1

(
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2 ; 3
2 ;
(
µ− Ciσ2)2
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))
,

(A.14)

where

A =
I∑
i=1

J∑
j=1

−νij log(yij !) + xTijβyijνij + νij − 1
2 log(2π) + 1

2 log(νij) + xTijβ
(νij − 1)

2

Bi =
J∑
j=1

yijνij + νij − 1
2 and Ci =

J∑
j=1

νije
xTijβ

and 1F1 is the confluent hypergeometric series Georgiev & Georgieva-Grosse (2005). This function
is an absolutely convergent infinite power series and described by

1F1(a; c;x) =
∞∑
ν=0

Γ(a+ ν)Γ(c)
Γ(a)Γ(c+ ν)

(a)ν
(c)ν

xν

ν! .

A.2 Method of Moments

Variances and expected mean squares
Lemma A.2.1 (Law of total variance Durrett (2005)). Let X and Y be random variables that are
defined on the same probability space, with finite variance of Y, then it holds that

Var(Y ) = Var(E[Y |X]) + E[Var(Y |X)]. (A.15)

Proposition A.2.1 (Variances of the moments Ȳ····, Ȳi···, Ȳ·j··, and Ȳ··k·). Using the Law of Total
Variance (see A.2.1), we can express the variances of Ȳ····, Ȳi···, Ȳ·j··, and Ȳ··k· in terms of the
expectation of the conditional variance (E [Var (Yijkl|Zi)] and variance of conditional expectation
(Var (E [Yijkl|Zi])). It holds that

Var
(
Ȳ····
)

= Var

(
1
I

I∑
i=1

Ȳi···

)
= 1
I
Var

(
Ȳi···
)
,

where
Var

(
Ȳi···
)

= Var
(
E
[
Ȳi···|Zi

])
+ E

[
Var

(
Ȳi···|Zi

)]
= Var

(
E

[
1

JKL

J∑
j=1

K∑
k=1

L∑
l=1

Yijkl|Zi

])
+ E

[
Var

(
1

JKL

J∑
j=1

K∑
k=1

L∑
l=1

Yijkl|Zi

)]

= Var

(
1
JK

J∑
j=1

K∑
k=1

E [Yijkl|Zi]

)
+ 1

(JK)2L

J∑
j=1

K∑
k=1

E [Var (Yijkl|Zi)] .
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Moreover, the variance due to tool and operator are

Var
(
Ȳ·j··

)
= Var

(
1
I

I∑
i=1

Ȳij··

)
= 1
I

(
Var

(
E
[
Ȳij··|Zi

])
+ E

[
Var

(
Ȳij··|Zi

)])
= 1
I

(
Var

(
1
KL

K∑
k=1

L∑
l=1

E [Yijkl|Zi]

)
+ E

[
Var

(
1
KL

K∑
k=1

L∑
l=1

Yijkl|Zi

)])

= 1
I
Var

(
1
K

K∑
k=1

E [Yijkl|Zi]

)
+ 1
IK2L

K∑
k=1

E [Var (Yijkl|Zi)] ,

Var
(
Ȳ··k·

)
= Var

(
1
I

I∑
i=1

Ȳi·k·

)
= 1
I

(
Var

(
E
[
Ȳi·k·|Zi

])
+ E

[
Var

(
Ȳi·k·|Zi

)])
= 1
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(
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(
E

[
1
JL

J∑
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(
1
JL

J∑
j=1

L∑
l=1

Yijkl|Zi

)])

= 1
I
Var

(
1
J
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E [Yijkl|Zi]

)
+ 1
IJ2L

J∑
j=1

E [Var (Yijkl|Zi)] .
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Proposition A.2.2 (Approximated variances with first order approximation normalization con-
stant). Let Yijkl|Zi be CMP (ζijk(Zi), νijk) and Zi the latent variable distribution and let ζijk(Zi) =
Ziajbk and νijk = ν0. When taking a first order approximation of the normalization constant with
model scenario two, the conditional moments are defined by

E[Yijkl|Zi] ≈ ζijk(Zi)−
νijk − 1

2νijk
and Var(Yijkl|Zi) ≈

ζijk(Zi)
νijk

.

Then, for model scenario 2 (which generalizes scenario 1) with the constraints for the fixed effects∑J
j=1 aj = J and

∑K
k=1 bk = K, we obtain the approximations of the variances in Proposi-

tion A.2.1

Var
(
Ȳi···
)

= Var

(
1
JK

J∑
j=1

K∑
k=1

(ζijk(Zi)−
νijk − 1

2νijk
)

)
+ 1

(JK)2L

J∑
j=1

K∑
k=1

E
[
ζijk(Zi)
νijk

]

= Var

(
1
JK

J∑
j=1

K∑
k=1

(Ziajbk −
νijk − 1

2νijk
)

)
+ 1

(JK)2L

J∑
j=1

K∑
k=1

E
[
Ziajbk
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]

= Var (Zi) + 1
JKL

(
E [Zi]

1
J

J∑
j=1
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νj

)
,

Var
(
Ȳ····
)

= 1
I
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(
Ȳi···
)

= 1
I
Var (Zi) + 1

IJKL

(
E [Zi]

1
J

J∑
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)
,

Var
(
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)
= 1
I
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(
1
K

K∑
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2νijk
)

)
+ 1
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K∑
k=1

E
[
ζijk(Zi)
νijk

]

= 1
I
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2νijk
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)
+ 1
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K∑
k=1

E
[
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νijk

]
=
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I
Var (Zi) + 1

IKL

(
ajE [Zi]
νj

)
,

Var
(
Ȳ··k·

)
= 1
I
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(
1
J

J∑
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(ζijk(Zi)−
νijk − 1

2νijk
)

)
+ 1
IJ2L

J∑
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E
[
ζijk(Zi)
νijk

]

= 1
I
Var

(
1
J

J∑
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2νijk
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[
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k

I
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IJL
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bkE [Zi]

1
J

J∑
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)
.

Note that for scenario 1, we have that νijk = νj = ν0 and therefore 1
J

∑J
j=1

aj
νj

= 1
J

∑J
j=1

aj
νo

= 1
ν0
.
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Proposition A.2.3 (Expected sum of squares). Let Yijkl be i.i.d. random variables with Zi being
the true count on part i. Then the expectation of the error, part, tool and operator sum of squares
sum, denoted by SSE, SSP , SST and SSO respectively, are defined by

E[SSE ] = E

[
I∑
i=1

J∑
j=1

K∑
k=1

L∑
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(Yijkl − Ȳijk·)2
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)2

= JKL(I − 1)Var(Ȳi···)
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And analogue to E[SST ], we have
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Derivation of the expected mean squares (3.30). Let us assume a first order approximation of nor-
malization constant with model scenario 2. Then by using Proposition A.2.3, we obtain

E[MSE ] = 1
IJK(L− 1)E[SSE ]

= 1
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For model scenario 1, which is the special case of scenario 2 with νj = ν0, ∀j, we obtain

E[MSE ] = E [Zi]
ν0

,

E[MSP ] = E[MSE ] + JKL ·Var (Zi) ,

E[MST ] = E[MSE ] + IKL

J − 1

J∑
j=1

(a2
j − 1)

(
Var (Zi)

I
+ E[Zi]2

)
,

E[MSO] = E[MSE ] + IJL

K − 1

K∑
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(b2
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(
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I
+ E[Zi]2

)
.

Moment estimates
Proof of Proposition 3.2.1. Let us assume model scenario 1 with a first order approximation of
the normalization constant. Moreover, let the latent variable Zi follow a negative binomial dis-
tribution, NB(θ, κ). Let us first denote θ̂ and κ̂ as the moment estimates for θ and κ. Then, by
replacing the first moments in Proposition 3.2.1 with their sample versions we obtain

Ȳ···· ≈ θ̂ −
ν̂0 − 1

2ν̂0
, Ȳ·j·· ≈ θ̂âj −

ν̂0 − 1
2ν̂0

, Ȳ··k· ≈ θ̂b̂k −
ν̂0 − 1

2ν̂0
.

MSP ≈MSE + JKL ·
(
θ̂ + κ̂θ̂2

)
MSE ≈

θ̂

ν̂0
.

It easily follows that

ν̂0 = 1
1 + 2Ȳ···· − 2θ̂

.
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Moreover, substitution of ν̂0 in the parameter tool and operator effect gives us

âj =

(
Ȳ·j·· − Ȳ···· + θ̂

)
θ̂

, b̂k =

(
Ȳ··k· − Ȳ···· + θ̂

)
θ̂

,

κ̂ = MSP −MSE − JKL · θ̂
JKL · θ̂2

.

Additionally, by substitution of ν̂0 we obtain

MSE =θ̂ ·
(

1 + 2Ȳ···· − 2θ̂
)
.

Solving this gives

θ̂2 − 2 · 1 + 2Ȳ····
4 =− MSE

2(
θ̂ − 1 + 2Ȳ····

4 )
)2

=−MSE
2 +

(
1 + 2Ȳ····

)2
16

θ̂ =1 + 2Ȳ····
4 ±

√
−MSE

2 +
(
1 + 2Ȳ····

)2
16

When simulation θ = 10, ν = 10, we have E[MSE ] = 1 and E[Y····] = 9.55. Let now, MSE = 1
and Y···· = 9.55. Then the estimates θ̂1 = 0.05 and θ̂2 = 10. So it can be concluded that

θ̂ =1 + 2Ȳ····
4 +

√
−MSE

2 +
(
1 + 2Ȳ····

)2
16 .
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APPENDIX B
Algorithms & new functions

B.1 rCMP-Paus function

In order to solve the precision issue in the rcmp function of the ’COMPoissonReg’ package in
statistical software [R], we present the rCMP-Paus function. The main difference with the rcmp
function is that the rCMP-Paus function uses increased precision for calculation of the probability
masses (with dcmp) and the logarithm of the gamma function lgamma. This is increased precision
is enabled using the as(. . . , ”mpfr”) function included in the ’Rmpfr’ package. Here, MPFR is
acronym for “Multiple Precision Floating-Point Reliably” Mächler (n.d.).

rcmp.manual <- function (n, lambda, nu)
{

max.rcmp <- round(max(50, lambda^(1/nu)*2))
if (length(lambda) == 1) {

lambda <- rep(lambda, n)
}
if (length(nu) == 1) {

nu <- rep(nu, n)
}
u <- runif(n)
x <- numeric(n)
z <- computez.manual(lambda, nu, max.rcmp)
for (i in 1:n) {

px <- dcmp(x[i], as(lambda,"mpfr")[i], nu[i],
z = as(z,"mpfr")[i], max = max.rcmp)

while (px < u[i]) {
x[i] <- x[i] + 1
px <- px + dcmp(x[i], as(lambda,"mpfr")[i], nu[i],

z = as(z,"mpfr")[i], max = max.rcmp)
}

}
return(x)

}

where

computez.manual <- function (lambda, nu, max)
{
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n <- length(lambda)
L <- matrix(log(lambda), nrow = n, ncol = max + 1, byrow = FALSE)
M <- matrix(nu, nrow = n, ncol = max + 1, byrow = FALSE)
J <- matrix(0:max, nrow = n, ncol = max + 1, byrow = TRUE)
log.res <- J * L - M * as(lgamma(J + 1), "mpfr")
rowSums(exp(log.res))

}.

B.2 rGP-Paus

The structure of the rGP-Paus function is equal to the rCMP-Paus function. This new function
uses the probability masses of the GP distribution obtained by the dgenpois function in the
’VGAM’ package in [R]. The dgenpois function uses θ = τ(1− ϕ)−1 and λ = (1 + varphi)−1ϕ.

Due to the applied truncation for certain levels of under-dispersion, the cumulative density
function (c.d.f.) does not always sum to 1. We therefore normalize the densities with the c.d.f.
of the GP. In the GP-Paus function, a random number is drawn from the uniform distribution
U [0, 1], after which the corresponding quantile is determined using the normalized probability
masses, such that q(u) = inf{x : F (x) ≥ u} = F−1(u).

rgenpois <- function (n, lambda, theta)
{

max.gp <- ifelse(lambda <0, (ceiling(-theta/lambda)-1),Inf)
if(lambda >=0){cdf.total <- 1}

if(lambda < 0){
cdf.total <- 0
rep(0,max(max.gp,10000))
for(i in 0:min(max.gp,10000)){

contribution <- dgenpois(i,lambda=lambda,theta=theta)
cdf.total <- cdf.total + contribution
if(i > theta/(1-lambda)){if(contribution/cdf.total < 10^-5){break}}

}
}

if (length(lambda) == 1) {
lambda <- rep(lambda, n)

}
if (length(theta) == 1) {

theta <- rep(theta, n)
}
u <- runif(n)
x <- numeric(n)
for (i in 1:n) {

px <- dgenpois(x[i],lambda=lambda[i],theta=theta[i]) / cdf.total
while (px < u[i] && x[i]< max.gp) {

x[i] <- x[i] + 1
px <- px + dgenpois(x[i],lambda=lambda[i],theta=theta[i]) / cdf.total

}
}
return(x)

}
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APPENDIX C
Additional results simulation

study

C.1 Maximum likelihood estimation

Table C.1: A full overview of the average computation times (in minutes) of the likelihood based
analysis methods per simulation scenario (Sim.sc)

Sim.sc Exp.O1 Exp.O2 Exp.O3 Exp.O4 Gamma Pois.nu1 QP.norm Ref.LLH
Simulated datasets with a mean count of 10 - Pois(10)
1 5.37 5.86 6.10 6.21 0.30 1.18 0.02 21.65
2 5.57 6.27 6.90 7.14 0.30 1.25 0.02 29.37
3 4.46 5.20 5.50 5.82 0.27 1.15 0.02 23.27
4 4.64 5.30 5.66 5.95 0.28 1.22 0.02 30.44
5 5.60 6.20 6.42 6.74 0.33 1.20 0.02 24.86
6 5.89 6.74 7.09 7.83 0.34 1.31 0.02 33.91
7 4.59 5.33 5.78 5.98 0.30 1.20 0.02 25.13
8 4.68 5.30 5.76 6.10 0.27 1.06 0.02 29.00
9 6.22 7.07 7.31 7.80 0.33 1.23 0.02 25.39
10 6.09 6.76 7.49 8.02 0.33 1.32 0.02 33.47
11 5.01 5.61 6.08 6.41 0.29 1.19 0.02 25.60
12 4.34 4.96 5.09 5.26 0.25 1.08 0.02 29.78

Simulated datasets with a mean count of 50 - NBinom(50, 1/2)
13 28.26 29.02 31.91 34.01 0.24 13.72 0.02 1296.55
14 25.90 27.58 29.79 35.13 0.27 12.89 0.02 1613.88
15 22.25 23.65 27.01 30.47 0.23 12.19 0.02 1206.79
16 21.74 23.88 26.45 29.22 0.26 11.59 0.02 1665.46
17 32.00 28.47 31.28 35.30 0.26 16.52 0.02 1606.68
18 29.45 28.24 32.75 33.39 0.29 15.80 0.02 1990.57
19 26.58 23.28 26.67 28.55 0.24 15.86 0.02 1913.85
20 21.93 20.24 23.95 23.40 0.24 13.26 0.02 2599.36
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Likelihood ratio of the reference likelihood with the methods using an
asymptotic expansion of the normalization constant
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Figure C.1: Ratio of the methods that use an order n asymptotic expansion of the normalization
constant with the reference likelihood setting (dotted red line) for simulation scenarios 1 to 20.
Number of simulations = 100.
From Section 6.1 it follows that:
1) Ratio ν/ζ: the lower this ratio, the fewer the relative difference with the reference likelihood. Note that
the ratio ν/ζ is higher for V ar/mean = 0.05 compared to V ar/mean = 0.125 and higher for Poisson(10)
compare to NBinom(50, 1/2). Therefore the dispersion is the highest for the setting V ar/mean = 0.05
with Poisson(10). 2) For the asymptotic expansion of order 2 (Exp.O2), the improvement of increasing
the order is negligible as this method already closely describes the reference likelihood. Moreover, the order
1 expansion (Exp.O1) shows the same pattern as the one with the gamma prior (Gamma). Although more
variation is observed for the Gamma method.
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Truncation term kt of the summation of the latent variable Z
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Figure C.2: A boxplot of the values for the truncation term kt, that was applied for the summa-
tion of the latent variable, obtained in the final iteration. Here kt is based on a relative contribution
criterion of ε1 = 10−5 (see Equation 3.5). Number of simulations = 500 (except for the ’Ref.LLH’
in scenario 13 to 20).
In the final iteration of the maximum likelihood optimization, the summation of the latent variable Zi was
truncated at term kt. (Note that no statements can be made about the value of the truncation term kt′

with t < t′.)
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Figure C.3: The value for the truncation term kt (y-axis) of the summation of the latent variable
obtained for each iteration t (x-axis). Number of simulations = 50.
Note that the first 50 iterations are omitted in this figure, as they are considered to be the warm-up period
of the optimization.
1) Almost no difference in the truncation term kt was observed (see constant lines) within each maximiz-
ation procedure for the two simulation scenarios with a Poisson latent variable distribution.
2) For the simulated datasets with a negative binomial, a somewhat larger relative contribution criterion
could have been selected to obtain a more constant truncation.
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Surface plots likelihood values

(a) Exp.01 (b) Exp.04 (c) Ref.LLH

(d) Pois.nu1 (e) Gamma

Figure C.4: The 2D-likelihood landscape when fixing all parameters except TOOL 2 and TOOL
3. Simulation setting: 10 parts x 3 tools x 2 operators x 3 repeats, var/mean=0.05
(x-axis = TOOL 2, y-axis = TOOL 3, filled (upward pointing) triangle is the estimated maximum
LLH value, and the not filled (downward pointing) triangle represents the true simulated para-
meter. )
1) Two local optima are observed for the asymptotic expansion methods (Exp.01 and Exp.O4) and the
reference likelihood. This was not observed for the Gamma and Pois.nu1 method.
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Performance measures - Dispersion parameter
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Figure C.5: Sampling bias methods of the dispersion parameter γ0 = log(ν0) based on the CMP
latent variable over all simulations for all 20 scenarios. Number of simulations = 500 (only 100
for Ref.LLH).
1) Observe a significant bias for the Gamma method in the setting of severe under-dispersed data with a
Poisson latent variable. The bias decreases for decreasing dispersion levels or increasing average counts.

84



APPENDIX C. ADDITIONAL RESULTS SIMULATION STUDY

sim.sc: 17 sim.sc: 18 sim.sc: 19 sim.sc: 20

sim.sc: 13 sim.sc: 14 sim.sc: 15 sim.sc: 16

sim.sc: 9 sim.sc: 10 sim.sc: 11 sim.sc: 12

sim.sc: 5 sim.sc: 6 sim.sc: 7 sim.sc: 8

sim.sc: 1 sim.sc: 2 sim.sc: 3 sim.sc: 4

E
xp

.O
1

E
xp

.O
2

E
xp

.O
3

E
xp

.O
4

G
am

m
a

R
ef

.L
LH

E
xp

.O
1

E
xp

.O
2

E
xp

.O
3

E
xp

.O
4

G
am

m
a

R
ef

.L
LH

E
xp

.O
1

E
xp

.O
2

E
xp

.O
3

E
xp

.O
4

G
am

m
a

R
ef

.L
LH

E
xp

.O
1

E
xp

.O
2

E
xp

.O
3

E
xp

.O
4

G
am

m
a

R
ef

.L
LH

0.02

0.04

0.06

0.02

0.04

0.06

0.02

0.04

0.06

0.02

0.04

0.06

0.02

0.04

0.06

Analysis method

Va
ria

nc
e 

of
 e

st
im

at
es

Estimator var.log.nu

Po
is

so
n

(1
0

)
N

eg
at

iv
e 

b
in

o
m

ia
l (

5
0

,1
/2

)

C
M

P
G

P

6
x3

x2
x3

1
0

x3
x2

x3
1

0
x3

x2
x3

6
x3

x2
x3

var/mean = 0.05 var/mean = 0.125

Figure C.6: Mean square error of the dispersion parameter γ0 = log(ν0) based on the CMP latent
variable.
Note that the mean square error is relatively high for the severe under-dispersed data with a Poisson latent
variable.
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APPENDIX D
Approximations for normalization

constant Z(λ, ν) (Original form)

Firstly, the truncation of the infinite series at the kth term, that is suggested by Minka et al.
(2003), is defined by

Z(λ, ν) =
k∑
j=0

λj

(j!)ν +Rk (D.1)

where Rk =
∑∞
j=k+1

λj

(j!)ν is the absolute truncation error. Secondly, an asymptotic approximation
for Z(λ, ν) that involves a Laplace approximation of a (ν − 1)-dimensional integral representation
was proposed by Shmueli et al. (2005). This representation for Z(λ, ν), that only applies to positive
integer values of ν,

Z(λ, ν) = exp{νλ1/ν}
λ(ν−1)/2ν · (2π)(ν−1)/2√ν

{1 +O(λ−1ν)}. (D.2)

Thirdly, in addition to the first order expansion in (D.2), Gaunt et al. (2016) provided an entire
asymptotic expansion for Z(λ, ν) for all real non-negative values of ν > 0. This gives

Z(λ, ν) = exp{νλ1/ν}
λ(ν−1)/2ν · (2π)(ν−1)/2√ν

∞∑
k=0

ck(νλ1/ν)−k, as λ→∞ (D.3)

where the cj are uniquely determined by the expansion

(Γ(t+ 1))−ν = νν(t+1)/2

(2π)(ν−1)/2

∞∑
j=0

cj
Γ(νt+ (1 + ν)/2 + j) . (D.4)
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APPENDIX D. APPROXIMATIONS FOR NORMALIZATION CONSTANT Z(λ, ν)
(ORIGINAL FORM)

The first eight coefficients (from Gaunt et al. (2016)) are

c0 =1, c1 = ν2 − 1
24 , c2 = ν2 − 1

1152 (ν2 + 23), c3 = ν2 − 1
414720(5ν4 − 298ν2 + 11237)

c4 = ν2 − 1
39813120(5ν6 − 1887ν4 − 241041ν2 + 2482411)

c5 = ν2 − 1
6688604160(7ν8 − 7420ν6 + 1451274ν4 − 220083004ν2 + 1363929895)

c6 = ν2 − 1
4815794995200(35ν10 − 78295ν8 + 76299326ν6 + 25171388146ν4

− 915974552561ν2 + 4175309343349)

c7 = ν2 − 1
115579079884800(5ν12 − 20190ν10 + 45700491ν8 − 19956117988ν6

+ 7134232164555ν4 − 142838662997982ν2 + 525035501918789)

(D.5)
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