
 Eindhoven University of Technology

MASTER

Parallel scalable induced dimension reduction
a tailored Krylov-type Maxwell solver

Landa, J.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e3309546-abb4-4e0d-866f-c97d0ba4eeca

Eindhoven University of Technology
Department of Mathematics & Computer Science

Master Thesis

Parallel scalable Induced Dimension Reduction
A tailored Krylov-type Maxwell solver

J. Landa

TU/e supervision ASML mentorship

dr. ir. Martijn Anthonissen dr. Rohit Gupta
dr. Pavol Jancura
ir. Siu Hong Li

Abstract

This thesis provides guidelines on how to implement aKrylov-typemethod, IDR(s) in this case,
for efficient parallel execution with OpenMP. The full linear system studied at ASML, obtained
after discretizing Maxwell’s time-harmonic equations, has a decomposition into sparse matrices
with two different structures. Due to being a full system, the matrix-vector products required
in a Krylov-type method take the most time to compute. We therefore look at the design of
parallel sparse matrix-vector algorithms which take these two structures into account. Hereby,
also CPU architecture is considered. Starting at CSR format algorithms which already account
for a particular structure, improvements are imposed for both structures. The techniques used
when designing these algorithms include the minimization of synchronization overhead of
parallel programs, systematically counting the non-zeros of matrix with a certain structure to
obtain efficient parallel loops, using a cheaper sparse matrix format and providing linear data
access patterns. The resulting improvements are algorithms tailored towards the two matrix
structures. Ultimately, the highest performing algorithm for each structure is integrated in the
parallel solver. We confirm the benefits of these design techniques and conclude that for this
particular system the total execution time is reduced significantly.

Keywords: Krylov-type methods; Induced Dimension Reduction; par-
allel computing; OpenMP; high-performance computing;
time-harmonic Maxwell equations

Cover illustration: A polarized light wave with its electric and magnetic field.

iii

“Science has achieved some wonderful things, of course, but I’d far rather be happy than right any day.”
–

Douglas Adams
The Hitchhiker’s Guide to the Galaxy

Acknowledgements

The people closest to me know I am a thankful person, so let us hope I do not forget someone.

First and foremost, my gratitude goes out to Martijn, for finding the time to supervise me on behalf
of the TU/e while his sabbatical in Japan was already planned, and for being both a mathematician
and a stylish person: uncommon yet exemplary. I would like to thank Rohit and Pavol for giving
me the opportunity to fulfill an internship at ASML, for being true researchers and for reminding
me of the value of sincerity, authenticity and creativity. Also, it was a pleasure to be mentored by Siu
Hong, who always had time for a talk and was never shy to let his catchy laugh be heard. Further
thanks go to Remco Dirks, Thomai Zacharopoulou and Mark van Kraaij for their involvement and
willingness to explain some of the physics and mathematics.

My appreciation goes to the colleagues at YieldStar for all the talks over morning coffee, the interest
they have shown inmy project, every single intern joke I had to endure, and for their efforts to defeat
a veteran student at table football. I especially enjoyed sitting next to software architects Johan and
Carlo every day. The most hilarious moments I experienced during my project had to be with them.

My life as a student ends upon the completion of this work. The list of great people I have met
during this era is immensely long yet distinguished. You know who you are. Special thanks go out
to my fellows at the department, current and past, for all the fun times I could be part of. They
made daily life into something nostalgic worth remembering. I particularly acknowledge my closest
friends Bram, Pim and Simon for all the music, parties and personal stories shared over a beer or
two.

This thesis could not possibly have been written without the everlasting support from my loving
family. Regardless of a few unsuccessful attempts to explain them some mathematics, my parents
have always showed genuine interest in whatever I was engaged in. Over the years, I was also truly
lucky to visit my uncle Jan and aunt Caroline here in Eindhoven, for the occasional board game and
a healthy bite. I am additionally mentioning my cousin Camiel. At least your name made it into a
scientific publication now, even though you were unfortunately never meant to write one yourself.

The last and most prominent credits go to my wonderful sister, Esther, for guiding me through
times she faced herself not too long ago, for sharing the passion for music and for being the most
rocking nurse on the planet.

Jasper Landa
Eindhoven, October 2017

v

Contents

1 Introduction 1
1.1 Goals and motivation . 1

2 Maxwell’s equations 4
2.1 Derivation of the time-harmonic Maxwell equations 5
2.2 Computing a solution with the Volume Integral Method 6
2.3 The linear systems . 8

3 Hardware-optimized parallel algorithm design 12
3.1 Brief history of CPU system components . 12
3.2 CPU cores and cache layout . 14
3.3 Shared memory parallel algorithms with OpenMP . 16

4 SpMVs with nested Toeplitz blocks 20
4.1 Method of circular convolution . 20
4.2 Parallel CSR algorithm . 24
4.3 Methods using Toeplitz diagonal compression . 26
4.4 Performance analysis . 31
4.5 Parallel heat diffusion simulation using FDMs . 35

5 SpMVs with equidistant diagonals 38
5.1 Row-parallel algorithms . 38
5.2 Element-wise product method . 41
5.3 Performance analysis . 43

6 Parallelizing the IDR method 47
6.1 IDR as Krylov subspace solver . 47
6.2 Adaptations for the linear system . 50
6.3 Performance benchmarks . 52

7 Conclusions and recommended research 55
7.1 Conclusions . 55
7.2 Recommended research . 56

A Source code 57
A.1 Chapter 4 algorithms . 58
A.2 Chapter 5 algorithms . 60
A.3 Parallel linear solver . 62

B Specifications of used CPUs 65

Bibliography 66

vii

Chapter 1

Introduction

Phenomena in physics can generally be described by means of (partial) differential equations. There
exist many families of differential equations, arising from families of these physical phenomena. Un-
fortunately, many differential equations do not have analytic solutions. A mathematician must then
resort to numerical solving methods or simulations, which has shaped the mathematical subfield
of scientific computing. Using discretization schemes, linear systems arise from such differential equa-
tions and their boundary conditions, the solutions of which are nowadays computed by Krylov-type
linear solving methods. Coefficients of the matrices then represent a physical quantity (e.g. heat,
pressure, density) measured at a position in the discretization space and at a certain moment in time.

1.1 Goals and motivation

The machines of ASML allow the assembly of computer chips with nanometer order precision. The
various electric components are anchored on a wafer. After placements of these components, one
obtains profiles: microscopic landscapes of different materials on a silicone substrate. Each of these
profiles have a periodicity in either one or two dimensions. YieldStar, ASML’s flagship metrology
tool, is developed to measure the wafers a client can possibly design, to serve as an extra verification
of correct chip production.

This means a wafer is aligned under a light source and a charge-coupled device, which then forms an
image of a profile (a microscopic region of the wafer) and its embedded electric components: a pupil.
In order to determine a reference pupil calculated from the profile, one needs to solve differential
equations describing the behavior of light (Chapter 2), taking into account the reflective properties
and shapes of the materials placed on the wafer. Ultimately, the reference pupil is subtracted from
the measured pupil to detect prohibitive differences.

ASML Holding N.V. 1

Chapter 1. Introduction

x

y

z

Figure 1.1: Example of a 1D-periodic profile.

The application computing this reference pupil solves the time-harmonic Maxwell equations twice
to obtain the intensity of each pixel: once for both light polarization directions (x and y) parallel with
the wafer. Currently, the intensity of each pixel is solved sequentially, i.e. the intensity of each pixel
is computed by one processor core (Chapter 3). The cores of a system run concurrently to obtain
multiple pixel intensities at once. This graduation project was set up as an exploratory research in
how other parallel computing schemes can be deployed. It will therefore cover algorithms where
all cores work on the same pixel at once. It is exactly the massively scalable algorithms that are well
employable for costly parallel computations. After all, they perform well on computing clusters,
where the CPUs have many cores at their disposal.

1.1.1 Thesis layout

An iterative solver commences with an initial guess and produces iterates to ultimately converge to
the solution of the linear system. Such a solver inevitably requires matrix-vector products. They
can occupy a respectable portion of the total linear solving time, as opposed to other linear algebra
subroutines used in a linear solving algorithm, like inner products and vector scaling or addition.
This depends on the sparsity and structure of the matrix.

After a preliminary analysis of the structure of the matrices which are obtained after the discretiza-
tion and a study of hardware-optimized parallel algorithm design (Chapter 3), parallel scalable
matrix-vector products will be presented and benchmarked (Chapter 4 and Chapter 5), in order to
speed up the most time-consuming step of a linear solver. Afterwards, the best performing matrix-
vector product algorithms will be incorporated in one choice of non-preconditioned Krylov-type
solver (Chapter 6), the subroutines of which will also be parallelized where possible. The thesis
concludes with a performance showcase for various matrix sizes.

2 Eindhoven University of Technology

1.1. Goals and motivation

Preconditioning will not be treated in this work. The rationale behind this choice is that the study
of preconditioners is a rather large field. Furthermore, a preconditioned linear solver algorithm has
steps where the preconditioner is applied to a vector. Naturally this also takes time, so one would
also have to design a special matrix-vector product algorithm for this step, similar to the algorithms
in Chapter 4 and Chapter 5, to mitigate the time spent on this operation.

1.1.2 Input assumptions and resources

The solving application takes profile geometries as input. Luckily, entire matrices could be exported
by the application, given a geometry. The algorithms in this work will therefore act on stored ma-
trices instead of these profiles. Since the input differs from the implementation, input assumptions
will be made per algorithm, and the thesis will not emphasize on format conversion.

Ultimately, the algorithms will be implemented in the C++ language, aided by PARALUTION [11]:
an OpenMP-based library providing pre-parallelized implementations of iterative solvers, equipped
with pre-defined preconditioners and matrix and vector objects. In this thesis, only the basic version
of PARALUTION (released under the GNU General Public License v3) is used. The imposed
algorithms using PARALUTION are experimental and are therefore not included or integrated in
any product of ASML Holding N.V.

Images are handmade, unless stated otherwise.

ASML Holding N.V. 3

Chapter 2

Maxwell’s equations

In 1864, James Clerk Maxwell (1831-1879) wrote down differential equations which describe elec-
tromagnetic laws in a general way. They hold on a microscopic to macroscopic scale and involve the
dynamics of five vector fields: an electric field E(x, t), the electric displacement D(x, t), the mag-
netic induction B(x, t), the magnetic field H(x, t), and J(x, t), which denotes the electric current
density. These equations, stated below, are collectively known as Maxwell’s equations:

∇× E(x, t) = −∂B(x, t)
∂t

, (2.1)

∇×H(x, t) = J(x, t) +
∂D(x, t)

∂t
, (2.2)

∇ ·D(x, t) = ρ(x, t), (2.3)
∇ · B(x, t) = 0, (2.4)

where ρ(x, t) denotes a charge density function. These equations can be derived from, amongst
other, the law of charge conservation. The five fields are related as follows:

D(x, t) = ε(x)E(x, t), (2.5)
B(x, t) = µ(x)H(x, t), (2.6)
J(x, t) = σ(x)E(x, t). (2.7)

Here, ε, µ, σ : R3 → R denote spatial functions for the electric permittivity, magnetic permeability
and electric conductivity respectively. Note that these functions represent the material and geometry
properties of the profile.

Magnetic fields can induce electric fields in closed loops (Faraday’s law), the voltage of which is
proportional to the changes in the magnetic field (2.1). The inverse occurs as well. A closed loop
with an electric field induces a magnetic field (Ampère’s law), which is proportional to the electric
current and the changes in the electric field (2.2). The latter two are laws of Gauss: the electric flux
∇ ·D leaving a volume is proportional to the charge inside (2.3) and the total magnetic flux∇ · B
through a closed surface is always zero (2.4).

A polarized light wave is a transverse or plane wave with electromagnetic properties. This means that

4 Eindhoven University of Technology

2.1. Derivation of the time-harmonic Maxwell equations

at any spatial point x along the wave and any time t, there exists a propagation direction k such that

E(x, t)×H(x, t) = βk,(
E(x, t),H(x, t)

)
= 0,

for some β ∈ R. Here,× and (·, ·) denote the outer and inner product respectively. The amplitude
of the magnetic field is proportional to that of the electric field, the ratio of which is called the
wave impedance η, which depends on the permittivity and permeability of the medium the wave is
propagating in.

2.1 Derivation of the time-harmonic Maxwell equations

These electric and magnetic fields oscillate in-phase. Ordinary scalar sinusoidal oscillations are of
the form α cos(ωt + θ) = Re

(
αei(ωt+θ)

)
, where α is the amplitude of the wave, ω = 2πc

λ
is the

oscillation speed (with wavelength λ and light velocity c), and θ the phase angle.

Definition 2.1. A field E(x, t) is time-harmonic if and only if for every x there exists an n ∈ R3 and θ ∈ R
such that

E(x, t) = n(x) cos
(
ωt+ θ(x)

)
= n(x)Re

(
ei(ωt+θ(x))).

Note that the entire oscillation is determined uniquely by n, θ and ω. All time-harmonic fields can
therefore be described by means of a complex-valued, time-independent phasor.

Definition 2.2. The phasor of a time-harmonic field E(x, t) is the mapping E0 : R3 → C3 with

E0(x) = n(x)eiωθ(x),

such that

E(x, t) = Re
(
E0(x)eiωt

)
. (2.8)

Note that this representation separates the dependency for space and time.

Naturally, these phasors also adhere to Maxwell’s equations. Substituting the phasor representations
for all fields in the time-varying Maxwell equations (2.1) through (2.4) yields the time-harmonic
Maxwell equations, after canceling out the oscillatory, time-dependent part:

∇× E0(x) = −iωB0(x),
∇×H0(x) = J0(x) + iωD0(x),
∇ ·D0(x) = ρ(x),
∇ · B0(x) = 0.

Light waves are exposed down on the wafer. A part of this light is reflected by the various materials
the profile consists of. The other part will be either transmitted or absorbed (Figure 2.1).

ASML Holding N.V. 5

Chapter 2. Maxwell’s equations

Figure 2.1: Transmission, absorption and reflection of light.

Each of these materials has reflection, absorption and transmission properties depending on the
angle of incidence (Snell’s law) and their respective permittivity and permeability. The result of the
exposure therefore is a scatter of light waves with many directions, potentially (depending on profile
complexity).

2.2 Computing a solution with the Volume Integral Method

Substituting the three field relations (2.5) through (2.7) in the first two time-harmonic equations
results in

∇× E0(x) = −iωµ(x)H0(x),
∇×H0(x) =

(
σ(x) + iωε(x)

)
E0(x).

Because the response registered by the charge-coupled device is in free space, one may set the
function µ equal to the constant µ0, which denotes the permeability of free space. Then, by taking
the curl of the first equation, the two equations above are combined into one equation for the
electric field:

∇×
(
∇× E0(x)

)
= −iωµ0

(
∇×H0(x)

)
= −iωµ0

(
σ(x) + iωε(x)

)
E0(x)

= ωµ0

(
ωε(x)− iσ(x)

)
E0(x)

=: γ(x)E0(x). (2.9)

In this representation, γ could be considered a function of material properties, since the profile
consists of materials, each with their own permittivity and conductivity, which are described by ε
and σ.

From the linearity of Maxwell’s equations, one can split up the electric field such that

E0(x) = Eb
0(x) + Ep

0(x), (2.10)
γ(x) = γb(x) + γp(x), (2.11)

6 Eindhoven University of Technology

2.2. Computing a solution with the Volume Integral Method

whereEb
0(x) denotes the component of the electric field as a result from exposing light to an empty

wafer, andEp
0(x) denotes the component as a result from the profile materials. Let γb(x) and γp(x)

be their respective property functions.

The property function γb of a plain wafer only depends on z and is therefore easier to use than γp.
Then, by using γb in (2.9), conclude that

∇×
(
∇× Eb

0(x)
)
− γb(x)Eb

0(x) = 0, (2.12)
∇×

(
∇× Ep

0(x)
)
− γb(x)Ep

0(x) =
(
γ(x)− γb(x)

)
E0(x). (2.13)

The homogeneous differential equation (2.12) is solved analytically, yet the inhomogeneous equation
(2.13) requires numerical solving by means of a volume integral.

Definition 2.3 (Green’s function). Let a linear differential operator L(x) and a point s be given. A Green’s
function G(x, s) at the point s with respect to L is any solution to

LG(x, s) = δ(x− s)

where δ denotes the Dirac delta, i.e.

δ(x− s) =

{
∞ if x = s
0 otherwise.

These Green’s functions [1] can be applied to solve a respectable amount of families of differential
equations. A Green’s function will aid in transforming the inhomogeneous equation (2.13) into a
volume integral.

If one multiplies a Green’s function with a function f(s) and integrate with respect to s in a region
Ω, one obtains ∫

Ω

LG(x, s)f(s)ds =
∫
Ω

δ(x− s)f(s)ds,

L
(∫

Ω

G(x, s)f(s)ds
)

= f(x),

because on the left-hand side, the integral over s can be brought inside the differential operator,
which only acts on x, and because on the right-hand side, the expression reduces to f(x) due to the
Dirac delta. Hence, when solving a differential equation Lu(x) = f(x), the solution is given by

u(x) =
∫
Ω

G(x, s)f(s)ds. (2.14)

Now, choose L to be the double curl operator and let Ω be the total exposure space, including the
space occupied by profile materials. From (2.9, 2.10) and the linearity of L it follows that

LE0(x) = LEp
0(x) + LEb

0(x),
=

(
γ(x)− γb(x)

)
Ep

0(x) + γb(x)Eb
0(x).

ASML Holding N.V. 7

Chapter 2. Maxwell’s equations

Consequently, by (2.11) and (2.14), find that

Ep
0(x) =

∫
Ω

G(x, s)
(
γ(x)− γb(x)

)
E0(s)ds, (2.15)

E0(x) = Eb
0(x) +

∫
Ω

G(x, s)
(
γ(x)− γb(x)

)
E0(s)ds. (2.16)

Since the difference in material properties γ(x) − γb(x), which can be considered a contrast, is not
zero if and only if x is a spatial point occupied by profile materials, the region of integration Ω can
be reduced to the volume occupied by these materials: a region that is in general much smaller than
the entire exposure space. This allows for more efficient computation.

Because the profiles are considered infinitely periodic, the phasorE0(x) and the material properties
γ(x) are, for a value of z, expanded as a Fourier series in x and y:

E0(x) =
∞∑

m1,m2=−∞

E′
m(z)e

2πi
(
(x
y
),κ(m)

)
, (2.17)

γ(x) =
∞∑

m1,m2=−∞

γ′
m(z)e

2πi
(
(x
y
),Km

)
, (2.18)

where m = (m1,m2)
T is an integer vector and where κ : R2 → R2 is an affine map acting on

m, i.e., κ(m) = k0 + Km for some vector k0 ∈ R2 and matrix K ∈ R2×2. This affine map is
profile-specific and defines the directions and phase of the two-dimensional periodicity. Terms of
this series are computed for |m1|, |m2| ≤M , yielding a total of (2M +1)2 vector terms, each with
three components. Let mxy := 2M + 1. Note that mxy is odd. Verify that for a chosen z, there
are 3m2

xy unknowns.

In the z direction, certain heights are chosen to expand this series. If mz denotes the amount
of chosen z for the series expansion, the problem size totals to n := 3m2

xymz . The solution
for the sampled z values, under the assumption that the electric field should be continuous, can
be concatenated by means of, for example, local piecewise linear interpolation in z. To obtain a
solution in the time domain, substitute this approximation into (2.8).

In [4], ways are described to arrive at a linear system from (2.16) and the Fourier expansions. The
result is a system (C−GM)x = b, where C represents the left-hand side of (2.16), which contains
the coefficients for the entire electric field and the periodicity of the profile, G follows from the
Green’s function, M contains the contrast information and b harbors the series coefficients for
Eb

0(x).

2.3 The linear systems

The matrices arising from the numerical scheme decompose into A := C−GM, where C,G,M ∈
Cn×n are sparse.
Definition 2.4. Let the sparsity of a complex-valued matrix be denoted by ξ : Cn×m → [0, 1] such that

ξ(A) =
nnz(A)
nm

8 Eindhoven University of Technology

2.3. The linear systems

where nnz denotes the number of non-zeros.

The matrix A is completely dense, i.e., ξ(A) = 1. Storing C, G andM separately therefore yields a
lower memory cost. Solving this system will give a numerical solution to the differential equations,
meaning that an x ∈ Cn needs to be found such that Ax = b.

Since C, G andM are sparse, computing Ax(k) essentially costs three sparse matrix-vector (SpMV)
products. Hence, applying C and M to iterate x(k) mark the first steps of a tailored matrix-vector
product. Fortunately, C andM share the same exploitable structure that will allow for less required
memory (Chapter 4). Let y(k) := Mx(k) and z(k) := Cx(k). The next step should then be to
compute Gy(k) (Chapter 5). Combining the results takes one vector subtraction z(k) − Gy(k).

Sparse matrix-vector products know many parallelizations, depending on the structure and prop-
erties of the matrix. Luckily the matrices C, G and M incorporate structures (mentioned below)
which can be exploited in parallel algorithm design (Chapter 4 and Chapter 5). Ultimately, these
methods will be combined in Chapter 6 to obtain a parallel linear solver, the performance of which
will be benchmarked.

2.3.1 Nested Toeplitz block structure

The matricesC andM have the following hierarchic structure (block Toeplitz with Toeplitz blocks).
With each hierarchic level, indices of the levels above are omitted, for readability purposes.

C =

B0 0 0 . . . 0
0 B1 0 . . . 0
0 0 B2 . . . 0
...

...
...

0 0 0 . . . Bmz−1

where each Br (0 ≤ r < mz) consists of 3× 3 blocks

Br =

 D0,0 D0,1 D0,2

D1,0 D1,1 D1,2

D2,0 D2,1 D2,2

 ,

and where each Dp,q (0 ≤ p, q < 3) is a block Toeplitz matrix of mxy ×mxy Toeplitz blocks Td1

(|d1| < mxy), each of sizemxy ×mxy, i.e.,

Dp,q =

T0 T1 T2 . . . Tmy−1

T−1 T0 T1 . . . Tmy−2

T−2 T−1 T0 . . . Tmy−3

...
...

...
T1−my T2−my T3−my . . . T0

 ,

ASML Holding N.V. 9

Chapter 2. Maxwell’s equations

and

Td1 =

τ0 τ1 τ2 . . . τmx−1

τ−1 τ0 τ1 . . . τmx−2

τ−2 τ−1 τ0 . . . τmx−3
...

...
...

τ1−mx τ2−mx τ3−mx . . . τ0

 ,

for some τd2 ∈ C (|d2| < mxy).

Confirm from the structure that n = 3m2
xymz . During the time spent at ASML, typical parameter

choicesmxy = 7, 9, 11 and 150 ≤ mz ≤ 200 were encountered. However, by virtue of displaying
algorithm employability, higher parameter choices will also be found in this work. Furthermore,
one can assume that typically the blocks Br are full, implying a constant amount of non-zeros per
matrix: nnz(C) = 3nm2

xy = 9m4
xymz and therefore a sparsity ξ(C) = 1

mz
. Also, all Toeplitz

blocks generally contain different scalars. Note that storing the non-zeros requires

NCM := 16 nnz(C) = 16 nnz(M) = 144m4
xymz = 48nm2

xy

bytes of memory when using double precision for both the real and imaginary part.

2.3.2 Diagonal structure

The matrix G has a less hierarchical structure than matrices C and M, which has its benefits and
drawbacks. It is a matrix where non-zeros only appear on diagonals

0,±m2
xy,±2m2

xy, . . . ,±(3mz − 1)m2
xy,

implying a fixed nnz(G) = 3nmz = 9m2
xym

2
z and sparsity ξ(G) = 1

m2
xy
. Storing all of the non-

zeros requires
NG := 16 nnz(G) = 144m2

xym
2
z = 48nmz

bytes of memory. Comparing the sparsity of the two structures yields that G is less sparse for the
typical parameter choices. ASML’s desire however to support highermxy implies that in the future,
G could actually surpass C andM in sparsity.

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Figure 2.2: Sparsity plot of G formxy = 7 andmz = 5.

10 Eindhoven University of Technology

2.3. The linear systems

Unfortunately G possesses no further properties like diagonal repetition or symmetry, implying
every non-zero of G is indispensable when storing this matrix. However, the diagonally hatched1
structure will be used in Chapter 5 to devise a systematic parallel multiplication.

2.3.3 Initial formatting

Sparse matrices are generally large (especially in industrial applications) and by definition contain
very few non-zeros. Therefore, sparse matrices are stored differently. One only needs to store
the non-zero entries of a sparse matrix, resulting in economical memory usage. There already
exist well-known and widely used sparse matrix storage formats, such as the ‘Coordinate’ (COO),
‘Compressed Sparse Column’ (CSC) and ‘Compressed Sparse Row’ (CSR) formats. Each format
has its advantages and disadvantages, depending on the operation applied to the matrix.

Since for the matrices C and M all blocks Br are full, the amount of non-zeros in each row and
column is constant. Likewise, due to the fact that G consists of equidistant non-zero diagonals,
also G has a constant amount of non-zeros in each row and column. Therefore, one can store the
matrices without complementary indices for the position of each non-zero in the matrix. These
indices can be computed from the position in the matrix value list. This reduces the total storage
space consequently to

Ntot := 2NCM +NG = 48n(2m2
xy +mz) (2.19)

bytes of memory. The constant number of non-zeros per row or column also enables the matrix to
be flattened into a vector, for easier single-index accessing.

Conclude however, that for the current implementation, the desired support for higher mxy is
constrained by the memory requirements. Luckily, Chapter 4 will impose a more economical use of
memory, while maintaining the ability to define a parallel scalable sparse matrix-vector product.

1hatching: artistic technique where the artist draws closely spaced parallel lines to create shading effects

ASML Holding N.V. 11

Chapter 3

Hardware-optimized parallel algorithm
design

This chapter of the thesis showcases a study of low-level computer layout, i.e., how the different
components of hardware came to be and ultimately how these components should be deployed in
efficient parallel computations relevant to the research done in the remainder of this thesis. After all,
it is this knowledge that ensures the design of algorithms which optimally use the available hardware
in a computer system. The first section will contain a brief history [5] such that in the sections that
follow, the properties of the various components can be taken into account [5, 16] when designing
hardware-efficient algorithms.

The philosophy behind hardware-optimizing an algorithm in contrast to, for example, optimizing
the asymptotic running time of an algorithm comes from the fact that computer memory truly
constraints the usability of an algorithm. A personal favorite example is the class of matrix-matrix
multiplication algorithms. The naive O(n3) method, albeit its slow algorithmic running time, re-
quires little more memory over storing the two matrices and their product. However, the Strassen
or even the Coppersmith-Winograd multiplications [15] (with asymptotic running times O(n2.807)
and O(n2.376), respectively), are so complex and in addition work recursively, resulting in extrav-
agant memory usage when the problem size grows large, rendering them less scalable. Especially
now, with the rise of parallel computing, memory management becomes more instrumental than
ever before. This implies that algorithms with an execution time of lower orders only exhibit this
speed when they do not violate the memory constraints of the particular system in use, i.e., when the
problem sizes stay small. It is precisely the memory-economical algorithms that will therefore be
more parallel scalable, which is why a study on computer memory is vital to a successful addressing
of the problems in this thesis.

3.1 Brief history of CPU system components

Let there be no confusion: CPUs have been and still are essential in modern-day systems, for they
have been the main computing units being developed throughout the history of the computer.

12 Eindhoven University of Technology

3.1. Brief history of CPU system components

GPUs came into existence decades after, initially to deliver a hi-fi gaming experience, and have only
recently been discovered to be serviceable for the acceleration of scientific computing. A GPU also
cannot host a program by itself. Therefore this section accounts for CPU systems only.

The first computers were developed by a specific institute (company, hospital, etc.) to accommo-
date one or a couple institute-specific computations only. Accordingly, all components of that
computer were in tune with one another, complying to their specific computational and memory
constraints. The basic setup consisted a small-sized (hard) disk with data and a CPU to perform
basic arithmetic. This arithmetic later got the name FLOPs (floating-point operations). Depending
on the application, the machine also could have data input (through sensors or punch cards) and
output (card puncher and later: printers) hardware, but for the sake of the computational focus in
this section, these are omitted from consideration. A program made the CPU read data from the
disk, performed operations on it, and wrote the outcome back to the disk.

With the commercialization of the computer, different companies appeared which focused on the
development of particular hardware components only. This resulted in an unbalanced speed-up of
the different components. For example: whereas the purely electronic processors became faster
over time with higher clock speeds (the rate of the processor indicating how many times per sec-
ond numbers can be received/sent/performed operations on), the CPU started idling increasingly
because of the slow mechanical retrieval system of the hard disk, the speed of which did not grow
as fast as that of the CPU.

This marked the dawning era of Random Access Memory (RAM): an electronic and therefore faster
piece of hardware used to store temporary data. Upon invoking a program, data is loaded into
RAM by the operating system, such that the retrieval time by CPUs was greatly curbed, imply-
ing a reduced CPU idle time. Presently, RAM can be divided into two categories: dynamic RAM
(DRAM) and static RAM (SRAM). Each uses a different electronic component to store data (capac-
itors and latches respectively). This makes the SRAM transfer speed as fast as the CPU speed, yet
its high power consumption and production cost prevent it from being used as the main choice for
RAM. DRAM may be less expensive than SRAM, yet it is slower, since capacitors lose their charge
after some time, making DRAM a volatile memory medium. Therefore DRAM has charge refresh
periods, during which no memory can be read or written.

Figure 3.1: Electronic symbols for capacitors (left) and latches (right).

ASML Holding N.V. 13

Chapter 3. Hardware-optimized parallel algorithm design

With the ever growing CPU clock speeds, even DRAM fell behind, yet the DRAM still worked
orders of magnitude faster than disks. This is the reason computer system architects decided to put
a tiny amount of SRAM in the CPU they called cache1, from which data can then be retrieved in a
time within clock speed order. A hardware-efficient algorithm should therefore optimally exploit the
cache space such that the total retrieval time remains as small as possible. With recursive algorithms,
for example those noted in the start of the chapter, this is generally hard for larger problem sizes.

3.2 CPU cores and cache layout

Figure 3.2: Basic cache setup with one core [5].

The actual arithmetic brain of a CPU are its
cores: they are the components performing
the floating point operations. CPUs have had
multiple cores for quite some time now (cur-
rently, private customer CPUs typically have up
to eight cores) and generally differ in micro-
structure. Nevertheless the core-cache struc-
ture generally resembles Figure 3.2. Note that
the cores are not directly connected to RAM
(‘Main Memory’ in the figure) anymore, mean-
ing that data and instructions assigned to a CPU
core must pass through its cache. The CPU
cache consists of different levels, the size and
any inter-connections of which depends on the model and manufacturer.

In the high performing computing cluster used to obtain the benchmarks in this thesis, the methods
were ran on one so-called node. A node is a machine on its own, housing its own RAM and two
sockets, where each socket can house one CPU. Usually the two socketed CPUs are of the same
manufacturer and model. A computing cluster consists of many of these nodes.

L3

L2 L2 L2

L1 L1 L1

C C C

L3

L2 L2 L2

L1 L1 L1

C C C

Figure 3.3: Dual-CPU node layout with emphasis on cache layout.

The Intel® Xeon® CPUs used to run the methods have three cache levels (Figure 3.3): RAM data
1From the French verb ‘cacher’, meaning ‘to hide’.

14 Eindhoven University of Technology

3.2. CPU cores and cache layout

enters the socket and is loaded into the L3 caches of both CPUs, which is the highest cache level.
This cache level is physically the furthest from the core (C) and is used by all cores in one socket. In
addition, each CPU loads data further down into the two core-local cache levels, the lowest of which
(L1) is used to perform FLOPs. Computational results of all cores are collected in L3 again, before
they are written back to main memory. Since this thesis accounts almost entirely for single-node
implementations only, this implies a shared memory parallel paradigm. The nodes have a Non-uniform
Memory Access (NUMA) design, meaning cores can access their local (L1 and L2) much faster than
L3 or local caches of other cores. Naturally, having to access data from another socket is even more
expensive.

This paradigmwill in no way impede the design of a cache-optimized algorithm, since the operations
required in this thesis (Chapter 4 and Chapter 5) can be partitioned into independent work to be
divided over cores. This marks a fruitful start to any parallel program.

3.2.1 Cache loading, pre-fetching and cache hits/misses

The cache loads are performed by a component in the CPU (omitted in the previous pictures) called
the memory controller. This is a rather complex CPU component. Its exact functioning will therefore
not be treated in this thesis. However, the purpose of this component can be generically described
as “getting the needed data from RAM and copying shared memory data further down into the
lower levels”. It is exactly that component which fills the caches.

As one can understand, retrieving data upon CPU request will result in a highly idle CPU since, for
each computation, the memory controller will have to get the data for each core, lasting prohibitively
many clock cycles if RAM access is necessary. Therefore the memory controller performs some
analysis on the previously used memory addresses to make an educated guess on what the next
requested addresses will be and caches this data before the CPU is ready to perform FLOPs thereon.
Therefore, given that the memory controller guesses the needs of the cores correctly, the CPU will
not have to idle. This is called pre-fetching and it greatly increased CPU efficiency.

Let it be evident that pre-fetching comes with a risk. After all, when a core is searching for its needed
data, ideally this data would already be cached in L1, thanks to the clever memory controller. This
is called a cache hit, i.e., the data is fetched from cache when the data is needed. However, as the
randomness of the accessed addresses grows, the probability of fetching unneeded data increases
likewise. Consequently, it occasionally occurs that the cache will not have required data readily
available. The CPU will therefore try fetching the data from a higher cache level, during which
the CPU is not performing operations. In the case the data is not present there as well, it has to
overwrite one or more cache registers with the correct data it will have to get from RAM. In addition
to being very expensive in terms of clock cycle count, there also exists a probability of overwriting
data required in the clock cycles to come, and is therefore a worst case scenario called a cache miss.

This information on CPU architecture will prove crucial in the design of the parallel algorithms
in this thesis, for a programmer needs to arrange the data for each thread such that the accessing
pattern will be as predictable as possibly achievable and is therefore the very message of this chapter.
The most canonical example would be to order the data such that the consequent memory addresses
follow a linear pattern, i.e., the needed data is stored in a (periodically) contiguous region in memory.

ASML Holding N.V. 15

Chapter 3. Hardware-optimized parallel algorithm design

An algorithm can then address this data with unit stride. The algorithms designed in this thesis will
therefore try to realize these linear access patterns.

3.3 Shared memory parallel algorithms with OpenMP

This thesis will focus on a dual-CPU machine as computational resource. Since the resource is con-
sidered a single machine, the OpenMP Application Programming Interface [9] satisfies to program
parallel algorithms with, which is also used in the PARALUTION library subroutines. With the free
version used in this thesis, single-node computations can be performed. With the paid multi-node
version, a Message Passing Interface (MPI) communication layer is added [11].

In sequential computing, execution of code is performed by a single thread : a sequence of pro-
grammed instructions. However, in a parallel program, parallel regions may exist in code [9]. These
are parts of computer code which can be performed concurrently by multiple threads. When the
singlemaster thread encounters a parallel region, it creates a team of other threads, after which the team
works on the execution of that parallel region until the computation is completed. Each thread of a
parallel program is bound to one of the processor cores. Often, cores can only harbor one thread.
Even though CPUs capable of hosting two threads exist, a core can generally host only one. In this
thesis, only one thread per core is assumed. It implies the existence of a bijection between the IDs
of the used cores and thread IDs. The number of threads the master thread is allowed to create and
their binding can be controlled. Naturally no more threads than cores can exist.

Thread 0

Thread 1

Thread 2

Figure 3.4: Three threads (red, green and blue) copying a vector: a simple parallel linear algebra
subroutine.

16 Eindhoven University of Technology

3.3. Shared memory parallel algorithms with OpenMP

3.3.1 Parallelizing loops

The parts of an algorithm to be parallelized in this thesis will solely be (nested) FOR-loops. Many
basic linear algebra subroutines, e.g. vector addition and the inner product of two vectors, are es-
sentially parallelizable FOR-loops. Although distributed memory methods with MPI are described
in [2], the concept of work division remains the same and can be applied to divide the computations
over the available threads.

When executing a single FOR-loop in parallel with indices from an integer set, i.e. i ∈ I ⊂ Z, each
thread gets assigned a unique i after which it performs the contents of the loop for that particular
i. If for example I = {0, 1, 2} and the amount of threads equals 2, the loop is iterated twice: once
where the two threads are passed i = 0 and i = 1, and once where one thread executes for i = 2.
The process of reiteration is called a barrier : finished threads wait until the entire team has finished,
after which they get passed a new index each. Let p be the team size. Then, by the pigeonhole
principle, the amount of barriers encountered is ⌈ |I|

p
⌉, where | · | denotes the cardinality of a set and

⌈·⌉ denotes the ceiling function. In order for a FOR-loop to be parallel efficient, the work must be
of equal size and the work must be thread-independent, i.e. the variables and outcome used must
not depend on the variables or outcome of other threads.

Now assume a parallel region consisting of m FOR-loops nested in each other, each with their
respective index sets Ij ⊂ Z for j = 1, 2 . . . ,m. With no additional directives, only the outermost
loop is parallelized. This means that a thread will get one i1 ∈ I1 and will therefore execute the
content inside the outermost loop by itself, which contains them−1 innermost loops. By using the
OpenMP collapse(m) clause [9, 10], one indicates the amount of nested loops to be combined
in parallel execution, which results in a collapsed iteration space I :=

∏
j∈{1,2,...,m} Ij . The thread

then gets passedm indices: i1 ∈ I1, i2 ∈ I2, . . . im ∈ Im, corresponding to exactly one element of
I =

∏
j∈{1,2,...,m} Ij , which can now be considered as a flattened iteration space (Figure 3.5, right).

This is desirable over only parallelizing a single loop, because of thread efficiency.

Let for example I1 = I2 = {0, 1, 2} and let only the inner loop I2 be parallelized. Then, firstly,
for each i1 ∈ I1 the single thread summoned at the start of the program (also known as the master
thread) would encounter a parallel FOR-loop, implying teams are created redundantly many times.
Moreover, there would only be a thread efficiency of 3

4
(analogous to the paragraph above). If only

the outer loop I1 is parallelized (Figure 3.5, left), there would be less barriers in the execution, yet
there will be a larger variance in the thread finishing times between those barriers, because even
if two threads have the same set of instructions between two barriers, there will always be a small
difference in the time they take. Also, again by the pigeonhole principle, there is a risk that only
a few threads are active to complete an iteration space, in which case other threads will idle for a
longer time.

ASML Holding N.V. 17

Chapter 3. Hardware-optimized parallel algorithm design

Thread 0

(0, 0)

(0, 1)

(0, 2)

(2, 0)

(2, 1)

(2, 2)

(1, 0)

(1, 1)

(1, 2)

(0, 0) (0, 1)

(0, 2) (1, 0)

(1, 1) (1, 2)

(2, 0) (2, 1)

(2, 2)

Thread 0Thread 1 Thread 1time

Thread working Start of parallel region Barrier

Figure 3.5: OpenMP work scheduling behavior (two threads) for the regular (left) and collapsed
(right) iteration space I = {0, 1, 2}2. Pairs (i1, i2) are inscribed.

Conclude that there is a choice to parallelize only a part of a program’s nested loops. This choice
determines the granularity of a parallel program. This can be coarse (less barriers but also larger
variance) or fine (more barriers but higher thread efficiency).

3.3.2 Synchronization overhead

In parallel operations where thread results need to be shared, very costly synchronization overhead
occurs: threads will try to output their results to the same memory address. Parallel vector norm
calculation is an example of this. If the output is a shared number (hence in L3), all threads will pose
an increment on its address, e.g. when calculating the norm of vector v in parallel, a thread with
an assigned i will impose an increment of (vi)2 on the variable. Since these have to be processed
sequentially for all i ∈ I , this could gravely slow the computation speed.

However, the overhead can be reduced by creating a thread-local subtotal which each thread can
increment privately. This is achieved with the OpenMP reduction clause [9, 10]. Ultimately, these
subtotals can be added, which costs only an amount of sequential increments equal to the amount
of threads p, which is a mere fraction compared to |I|, especially when the iteration spaces grow
large. Any other variable can be made thread-local by adding it to the private list [9, 10]. Iteration
space indices are automatically private.

18 Eindhoven University of Technology

3.3. Shared memory parallel algorithms with OpenMP

Since synchronization overhead is very costly, it is imperative to design parallel algorithms where
threads work on mutually exclusive output addresses as much as possible.

3.3.3 Concurrent parallel programs

OpenMP also allows for concurrent parallel programs, i.e. multiple master threads, each with a
respective program, each probably also with their own parallel regions. This enables a programmer
to, for example, let half of the cores calculate a vector norm and the other half calculate the sum of
two other vectors.

A direct implication of this kind of parallelism is a change in the cache size and amount of threads
available per program. Even when executing multiple instances of the same program concurrently,
each with the same number of threads, the cache memory will have to be divided. Each partition
will then contain a set the program data and instructions. Yet, since two instances of the same
program are executed, potentially many global program variables and many program instructions
will be the same, implying inefficient use of precious cache memory.

An advantage to use this kind of parallelism however, is to improve the locality of each instance’s
data. For example, since the computational resource is a dual-CPU machine (each with an L3
cache), it could be desirable to let each CPU work on its own computation, which can be achieved
by using correct thread bindings. This way, expensive cross-CPU data loading is eliminated by
design. Therefore, the SpMV algorithms and ultimately the parallel solver presented in the next
three chapters will be benchmarked on one of the two CPUs in the machine used as computational
resource, such that two linear solves can be performed concurrently: each on one CPU.

ASML Holding N.V. 19

Chapter 4

SpMVs with nested Toeplitz blocks

This thesis chapter will account for the design of a custom multiplication algorithm which runs in
parallel as well as optimizes memory usage, to reduce computation time per iteration. In order to
address this algorithm design problem, not only a study of the application’s matrices C andM, but
also the research on hardware layout (Chapter 3) and parallel algorithm design is required to gain
computation speed.

The shared memory parallel guidelines (Section 3.3) imply a choice for independent thread output
regions, which in case of SpMVs essentially hints to algorithms where each entry of the output
vector is computed by a single thread, rendering the CSR matrix format a solid base for the pro-
posed algorithms. The algorithms will be tested and benchmarked on ASML’s High Performance
Computing (HPC) cluster. Then, given various benchmarks of the different approaches, insights
will be gained on how the granularity and memory influence the performance.

4.1 Method of circular convolution

It is possible to multiply every block Dp,q (sized m2
xy ×m2

xy) with the corresponding vector part
of x of size m2

xy using the Fourier Transform. Let, due to implementation syntax, vector indices
henceforth start at 0.

Definition 4.1. The Fourier Transform of a vector a ∈ Cn and a matrix A ∈ Cn×n are given byF(a) ∈ Cn

and F(A) ∈ Cn×n such that:

(
F(a)

)
k
=

n−1∑
p=0

apw
kp
n

(
F(A)

)
kl
=

n−1∑
p,q=0

apqw
kp+lq
n

for k, l = 0, 1, 2, . . . , n− 1 and where wn = e−
2iπ
n denotes the primitive nth root of unity.

20 Eindhoven University of Technology

4.1. Method of circular convolution

Definition 4.2. Let two vectors a, b ∈ Cn be given. Then the circular convolution a∗b ∈ Cn and element-wise
product a⊙ b ∈ Cn are defined as

(a ∗ b)i =
n−1∑
j=0

ai−jbj,

(a⊙ b)i = aibi,

where i, j ∈ [0, n) := {0, 1, . . . , n− 1} and where i− j circulates in the same integer interval.

The product with a block Dpq can be computed by means of a Fourier Transform because of the
Circular Convolution Theorem [3]:

Theorem 4.1. Let F denote the Fourier transform and let two vectors a and b of equal size be given. Then

F(a ∗ b) = F(a)⊙F(b). (4.1)

This theorem forms the foundation of the currently implemented SpMV algorithm.

4.1.1 The Fast Fourier Transform

One could expect that applying F is a very costly computation. In modern implementations,
however, F is applied quickly by using Fast Fourier Transform (FFT) algorithms, which run in
O(m logm) asymptotic time on vectors inCm or matrices inCm×m. The inverse matrix application
is implemented as ‘Inverse Fast Fourier Transform’ (IFFT). Different variants and implementations
of FFT exist, yet the FFTW [7] for the C programming language is a most extensive collection used
in industry.

The FFT algorithms come with a caveat: they are designed to run faster when the problem size
is smooth. Recall that a natural number is d-smooth if and only if d is its largest prime divisor.
This effectively implies that the input of FFT, which is a block of C, needs to be padded with extra
zeros until the problem size is of a desired smoothness. Let therefore nd be the smallest natural
number such that 2mxy−1 ≤ nd and nd is d-smooth. Therefore the padded input size of the FFT
algorithm is n2

d and thus a total running time of O(n2
d lognd) per block Dpq. Conclude that the

running time totals to O(mzn
2
d lognd) for an entire matrix C orM.

Moreover, FFT works recursively. Since recursive algorithms generally do not scale well in parallel,
the parallel FFT algorithms on matrices are still being developed and improved [7]. This method is
therefore not benchmarked in this work.

4.1.2 Relation to Toeplitz blocks

Consider a Toeplitz block T containing scalars τd2 , with |d2| < mxy. Let m = 2mxy − 1. A
Toeplitz matrix can be expanded into a circulant matrix S of size m × m. The circular matrices

ASML Holding N.V. 21

Chapter 4. SpMVs with nested Toeplitz blocks

form a class of special Toeplitz matrices, for they are Toeplitz matrices where each row is a circular
right-shift of the row above. The unfolding can be done as follows:

S =

τ0 τ1 · · · τmxy−1 τ1−mxy τ2−mxy · · · τ−1

τ−1 τ0
. τmxy−1 τ1−mxy · · · τ−2

... τ1
...

...
...

τ1−mxy · · · τ−1 τ0 τ1 τ2 · · · τmxy−1

τmxy−1 τ1−mxy · · · τ−1 τ0 τ1 · · · τmxy−2

τmxy−2 τmxy−1 · · · τ−2 τ−1 τ0
.

...
...

...
... τ1

τ1 τ2 · · · τ1−mxy τ2−mxy · · · τ−1 τ0

.

Note that S is circulant, has the aforementioned size and that its upper leftmxy×mxy block equals
T. Let

r = (τ0, τ−1, . . . , τ1−mxy , τmxy−1, τmxy−2, . . . , τ1)
T ∈ Cm, (4.2)

be the first column of S.

Definition 4.3. A matrix A is diagonalizable if and only if there exist an invertible matrix P such that PAP−1

is a diagonal matrix.

The relation with the Fourier Transform now becomes apparent, for the circulant S is diagonalized
by the unitary Discrete Fourier Transform (DFT) matrix Fm [6]. Applying this matrix is equivalent
with using the Fourier Transform. Hence, Sd1 can be written as

S = F−1
m diag(Fmr)Fm, (4.3)

with

Fm =
1√
m

1 1 1 · · · 1
1 wm w2

m · · · wm−1
m

1 w2
m w4

m · · · w
2(m−1)
m

...
...

...
1 wm−1

m w
2(m−1)
m · · · w

(m−1)(m−1)
m

 . (4.4)

Following from the unitary property of the DFTmatrix, conclude that its inverse equals F−1
m = FH

m:
its conjugate transpose.

Since applying the diagonal matrix diag(Fmr) is equivalent to an element-wise product with its
diagonal vector, which is Fmr, the circulant matrix-vector product effectively becomes

Su = F−1
m diag(Fmr)Fmu = F−1

(
F(r)⊙F(u)

)
. (4.5)

Using the circulant property, note that sij = ri−j , such that the matrix-vector product becomes

(Su)i =
m−1∑
j=0

sijuj =
m−1∑
j=0

ri−juj, (4.6)

22 Eindhoven University of Technology

4.1. Method of circular convolution

where i−j circulates in [0,m). Conclude that the circulant matrix-vector product has now become
a circular convolution r ∗ u. Furthermore, combine (4.5) and (4.6) to confirm (4.1) and thereby the
Circular Convolution Theorem.

This convolution method accounts for the multiplication with a circulant matrix. To ensure the
product with T only, one should pick u such that the first mxy entries match the corresponding
vector part of the iterate x(k) and the other entries are 0. The output will be a vector of length
m, yet one can select the first mxy entries to serve as output. This sub-vector will then equal the
multiplication with T.

This technique can be applied to obtain the products with all the Toeplitz blocks Td1 contained in
C orM.

Example 4.1. Let

Td1 =

(
1 3
2 1

)
, x =

(
1
2

)
.

Then r = (1, 2, 3)T and choose u = (1, 2, 0)T , such that

Td1x =

(
7
4

)
,

F−1
(
F(r)⊙F(u)

)
=

 7
4
7

 .

Here, the two obtained vectors match entries, marked in red.

4.1.3 Extending to nested Toeplitz blocks

This method can be extended to multiply an entire blockDpq (each harboring Toeplitz blocks Td1)
with a vector x ∈ Cm2

xy . In [6], the extension is made to a matrix N which is a block circulant
matrix with circulant blocks, i.e.,

N =

S0 S1 · · · Smxy−1 S1−mxy S2−mxy · · · S−1

S−1 S0
. Smxy−1 S1−mxy · · · S−2

... S1
...

...
...

S1−mxy · · · S−1 S0 S1 S2 · · · Smxy−1

Smxy−1 S1−mxy · · · S−1 S0 S1 · · · Smxy−2

Smxy−2 Smxy−1 · · · S−2 S−1 S0
.

...
...

...
... S1

S1 S2 · · · S1−mxy S2−mxy · · · S−1 S0

,

where the Sd1 are circulant matrices. To multiply this matrix with a vector u of size m2, one has
to use the first column r of each circulant block S, similar to the previous section. Let therefore
R ∈ Cm×m be the matrix consisting of the first columns, i.e.,

R = [r0, r−1, r−2, . . . , r1−mxy , r1−mxy , . . . , r1].

ASML Holding N.V. 23

Chapter 4. SpMVs with nested Toeplitz blocks

Let alsoU ∈ Cm×m be given by resizing x into a matrix, such that for all i, j ∈ [0,mxy), uij equals
entry i of the part of x corresponding to the rd1 listed as column j of R. Note that the bottommost
mxy − 1 rows and rightmostmxy − 1 columns of U contain only zeros.

Ultimately, identical to the one-dimensional Fourier Transform multiplication method, applyingN
to a vector x is then equivalent to computing

F−1
(
F(R)⊙F(U)

)
, (4.7)

yet only the upper-leftmxy ×mxy sub-matrix of the output should be considered, which needs to
be flattened back into a column vector.

To obtain the multiplication with only the embedded Toeplitz blocks, one has to choose u wisely,
similarly to the one-dimensional case. Therefore, again pick U to contain a repetition of: mxy

entries from the iterate x(k), followed by mxy − 1 zeros. This implies that U is a matrix with only
the upper-leftmxy ×mxy sub-matrix containing scalars from x(k).

Example 4.2. Let

Dp,q =

1 3 7 9
2 1 8 7
4 6 1 3
5 4 2 1

 , x =

1
2
3
4

 .

Then

R =

 1 4 7
2 5 8
3 6 9

 ,

and choose

U =

 1 3 0
2 4 0
0 0 0

 ,

such that

Dp,qx =

64
56
31
23

 ,

F−1
(
F(R)⊙F(U)

)
=

 64 31 61
56 23 53
66 33 63

 .

4.2 Parallel CSR algorithm

As stated at the beginning of this chapter, the CSR format complies well with the algorithm design
guidelines. Since the index lists for all matrices in this work can be omitted (Section 2.3) and C and
M are essentially block-diagonal matrices, a row-parallel algorithm can be set-up rather quickly.

24 Eindhoven University of Technology

4.2. Parallel CSR algorithm

In order to systematically count all non-zeros of C orM, one should consider the matrix structure.
From counting systematically, a collapsible iteration space (Section 3.3.1) and therefore a paralleliza-
tion can be found. After all, when looking at Figure 4.1, any non-zero of C andM can be pointed
to by choosing a block Br and a row and column inside it. Since each Br is of size 3m2

xy × 3m2
xy,

deduce that the matrix position (i, j) of any non-zero can be uniquely written as

i = 3m2
xyr + i′, (4.8)

j = 3m2
xyr + j′, (4.9)

with i′, j′ ∈ [0, 3m2
xy). This yields a collapsible iteration space I := [0,mz) × [0, 3m2

xy) (Section
3.3.1) such that each matrix row i is a unique element of I . A thread on row i, corresponding to
an element (r, i′) ∈ I , then needs to perform multiplications with the non-zeros in that row, i.e.
computing

yi =
∑

j∈[3m2
xyr,3m

2
xy(r+1))

cijxj.

Since the thread already gets passed r, letting j′ go from 0 through 3m2
xy satisfies.

This results in a regular CSR algorithm, which will henceforth be referred to as CMPCSR (C orM
Parallel algorithm using the CSR format.).

C x y

=

mat in out

0 0 0

288 24 24

0
Figure 4.1: Mathematical (left) and digital (right) representation of the accesses of one thread (red)
formxy = mz = 2.

In the figure, the blue-to-purple gradient indicates where the non-zeros appear in the stored matrix
list mat. The white-to-red gradient overlay on mat and in indicates the order one particular thread
accesses the matrix and input vector data. These gradients are also found in the mathematical

ASML Holding N.V. 25

Chapter 4. SpMVs with nested Toeplitz blocks

representation on the left. Note that the access patterns are linear and contiguous for both the
matrix data and input vector. Therefore, no further improvements on this CSR-based algorithm are
expected to be made.

4.3 Methods using Toeplitz diagonal compression

The nested Toeplitz structure of C and M implies the essential information of both matrices is
many times smaller than when stored regularly, as already seen with and used by the FFT multipli-
cation methods. An attempt to systematically gather this smaller sized essential data might result in
considerably better data accessing rates.

When blocks Dp,q are stored in regular sparse formats, this results in mxy copies of T0, mxy − 1
copies of both T1 and T−1, and so forth. This is most wasteful when mxy grows large, implying
the over-abundant use of memory. To avoid this, a tailored SpMV algorithm should use only the
essential matrix info. Recalling the matrix structure in Section 2.3.1, note that every generally unique
entry can be indexed by its specific block Br, its embedded blocksDp,q, each containing diagonally
repeated blockTd1 and ultimately diagonally repeated scalars τd2 . After all, the MATLAB command
for the construction of a Toeplitz matrix requires only the first row and column as argument. This
suggests a compressed format, where only one copy of the diagonally repeated value is stored.

Whereas in the standard formats, indices i, j ∈ [0, n) are accompanying the values v, matrices C
andM can be indexed using r ∈ [0,mz), p, q ∈ [0, 3) and |d1|, |d2| < mxy. Before multiplications
in this format can be defined, relations between regular indices (i, j) and the novel indices are first
required. Additionally an index ordering needs to be chosen in order to completely define the matrix
format.

4.3.1 Index set relations

Fortunately, it is possible to relate matrix row i and column j to a value in the compressed format
and vice versa.

First, let it be evident that

j = 3m2
xyr +m2

xyq +mxyc1 + c2, (4.10)
i = 3m2

xyr +m2
xyp+mxyr1 + r2, (4.11)

where c1, c2 ∈ [0,mxy) respectively select a column of T-blocks within a particular Dp,q and a
scalar column therein. Analogously, let r1, r2 ∈ [0,mxy) select a block and scalar row.

Secondly, use the “diagonal equals column minus row” principle to deduce that the diagonal repe-
tition of a value appears on one global diagonal only. By (4.10) and (4.11),

j − i = m2
xy(q − p) +mxy(c1 − r1) + (c2 − r2) = m2

xy(q − p) +mxyd1 + d2. (4.12)

Note that (Td1)r2,0 = τ−d2 and (Td1)0,c2 = τd2 . Since Td1 has sizemxy ×mxy, deduce that scalar

26 Eindhoven University of Technology

4.3. Methods using Toeplitz diagonal compression

or block dl can be found in the following (block) rows and columns:

cl −mxy < dl ≤ cl, (4.13)
−rl ≤ dl < mxy − rl, (4.14)

for l = 1, 2.

Recalling the desire to order the data in such a way that linear contiguous access patterns are
achieved, such an ordering must now be found. Naturally, one may assume vector entries to al-
ready occupy a linear contiguous memory region. In addition, to ensure the essential (periodically)
linear addressing scheme, the values in the compressed format need an ordering to cluster consec-
utively needed positions. For example, non-zeros in the CSR format are, in ascending order, sorted
on row and then on column . Generally, linear or contiguous memory access patterns are achieved
most when sorting the values from coarse towards fine indices.

This suggests sorting on r, followed by p. Considering the coarse towards fine suggestion, the
sorting should be continued with q, d1 and d2 (Section 4.3.3). Some improvements in the ordering
of matrix values (4.3.4) and input vector (4.3.5) will be made to optimize the access patterns in both.

Refer to Section 2.3 to recall that all blocksBr are full. Following the idea of Section 2.3.3, conclude
that each combination of r, p, q, d1 and d2 defines the position of a non-zero in the stored matrix
mat uniquely. Accordingly, each combination of indices can be completely reconstructed from the
position in the matrix value vector, given a freshly obtained ordering.

4.3.2 Memory requirement analysis

Performing an analysis on the amount of memory saved by opting for the aforementioned format
is not a laborious process. After all, every combination of these novel indices points to a non-zero,
implying mat has length 9mz(2mxy − 1)2, with the corresponding memory requirement of

N ′
CM := 144mz(2mxy − 1)2 (4.15)

bytes for complex values with double precision for both the real and imaginary part.

Contrasting (4.15) with the current employment storage scheme (2.19) results in a memory deploy-
ment efficiency of

ηmxy =
N ′

CM

NCM
=

(
2mxy − 1

m2
xy

)2

≤ 4

m2
xy

,

making this format increasingly relatively economical whenmxy grows large. The total storage cost
then sums up to to

N ′
tot := 2N ′

CM +NG = 2ηmxyNCM +NG = 48n(2ηmxym
2
xymz) ≤ 48n(8 +mz).

ASML Holding N.V. 27

Chapter 4. SpMVs with nested Toeplitz blocks

mz

150 175 200 225 250

mxy

7 49.46 MiB 57.70 MiB 65.95 MiB 74.19 MiB 82.43 MiB
η7 ≈ 0.0704 3.48 MiB 4.06 MiB 4.64 MiB 5.22 MiB 5.80 MiB

9 135.15 MiB 157.68 MiB 180.20 MiB 202.73 MiB 225.25 MiB
η9 ≈ 0.0440 5.95 MiB 6.95 MiB 7.94 MiB 8.93 MiB 9.92 MiB

11 301.60 MiB 351.86 MiB 402.13 MiB 452.39 MiB 502.66 MiB
η11 ≈ 0.0301 9.08 MiB 10.60 MiB 12.11 MiB 13.63 MiB 15.14 MiB

13 588.34 MiB 686.39 MiB 784.45 MiB 882.51 MiB 980.56 MiB
η13 ≈ 0.0219 12.87 MiB 15.02 MiB 17.17 MiB 19.31 MiB 21.46 MiB

15 1.02 GiB 1.19 GiB 1.36 GiB 1.53 GiB 1.70 GiB
η15 ≈ 0.0166 17.32 MiB 20.21 MiB 23.10 MiB 25.99 MiB 28.87 MiB

17 1.68 GiB 1.96 GiB 2.24 GiB 2.52 GiB 2.80 GiB
η17 ≈ 0.0130 22.43 MiB 26.17 MiB 29.91 MiB 33.65 MiB 37.39 MiB

19 2.62 GiB 3.06 GiB 3.50 GiB 3.93 GiB 4.37 GiB
η19 ≈ 0.0105 28.20 MiB 32.90 MiB 37.60 MiB 42.30 MiB 47.00 MiB

21 3.91 GiB 4.56 GiB 5.22 GiB 5.87 GiB 6.52 GiB
η21 ≈ 0.0086 34.63 MiB 40.40 MiB 46.17 MiB 51.94 MiB 57.71 MiB

Table 4.1: Sampled memory reduction for 150 ≤ mz ≤ 250 and 7 ≤ mxy ≤ 21. Each cell
contains the current (above) and new (below) required memory to store C orM.

Note that the memory efficiency solely depends onmxy rather thanmz . Formxy = 7, the Toeplitz
compressed data is already more than one order of magnitude cheaper to store than the CSR data.
Even two orders of magnitude can be achieved formxy = 21.

4.3.3 Ordering with grouped nested Toeplitz blocks

The ordering of the non-zeros where the indices are sorted on r, p, q, d1 and d2 consecutively, gives
rise to the following identity. Let s be the position in the formatted value list mat. Then

s = 9(2mxy−1)2r+3(2mxy−1)2p+(2mxy−1)2q+(2mxy−1)(d1+mxy−1)+(d2+mxy−1).
(4.16)

This ordering guarantees that the non-zeros of each Dp,q occupy a contiguous region in memory.

In order to let each thread process one row i of the matrix at a time in a parallel scalable algorithm,
a collapsible iteration space I must be found, depending on the novel indices, such that each i is
a unique element of I . This iteration space I follows from (4.11), since each i can be written as a
dependence with indices r, p, r1 and r2. Hence, each i can be expressed as an element

(r, p, r1, r2) ∈ I = [0,mz)× [0, 3)× [0,mxy)
2. (4.17)

Subsequently with (4.14), use r1 and r2 to find which d1 blocks and d2 scalars appear on the respec-
tive (block) rows. This ultimately determines the set of input memory addresses. Unfortunately,

28 Eindhoven University of Technology

4.3. Methods using Toeplitz diagonal compression

since not all diagonally repeated scalars can be found on a row, this will not be a contiguous set of
integers. The following figure shows the access behavior of this algorithm, which is hereby baptized
as CMPT (C orM Parallel algorithm using Toeplitz compression.)

C x y

=

mat in out

0 0 0

225 27 27

D1,0 D1,1

D2,0 D2,1 D2,2

D1,2

Figure 4.2: Mathematical (left) and digital (right) representation of the accesses of one thread for
mxy = 3 andmz = 1.

Note that the input vector addressing is perfectly linear and contiguous. The accesses in mat,
however, are quite scattered. Since Figure 4.2 shows that the accesses in eachTd1 (of sizemxy×mxy)
are linear and contiguous, and each row contains 3m2

xy non-zeros (Section 2.3.1), the matrix access
memory addresses consists of 3mxy contiguous subsets.

The next section will account for improving the accesses in the matrix data, by reordering it.

4.3.4 Improving the matrix access pattern

When setting q as the last sorting attribute, each scalar diagonal d2 of block diagonal d1 of blocks
Dp,0, Dp,1 and Dp,2 are grouped. The matrix non-zeros for these three blocks are now interleaved.
The identity for s then becomes

s = 9(2mxy−1)2r+3(2mxy−1)2p+3(2mxy−1)(d1+mxy−1)+3(d2+mxy−1)+q. (4.18)

Note that the collapsible iteration space in the previous section does not change. Again, by using
(4.11) and (4.14), a new algorithm is obtained (CMPT2) which uses the following access pattern:

ASML Holding N.V. 29

Chapter 4. SpMVs with nested Toeplitz blocks

C x y

=

mat in out

0 0 0

225 27 27

D1,0 D1,1

D2,0 D2,1 D2,2

D1,2

Figure 4.3: Mathematical (left) and digital (right) representation of the accesses of one thread for
mxy = 3 andmz = 1.

Overall, this creates improved matrix value accesses for each row, by eliminating the separation by
q, improving the patterns in the previous section. Now there are onlymxy linear contiguous access
subsets, a substantial improvement over the previous algorithm. However, accessing the needed
values of mat in ascending order means a highly irregular access pattern in the input vector. After
all, q is the last sorting index, implying frequently occurring increments of m2

xy. Yet, there exists a
vector permutation resulting in a linear access pattern in the input vector.

4.3.5 Permuting the input vector

Considering Figure 4.3 in the previous section, one can see that the access pattern in the input
vector is systematic, albeit being non-linear. This pattern emerged when q was set to be the last
matrix value sorting attribute. Reproducing that for (4.10), one can define a permutation σ such
that

σ(j) = σ(3m2
xyr +m2

xyq +mxyc1 + c2) = 3m2
xyr + 3mxyc1 + 3c2 + q. (4.19)

and thereby also a parallel algorithm which copies a vector x to x′ subject to this permutation, i.e.
setting x′σ(j) = xj for all (r, q, c1, c2) ∈ [0,mz) × [0, 3) × [0,mxy)

2. In the following figure, the
access behavior of yet a new variant (CMPT3) is displayed.

30 Eindhoven University of Technology

4.4. Performance analysis

C x y

=

mat in out

0 0 0

225 27 27

D1,0 D1,1

D2,0 D2,1 D2,2

D1,2

Figure 4.4: Mathematical (left) and digital (right) representation of the accesses of one thread (red)
formxy = 3 andmz = 1.

The section concludes with this algorithm. It features linear contiguous accesses in the input vector,
and a linear pattern consisting ofmxy contiguous parts in the matrix data.

In Chapter 6 it will become clear that quite a portion of the SpMVs of the IDR method will be
performed on the columns of an auxiliary matrix, implying copying a matrix column to a vector is
required in any case. This copy method (also parallel) can therefore incorporate this permutation
to save time.

4.4 Performance analysis

In order to find the parallel algorithm with the highest performance, two different benchmarks will
be made: one where the size parameter mxy varies and one for a varying mz . These nanosecond
precision benchmarks are obtained by using Linux timespec structs around the parallel region of
each method. Naturally, all benchmarks will be obtained on the same CPU model.

To display parallel scalability of the algorithms, also a benchmark will be made with varying amount
of OpenMP threads. This section will close with a profile report for a few parameter choices. This
is a report made by the Intel® VTuneTM tool, which can feedback a spectrum of runtime statistics:
cache hit/miss rates, threads used, times for invoked voids, etc.

ASML Holding N.V. 31

Chapter 4. SpMVs with nested Toeplitz blocks

4.4.1 Benchmarks

3.78e6 1.03e7
2.31e7

4.50e7

7.97e7

1.32e8

2.05e8
3.06e8

Figure 4.5: Absolute and relative execution time for different mxy and fixed mz = 175, obtained
on a single Intel® Xeon® E5-2660 v4 CPU (14 OpenMP threads). The bars in the top graph are
labeled with nnz(C).

As predicted in Section 2.3.3 and as seen in Figure 4.5, increasing the parameter mxy strongly
influences the execution time of a matrix-vector product, since the non-zeros of C and M have
a fourth order dependency on mxy. Note that with Toeplitz diagonal compression, the execution
time is already reduced by around 25% of the original time, and that introducing this format resulted
in the best improvement between the algorithm in this chapter. From the differences in execution
time between the CMPT family algorithms, conclude that facilitating linear data access patterns
(also called unit stride accessing) also pays off in performance, because CMPT3 has improved access
patterns over CMPT and CMPT2. The top relative times lie around 60% and 65% of the parallel
CSR method (CMPCSR, Section 4.2). Frommxy = 9 onwards the relative time gain is more or less
constant, which hints to good employability for high parameter choices.

32 Eindhoven University of Technology

4.4. Performance analysis

1.98e7
12.31e7

2.64e7
2.96e7

3.29e7

Figure 4.6: Absolute and relative execution time for differentmz and fixedmxy = 11, obtained on
a single Intel® Xeon® E5-2660 v4 CPU (14 OpenMP threads). The bars are labeled with nnz(C).

Figure 4.6 displays linear growth in execution with respect to mz , which can be explained by the
linear dependency of nnz(C) on mz (Section 2.3.3). The relative time gain for the tailored meth-
ods are very constant for different choices for mz . This implies a good employability for large
choices of mz , in addition to extreme mxy. Again, the top time factors lie between 60% and 65%.
Clearly the algorithm described in Section 4.3.5 has the highest performance. Conclude that the unit
stride accessing as well as lowering the memory footprint are worth researching when designing an
algorithm to boost performance.

ASML Holding N.V. 33

Chapter 4. SpMVs with nested Toeplitz blocks

4.4.2 Parallel scalability

Execution time (1000 SpMVs)

1 2 4 8 14

OpenMP Threads

0

10

20

30

40

50

T
im

e
(s

)

CMPCSR
CMPT
CMPT2
CMPT3

Relative time to sequential execution

1 2 4 8 14

OpenMP Threads

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

T
im

e
fa

ct
or

Figure 4.7: Absolute and relative execution time formxy = 11 andmz = 175, for different amounts
of OpenMP threads, obtained on a single Intel® Xeon® E5-2660 v4 CPU (max. 14 OpenMP
threads). The time factors on the bottom graph are obtained by dividing the parallel time by its
sequential execution time, multiplied by the amount of OpenMP threads.

Figure 4.7 clearly shows that operating on a more economic matrix format benefits the parallel
scalability, since the three novel algorithms (the CMPT family) have competing time factors, yet
they are a significant reduction on those of CMPCSR. After all, the figure shows that only about
35% of the time of a single execution is additionally needed to perform fourteen SpMVs with the
CMPT3 algorithm with fourteen threads. This contrasts with the 80% additional needed time for
CMPCSR.

4.4.3 Profile reports

Below some runtime statistics, gathered with the Intel® VTuneTM profiler, are listed for four extreme
parameter choices (low and high for both mxy and mz) to display lower and higher bounds for

34 Eindhoven University of Technology

4.5. Parallel heat diffusion simulation using FDMs

memory usage. Only four profiles were made, because they generally demand a respectable amount
of storage space to store and quite some time to create.

3.24e6 5.40e6

2.63e8

4.38e8

Figure 4.8: Cache miss ratio and average load latencies for 1000 SpMVs, four extreme parameter
choices and 14 OpenMP threads.

Exceptionally enough, formxy = 7 all loads were done within the CPU cache, even for the regular
CSR method. As Figure 4.8 also shows, the extreme choice of mxy = 21 implies a significantly
more efficient cache ratio for the tailored CMPT algorithms as opposed to CMPCSR. The CMPT
loads also have at least the same, but mostly lower latencies than CMPCSR. Conclude that across the
board, the custom algorithms exploit the CPU better, which is an explanation for the benchmarks
in the previous sections.

4.5 Parallel heat diffusion simulation using FDMs

The Toeplitz compression researched in this chapter to tailor a proven pair of economical matrix
format and SpMV algorithm can be modified to suit more differential equation solving purposes.
After all, matrices with (nested) Toeplitz blocks frequently follow from the finite-difference meth-
ods, where the discretization points form a lattice.

ASML Holding N.V. 35

Chapter 4. SpMVs with nested Toeplitz blocks

Consider for example the simulation of a heat diffusion problem in time and three-dimensional
space. Let Ω be a cube and let u(x, t) denote the temperature for x ∈ Ω and t ≥ 0. The heat
diffusion in the cube is described by the computational scheme

u(x, t+∆t)− u(x, t)
∆t

=α(x)
(
u(x+ ê1, t)− 2u(x, t) + u(x− ê1, t)

(∆x)2
+

u(x+ ê2, t)− 2u(x, t) + u(x− ê2, t)
(∆y)2

+ (4.20)

u(x+ ê3, t)− 2u(x, t) + u(x− ê3, t)
(∆z)2

)
,

for some real thermal diffusivity function α : R3 → R+, spatial step sizes ∆x, ∆y and ∆z, time
step size ∆t, and where êk denotes a standard basis vector scaled to the specific step size in that
direction, i.e. ê1 = (∆x)e1.

Assume a regular three-dimensional lattice in Ω consisting ofm×m×m discretization points and
let h be the distance between any pair of neighboring points. Then by (4.20), using the second order
central difference approximation, an initial heat function u(x, 0), time increments∆t and Dirichlet
boundary conditions, one obtains{

u(x, t) = u(x, 0) x ∈ ∂Ω, t > 0,

u(x, t+∆t) = u(x, t) + (∆t)α(x)
h2

(
− 6u(x, t) +

∑3
k=1 u(x± êk, t)

)
x ∈ Ω \ ∂Ω.

Labeling the discretization points systematically, effectively putting the initial function values into a
vector u(0), time iterations of this heat diffusion problem can be computed by means of computing
u(t+∆t) = Lu(t), where L is a matrix following from above, which has a three-fold nested Toeplitz
block property. By the computational scheme above, however, one can conclude that this problem
can be simulated without explicitly storing L, because only a couple of (block) diagonals are non-
zero. The computations can be performed as follows, given an initial heat distribution u and a
vector α containing the diffusivity for each point in the lattice:

t← 0
while t < tmax do

Compute v : vi =

{
ui±1 + ui±m + ui±m2 − 6ui for internal points,
0 for boundary points.

(i)

w← v⊙ α (ii)
u← u+ ∆t

h2w (iii)
t← t+∆t

end while

Each of the three vector operation steps in the WHILE-loop can be performed in parallel. The
element-wise product and the addition of changes in u are each done with a single instruction, but
the computation of v is rather irregular. In addition to having a condition, the two resulting cases
have a different expected computation time.

36 Eindhoven University of Technology

4.5. Parallel heat diffusion simulation using FDMs

Figure 4.9: Benchmarks of parallel finite-difference heat diffusion simulation with Dirichlet bound-
ary conditions for various m, obtained on two Intel® Xeon® E5-2660 v4 CPUs (28 OpenMP
threads).

Note that almost all of the computation time is indeed used for the first operation in the WHILE-
loop, which is the computation of the diffusion in u. Even though the concerned operation consists
of just seven additions per vector position, the execution time of this part is proportionally large
compared to the other two steps. This can be explained by the IF-statement which distinguishes
boundary and non-boundary points, and the fact that u is accessed quite irregularly, namely at
positions±1,±m,±m2 relative to those of v. The next chapter will show the importance of linear
input accessing and the possible achievable speed gain.

For differential equations that result in nested Toeplitz matrices or blocks, it is very fruitful to look
at discretization schemes where the amount of non-zero diagonals can be systematically counted.
The very crux of this chapter therefore is that exploiting such schemes to design a cheaper matrix
format and an associated parallel SpMV algorithm has proven to improve the speed by lowering
the memory footprint, rendering them scalable for larger computational problems.

ASML Holding N.V. 37

Chapter 5

SpMVs with equidistant diagonals

The previous chapter has shown that the ability to compress matrix data and design an SpMV
algorithm thereon can benefits performance. Unfortunately, as already stated in Section 2.3, every
non-zero of G is generally unique, implying no compression can be used in this case. However, the
previous chapter also conveyed that it is worthwhile to research optimization of matrix and vector
value accesses. This confirmed the content of Section 3.3 and will be the focus of the methods
presented in this chapter.

This chapter will therefore also commence with a standard parallel method on CSR formatted
matrices (Section 5.1), from which improvements will be made, common to those in Section 4.2.
Since G has a diagonal structure, also element-wise vector-vector products can be exploited to
design cache-efficient SpMV algorithms (Section 5.2).

5.1 Row-parallel algorithms

Recalling Section 2.3, G has a fixed amount of 3mz non-zeros in each row, and since the diagonals
all have the same fixed distance between them, the non-zeros too have a fixed distance between
them. From the structure of G it follows that when linearly accessing the matrix values mat, there
are accesses in the input vector with increments of m2

xy, starting from a certain offset depending
on the row i.

5.1.1 Parallel CSR multiplication

Like in the previous chapter, one must analyze the matrix structure and come up with a collapsible
iteration space I such that each matrix row i is represented by a unique element of I , and such that
the matrix data and input vector addresses can be constructed.

Since the distance between the non-zero diagonals is m2
xy, gij is non-zero if and only if j − i is a

multiple of m2
xy. This will aid in constructing an iteration space for this matrix structure. The row

38 Eindhoven University of Technology

5.1. Row-parallel algorithms

i and column j of a matrix can therefore respectively be expressed as

i = m2
xyi

′ + k, (5.1)
j = m2

xyj
′ + k, (5.2)

with i′, j′ ∈ [0, 3mz) and k ∈ [0,m2
xy).

Consider once more Figure 2.2. Hence instead of passing i ∈ [0, n) to a thread in a parallel algo-
rithm, one should pass i′ and k. This way, the row i of the matrix can be reconstructed. Moreover,
the needed input vector addresses are given by increasing matrix column j from k up to n− 1 with
increments m2

xy. Conclude that the iteration space I = [0, 3mz) × [0,m2
xy) is satisfactory for a

parallel algorithm, which will bear the name GPCSR (G Parallel algorithm using the CSR format).

G x y

=

mat in out

0 0 0

144 24 24

Figure 5.1: Mathematical (left) and digital (right) representation of the accesses of one thread (red)
formxy = 2 andmz = 2.

Note that the accesses in the input vector are not optimal yet similar to those in Section 4.3.4.
Luckily the same permutation used in Section 4.3.5 can be used to remedy this.

5.1.2 Permuting the input vector

Equivalently to the previous chapter, i and j have already been dissected to accommodate systematic
counting with a collapsible iteration space I (5.1). The dissection of j now becomes clear, for those
j needed by a thread processing row i differ by m2

xy, similarly to those in Section 4.3.4. Using a
similar permutation, define

σ(j) = σ(m2
xyj

′ + k) = 3mzk + j′, (5.3)

ASML Holding N.V. 39

Chapter 5. SpMVs with equidistant diagonals

such that a parallel vector permutation method, which sets x′σ(j) = xj for all such

(j′, k) ∈ I = [0, 3mz)× [0,m2
xy).

Now, each thread has a contiguous linear accesses pattern, because for each row i, gij is non-zero if
and only if σ(j) ∈ [3mzk, 3mz(k + 1)). The resulting algorithm, GPPIN (G Parallel algorithm with
Permuted INput), has the following access behavior.

G x y

=

mat in out

0 0 0

144 24 24

Figure 5.2: Mathematical (left) and digital (right) representation of the accesses of one thread (red)
formxy = 2 andmz = 2.

A final albeit small variant on this algorithm can be made by grouping the matrix rows which have
the same offset.

5.1.3 Offset clustering

Using the same permutation on i results in

σ(i) = σ(m2
xyi

′ + k) = 3mzk + i′, (5.4)

and reordering the matrix values on rows σ(i) instead of i (used in regular CSR) will result in slightly
more regular use of the (still permuted) input vector. This gives rise to a GPPIN variant, which will
be aptly named GPPIN2.

40 Eindhoven University of Technology

5.2. Element-wise product method

G x y

=

mat in out

0 0 0

144 24 24

Figure 5.3: Mathematical (left) and digital (right) representation of the accesses of two threads (red
and green) formxy = 2 andmz = 2.

In Figure 5.3 one can see that if mat is now processed linearly, so will the input vector.

5.2 Element-wise product method

The diagonal structure of G also suggests a radically different way of multiplying it with a vector.
Consider a diagonal matrix D, and let its diagonal in vector form be denoted by diag(D) = d.
Then the product D with a vector x can be performed with a single highly parallelizable element-
wise product d⊙ x.

This concept can be generalized to fit a matrix with diagonals separated by a fixed distance. Firstly
however, the non-zeros in each diagonal needs to be clustered for optimal accessing (Section 3.3),
which requires a sensible format.

Apart from the main diagonal, every diagonal has a length smaller than n. Yet the fixed distance
between the diagonals poses a way to concatenate them for a rather facile SpMV algorithm. Con-
sider a sub-diagonal, i.e. with MATLAB index d < 0. Then that diagonal reaches the bottom of
the matrix in column n + d − 1. Fortunately, due to the fixed distance between the diagonals, a
diagonal starts at the top of the matrix in the very next column.

Concatenating these two diagonals results in a vector of length n which can be multiplied element-
wise with the input vector. Since this concatenated diagonal started from the left at row i = −d,
one must apply an i-fold circular shift of the outcome to the output vector, which is achieved by

ASML Holding N.V. 41

Chapter 5. SpMVs with equidistant diagonals

setting i equal to j plus an offset with modulus n.

If one can order the non-zeros such that all those concatenated diagonals starting at

i = 0,m2
xy, 2m

2
xy, . . . , (3mz − 1)m2

xy

appear in order, one can, by means of element-wise products and incrementing at circular positions,
implement it such that the matrix values are accessed linearly and for any such diagonal, process
the input vector linearly. Even the ‘one thread per output position at the same time’ paradigm is
maintained, for one concatenated diagonal is processed at a time.

This algorithm, baptized as GPDIAG (G algorithm using Parallel DIAGonal processing), has the fol-
lowing stride pattern.

G x y

=

mat in out

0 0 0

144 24 24

Figure 5.4: Mathematical (left) and digital (right) representation of the accesses of a size three team
processing a diagonal.

This algorithm differs substantially from the other algorithms presented in this chapter. Here, a
thread treats one non-zero at a time, instead of processing a whole matrix row. Since the algorithm
is implemented such that the team is re-created for every diagonal, i.e. the team is working on
exactly one diagonal simultaneously, the algorithm will not have multiple threads outputting to the
same output vector position. This way, synchronization overhead is minimized.

42 Eindhoven University of Technology

5.3. Performance analysis

5.3 Performance analysis

The benchmarks and profile reports in this section are obtained in the same way as those in the
previous chapter.

5.3.1 Benchmarks

1.35e7
2.23e7

3.34e7
4.66e7

6.20e7

7.97e7

9.95e7
1.22e8

Figure 5.5: Absolute and relative execution time for differentmxy and fixedmz = 175, obtained on
a single Intel® Xeon® E5-2660 v4 CPU (14 OpenMP threads). The bars are labeled with nnz(G).

As seen in Figure 5.5, the execution time has super-linear growth in parameter mxy, which can be
explained by the expression for nnz(G) in Section 2.3.3. The tailored methods maintain a constant
relative time gain opposed to GPCSR across the board, even for large choices of mxy, meaning
that they do not lose their benefit for high parameter choices. However, the last presented method
(GPDIAG, Section 5.2) even seems to display improvements in the relative time gain when mxy

grows large. Interesting is to see that grouping the matrix data for a team iteration (GPPIN2,
Section 5.1.3) does not seem to pay off in performance and is even slightly outperformed byGPPIN.
Conclude that ordering the matrix and input vector data such that unit stride accessing is achieved

ASML Holding N.V. 43

Chapter 5. SpMVs with equidistant diagonals

for individual threads is satisfactory, as opposed to additionally grouping the matrix data for a whole
team. Overall the best times lie between 50% and 62% of the general parallel CSR method.

2.45e7
3.34e7

4.36e7

5.51e7

6.81e7

Figure 5.6: Absolute and relative execution time for differentmz and fixedmxy = 11, obtained on
a single Intel® Xeon® E5-2660 v4 CPU (14 OpenMP threads). The bars are labeled with nnz(G).

As seen in Figure 5.6, the growth of the execution time is super-linear in parametermz (again, this
can be explained by the expression for nnz(G), even though it displays less erratic growth than
that of parametermxy. Regardless of the choice for this parameter, the relative time gain is almost
perfectly constant. This again implies that the algorithms do not lose their benefit for extreme
choices of mz . This benchmark shows that also for mz , the GPPIN2 algorithm (Section 5.1.3)
does not pose any improvements upon GPPIN, its original (Section 5.1.2).

The speed gains for this SpMV are purely achieved by facilitating unit stride data accessing, which,
as shown in the two figures above, boosts performance by a factor of almost two.

44 Eindhoven University of Technology

5.3. Performance analysis

5.3.2 Parallel scalability

Execution time (1000 SpMVs)

1 2 4 8 14

OpenMP Threads

0

20

40

60

80

100

120

140

T
im

e
(s

)

GPCSR
GPPIN
GPPIN2
GPDIAG

Relative time to sequential execution

1 2 4 8 14

OpenMP Threads

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

T
im

e
fa

ct
or

Figure 5.7: Absolute and relative execution time formxy = 11 andmz = 175 and different amount
of OpenMP threads, obtained on a single Intel® Xeon® E5-2660 v4 CPU (max. 14 OpenMP
threads). The time factors on the bottom graph represent how many sequential executions fit into
the amount of OpenMP threads times the corresponding execution time.

The figure above shows that even though an algorithm performs better in terms of absolute execu-
tion time, it might not scale as well in parallel. After all, even though GPDIAG is outperformed by
the GPPIN family for smaller sizes (as also seen in the previous section), GPDIAG is more scal-
able than the other algorithms. This confirms the added value of the time factor metric for parallel
algorithms. Also note that linear access patterns in the data benefit the scalability.

ASML Holding N.V. 45

Chapter 5. SpMVs with equidistant diagonals

5.3.3 Profile reports

9.92e6 2.76e7 8.93e7 2.48e8

Figure 5.8: Cache miss ratio and average load latencies for 1000 SpMVs, four extreme parameter
choices and 14 OpenMP threads.

This Figure shows the demerits of exceptionally large matrix data. The cache miss ratios and the
average latencies do not hold a candle to those of the previous chapter, where a more economic
format was introduced. However, since this chapter has emphasized on facilitating unit stride pro-
cessing, the benefit of it becomes apparent. Even though all but the last algorithm proposed in this
chapter are based on CSR methods with improved access patterns, the cache miss ratio and load
latency plummet in comparison to those of GPCSR. Exceptional is the cache miss ratio behavior
of GPDIAG, which only seems to improve for larger sizes, which explains the improving relative
execution times in the benchmarks in the previous sections.

46 Eindhoven University of Technology

Chapter 6

Parallelizing the IDR method

In the previous chapters, parallel SpMV algorithms were presented. Naturally these are vital for any
parallel linear solver. After all, each iteration step of any linear solver will cost at least one (sparse)
matrix-vector product, and the time spent on computing these products forms a vast majority of the
total time for this particular system, compared to other steps involved in linear solving, e.g. vector
addition, vector scaling and inner products.

This chapter will account for incorporating these parallel algorithms in a linear solving method, as
well as parallelizing the other solving steps. The choice of Krylov subspace solver falls to IDR(s)
for larger or ill-conditioned systems encountered during the time spent at ASML. This is because it
is a Krylov-type method for general matrices, i.e. it does not assume matrix properties like positive-
(semi)definiteness or symmetry, and less auxiliary matrices and vectors are used compared to other
Krylov-type methods, like BiCG-STAB or GMRES [14], making it memory-friendly.

Originally proposed by Sonneveld in 1980 as the Induced Dimension Reduction method, it has been
elaborated by Sonneveld and VanGijzen [14] and in the process baptized as IDR(s), where s denotes
the algorithm’s parameter. A variant (IDR(s)-biortho) recently proposed by its inventors has been
shown to compete with and often outperform the original (distinguished as IDR(s)-proto) and
BiCG-STAB [13], since it uses less operations and has superior numerical stability. Therefore the
thesis focuses on building and benchmarking a parallel version of this linear solving algorithm.

6.1 IDR as Krylov subspace solver

Krylov-type methods are iterative solving algorithms for linear systems Ax = b. In this work,
A = C − GM, as used in the previous chapters. This matrix, as well as right-hand side b, follow
from the discretization (Chapter 2). A solution x∗ ∈ Cn to the system is desired.

Krylov-type methods, given an initial guess x(0), produce iterates x(k) satisfying

r(k) = b− Ax(k) ∈ Kk(A, r(0)) := ⟨r(0),Ar(0),A2r(0), . . . ,Akr(0)⟩, (6.1)

where Kk denotes the Krylov subspace. A Krylov-type method then updates x(k) by adding a

ASML Holding N.V. 47

Chapter 6. Parallelizing the IDR method

vector from this subspace. Some methods update the iterate such that it minimizes the norm of
a vector. However, this is not always possible, as it depends on specific properties (symmetry,
positive-(semi)definiteness).

Definition 6.1. Let a positive-definite matrix A ∈ Cn×n be given, i.e. 0 < Re(vHAv) for all v ∈ Cn,
v ̸= 0. Then the vector norm || · ||A, induced by A, is given by

||v||A =
√
Re(vHAv).

Where the CG family of solvers minimizes ||x∗ − x(k)||A over Kk and GMRES minimizes ||x∗ −
x(k)||2 over Kk [12], IDR(s) is based on the following theorem [13, 14], which allows the method
to force residuals into a subspace of decreasing dimension.

Definition 6.2. Let a subspace U ⊂ Cn and a matrix An×n be given. Then U is A-invariant if and only if

Au ∈ U,

for all u ∈ U .

Theorem 6.1 (IDR). Let A be a matrix in Cn×n, v any non-zero vector in Cn and define G0 := Kn(A, v).
Let also S be a proper subspace of Cn such that S and G0 do not share a non-trivial A-invariant subspace. Now
define a sequence of subspaces Gj with j = 1, 2, . . . as

Gj = (I− ωjA)(Gj−1 ∩ S),

where the ωj are non-zero scalars. Then

(i) Gj ⊂ Gj−1 for all j = 1, 2,

(ii) dimGj = 0 for some j ≤ n.

Proof. Since G0 equals the full Krylov space Kn(A, v),

G1 = (I− ω1A)(G0 ∩ S) ⊂ (I− ω1A)G0 ⊂ G0.

Assume Gj ⊂ Gj−1 for some j > 0, and let u ∈ Gj+1. Then there exists a w ∈ Gj ∩ S such that
u = (I − ωj+1A)w. Then by Gj ⊂ Gj−1, also w ∈ Gj−1 ∩ S , i.e. (I − ωjA)w ∈ Gj . Hence,
Aw ∈ Gj , and thus it follows that (I− ωj+1A)w = u ∈ Gj . Conclude that Gj+1 ⊂ Gj , and that by
induction (i) has been shown.

From Gj+1 ⊂ Gj one can distinguish two cases: dimGj+1 < dimGj and dimGj+1 = dimGj .
Consider the latter of the two cases. Note that it can solely occur if Gj ∩ S = Gj , otherwise
dimGj ∩ S < dimGj and therefore dimGj+1 < dimGj . Deduce from Gj ∩ S = Gj that Gj ⊂ S,
consequently Gj+1 = (I−ωj+1A)(Gj ∩S) = (I−ωj+1A)Gj , and finally that Gj is invariant under
A. Since Gj ⊂ S and Gj ⊂ G0 and that G0 cannot share a non-trivial A-invariant subspace with S ,
Gj = {0} follows.

48 Eindhoven University of Technology

6.1. IDR as Krylov subspace solver

In total, the second case can only occur if dimGj = 0. Therefore, the dimension is reduced with
each step (the first case described above) until dimGj = 0. By

dimKn(A, v) = dim⟨v,Av,A2v, . . . ,Akv⟩ ≤ n,

the existence of a j ≤ n such that dimGj = 0 follows.

The method’s parameter s equals the co-dimension of S , i.e. dimS = n− s.

Krylov-type methods use a recurrence to iterate. From (6.1) it follows that r(k) can be expressed
as Φk(A)r(0), where Φk is a complex polynomial of degree k. From this polynomial sequence
(Φ0,Φ1, . . . ,Φk, . . .) describing the residuals in the Krylov subspaces, a sequence for x(k) can be
found with

A(x(k+1) − x(k)) = r(k) − r(k+1) =
(
Φk(A)− Φk+1(A)

)
r(0). (6.2)

Therefore, the recurrences of a Krylov-type method are of the form

r(k+1) = r(k) − αAv(k) −
l̂∑

l=1

γl
(
r(k−l+1) − r(k−l)

)
, (6.3)

x(k+1) = x(k) + αv(k) −
l̂∑

l=1

γl
(
x(k−l+1) − x(k−l)

)
, (6.4)

with v(k) ∈ Kk(A, r(0)) \ Kk−1(A, r(0)). Here, l̂ is the depth of the recurrence. This recurrence
depth can be constant (short recurrence) or equal to k (long recurrence). Long recurrence methods
usually converge fast in terms of the amount of iterations, yet to implement such a method a vector
needs to be additionally stored with each iteration. Long recurrencemethods like GMRES are there-
fore less memory-friendly. Consequently, this renders short recurrence methods more attractive to
implement.

The IDR(s) recurrence follows from the application of Theorem 6.1 on the recurrences (6.3) and
(6.4). This linear solving method produces residuals that are forced to be in the subspaces Gj , where
j increases (though not strictly) with k. Recall from the theorem that

r(k+1) ∈ Gj+1 ⇔ r(k+1) = (I− ωj+1A) v(k),

with v(k) ∈ Gj ∩ S . Choose

v(k) = r(k) −
l̂∑

l=1

γl
(
r(k−l+1) − r(k−l)

)
, (6.5)

to find the Krylov recurrence

r(k+1) = r(k) − ωj+1Av(k) −
l̂∑

l=1

γl
(
r(k−l+1) − r(k−l)

)
.

ASML Holding N.V. 49

Chapter 6. Parallelizing the IDR method

Since S has dimension n− s, S can be expressed as a null-space, i.e. S = N (PH), with P ∈ Cn×s

of rank s, which is how S is digitally represented in the algorithm [13, p. 5:10]. Since v(k) ∈ S ,

PHv(k) = 0. (6.6)

Substitute (6.5) in (6.6) to see that

PHv(k) =
l̂∑

l=0

βlPHr(k−l) = 0,

where β0 = 1 − γ1, βl = γl − γl+1 for l = 1, 2, . . . , l̂ − 1, and βl̂ = γl̂. This yields a small
s× l̂ linear system for the l̂ coefficients γl, which can only possibly have a unique solution if l̂ = s.
Conclude that IDR(s) is a short recurrence method.

6.2 Adaptations for the linear system

In order to implement IDR(s)-biortho for this particular linear system, there are some adaptations
to be made. These adaptations partially explain the source code in Appendix A. Refer to that
appendix for a more technical explanation on the source.

6.2.1 Input arguments

First, implementations of any linear solver generally only take one matrix, A, as input argument
(a possible preconditioner omitted). Since A is not computed explicitly, the adapted solver must
have three matrix input arguments: one each for C, M and G. To have a deeper understanding of
the time proportion used to compute the matrix-vector product with A, each of the three matrix
SpMVs output timings will be collected in the process.

Second, the discretization parametersmxy andmz must be passed to the solver, since they have to
be passed on to, among other things, the SpMV algorithms.

6.2.2 SpMV algorithm integration

Naturally the highest performing algorithms of the previous two chapters will be integrated in the
custom IDR(s) implementation, and must replace the application of A found in the standard solver.
For all problem sizes (except for mxy = 7 perhaps), it is trivial to choose CMPT3 (Chapter 4) and
GPDIAG (Chapter 5). These will therefore be integrated. Caveat: the input for the matrix-vector
product must be permuted according to that of Section 4.3.5 to allow CMPT3 execution. Since all of
the SpMV algorithms output vectors without permutation, no further SpMV algorithm integrating
steps need to be done, except for creating auxiliary vectors to store the intermediate results: the
products with C,M or G and permuted input vectors.

The performance will be compared against a variant which uses CMPCSR and GPCSR, to properly
indicate the gain in performance.

50 Eindhoven University of Technology

6.2. Adaptations for the linear system

6.2.3 Terminology alignment

Mostmathematicians argue that an ‘iteration’ is defined as going through the content of theWHILE-
loop, since the residuals r(k) obtained at the end of the WHILE-loop content are in the Krylov
subspaceKk. This definition implies that every IDR(s) iteration costs s+1multiplications with A,
which is a natural way to describe this linear solver: the higher s is set, the longer it takes to compute
an iterate in Kk, because the s vectors found in each iteration are orthogonalized. However, the
resulting iterate will generally be closer to the solution than those for lower s. During the time spent
at ASML as well as in Sonneveld and Van Gijzen’s IDR(s) MATLAB script, the term ‘iteration’ was
used to describe the time between two modifications in the iterate x(k), which happens s+1 times
in the content of the WHILE-loop. When looking closely at the algorithm in [13, p. 5:10], one can
see that this is similar to counting the amount of multiplications with A. This definition implies that
each walkthrough of the WHILE-loop content consists of s + 1 iterations: one occurs inside the
FOR-loop, looping s times, and one occurs outside. To tackle this ambiguity, the first definition
of ‘iteration’ will be maintained in this work. Yet in the implementation the multiplications with A
will be counted, as well as bounded by an input parameter which specifies the maximum number
of matrix-vector products with A that are allowed before exiting. This is preferable because a mul-
tiplication with A pairs with a modification in the result vector and the residual. Since afterwards
the relative residual norm is checked for tolerance (which could invoke a loop break-out), this al-
lows for a more hands-on control on when the solver terminates. Since s is known, the amount
of WHILE-loop walkthroughs can be calculated if the solver prints the amount of multiplications
with A after exiting.

ASML Holding N.V. 51

Chapter 6. Parallelizing the IDR method

6.3 Performance benchmarks

Figure 6.1: Execution time benchmark and subroutine proportions for IDR(6) obtained on one
Intel® Xeon® E5-2660 v4 CPU, withmz = 175 and 14 OpenMP threads, using CMPCSR-GPCSR
(left stacks) and CMPT3-GPDIAG (right stacks).

First, from Figure 6.1 it can be concluded that when the tailored SpMV algorithms are used, as
opposed to the CSR algorithms, only 60-65% of the time is needed to run IDR(6) up to the same
amount of iterations. Second, the proportions on the bottom tell that the matrix-vector products
with A occupy at least 95% of the IDR(6) total iteration time. This is proportionally large, yet it
can be explained by the fact that A is completely dense, and that multiplications with it costs three
SpMVs each. Third, the sparsity difference between C (or M) and G is on display. Since C and
M have sparsity 1

mz
and G has sparsity 1

m2
xy
, one expects the time proportions for C and M to

increase, which is confirmed by the figure above. Note that formxy = 17, the SpMV time for the
three matrices are approximately equal. This is curious, because equating the two sparsities (which
effectively means nnz(C) = nnz(G)) yields m2

xy = mz = 175, which would imply mxy ≈ 13.
Conclude that the SpMVs with C and M are proportionally faster, which once more displays the
benefit of the economic matrix format imposed in Chapter 4.

52 Eindhoven University of Technology

6.3. Performance benchmarks

Figure 6.2: Execution time benchmark and subroutine proportions for IDR(6) obtained on one
Intel® Xeon® E5-2660 v4 CPU, withmxy = 11 and 14 OpenMP threads, using CMPCSR-GPCSR
(left stacks) and CMPT3-GPDIAG (right stacks).

As already seen in the previous chapters, varying the parameter mz does not result in erratic be-
havioral differences in execution time. The proportions also differ less than those of the previous
benchmarks. This is due to different dependencies. For G, the proportions increase because its
nonzero count has a second order dependency on mz , while C and M only have a linear depen-
dency on this parameter, as opposed to the fourth and second order encountered in the previous
benchmark.

ASML Holding N.V. 53

Chapter 6. Parallelizing the IDR method

Figure 6.3: Execution time benchmark for IDR(s) obtained on one Intel® Xeon® E5-2660 v4 CPU,
withmxy = 11,mz = 175 and 14 OpenMP threads, using the CMPT3-GPDIAG solver.

Note that in Figure 6.3 the time for one thousand IDR(s) iterations is measured, as opposed to the
time for one thousand matrix-vector products with A. Conclude that 1000(s + 1) products with
A are performed. The SpMV execution times (and consequently also the products with A) display
linear growth with s, which is expected, given how many SpMVs are performed. The bottom graph
indicates how the proportion of the other IDR(s) steps grow with s. The other subroutines take
a time of order s2n per IDR(s) iteration, because each new basis vector for the space Gj must be
orthogonalized against previously found basis vectors in that iteration.

54 Eindhoven University of Technology

Chapter 7

Conclusions and recommended research

7.1 Conclusions

Since this thesis concerns parallel linear solving, we first paid attention to the linear systems arising
from the particular computational problem (in this case the time-harmonic Maxwell’s equations),
as well as hardware-efficient parallelization of linear algebra subroutines, e.g. vector addition, inner
products and the standard SpMV. Knowing that the three SpMVs belonging to this linear system
take the most time to compute when linearly solving with IDR(s), improvements were suggested
on standard SpMV algorithms to reduce this computation time. In the previous chapter, we fitted
IDR(s) with the novel SpMV methods, which has effectively reduced the iteration time by about
35-40% compared to the solver with standard SpMV algorithms.

The essence of this work is therefore that one should always try to find structures and other depen-
dencies in an algorithm and its input, and exploit those by using techniques such as those presented
in this work, in order to realize parallel implementations specifically designed for those particular
structures. The speed gain and scalability of the imposed algorithms can generally be explained by
three algorithm design techniques.

First, efficient parallelization is possible when the threads of a program can perform their operations
without having dependencies in the order of execution and when the threads do not collide while
outputting their results. This reduces the so-called synchronization overhead. This knowledge was
applied to linear algebra routines, e.g. by using reduction for inner products, by letting each thread
complete the inner product of an entire matrix row at a time during an SpMV step, or by using any
other division of labor where mutually exclusive thread outputting addresses were ensured.

Second, in Chapter 4, memory reducing techniques were applied. In this particular case, Toeplitz di-
agonals were compressed to create economical sparse matrix storage formats, the benefits of which
were significant, even when there still were techniques yet to be used. After all, the largest speed gain
achieved in Chapter 4 with one improvement step was the difference between the CMPCSR and
CMPT algorithm. Widely known to be a contributor to performance, economical use of memory
shows its purpose, as once more confirmed by this thesis.

ASML Holding N.V. 55

Finally, as used in both SpMV chapters, providing a linear data access pattern has proven itself wor-
thy, especially in Chapter 5. With the knowledge of the CPU caching performed by the pre-fetcher
(Section 3.2.1), facilitating unit strides in data accessing results in a significantly lower cache miss
ratio, which in its turn yields a better performance. The first improvement imposed on the SpMV
algorithm in Chapter 6 (GPPIN) reduced the execution time by about 40%, merely by rearranging
the input vector data. This example shows large potential of this algorithm design technique.

7.2 Recommended research

Naturally, there is more to just the parallel algorithm design guidelines presented and tested in
this work. Due to the given time, some topics could not be included in its scope. The following
sections contain possible further improvements and suggestions which could result into even faster
implementations, and which could make parallel linear solving even more worthwhile to research.

By using the standard OpenMP parallelizations (reduction, collapsing nested loops, thread-private
variables), the machine instructions obtained after compiling can be considered quite generic: they
do not make specific assumptions on the data or the instructions. There are some code-specific
OpenMP directives and clauses [9, 10] which enable low-level optimization. For example, loops
can be vectorized with OpenMP using SIMD (Single Instruction, Multiple Data) instructions, similar
to how MATLAB performs its operations: the resulting code accounts for one single instruction
operating on vector data. The compiler then no longer assumes any possible dependencies on the
input data, which results in more efficient code. Essentially sequential, it should be possible to
combine this with parallelization: code where the iterations of a (nested) FOR-loop are divided
among the threads in a team (parallelization), where each iteration can be performed with SIMD
instructions (vectorization). This way, the algorithms with unit stride accessing are expected to be
even faster.

If single-node SpMV execution times are still unsatisfactory, one should surely look at SpMVs di-
vided over multiple machines if they are available. With the commercial version of PARALUTION,
MPI can be used to realize this. Of course, one should design the algorithms such that communica-
tion between CPU is minimized, for better scalability. For matrices C andM, this can for example
be realized by sending a set of blocks Br and the respective parts of the input vector to a machine.
This way, no intermediate communication is needed between the machines in a cluster.

Graphics cards (GPUs) are proven to be highly efficient when it comes down to massively parallel
computations. They generally have more cores and also have optimized SIMD functionality. Also,
they cannot host a program, which means they can be used as an accelerator only. Of course, this
requires scientific programming knowledge of yet another interface, be it CUDA, OpenCL or other,
which was the reason for not implementing the imposed algorithms on the GPU.

Where the emphasis in this thesis was laid on computational efficiency, linear systems are solved in
significantly less iterations with a well-chosen preconditioner. Even at the cost of one more SpMV
per iteration, the total solving time can still be reduced greatly. The SpMV algorithm should however
be tailored towards its structure (the benefits of which is shown in this work) and implemented
according to the presented techniques, such that its execution time is minimized.

56

Appendix A

Source code

This appendix contains the source code for the parallel SpMV algorithms and the parallel solver
with the SpMV algorithm choice. Naturally, it needs some explanation as well as a color legend, for
comprehension purposes.

The PARALUTION library has its own vector object structure. For the complete object structure,
please refer to [11]. The essence of the free version (single node computations) is, when program-
ming in an IDE (Integrated Development Environment), one uses theLocal object to create vectors
and invoke their methods. The library then makes a distinction between vector objects based on
what kind of processor and/or API is being used. The actual API-specific code is defined for the
following objects:

• Host objects, for computations on the CPU hosting the application (based on OpenMP).

• Accelerator objects, which are parent objects for the methods for GPUs (CUDA or OpenCL)
and MIC-type1 CPUs (OpenMP). An example line of MIC-type CPUs are the Intel® Xeon
Phi® processor models2.

Since this work focuses on CPU methods only, only the Host objects were used during the project.
Due to the fact that emphasis was laid on different sparse matrix formats without any complemen-
tary index lists (as the case with COO, CSR, etc.), the matrix values are contained in a vector object.
Hence, an extension on the HostVector object (named HostVectorExt) was required. The LocalVec-
tor class also needed extension (named LocalVectorExt), to enable invocation of the HostVectorExt
methods. The reason for this is that the Local objects contain pointers to ‘Host’ and ‘Accelerator’
objects and their methods, such that if acceleration is defined and prepared by a user, the methods
will automatically invoke the correct version of the method (OpenMP, CUDA, etc.).

To prevent misuse of this hierarchy, Host and Accelerator objects can only constructed by the library
itself and not directly by a programmer. The SpMV algorithms will, for these reasons, be methods
of HostVectorExt. The solver however needs to construct and manipulate auxiliary vectors, which
makes it a LocalVectorExt method.

1Many Integrated Core.
2Not to be mistaken with the Intel® Xeon® CPUs used in this thesis.

57

A.1 Chapter 4 algorithms

The following colors are used in the SpMV algorithm source:

Blue Regular C++ words: for, void, int, etc.
Teal OpenMP-specific parts: parallel region declaration etc.

Purple Parallel loop variables used for the iteration space I (Section 3.3).
Orange Vector input and output indices.

Red Running output subtotals.
Brown Fields of objects or structs.
Gray Comments.

In the following two sections, in denotes the input vector and out denotes the output vector. Since
the invocations are chosen to be of the form mat.SpMVmethod(in,out,params), this denotes
the matrix non-zeros list (it is the object with which the method is called). After the method has
terminated, the time output variable will hold the elapsed time of the parallel region. The input
variables mxy and mz are self-explanatory.

Listing A.1: CMPCSR
void HostVectorExt<std::complex<double> >::CMPCSR(const HostVectorExt<std::complex<double> > &in,const int mxy,const int mz,

HostVectorExt<std::complex<double> > *out,long int *time){

const int smxy = mxy*mxy; //Constant integer: m_{xy}^2
int r,bi,k,i,j,s;
std::complex<double> t; //Running subtotal, local for each thread
_set_omp_backend_threads(this->local_backend_ ,3*smxy*mz);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for collapse(2) private(r,bi,k,i,j,s,t)
for(r=0;r<mz;r++){

for(bi=0;bi<3*smxy;bi++){
t = std::complex<double>(0E0,0E0); //Setting the subtotal to zero
i = 3*smxy*r+bi; //Computes global matrix row
s = 3*smxy*i; //Computes first address for the matrix data appearing on row i
j = 3*smxy*r; //Computes first column of row i with a non-zero
for(k=0;k<3*smxy;k++){

t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
j ++;
s ++;

}
out->vec_[i] = t; //Output the total to the output vector

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

58

Listing A.2: CMPT
void HostVectorExt<std::complex<double> >::CMPT(const HostVectorExt<std::complex<double> > &in,const int mxy,const int mz,

HostVectorExt<std::complex<double> > *out,long int *time){

const int dmxy = 2*mxy-1; //Constant integer: 2m_{xy}-1
const int smxy = mxy*mxy; //Constant integer: m_{xy}^2
int j,s,i,r,r1,r2,s1,s2,p,q;
std::complex<double> t; //Running subtotal, local for each thread
_set_omp_backend_threads(this->local_backend_, 3*smxy*mz);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for collapse(4) private(j,s,i,r,r1,r2,s1,s2,p,t,q)
for(r=0;r<mz;++r){

for(p=0;p<3;++p){
for(r1=0;r1<mxy;r1++){

for(r2=0;r2<mxy;r2++){
t = std::complex<double>(0E0,0E0); //Setting the subtotal to zero
s = dmxy*(dmxy*(3*(3*r+p))+ mxy-1-r1) + mxy-1-r2; //Computes first address for the matrix data appearing

on row i
i = mxy*(mxy*(3*r+p)+r1)+r2; //Computes global matrix row
j = smxy*3*r; //Computes first column of row i with a non-zero
for(q=0;q<3;q++){

for(s1=0;s1<mxy;s1++){
for(s2=0;s2<mxy;s2++){

t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
j ++;
s ++;

}
s += mxy-1;

}
s += (mxy-1)*dmxy;

}
out->vec_[i] = t; //Output the total to the output vector

}
}

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

Listing A.3: CMPT2
void HostVectorExt<std::complex<double> >::CMPT2(const HostVectorExt<std::complex<double> > &in,const int mxy,const int mz,

HostVectorExt<std::complex<double> > *out,long int *time){

const int dmxy = 2*mxy-1; //Constant integer: 2m_{xy}-1
const int smxy = mxy*mxy; //Constant integer: m_{xy}^2
const int sdmxy = dmxy*dmxy; //Constant integer: (2m_{xy}-1)^2
int j,s,i,r,r1,r2,s1,s2,p;
std::complex<double> t; //Running subtotal, local for each thread
_set_omp_backend_threads(this->local_backend_, 3*smxy*mz);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for collapse(4) private(j,s,i,r,r1,r2,s1,s2,p,t)
for(r=0;r<mz;++r){

for(p=0;p<3;++p){
for(r1=0;r1<mxy;r1++){

for(r2=0;r2<mxy;r2++){
t = std::complex<double>(0E0,0E0); //Setting the subtotal to zero
s = 3*(sdmxy*(3*r+p)+dmxy*(mxy-1-r1) + mxy-1-r2); //Computes first address for the matrix data appearing

on row i
i = mxy*(mxy*(3*r+p)+r1)+r2; //Computes global matrix row
j = smxy*3*r; //Computes first needed address of the input vector
for(s1=0;s1<mxy;s1++){

for(s2=0;s2<mxy;s2++){
t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
s ++;
j += smxy;
t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
s ++;
j += smxy;
t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
s ++;
j -= 2*smxy-1;

}
s += 3*(mxy-1);

}
out->vec_[i] = t; //Output the total to the output vector

}
}

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

59

Listing A.4: CMPT3
void HostVectorExt<std::complex<double> >::CMPT3(const HostVectorExt<std::complex<double> > &in,const int mxy,const int mz,

HostVectorExt<std::complex<double> > *out,long int *time){

const int dmxy = 2*mxy-1; //Constant integer: 2m_{xy}-1
const int smxy = mxy*mxy; //Constant integer: m_{xy}^2
const int sdmxy = dmxy*dmxy; //Constant integer: (2m_{xy}-1)^2
int j,s,i,r,r1,r2,s1,s2,p;
std::complex<double> t; //Running subtotal, local for each thread
_set_omp_backend_threads(this->local_backend_, 3*smxy*mz);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for collapse(4) private(j,s,i,r,r1,r2,s1,s2,p,t)
for(r=0;r<mz;++r){

for(p=0;p<3;++p){
for(r1=0;r1<mxy;r1++){

for(r2=0;r2<mxy;r2++){
t = std::complex<double>(0E0,0E0); //Setting the subtotal to zero
s = 3*(sdmxy*(3*r+p)+dmxy*(mxy-1-r1) + mxy-1-r2); //Computes first address for the matrix data appearing

on row i
i = mxy*(mxy*(3*r+p)+r1)+r2; //Computes global matrix row
j = 3*smxy*r; //Computes first needed address of the input vector
for(s1=0;s1<mxy;s1++){

for(s2=0;s2<mxy;s2++){
t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
s ++;
j ++;
t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
s ++;
j ++;
t += this->vec_[s]*in.vec_[j]; //Add product to subtotal
s ++;
j ++;

}
s += 3*(mxy-1);

}
out->vec_[i] = t; //Output the total to the output vector

}
}

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

A.2 Chapter 5 algorithms

Listing A.5: GPCSR
void HostVectorExt<std::complex<double> >::GPCSR(const HostVectorExt<std::complex<double> > &in, const int mxy, const int mz,

HostVectorExt<std::complex<double> > *out, long int *time){

const int smxy = mxy*mxy; //Constant integer: distance between diagonals
const int dm = 3*mz; //Constant integer: amount of diagonals
int bi,bj,k,s,i,j;
std::complex<double> t; //Running subtotal, local for each thread
_set_omp_backend_threads(this->local_backend_, smxy*dm);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for collapse(2) private(bi,bj,k,s,i,j,t)
for(bi=0;bi<dm;++bi){

for(bj=0;bj<smxy;++bj){
t = std::complex<double>(0E0,0E0); //Setting the subtotal to zero
i = bi*smxy+bj; //Computing output address (matrix row)
s = dm*i; //Computing first needed matrix non-zeros address
j = bj; //Computing first needed input vector adres
for(k=0;k<dm;++k){

t += this->vec_[s]*in.vec_[j]; //Adding product to subtotal
s ++;
j += smxy;

}
out->vec_[i] = t; //Output the total to the output vector

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

60

Listing A.6: GPPIN
void HostVectorExt<std::complex<double> >::GPPIN(const HostVectorExt<std::complex<double> > &in, const int mxy, const int mz,

HostVectorExt<std::complex<double> > *out, long int *time){

const int smxy = mxy*mxy; //Constant integer: distance between diagonals
const int dm = 3*mz; //Constant integer: amount of diagonals
int bi,bj,k,s,i,j;
std::complex<double> t;
_set_omp_backend_threads(this->local_backend_, smxy*dm);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for collapse(2) private(bi,bj,k,s,i,j,t)
for(bi=0;bi<dm;++bi){

for(bj=0;bj<smxy;++bj){
t = std::complex<double>(0E0,0E0); //Setting the subtotal to zero
i = bi*smxy+bj; //Computing output address (matrix row)
s = dm*i; //Computing first needed matrix non-zeros address
j = bj*dm; //Computing first needed input vector adres
for(k=0;k<dm;++k){

t += this->vec_[s] * in.vec_[j]; //Adding product to subtotal
s ++;
j ++;

}
out->vec_[i] = t; //Output the total to the output vector

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

Listing A.7: GPPIN2
void HostVectorExt<std::complex<double> >::GPPIN2(const HostVectorExt<std::complex<double> > &in, const int mxy, const int mz,

HostVectorExt<std::complex<double> > *out, long int *time){

const int smxy = mxy*mxy; //Constant integer: distance between diagonals
const int dm = 3*mz; //Constant integer: amount of diagonals
int bi,bj,k,s,i,j;
std::complex<double> t;
_set_omp_backend_threads(this->local_backend_, smxy*dm);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for collapse(2) private(bi,bj,k,s,i,j)
for(bj=0;bj<smxy;++bj){

for(bi=0;bi<dm;++bi){
t = std::complex<double>(0E0,0E0); //Setting the subtotal to zero
s = dm*(dm*bj+bi); //Computing first needed matrix non-zeros address
j = bj*dm; //Computing first needed input vector adres
i = smxy*bi+bj; //Computing output address (matrix row)
for(k=0;k<dm;++k){

t += this->vec_[s] * in.vec_[j]; //Adding product to subtotal
s ++;
j ++;

}
out->vec_[i] = t; //Output the total to the output vector

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

61

Listing A.8: GPDIAG
void HostVectorExt<std::complex<double> >::GPDIAG(const HostVectorExt<std::complex<double> > &in, const int mxy, const int mz,

HostVectorExt<std::complex<double> > *out, long int *time){

const int smxy = mxy*mxy; //Constant integer: distance between diagonals
const int dm = 3*mz; //Constant integer: amount of diagonals
const int n = smxy*dm; //Constant integer: problem size n
int j,i,k;
_set_omp_backend_threads(this->local_backend_, n);
struct timespec lo, hi;
clock_gettime(CLOCK_REALTIME, &lo); //Start time
#pragma omp parallel for private(i,j,k)
for(j=0;j<n;++j){

out->vec_[j] = this->vec_[j]*in.vec_[j];
}

for(k=1;k<dm;k++){
#pragma omp parallel for private(i,j,k)
for(j=0;j<n;++j){

i=j+k*smxy; //Computing output address (matrix row)
if(i>=n){

i -= n;
}
out->vec_[i] += this->vec_[k*n+j]*in.vec_[j];

}
}
clock_gettime(CLOCK_REALTIME, &hi); //End time
time = 1E9(static_cast<long int>(hi.tv_sec) - static_cast<long int>(lo.tv_sec))+hi.tv_nsec-lo.tv_nsec; //Computing the

elapsed time in ns
}

A.3 Parallel linear solver

In the solver source, the words are color-coded as follows:

Blue Regular C++ words: for, void, int, etc.
Teal Parallel subroutines and setting the OpenMP backend.

Purple Auxiliary objects used by the IDR(s) method (Chapter 6).
Orange IDR(s) parameters: s, maximum number of iterations, etc.

Red Running subtotals: SpMV timings, iteration counter, etc.
Brown Fields of objects or structs.
Gray Comments.

There are some preliminary caveats on the source below.

• In addition to matrices G andM of the linear system, there are equally named matrices used
in IDR(s)-biortho [13]. The matrix data objects will be named ccm, mcm and gdia, while
the auxiliary algorithm objects will be called G and M. This notation will also be maintained in
the comments, though in actual source code, complying to the legend above, G and M can by
distinguished by their purple color.

• The decision to put P in the input of the void, roots in debugging motives. After all, the ability
to use the same space S in both the C++ and MATLAB versions helped tracking down any
programming mistakes.

• Some subroutines are not implemented in parallel (un-colored). Almost all of those concern
the computation/retrieval of scalars. The lower triangular solve (void SolveMf) and setting
M equal to the identity matrix (void MI) are done sequentially because M has such a small
size (s × s), performance will not benefit from parallel execution. Additionally the forward
substitutions used in lower triangular system solving already hint to sequential execution.

62

• The auxiliary algorithm matrix objects (P, G, U, etc.) are also flattened into a vector object
with column-major ordering to facilitate column copying, except for the lower triangular M,
which has row-major ordering to facilitate the forward subtitution solving.

• Note that the auxiliary algorithm vector t is not used in the source, as other unused vectors
can be used to store t temporarily. In the source, gx is used.

• The running subtotals (iteration count, SpMV times, initialization time and iteration time)
are printed at the end of the void, but these print commands are omitted in this listing.

• By means of readability, the comments will maintain a notation strongly similar to MATLAB
syntax.

Listing A.9: Non-preconditioned parallel IDR(s) with the custom SpMV algorithms
void LocalVectorExt<std::complex<double> >::IDRs(

const int s, //IDR parameter
const double kappa, //Threshold. If cos(angle)<kappa: perform a larger residual step, the angle being between Ar and r.

Defaults to 0.7
const LocalVectorExt<std::complex<double> > &ccm, //Matrix data for C in the CMPT3 Toeplitz compression format
const LocalVectorExt<std::complex<double> > &mcm, //Matrix data for M in the CMPT3 Toeplitz compression format
const LocalVectorExt<std::complex<double> > &gdia, //Matrix data for G in the concatenated diagonal format
const LocalVectorExt<std::complex<double> > &P, //Defines the space S = ker(P^H)
const int mxy, //Discretization accuracy m_{xy}
const int mz, //Discretization accuracy m_z
const LocalVectorExt<std::complex<double> > &b, //Right-hand side of the system
const double tol, //Tolerance for the relative residual norm ||r||/||b||
const int maxmatvec //Maximum number of mat-vecs allowed
){

struct timespec loiter, hiiter, loinit, hiinit;
clock_gettime(CLOCK_REALTIME, &loinit); //Start time of the initialization
const int n = 3*mxy*mxy*mz; //Constant integer for the problem size n
const double bn = sqrt(b.vector_host_->Dot(*b.vector_host_).real()); //Calculate ||b||
_set_omp_backend_threads(this->local_backend_, n);
long int t;
double ct=double(0E0),mt=double(0E0),gt=double(0E0),permt=double(0E0); //Initialize timing subtotals
double itert,initt;
std::complex<double> thr, tht, rhr; //Declare variables for t^Hr, t^Ht and r^Hr

LocalVectorExt<std::complex<double> > r_,v_,G_,U_,f_,M_,c_,cmx_,gx_,inp_; //Declaring auxiliary algorithm data: r,v,G,U,f,
M,c,etc.

r_.Allocate("r",n); //Allocating space for the auxiliary algorithm data
v_.Allocate("v",n);
G_.Allocate("G",n*s);
U_.Allocate("U",n*s);
f_.Allocate("f",s);
M_.Allocate("M",s*s);
c_.Allocate("M",s);
cmx_.Allocate("cx",n);
gx_.Allocate("mx",n);
inp_.Allocate("inp",n);
LocalVectorExt<std::complex<double> > *r=&r_,*v=&v_,*G=&G_,*U=&U_,*f=&f_,*M=&M_,*c=&c_,*cmx=&cmx_,*gx=&gx_,*inp=&inp_; //

Creating pointers

std::complex<double> alpha; //Declaring algorithm auxiliary complex numbers, setting omega=1
std::complex<double> beta;
std::complex<double> omega = std::complex<double> (1.0);
std::complex<double> rho;
std::complex<double> mu;
double rhoabs; //Variable for the modulus of rho
M->vector_host_->MI(s); //Setting M to the identity matrix
int matvec = 0;
r->vector_host_->Copy(*b.vector_host_); //Start with the zero vector as initial guess => r = b
double rn = bn; //Norm of r equals norm of b
clock_gettime(CLOCK_REALTIME, &hiinit); //End time of the initialization
clock_gettime(CLOCK_REALTIME, &loiter); //Start time of the iteration process
while(rn > tol * bn && matvec < maxmatvec){ //Start of while-loop

f->vector_host_->PHr(*P.vector_host_ ,*r->vector_host_,n,s); //Calculate f = P'*r
for(int k=0;k<s;k++){ //Start of s-loop

c->vector_host_->SolveMf(*M->vector_host_ ,*f->vector_host_,k,s); //Sequential solve low. triang. system M*c = f
v->vector_host_->GetV(*r->vector_host_ ,*G->vector_host_ ,*c->vector_host_,k,s); //Calculate v = r - Gc
U->vector_host_->GetUk(omega, *v->vector_host_ ,*c->vector_host_,k,s,n); //Sets U(:,k) = U*c + omega*v
inp->vector_host_->LoadU(*U->vector_host_,k,mxy,mz); //Copy U(:,k) to inp under the CMPT3-permutation
mcm.vector_host_->CMPT3(*inp->vector_host_,mxy,mz,cmx->vector_host_ ,&t); //Computes Mcm*U(:,k)
mt += t/1E9;
gdia.vector_host_->GPDIAG(*cmx->vector_host_,mxy,mz,gx->vector_host_ ,&t); //Computes Gdia*Mcm*U(:,k)
gt += t/1E9;
ccm.vector_host_->CMPT3(*inp->vector_host_,mxy,mz,cmx->vector_host_ ,&t); //Computes Ccm*U(:,k)
ct += t/1E9;

63

G->vector_host_->StoreOff(*cmx->vector_host_ ,*gx->vector_host_,k,n); //Store G(:,k) = (Ccm-Gdia*Mcm)*U(:,k)
for(int l=0;l<k;l++){

alpha = P.vector_host_->PHG(*G->vector_host_,n,l,k); //Computes alpha = P(:,l) dot G(:,k)
alpha /= M->vector_host_->LoadMu(l, l, s); //Computes alpha = alpha/M(l,l)
G->vector_host_->AlphaSub(alpha,k,l,n); //Sets G(:,k) = G(:,k) - alpha * G(:,l)
U->vector_host_->AlphaSub(alpha,k,l,n); //Sets U(:,k) = U(:,k) - alpha * U(:,l)

}
for(int l=k;l<s;l++){

mu = P.vector_host_->PHDotG(*G->vector_host_,n,l,k); //Computes = P(:,l) dot G(:,k)
M->vector_host_->StoreMu(l,k,s,mu); //Sets M(l,k) = mu

}
beta = f->vector_host_->GetBeta(*M->vector_host_,s,k); //Computes beta = f(k)/M(k,k)
r->vector_host_->AddScaleGUTV(*G->vector_host_,k,-beta); //Sets r = r - beta * G(:,k)
this->vector_host_->AddScaleGUTV(*U->vector_host_,k,beta); //Sets x = x + beta * U(:,k)
matvec ++;
rn = sqrt(r->vector_host_->Dot(*r->vector_host_).real()); //Computes norm(r)
if(rn <= tol * bn || matvec == maxmatvec){ //Break out of s-loop if tolerance or maximum number of matvecs is

reached
break;

}
f->vector_host_->UpdateF(*M->vector_host_,k,s,beta); //Sets f(i) = 0 iff i=0,..,k-1. Sets f(i) = f(i) - beta * M(i

,k) otherwise.
} //End of FOR-loop
if(rn <= tol * bn || matvec == maxmatvec){ //Break out of while-loop if tolerance or maximum number of matvecs is

reached
break;

}
inp->vector_host_->CMPerm(*r->vector_host_,mxy,mz,&t); //Copies r to inp under the CMPT3 permutation
permt += t/1E9;
mcm.vector_host_->CMPT3(*inp->vector_host_,mxy,mz,cmx->vector_host_ ,&t); //Computes Mcm**r
mt += t/1E9;
gdia.vector_host_->GPDIAG(*cmx->vector_host_,mxy,mz,gx->vector_host_ ,&t); //Computes Gdia*(Mcm*r)
gt += t/1E9;
ccm.vector_host_->CMPT3(*inp->vector_host_,mxy,mz,cmx->vector_host_ ,&t); //Computes Ccm*r
ct += t/1E9;
gx->vector_host_->ScaleAdd1(std::complex<double> (-1.0),*cmx->vector_host_); //Stores t = A*r in vector gx
thr = gx->vector_host_->Dot(*r->vector_host_); //Computes t^Hr
tht = gx->vector_host_->Dot(*gx->vector_host_); //Computes t^Ht
rhr = r->vector_host_->Dot(*r->vector_host_); //Computes r^Hr
omega = thr/tht; //Sets new omega
rho = thr/(sqrt(tht.real())*sqrt(rhr.real())); //Computes rho = (Ar,r)/(||Ar||*||r||)
rhoabs = sqrt(rho.real()*rho.real() + rho.imag()*rho.imag()); //Computes |rho|, the angle between Ar and r
if(rhoabs < kappa){ //If the angle is below the threshold, perform a larger residual step

omega *= kappa/rhoabs;
}
this->vector_host_->ScaleAdd2(omega,*r->vector_host_); //Sets x = x + omega * r
r->vector_host_->ScaleAdd2(-omega,*gx->vector_host_); //Sets r = r - omega * t
rn = sqrt(r->vector_host_->Dot(*r->vector_host_).real()); //Computes new norm of r
matvec ++;

} //end of WHILE-loop
clock_gettime(CLOCK_REALTIME, &hiiter); //End time of iteration process
itert = static_cast<long int>(hiiter.tv_sec) - static_cast<long int>(loiter.tv_sec)+(hiiter.tv_nsec-loiter.tv_nsec)/1E9;
initt = static_cast<long int>(hiinit.tv_sec) - static_cast<long int>(loinit.tv_sec)+(hiinit.tv_nsec-loinit.tv_nsec)/1E9;

}

64

Appendix B

Specifications of used CPUs

There is a convenient UNIX command, lscpu, which outputs, amongst other: the CPU model,
cache sizes, base frequency, current frequency, number of cores and which core IDs belong to which
socket in the machine. Also [8] provides some of these specifications. In the lowest cache level, the
distinction is made between data and instructions.

Intel® Xeon® E5-2660 v4
cores 14

Base frequency (GHz) 2.00
Max. frequency (GHz) 3.20

L3 cache size (MiB) 35
L2 cache size (KiB) 256
L1 cache size (KiB) 32data, 32instructions

Table B.1: Specifications of the used CPU models.

65

Bibliography

[1] George B. Arfken and Hans J. Weber.Mathematical Methods for Physicists. Sixth edition. Elsevier
Academic Press, 2005.

[2] Rob H. Bisseling. Parallel Scientific Computation. First edition. New York: Oxford University
Press, 2004.

[3] RonaldN. Bracewell.The Fourier Transform and its applications. Third edition. NewYork:McGraw-
Hill, 1999.

[4] Yia-Chung Chang et al. “Efficient finite-element, Green’s function approach for critical-
dimension metrology of three-dimensional gratings on multilayer films”. In: Journal of the
Optical Society of America A 23.3 (2006), pp. 638–645.

[5] Ulrich Drepper. “What Every Programmer Should Know About Memory”. 2007.

[6] Liming Feng and Vadim Linetsky. “Pricing Options in Jump-Diffusion Models: an Extrapo-
lation Approach”. In: Operations Research 58.2 (Apr. 2008), pp. 304–325.

[7] FFTW website. fftw.org.
[8] Intel product specifications. ark.intel.com.

[9] OpenMP 4.5 Application Programming Interface. openmp.org. Nov. 2015.

[10] OpenMP 4.5.0 Application Programming Interface Examples. openmp.org. Nov. 2015.

[11] PARALUTION 1.1.0 User Manual. paralution.com. Jan. 2016.

[12] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second edition. SIAM, 2003.

[13] Peter Sonneveld and Martin B. van Gijzen. “An Elegant IDR(s) Variant that Efficiently Ex-
ploits Bi-orthogonality Properties”. In:ACM Transactions on Mathematical Software 38.1 (2011),
5:1–5:19.

[14] Peter Sonneveld and Martin B. van Gijzen. “IDR(s): a Family of Simple and Fast Algorithms
for Solving Large Nonsymmetric Systems of Linear Equations”. In: SIAM Journal on Scientific
Computing 31.2 (2008), pp. 1035–1062.

[15] Andrew James Stother. “On the Complexity of Matrix Multiplication”. PhD thesis. University
of Edinburgh, 2010.

[16] Gabriel Torres. How The Cache Memory Works. hardwaresecrets.com. 2007.

66

“’t Is gedaan precies.”
–
Jonas Geirnaert
Kabouter Wesley

	Introduction
	Goals and motivation

	Maxwell's equations
	Derivation of the time-harmonic Maxwell equations
	Computing a solution with the Volume Integral Method
	The linear systems

	Hardware-optimized parallel algorithm design
	Brief history of CPU system components
	CPU cores and cache layout
	Shared memory parallel algorithms with OpenMP

	SpMVs with nested Toeplitz blocks
	Method of circular convolution
	Parallel CSR algorithm
	Methods using Toeplitz diagonal compression
	Performance analysis
	Parallel heat diffusion simulation using FDMs

	SpMVs with equidistant diagonals
	Row-parallel algorithms
	Element-wise product method
	Performance analysis

	Parallelizing the IDR method
	IDR as Krylov subspace solver
	Adaptations for the linear system
	Performance benchmarks

	Conclusions and recommended research
	Conclusions
	Recommended research

	Source code
	Chapter 4 algorithms
	Chapter 5 algorithms
	Parallel linear solver

	Specifications of used CPUs
	Bibliography

