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Chapter 1

Introduction

Many physical problems are described with mathematical models expressed as di�erential

equations. That is, the derivative of the state at some time point is a function of the

current state and the current time. The modeling of some problems, however, might

require an additional term in the di�erential equation depending on the state at some

previous time-point. These types of di�erential equations are known as delay-di�erential

equations (DDEs), and have an extensive literature due to [1, 7]. Generally, a DDE has

the form

ẋ(t) = A0x(t) +
m∑
k=1

Akx(t− τk),

that is, the derivative of the state is a linear combination of the current state and some

previous states. In this thesis we mostly consider the delay di�erential equation with

single-delay, i.e.,

ẋ(t) = A0x(t) + A1x(t− τ), t > 0,

where A0, A1 ∈ Rn×n and τ > 0.

This generalization of the ODE is important, as it allows the mathematical analysis

of models with delays. For instance, the electronic signal of the control of a robot takes

some time to go from the controller to the robot arm. Thus, if the controllers of the wing-

rudders of an airplane are located in the cockpit (which fortunately is the case in many

situations), the controllers can only control the rudders with a certain delay. Furthermore,

one of the most critical application of such models with delay is in the �eld of nuclear

reactors. The temperature of the inner part of a nuclear reactor may not be available

7



8 Chapter 1. Introduction

for measurement. If the temperature in the inner part rises, after some time (delay), the

temperature of the surface of the reactor will also rise. Hence, only old information is

available for measurement and can be used to control the process.

Since delay-di�erential equations appear in a large number of �elds in science, it is not

surprising that it has received di�erent names in di�erent �elds. For instance, the following

terms are used for slight variations of DDEs: time-delay systems, di�erence-di�erential

equations, retarded systems, functional di�erential equations.

Hot shower problem:

In order to illustrate such a model with delay we shall present in the following the so-

called hot shower problem. Even though not as critical as the delay e�ects in the control

of an airplane or a nuclear reactor, the DDE can be used to describe the human being

standing under the shower trying to reach his optimal shower-temperature by turning the

shower-tap. Hence, consider a shower with the following physical parameters: let the length

of the shower hose, i.e., the distance from the shower tap to the shower head, be denoted

by l; let v be the speed of the water in the hose, taken as constant (stationary �ow). The

state x(t) is the temperature di�erence from the optimum, i.e., the di�erence between the

(human dependent) optimal temperature and the present temperature at the shower tap.

Moreover, we model the the human being as a linear controller with sensitivity α > 0.

That is, the change of the controller is assumed to be proportional to the temperature

di�erence of the water coming out of the shower head. The model is described by

ẋ(t) = −αx(t− h), (1.1)

where h = l/v. The solution of this DDE for some choices of parameters is given in Figure

1.1.

As indicated by Figure 1.1, the stability conditions are an important issue in the �eld

of DDEs. For an elaborate study of these conditions the reader is referred to [12, Chapter

3.]. As a matter of fact, the DDE (1.1) is stable if and only if

lα

v
<
π

2
.

Therefore, the reasons for unstable showers are long shower hoses, low water pressure

and/or sensitive human beings.
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Figure 1.1: Solutions of the hot shower problem.

Overview: The main problem of solving delay eigenvalue problems is approached in

Chapter 3. The polynomial and rational approximation techniques used for this are pre-

sented in Chapter 2. Chapter 4 is about perturbation results for the delay eigenvalue

problem, while Chapter 5 concludes the current thesis.





Chapter 2

Polynomial and rational approximations

In this chapter we review several polynomial and rational approximation methods for the

exponential function

f(z) = e−z.

Most of the described techniques are commonly used and have already an extensive lit-

erature. We merely present them as expectedly relevant techniques for dealing with the

problems in Chapter 3. The list of methods is, of course, far from being exhaustive in the

�eld. For a deep understanding of polynomial and rational approximation methods, and

approximation theory in general, the reader is referred to [14, 4].

2.1 Rational approximations based on Taylor expansion

2.1.1 Padé approximations

Approximants derived by expanding a function f(z) as a ratio of two polynomials are called

Padé-approximants. These are usually superior to the Taylor series when the functions

contain poles, because the use of rational functions allows them to be well represented.

Let Rn,m(z) be the quotient approximating f(z):

Rn,m(z) =
Pn(z)

Qm(z)
,

where

Pn(z) = p0 + p1z + · · ·+ pnz
n,

11



12 Chapter 2. Polynomial and rational approximations

Qm(z) = 1 + q1z + · · ·+ qmz
m.

According to the method of Padé, these two polynomials are constructed, so that at

given z = z0 the functions f(z) and Rn,m(z), and their derivatives up to order n + m are

equal. One can take z0 = 0, and require the function and its derivative to be continuous at

this point. We note at this point, that the Padé-approximant Rn,0(z) corresponds to the

Maclaurin series. Moreover, q0 = 1 is chosen for reasons of uniqueness of the approximation.

Hence, the rational function Rn,m(z) has n+m+ 1 unknown coe�cients. Assume that

f(z) has the Maclaurin expansion

f(z) = a0 + a1z + a2z
2 + · · ·+ akz

k + . . . ,

where

ak =
f (k)(0)

k!
.

Then the coe�cients can be found by setting

Qm(z)f(z)− Pn(z) = 0,

This will lead to a system of n+m+ 1 linear equations:

a0 − p0 = 0

q1a0 + a1 − p1 = 0

q2a0 + q1a1 + a2 − p2 = 0
...

qman−m + qm−1an−m+1 + · · ·+ an − pn = 0

qman−m+1 + qm−1an−m+2 + · · ·+ q1an + an+1 = 0

qman−m+2 + qm−1an−m+3 + · · ·+ q1an+1 + an+2 = 0
...

qman + qm−1an+1 + · · ·+ q1an+m−1 + an+m = 0

which can be easily solved.

Below one can �nd some Padé approximations for e−z that will be used in the upcoming

paragraphs:
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R1,1(z) =
1− 1

2
z

1 + 1
2
z

R2,1(z) =
1− 2

3
z + 1

6
z2

1 + 1
3
z

R2,2(z) =
1− 1

2
z + 1

12
z2

1 + 1
2
z + 1

12
z2

R4,4(z) =
1− 1

2
z + 3

28
z2 − 1

84
z3 + 1

1680
z4

1 + 1
2
z + 3

28
z2 + 1

84
z3 + 1

1680
z4

An interesting observation regarding these approximations is the following. Let p(z)

and q(z) be the two unique polynomials of given order, such that

e−z ≈ p(z)

q(z)
.

Thus

ez ≈ q(z)

p(z)
and e−z ≈ q(−z)

p(−z)
.

Since p(z) and q(z) are unique one can conclude that, if deg(p) = deg(q) = m,

p(z) = q(−z), (2.1)

and therefore the (m,m)−Padé approximation for e−z is of the form

e−z ≈ p(z)

p(−z)
.

Figure 2.1 shows the error curve of two di�erent Padé approximations of e−z.

2.1.2 Alternative Padé approximations for e−z

Consider a Padé approximation of the form

e−z ≈ p(z)

q(z)
.

Based on [16], an alternative rational approximation can easily be derived as follows:

e−z =
(
e−

z
n

)n ≈ p
(
z
n

)n
q
(
z
n

)n . (2.2)
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Figure 2.1: Padé approximations of e−z on [−2, 2].
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These type of approximations are called shift-based (Padé) approximations [16], and

the gain from the use of scaling is that we broaden the domain of approximation. That is,

by (2.2), we attempt to improve the quality of the standard Padé approximation further

from the origin. For a full description of such approximations the reader is referred to [16].

Note that for n = 1 we get the standard Padé approximation.

Figure 2.2: Error for shifted Padé approximations of e−z, calculated at z = 0.5.

E�ectiveness of method

In this section we compare the approximations presented earlier. More explicitly, we make

comparisons between approximations of the same degree. In order to avoid confusions we

shall introduce the notation (m,n)k-Padé for the approximations of the type

e−z ≈
(
Rm,n

(z
k

))k
=

(
pm(z/k)

qn(z/k)

)k
.

Hence the comparisons are made between (2, 2)- and (2, 2)1-Padé, (4, 4)- and (2, 2)2-Padé,

(6, 6)- and (2, 2)3-Padé, etc. The maximum absolute residuals are then plotted against

k for di�erent intervals in Figure 2.3. The results indicate that around the origin the

standard Padé approximants are always faster than the shifted ones, but as soon as we

move further away from it, the shifted approximations are starting to give better results.

What happens in fact is that the standard Padé approximants are starting to get more and

more inaccurate as we move away from the origin. Note moreover, that the approximation

errors are considerably larger in the furthest interval.
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Figure 2.3: Approximations of e−z.

2.2 Rational interpolations

A rational interpolation of the function f(x) is de�ned as the task of determining a rational

function rn,m(x) = pn(x)/qm(x) such that

rn,m(xj) = f(xj), 0 ≤ j ≤ n+m+ 1, (2.3)

for certain points xj. Denoting

pn(x) = p0 + p1x+ · · ·+ pnx
n

and

qm(x) = 1 + q1x+ · · ·+ qmx
m,

(2.3) reduces to a set of n + m + 1 linear equations for n + m + 1 unknown coe�cients,

which can be easily solved by standard techniques.
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According to the choice of {xj} we distinguish the following rational interpolation

methods:

2.2.1 Chebyshev rational interpolation [25]

Consider the grid formed by the Chebyshev extreme points

xj = cos
jπ

N
, j = 0, 1, . . . , N.

The Chebyshev rational interpolation method makes use of these points in order to ap-

proximate the function f(x). The result of the interpolation for f(x) = e−x in [−1, 1] is

shown in Figure 2.4.

2.2.2 Legendre approximation [25]

Using xj = jth extremum of the Legendre polynomial PN of degree N , for j = 0, 1, . . . , N

(see [25] for details), we arrive at the so-called Legendre rational interpolation method. An

application for f(x) = e−x is shown in Figure 2.4.

The numerical results presented in Figure 2.4 show that by taking the same number of

points on the same interval, the Chebyshev and the Legendre rational interpolations yield

fairly similar results.

2.3 Polynomial approximations

In this section we shall discuss some methods of approximating e−x by a polynomial func-

tion.

2.3.1 Lagrange interpolation

For a given set of k + 1 data points

(x0, y0), (x1, y1), . . . , (xk, yk),
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Figure 2.4: An [14, 14] - Chebyshev and Legendre rational interpolation in [−1, 1], with

maximum residuals: 9.8 · 10−7 and 9.7 · 10−7.
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the Lagrange interpolation polynomial is a linear combination

L(x) :=
k∑
j=0

yjlj(x)

of Lagrange basis polynomials

lj(x) :=
∏
i 6=j

x− xi
xj − xi

.

Choosing yj = e−xj for some x0, x1, . . . , xk, one can use the Lagrange interpolation for

approximating the function f(x) = e−x. Figure 2.5 shows the approximation error for an

interpolation of order 28 on the interval [−1, 1]. Since we have used the same number of

interpolation points on the same interval [−1, 1] as for the previously discussed rational

interpolations, one can make a fair comparison between these approximation techniques.

The �rst observation, as expected for a polynomial approximation, is that the error for

the Lagrange interpolation has an oscillatory behavior. Moreover, the maximum error on

the interval is signi�cantly larger than the maximum error for the Chebyshev or Legendre

interpolation.

Figure 2.5: Lagrange interpolation of order 28 on [−1, 1]. Maximal error 1.3 · 10−2.

2.3.2 The Remez method for minimax approximation

In this section we wish to �nd the �best� polynomial approximation p(x) to a given function

f(x) on a certain interval [a, b], where �best� is de�ned to be the approximation that has
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the least deviation from f(x). To measure the deviation one can introduce the maximum

absolute error of the approximation of f(x) by p(x) on the interval [a, b]:

E(p) = max
a≤x≤b

|f(x)− p(x)|.

The minimax approximation is based on �nding the polynomial with degree ≤ n for which

the above error is minimized, i.e.

ρn(f) = min
deg(p)≤n

E(p).

The number ρn(f) will be the smallest possible absolute error, or minimax error, when ap-

proximating f(x) by polynomials of degree at most n. The basic result regarding minimax

polynomials (or best approximation polynomials in the sense of Chebyshev) is the classical

theorem of Chebyshev, stated here without proof.

Theorem 2.1 (Chebyshev's minimax condition). A continuous function f : [a, b] → R
has a unique minimax polynomial of degree ≤ n, such that there exists ε = ±1 and n + 2

points a ≤ x0 < x1 < · · · < xn+1 ≤ b satisfying

f(xi)− p(xi) = ε(−1)iE(p), i = 0, 1, . . . , n+ 1.

In words, a polynomial p(x) is the minimax polynomial of degree ≤ n of f(x) if and only

if the error function f(x) − p(x) reaches its maximal absolute value n + 2 times, with

alternating signs.

Hence, knowing the locations x0, x1, . . . , xn+1 of the extrema of the error function, one

can write up a system of n+ 2 linear equations

p(xi) + (−1)iE = f(xi),

with n + 2 unknowns, being the polynomial coe�cients c0, c1, . . . , cn and the maximum

absolute error E.

In order to �nd the location of the extrema of the error function, and consequently

determine the minimax polynomial for f(x) one can make use of the Remez method [18],

named after the Russian mathematician E. Ya. Remez. The Remez method is an iterative

algorithm. We start with an arbitrary set of n+ 2 points in the given interval.
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Step 1:

The �rst step in the Remez method, given our current set of n+ 2 control points xi, is to

solve the linear system

c0 + c1xi + · · ·+ cnx
n
i + (−1)iE = f(xi),

to obtain the error term and the coe�cients of the polynomial p(x).

This gives us an approximation to f(x) that has the same error E at each of the control

points, and whose error function alternates in sign at the control points. However, this is

not necessarily the minimax solution: since the control points may not be at the extrema

of the error function. Therefore the minimax condition might still not be met. This takes

us to the second step.

Step 2:

The second step of the Remez method seeks a new set of n+ 2 points, that approaches the

n+2 points of the minimax condition. This is called the exchange step. We start by noting

that the error alternates in sign at the control points of the �rst step, therefore the error

function has n + 1 roots, one in each of the intervals [x0, x1], [x1, x2],. . . , [xn, xn+1]. We

denote these roots by z0, z1, . . . , zn, and calculate them by standard root �nding techniques

such as the method of chords or bisection [25]. Once they are found, we know that n

extrema are bracketed between each pair of roots, plus two more between the endpoints of

the interval and the �rst and last roots. Thus we divide the interval [a, b] in n+2 intervals:

[a, z0], [z0, z1], . . . , [zn−1, zn], [zn, b], and locate the points x∗0, x
∗
1, . . . , x

∗
n+1, where the error

function attains its maximum or minimum value. This last step can be done for instance,

by computing the root of the derivative of the error function, if such root exists. Otherwise

we just compute the error function at the endpoints of the interval.

At this point we have a choice: multi-point exchange, or single-point exchange. De�ne

k such that

k = max
i
|f(x∗i )− p(x∗i )|.

In the single-point exchange we move xk to x∗k, while in the multi-point exchange we

exchange all n + 2 points xi by x
∗
i . In the current paper we shall always perform multi-

point exchange.
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Iteration:

The Remez method then performs steps 1 and 2 until the di�erence between the old control

points and the new ones lies below a given threshold. At the end we have approached the

Chebyshev minimax condition, hence the magnitude of the error function at the �nal set of

the n+ 2 control points, E, represents the maximum absolute value of the approximation

error.

The steps above are summarized in Algorithm 2.1.

Algorithm 2.1 Remez method

Input: Explicit function f(x), order n > 0 and control points x0, x1, . . . , xn+1, threshold.

Output: Polynomial p(x) = c0 + c1x+ · · ·+ cnx
n ≈ f(x) and minimax error E.

1: while |xold − xnew| > threshold do

2: Solve the linear system

p(xi) + (−1)iE = f(xi) for i = 0, . . . , n+ 1.

3: Compute the roots of the error function e(x) = f(x)−p(x) by the method of chords.

Denote them by zi.

4: Locate the extremum of the error function in every interval [zi, zi+1]. (By computing

its derivative, for instance.) Denote them by xnew
i .

5: xi ← xnew
i .

6: end while

Numerical Example:

We illustrate the Remez method by �nding a �fth order minimax approximation of the

function f(x) = ex on the interval [−1, 1].

We take our initial set of 7 control points uniformly distributed on [−1, 1]. Below we

show the initial error function, as well as one computed after a certain number of iterations.

2.3.3 The Remez method for rational approximation

If desired, one can extend the Remez algorithm to a rational approximation of the form

f(x) ≈ R(x) =
p(x)

q(x)
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Figure 2.6: Error functions of 5th order minimax approximation with peak value 4.5 ·10−5.

where p(x) and q(x) are polynomials of degree n and m; see [3]. Assuming q(x) is normal-

ized, i.e., q(0) = 1, it will lead to the system with n+m+ 2 unknowns

p(xi)− f(xi)q(xi) + (−1)iEq(xi) = 0, i = 0, . . . , n+m+ 1,

evaluated at n+m+ 2 control points xi.

Since the system is nonlinear in the error term, one can adopt an iterative method to

solve it. Give an initial guess for E, solve the system for the unknown coe�cients, calculate

new value of E, and repeat until E converges to a stable value.

Even though the computational e�ort is considerably increased for rational approxi-

mation, it is often desirable to obtain a rational rather than polynomial approximation

nonetheless: rational approximations will often match more di�cult to approximate func-

tions, to greater accuracy, and with greater e�ciency, than their polynomial alternatives.

For example, if we take our previous example of an approximation to ex, we obtain 5.4·10−4

accuracy with an order 4 polynomial. If we move two of the unknowns into the denomina-

tor to give a fairly corresponding pair of order 2 polynomials, and re-minimize, then the

peak error converges to a value of 1.2 · 10−4.
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Figure 2.7: Error functions for ex with given initial minimax error E = 1e− 5.

2.4 Overdetermined rational approximation on a com-

plex domain

Up until now, all the previously discussed approximation methods for the exponential e−z

were done on the real line. Since one cannot except all eigenvalues of a certain eigenproblem

to be real, it is wise to consider a rational type approximation for f(z) = e−z on a complex

domain.

Let us consider a box-like domain of approximation Ω, shown in Figure 2.8.

Figure 2.8: Domain for approximation.

Selecting a number of points from Ω, the overdetermined system corresponding to the
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rational approximation of e−z will be

e−zi ≈ pm(zi)

qn(zi)
, i = 1, . . . , N, (2.4)

with the additional requirement N > n + m + 1, i.e., the number of equations is larger

than the number of the unknown coe�cients.

A standard technique of �nding approximate solutions of such systems is the method

of least squares. For this particular case the minimization problem is

min
C

∣∣∣∣∣∣∣∣pm(zi)

qn(zi)
− e−zi

∣∣∣∣∣∣∣∣ , (2.5)

where C is the set of the polynomial coe�cients {p0, p1, . . . , pm, q1, q2, . . . , qn}.

To solve such nonlinear least squares problem the Gauss�Newton algorithm can be

applied. Given m functions ri (i = 1, . . . ,m) of n variables c = (c1, c2, . . . , cn), with

m ≥ n, the Gauss-Newton algorithm �nds the minimum of the sum of squares

S(c) =
m∑
i=1

r2
i (c).

Starting with an initial guess c0, the method proceeds by the iterations

ck+1 = ck + α(δc),

where α is a damping parameter and the increment δc follows from the normal equation

J(δc) = r,

with r being the vector of functions, in this case residuals ri, and J the Jacobian matrix

of r with respect to c, both evaluated at ck.

For the reader's convenience the Gauss�Newton algorithm is summarized in Algorithm

2.2.

Providing the initial guess from a rational interpolation over 6+6+1 points and taking

10 iterations of the damped Gauss-Newton algorithm the sum of square of residuals drops

to the value 2.0e−9. The approximations and the corresponding absolute errors are shown

in Figure 2.9.

Since the degrees of the approximating (rational) polynomials will have a signi�cant

in�uence on the amount of computational work for the problems discussed in the succeeding
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Algorithm 2.2 Gauss�Newton algorithm

Input: vector of functions r = (r1, r2, . . . , rm), each having n variables, such that m ≥ n;

initial guess c0.

Output: solution c = (c1, c2, . . . , cn).

1: for k = 0, 1, . . . do

2: Compute Jacobian, J, of r with respect to c.

3: Compute the correction term δc by solving

J(δc) = r.

4: Make the Newton iteration

ck+1 = ck + α(δc),

where the damping parameter α ∈ [−1, 10] is given such that the ||r|| is minimized.

5: end for

Figure 2.9: Least squares approximation on Ω = [−2, 2] + [−2, 2]i.
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chapters, it is desirable to keep them as low as possible. That is, given a tolerance ε, we

wish to �nd the degrees m and n of the numerator and the denominator such that the

maximum absolute error on a certain complex domain is not larger than ε. For reasons

that will become clear in the next chapter we consider m = n + 1. Thus we consider

the problem of �nding the degree n such that the given tolerance is reached. Since we

expect that this degree depends on the size of the domain of approximations we apply

some splittings to the domain Ω and compute the corresponding degree for each of the

subdomains. These splittings are made in both the horizontal and the vertical direction

simultaneously, such that each subdomain will have the same size. The steps of this process

are given in Algorithm 2.3.

Algorithm 2.3 Divide and Conquer

Input: entire domain of approximation Ω = [x1, x2] + i · [y1, y2], tolerance ε, number of

cuts in one direction c, i.e., number of subdomains (c+ 1)2

Output: degrees dk, k = 1, 2, . . . , (c+ 1)2, such that the given tolerance is reached in each

subdomain.

1: Set x = linspace(x1, x2, c+ 2) and y = linspace(y1, y2, c+ 2).

2: For each subdomain Ωk, k = 1, 2, . . . , (c + 1)2, take initial maximum errors uniformly

ek = 1, and starting degrees uniformly dk = 2.

3: for all subdomains Ωk do

4: while ek > ε do

5: Compute approximation error ek with Algorithm 2.2.

6: Increase dk.

7: end while

8: end for

The result of an application of Algorithm 2.3 for Ω = [−10, 20] + i · [−10, 10] and

ε = 10−2 is shown in Figure 2.10.

2.5 Best approximation on the unit disk

Based on certain extensions of the theorem of Carathéodory and Fejér (see [22]), we present

in this section a method for �nding a best rational approximation to e−z on the unit circle.
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Figure 2.10: Approximation degrees and computation times for the Divide and Conquer

approach. Computation times: 35.7, 26.4, and 24.3.

Let S = {z ∈ C : |z| = 1} be the complex unit circle, let D = {z ∈ C : |z| < 1} be

the open unit disk, and let D = D ∪ S. Let Rmn be the space of rational functions

of type (m,n), that have no poles in D. Then, the problem of �nding the best rational

approximation is the following: given f analytic in D and continuous on D, �nd a rational

function r∗ ∈ Rmn such that ‖f − r∗‖ = infr∈Rmn ‖f − r‖ and |z| ≤ 1.

For given f and any r, the image of S under f − r describes some curve in the plane,

which we call the error curve corresponding to r. It will be shown that a best approximation

r∗ is a function whose error curve can be contained in a disk of minimal radius around the

origin. Based on the observation in [22], we note that, typically, for smooth f the error

curve corresponding to r∗ often approximates closely a perfect circle around the origin.

2.5.1 The CF method

We shall now present a method of �nding best rational approximations to a given func-

tion f . We will name it the Carathéodory�Fejér approximation or CF method, due to

the fact that the original theory of such approximation techniques was �rst presented by

Carathéodory and Fejér, in 1911. For the sake of simplicity, here we shall �nd approxima-

tions r∗ ∈ Rnn. For the straightforwardly generalized case m 6= n, the reader is referred to

[22].

Let f be a polynomial, f(z) = c0 + c1z + · · · + cKz
K , and let Hf denote the Hankel

matrix of f

Hf =


c1 c2 . . . cK

c2 . . . cK 0
... . .

.
. .
. ...

cK 0 . . . 0

 . (2.6)
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Note that Hf is symmetric, but if the ck are not real, it is not Hermitian. Let

Hf = UΣV,

be the singular value decomposition of Hf , i.e., let the above equation hold with U, V

unitary and Σ of the form diag(σ1, σ2, . . . , σK), with singular values σ1 ≥ σ2 ≥ · · · ≥ σK ≥
0. Then, the simpli�ed version of the Carathéodory�Fejér theorem from [22] is given in

the following proposition; see [22] for a proof.

Proposition 2.2. The polynomial f(z) = c0 + c1z + · · ·+ cKz
K has a unique best approx-

imation r∗ ∈ Rnn on the unit disk. The error is

‖f − r∗‖ = σn+1(Hf ),

where σn+1 = 0 if n + 1 > K, and the error curve is a perfect circle around the origin

whose winding number is exactly 2n+ 1. r∗ is given by

f(z)− r∗(z) = σn+1z
K u1 + u2z + · · ·+ uKz

K−1

vK + vK−1z + · · ·+ v1zK−1
, (2.7)

where u = (u1, u2, . . . , uK)T is the (n + 1)st column of U and v = (v1, v2, . . . , vK)T is the

(n+ 1)st column of V in any singular value decomposition Hf = UΣV .

The winding number in Proposition 2.2 is an integer representing the total number of

times that the error curve travels counterclockwise around the origin. Note, moreover, that

Proposition 2.2 is given for functions f of polynomial type. In practice, a given smooth

function, such as e−z, may be truncated �rst to a polynomial by Maclaurin expansion of

order K.

Furthermore, we give a �nal theoretical result of [22]. The following theorem shows

that any approximation with a circular error curve must be a best approximation. See [22]

for a proof.

Proposition 2.3. Given f analytic in D and continuous on D, suppose the error curve of

some function r ∈ Rnn is a perfect circle around the origin with winding number ≥ 2n+ 1.

Then r is a best approximation to f in Rnn.

2.5.2 Numerical computation of r∗

Based on Proposition 2.2, we shall now present a practical algorithm for computing best

rational approximants r∗ ∈ Rnn to a given function f .
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Step 1. First, one must decide at what degree K to truncate the Maclaurin series of f ,

and then �nd the K+1 required coe�cients. The Maclaurin coe�cients of a function f(z)

can be computed analytically by

cj =
1

j!
f (j)(0), ∀j = 0, 1, . . . , K.

Step 2. Find the (n + 1)st singular value and singular vector of the K by K Hankel

matrix Hf .

Step 3. Finally, one must extract the coe�cients of r∗ from (2.7). (See [22] for details.)

Algorithm 2.4 is given for f(z) = e−z.

Algorithm 2.4 Best approximation of e−z on unit circle

Input: order of approximation (n, n).

Output: best rational approximant r ∈ Rnn.

1: Discretize w = {z ∈ C : |z| = 1} using at least 2n points and set f(w) = e−w.

2: Choose degree K > n.

3: Compute Maclaurin coe�cients

cj = (−1)j

j!
for j = 0, 1, . . . , K

4: Singular value decomposition of H = hankel(c):

• [U, S, V ] = svd(H).

• Select singular value σn+1 = S(n+ 1, n+ 1).

• Select singular vectors u = U(:, n+ 1) and v = V (:, n+ 1).

5: Compute the coe�cients of r∗ from

r∗ = f(w)− σn+1w
K u1+u2w+···+uKw

K−1

vK+vK−1w+···+v1wK−1 .

2.5.3 Numerical example

To illustrate the foregoing results, we shall present how the CF method performs in ap-

proximating e−z. Because the magnitude of the Maclaurin coe�cients of e−z are decreasing
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very rapidly we shall choose for our numerical purposes the rather small truncating value

K = 25.

Figure 2.11: (left) Best rational approximation of order (3, 3) and (right) error curve

matching a perfect circle with winding number 7, and radius σ4(H) = 9.93e− 6.

2.6 Rational Chebyshev approximation in the complex

plane

In the previous section we have presented a best approximation method on the unit circle

based on Proposition 2.2 by Carathéodory and Fejér. Based on the more recent paper [6]

by Ellacott and Williams we wish to present hereby a more general best approximation

technique applicable for random complex domains. We are interested in �nding a local best

approximation, de�ned by the following:

De�nition 2.4. p∗

q∗
is a local best approximation to f if for each p ∈ P and q ∈ Q, there

exists a real T > 0 such that∥∥∥∥f − p∗

q∗

∥∥∥∥ ≤ ∥∥∥∥f − p∗ + tp

q∗ + tq

∥∥∥∥ , ∀t ∈ [0, T ].

In the de�nition above, P and Q refer to the space of complex-valued polynomials of

degree at mostm and n, respectively. Additionally we de�ne the space of complex rationals



32 Chapter 2. Polynomial and rational approximations

R := {p/q : p ∈ P, q ∈ Q}. Moreover, the term �local� in De�nition 2.4 refers to the fact

that small perturbations have been made in the numerator and denominator.

Formally, the approximation method presented in [6] is synthesized in Algorithm 2.5.

Algorithm 2.5 Best Chebyshev approximation using Lawson's method

Input: Function f , and discretized boundary {zi} of random complex region.

Output: Best Chebyshev approximation on random complex domain.

1: Choose initial p0, q0. (e.g., by Padé approximation.)

2: for all k = 0, 1, . . . do

3: Find δpk, δqk for which ∥∥∥∥f − pk
qk
− qkδp− pkδq

q2
k

∥∥∥∥ (2.8)

is minimized over all polynomials δp and δq. This is done by the so-called Lawson's

method, presented in Algorithm 2.6.

4: Determine the value tk from the discretized interval T = [−1, 1], such that∥∥∥f − pk+tkδpk

qk+tkδqk

∥∥∥
∞
≤
∥∥∥f − pk+tδpk

qk+tδqk

∥∥∥
∞
, ∀t ∈ T.

5: Set pk+1 = pk + tkδpk and qk+1 = qk + tkδqk.

6: end for

Before presenting Lawson's method, necessary for computing a best approximation, we

give some relevant arguments. First of all, the minimization problem (2.8) is a linearization

of the original problem of minimizing∥∥∥∥f − pk + δp

qk + δq

∥∥∥∥ .
This can be seen by the following steps, in which the O(2) terms are omitted:

pk + δp

qk + δq
=

pk + δp

qk

1

1 + δq
qk

=
pk + δp

qk

(
1− δq

qk

)
=

pk
qk

+
qkδp− pkδq

q2
k

.

Hence, we need to compute a linear approximation for ek = f − pk

qk
. As a �rst step in

doing so, we de�ne for a �xed element p/q ∈ R the set

L(p, q) :=

{
qp̃− pq̃
q2

: p̃ ∈ P, q̃ ∈ Q
}
.
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To emphasize even more on the reasonability of minimizing (2.8) we give a theorem of [6]

without proof.

Theorem 2.5. p∗/q∗ ∈ R is a local best approximation to f if and only if a best approxi-

mation to f − p∗/q∗ from the space L(p∗, q∗) is the zero function.

The next theorem gives a basis for L(p, q).

Theorem 2.6. Let p/q, q(0) = 1, be a �xed element in R. Then, L(p, q) is spanned by the

m+ n+ 1 elements

{ϕj} :=

(
zp

q2
,
z2p

q2
, . . . ,

znp

q2
,
1

q
,
z

q
, . . . ,

zm

q

)
.

Proof: Let l ∈ L(p, q). Then

−l(z) =
p
∑n

j=0 bjz
j − q

∑m
j=0 ajz

j

q2
= b0

p

q2
+
p
∑n

j=1 bjz
j − q

∑m
j=0 ajz

j

q2
.

It is thus su�cient to show that p/q2 can be written as a linear combination of {ϕj}.

p

q2
=
p

q
+

(1− q)p
q2

,

and so, {ϕj} spans the space L(p, q).

In Algorithm 2.6 we give Lawson's method for minimizing (2.8).

Algorithm 2.6 Lawson's method

Input: error ek = f − pk

qk
.

Output: updates δpk, δqk.

1: Set basis functions

Φk :=

{
zpk
q2
k

,
z2pk
q2
k

, . . . ,
znpk
q2
k

,
1

qk
, . . . ,

zm

qk

}
.

2: Minimize ∥∥∥∥∥ek −∑
j

αjϕj

∥∥∥∥∥
for coe�cients αj and ϕj ∈ Φk. (fminimax)

3: Set δqk = [0; α(1:n)] and δpk = −α(n+1:n+m+1).
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Next we present some numerical results of this method with f(z) = e−z and using

di�erent types of complex regions: the unit interval [−1, 1], the unit circle {z ∈ C : |z| = 1},
and the unit square {z = x+ iy ∈ C : x ∈ [−1, 1], y ∈ [−1, 1]}. The results are summarized

in Table 2.1.

m = n [−1, 1] unit disk unit square

1 2.1 · 10−2 8.4 · 10−2 1.8 · 10−1

2 8.6 · 10−5 1.4 · 10−3 3.9 · 10−3

3 1.5 · 10−7 1.0 · 10−5 3.5 · 10−5

4 3.7 · 10−12 1.0 · 10−7 3.8 · 10−7

Table 2.1: Approximation errors for e−z, using 100 points for discretization.
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Delay Eigenvalue Problems

3.1 Introduction

Consider the delay-di�erential equation with a single delay{
ẋ(t) = A0x(t) + A1x(t− τ), t ≥ 0

x(t) = ϕ(t), t ∈ [−τ, 0],
(3.1)

where A0, A1 ∈ Rn×n, τ > 0 and an initial condition ϕ, typically assumed to be continuous

and bounded.

Just as in the case of ordinary di�erential equations, the characteristic equation and the

corresponding eigenvalues play an important role in the analysis of the delay-di�erential

equation, by making it possible to establish properties of the problem without actually

solving it. In the following we give some relevant de�nitions regarding the characteristic

equation of (3.1).

De�nition 3.1. For the DDE (3.1) we call:

1. The equation

det(−λI + A0 + A1e
−λτ ) = 0, (3.2)

the characteristic equation of (3.1);

2. a solution λ to the characteristic equation (3.2) an eigenvalue;

35
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3. the set of all solutions of (3.2) the spectrum of the DDE (3.1) and denote it by

σ(Σ) =
{
λ ∈ C : det(−λI + A0 + A1e

−λτ ) = 0
}

;

4. a vector x ∈ Cn, x 6= 0 corresponding to the eigenvalue λ ∈ σ(Σ), an eigenvector

corresponding to λ i�

(−λI + A0 + A1e
−λτ )x = 0, (3.3)

and the pair (λ, x) is called an eigenpair;

5. the problem of �nding the eigenpairs, i.e., the solution to (3.3), a delay eigenvalue

problem (DEP).

The exponential term in the characteristic equation (3.2) is commonly motivated by

looking for non-trivial solutions using the exponential ansatz x(t) = eλtx0. If we insert

the exponential ansatz into (3.1) we arrive at the characteristic equation. Because of this

nonlinear term, the delay eigenvalue problem (3.3) belongs to a class of problems referred

to as nonlinear eigenvalue problems.

In this chapter we shall focus on solving the DEP (3.3) by applying some of the ap-

proximation methods for the exponential term e−τλ, discussed in Chapter 2.

For our numerical experiments we shall use as a test problem the partial di�erential

equation with delay (PDDE) from [12, Section 2.4.1], i.e.,{
∂u
∂t

= ∂2u
∂x2 + a0(x)u+ a1(x)u(x, t− τ1) + a2(x)u(x, t− τ2),

u(0, t) = u(π, t) = 0, t ≥ 0
(3.4)

where a0(x) = a0 + α0 sin(x), a1(x) = a1 + α1x(1− ex−π) and a2(x) = a2 + α2x(π − x).

Letting τ = τ1 = τ2 and selecting the numerical values a0 = 20, α0 = 0, a1 = −4,

α1 = 1, a2 = −0.1, α2 = 0 one can discretize (3.4) with center di�erence and uniform

step-size h = π/(n+ 1) in space and get the DDE of dimension n

v̇(t) =
(n+ 1)2

π2


−2 1

1
. . . 1

1 −2

 v(t) +


a0(x1) 0

0
. . . 0

0 a0(xn)

 v(t)+


a1(x1) 0

0
. . . 0

0 a1(xn)

 v(t− τ) +


a2(x1) 0

0
. . . 0

0 a2(xn)

 v(t− τ). (3.5)
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In the following sections we shall try to approximate the eigenvalues of (3.5) by applying

the methods of Chapter 2 for e−λ, hence τ = 1.

3.2 �Exact� eigenvalues

In order to numerically test our results, i.e., give errors for certain approximate eigenvalues,

we need to �x a reference solution of (3.3), which we will consider the �exact� eigenvalues.

To this end we introduce the following results of [12].

3.2.1 PDE formulation of a DDE

Every DDE can be rewritten as a partial di�erential equation by introducing an additional

dimension, containing the function segment xt to the left of the time-point t. This memory-

dimension θ takes the position of the space-dimension in the PDE-formulation. We state

the equivalence between the DDE and the corresponding PDE by the following theorem;

see [12, Section 2.2.3] for a proof.

Theorem 3.2 (PDE-formulation:). Let ϕ ∈ C([−τ, 0],Rn), that is ϕ continuous mapping

from [−τ, 0] to Rn, be given. Then consider the single-delay DDE{
ẋ(t) = A0x(t) + A1x(t− τ) t ≥ 0

x(t) = ϕ(t) t ∈ [−τ, 0]
(3.6)

and a corresponding boundary value problem
∂u
∂θ

= ∂u
∂t

t ≥ 0, θ ∈ [−τ, 0]
∂u
∂θ

(t, 0) = A1u(t,−τ) + A0u(t, 0) t ≥ 0

u(0, θ) = ϕ(θ) θ ∈ [−τ, 0]

(3.7)

with u ∈ C([0,∞)× [−τ, 0],R) as the unknown.

Now, suppose x(t) is the solution to (3.6) and u(t, θ) the solution to (3.7). Then

u(t, θ) = x(t+ θ) (3.8)

for θ ∈ [τ, 0], t ≥ 0.
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Thus, the solution of the PDE is exactly x(t) shifted over θ. Now let A correspond

to the di�erentiation operator in θ-direction with the domain of functions ful�lling the

boundary conditions in (3.7). That is

(Aϕ)(θ) :=
dϕ

dθ
(θ),

for functions ϕ satisfying

ϕ′(0) = A1ϕ(−τ) + A0ϕ(0).

The boundary value problem (3.7) is hence

d

dt
xt = Axt, (3.9)

with xt being the solution of the DDE. [12]

3.2.2 Discretizing the PDE

By, for instance, [7, Chapter 7, Lemma 2.1], we have that the eigenvalues of the operator

A are also the eigenvalues of the DDE. The next step in our purpose of �nding reference

eigenvalues is to discretize A, i.e., the PDE in θ - space - direction and compute the

eigenvalues of the corresponding linear operator (matrix) AN .

Chebyshev spectral di�erentiation:

There are a number of discretization methods available for such problems. A crude, but

rather simple approximation for replacing the di�erential is by �nite di�erences, e.g. for-

ward di�erences. Another successful approximation, proven to be highly e�cient, is the

Chebyshev di�erentiation matrix.

Consider the grid

xj = cos
jπ

N
, j = 0, . . . , N.

These points are known as Chebyshev extreme points, since they are the extrema of Cheby-

shev polynomials

TN(x) = Re(zN) =
1

2
(zN + z−N).

The Chebyshev di�erentiation matrix, denoted hereby DN , transforms a vector of data

at Chebyshev points into approximate derivatives at those points. Here we will give the
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de�nition of DN by [23]: let N ≥ 1 be any integer. The �rst order spectral di�erentiation

matrix has entries
(DN)00 = 2N2+1

6
,

(DN)NN = −2N2+1
6

,

(DN)jj =
−xj

2(1−x2
j )
, 1 ≤ j ≤ N − 1,

(DN)ij = ci
cj

(−1)i+j

xi−xj
, i 6= j.

Thus the discretized operator AN for

u̇N(t) = ANuN(t), uN(0) = ϕN

will be

AN =

(
DN ⊗ In

A1 0 . . . 0 A0

)
, (3.10)

where ⊗ stands for the Kronecker tensor product. Thus, for (N + 1) Chebyshev points

and coe�cient matrices of size n × n, the �rst block row of AN corresponding to the

di�erentiation is size nN×n(N+1), while the last block row, corresponding to the boundary

conditions in (3.7) is size n× n(N + 1).

Using the Matlab routine cheb from [23], one can elegantly compute the eigenvalues of

AN by

D = -cheb(cN-1)*2/tau;

E = eig([kron(D(1:cN-1,:),eye(N)); [A1,zeros(N,(cN-2)*N), A0]]);

where cN denotes the dimension of the Chebyshev di�erentiation matrix and N the size

of the coe�cient matrices A0 and A1. Therefore, the �rst line determines the Chebyshev

di�erentiation matrix for the interval [−τ, 0], while the second one imposes the boundary

conditions in the last row of the di�erentiation matrix AN and ultimately computes the

eigenvalues of the operator.

Model order reduction

The di�erentiation operator A in (3.9) is de�ned as the in�nite-dimensional operator cor-

responding to the BVP (3.7); see [7] for details. Hence we can say that time-delay systems

can be treated as in�nite dimensional systems. In this context we wish to note that a ra-

tional approximation of e−τλ can be considered a model order reduction from in�nite order
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to the order of the rational function. This is shown by stating that the discretization of the

operator A, presented earlier, could be interpreted as an approximation of the exponential

function, at least for some cases.

Let us truncate the limit in the de�nition of the exponential. That is, replace e−τλ =

limN→∞(1 + τλ/N)−N with e−τλ ≈ (1 + τλ/N)−N and then multiply (3.3) by (1 + hλ)N ,

where h = τ/N . Then we have

(A0(1 + hλ)N + A1)x = λ(1 + hλ)Nx. (3.11)

Taking DN as the forward di�erence matrix in (3.10), and de�ning the vectors xk = (1 +

hλ)xk−1 recursively with x1 = x we get that the constructed vector (xT1 , . . . , x
T
N) is clearly

an eigenvector of (3.10). The �rst block row is ful�lled from the recursive construction of

xk and the last row is (3.11).

3.2.3 Reference eigenvalues

At this point we give the reference eigenvalues of our test problem, which shall be used

further on for the purpose of estimating approximation errors for several eigenproblem

solvers. For our experiments, the dimension of the Chebyshev di�erentiation matrix is

chosen to be cN = 20.

To test the approximation one can compute the minimal singular value of

−λ̃I + A0 + e−τλ̃A1

for some approximate eigenvalue λ̃. Numbers are shown below for rightmost eigenvalues

λr:

Discr. size N = 10 N = 40 N = 100

λr 19.0068 19.0005 19.0001

σmin 9.20e− 11 9.16e− 11 9.16e− 11

Table 3.1: Minimal singular values for rightmost eigenvalue.
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Figure 3.1: Exact eigenvalues for N = 10, 20, 40 and 100.

3.2.4 Solution operator discretization

As an alternative method of computing �exact� eigenvalues for the delay eigenproblem

one can apply the previously described Chebyshev discretization for the so-called solution

operator. Below we shall brie�y outline the most important �ndings of [12] with respect

to the solution operator without giving any details. For a thorough description the reader

is referred to [12, Section 2.2.2].

De�nition 3.3. The solution operator of the DDE (3.1) is the operator transforming an

initial condition φ to the solution segment at time-point h. We denote this operator by

T (h) : C([−τ, 0],Rn)→ C([−τ, 0],Rn). The solution operator applied to φ, i.e., (T (h)φ)(θ)

=: ψ(θ), is the solution segment of (3.1) with initial condition ϕ = φ at time-point h. More

precisely,

ψ(θ) := (T (h)φ)(θ) = x(h+ θ), θ ∈ [−τ, 0],

where x(t) is the solution of (3.1) with initial condition ϕ = φ.

Theorem 3.4. Consider the DDE (3.1) with the solution operator T (h) de�ned by De�-
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nition 3.3. Suppose h ≤ τ , then for any ϕ ∈ C([−τ, 0]),

(T (h)ϕ)(θ) =

{
ψ(θ) = ϕ(θ + h) θ ∈ [−τ,−h]

Solution of ψ̇(θ) = A0ψ(θ) + A1ϕ(θ + h− τ) θ ∈ [−h, 0].
(3.12)

The operator (3.12) is clearly linear, and the spectrum is related to the spectrum of

the DDE by the following spectral mapping principle. For any t > 0

σ(Σ) =
1

t
ln(σ(T (t))\0), (3.13)

where σ(Σ) is the spectrum of the DDE and the logarithm is the set of all branches of the

component application on the elements of the set σ(T (t))\0.

The following code for the Chebyshev discretization of the solution operator computes

some eigenvalues of the single DDE of dimension N with cN Chebyshev nodes.

DD = cheb(cN-1)*2/tau;

DN = kron([DD(1:end-1,:);[zeros(1,cN-1),1]],eye(N));

MA = kron([eye(cN-1,cN);zeros(1,cN)],A0);

MB = [kron([eye(cN-1,cN)],A1);kron([1,zeros(1,cN-1)],eye(N))];

E = (log(eig(MB,DN-MA))+k*2*pi*i)/tau;

In the last step, the branch k of the logarithm has to be chosen correctly. The rightmost

eigenvalues are typically the principal branch k = 0; see [12].

Discr. size N = 10 N = 40 N = 100

λr 16.1596 16.0508 16.0437

σmin 5.2e− 2 4.3e− 2 4.2e− 2

Table 3.2: Minimal singular values for rightmost eigenvalue.

A comparison of the values from Table 3.1 with the corresponding values from Table

3.2 implies that the method of Section 3.2.2 is more suitable for building the reference

eigenvalues.
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3.3 Newton-type method

Before turning our attention to several eigenproblems approximating (3.3), we would like

to present a Newton-type method for solving eigenvalue problems. Consider the eigenvalue

problem

G(λ)x = 0, (3.14)

where G is di�erentiable. One of the approaches for solving equation (3.14) is to apply

Newton's method for the extended system

F (u, θ) =

(
G(θ)u

w∗u− 1

)
= 0, (3.15)

with given initial eigenpair (u0, θ0). The second equation is a normalization condition,

where the normalizing vector w, ||w|| = 1, has to satisfy w∗x 6= 0, with x being the exact

eigenvector of (3.14). Then the Newton equation

0 = F (uk, θk) + DF (uk, θk)

[
uk+1 − uk
θk+1 − θk

]

for (3.15) at the current approximation (uk, θk) is equivalent to[
G(θk) G′(θk)uk

w∗ 0

][
uk+1 − uk
θk+1 − θk

]
= −

[
G(θk)uk

0

]
, (3.16)

provided that uk satis�es the normalizing condition w∗uk = 1.

Hence, given an initial approximate solution to (3.15), one can always re�ne it by means

of the Newton-type method presented hereby. A practical test of the current method is

presented in Section 3.5.2. For further details on Newton-type methods for nonlinear

eigenvalue problems the reader is referred to [17].

3.4 Galerkin and minimal residual method

Assume we have an approximate eigenvector u of the eigenproblem (3.3) and we want to

determine the corresponding approximate eigenvalue θ. In this section we present suitable

methods for doing so by extending the results of [11, Chapter 8] on quadratic eigenvalue

problems to delay eigenvalue problems of type (3.3).
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3.4.1 Galerkin method

For an approximate eigenpair (θ, u) of (3.3) we de�ne the residual r(θ, u) by

r(θ, u) := (−θI + A0 + e−τθA1)u.

Then the approximate eigenvalue θ follows from imposing the Ritz�Galerkin condition

r(θ, u)⊥u, i.e.,
−θ + u∗A0u+ e−τθu∗A1u = 0. (3.17)

One standard approach for solving this problem directly is based on the Lambert W

function. The Lambert W function, denoted Wk(z), is a logarithmic type function de�ned

as the multivalued inverse of the complex function f(w) = wew:

Wk(z) ∈ {w ∈ C : z = wew}, k ∈ Z, (3.18)

where k denotes one of the in�nite number of branches. The solution to (3.17), based on

the Lambert W function, is then given by the following steps. Introducing a0 := u∗A0u

and a1 := u∗A1u, (3.17) rewrites to

−θ + a0 + e−τθa1 = 0. (3.19)

Multiplying (3.19) by τeτθ, and denoting θ − a0 =: ψ one obtains

τ(θ − a0)e
τθ = τa1,

τψeτψ = τa1e
−τa0 ,

τψ = Wk(τa1e
−τa0).

Hence, the solution θ of (3.17) is

θ =
1

τ
Wk(τa1e

−τa0) + a0. (3.20)

In this section we introduce some new methods for solving (3.17). To this order let us

de�ne the generalized residual r(θ, η, u) (cf. [11, Section 8.2.2]) by

r(θ, η, u) := (−θI + A0 + ηA1)u. (3.21)
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Now one can impose two Galerkin conditions r(θ, η, u)⊥w1 and r(θ, η, u)⊥w2 for speci�c

independent vectors w1, w2, leading to the system

W ∗Z

[
θ

η

]
= −W ∗A0u, where W = [ w1 w2 ], Z = [ −u A1u ]. (3.22)

When W ∗Z is nonsingular, (3.22) de�nes unique θ and η approximating λ and e−τλ, re-

spectively. A logical choice for w1 and w2 is any linear combination of −u, A0u, and A1u.

Speci�cally, for the two-dimensional Galerkin method, one can take the two �largest� left

singular vectors of [ −u A1u A0u ]; see [11] for details.

3.4.2 Minimum residual method

Another idea is to minimize the norm of the generalized residual (3.21) with respect to

θ, η:

argmin
(θ,η)∈C2

||(−θI + A0 + ηA1)u||.

To solve this consider the corresponding overdetermined n× 2 linear system

Z

[
θ

η

]
= −A0u,

with Z = [ −u A1u ]. −u and A1u being independent, θ and η are uniquely determined by[
θ

η

]
= −(Z∗Z)−1Z∗A0u. (3.23)

One can notice that (3.23) is a special case of (3.22), namely the case when we choose

W = Z.

Hence, given an approximate eigenvector u, the two-dimensional Galerkin and minimum

residual methods provide an approximate eigenvalue λ. We note that one can determine

λ in two di�erent ways. Besides the obvious choice λ = θ, one can also take

λ = argmin
λ
||(λ, e−τλ)− (θ, η)||2,

which can be easily computed by Matlab's fminsearch. Note, moreover, that for small

systems one can always select the better approximation by computing the minimal singular

value of (3.3) for the given eigenvalue.
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Algorithm 3.1 Two-dimensional methods
Input: an approximate eigenvector u.

Output: two approximate eigenvalues of (3.3).

1: Choose plane of projection spanned by w1 and w2:

• Galerkin: the two �largest� left singular vectors of [ −u A1u A0u ],

• Minimum residual: w1 = −u and w2 = A1u.

2: Compute (θ, η) = −(W ∗Z)−1W ∗A0u, where W = [ w1 w2 ] and Z = [ −u A1u ].

3: Approximate λ by

• θ or

• argminλ ||(λ, e−τλ)− (θ, η)||2

For the readers convenience we summarize the two-dimensional methods in Algorithm

3.1. For numerical experiments the reader is referred to Section 3.5.2.

Additionally, one can always use the techniques described beforehand for re�ning an

approximate eigenpair (θ, u) of (3.3). This is done in two easy steps: �rst, compute a new

eigenvalue θ̃ using one of the methods described in Section 3.4 for u, and second, compute

the �smallest� singular vector ũ of −θ̃I + A0 + e−τ θ̃A1 for the approximate eigenvalue θ̃.

Repeating these two steps leads to Algorithm 3.2, at the end of which it is expected to

have a better approximation of the eigenpair. For numerical results see Section 3.5.2.

Algorithm 3.2 Re�nement of an approximate eigenpair
Output: re�ned approximate eigenpair.

1: Compute approximate eigenpair from any approximate eigenproblem

2: for k = 1, 2, . . . do

3: Compute approximate θk by Galerkin or minimum residual method

4: Compute the �smallest� singular vector uk of −θkI + A0 + e−τθkA1

5: end for
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3.5 Approximate eigenproblems

In this section we shall apply some of the approximations derived in Chapter 2 to the

exponential term in (3.3), and subsequently solve the resulting eigenvalue problem. This

eigenvalue problem can be of di�erent types with respect to the approximation on hand.

Hence, a polynomial approximation of the exponential will lead to a polynomial eigenvalue

problem, while a rational approximation will result in a rational eigenvalue problem, respec-

tively. The polynomial eigenvalue problem, hereinafter PEP, can be solved using standard

techniques, e.g. companion linearization. Furthermore, the rational eigenvalue problems

can be trivially rewritten to a polynomial eigenvalue problem by multiplying both sides of

(3.3) with the denominator. Thus the method of companion linearization for solving poly-

nomial eigenvalue problems will be extensively used in this thesis (mainly by the polyeig

routine of Matlab), so it is advisable to brie�y present it in the following section.

3.5.1 Linearization of polynomial eigenproblems [12]

The problem of determining λ ∈ C and v ∈ C, v 6= 0 such that

P (λ)v = (A0 + A1λ+ · · ·+ ANλ
N)v = 0,

where A0, A1, . . . , AN ∈ Cn×n, is called a polynomial eigenvalue problem. A common way

to solve such problems is to transform it to a generalized eigenvalue problem. This is done

by considering a linearization for P (λ) of the form L(λ) = λX + Y , such that there are

some unimodular E(λ), F (λ) with

E(λ)L(λ)F (λ) =

(
P (λ) 0

0 I

)
.

In this context a unimodular matrix is de�ned as a square integer matrix with determi-

nant ±1. The most common linearization (used by polyeig as well) is the so-called �rst

companion linearization L(λ) = λX + Y , where the matrices X, Y ∈ CNn×Nn are given by

X =


AN

I

. . .

I

 , Y =


AN−1 AN−2 . . . A0

−I 0 . . . 0

. . .
. . .

...

−I 0

 .
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Thus the solution process for PEP is done by �rst linearizing P (λ) into L(λ), and

then solving the generalized eigenproblem L(λ)v = 0, which straightforwardly gives us the

eigenvalues of P (λ).

3.5.2 REP by Padé approximations for e−τλ

In this section we shall apply some Padé approximations to the exponential term in (3.3)

and solve the corresponding rational eigenvalue problem, or REP.

(2, 2)n Padé approximation

Consider the (2, 2)n Padé approximation given by

e−τλ ≈ rn(λ) =
p(λ)

q(λ)
(3.24)

where p(λ) =
(

1− τλ
2n

+ τ2λ2

12n2

)n
and q(λ) =

(
1 + τλ

2n
+ τ2λ2

12n2

)n
, such that the approximation

error is bounded by

|e−λ − rn(λ)| ≤ 1

270

∣∣∣∣λn
∣∣∣∣5 n3−Reλ (3.25)

for |λ/n| ≤ 1 and n > −Re(λ); see [16].

Applying (3.24) to approximate the exponential function in (3.3) we arrive to the REP

(−λI + A0 + rn(λ)A1)x = 0

which, written as a PEP, can be solved by companion linearization. The PEP follows from

multiplying the REP with q(λ):

(−λq(λ)I + q(λ)A0 + p(λ)A1)x = 0. (3.26)

We solve (3.26) using MatLab routine polyeig for matrix coe�cients computed by

B(2n+ 1− i) = piA1 + qiA0 + q̃iI, i = 2n+ 1, 2n, . . . , 1, 0, (3.27)

where pi, qi and q̃i are the coe�cients of the polynomials p(λ), q(λ) and λq(λ), respectively.



3.5. Approximate eigenproblems 49

Results are shown in Figure 3.2, where the convergence order q is calculated by

q =
log |λk−λk+1|

|λk+1−λk+2|

log |λk+1−λk+2|
|λk+2−λk+3|

,

where the λk are approximations of the rightmost eigenvalue of (3.3). The formula above

follows from the de�nition of the rate of convergence

µ = lim
k→∞

|λk − λk+1|
|λk+1 − λk+2|q

.

Figure 3.2: Approximate eigenvalues for n = 2, 3 and 4 and convergence order for the

rightmost eigenvalue λr = 19.0005. Dimension N = 40.

The approximation errors for the rightmost eigenvalue of the N = 20 problem are given

in Table 3.3.

(2n, 2n)-Padé vs. (2, 2)n-Padé

Since we have compared the two types of Padé approximation for e−z in the previous

chapter, it is also favorable to compare the eigenvalues resulting from the two corresponding
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Approximation (2, 2) (2, 2)2 (2, 2)3 (2, 2)4

Error 1.5 2.3 · 10−1 1.1 · 10−2 3.0 · 10−4

Table 3.3: Approximation errors for N = 20.

rational eigenvalue problems.

Figure 3.3: Errors for di�erent Padé approximations

As seen in Figure 3.3, the absolute errors for the rightmost eigenvalue are smaller in

the case of the (2, 2)n-Padé approximation. This result perfectly �ts the �ndings of Section

2.1.2, since the righmost eigenvalue, in the current case λr = 19.0005, is considerably far

from the origin.

Newton re�nement for rightmost eigenvalue

We would like to show in this section how powerful the Newton-type method, presented in

Section 3.3, really is. Consider the nonlinear eigenvalue problem

G(λ)x = 0, (3.28)

being our original delay eigenvalue problem with

G(λ) = −λI + A0 + e−τλA1.
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Taking the rightmost eigenpair of the polynomial eigenproblem (3.26) as the initial ap-

proximation for the eigenpair of (3.28) one can apply Newton's method for re�ning it.

Considering a (2, 2)4 Padé-type approximation for the exponential and applying the

Newton iteration 10 times, the minimal singular value for the rightmost eigenvalue drops

from 2.55e − 4 to 6.75e − 14. Notice that this value is even smaller than the minimal

singular value for our so-called �exact� rightmost eigenvalue. (See Table 3.1 for N = 40.)

Numerical results for the Galerkin and minimal residual method

Hereby we wish to present some results regarding the utility of the Galerkin and minimal

residual methods presented in Section 3.4. First we test the methods for two di�erent

approximate eigenvectors. Initially, we consider as approximate eigenvector the rightmost

eigenvector u of (3.26) with polynomials p and q, both of degree 24. Furthermore, we will

consider another approximate eigenvector u∗ by adding a random perturbation to u. Thus

u∗ =
u+ εw

||u+ εw||
,

where w is a normalized vector of the form rand(N,1)-0.5 + i · (rand(N,1)-0.5), and ε

will be chosen freely.

Results are summarized in Table 3.4. Note that the error in Table 3.4 refers to the

absolute di�erence from the original rightmost eigenvalue of (3.26), λr = 19.0002. Since

the two solutions from Section 3.4, i.e., θ and argminλ ||(λ, e−τλ)− (θ, η)||2 will be exactly
the same for the case on hand, we shall only give the corresponding errors and minimal

singular values one time. Moreover, in some cases, the eigenvalue given by the Lambert

W function is more accurate than the eigenvalue resulting from solving (3.26) by polyeig.

These values are marked with bold.

Galerkin Minimum residual Lambert W

ε error σmin error σmin error σmin

0 8.9e− 7 2.5e− 4 8.9e− 7 2.5e− 4 2.5e− 4 1.1e− 10

10−6 9.5e− 6 2.6e− 4 3.4e− 6 2.5e− 4 2.5e− 4 4.8e− 10

10−3 9.4e− 1 9.4e− 1 7.8− 3 7.8e− 3 1.1e− 4 3.7e− 4

Table 3.4: Errors and minimal singular values.
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One can conclude that the two-dimensional Galerkin and the two-dimensional mini-

mum residual methods provide similarly good approximations for the eigenvalue of (3.3).

For increased perturbations (higher ε) the minimum residual method gives slightly better

results.

Next we wish to show how the re�nement technique, presented in Section 3.4, works

for an approximate eigenpair (θ, u), being the rightmost eigenpair of (3.26) for p and q

of order 24. We perturb u using ε = 10−3, and follow the steps of Algorithm 3.2 for the

Galerkin method. Results are shown in Table 3.5.

iteration 1 2 3 4

error 3.7e− 1 2.5e− 4 2.5e− 4 2.5e− 4

σmin 3.7e− 1 5.2e− 9 9.2e− 13 2.0e− 15

Table 3.5: Re�nement for an approximate eigenvalue.

The poor results of the �rst iteration are due to the fact that initially we have taken

our approximate eigenvector as u = upep + εw, where upep is already nothing else than an

approximation of the eigenvector resulting from the polynomial eigenvalue problem (3.26).

The next iteration, however, already provides a stable value for the error |λpep − θ|.

3.5.3 REP by Padé approximations for lnµ

Consider the change of variables

µ = e−τλ. (3.29)

Thus (3.3) will have the form (
1

τ
lnµI + A0 + µA1

)
v = 0. (3.30)

This eigenproblem, containing a nonlinear logarithmic term, can again be approximated

by a REP, using the techniques of rational or polynomial approximation for lnµ. One such

technique considered here is a (2, 2)-Padé approximation for lnµ

lnµ ≈ µ2 − 1
1
3
(µ2 + 4µ+ 1)

. (3.31)
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Figure 3.4: Eigenvalues for di�erent Padé approximations of e−λ and lnµ.

Substituting (3.31) in (3.30) we get a polynomial eigenproblem, which can be solved

again by polyeig.

It can be concluded by Figure 3.4, that the rational approximation of the eigenproblem

(3.30) yields worse results than the corresponding approximation of (3.3).

3.5.4 REP by Chebyshev and Legendre interpolation

Considering a rational interpolation of e−τλ on [−1, 1] as described in the previous chapter

one can compute approximate eigenvalues of (3.3). Figure 3.5 clearly shows that these are

not at all satisfactory.

3.5.5 PEP by minimax approximation

Consider again the DEP

(−λI + A0 + e−τλA1)x = 0.

This eigenvalue problem can be directly transformed to a PEP by applying a polynomial

approximation for the term e−τλ. One such method of approximation discussed in the

previous chapter is the so-called Remez algorithm.

As shown in Figure 3.6, a 10th order polynomial approximation of the exponential

having minimax error 1.46 · 10−4, yields fairly disappointing results.
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Figure 3.5: Approximate eigenvalues resulting from rational interpolations of order (30, 30)

with maximum residuals of 7.6e− 7 and 3.9e− 7, respectively.

Figure 3.6: Remez approximation to e−z and the corresponding eigenvalues.
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3.5.6 PEP by Lagrange interpolation

Applying Lagrange interpolation for e−τλ yields, yet again, a polynomial eigenproblem.

One can observe on Figure 3.7 that the corresponding eigenvalues can be considered fair

approximations of the eigenvalues around the origin. However, the rightmost eigenvalue of

(3.3) is still very far from being approximated.

Figure 3.7: Eigenvalues following Lagrange interpolation of order 16 on [−10, 5].

3.5.7 REP by rational minimax approximation

Using the �ndings on the Remez method for rational approximation, presented in Section

2.3.3, one can rewrite (3.3) as a REP, and consequently as a PEP, which is solved by means

of polyeig. Figure 3.8 shows approximate eigenvalues given by a (4, 4) rational Remez

approximation of e−z on [−1, 1]. For the �rst time the approximation error of the rightmost

eigenvalue of (3.3) is one worth mentioning: 7.2 · 10−1.

3.5.8 REP by least squares approximation on complex box

Applying the approximation method presented in Section 2.4 (on Ω = [−2, 2] + i · [−2, 2])

one �nds relatively sharp approximate eigenvalues of (3.3); see Figure 3.9. The errors of

approximation for the rightmost eigenvalue of (3.3) are given in Table 3.6.
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Figure 3.8: Eigenvalues by rational Remez approximation. Problem size N = 40.

Figure 3.9: Approximate eigenvalues for N = 20 and approximation order (6, 6).

order of approximation (2, 2) (4, 4) (6, 6) (8, 8)

error 3.7 6.7 · 10−1 6.7 · 10−2 7.0 · 10−3

Table 3.6: Approximation errors for rightmost eigenvalue.
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3.5.9 REP by best rational approximation on unit disk

In this section we solve the delay eigenvalue problem (3.3) with the help of the Carathédory�

Fejér method described in Section 2.5. Figure 3.10 shows that using a best rational approx-

imation for e−τλ on the unit circle one �nds reasonably accurate approximate eigenvalues

for (3.3). The rightmost approximation errors for this method are given in Table 3.7.

Figure 3.10: (left) Approximate eigenvalues for problem dimension N = 20 and approx-

imation order (6, 6). (right) Error curve for the rational approximation of e−τλ having

radius 1.7 · 10−13.

order of approximation (2, 2) (4, 4) (6, 6) (8, 8)

error 1.8 4.0 · 10−1 4.4 · 10−2 2.5 · 10−3

Table 3.7: Approximation errors for rightmost eigenvalue.

3.5.10 REP by best rational approximation on random complex

regions

Figure 3.11 shows results of solving the rational eigenvalue problem resulting from a ra-

tional Chebyshev approximation for e−τλ on several complex domains. Table 3.8 gives the

corresponding errors of the rightmost approximate eigenvalue.
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Figure 3.11: Approximate eigenvalues for problem dimension N = 20 and approximation

order (5, 5) by rational Chebyshev approximation for (1) the interval [−1, 1], (2) the unit

disk, and (3) the unit square.

order of approximation (2, 2) (4, 4) (6, 6) (8, 8)

[−1, 1] 1.6 3.7 · 10−1 4.0 · 10−2 2.3 · 10−3

unit disk 1.8 3.5 · 10−1 4.0 · 10−2 2.3 · 10−3

unit square 1.8 4.0 · 10−1 4.6 · 10−2 2.2 · 10−3

Table 3.8: Approximation errors for rightmost eigenvalue.
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Perturbation theory

4.1 Introduction

In this chapter we are concerned with de�ning important tools for the perturbation analysis

of the delay eigenvalue problem, such as the normwise backward error, condition numbers

and pseudospectrum. Consider the nonlinear delay eigenvalue problem (DEP)

(−λI + A0 + e−τλA1)x = 0, (4.1)

where I, A0, A1 ∈ CN×N , and τ is the delay parameter.

The importance of backward errors for investigating the stability and quality of nu-

merical algorithms and condition numbers for characterizing the sensitivity of solutions to

problems is widely appreciated. The forward error, condition number and backward error

are related by the inequality

forward error ≤ condition number × backward error.

The theory of backward error and conditioning is well developed for the generalized eigen-

value problem (see [8]), the polynomial eigenvalue problem (see [19]) and the multiparam-

eter eigenvalue problem as well (see [11, Chapter 7]). The de�nitions and theorems of

the current chapter are simply reformulations of the ones appearing in the aforementioned

works.
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4.2 Preliminaries

Throughout this chapter we consider the arbitrary matrices El for l = 0, 1, representing

tolerances against which the perturbations ∆A0 and ∆A1 of A0 and A1 are measured.

More explicitly, we have for a given ε > 0, that ||∆A0|| ≤ ε||E0|| and ||∆A1|| ≤ ε||E1||.
Usually we take either El = Al, considering normwise relative perturbations, or El = I,

considering normwise absolute perturbations.

For further convenience we introduce the notation

D(λ) := −λI + A0 + e−τλA1,

and de�ne

∆D(λ) := −λI + ∆A0 + e−τλ∆A1.

Hence, we will denote the perturbed delay eigenvalue problem with matrices A0 +∆A0 and

A1 + ∆A1 by D + ∆D. For a complex λ the sign of λ is de�ned as

sign(λ) =

{
λ
|λ| , λ 6= 0

0, λ = 0.

In the following, || · || will stand for || · ||2 and we will assume that the eigenvectors are

normalized, i.e., ||x|| = 1 for every eigenvector x.

4.3 Backward error

De�nition 4.1. Let (x̃, λ̃) be an approximate eigenpair of (4.1) and let x̃ be normalized.

We de�ne the normwise backward error of (x̃, λ̃) by

η(x̃, λ̃) := min{ε : (D(λ̃) + ∆D(λ̃))x̃ = 0, ||∆Al|| ≤ ε||El||, l = 0, 1}, (4.2)

The following theorem gives an explicit expression for η(x̃, λ̃).

Theorem 4.2. For the normwise backward error η(x̃, λ̃) we have

η(x̃, λ̃) =
||r||
θ

(4.3)
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where r := D(λ̃)x̃ is the residual and

θ = ||E0||+ |e−τλ̃|||E1||.

Proof:

D(λ̃)x̃ = −∆D(λ̃)x̃

||D(λ̃)x̃|| = || −∆D(λ̃)x̃||

≤ ||∆D(λ̃)||||x̃|| = ||∆D(λ̃)|| = ||∆A0 + e−τλ̃∆A1||

≤ ||∆A0||+ |e−τλ̃|||∆A1||

≤ ε(||E0||+ |e−τλ̃|||E1||)

Thus we have a lower bound for the backward error

η(x̃, λ̃) ≥ ||D(λ̃)x̃||
θ

,

which is attained for

∆Al =
1

θ
||El||D(λ̃)x̃, l = 0, 1.

If D is Hermitian then it is of interest to consider a backward error in which the

perturbations ∆Al are Hermitian. The backward error for the Hermitian delay eigenvalue

problem can be de�ned as

ηH(x̃, λ̃) := min
{
ε : (D(λ̃) + ∆D(λ̃))x̃ = 0,∆A∗l = ∆Al, ||∆Al|| ≤ ε||El||, l = 0, 1

}
.

(4.4)

It is clear that ηH(x̃, λ̃) ≥ η(x̃, λ̃) and that the optimal perturbations in (4.2) are not

Hermitian in general. The next theorem shows that requiring the perturbations to respect

the Hermitian structure in the Al has no e�ect on the backward error, provided that λ̃ is

real.

Theorem 4.3. If D is Hermitian and λ̃ is real then

ηH(x̃, λ̃) = η(x̃, λ̃). (4.5)
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Proof: Let r = D(λ̃)x̃ be the residual of the pair (x̃, λ̃). We are looking for a Hermitian

matrix S, such that Sx̃ = −r. We take S = ||r||I if r is a negative multiple of x̃; otherwise
we take S = ||r||H, where H is a Householder matrix that maps x̃ to −r/||r||. Such an H

exists because x̃∗Sx̃ = −x̃∗r is real, since λ̃ is real, and it is equal to I − 2(w∗w)−1ww∗,

where w = x̃+ r/||r||.

Let ∆Al be Hermitian matrices, de�ned by

∆Al =
1

θ
||El||H, (4.6)

where θ = ||E0||+ |e−τλ̃|||E1||. It follows that ∆D(λ̃) = S, and the �rst constraint in (4.4)

is satis�ed. Using (4.3), we get

||S|| = ||r|| ≤ η(x̃, λ̃)θ.

From (4.6) we deduce that ηH(x̃, λ̃) ≤ η(x̃, λ̃). Since ηH(x̃, λ̃) ≥ η(x̃, λ̃) by de�nition,

equality (4.5) must hold.

If one is only interested in the approximate eigenvalue λ̃, then a more appropriate

measure of the backward error may be

η(λ̃) := min
{
η(x̃, λ̃) : x̃ normalized

}
.

Proposition 4.4.

η(λ̃) =
1

θ
σmin(D(λ̃)).

Proof: The result follows from Theorem 4.2 by using the equality

min
||x||=1

||Ax|| = σmin(A).

4.4 Condition numbers

In this section, we assume that λ is a nonzero eigenvalue of a nonsingular delay eigenvalue

problem D, with corresponding normalized right eigenvector x and left eigenvector y.
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4.4.1 Eigenvalue condition number

De�nition 4.5. A normwise condition number of λ can be de�ned by

κ(λ,D) := lim sup
ε↘0

{
||∆λ||
ε

: ((D + ∆D)(λ+ ∆λ)) (x+ ∆x) = 0,

||∆Al|| ≤ ε||El||, l = 0, 1

}
. (4.7)

The following theorem gives an explicit expression for κ(λ,D).

Theorem 4.6. The condition number κ(λ,D) is given by

κ(λ,D) =
θ||y||||x||
|λ||y∗D′(λ)x|

(4.8)

where θ = ||E0||+ |e−τλ|||E1|| and x and y are the corresponding right and left eigenvectors,

respectively.

Proof: Expanding the �rst constraint in the de�nition of the condition number we get

∆λD′(λ)x+ ∆D(λ)x+D(λ)∆x = 0.

Premultiplying by y∗ yields

∆λy∗D′(λ)x+ y∗∆D(λ)x = 0.

Considering λ to be a simple eigenvalue, y∗D′(λ)x 6= 0, one gets

∆λ = −y
∗∆D(λ)x

y∗D′(λ)x
,

and so
|∆λ|
ε|λ|

≤ θ||y||||x||
|λ||y∗D′(λ)x|

.

Thus the expression in (4.8) is an upper bound for the condition number. Now consider

the matrix

H =
1

||x||||y||
yx∗,

for which ||H|| = 1 and y∗Hx = ||x||||y||. Let

∆Al = −ε||El||H, l = 0, 1.
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Then ||∆Al|| = ε||El|| and

|y∗∆D(λ)x| = |y∗(−εθH)x| = εθ|y∗Hx| = εθ||x||||y||.

Hence, for these perturbation matrices, the upper bound can be attained

|∆λ|
ε|λ|

=
θ||y||||x||
|λ||y∗P ′(λ)x|

.

As for the backward error, if D is Hermitian, it is natural to restrict the perturbations

∆Al in (4.8) to be Hermitian. We denote

κH(λ,D) := lim sup
ε↘0

{
||∆λ||
ε

: ((D + ∆D)(λ+ ∆λ)) (x+ ∆x) = 0,

∆A∗l = ∆Al, ||∆Al|| ≤ ε||El||, l = 0, 1

}
. (4.9)

Lemma 4.7. If λ is a real eigenvalue of a Hermitian delay eigenvalue problem D, then

κH(λ,D) = κ(λ,D).

Proof: For a Hermitian delay eigenvalue problem and real eigenvalue λ we can take y = x,

and then the matrix H in the proof of Theorem 4.6 is Hermitian. It follows that the

perturbations for which the bound is attained are also Hermitian.

4.5 Pseudospectra

Another tool for the study of the sensitivity of the eigenvalues to perturbations are pseu-

dospectra. They have been studied for the standard and generalized eigenproblem and

for the polynomial eigenvalue problem [20] and multiparameter eigenvalue problem [11,

Chapter 7] as well. In this section we extend the de�nition of the pseudospectrum to the

delay eigenvalue problem. Note, that the pseudospectra of delay di�erential equations have

already been studied in some papers, e.g., [15].

De�nition 4.8. We de�ne the ε-pseudospectrum of D by

Λε(D) = {λ ∈ C : D(λ) + ∆D(λ) singular, ||∆Al|| ≤ ε||El||, l = 0, 1} . (4.10)
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The following theorem gives explicit expressions for the pseudospectrum of D.

Theorem 4.9.

Λε(D) = {λ ∈ C : η(λ) ≤ ε}

= {λ ∈ C : σmin(D(λ)) ≤ εθ}

= {λ ∈ C : ||D(λ)−1|| ≥ 1/(εθ)}

= {λ ∈ C : ∃u, ||u|| = 1 with ||D(λ)u|| ≤ εθ}.

Proof: The �rst equality follows readily from De�nition 4.10. For the second equality

Proposition 4.4 can be applied. The last two equalities follow from the identity

min
x 6=0

||Ax||
||x||

= ||A−1||−1 = σmin(A),

with the convention that ||A−1|| =∞ if A is singular.

Next we present a numerical example of the previously discussed pseudospectra. We

again select the problem of [12, Section 2.4.1] with the matrices A0 and A1 having dimension

N = 2. Moreover, we consider relative perturbations, i.e., E0 = A0 and E1 = A1, and we

draw the pseudospectra in Figure 4.1 by computing σmin(D(λ))/θ in all grid points by

Matlab's svd. The size of the grid is 17× 19.

Figure 4.1: Pseudospectra for ε = 10−0.5, 10−0.3, 10−0.1, 1.





Chapter 5

Conclusions and Outlook

In the current thesis we have presented several rational approximation methods and con-

sequently shown that they can be applied, more or less successfully, for solving nonlinear

delay eigenvalue problems. The techniques that were found to be relatively e�ective are

the scaled Padé approximation, the least squares approximation on a complex box, the

CF method for the unit disk and the best approximation by Ellacott and Williams. As a

comparison, we give the approximation errors for these methods in Table 5.1.

Padé LS on box CF on disk Best rational

3.0 · 10−4 7.0 · 10−3 2.5 · 10−3 2.3 · 10−3 2.3 · 10−3 2.2 · 10−3

Table 5.1: Errors for the rightmost eigenvalue by an (8, 8) rational approximation of dif-

ferent types.

Moreover, we have shown that the Newton, Galerkin and minimal residual methods

can all be used for re�ning an approximate eigenvalue of the given problem. Additionally,

we have de�ned the backward error, condition number and pseudospectra of the delay

eigenvalue problem.

As future steps, regarding this thesis, we mention the try-out of other rational approxi-

mation techniques, as well as some combinations of the ones discussed in the current paper,

e.g., the use of a Padé approximant as initial guess for the least squares approximation on

a complex box. Furthermore, we could introduce the so-called Jacobi�Davidson method

for solving the delay eigenvalue problem, and comparing the results with the solutions of
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some corresponding rational eigenvalue problems. In this thesis we were mainly focused on

approximating the righmost eigenvalue of a given delay eigenvalue problem, but it would

also be a good idea to try to give approximation errors for some other eigenvalues of the

problem. Moreover, the perturbation theory of the delay eigenvalue problem could be

developed further on.
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