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Abstract

Nowadays, the globalization leads to more intense competition, this forces companies to
optimize their performance in order to survive. In this master thesis project we try to
optimize the strategical planning in supply chain management. The strategical planning
consists in this case of choosing the right location to manufacture products. Our decisions
are based on the cost and the lead time performance of the supply chain. This problem is
classified as a supply chain network design problem. We use a technique called stochastic
programming, which is branch of mathematical optimization. The stochastic program-
ming approach allows for the inclusion of uncertainty related to input parameters. This
allows us to evaluate candidate solutions over a range of plausible future scenarios. Solv-
ing a stochastic programming problem can be quite hard, but we use the sample average
approximation algorithm to handle this. In our results we observe that there is a trade off
between the cost and lead time performance. Furthermore, we conclude that the current
supply chain network design in place is dominated by solutions that we found.

Keywords:
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Management summary

Alpha∗ is considered to be the global industry leader for green indoor climate control.
Currently, they have five factories in Europe which collaborate to produce all of their
products. A number of years ago they decided to move assembly operations to a factory
with competitive labor cost compared to others. Now, Alpha wants to analyze this de-
cision and optimize the locations for assembly operations based on cost and lead time.
The main research question of this master thesis project is:

How can Alpha create more value from their production locations for their complete prod-
uct portfolio. Specifically, do they have to change some assembly operation locations
within their supply chain?

To answer this question, we first need to analyze the current situation in terms of cost
and lead time. The analysis is based on historical data related to cost and demand for
products. Alpha produces a wide range of products and they use product families to
categorize them. Our analysis is on product family level. Before the analysis starts, we
select the product families for which there is enough useful data available, this resulted
in selecting 79 of the 187 product families. This selection represents approximately 73%
of the value of all products sold in the last 12 months.

We identify the relevant cost based on the residual cash flow. In our case the relevant
costs are the operating expenses, transportation cost, tax cost and change in working
capital. All of these are influenced by the decision for the assembly location of a product
family. In addition, we discount the residual cash flow obtain the discounted residual cash
flow. We use the weighted average cost of capital as the discount rate, because of Alpha’s
financing structure. Finally, we analyze the change in lead time related to the decision for
the assembly location of a product family. We propose to use relative weighted lead time
performance difference, where the weight is determined by the average current cost price
of a product family. The lead time performance is an important performance measure
for Alpha and supply chain management in general.

This problem can be classified as a supply chain network design problem and we use
the stochastic programming approach to solve this problem. The stochastic program-
ming method allows for the inclusion of uncertainty related to the input parameters,
which reflects the various plausible future scenarios. In our model we consider the input
parameters for material cost, variable machine cost, labor cost, transportation cost and
future demand as random variables. First, we formulate a mixed integer linear program-
ming problem with deterministic input parameters. This is the basis for the stochastic
programming formulation. The mixed integer linear programming is a bi-objective prob-
lem, because we have the cost and lead time in the objective function. Hereafter, we
consider some of the input parameters in the mixed integer linear programming prob-
lem as random variables to arrive at the stochastic programming formulation. Solving a

∗This is a masked name. The real company name is hidden due to confidentiality reasons.

ii



stochastic programming problem can be quite hard, to solve this issue we use the sample
average approximation algorithm. This algorithm basically samples values from the ran-
dom variables, but this algorithm assumes they follow a known probability distribution.
To obtain the probability distributions for our random variables, we try to fit a theoret-
ical probability distribution. If we fail to fit a theoretical probability distribution for a
random variable, then we build an empirical distribution from the available data.

We solved our model for various problem instances, which reflects various future sce-
narios for the random variables and varying importance of each objective. The importance
of the objectives are quantified by assigning weights to both objectives. The result of
doing so is a set of candidate solutions. They define the locations for assembly opera-
tions for all selected product families. We show there exists a Pareto front which is a
set of optimal solutions for varying objective weights. The two objectives are conflicting,
if we have better lead time performance, then the cost increases and vice versa. From
the Pareto front we conclude that the current supply chain network design in place is
dominated by the solutions that we found. Furthermore, Alpha could operate with more
or less the same cost, but improve their lead time performance by using our solutions.
The difference between the current and the dominating configuration in present value
of the total cost is approximately 0.6%. Let us remark that this difference is in favor
of the dominating configuration, i.e. lower costs. In addition, we did not calculate how
much money Alpha gains from the improvement in lead time performance. Therefore,
our conclusion is somewhat limited, but we showed that our proposed conceptual model
works for this case study. The conceptual model should be further extended by including
the lead time impact on finished goods inventory levels. With this extension one could
calculate the impact on the total cost of the complete supply chain.

All of our conclusions and results are based on the quantitative model that we have
build. These models are always a simplified representation of the real world. Although
we verified and validated our model in this project, we want to highlight that all results
should be interpreted with caution. Alpha should use the outcomes as a part of their
decision making process and not solely use the information from our model. In addition,
we observe that there is clear link between lead time and finished goods inventory levels.
We set a scope for our project and we did not include the impact on finished goods
inventory. This impact can however be significant and we recommend to do a thorough
analysis to asses this impact.
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Chapter 1

Introduction

1.1 Alpha

The organization of interest for this master thesis project is Alpha X, which is a division
of the Alpha group. Alpha group is a global engineering group and a FTSE 250 company
on the London stock exchange. The total group consists of two more divisions: Alpha
Y and Alpha Z. Alpha X is considered to be the global industry leader for green indoor
climate control. This project is in collaboration with Alpha X. In 2016 they had an annual
revenue of £290 million with an operating profit of £51.9 million with 1,900 employees.
Hereafter, we will refer to Alpha X with the term Alpha.

Alpha has five factories in Europe and one in the USA. The factories in Europe are
named by Jupiter, Saturn, Uranus, Neptune and Mars in this document. All factories are
part of their supply chain except for the factory in the USA, which operates autonomously.
A collection of four brands is covered by Alpha. These brands are all complementary,
and in combination they can offer complete control systems. Alpha has in total three
finished goods warehouses, also known as hubs, through which demand all over the globe
is served. This project focuses on improving performance of their supply chain. The
Saturn factory does assembly work only and they are mainly supplied by the Jupiter and
Uranus factory or by a third party supplier. In Jupiter and Uranus they have foundries
which are used to produce all sorts of metal shapes. These metal shapes get machined
and if necessary are treated to obtain a semi-finished product. In the current situation
the bulk of these semi-finished parts are sent to Saturn for an assembly operation. In the
Neptune and Mars factories they produce respectively low-volume special products and
vessels. These factories are in terms of volume and value much smaller than the other
three.

Figure 1.1 depicts a schematic drawing of a part of the supply chain of Alpha. The
Mars and Neptune locations are not included, because these factories are relatively small
compared to the others. However, we will also include the Neptune factory in our analysis
research project. In Figure 1.1 on the left side are all third party suppliers which supply
raw materials as well as parts for the assembly operations. The Jupiter and Uranus fac-
tories have a semi-finished goods factory, i.e. the foundries that produce metal shapes.
Semi-finished goods and third party suppliers items are the input for the assembly oper-
ations. The assembly operations produce the finished goods and these are stored in the
finished goods warehouse also known as hubs. From the hubs these products get shipped
to the end customer.

Currently Alpha has over 9,000 unique items that they can produce and sell. These

1
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Figure 1.1: Supply chain structure (schematic)

unique items can be categorized into 187 product families. These are used to roughly
plan the production capacity for these items. The product families all belong to a total
of 7 categories. From analysis we see that 338 of these unique items are responsible for
80% of the total revenue in the last five years. These 338 items are from 50 different
product families. This shows that Alpha has a huge portfolio of products with a lot of
different products. Not all products are completely different, e.g. some can have small
differences in packaging, colors or printing.

The scatter plot in Figure 1.2 depicts the mean annual revenue with respect to the
coefficient of variation per product family. There seems to be a link between the mean
revenue and the coefficient of variation. Higher revenues have a lower coefficient of vari-
ation than the lower revenues. Alpha can make accurate predictions on the value that
will be sold for product categories, because sales teams get a target budget for these
categories. This target budget is a total value that these teams need to sell in a fixed
period, such as months, quarters or years. The forecasting on individual item level is
difficult for the short term, i.e. on monthly basis. The demand planner mentions that
the forecast accuracy on monthly basis is between 50% and 60% on individual item level.
Although they can predict what total value is sold over a long term period, the mix of
items in the total value can differ. Therefore, it makes sense to analyze different scenarios
for the future on the mix of items in product families. The relocating of facilities is done
on product family level.
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1.2 Problem context

An illustrative example of the current situation is a product which is produced in Jupiter
and sent to Saturn for assembly. After assembly it is sent back from Saturn to Jupiter,
because the customers for the product are located in Jupiter exclusively. This situation
was created some years ago when Alpha decided to move a significant part of its assembly
operations to Saturn. The main reason for this strategy was the low labor cost in the
Saturn site compared to the other sites. Alpha wants analyze the efficiency of their supply
chain in the current situation. Hereafter, they want to use this analysis to redesign their
supply chain by making fact based decisions on assembly locations. The analysis and
redesign should be based on four performance measures: cost, lead time and working
capital. We use the weighted average cost of capital (WACC) as the discount rate to
determine the present value of future costs. These metrics will ensure that the new
design optimizes the supply chain network performance.

3



Chapter 2

Research design

We describe the research questions, research methodology, outline of this thesis, the scope
of the project and the deliverables.

2.1 Research questions

Alpha wants to analyze their supply chain on four performance measures, namely: cost,
lead time, working capital and WACC. This analysis should be focused on the flow of
products through their supply chain. They want to know specifically what are the best
locations to produce their products based on the performance measures. The possible lo-
cations are limited to the currently existing factory locations. Alpha wants to create more
value from its supply chain operations. It means they should maximize the discounted
residual cash flows (DRCF) from these supply chain operations. The exact definition of
the DRCF is given in Chapter 4 on the conceptual model.

Main research question:

How can Alpha create more value from their production locations for their complete prod-
uct portfolio. Specifically, do they have to change some assembly operation locations
within their supply chain?

Current situation

The first phase in answering the main research question is analyzing the current situa-
tion. We want to know where they are selling their products. In addition, we want to
know where these products are produced, what the lead time is and how much this costs.
If we answer these questions, then we can make a first analysis of current situation at
Alpha. Below is a list of detailed questions to be answered. The first question answers
the question for the customers locations. The second question concerns the current lead
time of their products and its flexibility. Questions three up to and including eight are
to determine the current production location and costs associated with this location. In
question 5 we use the term logistic cost. The last question in the list is to find out what
the current level of working capital is. Questions nine, ten and eleven give information
with respect to working capital, WACC and residual cash flow. These questions should
provide an overview of the current situation based on the four performance measures.

4



CHAPTER 2. RESEARCH DESIGN

1. Where did Alpha sell their products?

2. What is the current lead time?

3. Where does Alpha currently manufacture their products?

4. What is the current production cost of every Alpha product?

5. What is the current logistic cost of every Alpha product?

6. Where does Alpha currently source their components from for every product?

7. What is the current cost of components for every Alpha product?

8. What are the logistic costs of components for every Alpha product?

9. What is the current level of working capital at Alpha?

10. What is the WACC for Alpha in the current situation?

11. What is current residual cash flow of Alpha from operations?

Alternative situations

For the redesign we have a limited number of options. The possible alternative production
locations are limited to the existing factory locations. To analyze these possible situations
we want to answer the list of questions below. The first question is a sales forecast
including the customers’ locations. The second question describes the lead time for
the alternative situations. Questions three up to and including six reveal the cost of
producing on other locations. The seventh question tells what the required investment
is for changing production locations. The remaining three questions answer respectively
what the level of working capital, weighted average cost of capital and DRCF is for
different production locations.

1. Where will Alpha sell their products in the future and how much?

2. What would be the lead time if produced elsewhere?

3. What would be production costs elsewhere for every Alpha product?

4. What would be the logistics costs if produced elsewhere for every Alpha product?

5. What would be the cost of components for every Alpha product?

6. What would be the logistics costs of components if produced elsewhere for every
Alpha product?

7. What investment would be required to produce at a different location?

8. What would be the level of working capital of Alpha when producing elsewhere?

9. What would be the WACC if Alpha produced elsewhere?

10. What would be the discounted residual cash flow at WACC of Alpha from operations
when producing elsewhere?

5



CHAPTER 2. RESEARCH DESIGN

2.2 Research methodology

In the field of operations research (OR) it is common to use quantitative modeling to
analyze real-world problems. This research project follows that approach and we use the
framework described by Mitroff et al. (1974), see Figure 2.1. The frame work consists of
four phases:

• Conceptualization

• Modeling

• Model solving

• Implementation

Mitroff et al. (1974) argue that a research cycle can start at any of these four phases.
There exist different types of research projects that follow different routings in this model.
In the next two paragraphs we describe types of quantitative operations research and their
routing through the model depicted in Figure 2.1. Will M. Bertrand & Fransoo (2002)
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model

Problem
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M
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ptu
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tio

n

Validation
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Figure 2.1: Research model by Mitroff et al. (1974)

describe a classification system for model-based OR research types. In addition, they
link these to the research model of Mitroff et al. (1974). The classification is based on
axiomatic or empirical and descriptive or normative research. Research projects do not
exclusively belong to a certain classification, but they can belong to a combination. In
axiomatic research the model plays a central role, sometimes it is even idealized. The
focus is on obtaining solutions within the defined model that provide insight into the
structure of the problem as defined by the model. Most of the research in the axiomatic
domain is normative and some is descriptive. An example of an axiomatic descriptive
type is queuing theory in which some “laws” are derived similar to the science of physics.
This type of research typically only enters the modeling phase in the research model of

6



CHAPTER 2. RESEARCH DESIGN

Mitroff et al. (1974). Inventory theory is an axiomatic normative type of research branch
in operations research which has an extensive literature base. Normative axiomatic re-
search usually follows the cycle modeling, model solving and feedback. The model solving
process plays a central role in normative axiomatic research. Operations research uses
formal methods from other branches of scientific research to obtain knowledge about these
models. Mathematics, statistics and computer science deliver formal methods which are
often used in the field of operations research.

Empirical descriptive researchers are interested in describing the causal relations be-
tween variables in a model. The goal is to get a better understanding of the processes
ongoing in the real world problem. Empirical descriptive research typically follow a cycle
of conceptualization, modeling and validation. The empirical research is more concerned
with finding a fit between the model and the real world problem. Empirical normative
research is focused on finding a strategy or policy to improve the current situation or
state. This branch is very small in scientific literature and it is problematic to produce
strong verification procedures for claims. In real world problems it is nearly impossible
to control all variables. Therefore, it is hard to connect a change in performance to con-
trolling certain variables in a process. This type of research follows the complete cycle of
conceptualization, modeling, model solving and implementation. It is common to build
research on already existing theories from the axiomatic descriptive research. Our re-
search project also follows the whole cycle like in the empirical descriptive research type.
In addition, we also have an orientation phase as described by van Aken et al. (2012).
The orientation phase is the first phase in our research project before we enter the cycle
of Mitroff et al. (1974).

Orientation

The outcome of the orientation phase is the project proposal.

Conceptualization

In this phase we describe existing concepts in scientific literature that serve as a basis
for our own model. The literature review provided an overview of different concepts used
in supply chain network design (SCND). Chapter 4 contains a conceptual model that we
chose for our SCND problem with mathematical formulation. Furthermore, it describes
all relevant concepts that we use in our research project.

Modeling

The conceptual models from the review of scientific literature are the basis for our own
model. We propose a quantitative model in mathematical terms to solve the problem
at Alpha. We use a mixed integer linear programming (MILP) model to determine
what locations are best suited for assembly of products under different future scenarios.
Uncertainty about the future is included by using random variables in the MILP model
formulation. This formulation is named stochastic programming which is a branch of
mathematical optimization that includes uncertainty related to parameter values. Future
scenarios are generated by using a common technique in stochastic programming, namely
the sample average approximation technique.

7



CHAPTER 2. RESEARCH DESIGN

Model solving

The model that we constructed needs to be solved for the specific values of parameters
that reflect Alpha’s situation. Solving the model is done by using a specific algorithm
developed by researchers working on a SCND problem.

Implementation

The implementation phase chapter describes how the results should be used by Alpha.

2.3 Deliverables

This project have the following deliverables:

• Conceptual model: This model should be added value to the scientific literature

• Mathematical model and solution strategy: We transform the conceptual model
into a mathematical model. This can be solved to obtain solutions for the problem.
We provide an algorithm to solve the mathematical model.

• Decision support tool: The mathematical model is the basis for a decision support
tool. Alpha can use this decision support tool to do analysis with specific parameter
values.

2.4 Project scope

• The analysis is limited to the locations of the existing factories in Alpha’s supply
chain. Building new plants is out of the scope of this project’s analysis.

• The input parameters for our mathematical model are sourced from various ERP
systems. We have extracted cost parameters for labor cost, machine variable cost,
material cost, transportation cost and machine fixed overhead cost. In addition we
also took historical demand, working capital levels and lead times from the ERP
systems.
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Chapter 3

Supply chain network design

This chapter describes the concept of supply chain network design. First, we describe the
simple models that form the basis for SCND. Hereafter, we provide a selection of supply
chain management (SCM) aspects important for SCND. Finally, we discuss the concepts
uncertainty and robustness and their importance in SCND.

3.1 Facility location models

In our literature review we found that facility location models are the basis for the SCND
models. We studied the review of Melo et al. (2009) and Klibi et al. (2010), they both
also confirm that this assertion. Therefore, we start this chapter with a section that
explains these facility location models. The SCND models are basically an extension of
these facility location models by adding SCM aspects. The most simple location facility
models are the discrete versions in which all facilities have the same role. The goal is to
minimize the total cost associated with serving a set of customers from the chosen facility
locations. Setup costs for opening a new facility are equal for all locations. This is the so
called p-median problem and it has been widely studied in the literature (Revelle et al.,
2008). We have a set I = {1, .., i, ..m} with candidate locations and a set J = {1, .., j, ..n}
of customer locations. Let dj and cij denote respectively the demand at location j and
the unit cost of satisfying customer j from facility i. The total number of facilities to
locate is equal to p, xij is a binary variable indicating if demand for node j is satisfied by
facility i. Finally, a binary variable yi is introduced to indicate if facility i is opened. The
complete mathematical formulation for the p-median problem is in equations (3.1)-(3.6).

min
∑
i∈I

∑
j∈J

djcijxij (3.1)

s.t.
∑
i∈I

xij = 1 ∀j ∈ J (3.2)∑
i∈I

yi = p (3.3)

xij − yi ≤ 0 ∀i ∈ I, ∀j ∈ J (3.4)

yi ∈ {0, 1} ∀i ∈ J (3.5)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (3.6)

When the setup costs are not equal for all locations, then the problem changes to a new
type. This type is called uncapacitated facility location problem (UFLP). The above
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mathematical formulation can be easily adjusted for UFLP. If we change the objective
function in equation(3.1) to equation (3.7), then we have the formulation for the UFLP.
In equation (3.7) fi denotes the setup cost for location i.

min
∑
i∈I

∑
j∈J

djcijxij +
∑
i∈I

fiyi (3.7)

For both the p-median and UFLP, each customer is served from the closest facility.
Another extension of the UFLP is the capacitated facility location problem (CFLP).
This extension assigns maximum capacities to the facilities.

The previously described models are very simple in terms of their characteristics.
They consider a single-period planning horizon, single product type, single type of facil-
ity, deterministic parameters and location-allocation decisions. These simple types are
also studied most in Melo et al. (2009). They can be extended to create more complex
models which are better suited to model the real world. Nonetheless, all of the more
comprehensive models which have been developed are based on these simple model struc-
tures. When designing a supply chain it is important to use these more comprehensive
models and add some more relevant aspects to the objective function.

3.2 Supply chain management aspects

Melo et al. (2009) analyze what type of SCM aspects have been included in the facility
location models. The aspects related to inventory and production are the most included
aspects in Melo et al. (2009). These aspects include determining stock locations, defining
levels of inventory and setting production capacities in the network. Their analysis also
includes networks with reverse logistics. Reverse logistics are the operations related to the
reuse of materials. Businesses collect the products back from their customers to reuse it in
their manufacturing process. The e-commerce industry introduced some specific reverse
logistics to the supply chain management industry. In this industry businesses have a
significant flow of product returns from their customers. Melo et al. (2009) argue that
networks with reverse logistics are becoming more important, because of the growing e-
business and environmental awareness which stimulates reuse of materials. A full closed-
loop network which includes the forward and backward logistics is significantly more
complex.

Globalization leads to more challenging decisions concerning supply chain network
design. Financial aspects such as different tax rates and government incentives also have
to be taken into consideration. We also take into account the tax costs for the different
factories in our research project. Alpha’s factories are in different countries and therefore
subject to different tax rates. These aspects require for more robust and reliable network
structures in order to stay competitive. The term robustness means in this case the
ability of the supply chain network to perform well in different future scenarios. Supply
chain’s reliability refers to the capability of delivering constantly quality performance.
For example, delivery reliability is a very important aspect in SCM.

Within SCM there exists three levels of planning horizons, namely: long-term, mid-
term and short-term (Stadtler & Kilger, 2008). The long-term horizon decisions determine
the structure of the supply chain network. The prerequisites for the network structure are
defined and these decisions have long term impact on the organization. The mid-term
planning horizon are typically ranges from 6 to 24 months. On this horizon decisions
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are made on rough production quantities and resources for facility locations. The short-
term horizon decisions have the highest degree of detail. Examples are daily and weekly
schedules for machines in factories or planning of working shifts. The long-term decisions
often involve investing large amounts of money and shall have great impact on the business
performance. This description shows there is a clear link between facility location models
and SCM, especially on the long-term planning horizon.

3.3 Uncertainty

The deterministic model outcomes have no guarantee for future performance. This high-
lights the importance of including uncertainty into the modeling approach. Supply chain
environments change and this means we need to account for this in the model. Klibi et al.
(2010) make a distinction between three concepts. They characterize the decision-making
situations by the quality of information that is available.

• Uncertainty

• Certainty

• Risk

When there is perfect information available, decisions can be made with certainty. On the
opposite side there is a situation in which there is imperfect information and a decision
has to be made with uncertainty. Stewart (2005) explains that uncertainty leads to risk
and this refers to the possibility of undesirable outcomes. Klibi et al. (2010) describes
three types of uncertainty:

• Randomness

• Hazards

• Deep uncertainty

The first one, randomness, is defined by events related to supply chain operations that lead
to variation. Hazards are low probability high-impact events that partially or completely
disrupt the supply chain. Deep uncertainty refers to events on which there is very little
information available to assess the likelihood of happening. Klibi et al. (2010) state that
there exists no model in the literature which fully covers all of these three sources of
uncertainty in the process of SCND.

The concept of randomness can be found in some parameters like customers demand,
exchange rates and raw material prices. There are various approaches to include these
random parameters in the model. One of the most widely adopted approaches is stochas-
tic programming with recourse (Birge & Louveaux, 2011). Recourse programs are those
in which some decision or recourse has to be taken after disclosure of uncertainty. A two-
stage stochastic programming problem is an example of this approach. For example, the
first stage in SCND is a strategic decision on which facilities to open. The second stage
or recourse decision is the operational decision on how to route each product through the
supply chain network. Santoso et al. (2005) argue that most of the static deterministic
models can be reformulated in terms of stochastic programming with recourse. This ap-
proach also allows for the modeling of risk aversion of the decision maker (Shapiro, 2007).
A further explanation and investigation on stochastic programming is in Subsection 4.6.
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Modeling hazardous events seems to be quite challenging and it has also not received
much attention in the area of SCND. It should not be completely neglected, since the
impact on the business can be catastrophic. The importance in SCND depends of course
on the risk appetite of the decision maker. Several approaches for modeling hazards are
proposed by Klibi et al. (2010), but none of them are superior compared to each other.
This area of research needs some more attention in future research on SCND.

The inclusion of deep uncertainty in SCND can be done through qualitative methods
as well as quantitative methods. Klibi et al. (2010) name the Delphi method as one of the
methods used in practice by a company like Shell (Royal Dutch Shell Group, 2005). A
quantitative method that is found in literature is robust optimization. Some robustness
criteria that can be used are the minimization of maximum costs and the minimization
of the maximum regret (Shapiro, 2007).

3.4 Robustness

Klibi et al. (2010) define three types of robustness in their review, namely: model robust-
ness, algorithm robustness and decision or solution robustness. In the process of SCND
we are definitely interested in the solution robustness. Rosenhead et al. (1972) state that
robustness is: “a measure of the flexibility which an initial decision of a plan maintains
for achieving near-optimal states in conditions of uncertainty”. Robustness should be
measured on the supply chain’s ability to create sustainable value for its shareholders
over a range of plausible future scenarios. An appropriate performance measure for this
is the DRCF generated by the SCND. In addition to the DRCF, we also consider the con-
sequences for the lead times. For the situation at Alpha, we will also search for possible
future scenarios. Within these scenarios we want to determine the best configuration of
the design for the supply chain, i.e. which configuration yields the most DRCF and best
lead times for the possible scenarios. Stochastic programming uses this approach through
the modeling of recourses. Risk aversion can be included by using a risk measure such
as mean-variance instead of expected value. There also exist situations in which there is
mixed information available about scenarios, so probabilistic and non-probabilistic. Ro-
bust optimization is an alternative approach in case there are no scenario probabilities
available, i.e. deep uncertainty (Kouvelis & Yu, 1997). The fuzzy programming approach
can be used to model uncertainty in a different way compared to stochastic programming.

The robustness of the design outcome is also related to two other important concepts
in SCM: responsiveness and resilience. Responsiveness describes the ability of the supply
chain to adapt to variations in the business-as-usual environment, such as changing de-
mand. Examples of responsiveness enhancing policies are capacity buffers, safety stocks
and subcontracting. In our research project at Alpha we consider the lead time perfor-
mance for the SCND which is also directly related to responsiveness. Imagine a situation
where customer places a big order for a product with some significant workload. This
order would normally take longer than the standard lead time due to its size. If Alpha’s
manufacturing lead time is short and flexible, then they will be able to fulfill the wish
of the customer without extending the delivery date. This shows how we aim to include
responsiveness in our objective for the SCND. Resilience is the ability of the supply chain
to quickly recover from a disruption or avoid them. For developing resilience it is the
challenge to provide adequate protection against disruptions, but still remain effective in
normal circumstances. The resilience of a supply chain can be done through the strategic
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design, such as choice of locations for production and inventory. The concept respon-
siveness can be based on flexibility or redundancy. Flexibility based capabilities can be
obtained through setting up facilities which can execute multiple tasks within the supply
chain. For example, setting up production facilities that can handle multiple type of
products and operations. Redundancy based capabilities are the duplication of network
resources in the design. An example would be the assignment of overcapacity throughout
the final design of the network. In the literature there is a lack of stochastic models
that include both responsiveness and resilience into their modeling approach (Klibi et
al., 2010).

The robustness of a SCND is reflected by the risk mitigation constructs that are
included. Low impact short-term risk mitigation refers to the concept of responsiveness.
Resilience is the area of risk mitigation related to the structure of the network, i.e. the
ability to cope with high-impact events.
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Chapter 4

Conceptual model

The conceptual model serves as a basis for the mathematical model for SCND. In this
chapter we set the scope of the model and identify the relevant parameters and variables.

4.1 Finance and supply chain

Figure 4.1 depicts an important relationship between finance and supply chain manage-
ment. The firm uses funds to generate returns for its investors which are split into two
groups, i.e. the debt and equity investors. In Figure 4.1 the cash flows from the bottom,
where the investors are, up to the firm. From the firm the cash flows to operational assets
and comes back to the firm. Debt investors provide the company with cash on agreed
terms about interest rate and duration of the loan. The firm pays the loaners in cash for
the interest and repayment of the debt. Equity investors pay the firm in cash in trade for
a part of the ownership of the particular firm. The firm pays the equity investors in cash
in the form of dividend or share buybacks. Through these investments a firm acquires
the required funds, which are allocated by the firm to generate return from supply chain
operations. Allocation of funds is done through investing in operational assets such as
machines, raw materials and inventory. The operational assets are used in the conduct
of the ongoing operations of the firm, this means in the case of Alpha the supply chain
operations to serve its customers.

Operational
assets

Firm

Investors (Debt) Investors (Equity)

Future cash flows
from operations

Investments

Figure 4.1: Cash flows in supply chain

Cash flows within the whole supply chain are depicted in Figure 4.2 with the firm in
the center. This sketch is based on the description of Brealey et al. (2012). The customers
pay the firm in cash for its delivered services and products. The operational expenses are
paid in cash to contract manufacturers and third party logistics providers. In addition,
the firm also pays operational expenses to for example its workforce, machine cost and
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overhead cost. The firm pays cash to the third party suppliers for raw materials and
components required for operations.

Firm
Operational

assets

Third party
suppliers

Customers

Contract
manufacturer

Third party
logistics provider (3PL)

Figure 4.2: Cash flows in supply chain

We have to identify which cash flows are relevant for our own analysis, this means
which cash flows are influenced by the SCND from our model. Changing the assembly
locations influences the operating expenses, transportation cost and tax cost. We have
specified the operating expenses for assembly operations of Alpha in Table 4.1. If we
decided to change an assembly location, then we move the existing assembly facilities to
a new location. When we choose to move the existing facilities to a new location it will
mainly influence the labor cost. We assume that machine variable cost and fixed overhead
remain the same independent of the location. Aside from the labor cost, the material
cost is also influenced by the location of assembly, because in the current situation a part
of the components are sourced from Alpha’s own factories. If Alpha buys components
from its own factories, then the component producing factory has to charge a minimum
profit margin by law and its charged with profit tax. Finally, the transportation costs
are dependent on the location of assembly, because components have to be transported
to the location of assembly. We can avoid paying profit tax and transportation cost if we
assemble the product on the same location as where the components are produced.

The most important cash flows which are influenced by our decision on the SCND
are going from the firm to the third party logistics provider and the operating expenses.
We assume for our model that the cash flow to contract manufacturers, to third party
suppliers and from customers are not influenced by our decision. Within the firm in

Table 4.1: Operating expenses

Material cost
Labor cost
Machine variable cost
Machine fixed overhead +
Operating expenses

Figures 4.1 and 4.2 there are also cash flows in our case. We have put a schematic drawing
of the cash flows in the Alpha group in Figure 4.3. All entities on the bottom belong
to the Alpha group and their sole purpose is to serve in the best interest of the Alpha
group. The consequence of this is that Alpha would normally seek to remit earnings back
to headquarters in the UK to service its shareholders. For investments in operational
assets Alpha group transfers cash to the relevant factory. Alpha has a policy in place for
the prices that Alpha companies charge each other, because they want to optimize the
total return from the whole supply chain. Component and assembly factories charge a
minimum profit margin for their products to follow this policy. In our model we assume
for simplicity a fixed profit margin for all products. The relevant cash flows in Figure 4.3
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are from the assembly factory to the components factory, from the components factory
to Alpha group and from the assembly factory to Alpha group. They reflect respectively
the situations where components are bought for assembly, profit from selling components
is sent to Alpha group and profit from selling finished goods is sent to Alpha group.
We assume that the other cash flows are not affected by the choice for a new SCND.
Our model includes therefore only the components and assembly factories. We consider
the hubs as the customers in our model. The hubs are the finished goods warehouses
in Alpha’s supply chain. From the hubs the products are sent to the end customer for
a profit margin that is different depending on the country where the product is sold.
We assume that the cost of components from third party suppliers are equal for each
assembly location, which means that the cash flow from Alpha to third party suppliers
remains unchanged.

Alpha group

Components
factory

Assembly
factory

Hub

Figure 4.3: Schematic cash flows in Alpha group

4.2 Discounted residual cash flow

In our main research question we state that Alpha wants to create more value from their
supply chain operations. The concept of value sounds rather vague and we will give it a
specific definition before continuing. Value is in this case equal to the discounted residual
cash flow (DRCF) from supply chain operations and the lead time performance. Below
this paragraph is a formulation of the calculation of the DRCF. It starts with the revenue
from sales minus the operating expenses. In our case we have direct labor, machine
variable cost, machine fixed overhead and raw material as operating expenses. Now,
we can execute the first calculation of the DRCF model below to arrive at the earnings
before interest and taxes (EBIT). All of Alpha’s factories pay profit tax when they sell
a product to another entity, it doesn’t matter if this is the customer or a supply chain
factory of its own division. Tax costs are deducted from EBIT to obtain the NOPAT
figure. From NOPAT we deduct changes in working capital (decrease) to obtain the RCF
from operations. The final step is discounting the RCF at the weighted average cost
of capital (WACC). The result is the DRCF or in other words a part of the objective
function for our model. We use a two year horizon for our analysis. This means we have
to do the calculation below for two years with the appropriate numbers.

Revenue - Operating expenses = EBIT (Earnings before interest and taxes)

EBIT - Taxes on EBIT = NOPAT (Net operating profit after taxes)

NOPAT - Changes in working capital

= RCF (Residual cash flow)

DRCF =
RCF

1 + WACC
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The above formula captures all performance measures that Alpha defined explicitly ex-
cept the lead time performance. We believe that a shorter lead time can give higher
revenues, because it makes the company more competitive. Therefore, we add the lead
time performance to the DRCF in a weighted objective function with varying weights.
In Section 4.5 we will further elaborate on the lead time performance.

Alpha is a publicly traded company and its paramount goal is to maximize its share-
holders wealth. The weighted objective function is in our opinion the best way to create
value from the new SCND for its shareholders. An increase in residual cash flow enables
the firm to return cash to its shareholders through dividends or share buybacks. Better
lead time performance can increase the company’s competitive strength. The subsequent
subsection provides information about the WACC and the calculation for this particular
case.

4.3 Weighted average cost of capital

In corporate financing the source of financing is either equity, debt or both. Using debt
to finance business activities is a straightforward approach, the business borrows money
on agreed terms for interest rate and payback term. For this type of financing the credit
investor bears not all the risk, because if the business fails, then he can recover fully
or partially his investment in the form of the loan. Equity investing is an alternative
form of financing in which investors provide the funds for financing in exchange for some
ownership in the business. Equity financing is used by all publicly traded companies and
investors are the buyers of the offered shares at the stock exchanges. The investors are
bearing the full risk in this type of financing, because if the company goes bankrupt they
most probably end up with nothing. Most companies use a combination of debt and
equity financing, they borrow money and sell ownership through stocks of some form.

There are arguments in favor for both forms of financing, but that is beyond the scope
of this research project. We accept it is a given fact that Alpha’s financing structure
is a combination of debt and equity financing. Both types of financing have different
associated costs. The calculation of the cost of debt takes into account the interest rate
and tax rate, because interest expenses are tax-deductible. The formula for the cost of
debt:

Cost of debt = Cd = Interest expenses× (1− Tax rate) (4.1)

The cost of equity is somewhat more complicated to calculate, because there is no tech-
nical price like the interest rate for cost of debt. Investors have a certain expected rate
of return on their invested money, but it is not easy to calculate this in a straightforward
manner. We use the capital asset pricing model (CAPM) to determine the cost of equity
for Alpha in this case. Despite failing empirical experiments and some strong counter
arguments (Fama & French, 2004), we think the CAPM is our best option to come up
with an estimate for the cost equity. The CAPM enables us to do scenario analysis for
the cost of equity.

WACC =
Ve

Ve + Vd
Ce +

Vd
Ve + Vd

Cd(1− Tr) (4.2)

We defined the formula for WACC in equation (4.2), see Table 4.2 for the definition of
the symbols. All information required except for the cost equity we can obtain from the
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Table 4.2: WACC formula symbols

Symbol Definition
Cd Cost of debt
Ce Cost of equity
Ve Value of equity
Vd Value of debt
Tr Tax rate
Ve + Vd Market value of the firms financing

annual report of Alpha. In the subsequent subsection we will explain more about the
CAPM, which we use to obtain an estimate for the cost of equity.

Capital asset pricing model

The CAPM assumes there are two types of risks associated with investing in an asset,
namely the diversifiable and non-diversifiable risk. The first refers to risk that can be
eliminated when spreading your investments across multiple types of assets, i.e. having an
investment portfolio. The latter refers to the risk that is inherent to investing your money
in any kind of asset, it is also known as the systematic or market risk. In addition to these
two types of risk, the CAPM assumes there is such a thing as a risk-free investment that
gives a guaranteed return. It is doubtful to assume that there exist such investments,
but a US treasury bond is considered to be one of the safest investments one can make
on financial markets. The last important element we need to explain is the β associated
with a certain asset. This β reflects the assets sensitivity to the fluctuation in overall
market changes, so high β means the asset responds sensitive to changes in the overall
market. Low β means the asset is insensitive to changes in the overall market. Another
assumption associated with the CAPM is that prices are set in an informationally efficient
market.

Below in equation (4.3) is the formula to determine the expected rate of return for
an underlying asset according the CAPM. The formula consists of two main components.
We define the two components as the time-value of money and risk-premium for investing
in a particular asset, further explanation on these components is below the formula.

E[Rα] = Rrisk−free + βα(E[Rmarket]−Rrisk−free) (4.3)

βα =
Cov(Rα, Rmarket)

V ar(Rmarket)
(4.4)

In equation (4.3) E[Rα] denotes the expected rate of return for asset α. The risk-free
rate in the formula is denoted by Rrisk−free and is the time-value of money associated
with the concept of net present value. An investor is certain to receive this return
on his investment in the market and it has the lowest risk associated with it. The
risk-premium component in the formula is defined as βα(Rmarket − Rrisk−free), which
expresses the additional risk compensation for this particular asset. This risk-premium
is straightforward to explain, because we deduct the risk-free rate from the expected
market return, which is the ordinary risk-premium for investing in the market. Finally,
we multiply this ordinary risk-premium by the βα coefficient to adjust it for the underlying
asset’s sensitivity for changes in the market’s return.
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In the CAPM βα is defined as the covariance of the return from asset α and return
from the market divided by the variance of the return from the market. We use linear
regression with the ordinary least squares (OLS) method to determine the value of βα.
This approach supplies us with some statistical measures to judge the quality of the
estimate. In the linear regression results we are interested in the value of the slope,
which also happens to be denoted by the symbol β. Furthermore, we are interested in
the t-statistic and confidence interval of the β from the linear regression. Aside from these
statistics, we use the R-squared statistic, because this shows how much of the the asset’s
movements can be explained by the market’s movements. In Section 6.5 we elaborate
further on what data we are using for the CAPM.

4.4 Working capital

The SCND influences the lead time for the product families and this also has consequences
for the amount of working capital that is required. We refer to the working capital that
is in work in progress (WIP). For longer lead times we will need higher levels of WIP
to produce at the same rate. Our calculation for required WIP is based on Little’s law,
which is a well known formula in queuing theory, see equation (4.5).

W = ArL (4.5)

The symbols W , L and Ar denote respectively the average number of jobs, the average
sojourn time and the rate at which jobs arrive at the system. In our analysis the average
number of jobs in the system is equal to WIP and the average sojourn time is the lead
time. The rate at which jobs arrive at the system does not change when we change our
SCND, so we will simply treat this as a given number. We can influence the sojourn time
which is the lead time in our model.

We use Little’s law to calculate the difference in WIP for different assembly locations
scenarios. In equations (4.6)-(4.8) is an example of how to calculate the difference in
WIP for different assembly locations. Let W1 and L1 denote WIP level and lead time
for option 1, which is in this example the assembly location in the current situation.
The symbols W2 and L2 denote WIP level and lead time for option 2 and this is the
alternative assembly location in the example. The difference in WIP is straightforward
to calculate by using equation (4.8). Finally, we multiply the difference by the percentage
of components that come from the alternative location. For example, when currently 70%
of the components are sourced from the location of option 2, then we multiply Wdifference

by 0.7. We use this result as “Changes in working capital” in the DRCF, i.e. in the
objective function. Let us remark that a positive number for Wdifference means that the
working capital decreases.

W1 = ArL1 (4.6)

W2 = ArL2 (4.7)

Wdifference = W1 −W2 = Ar(L1 − L2) (4.8)

The calculation in equation (4.5) is valid for the long run average state of a system. We use
Little’s law to estimate the effects on the working capital in our different configurations
of the supply chain.
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4.5 Lead time performance

The optimization problem for this SCND project also includes the lead time performance
difference for the various future scenarios. Let us describe what performance measure
we use for the lead time performance. We argue that it is best to look at the weighted
relative performance difference compared to the current situation. For example, if we can
reduce lead time with 2 days and the total manufacturing lead time for a product is 4
days, then this means a reduction of 50%. In addition, we should weigh the importance
of this reduction by including the value of this product family compared to others in
Alpha’s portfolio. So when we multiply the relative change by the total value of the
product family we have our weighted lead time performance difference. Refer to Section
6.3 for the exact formula. We define the value of a product as the total manufacturing
cost multiplied by the total demand of a product family for the current situation. The
total demand is the sum of the demand in all time periods included in the analysis. This
means that value can vary, because the total demand can be different. We combine this
performance measure with the DRCF in our final optimization model.

For each product family we determined where components are sourced from. We
aim to improve the lead time performance by eliminating the transportation lead time
of components between factories. If components are sourced from only one other Alpha
factory, then we can improve the lead time performance. In contrast, when components
are sourced from multiple Alpha factories, we are not able to improve the lead time
performance. Finally, we assume that parts sourced from third parties do not influence
lead time performance. We give an example to describe what we mean by this definition.
Consider a product family which sources components from Alpha’s Jupiter factory and
it is currently assembled in the factory on location Saturn. If we change the assembly
location to location Jupiter, then we can shorten the lead time and thus improve lead
time performance. The situation changes if the factory receives components from location
Jupiter and Uranus. We can not improve the lead time performance if we move the
assembly operations to either location Jupiter or Uranus. If we moved the assembly
location to one of the sources of the components, then there is still some lead time for
components coming from the Jupiter or Uranus factory. The improvement in lead time
performance basically is the reduction in transportation lead time from the components
machines to the assembly machines. Contrary to the improvement, we can also design a
supply chain network with longer lead times. The situation where we lengthen the lead
time is possible if the products are currently assembled on the same location as where all
of its components are produced. The lead time would increase if we move the assembly
operations to another location, because there is now transportation time for components
involved. This sketches the trade off that is made in the designing process between DRCF
and lead time performance.

4.6 Stochastic programming

The problem for this research project is suited for using stochastic programming tech-
niques. Stochastic programming is an extension of linear programming, which is a com-
mon technique in the operations research field. The extension is the introduction of
random variables in the linear programming formulation. In our project we are dealing
with some unknown values for parameters in the future. To be able to make the best
decision we want to analyze different scenarios. In the next subsection we introduce the
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basic principles of the stochastic programming technique.

Basic formulation

Consider the basic linear programming problem in (4.9)-(4.11). This problem can be
solved straightforward with standard techniques, such as the simplex algorithm.

min z = cTx (4.9)

s.t. Ax = b (4.10)

x ≥ 0 (4.11)

Birge & Louveaux (2011) describes stochastic linear programs as linear programs in which
some of the included variables are uncertain. Recourse programs are those in which some
decision or recourse has to be taken after disclosure of uncertainty. From here we as-
sume that the random variable follows a known probability distribution. The values of
the random variables are only known after the random experiment. This means that
the realization of the vector ξ = (q, T,W, h) is only known after the experiment. The
symbols q, T , W and h represent the random variables with known probability distri-
butions. In our formulation ξ = (q, T,W, h) denotes the random data vector, while
ξ = (q, T,W, h) represent a particular realization (scenario) of this random data vector.
The set of decisions is split into two groups:

• First-stage decisions: These decisions have to be taken before a realization of the
random variables. They are taken in the first-stage.

• Second-stage decisions: After the realization of the random variables this group of
decisions is made. These decision are taken in the second-stage.

The classical formulation of stochastic programming with fixed recourse is given in (4.12)-
(4.14).

min
x∈S

f(x) = cTx+ E[Q(x, ξ)] (4.12)

s.t. Ax = b (4.13)

x ≥ 0 (4.14)

where Q(x, ξ) is the optimal value of the second-stage problem in (4.15)-(4.17).

min
y∈V

q(ξ)Ty (4.15)

s.t. T (ξ)x+W (ξ)y = h(ξ) (4.16)

y ≥ 0 (4.17)

For the above problem we have that ξ(q, T,W, h) is the realization of the random vari-
ables in the second-stage. After the random variables are realized, the two-stage problem
boils down to a standard linear programming problem. We can use standard optimization
techniques to arrive at the optimal solution. The presented formulation is a basis and
can be extended to create more complex problems. For example, we can add integrality
constraints to get a mixed integer linear programming problem.
The complexity lies in the optimal decision for the first-stage. In the above formulation
we would have to evaluate expected value of the objective function in (4.12) for a feasible
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choice for x. This can lead to complex calculations depending on how much random
variables are included and their probability distribution functions. In addition, when
there are a lot of options for the decision variable this gives a big number of possibly
complex calculations. In the literature related to stochastic programming there are cer-
tain techniques proposed to deal with this problem. We describe the sample average
approximation algorithm to deal with this difficulty in the next subsection.

Sample average approximation

Kleywegt et al. (2002) describe the method of the sample average approximation (SAA).
The method tries to estimate the optimal solution by taking samples of realizations
of random variables. By solving the subproblems that arise from the samples we can
estimate what would be the optimal solution for the stochastic programming problem.
Consider the optimization problem in (4.12). We can try to approximate this “true”
problem by the problem:

min
x∈S

{
f̂N(x) := cTx+

1

N

N∑
n=1

Q(x, ξn)

}
(4.18)

In (4.18) ξn is a vector in the generated random sample (ξ1, ..., ξN) with sample size N .
The set of all feasible solutions is denoted by S. Let S∗ and ŜN denote respectively the
sets of optimal solutions for problems (4.12) and (4.18). Let v∗ and v̂N denote the optimal
values of the respective problems below.

v∗ := min
x∈S

f(x), v̂N := min
x∈S

f̂N(x)

Statistical inference

Kleywegt et al. (2002); Mak et al. (1999) and Norkin et al. (1998) give some useful
properties for the SAA. These properties show it is an appropriate method for determining
a “good” close to optimal solution for the “real” problem. In other words, the method
is suited to obtain solutions that are close to optimal with a predefined optimality gap
ε. In statements hereafter the abbreviation w.p.1 means with probability one. They
proofed the properties enumerated below this paragraph. The first two are related to the
convergence of the objective values and solutions. Property three is about the convergence
rate of v̂N and ŜδN to their true counterparts. Mak et al. (1999) and Norkin et al. (1998)
provide a statistical lower bound for v∗, which is the optimal value of the “true” problem.
We show this in the fourth property.

1. v̂N → v∗ w.p.1 as N →∞

2. We consider the ε-optimal solutions. That means, for ε ≥ 0, we say that x̄ is an
ε-optimal solution if f(x̄) ≤ v∗ + ε. The sets of ε-optimal solutions of min

x∈S
f(x)

and min
x∈S

f̂N(x) are denoted by Sε and ŜεN , respectively. For any ε ≥ 0 the event

{ŜεN ⊂ Sε} happens w.p.1 as N →∞

3. If δ is a number such that 0 ≤ δ ≤ ε, then Sδ ⊂ Sε and ŜδN ⊂ ŜεN . Let Sδ and

ŜδN denote respectively the sets of δ-optimal solutions of min
x∈S

f(x) and min
x∈S

f̂N(x).

22



CHAPTER 4. CONCEPTUAL MODEL

From proposition 2 it follows that the event {ŜδN ⊂ Sε} happens w.p. 1 for N large
enough. Under mild regularity conditions and δ ∈ [0, ε], the probability of event
{ŜδN ⊂ Sε} approaches 1 exponentially fast as N →∞

4. For any subset S ′ of S inequality v̂N ≤ min
x∈S′

f̂N(x) must hold. When S ′ = S∗ we

have v̂N ≤ min
x∈S∗

f̂N(x), hence E[v̂N ] ≤ E
{

min
x∈S∗

f̂N(x)

}
≤ min

x∈S∗
E[f̂N(x)] = v∗, where

S∗ is the set of optimal solutions of min
x∈S

f(x).

In Section 5.2 we introduce the SAA algorithm which Santoso et al. (2005) use in their
SCND problem. We are going to apply it to our own SCND, which differs slightly from
their formulation, but the algorithm is still applicable.

Multi-objective linear programming

We defined two objective functions, i.e. the DRCF and the weighted relative lead time
performance difference. There is a slight adjustment needed for equation (4.9) to include
both objectives. The reformulation is:

min z = (cT1 α1 + cT2 α2)x (4.19)

The new formulation in (4.19) is a bi-objective linear programming problem. We can
normalize the weights α1 + α2 = 1 without loss of generality, because there are only two
objectives. This can be further simplified by introducing one new variable λ to replace
both α1 and α2. The new objective function is defined in the range 0 ≤ λ ≤ 1 as:

min z = (cT1 λ+ cT2 (1− λ))x (4.20)
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Modeling

In this chapter we propose a mathematical model for optimizing the SCND. We first
formulate the deterministic linear programming variant of our problem. Hereafter, we
include random variables in this formulation and define the stochastic programming for-
mulation. The last part describes the algorithm for solving our stochastic programming
problem.

5.1 SCND formulation

We propose a model formulation that is very much related to that of Santoso et al. (2005).
The linear programming formulation is based on a network with a set of nodes N and arcs
A. There are three types of nodes, namely customers, suppliers and manufacturers. We
have N = S ∪ P ∪ C which means that the set of nodes consists of suppliers, production
locations and customers. Our production locations P are the assembly locations and
the suppliers S are the components factories. The set K denotes the set of all products
produced. Let set T denote the set containing all time periods included in our analysis.
The decision variables are xtkij and yki . These respectively are the flow quantity of product
k from node i to node j in period t and the binary variable indicating whether node i is
used for manufacturing product k. The flow quantity means the amount of product type
k that goes from node i to node j in time period t.

min λ(
∑
k∈K

∑
i∈P

lki y
k
i ) + (1− λ)(

∑
k∈K

∑
i∈P

cki y
k
i +

∑
t∈T

∑
k∈K

∑
(ij)∈A

qtkij x
tk
ij ) (5.1)

s.t. y ∈ Y ⊆ {0, 1}|P| (5.2)∑
j∈C

xtkij ≤ xtkni ∀ n ∈ S, ∀ i ∈ P , ∀ k ∈ K, ∀ t ∈ T (5.3)∑
i∈P

xtkij ≥ dtkj ∀ j ∈ C, ∀ k ∈ K, ∀ t ∈ T (5.4)∑
j∈C

xtkij ≤Myki ∀ i ∈ P , ∀ k ∈ K, ∀ t ∈ T (5.5)∑
i∈P

yki = 1 ∀ k ∈ K (5.6)

λ ∈ [0, 1] (5.7)

x ∈ R|A|×|K|×|T |+ (5.8)
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The objective function consists of three components, see equation (5.1). The first compo-
nent is the relative weighted lead time performance difference associated with the choice
for assembly location. We denote the relative weighted lead time performance difference
for assembly location i for product k by lki . The investment cost is the second component.
Variables cki and yki represent respectively the investment required to operate from node
i for product k and the binary variable indicating if node i is used for assembly of prod-
uct k. Aside from lead time performance difference and investment cost, the objective
function contains the per-unit processing cost denoted by qtkij . This per-unit processing
cost is multiplied by the number of products that are going from node i to node j in
period t for product k. Constraint (5.2) ensures that the variable yki will be a binary
variable. Constraint (5.3) ensures that every supplier delivers enough parts to node i
to manufacture the amount shipped to customers for product k in period t. The next
constraint, (5.4), ensures that node i satisfies all demand for product k in period t for
all customers. A production node can only produce goods if it is “open”, which means
that the corresponding binary variable yki is equal to one. For this reason constraint (5.5)
is included in the model. We only want one manufacturing node to be opened for each
product, this is accomplished by constraint (5.6). Constraint (5.7) handles the multi-
objective weights, which should always be between one and zero. The last constraint
(5.8) ensures that variable xtkij only consists of real numbers. We summarized all symbols
and their definitions in Table 5.1.

Table 5.1: Definition of symbols

Sets
Symbol Definition
T Set of time periods
S Set of suppliers
P Set of possible production/assembly locations
C Set of possible customer locations
Parameters
Symbol Definition
qtkij The per-unit cost of letting product k flow in time period t

from node i to node j
lki The weighted relative lead time performance difference

when assembling product k at location i
dtkj Demand for product k in time period t at node j
M Big number
Decision variables
Symbol Definition
yki Binary variable which indicates if node i is used for the

assembly of product k
xtkij The amount of product type k which goes from node i

to node j in time period t
λ The objective weight for the weighted relative lead time

performance difference
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Final formulation

The model in (5.1)-(5.8) is a standard MILP model with deterministic parameter values.
We reformulate this model to obtain the stochastic programming formulation, because
we want to include uncertainty related to certain parameter values. In (5.9)-(5.10) is our
two-stage stochastic programming formulation where we treat the demand and cost as
random variables with known probability distribution. The vector ξ = (q, d) represents
the random data vector, a realization (scenario) of this vector is denoted by ξ = (q, d). In
the first stage we have to decide for every product which nodes are open for the assembly
and what the objectives weights are. The decision variable for opening an assembly node
at location i for product k is denoted by yki . We set the objectives weights values by
choosing a feasible value for λ in the first stage. For the second stage, we have to satisfy
all demand by using the SCND that was chosen in the first stage. The second stage
optimization problem is formulated in (5.11)-(5.16).

min
y

{f(y, λ) := (1− λ)
∑
k∈K

∑
i∈P

cki y
k
i + E[Q(y, λ, ξ)]} (5.9)

s.t. y ∈ Y ⊆ {0, 1}|P| (5.10)

where Q(y, λ, ξ) is the optimal value of the following problem

minx (1− λ)(
∑
t∈T

∑
k∈K

∑
(ij)∈A

qtkij x
tk
ij ) + λ(

∑
k∈K

∑
i∈P

lki y
k
i ) (5.11)

s.t.
∑
j∈C

xtkij ≤ xtkni ∀ n ∈ S, ∀ i ∈ P , ∀ k ∈ K, ∀ t ∈ T (5.12)∑
i∈P

xtkij ≥ dtkj ∀ j ∈ C, ∀ k ∈ K, ∀ t ∈ T (5.13)∑
j∈C

xtkij ≤Myki ∀ i ∈ P , ∀ k ∈ K, ∀ t ∈ T (5.14)∑
i∈P

yki = 1 ∀ k ∈ K (5.15)

x ∈ R|A|×|K|×|T |+ (5.16)

5.2 Algorithmic Strategy

The difficulty of the stochastic programming approach is to determine an optimal solu-
tion. For our problem we use the sample average approximation scheme (Kleywegt et
al., 2002; Mak et al., 1999) and (Norkin et al., 1998). This technique allows for solving
a set of deterministic linear programming problems to obtain a solution with a prede-
fined optimality gap. We try to estimate the value of E[Q(y, λ, ξ)], for this we generate
(ξ1, ..., ξN) which is a sample with N scenarios. These samples are used to calculate
N−1

∑N
n=1Q(y, λ, ξn) which is our estimation of E[Q(y, λ, ξ)]. The “true” problem in

(5.9)-(5.10) is approximated by (5.17).

min
y∈Y

{f̂N(y, λ) := (1− λ)
∑
k∈K

∑
i∈P

cki y
k
i +

1

N

N∑
n=1

Q(y, λ, ξn)} (5.17)
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Lower bound (5.18) for the sample size is based on an absolute optimality tolerance δ ≥ 0,
with ε > δ and probability α ∈ (0, 1). It should be noted that this is a conservative bound.
For practical use, one can often obtain solutions with similar optimality gaps by using
smaller samples (Santoso et al., 2005).

N ≥ 3σ2
max

(ε− δ)2
log(
|Y |
α

) (5.18)

In above notation, σ2
max denotes the maximal variance of certain function differences, see

Kleywegt et al. (2002) for details of the estimate (5.18). We will use a more efficient
approach which repetitively solves smaller samples. Santoso et al. (2005) introduced this
as the SAA algorithm and the details are provided in the subsequent subsection.

SAA Algorithm

1. Step 1. Generate M independent samples each with size N . This means we get
samples (ξ1

j , ..., ξ
N
j ) for j = 1, ...,M . For each sample we solve the associated SAA

problem:

min
y∈Y, λ≥0

{f̂N(y, λ) := (1− λ)
∑
k∈K

∑
i∈P

cki y
k
i +

1

N

N∑
n=1

Q(y, λ, ξnj )}

Let vjN and ŷjN , j = 1, ...,M , respectively be an optimal objective value and an
optimal solution.

2. Step 2. Compute

v̄N,M :=
1

M

M∑
j=1

vjN and σ2
v̄N,M

:=
1

(M − 1)M

M∑
j=1

(vjN − v̄N,M)2

In Section 4.6 we described a statistical lower bound for the optimal value of the
“true” problem. So we have E[v̄N,M ] ≤ v∗ where v∗ is the objective value of the
“true” problem. This is our statistical lower bound for v∗. In addition, the variance
of this estimator is given by σ2

v̄N,M
.

3. Step 3. We can estimate the true objective function by calculating f̃N ′(ȳ, λ) with
a feasible solution ȳ ∈ Y and a feasible choice for λ. An easy choice for ȳ is a
computed solution from ŷjN from Step 1.

f̃N ′(ȳ, λ) := (1− λ)
∑
k∈K

∑
i∈P

ciȳi
k +

1

N ′

N ′∑
n=1

Q(ȳ, λ, ξn)

The sample (ξ1, ..., ξN
′
) is generated independently of the previously used samples.

We choose N ′ larger than N , because we want to estimate the value of the true
objective function for ȳ. Note that f̃N ′(ȳ) is an unbiased estimator of f(ȳ, λ). The
inequality f(ȳ, λ) ≥ v∗ must hold because ȳ is a feasible solution. This provides us
with an upper bound of the value of v∗. If the sample (ξ1, ..., ξN

′
) is iid (independent

and identically distributed), then the variance of f̃N ′(ȳ, λ) can be estimated as:

σ2
N ′(ȳ, λ) :=

1

(N ′ − 1)N ′

N ′∑
n=1

((1− λ)
∑
k∈K

∑
i∈P

ciy
k
i +Q(ȳ, λ, ξn)− f̃N ′(ȳ, λ))2
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4. Step 4. By using the estimates from Step 2 and Step 3 we can calculate the
optimality gap as

gapN,M,N ′(ȳ, λ) := f̃N ′(ȳ, λ)− v̄N,M

The variance of the optimality gap can be estimated by calculating

σ2
gap = σ2

N ′(ȳ, λ) + σ2
v̄N,M

The choice for ȳ is naturally the solution vector from ŷjN with the smallest value
for f̃N ′(ȳ, λ).

In practice, the SAA algorithm is repetitively executed until it gives acceptable results
for the optimality gap statistics. We follow this procedure in our case study for which
the results are further elaborated in Chapter 7.
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Chapter 6

Case study

This chapter elaborates on the case study that was performed during this thesis project at
the company Alpha. We start by describing the current situation and the characteristics
of this business case. Next, we define more precisely how we calculate the objective
function. To conclude this chapter, we describe the modeling of random variables in our
model.

6.1 Introduction

The objective function from the MILP model in Chapter 5 contains three parts, namely
the investment cost (ci), lead time performance difference (li) and the supply chain cost
(qij). Figure 6.1 is schematic drawing of a routing for a particular product family. The
lead time for this product family is defined as the the total time from the components
factory until the finished product enters the hub. Two types of costs are in Figure 6.1
which are denoted by qij and qjk and respectively represent the cost related to the supplier
node and assembly node. In the next section we will further specify how the costs are
calculated.

Components factory
Jupiter

Components factory
Uranus

Assembly factory
Saturn

Hub

Lead time

qij qjk

Figure 6.1: Schematic drawing of the production process (i, j and k respectively represent
the components factory, assembly factory and hub)
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6.2 Supply chain cost

The supply chain cost in our model consists of the cost related to manufacturing and
transportation. For the assembly factory we have the following calculation:

Revenue - Operating expenses - Transportation expenses

= EBIT (Earnings before interest and taxes)

EBIT - Taxes on EBIT = NOPAT (Net operating profit after taxes)

NOPAT - Changes in working capital

= RCF (Residual cash flow)

The operating expenses are further elaborated in Table 6.1. In our case study we assume
that the machine variable cost and machine fixed overhead cost remain the same inde-
pendent of the chosen assembly location. The labor cost is different for each location and
the material cost can be different and is dependent on the source of components for the
product family. For the labor cost, we have gathered data related to the wages and labor

Table 6.1: Operating expenses

Material cost
Labor cost
Machine variable cost
Machine fixed overhead +
Operating expenses

cost for each country where Alpha has factories. We use this data to calculate conversion
rates for each factory, which represent how much the labor cost would be on the new
assembly location compared to the current assembly location.

The material cost can be different and this depends on the source of the components
for the product family. For example we take the situation in Figure 6.1. In this situation
there is transportation cost involved to deliver components to the assembly factory. If we
change the assembly factory’s location to one of the factories which currently produces
components, then we can save this transportation cost. We assume that the receiving
entities are paying for the transportation, so the assembly factory pays the transportation
cost of components. Aside from transportation cost, we can also avoid paying profit tax
for the components, because they are currently bought by the assembly factory from two
different entities. If we assemble the products at one of the locations where components
are produced, then we can eliminate paying profit tax for one of the components facto-
ries. The material cost for the assembly factory are also different, because currently the
assembly factory is buying the components for a price which is higher than the cost price
of the components. The components factory charges a profit margin which is set at a
certain level and we assume this margin is fixed for all products for simplicity.

In the formula for the residual cash flow (RCF) the revenue is paid by the customers
that buy the products, which are in our case the hubs and this also happens to be an
Alpha entity. This implies that we do not strive for the highest possible revenue at the
assembly nodes, because this drives the total cost for Alpha upwards. We are aiming to
minimize the total cost for the Alpha’s supplier factories, assembly factories and hubs.
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The relevant cost for the hubs in our model is only the transportation cost, because this
is influenced by our choice for the assembly location. We set our scope for this project
to analyze the cost until it enters the hub. Our objective function for this case study is
the total cost discounted at the WACC:

Component factory cost =

{
Taxes on EBIT

(NOPAT)

Assembly factory cost =


Operating expenses

Transportation expenses

Taxes on EBIT

Hub =
{

Transportation expenses +

Total cost

In the objective function formulated above we take the sum of all relevant cost and
discount it at the appropriate rate. The cost for the component factory is the tax on
EBIT minus NOPAT from selling components. For the assembly factory, we explained
what these cost represent in the beginning of this section. The transportation expenses
for the hub are the cost paid for transporting finished goods to the hubs.

Transportation cost

In the former formulation of total cost we have transportation expenses for the com-
ponents and finished goods. Alpha uses a third party logistics company for the trans-
portation between factories and hubs. The first assumption is that Alpha’s only hires
complete trucks to do the transportation. In our model we assume the price per kilometer
per truck is deterministic and is equal to £0.70. Furthermore, we assume that the truck’s
capacity is always 33 pallets. It would be too optimistic to assume that every truck is
filled completely. Therefore, we assume that 90% of the truck’s capacity is used in the
long run for transportation. For a lot of products Alpha produces, we have collected
data for how many of these products fit on one pallet. In addition, we also estimated
how much components fit on one pallet. We combine all this information to calculate the
transportation expenses for both the components and finished goods.

TCi = Dip
−1
i (33 ∗ 0.9)−1 ∗ c (6.1)

The calculation for transportation cost (TCi) for product family i in our model is in
equation (6.1). The symbols Di and pi respectively represent the total demand for the
next two years and the quantity per pallet for product family i. Finally, we have the cost
per kilometer for a truck, which is denoted by c in (6.1).

6.3 Lead time performance

The lead time performance measure is denoted by lki in the MILP in Chapter 5. We
explained the concept of relative weighted lead time performance difference in Section
4.5. Now, we want to explain it by describing an example related to our case study.
We are looking for potential savings on lead time through eliminating the transportation
time of components. The example situation in Figure 6.1 is not suited to eliminate the

31



CHAPTER 6. CASE STUDY

transportation lead time, because there are two supplying factories for the components. If
we adjust the situation in Figure 6.1 by removing for example components factory Uranus,
then we can eliminate the components transportation time. This can be achieved when
we move the assembly operations to location Jupiter, because now the components do not
need to be transported to a different location for assembly. The final step is to multiply
relative weighted performance difference by the current average supply chain cost times
the demand. In equation (6.2) we define our calculation for the relative weighted lead
time performance difference denoted by Yi.

Yi = (
Ltransporti

Lmanufacturingi + Ltransporti

)V̄iDi (6.2)

The transportation lead time for components and current manufacturing lead time are
denoted by respectively Ltransporti and Lmanufacturingi . The first part of the formula for
Yi represents the relative lead time performance difference and this is multiplied by the
defined weight. This weight is the current average cost price times the total demand in
the upcoming two years, because our analysis has a horizon of two years. The demand in
the next two years is denoted by Di and V̄i represents the current average cost price. This
example shows how to calculate the relative weighted lead time performance difference
for one product family.

6.4 Investment cost

A number of years ago Alpha decided to move some assembly operations to the Sat-
urn location, because the labor cost were lower compared to the other locations. Over
the years, the Saturn location improved the processes for the assembly operations and
invested in more automation. Thereby they eliminated a part of the labor cost and in-
creased their efficiency. If we decide to change a location for assembly operations, then
we will move the existing facilities to a new location. We assume that there is no capital
expenditure required to change the assembly location, but we take into account the new
level of working capital, i.e. the WIP level. The investment cost (ci) in our linear pro-
gramming formulation is the difference in working capital. Furthermore, we assume that
the difference in working capital is instantaneous and therefore we do not discount this
at the WACC. In Section 4.4 we explained the method for calculating the difference in
working capital for different assembly locations, see equations (6.3)-(6.5).

W1 = ArL1 (6.3)

W2 = ArL2 (6.4)

ci = Wdifference = W1 −W2 = Ar(L1 − L2) (6.5)

6.5 Data

In this section we explain how we model the random variables in our model. We made
a selection of product families for which enough useful data is available to model them
in a proper way. After the selection we explain the modeling approach for the random
variables.
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Selection

We found that not for all product families there was enough data available to include
them in our analysis. For some product families there was a very limited amount of data
available for various reasons. There were also products for which the cost data was not
appropriate to include them in this analysis. We have selected 79 out of the in total 187
product families, but these represent approximately 73% of value of all products sold in
the last 12 months. This 73% is based on the cost price of the products not on the sales
price.

We consider certain random variables related to demand, transportation cost and
assembly cost. In the linear programming formulation from Chapter 5 we made a dis-
tinction between sets of products. These sets of products are Alpha’s product families,
which means there is a mix of products in the sets with different characteristics. We ag-
gregate the historical data for the different product families and treat them in our model
as random variables. Aggregating the data on product family level yields useful datasets
as opposed to analyzing single items.

Operating and transportation expenses

There are differences between some of the products in the product families. For example,
the labor and material cost can be different for products from the same family. In Fig-
ure 6.2 are three box plots for three elements of the assembly cost in a certain product
family. Performing analysis on single item level is quite difficult, because there is a lot
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z

2z
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Material cost

Figure 6.2: Box plots for assembly cost of product family

of variation on this level. Therefore, we choose to do our analysis on product family
level. This means we look at historical data and calculate the average costs on product
family level instead of doing this for every item. Figure 6.3 depicts the labor cost for the
same product as in the box plots in Figure 6.2. It seems that most of the data on cost
have a stationary probability distribution when aggregated on product family level. In
addition, we assume that the random variables related to operating and transportation
expenses are independent identically and distributed (iid). We want to model this data
by fitting a theoretical probability distribution using a statistical package or use an em-
pirical distribution when fitting gives poor results. We tried to fit theoretical probability
distributions to the data that we collected. For the fitting we used the package fitdistrplus
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Figure 6.3: Labor cost per unit over time

in R. To demonstrate what we did we will give an example with labor cost depicted in
Figure 6.3. We initialized the fitting procedure by looking at some descriptive statistics
like skewness and kurtosis, see Figure A in the Appendix for a Cullen and Frey graph.
This graph contains the statistics for the dataset itself and for a number of bootstrapped
sets from the same dataset. From this graph we can get a rough insight what may be
the appropriate theoretical distribution to fit on it. After this first inspection we run a
fitting procedure which gave three goodness-of-fit statistics for a particular probability
distribution. The estimation of the distribution parameters in fitdistrplus is done through
maximum likelihood estimation (MLE). As a result from running this procedure we get
goodness-of-fit statistics which are summarized in Table 6.2. We choose to try fitting the
Log-normal, Gamma and Weibull distribution on our dataset. We exclude the normal
distribution, because it can result in negative numbers which are not appropriate for cost
data. The uniform distribution does not seem to fit our data set by visual inspection
of a histogram. A Beta distribution supports only numbers between zero and one and
this does by default not fit on this data set, because every data point is greater than
one. From the goodness-of-fit statistics we conclude that the Log-normal and Gamma
distribution are the best candidates. We will do some visual inspection of how well the
theoretical distribution fits the data. In Figure 6.4 there is an example of the graphs we
inspect to judge how well the fit is between the data and the Gamma distribution. In this
case we can observe that the data fits good to the Gamma with the MLE parameters.
The data set contains records for every month starting at January 2012. We are inter-

Table 6.2: Goodness of fit statistics

Log-normal Gamma Weibull
Kolmogorov-Smirnov statistic 0.06449936 0.0636533 0.06812484
Cramer-von Mises statistic 0.05069189 0.0494266 0.05792592
Anderson-Darling statistic 0.31982556 0.3136035 0.55189854
Akaike’s Information Criterion -62.33656 -62.35664 -55.31214
Bayesian Information Criterion -57.95725 -57.97733 -50.93283

ested in annual cost data for our model and therefore we will draw twelve numbers from
the distributions and use the mean value. If we collect the historical average annual cost,
then we would have only five data points, which is not sufficient for a fitting procedure
or too small for an empirical distribution. For the labor cost, we multiply the original
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Figure 6.4: Goodness-of-fit graphs for Gamma distribution

number by a conversion rate, because the labor cost varies among the assembly locations’
countries. The data that we are using for this calculation is sourced from Eurostat, which
is an official bureau for statistics of the European Commission. We looked at the pub-
lished data about the labor cost with the specific countries for Alpha’s factories and used
the median labor cost statistics.

Demand

The annual demand for a product family is modeled by the Log-normal distribution. We
first tried to use an autoregressive integrated moving average (ARIMA) model to predict
the future values, but this gave unrealistic outcomes. The prediction intervals associated
with these models were so wide that we chose to not use these models. In this approach
the problem was also caused by the limited size of the data set. The demand data set
starts at January 2012 and contains monthly records. We used the monthly data for the
ARIMA models, because the annual demand data would only contain five data points
and this is not enough for a proper time series analysis. This means that we have to
predict 24 periods ahead with monthly data points and this caused very wide prediction
intervals. We use the expert knowledge of the demand planner at Alpha and chose a
theoretical distribution with the appropriate parameters. The demand planner already
had a two year forecast for all product families and a dataset with the forecast accuracy
per product family for the past three years. With assistance of the demand planner we
determined that the Log-normal distribution is a good distribution for modeling future
demand. We split the two year forecast into two intervals of twelve months. For both these
intervals we take the sum and set this as the expected demand for respectively the first
and second upcoming year. The expected demand is also the expected value of the Log-
normal distribution. The variance is specified according to the historical forecast error
and expert knowledge about the volatility of the demand for certain product families.
Now, we can sample numbers from the Log-normal distributions to model demand as
a random variable. This is the total demand for these product families in the next
two years, but we also want to specify how much demand each hub is consuming. We
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analyzed the demand specified per hub for the past five years and concluded that this
is fairly stable over the long-run. For each product family we calculated the average
percentage of demand that was going to each hub. This percentage is used to calculate
the demand per hub for the next two years.

Cost of capital

For our analysis of the cost of capital we use the CAPM, the subsequent subsection
provides more details on that model. The CAPM compares the return of a given asset
against the return of the market. Our asset is listed on the FTSE 250, but we will use
the S&P500 index as reference for the market. The S&P500 is an index that contains
the 500 largest US companies based on their market capitalization. For the risk free-rate
we use the yield from 10 year US treasury bills. It is open for discussion to use other
references for the market data and risk free-rate. The historical data is the monthly
percentage return of the asset and the market. We analyze the performance of Alpha’s
stock against the market by using historical data from between 24 and 36 months. We use
OLS regression to determine the value of β from the CAPM and its confidence interval.

We started our analysis with 24 months of historical data and added one month at
a time to historical data until we ended up with 36 months of historical data. Before
adding another month to the historical data we performed an OLS regression analysis.
The resulting model from each iteration is of the form:

y = α + βx (6.6)

The α and β in equation (6.6) are respectively named the intercept and the coefficient of
the model. Monthly returns of the S&P500 hundred are denoted by x in (6.6). We are
most interested in the value of β in (6.6) which also happens to be the estimate β for
in the CAPM. From each OLS regression analysis we collected several statistics related
to the coefficient, namely the estimated value, standard error, confidence interval and
the p-value. The p-value statistic tells us with which probability we can assure that the
coefficient is actually different from zero and thus has relevance in the model. Aside
from the statistics for the coefficient we also collected the R-squared statistic which tells
something about the complete model. The R-squared more precisely describes the pro-
portion of variance in the dependent variable which can be explained by the independent
variables, i.e. α and β in (6.6). We summarized the statistics in Table 6.3 from the OLS

Table 6.3: OLS analysis statistics

Mean Standard error Minimum Maximum
Model:
R-squared 0.342431 0.020572 0.312177 0.387280
Coefficient:
Estimated value 1.264311 0.057921 1.183791 1.371511
Standard error 0.336688 0.032694 0.301413 0.409017
p-value 0.001124 0.001056 0.000143 0.003841
Confidence interval upper bound 1.955446 0.111004 1.814255 2.170570
Confidence interval lower bound 0.573176 0.067728 0.471679 0.710185

regressions analyses. We observe that β is varying by some small margins and that the
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p-values all yield acceptable results. Our approach is to take the mean and standard error
of the estimated values for β from the OLS analyses and model this a random variable
which follows a normal distribution. This allows us to sample various values of β for the
CAPM model and finally calculate different values for the WACC in our final model.

CAPM

We found an average return of the S&P500 of 9.33% measured from January 1988 until
September 2017. The current yield on a 10 year US treasury bill is 2.21%. So we set
the values of E[Rmarket] and Rrisk−free to respectively 9.33% and 2.21%. We model βα
from equation (6.7) as a random variable following a normal distribution with parameters
µ = 1.264311 and σ = 0.336688 based on statistics in Table 6.3. The mean value of E[Rα]
from (6.7) is equal to 11.21% and 95% two sided confidence interval ranges from 15.91%
to 6.51%. This gives us the cost of capital for Alpha and now it is a straightforward task
to calculate their WACC.

E[Rα] = Rrisk−free + βα(E[Rmarket]−Rrisk−free) (6.7)

The formula for the WACC is given in equation (6.8). Refer to Table 4.2 for a description
of all symbols in (6.8). All data for the WACC calculation, except for the cost of capital,
can be found in the annual report of Alpha and we used the 2016 version. We found for
Alpha that the average corporate tax rate (Tr) is estimated at 20%. The cost of debt
(Cd) is calculated by dividing the interest expenses by total value of net debt, which gives
an outcome of 6.35%. For the percentage of equity ( Ve

MVf
) and percentage of debt ( Vd

MVf
)

we found respectively 61.27% and 38.73%.

WACC =
Ve
MVf

Ce +
Vd
MVf

Cd(1− Tr) (6.8)

The estimated value of the WACC is equal to 8.84% with a two sided 95% confidence
interval ranging from 5.96% to 11.71%. The lower bound for the cost of capital is almost
equal to the cost of debt, but this seems to be unrealistic. Equity investors would normally
require a higher return than credit investors, because their risk of investment is higher.
Nonetheless, we will use the estimates that we have found to reflect various plausible
future scenarios.
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Numerical results

In this chapter we present the numerical results that we gained from solving the two-stage
stochastic programming problem presented in Section 5.1. We use the SAA algorithm to
solve this problem which is explained in detail in Section 5.2. This problem is a multi
objective problem and we solved it for different weights of each objective.

7.1 Problem instances

Our stochastic programming objective function contains two objectives with the relative
weighted lead time performance difference and the supply chain cost. We introduced λ
as the variable to weigh both objectives in the total objective function. The lead time
performance difference is multiplied by λ and the total cost is multiplied by (1− λ). For
λ its values are bounded between one and zero, i.e. 0 ≥ λ ≥ 1. Setting λ equal to one
or zero means we completely exclude one of two objectives and we want to avoid this.
We vary λ between 0.1 and 0.9 with increments of 0.1 this leads to nine different possible
values and thus nine different problem instances. To solve the problems we use the
SAA algorithm, which requires three parameters to be set. The parameters for the SAA
algorithm are M , N and N ′ and these respectively represent the number of samples and
the number of scenarios for the optimization problem and for the estimation. We choose
to let M = 20, because we observed in many sources that this is standard procedure
for the SAA (Schütz et al., 2009; Santoso et al., 2005). For the number of scenarios for
the optimization problem we choose for N = 5, 10, 20. The number of scenarios for the
estimation of the “true” problem’s objective value is set to N ′ = 1000. We want to choose
a number of scenarios that is much bigger than N and we observed this was the standard
procedure in literature (Schütz et al., 2009; Santoso et al., 2005). Table 7.1 depicts the
results that we have gained from our solved problem instances. The relative optimality
gap for the solution is defined by equation (7.1).

relative gapN,M,N ′(ȳ, λ) :=
f̃N ′(ȳ, λ)− v̄N,M

f̃N ′(ȳ, λ)
(7.1)

We are also interested in the confidence interval associated with the relative optimality
gap, see equation (7.2) for the two-sided confidence interval. Where zα =: Φ−1(1 − α)
and Φ denotes the cumulative density function of the standard normal distribution.

confidence intervalN,M,N ′(ȳ, λ) :=
f̃N ′(ȳ, λ)− v̄N,M ± zα(σ2

N ′(ȳ, λ) + σ2
v̄N,M

)
1
2

f̃N ′(ȳ, λ)
(7.2)
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We chose to calculate the 90% confidence interval for all optimality gaps. For every
sample size we selected the solution that gave the lowest objective value and defined this
as ȳ in (7.1) and (7.2). We argue that the sample sizes could be further increased, but
our biggest sample sizes gave results that are of good enough quality. Improving the
quality is possible at the expense of more computational effort. We argue this gain is
minimalistic when inspecting the relative optimality gaps for sample sizes of 20, because
they are almost all below 1%.

Table 7.1: Optimality gaps from SAA algorithm in percentages

λ N Relative optimality gap (%) Half width confidence interval (%)
0.1 5 3.53 2.9

10 1.48 2.56
20 1.08 2.92

0.2 5 3.35 2.9
10 1.42 2.96
20 0.85 3.18

0.3 5 3.9 2.86
10 1.45 2.84
20 0.63 2.58

0.4 5 3.49 3.17
10 1.37 2.67
20 0.61 3.18

0.5 5 3.62 3.18
10 1.83 2.88
20 0.58 2.74

0.6 5 3.76 3.33
10 1.41 2.96
20 0.65 3.16

0.7 5 3.48 3.38
10 1.74 3.84
20 1.0 3.32

0.8 5 3.62 5.22
10 1.66 4.4
20 0.93 4.46

0.9 5 3.71 17.28
10 2.32 14.82
20 -0.51 13.96

In Table 7.1 we see a negative value for an optimality gap. It is an estimation, of
course, and that it is negative suggest that the approximation is close to zero. This is
possible because we use random variables to calculate f̃N ′(ȳ, λ) and v̄N,M . It is important
that all confidence intervals contain an optimality gap greater than zero and this is the
case for Table 7.1. Furthermore, it is quite remarkable that the optimality gaps confidence
intervals are significantly bigger when λ = 0.9. In this scenario we have the lead time
performance difference weighing nine times heavier than the supply chain cost. The lead
time performance difference is a number below zero and therefore the objective function’s
value gets smaller, but the variance remains at the same absolute value for other values
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of λ. This causes the confidence intervals for the optimality gaps to become bigger for
relative high values of λ.

7.2 Solution properties

Cumulative probability curves

We calculated the values of f̃N ′(ȳ, λ) for various parameter settings. For the solution ȳ
we chose the solution that gave the lowest objective value with N = 20. We specifically
look at the behavior of the two separate objectives. Figure 7.1 depicts how the cumu-
lative density curves of the total cost are distributed for various value of λ. The red
line represents Alpha’s current SCND without making any changes. The most left line
represents the case where λ = 0.1 and the more right the curves are located, the higher λ
is. We created the same plot for the lead time performance difference, see Figure 7.2. In
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Figure 7.1: Cumulative probability curves of the total cost for different values of λ and
N=20
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Figure 7.2: Cumulative probability curves of lead time performance difference for different
values of λ and N=20

this plot the case where λ = 0.1 is the most right curve, which is the opposite of Figure
7.1. The differences between the curves values on the horizontal axis in Figure 7.2 are
significantly bigger than in Figure 7.1.
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Pareto front

We obtain a Pareto front from solving all problem instances in Table 7.1. For each
value of λ in Table 7.1 we plotted the relative weighted lead time performance difference
against the total cost. Figure 7.3 depicts the Pareto front from our problem instances
where the white circles and the red triangle respectively represent all problems instances
and Alpha’s current SCND. We can draw an imaginary line through connecting all white
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Figure 7.3: Pareto front from calculating the objective function with N ′=1000

circles and this is the Pareto front for this particular bi-objective problem. All solutions
left of the Pareto front are infeasible solutions and all solutions right of the Pareto front
are the dominated solutions. It is clear that the Alpha’s current SCND is dominated by
the solutions from our problem instances. There even seems to be a SCND which has
almost equal cost, but a negative relative weighted lead time performance difference this
means it results in shorter lead times.

Assembly locations

The previous statistics and plots describe nothing about the distribution of assembly
locations for the product families over Alpha’s factories. In Table 7.2 we have an overview
of the current situation for Alpha’s factories. In the new situation we only have locations
Jupiter, Saturn and Uranus as assembly locations, so Neptune is excluded. This does
not mean that Alpha should close the Neptune location, because we only had useful data
for five product families which are currently produced at the Neptune location. In Table

Table 7.2: Current situation for assembly locations

Jupiter Saturn Uranus Neptune
Number of
locations 26 25 23 5

7.3 we summarized the results for our chosen values of λ and N . From the results in
Table 7.3 we can see that if λ is relatively low, then most product families are moved
to the Saturn location. The Saturn location has very competitive labor cost compared
to the other factories. When the value of λ increases the number of product families
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for the Saturn factory decreases, because the lead time performance difference gets more
important and most components are produced in either the Jupiter or Uranus factory.

Table 7.3: Assembly locations for different values of λ and sample size N

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N Location
5 Jupiter 1 8 15 26 29 32 35 35 35

Saturn 58 49 41 29 25 22 19 19 19
Uranus 20 22 23 24 25 25 25 25 25

10 Jupiter 2 8 14 26 29 32 35 35 35
Saturn 56 48 41 27 24 21 18 18 18
Uranus 21 23 24 26 26 26 26 26 26

20 Jupiter 2 8 14 27 30 32 35 35 35
Saturn 56 48 41 27 23 21 18 18 18
Uranus 21 23 24 25 26 26 26 26 26

7.3 Verification and validation

We describe the process of verification and validation of our proposed model. The ver-
ification process serves to check whether the model is build correctly, i.e. to check if
it delivers the optimal solution. The process of validation is to determine whether the
model represents the real system we are trying to model.

Verification

The verification of a model is to check whether the model behaves as it should. We
want to be sure that this model gives the optimal outcome as a result when we use it.
Our proposed model is stochastic programming model which is solved by using the SAA
algorithm. The original stochastic programming problem boils down to a MILP because
of the SAA algorithm. We want to minimize our objective function for the generated
scenarios. The MILP problems are solved by using the Gurobi solver. To verify our
model we create some extreme scenarios and observe whether the expected outcome is
delivered by our model. In addition, we perform verification by using historical data and
selecting some product families. From this data we build some case analysis and calculate
the total cost and relative weighted lead time performance by using an Excel sheet. We
check whether our model gives the same results as what we calculate in the Excel sheet.

Validation

A model is validated to ensure it represents the real-system sufficiently well. For this
model we checked face validity, which means we checked the model’s output with several
people at Alpha who have crucial knowledge about the supply chain processes. After
some iterations in the modeling phase we concluded that it gave reasonable results. Thus
we have validated our model through face validation.
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Implementation

In this chapter we discuss how our decision support tool should be implemented at Al-
pha. First of all, we want to highlight that we created a quantitative model for a real
system, namely Alpha’s supply chain. A quantitative model will always be a simplified
representation of the real world and its results should be interpreted with caution. That
being said, our decision support tool aims to provide Alpha with accurate data to make
fact based decisions about their new SCND.

Our model has been written in the Python language by using the PuLP package, this
is a package that enables the user to write linear programming models in a straightforward
manner. To solve the linear programming models we used the Gurobi solver, we chose
this solver because it gave a free unlimited academic license and can handle MILP models.
Our decision support tool is build in Microsoft Excel, because Alpha’s decision makers are
familiar with this software. In addition, it is quite cumbersome to install Python and all
package dependencies on every computer to use this tool. Furthermore, they would have
to install a solver which is for non-academic use and this can be a costly exercise. The
Excel tool calculates the same objective functions, i.e. the cost and relative weighted lead
time performance difference. Within the Excel tool they can specify their own scenarios
for the future on a two year horizon. The choice for the fixed two year horizon is related
to the fact that the forecast of demand for Alpha looks maximum two years ahead.

Our tool should be used as support in their decision making process. The lead time
difference for the various scenarios can be used to calculate also the impact on the in-
ventory levels of the finished goods. We set the scope of our project and left out these
inventory levels, but the impact can be significant and should be calculated to estimate
the impact on the total cost. It is obvious that safety stocks can be reduced if the lead
times are shorter and inventory turns can grow. These are of course important perfor-
mance indicators for the supply chain management and thus should not be ignored. The
decision makers can combine the results from our report with their Excel tool to make
decision about their SCND.

To build this tool we collected data from Alpha’s various ERP systems and we made
a snapshot of all combined historical data in our model. It would be beyond the scope of
this project to link our model to all these systems, but this means we created a snapshot
analysis of all available data up until this September 2017. The maintenance of this tool
is therefore not necessary, but it can be performed by manually collecting missing future
data.

43



Chapter 9

Conclusions and recommendations

This is the last chapter of this report and it shows what conclusions can be drawn from
our research project. In addition, we provide directions for future research in the field of
SCND and stochastic programming research.

9.1 Conclusions

In this thesis, we have considered a SCND problem which is focused on determining
the right location for assembly of products. Currently, Alpha produces most of the
components for the assembly operations at two locations, namely Jupiter and Uranus.
Some years ago they made a decision to move some of their assembly operations to
location Saturn, but this decision was solely based on the low labor cost related to this
location. Now, Alpha wants to do an more thorough analysis on what the consequences
are of this decisions and reconsider the locations for assembly operations. This project
excludes the relocation of the production location for components. It is in particular
aimed at the location of the assembly operations.

We have shown in this report that this problem can be classified as a SCND problem.
Then we chose to solve this SCND problem with the stochastic programming approach.
This approach is based on regular linear programming techniques, but it allows for the in-
clusion of the uncertainty of parameter values. In this research project, we tried to model
the uncertain parameters by either a theoretical probability distribution or an empirical
distribution. We chose to treat the transportation and assembly operations expenses
as parameters with uncertainty regarding their exact value in the future. The difficulty
of the stochastic programming approach is the huge number of possible scenarios when
combining all the random variables in one model. To solve this problem, we have used
the SAA algorithm, which is a technique that basically samples a number of scenarios.
Furthermore, this technique shows that stochastic programming problem reduces to a
MILP problem. It is well known that these problems can be solved straight-forward by
using a MILP solver.

The stochastic programming approach we use is somewhat different from what we
found in existing literature. We proposed a bi-objective problem where each objective is
assigned a weight. The objective we proposed in our model are the total cost which is
derived from the DRCF model and the relative weighted lead time performance difference.
The objectives’ weights were normalized which can be done without loss of generality,
because there are only two objectives. We solved the problem for various scenarios for the
parameter values by using the SAA algorithm. Furthermore, we also varied the weights
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for the two objectives. This illustrates the trade off between the lead time performance
and associated cost. We are now able to answer to earlier formulated main research
question. The main research question of our research project is reformulated below.

How can Alpha create more value looking at their production locations for their com-
plete product portfolio. Specifically, do they have to change some production/assembly
operation locations within their supply chain?

We analyzed Alpha’s complete product portfolio in this research project. First, we
made a selection of products that have some useful available data to do such analysis.
We implemented the selection of products in our stochastic programming model and this
gave some interesting insights. Alpha’s current SCND is dominated by a solution we
found. There is a difference of approximately 0.6% between the present value of the
total cost of respectively the current and the dominating configuration. This difference is
for the complete two year horizon. Where the dominating configuration has lower total
cost and a better lead time performance than the current configuration. In addition, our
results show that Neptune should not be included the SCND. We only included a small
selection of the Neptune products in our model. For the Neptune location there was not
much useful data available to make a proper analysis. So this does not mean that the
Neptune location should closed according to our results. In the next section we discuss
the recommendations following from our results in this project.

9.2 Recommendations

We observe that Alpha’s current SCND for the selection of products is dominated in terms
of total cost and lead time performance by other alternatives. In Chapter 7 we included
a plot of a Pareto front based on our solutions for the stochastic programming problem.
Based on our model we conclude that Alpha can reduce the total cost and increase its lead
time performance if it changes some of its assembly locations. In addition, our results
show there exist even more options for changing the assembly locations. First, Alpha
could decide to further increase its lead time performance at the expense of a higher total
cost than the current situation. Contrary, they could also choose to reduce the total cost
compared to the current situation, but the lead time performance will decrease according
to our model.

The analysis for Alpha’s SCND can be further extended by including the lead time
impact on stock levels for finished goods in the hubs. In our analysis we have calculated
the total cost related to the production and transportation of components, the assem-
bly of the components and transportation of finished goods to the hubs locations. We
did calculate the lead time performance difference and this information can be used to
estimate the impact on the stock levels of finished goods in all of their hubs.

45



References

Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer
Science & Business Media.

Brealey, R. A., Myers, S. C., Allen, F., & Mohanty, P. (2012). Principles of corporate
finance. Tata McGraw-Hill Education.

Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and
evidence. The Journal of Economic Perspectives , 18 (3), 25–46.

Kleywegt, A. J., Shapiro, A., & Homem-de Mello, T. (2002). The sample average approx-
imation method for stochastic discrete optimization. SIAM Journal on Optimization,
12 (2), 479–502.

Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply
chain networks: a critical review. European Journal of Operational Research, 203 (2),
283–293.

Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications (Vol. 14).
Springer US.

Mak, W.-K., Morton, D. P., & Wood, R. K. (1999). Monte carlo bounding techniques
for determining solution quality in stochastic programs. Operations research letters ,
24 (1), 47–56.

Melo, M. T., Nickel, S., & Saldanha-Da-Gama, F. (2009). Facility location and supply
chain management–a review. European Journal of Operational Research, 196 (2), 401–
412.

Mitroff, I. I., Betz, F., Pondy, L. R., & Sagasti, F. (1974). On managing science in the
systems age: two schemas for the study of science as a whole systems phenomenon.
Interfaces , 4 (3), 46–58.
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Appendix A

Cullen and Frey graph
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Figure A.1: Cullen and Frey graph
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