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Abstract 
This study examines how existing theory about shop floor control can be applied within a maintenance 

depot environment such that a 98% service level target is met at minimum costs. The shop floor control 

mechanisms are evaluated through 17 different simulation models. Based on the simulation experiments, 

we show that the sequencing rule Earliest Due Date always outperforms the sequencing rule First-Come 

First-Served in terms of service level. Next, we show that for low to medium workforce cost factors, a 

partially cross-trained workforce policy outperforms a fully cross-trained workforce policy. Finally, since 

current lead times are often set too low during regular demand periods, we recommend a deterministic 

lead time control rule equal to 14 hours. This lead time control rule results in (i) a 98% service level 

performance, (ii) a 24.1% decrease in the average lead time experienced by asset holders and (iii) an 

operational workforce costs reduction during regular demand periods equal to 62.1%. 
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Executive Summary 
Companies using high-value capital assets in their primary processes extremely depend on the availability 

of their capital assets (Arts & Flapper, 2015). In order to minimize asset downtimes, these companies have 

developed a maintenance spare parts supply chain (Muckstadt, 2005). Within those maintenance spare 

parts supply chain, maintenance depots (MDs) are responsible to perform the diagnosis and maintenance 

activities (Keizers et al., 2001). Minimizing the time required to perform these diagnosis and maintenance 

activities is important, since downtime costs due to lost production are 0.5$ million to 1.5$ million per day 

for Chemical manufacturers (Peterson, 1994). Despite its importance, most literature conducted in the 

maintenance spare parts supply chain field have only studied the spare parts inventory control problem 

and the repair shop control problem (cf. Keizers et al., 2001; Basten & van Houtum, 2014). As such, this 

study aims to complement the literature by bridging the gap between existing theory about shop floor 

control and a maintenance depot environment. In cooperation with the MD under analysis, a main research 

question is specified that incorporates the MD’s minimal costs objective as well: 

How to design a shop floor control system for a maintenance depot which minimizes costs, while meeting 

a 98% aggregate service level target? 

The 98% service level target is proposed, since we expect, in line with Keizers et al. (2001), that the 

operational availability of the customer’s technical systems can only be controlled if the delivery 

performance of the diagnosis and maintenance activities are controlled as well. 

Research Approach 

According to Law and Kelton (2015), a system can be studied in various ways. In this study, simulation is 

selected as the approach to evaluate various MD shop floor control system designs. In total 17 different 

simulation models are designed in which various control mechanisms are evaluated. These control 

mechanisms can be categorized regarding sequencing rules, workforce allocation policies and lead time 

control rules. 

Sequencing rules determine the order in which jobs are processed (Nahmias & Cheng, 1993). Workforce 

allocation policities specify how operators are allocated. In this study, 5 policies are established. The first 

three policies consider only workforce flexibility using various degrees of cross-trained workforce. As such, 

we distinguish the no cross-trained workforce (NOCTW) policy, partially cross-trained workforce (PACTW) 

policy, fully cross-trained workforce (FUCTW) policy. Next, workforce allocation policy 4 (FUCTWAE) 

consists of fully cross-trained workforce and ample equipment, i.e. maximum machine flexibility. Last, the 

3PU model relies on the principles of the Eindhoven Planning Framework (EPF). In this policy, the valve 

overhaul process is decomposed into three production units (PUs) which can process jobs without having 

information of other production units. Furthermore, this 3PU model apply partially cross-trained workforce 

within their PUs. Last, the lead time control rule is aimed to specify for each job arrival a lead time such 

that service level targets are met at minimum costs and the average aggregrated lead time can be reduced. 

The control mechanisms are simulated in two different cases. The first case is established to evaluate 

alternative solution designs regarding a regular demand period, i.e. a period in which no Turn Around (TAR) 

is executed. Within the second case, data regarding a TAR is inlcuded in the simulation experiments such 
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that a TAR demand period is mimicked. As such, durin a TAR demand period regular demand continious 

while at the same time demand is peaked because of the existence of the TAR. The results from each 

simulation experiment is used to decide the total number of simulation models required. Table 1 depicts 

the differences between each of the 17 simulation models. 

Table 1: Overview of all simulation models involved. 

 
Although most input parameters for the simulation model are derived from data that was not available 

within PLVS’ ERP system, the outcomes from the simulation model fits surprisingly well with the expected 

outcomes from the system. That is, we have validated the simulation model in terms of the expected total 

processing times as derived from Sabic Europe’s Calculation Data Onderhoud handbook (2009) (Table 2). 

The table shows that, from a statistical point of view, the simulation model does not predict the outcomes 

well. However, and explained in more detail in Chapter 5, the relative differences are at maximum 6.8%. 

The model is also confirmed being valid by MD’s management. As such, the results are based on the 

proposed simulation models. 

Table 2: Results of the hypothesis tests on the mean total processing times used to validate the simulation model. 

Job type 𝒅 CDO Simulation model 𝒕𝒏
𝒅 𝒕𝒏−𝟏,𝟏−𝜶/𝟐 

DN-25 100% -3.5% 129.6 2.064 

DN-50 100% +6.8% 243.8 2.064 

DN-80 100% +3.5% 139.0 2.064 

 

Results & Recommendations 

The results are displayed in terms of the service level or the tardiness level. Tardiness is defined as the 

proportion of jobs finished after their due date, which is the opposite of the service level metric (Nahmias 

& Cheng, 1993). The results show that, independent from the workforce allocation policy applied, the 

sequencing rule Earliest Due Date (EDD) always outperforms the sequencing rule First-Come First-Served 

(FCFS) in terms of average tardiness levels (e.g. Figure 1). As such, the first recommendation to MD’s 

management is: 

Sequencing rule

Workforce flexibility

Lead Time
Demand 

period

From data Regular SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10

From data TAR SM11 SM12 SM13 SM14 SM15

Decision variable Regular
SM16 & 

SM17

Decision variable TAR

FCFS EDD

3PUFUCTWAEFUCTWPACTWNOCTW3PUFUCTWAEFUCTWPACTWNOCTW
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Figure 1: Results regarding the sequencing rules for the PACTW model. In here, the average tardiness is plotted against the relative 
costs. 

Next, the proposed workforce allocation policies are analyzed using both the regular demand case and the 

TAR demand case. Although Figure 2 depicts the results regarding the regular demand case, the results are 

similar for the two cases. It is concluded that the workforce allocation policy that results in the lowest 

tardiness level relates to the partially cross-trained workforce policy for low cost levels. However, for high 

cost levels, the FUCTWAE workforce allocation policy performs best. For current workforce cost levels, we 

will recommend the PACTW workforce allocation policy. However, the only model that achieves a 98% 

service level target during both the regular demand case and the TAR demand case is the FUCTWAE 

workforce allocation policy. Applying this policy results in a cost increase of 146.1% and 243.5% for Regular 

and TAR demand periods respectively. 

 

Figure 2: Results regarding the tardiness performance levels during a regular demand period. 

Last, since it is impossible to meet a 98% service level target during regular demand periods without making 

investments in both workforce and equipment, a different lead time control rule is proposed which contains 
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promising results. When a job arrives at the system and the MD can reserve 840 minutes to perform the 

overhaul while applying a PACTW workforce allocation policy, then this will result in the following 

outcomes. (i) The 98% service level will be met, (ii) the average lead time as experienced by customers 

decreases by 24.1% and (iii) the operational workforce costs during regular demand periods can be reduced 

by 62.1%. 

As such, taking the above into account, we recommend MD’s management to either: 

 

 

  

R2a: Invest in both workforce and equipment such that full flexibility of the system is achieved and the 

98% service level target can be met; or 

R2b: Decrease the service level target and apply a partially cross-trained workforce policy. This will not 

result in making workforce investments during both regular and TAR demand periods; or 

R2c: Negotiate with customers the minimum lead time provided to overhaul a valve and make 

maximum use of the available workforce capacity, i.e. increase operator utilization levels. 
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1 Introduction 
In many industries companies use high-value capital assets in their primary processes (Keizers et al. 2001; 

Cavalieri et al., 2008; Driessen et al., 2015; Arts & Flapper, 2015). In order to be competitive, these 

companies highly depend on the availability of their capital assets since downtime results in lost revenues 

(Sarker & Hague, 2000), customer dissatisfaction, customer claims or public safety risks (Driessen et al., 

2015). Moreover, besides lost revenues, the costs associated with downtimes are significant. A recent study 

shows that unplanned downtime costs industrial manufacturers $50 billion each year  (Coleman et al., 

2017). In order to minimize system’s downtime, companies apply maintenance programs in which 

maintenance strategies are included for each asset individually (Driessen et al., 2015; Van Houtum & 

Kranenburg, 2015). We refer to the work of Van Houtum and Kranenburg (2015) for a detailed description 

about the maintenance strategies.  

Apart from the strategy applied, whenever an asset is maintained it automatically means that the asset is 

faced with downtime. To minimize the time required to perform the maintenance activities, companies 

have designed a maintenance spare part supply chain (MSPSC) such that a repair-by-replacement strategy* 

is applied (Muckstadt, 1973; Driessen et al., 2015; Van Houtum & Kranenburg, 2015). For companies that 

apply a repair-by-replacement policy, two factors determine the maintenance downtime (Driessen et al., 

2015. First, the time required to perform the diagnosis and maintenance activities. Second, the 

maintenance delay caused by unavailability of the required resources (e.g. spare parts) to perform the 

diagnosis and maintenance activities (Driessen et al., 2015). As such, reducing either the time required to 

perform the diagnosis and maintenance activities or increase the availability of resources result in a 

decrease of an asset’s downtime. 

Literature gap 

Before we introduce how this study aims to complement the existing literature, one first needs to 

understand the principles of the MSPSC. Figure 3 visualizes a simplified model of the maintenance spare 

parts supply chain, which is based on the MSPSC design introduced by Driessen et al. (2015). In short, 

whenever an asset requires maintenance, it is removed from the production facility (i.e. factory) and 

transported to a maintenance depot (MD). The MD is responsible for performing the diagnosis and 

maintenance activities (Keizers et al., 2001). If the MD requires spare parts to perform the maintenance, 

these spare parts are replenished from a stocking point. The parts that are taken out are scrapped or sent 

to a repair shop for repair. The spare part stocking point is replenished with spare parts repaired by the 

repair shop or through buying new valves from original equipment manufacturers (OEM).  
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Figure 3: Simplified model of the maintenance spare parts supply chain introduced by Driessen et al. (2015). In here the thick lines 
represent a valve transport, whereas the thin lines represent a (spare) part movement. 

Most literature conducted in the MSPSC field discusses two topics, which are the spare parts inventory 

control problem (cf. Guide & Srivastava, 1997b; Kennedy et al., 2002; Sherbrooke, 2006; Basten & van 

Houtum, 2014; Van Houtum & Kranenburg, 2015) and the repair shop control problem (Cf. Guide Jr & 

Srivastava, 2000; Keizers et al., 2001; Vernooij, 2011). Although earlier research has mentioned the 

existence of maintenance depots (cf. Vernooij, 2011; Driessen et al., 2015), no literature is available on the 

maintenance depot control problem explicitly. As such, providing a solution for the maintenance depot 

control problem is interesting from a theoretical point of view. 

Besides the academic relevance, this research is also relevant from a practical point of view. As mentioned, 

the annual associated costs of unplanned downtimes cost manufacturers $50 billion (IndustryWeek, 2017). 

Furthermore, downtime costs due to lost production are 0.5$ million to 1.5$ million per day for Chemical 

manufacturers (Peterson, 1994). Since MDs are responsible for performing the diagnosis and maintenance 

activities (Keizers et al., 2001), manufacturing companies can save costs if maintenance depots are able to 

optimize their shop floor processes (which is called shop floor control (SFC) problem in literature).  

Optimizing the MD SFC system can reduce downtime costs for manufacturers in two ways. First, when the 

average time required to perform the diagnosis and maintenance activities can be reduced, it is expected 

that the asset’s downtime can be reduced as well. Second, if the percentage of jobs overhauled within the 

planned maintenance time (i.e. service level) can be enhanced, it is expected that the manufacturer’s 

downtime can be reduced. This claim is in line with Keizers et al. (2001), who stated that if the time required 

to perform the diagnosis and maintenance activities is uncontrolled, the operational availability of the 

customer’s technical systems is uncontrolled as well. However, from a MD perspective, an optimized SFC 

system design is only appropriate if it meets the system’s requirements and costs are reduced.  
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Taking all of the above into account, this study aims to complement the literature by bridging the gap 

between existing theory about shop floor control and a maintenance depot environment. More specifically, 

we aim to design a shop floor control system that minimizes costs, while meeting a 98% aggregated service 

level target. This research objective is translated into the main research question which is leading 

throughout this study: 

How to design a shop floor control system for a maintenance depot which minimizes costs, while meeting 

a 98% aggregate service level target? 

In order to design a shop floor control system which is relevant for practice, a case study is elaborated at a 

company which offers maintenance services. The next section therefore discusses the company under 

analysis. In cooperation with this company, the 98% service level target is proposed. We expect that if a 

98% service level target is achieved at the maintenance depot, the operational availability of the customer’s 

technical system can be better controlled and downtimes are decreased.  

1.1 Company Description 
The company under analysis is a Dutch international business originated in 1868. After some mergers and 

acquisitions the company was bought by an American enterprise in 2016. Its vision is to be the worldwide 

leading provider of knowledge-based Asset Integrity services in markets like the oil & gas, chemical and 

power industries. The company is headquartered in Utrecht (The Netherlands) and production operations 

are located in Africa, Asia-Pacific, Europe, Middle-East, and South-America. Nowadays, the company 

employs over 20,000 people all over the world and its turnover is about 1.5 billion euro per year.  

This research is executed on behalf of the Product Line Valve Services, which is one of the specialist services 

present within the International Services Continental Europe division. Section 1.2 provides a description 

about this product line. 

1.2 Valve Services 
The Product Line Valve Services (PLVS) offers maintenance services on valves. A valve is a mechanical asset 

that controls the flow of gases, liquids, or loose materials through apertures (e.g. piping) by opening, closing 

or partially obstructing passages (Dictionary.com, 2016). The product line currently operates at three 

different locations in The Netherlands, which are situated nearby the chemical parks Chemelot, Farmsum 

and the Botlek (Figure 4). Note that the facility which mainly operates in the Botlek is acquired in February 

2016. Since these three operations are located nearby chemical parks, most of PLVS customers are 

operating in the chemical and oil & gas industry. These customers apply maintenance programs to control 

their asset availability and outsource the required maintenance activities through annual maintenance 

contracts to maintenance service providers such as PLVS. 
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Figure 4: Geographic plot of PLVS’ operations located in The Netherlands. 

Company’s motivation of study 

As mentioned, maintenance depots like PLVS have to plan their resources (e.g. workforce and equipment) 

such that due dates are met at minimum costs in order to remain competitive. Since PLVS has acquired 

facility C early 2016, management became aware about different shop floor management (Hendriks & 

Geurts, 2016). More specifically, facilities A and B allocate operators to valves such that operators and 

valves move together from one process to another. In this policy, operators need to be cross-trained. On 

the contrary, facility C assigns operators to processes such that only valves are moved from one process to 

another. This policy does not allow operators to be cross-trained. Since both policies result in different 

performance levels (i.e. costs, service level, etc.), management wants to know how to allocate operators at 

the shop floor. Furthermore, management wants to know how these policies affect the decision and costs 

to hire additional workforce capacity during peak demand periods. 

In summary, PLVS management wants to know how to plan resources (i.e. operators) such that due dates 

are met at minimum costs.  

1.3 Research Scope 
This master thesis project is aimed to reduce asset’s downtime by improving the shop floor processes at 

MDs. As such, only the MD’s shop floor processes are within the research scope. This indicates that, when 

considering the maintenance spare parts supply chain (Figure 3), the downtimes regarding the 

transportation of an asset from or to the customer’s facility or downtimes due to unavailability of a spare 

parts are out of scope. A more detailed scope about the research project is given in Section 4.3, in which 

the simulation’s scope is explained. 
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1.4 Research Methodology 
In this study, the research methodology follows the approach of the regulative cycle (van Strien, 1997). This 

approach is especially useful for field problem solving (FPS) projects. According to van Aken et al. (2012), a 

FPS project’s objetive is to improve business performances. Since we aim to improve MD’s shop floor 

control management, this project can be labeled as a FPS project. Figure 5 shows the five phases that are 

included in the regulative cycle. The regulative cycle starts with formulating a problem definition, which is 

provided in this chapter. Next, the analysis and diagnosis phase is aimed to obtain specific knowledge to 

solve the defined problem and to gather insights about the nature and the context of the problem. Based 

on these knowledge and insights, alternative solutions can be designed and evaluated which finally results 

in the proposed solution design (van Strien, 1997). The intervention and learning and evaluation phases are 

excluded from this research due to the time frame in which the master thesis project is executed. The next 

section explains how this methodology is captured within this master thesis report. 

 

Figure 5: Regulative cycle introduced by van Strien (1997) 

1.5 Thesis Outline 
Figure 6 visualizes the thesis outline, which is structured according to the first three phases of the regulative 

cycle as discussed in the research methodology (Section 1.4). First, the problem definition phase is captured 

in this chapter. Next, during the analysis and diagnosis phase, literature is reviewed (Chapter Error! 

Reference source not found.: Theoretical Background) to obtain knowledge about general shop floor control 

mechanisms. Furthermore, a case study (Chapter 3) is analyzed to gain insights about the nature and the 

context of the problem. Based on the information obtained in these chapters, Chapter 0 concludes the 

analysis and diagnosis phase by describing the research context. The analysis and diagnosis phase is 

followed by the solution design phase. In this phase, first the model (Chapter 5) is described after which 

the results (Chapter 6) are provided regarding the research questions and conclusions and 

recommendations (Chapter 7) are given.  
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Figure 6: Thesis outline 
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2 Theoretical Background 
Literature is reviewed to establish how the maintenance depot (MD) shop floor control system can be 

designed. As mentioned, the shop floor control problem in general is about planning resources such that 

due dates are met at minimum costs (Keizers et al., 2001). A measurement for due date reliability is called 

service level, which is defined in this study as the aggregate percentage of valves overhauled on or before 

their due date. According to Hopp & Spearman (2011) and Bertrand et al. (1998), Service level (SL) depends 

on both a job’s cycle time and a job’s lead time. Lead time (LT) is defined as the time between a job’s due 

date and its arrival time (Nahmias & Cheng, 1993), whereas cycle time (CT) equals the time a job is in the 

system. Using these definitions, then service level can be expressed in terms of cycle time and lead time as 

follows:  𝑆𝐿 = 𝑃(𝐶𝑇 ≤ 𝐿𝑇) (Hopp & Spearman, 2011; Bertrand et al., 1998). It follows that one needs to 

control both cycle times and lead times to obtain a predetermined service level target. 

Section 2.1 and Section 2.2 discuss respectively how cycle time and lead times can be controlled. 

Subsequently, Section 2.3 provides a framework which is developed by researchers to cope with complexity 

in production systems. This is included, since MDs contain complex characteristics. Finally, Section 2.4 

summarizes the literature review. 

2.1 Cycle time 
According to Little (1961), cycle time (𝐶𝑇) is a function of the work in progress (𝑊𝐼𝑃) divided by the 

throughput (𝑇𝐻): 

𝐶𝑇 =
𝑊𝐼𝑃

𝑇𝐻
 

Here, 𝑊𝐼𝑃 relates to the workload in the system and 𝑇𝐻 depends on the processing time(s) and the 

available resources in the system (i.e. capacity such as machines, operators). According to this formula, the 

cycle time increases either if 𝑇𝐻 decreases relatively more than 𝑊𝐼𝑃 or if the 𝑊𝐼𝑃 level increases relatively 

more than the 𝑇𝐻 rate. The cycle time will only be stable in case 𝑊𝐼𝑃 and 𝑇𝐻 remain proportional to each 

other (Hopp & Spearman, 2011). As such, shop floor control management has to control both 𝑊𝐼𝑃 and 𝑇𝐻 

levels in order to control cycle times.  

2.1.1 WIP 

According to Bechte (1988), WIP can be controlled during three moments in time. After the decision is 

made to accept a customer order (1), a decision has to be made when which order is released to the shop 

floor (2). The third decision to control the WIP takes place at the shop floor. Then, in case a machine 

becomes idle and jobs are waiting in queue, a decision is made which job is processed next (3).  

In this research, the decision whether or not to accept a customer order is out of scope and is assumed to 

be given. Therefore, techniques to control the WIP levels regarding the first control moment are not 

discussed in this section. The WIP levels for the second and third moment can be controlled through the 

use of release methods. Release methods are developed to determine when which job is released. These 

methods can be divided into sequencing rules and triggering mechanisms (Bergamaschi et al., 1997). 

Sequencing rules determine the order in which jobs are processed (Nahmias & Cheng, 1993). Various 

sequencing rules exist in literature which are established for different objectives and different problem 
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types (cf. Nahmias & Cheng, 1993; Thomas et al., 1997; Silver et al., 1998; Pinedo, 2008; Hopp & Spearman, 

2011). Simple sequencing rules often outperform more difficult ones (Lawrence & Sewell, 1997; Stockton 

et al., 2008) and, additionally, are relatively easy to understand, use, and implement (Nahmias & Cheng, 

1993). As such, the paragraphs below explains only simple sequencing rules. Most of these sequencing 

rules contain due date related objectives. 

First-Come First-Served 

When jobs are scheduled according to the first-come first served (FCFS) sequencing rule, jobs cannot 

bypass another while waiting in a queue (Pinedo, 2008). FCFS results in low flow time variance (Nahmias & 

Cheng, 1993). This sequencing rule is often applied to analyze queueing systems such as e.g. the lines at 

the cashiers, lines in front of ATMs or lines at call centers.  

Earliest Due Date 

Earliest due date (EDD) schedules jobs with the earliest due date next (Pinedo, 2005). This sequencing rule 

results in an optimal solution for minimizing the maximum lateness (Nahmias & Cheng, 1993). In addition, 

the sequencing rule performs well in minimizing the number of late jobs and minimizing the variance of the 

time jobs are late (Rajendran & Holthaus, 1999).  

Shortest Processing Time  

Shortest processing time (SPT) is a static sequencing rule which schedules jobs in increasing order of their 

processing time such that the job with the lowest processing time is executed first (Nahmias & Cheng, 

1993). According to Nahmias and Cheng (1993), SPT minimizes the mean flow time, mean waiting time and 

the mean lateness. The rule functions well in environments where jobs arrive simultaneously. However, in 

practice jobs arrive dynamically over time which may result that jobs faced with long processing times are 

processed too late regarding their due date since new arrived jobs with shorter processing times are 

processed first (Pinedo, 2008). 

Minimum Slack 

A dynamic rule which operates in a similar way as the EDD sequencing rule is called minimum slack (MS). 

This rule selects among all jobs in queue the one with the lowest value of the current time subtracting its 

processing time (Pinedo, 2008). MS tends to minimize due date related objectives (Pinedo, 2005). 

Critical Ratio 

Critical ratio (CR) is widely adopted within make-to-order (MTO) systems, because the ratio serves as a 

measurement to determine the urgency of a job to be scheduled next while taking in mind the jobs’ 

expected remaining completion time (Stockton et al., 2008). A job’s critical ratio is calculated using the 

formula: 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑅𝑎𝑡𝑖𝑜 =
𝑑𝑢𝑒 𝑑𝑎𝑡𝑒 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑛𝑑 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
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The critical ratio is a useful indicator of a job’s status (Nahmias & Cheng, 1993; Stockton et al., 2008). 𝐶𝑅 >

1 Shows that a job is ahead of schedule, 0 < 𝐶𝑅 < 1 demonstrates that a job is behind schedule, and a job 

is late if 𝐶𝑅 < 0 (Stockton et al., 2008). According to this sequencing rule, late jobs are always scheduled 

first using the SPT policy. In case no jobs are late, the next job scheduled is the one with the lowest CR value 

(Nahmias & Cheng, 1993). A disadvantage of this method is that each time a job is completed, the critical 

ratios for all jobs have to be determined again (Nahmias & Cheng, 1993). 

Next to the sequencing rules, triggering mechanisms are a form of the second moment in time to control 

WIP levels and determine when the next job is released (Bergamaschi et al., 1997). Kingsman (2000) claims 

that triggering mechanisms are a stronger tool to control the WIP levels compared to sequencing rules, 

since sequencing rules lose effectiveness when queues are relatively small. Triggering mechanisms can be 

decomposed into four categories in which triggering mechanisms are based on 1) customer order 

conditions (e.g. due date, processing time), 2) shop floor conditions (e.g. (CON)WIP levels), 3) a combination 

of order and shop floor conditions, or neither based on order or shop floor conditions (e.g. immediate 

release) (Hales & Laforge, 2006). 

2.1.2 Throughput 

As mentioned, cycle time is a function of the WIP level and the throughput rate (Little, 1961). When the 

WIP level increases, the throughput rate has to increase simultaneously in order to achieve the same cycle 

times. According to Hopp and Spearman (2011), the throughput rate of a line equals the bottleneck 

utilization multiplied by the bottleneck throughput rate. Improving one of these factors will improve 

system’s throughput. The bottleneck rate can be increased by increasing its effective rate through e.g. 

adding equipment and flexible labor. Bottleneck utilization can be increased through buffering with WIP to 

prevent for starving (i.e. idled by a lack of parts to work on) or blocking (i.e. idled by a lack of space in the 

downstream buffer toward completed parts are sent), or by buffering the bottleneck with capacity by 

increasing effective rates of non-bottleneck processes (Hopp & Spearman, 2011). As such, increasing the 

effective process rate of any process may increase throughput rates. 

According to Hopp and Spearman (2011), an upper limit on the throughput of a production system is its 

capacity. Capacity can be constrained by equipment and/or workforce. In production systems where 

equipment constraints the available capacity, the throughput is bounded by the bottleneck workstation. 

This bottleneck workstation throughput rate can be increased through adding equipment or by investing 

in machines with lower processing times (Hopp & Spearman, 2011). On the other hand, in production 

systems where workforce constraints the available capacity, the maximum throughput rate equals the 

number of operators divided by the total processing time (Hopp & Spearman, 2011). This is the case in 

systems where labor works on one job at a time. Furthermore, this only yields in the ideal situation that 

workers are never blocked (i.e. ample equipment capacity) and are fully cross-trained. However, often 

equipment is less than ample, operators are not fully cross-trained or other system variabilities can cause 

workers to be blocked (Hopp & Spearman, 2011). As such, the throughput rate and, accordingly, the 

performance of the system depends on how effectively workers are allocated to promote flow through the 

system. Nahmias and Cheng (1993) claim that a system’s throughput can already provide near optimal 

solutions for low flexible workers (i.e. partially cross-trained workforce). Then, chaining policies and bucket 

brigade are mechanisms that provide insights how to deal with the flexible workforce allocation problem. 
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Hopp and Spearman (2011) conclude that systems with high process variability and parallel machine 

processes are most susceptible for cross-trained workforce. 

2.2 Lead time 
As mentioned in this chapter’s introduction, service level depends on both the job’s cycle time and its lead 

time (Hopp & Spearman, 2011; Bertrand et al., 1998). When assuming that cycle times follow a certain 

distribution, it automatically follows that lead time can be expressed in terms of the cycle time distribution 

parameters for any targeted service level. Hopp & Spearman (2011) and Bertrand et al. (1998) assume that 

cycle times are normally distributed and introduced the following formula to determine the minimum lead 

time to satisfy a particular service level: 

𝐿𝑇 = 𝐶𝑇 + 𝑧𝑆𝐿 ∗ 𝜎𝐶𝑇 

In this formula, 𝑧𝑆𝐿 equals the value in the standard normal table for which 𝛷(𝑧𝑆𝐿) = 𝑆𝐿. The term 𝑧𝑆𝐿 ∗

𝜎𝐶𝑇 is called the safety lead time (Hopp & Spearman, 2011).  

2.3 Hierarchical Production Planning 
Similar to MDs, the supply chain planning (SCP) problem is faced with complex characteristics (de Kok & 

Fransoo, 2003). We assume that concepts developed for the SCP problem might be applied within a MD as 

well. As such, this section describes how hierarchical production planning are established and explains how 

one works. 

According to McKay et al. (1995), SCP concepts are developed and studied by many researchers over time, 

which finally resulted in the development of hierarchical production planning frameworks (e.g. Hax & Meal, 

1973; Orlicky, 1974; Bertrand et al., 1998). A hierarchical production planning (HPP) framework is defined 

as: “a structural approach to the problem of coordinating activities within the primary process of the firm 

where authority and responsibility to make decisions is divided over levels and each higher level specifies 

the constraints in which lower level hierarchies are free to achieve local objectives” (Bertrand et al., 2016, 

pp. 16-17).  

The MIT framework and the MRP II framework practice are the most commonly used HPPs in today’s 

practice (cf. Hax & Meal, 1973; Bitran, Haas, & Hax, 1981, 1982; Hax & Candea, 1984; Vollmann et al., 1984; 

Bitran & Tirupati, 1993). This study however proposes the Eindhoven Planning Framework (EPF). First of 

all, because the EPF provides a solution concerning the issues involved with the commonly used 

frameworks (Bertrand et al., 2016). Secondly, because the EPF has already been adapted within a 

maintenance and repair shop environment in the study of Bertrand et al. (1991). 
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Figure 7: The Eindhoven Planning Framework as introduced by Bertrand et al. (2016). 

The EPF can be seen as a supply network of production units (PUs) separated by controlled stock points 

that add value to the goods flow and to which production orders are released by a central coordination 

authority denoted as the supply chain operations planning (SCOP) function (Bertrand et al., 2016) Figure 7. 

Both the SCOP -and the PUs’ decisions are constrained by parameter settings which determine values for 

e.g. costs, service targets, (fixed planned) lead times, and safety stocks. Within these parameters, the SCOP 

is responsible to coordinate the release of materials and resources such that customer service constraints 

are met at minimal costs (de Kok & Fransoo, 2003). The PUs, on the other hand, are responsible for 

processing jobs from a specific start process level towards a specific next process level within the agreed 

constraints. From the SCOP’s point of view, PUs are black boxes that transform inputs into outputs 

(Bertrand et al., 1990, 1998, 2016; de Kok & Fransoo, 2003). As such, PUs are self-contained which means 

that a PU can achieve its performance targets without having information about how the design problem 

of any other PU function nor how the SCOP function is solved (Bertrand et al., 1990, 1998, 2016). To make 

this work, PUs are constrained with fixed planned lead time targets.  

2.4 Conclusion 
In Chapter 2 the principles of shop floor control were discussed and a framework (i.e. EPF) was provided 

which copes with maintenance depot’s complexity.  

In this study, service level is defined as the aggregate percentage of valves overhauled on or before their 

due date. According to Hopp & Spearman (2011) and Bertrand et al. (1998), service level can be expressed 

in cycle time and lead time: 𝑆𝐿 = 𝑃(𝐶𝑇 ≤ 𝐿𝑇). As such, in order to achieve a high due date reliability, both 

the job’s cycle time and its lead time need to be controlled (Keizers et al., 2001) 

According to Little (1961), cycle time is a function of the WIP level divided by the throughput rate (TH). This 

indicates that cycle times are stable in case both WIP and TH decrease or increase proportional to each 
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other (Little, 1961). Mechanisms used to control WIP levels relate to sequencing rules and triggering 

mechanisms (Bergamaschi et al., 1997). Sequencing rules determine the order in which jobs are processed 

(Nahmias & Cheng, 1993). Triggering mechanisms are used to decide when the next order is released 

(Bergamaschi et al., 1997).  

Whenever the WIP level increases, the throughput rate should increase simultaneously in order to remain 

the same cycle times (Little, 1961). According to Hopp and Spearman (2011), a system’s throughput rate 

can be most effectively increased by increasing either the bottleneck utilization rate or the bottleneck 

effective throughput rate. The effective throughput rate is often constrained by capacity restriction in 

terms of equipment or workforce. Increasing both equipment and workforce levels will result in higher 

throughput levels (Hopp & Spearman, 2011). In systems where workforce constraints system’s throughput, 

cross-trained workers can significantly increase throughput rates without increasing equipment or 

workforce levels (Nahmias & Cheng, 1993). 

Lead time can be controlled in case a cycle time’s distribution is known. When assuming cycle times to be 

normally distributed, the minimum lead time that satisfies the targeted service level (SL) equals:  

𝐿𝑇 = 𝐶𝑇 + 𝑧𝑆𝐿 ∗ 𝜎𝐶𝑇 (Bertrand et al., 1998; Hopp & Spearman, 2011). 

Finally, HPP frameworks are established for the SCP problem in order to reduce system’s complexity 

(Bertrand et al., 1990). Such a HPP relates to the EPF, which is a supply network of production units (PUs) 

separated by controlled stock points that add value to the goods flow and to which production orders are 

released by a central coordination authority (i.e. SCOP function) (Bertrand et al., 2016). The PUs are self-

contained, which means that a PU can achieve its performance without having information about how the 

design problem of any other PU function nor how the SCOP function is solved (Bertrand et al., 1990, 1998, 

2016). 

In conclusion, we expect that MD’s shop floor control can benefit from control mechanisms provided in 

literature. These control mechanisms relate to sequencing rules and triggering mechanisms to control WIP, 

cross-trained workforce to enhance throughput rates, establishing the cycle time distribution to determine 

lead times, and decomposing the production system to reduce maintenance depot’s complexity. The next 

chapter discusses the MD’s characteristics and describes how shop floor control is currently organized at 

the MD under analysis.  
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3 Case Study 
Chapter 3 is aimed at gaining insights about nature and the context of the shop floor control problem for a 

MD. On the one hand, this is required to get a thorough understanding of the MD shop floor control 

problem. On the other hand, analyzing a MD is required to obtain inputs for the mathematical model which 

will be built in Chapter 5.   

As will be explained in the upcoming sections and summarized in Section 4.3, the case study describes 

(except for the sections regarding the demand analysis) how the shop floor is currently structured at Facility 

B and, even more specifically, we only analyze the product group safety valves. This scope is set because of 

the absence of data available to analyze these product groups and operations mathematically. In addition, 

it is expected that insights provided at this product group can be used for other product groups and 

operations as well.  

Information in this chapter is derived from data analysis, interviews with employees and researcher’s shop 

floor observations. In total, data from three different sources is analyzed. First, data from the enterprise 

resource planning (ERP) system is collected, which includes data about the valves overhauled from January 

2014 till August 2016. Second, data about a turn around which is executed in March 2017 is analyzed to 

obtain input values for the mathematical model regarding this demand type. Last, data from a valve tracking 

procedure (Appendix A2, Figure 20) is used to specify the input values for the mathematical model for 

regular demand periods. 

This chapter is structured as follows. First, to understand how higher planning functions influence the shop 

floor control, Section 3.1 discusses how planning is hierarchically structured within PLVS. In here, the 

incoming customer order demand is analyzed as well. Next, the valve overhaul process and the resources 

involved with the valve overhaul process are explained in Section 3.2. Then, Section 3.3 discusses the 

current shop floor performances. Last, Section 3.4 summarizes the findings from Chapter 3. 

3.1 Planning and Control 
The BWW-framework introduced by Bertrand et al. (1990) is used as a basis to describe the current 

planning and control structure at PLVS Figure 8. In here, control functions (blue rectangles) are specified 

on three hierarchical planning levels. These three hierarchical planning levels relate to planning at 

department level (i.e. PLVS), planning at facility level and planning at shop floor level. These levels are 

displayed on the right hand side. 



14 
 

 

Figure 8: Planning and control structure at PLVS, which is based on the principles of the BWW-framework introduced by Bertrand et 
al. (1990) 

The highest planning level at PLVS refers to the aggregate planning. This aggregate planning consists of 

budget plans about total sales volumes expressed in terms of revenue and billable hours. Input for the 

aggregate planning are the planned turn arounds (TARs, we will explain this demand type in Section 3.1.1), 

market information, and a logistic parameter about billable hours set by higher management. The 

aggregate planning is input to the production management at facility level. The production management 

at facility level consists of two decision functions: capacity planning and material coordination. Planners are 

responsible for the material coordination function. A planner is allowed to accept all customer orders 

besides TARs (i.e. TARs are input from aggregate planning) and to discuss the start and completion dates 

of these orders. The start and completion dates is negotiated based on the available workforce capacity 

and the availability of spare parts. Ideally, operators are planned fully utilized to ensure billability targets 

(see Section 3.3) are met. Next, an operations manager is responsible for the capacity planning, which deals 

with equipment and workforce levels. In here, short term capacity extensions are made if foremen request 

more temporary capacity. Long term capacity changes are made for planned TARs. Then, the operations 

manager hires operators up to a workforce level which equals the expected total processing times required 

to overhaul all the valves during the TAR multiplied by a factor which is based on his experience from TARs 

with similar scopes. Equipment is only extended during TARs and is also based on operations manager 

experiences. 
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Each valve within an accepted customer order is transformed to a job order by the planning department. 

A job order consists of information such as the maximum time allowed to overhaul the valve and the 

(additional) activities that have to be executed. At the end of each week, these job orders are handed over 

to the foremen of each product group during the material and job order release meeting. However, the 

actual release of materials take place once the valves regarding a customer order arrive at PLVS facility. 

Then, production management at the shop floor starts. 

Foremen are responsible for the shop floor management, which is about the planning and control of the 

available capacity such that arriving valves (henceforth called jobs) are overhauled within their due dates. 

They are authorized to (re)allocate operators to workstations or to valves. In general, operators are 

assigned to jobs such that they execute all processes involved with a valve overhaul from start to finish. 

Since operators are not always allowed (i.e. competent) to execute all the required processes themselves, 

specialized operators are sometimes assigned to perform particular processes. Based on the way operators 

are allocated, it is concluded that the current shop floor management contains 1 production unit.  

Customer Order Acceptance 

The decision to accept a customer order differs per demand type and contractor. First, TARs are input to 

facility’s management from aggregate planning. Next, customer order arrivals from contractors having a 

maintenance contract at PLVS are always accepted by planners, independent whether or not a TAR is 

planned in the same time period. On the other hand, customer orders arriving from contractors without 

having a maintenance contract at PLVS are accepted if capacity is sufficient. The capacity check is based on 

the expected total processing time of a standard valve overhaul (Table 4) (i.e. no capacity is reserved to 

perform rework or additional work activities) and the available workforce capacity in that particular time 

period. The expected total processing times are derived from the Sabic Europe’s Calulation Data 

Onderhoud handbook (2009) in which processing times are specified for 30 different safety valves. In here, 

the characteristic which mainly affects the total processing time is the valve size, i.e. DN-size (SABIC Europe, 

2009). Unfortunately, this capacity check is inappropriate since actual valve arrival dates highly deviate 

from planned arrival dates (Figure 9 and Figure 10). 

 

Figure 9: Comparison of the actual arrival times versus the planned arrival times during regular demand periods 
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Figure 10: Comparison of the actual arrival times versus the planned arrival times during TAR demand periods 

Note that in practice all customer orders are always accepted outside TAR periods and have to be discussed 

with the operations manager during TAR periods. 

Release methods 

Arriving jobs are always immediately released to the production area. In here, shop floor management is 

organized such that operators are always (if possible) busy performing a valve overhaul. As such, no upper 

bound on the WIP is determined to limit the WIP levels. This is inappropriate, since high WIP levels 

negatively influence the performance of the system (Little, 1961; Hopp & Spearman, 2011). Next, foremen 

have to decide which job is processed next in case an operator becomes idle. This decision is important, 

because jobs have different priority levels. On the one hand, because jobs contain different lead times 

which are approved by planners in an earlier stage. On the other hand, actual valve arrival times highly 

deviate from planned arrival times (Figure 10). Based on observations and interviews, it is concluded that 

foremen however are not familiar with sequencing rules and use a combination of FCFS and EDD. 

3.1.1 Demand 

This section provide the results of the demand analysis which is based on data from January 2014 till August 

2016. We first explain the four demand types that are recognized by PLVS, which result from the 

maintenance programs applied by PLVS’ customers. Each demand types contains different characteristics. 

In general, Turn arounds (TAR) and turn around lights (TAL) are preventive maintenance strategies that are 

used for assets that are marked being critical. During TARs and TALs, the customer’s facility or a part of the 

facility is shut down for a particular period in order to carry out maintenance activities on all asset types. 

Since these down time periods are planned as short as possible, TALs and especially TARs result in immense 

volume peaks at PLVS.  

PLVS recognizes furthermore standard demands. These customer orders are most often ordered from 

customers that have contracted PLVS as their main maintenance service provider. The orders often consist 

of one or several assets and are executed in periods that these assets are marked less critical to meet 

customer’s production targets. Often, PLVS can influence the start and finish dates as well. A fourth demand 
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type relate to emergency orders. An emergency order is placed, in case an asset requires maintenance and 

is marked being critical to satisfy customer’s production targets. 

Figure 11 visualizes the sales volumes for each demand type based on data from 1 January 2014 till 31 

August 2016. The figure shows similar patterns for facilities A and B (data regarding the demand types at 

Facility C is not available). It is remarkable that almost no emergency orders are observed. Last, it is 

concluded that most jobs are overhauled regarding the standard demand type. 

 

Figure 11: Relative sales volumes per demand type as observed at facilities A and B during January 2014 till August 2016. 

Next, the demand is analyzed for each facility and for each product group (Table 3). Based on the 

outcomes provided in these tables, we conclude that most overhauls are performed at Facility B. 

Furthermore,  most overhauls are performed regarding the group safety valves. 

Table 3: Relative annual demand per facility {A, B, C} and  per product group {On/off, Safety, Control}. Note that the 
statistics provided about 2016 only include data till August. 

 A B C Total 
  

On/off Safety Control Total 
 

2014 18% 54% 29% 100% 2014 18% 60% 22% 100% 
 

2015 14% 57% 29% 100% 2015 15% 66% 19% 100% 
 

2016* 25% 46% 29% 100% 2016* 13% 68% 18% 100% 
 

 

  

 

The weekly demand pattern from January 2014 till August 2016 is also analyzed regarding the safety valves 

(Figure 12). As shown, the weekly demand is not growing or decreasing steadily. Instead, the weekly 

demand highly fluctuates from successive weeks. Based on interviews, it is known that these peaks are 

mainly caused by the occurrence of TARs. Since TARs are accepted by higher management, this demand 

type is given to the system and cannot be changed by the customer order acceptance function.  
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Figure 12: Weekly demand per facility for safety valves observed from January 2014 till August 2016 

The last characteristic that is used to analyze the demand is in terms of the DN-size. As mentioned in Section 

3.1, the DN-size is the main driver for the processing time. Table 4 visualizes the cumulative probabilities 

of the DN-sizes observed at Facility B regarding the product group safety valves and the expected total 

processing times involved with these DN-sizes. 

Table 4: Cumulative distribution function regarding the valve sizes for safety valves at facility B and the total expected processing 
times expressed relatively against the biggest DN-size. Note that these values are fictitious due to confidential reasons. 

DN-Size [mm] Cumulative 
Expected total processing time regarding     
a standard overhaul 

        DN ≤ 16 15% 100% 

16  < DN ≤ 33 57% 110% 

33  < DN ≤ 66 77% 120% 

66  < DN ≤ 82 84% 130% 

82  < DN ≤ 102 90% 140% 

102 < DN ≤ 153 96% 150% 

153 < DN ≤ 204 98% 160% 

204 < DN ≤ 254 99% 170% 

254 < DN 100% 180% 

 

So far, the demand is analyzed based on data derived from the enterprise resource planning (ERP) system. 

Although many statistics can be analyzed, statistics such as (inter)arrival times between customer orders, 

the number of valves within a customer order (i.e. order size) and the total time available to overhaul a 

valve from an order (i.e. lead times) cannot be analyzed from this data. Since these statistics are input to 

the simulation model (see Section 5), data is collected and analyzed to obtain values regarding these 

statistics. The next section discusses the results of these demand characteristics. 

3.1.2 Demand Characteristics 

Since the data derived from the ERP system does not contain all demand statistics that are required for the 

simulation model, two other data sources are analyzed to gain the required insights. Although PLVS 

recognizes four demand types (i.e. TAR, TAL, standard and emergency), it was decided to collect data 

regarding a period in which no TAR was executed (henceforth called: regular demand data) and to collect 
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data regarding a TAR explicitly (henceforth called: TAR demand data). The regular demand data can then 

be used to simulate a demand period in which no TAR is executed (henceforth called: regular demand 

period). On the other hand, the combination of both the regular demand data and TAR demand data can 

be used to simulate a demand period in which a TAR is executed (henceforth called: TAR demand period). 

Allowing regular demand during a TAR is a correct approach, since in practice customer orders are almost 

always accepted by PLVS’ planners (Section 3.1).  

The regular demand data is collected during a three week period in March 2017 (Appendix A). Data from 

one of the most extreme TARs (i.e. lots of valves are overhauled in a short time-frame) is analyzed to 

represent TARs in general. This TAR is selected, since for this TAR a tool was designed to track the state of 

the valves overhauled. The descriptive statistics regarding both datasets are described below. Furthermore, 

for validation purposes, two statistics are compared with the statistics derived from the ERP system’s data. 

Regular demand data 

Table 5 contains the descriptive statistics regarding the regular demand period. In here, statistics are 

gathered per customer order arrival, since all jobs from one customer order consists of the same lead time. 

The sample sizes per statistic differ because of missing values. 

Table 5: Descriptive statistics regarding the input parameters for  regular demand 

Descriptive statistic Interarrival-time Order size Lead time (per order) 

Sample Size 39 41 36 

Minimum 0 1 150 

Maximum 600 15 4440 

Mean 147.59 2.171 1106.14 

Median 110 1 603.50 

Std. Deviation 143.687 2.635 999.60 

Skewness 1.570 3.441 1.422 

Kurtosis 2.464 17.082 5.097 

 

TAR demand data 

Table 6 contains the descriptive statistics regarding the regular demand period. Here, statistics regarding 

the interarrival-time and order size are gathered per customer order. The statistics regarding the lead time 

are analyzed per job, because within a customer order arrival jobs can have various planned lead times. 
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Table 6: Descriptive statistics regarding the input parameters for TAR demand  

Descriptive statistic Interarrival-time Order size Lead time 

Sample Size 36 36 179 

Minimum 0 1 480 

Maximum 502 34 4800 

Mean 187.69 4.806 1421.23 

Median 146.33 3 1440.00 

Std. Deviation 139.38 5.806 701.31 

Skewness 0.825 3.880 2.043 

Kurtosis 3.004 21.654 9.956 

 

Validation descriptive statistics 

As mentioned, the descriptive statistics are validated in terms of the average DN-size and the average jobs 

that arrive per day. These statistics are selected for two reasons. On the one hand, data from the EPR 

system can be used to determine the average DN-size and the average jobs per day. On the other hand, 

the workload in the system depends mainly on those two statistics. Table 7 provides the average statistics 

for both demand data’s. 

Table 7: Comparison of the mean DN-size and the mean job arrivals per day regarding the sample data and data from the ERP 
system 

Descriptive statistic Dataset Sample average ERP system’s data 

Mean DN-size Regular demand data 42.4 50.9 

Mean jobs/day Regular demand data 7.1 8.5 

Mean DN-size TAR demand data N.A. 54.7 

Mean jobs/day TAR demand data 12.3 24.8 

 

In here, the sample averages for the mean jobs per day are determined using the formula: 

𝐸(𝑗𝑜𝑏𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦) =
480

𝐸(𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙−𝑡𝑖𝑚𝑒)
∗ 𝐸(𝑜𝑟𝑑𝑒𝑟 𝑠𝑖𝑧𝑒). Table 7 shows that the averages jobs per day 

obtained from the two data sources differ from the ERP system’s data. Although the difference may 

influence the outcomes that will be obtained, it is decided to use this statistics for modeling purposes for 

two reasons. First, data from the ERP system can be erroneous. For example, the mean jobs per day 

regarding the TAR demand data equals 24.8 and is based on 25 TAR days a year. Management has 

confirmed that the number of TAR days a year is at least twice as much as the 25 TAR days obtained from 

the ERP system. Second, although we know that the exact outcome values will be affected by the input 

parameters, we do not expect that these input values affect the main conclusion of each research question. 

That is, if a certain model (e.g. EDD versus FCFS) outperforms another model, this conclusion will be similar 

when increasing the demand. We will come back to this in the limitations (Section 7.1). 
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3.2 Process Characteristics 
Once a valve arrives at PLVS, the in shop valve overhaul process starts. Figure 13 contains the swimlane 

process diagram which visualizes the flow of valves through PLVS’ facility. In here, the swimlanes represent 

the various machine types PLVS distinguishes and each color represents an operator skill level which 

indicates the minimum required skill level for operators to execute the process. PLVS recognizes 21 

different processes from which 19 are executed by operators working for PLVS. Process 8 represents the 

mechanical machining activities which are outsourced internally or to an external company. Next, process 

21 denotes the activity that materials have to be ordered due to unavailable spare parts, which is not 

performed by an operator. 

The general processes to overhaul a valve at PLVS are in line with literature, which concludes that 

maintenance requires disassembling, cleaning, inspection, reassembling and testing (Kurilova-Palisaitiene 

& Sundin, 2014). However, the exact processes and accordingly the machine types involved with a valve 

overhaul highly vary per overhaul (Appendix B.3). Moreover, the required processes to overhaul a valve are 

unknown at the start, but can only be determined after inspection (process 7) is executed. Another 

characteristic of PLVS’ valve overhaul process relates to the rework activities valves may be faced with. 

According to Hopp and Spearman (2011), rework activities are undesired since rework increases both the 

cycle time average and the cycle time variance. Although these processes are known, data regarding job’s 

routing or percentage about processes executed are not available. As such, the data from the valve tracking 

procedure is used to gain insights about these input parameters. We refer to Section 5.1 for a detailed 

description of the results of the analysis provided in Appendix B.3. 

 

Figure 13: BPMN process model regarding the safety valve overhaul process. In here, each swimlane represents a machine type and 
each color denotes an operator competence level. 
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Equipment 

Table 8 shows the relative number of machines for each machine type. Note that these numbers are 

changed for confidential reasons. 

Table 8: Relative number of machines per machine type. Due to confidential reasons, these numbers are fictive. 

Machine type Number of machines 

Work benches 46% 

Test machines 15% 

Cleaning cabins 12% 

Blasting machines 8% 

Lapping machines 12% 

Conserving specialized equipment 4% 

Conserving wall 4% 

Total 100% 

 

Workforce 

Table 9 shows the relative number of operators for each operator type. Furthermore, the hourly costs 

involved with the current workforce level as well as the costs of hiring an operator from a particular 

operator competence level are shown. Again, these numbers are fictitious due to confidential reasons. 

Table 9: Relative number of operators, workforce costs and hiring workforce cost per operator competence level. Due to confidential 
reasons, these numbers are fictive. 

Operator competence 
level 

Relative current 
workforce levels 

Workforce costs 
[€/hour/operator] 

Hiring workforce costs 
[€/hour/ operator] 

Orange 20% €50 €75 

Blue 35% €100 €100 

Red 15% €80 €100 

Green 30% €120 €100 

Total 100% N.A. N.A. 

 

3.3 Key Performance Indicators 
Key performance indicators (KPIs) are used to evaluate system performances (Nahmias & Cheng, 1993). 

PLVS uses billability as the only KPI to measure how operational planning currently performs. Billability is 

denoted as the ratio between the charged hours and the total available hours (equation below). In here, 

the charged hours equals the expected total processing times for the activities fulfilled. Although we will 

not discuss billability in detail, PLVS management has mentioned that billability targets for operators are 

not met yet.  

𝐵𝐵𝑇𝑌 =
𝑐ℎ𝑎𝑟𝑔𝑒𝑑 ℎ𝑜𝑢𝑟𝑠

𝑐ℎ𝑎𝑟𝑔𝑒𝑑 ℎ𝑜𝑢𝑟𝑠 + 𝑢𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑑 ℎ𝑜𝑢𝑟𝑠
 



23 
 

According to Keizers et al. (2001), due date reliability is an important KPI for maintenance depots, since an 

uncontrolled maintenance delivery performance results in an uncontrolled operational availability of the 

technical system. A measurement for due date reliability is called service level. In this study, service level is 

denoted as the percentage of jobs overhauled on or before their due date. It is remarkable that PLVS does 

not measure the service level. Moreover, the completion date of a valve overhaul is not recorded. As such, 

data from the valve tracking procedure (Appendix A.2) is analyzed which shows a current service level 

performance equal to 93.5% during regular demand periods. The service level is also determined for a TAR 

in which 181 safety valves were overhauled (Appendix D). For this TAR, the obtained service level equals 

46.9%. Since the actual arrival date highly deviated from the planned arrival date, the service level is also 

determined in terms of the actual cycle time versus planned cycle time. Based on this analysis, the actual 

cycle times were in 45.8% lower than the planned cycle times. Since management targets a 98% service 

level performance, it is concluded that current service levels are extremely low. 

3.4 Conclusion 
Chapter 3 describes how the shop floor control is currently organized and how the valve overhaul process 

is characterized as observed at the maintenance depot under analysis. First, conclusions regarding the 

maintenance depot characteristics are provided. In line with literature, it is concluded that the maintenance 

depot contains complex characteristics. This complexity is caused by highly variable demand, uncertain 

arrival times, variable lead times and uncertainty about the total processing time since a job’s content is 

unknown at the start of the overhaul process. The shop floor control structure is even more complicated 

since each process requires a specific machine type and an operator who is qualified to perform the 

particular process. Second, it is concluded that the throughput rate at which valves are overhauled is 

constrained by both the equipment level (i.e. number of machines) and the workforce level. As such, once 

WIP levels increases, the capacity planning decision function has to decide about both workforce and 

equipment levels in order to achieve the same cycle times. 

Next, conclusions are provided about the current shop floor control structure. First of all, it is concluded 

that the current shop floor control structure does not perform well. Although PLVS does not use service 

level as a KPI, service level is the most important KPI based on literature (Keizers et al., 2001). Data analyses 

show that the obtained service levels are below management target for both regular demand as well as for 

the TAR analyzed. As mentioned in Chapter 2, service level depends on both a job’s cycle time and a job’s 

lead time. Since lead times are confirmed by the customer order acceptance function and cycle times are 

controlled by shop floor control management, it is expected that both decision functions cause the poor 

service level performance. Reasons for this are described in next paragraph.  

First, the procedure how customer orders are accepted causes problems during regular demand periods. 

During these periods, planners accept customer orders (i.e. confirm start and completion dates) based on 

the available capacity in that period and the expected total processing times. These expected total 

processing times, however, do not consider variability. This is unrealistic since a job’s total processing time 

is highly variable due to uncertainty about the job’s content at the start of the overhaul process and the 

probability of rework. Furthermore, lead times (i.e. completion date minus start dates) are approved 

without performing a cycle time check. More specifically, planners expect that cycle times equal the 

expected total processing times. However, a job’s cycle time is highly variable due to factors such as e.g. an 
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unbalanced production line which may cause congestion, waiting times due to different operator skill 

classes, uncertainty about the required processes and the presence of other jobs. A third problem regarding 

the current customer order acceptance function is that operators are tried to be planned fully utilized. 

Since cycle times non-linearly increase with the utilization rate (Hopp & Spearman, 2011), this might cause 

due date reliability problems. 

Second, the current shop floor control structure may also cause due date reliability problems. First of all, it 

is concluded that no upper bound on the WIP level is specified, since jobs are released immediately to the 

production area once they arrive at the facility. Second, foremen do not use a specific sequencing rule to 

decide in which order jobs are processed. Hence, it is reasonable to conclude that operators may be 

working on jobs which with less priority. Last, although the shop floor control structure is highly 

complicated, operators and machine types are not decomposed into multiple production units to reduce 

system’s complexity. Taking all the above into account, it is expected that PLVS can benefit from simple 

mechanisms provided in literature.  
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4 Research Context 
As mentioned in Section 1.5, the theoretical background (Chapter 2) aimed to gain insights about the 

control mechanisms provided in literature to design the shop floor control problem in general. 

Subsequently, the case study provided insights about the MD environment. Based on the information 

provided in these chapters, Chapter 0 discusses the research context in more detail. We formulate research 

questions to decompose the complexity of the main research question. Furthermore, the answers to the 

research questions together will provide the answer to the main research question. Next, this chapter 

furthermore describes the research approach (Section 4.2) and the research scope (Section 4.3). 

4.1 Research Questions 
As mentioned in Chapter 0, the main research question which is leading throughout this study is formulated 

as: 

How to design a shop floor control system for a maintenance depot which minimizes costs, while meeting 

a 98% aggregate service level target? 

The research approach applied in this study is called simulation (Section 4.2). Simulation can only be applied 

in case a simulation model can be build that represents the system analyzed (Law & Kelton, 2015). As such, 

the first research question aims to build a valid simulation model: 

1. How to design a simulation model which represents the current safety valve overhaul process? 

According to Hopp & Spearman (2011) and Bertrand et al. (1998), service level depends on both a job’s 

cycle time and its lead time. As such, the proposed shop floor control system design should control both 

cycle times and lead times. Cycle time is a function of the WIP level divided by the throughput rate (Little, 

1961). A control mechanism provided in literature to control WIP levels relates to sequencing rules 

(Bergamaschi et al., 1997). Since many different sequencing rules exist and the fact that PLVS is not familiar 

with general sequencing rules, research question 1 is established to determine which sequencing rule 

should be applied within the shop floor control system for a maintenance depot: 

2. Which sequencing rule results in the best service level performance given the workforce costs during 

regular demand periods? 

The sequencing rules that will be compared are First-Come First-Served (FCFS) and Earliest Due Date (EDD). 

These static sequencing rules, i.e. job sequence is time independent (Pinedo, 2005), are selected over the 

dynamic sequencing rules minimum slack (MS) and critical ratio (CR), because static sequencing rules are 

relatively easy to understand, use, and implement (Nahmias & Cheng, 1993). The static sequencing rule 

shortest processing time (SPT) is out of scope, because according to Baker and Bertrand (1982) EDD 

outperforms SPT for medium to high allowance factors. The allowence factor is the ratio between the flow 

allowence (i.e. time between a job’s arrival time and its due date) divided by the expected total processing 

time (Baker & Bertrand, 1982). Since the aggregated mean allowance factors equal 6.1 and 7.9 regarding 

regular demand arrivals and TAR demand arrivals respectively, we assume that EDD outperforms SPT. 
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Next, research question three copes with controlling throughput times. As mentioned in Section 2.1.2, 

throughput rates can be bounded by capacity restrictions in terms of workforce or equipment. Since the 

ratio workforce divided by equipment equals 0.37 and the fact that during shop floor observations a 

machine bottleneck was not found, we assume that workforce limits the throughput rates. Nahmias and 

Cheng (1993) claim that near optimal throughput rates can already be achieved for low flexible workforce. 

Since processes within the valve overhaul process require various operator competence levels and the fact 

that operators within the MD under analysis are (partially) cross-trained, we expect that the way how 

workforce is allocated affects the service level performance. Moreover, as visualized in Table 9Table 9: 

Relative number of operators, workforce costs and hiring workforce cost per operator competence level. 

Due to confidential reasons, these numbers are fictive., various costs are associated with each operator 

competence level. Therefore, we expect that, from a cost perspective, a workforce allocation policy using 

full flexible operators will not always outperform other workforce allocation policies using less flexible 

operators. To verify our expectations, research question 3 is established to explore which workforce 

allocation policy results in the best service level performance for a certain cost factor: 

3. Which workforce allocation policy results in the best service level performance given the operational 

workforce costs? 

In this study, five different workforce allocation policies are modeled and analyzed (Table 10Error! 

Reference source not found.). The first three models differ from one another in terms of their workforce 

flexibility. Since systems with full flexible workforce outperform systems with less flexible workforce (Hopp 

& Spearman, 2011; Nahmias & Cheng, 1993), the fourth model is established to obtain insights about how 

current equipment levels limit the throughput rate. Last, model 5 is based on the Eindhoven Planning 

Framework, which decomposes the current system in production unit in order to reduce system complexity 

(Bertrand et al., 1998). In this model, cross-trained workers are allowed to perform activities of other 

competence levels (i.e. partially cross-trained). We refer to Section 5.2 in which a detailed description is 

provided about how these five workforce allocation policies are modeled. 

Table 10: Workforce allocation policies and their characteristics 

 
Apart from the mechanisms provided to control the cycle time, the last research question is established to 

explore how lead times can be controlled such that a 98% service level target can be met. Since PLVS is able 

to discuss start and end dates for customer orders regarding the standard demand type, it is expected that 

there exists a lead time control rule that satisfies a 98% service level and decreases current average lead 

times. As such, research question 4 is established to design such a lead time control rule:  

No Partial Full
Current 

situation
Full

Current 

situation

3 production 

units

Policy 1 (NOCTW) X X X

Policy 2 (PACTW) X X X

Policy 3 (FUCTW) X X X

Policy 4 (FUCTWAE) X X X

Policy 5 (3PU) X X X

Workforce flexibility [cross-training] Overhaul processEquipment flexibility
Workforce allocation 

policy
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4. How to design a lead time control rule that results in a 98% service level performance, while maintaining 

current average lead times? 

Research question 4 aims to determine a deterministic lead time control rule. This deterministic lead time 

control rule will be based on the approach introduced by Bertrand et al. (1998) and Hopp and Spearman 

(2011), which is described in Section 2.2. 

4.2 Research Approach 
According to Law and Kelton (2015), a system can be studied in various ways (Figure 14). In this study, 

simulation will be used to experiment how the various sequencing rules, operator allocation methods and 

lead time control rules perform. Simulation is selected, because of the low costs involved with designing a 

simulation model and the fact that literature is available to build a mathematical model (e.g. factory physics, 

Law and Kelton, Silver & Pyke). Furthermore, simulation is preferred over an analytical solution, because of 

the model complexity (Law & Kelton, 2015). This is in line with Nahmias and Cheng (1993), who claim that 

complex models has to be studied using simulation. In this study, simulation is defined as the numerical 

approach to assess how the inputs in question affect the output performance metrics (Law & Kelton, 2015). 

 

Figure 14: Ways to study a system according to Law and Kelton (2015, P.4) 

According to Law and Kelton (2015), simulation models can be classified along three different dimensions. 

Without going into details, the simulation model build in this study is discrete, dynamic and stochastic and 

is denoted as discrete-event simulation. We refer to page 6 of Law and Kelton (2015) for a detailed 

description about discrete-event simulation models.  

Simulation models 

Now that simulation is chosen as the appropriate research approach, simulation models have to be 

designed for each proposed solution design individually. Furthermore, since data regarding a regular 

demand period and a TAR demand period is gathered (Section 3.1.2), we aimed to study the research 

questions for each demand period individually. This indicates that the total number of simulation models 

that will be designed equals at least 40 (i.e. two sequencing rules, five workforce allocation policies, at least 

two lead time control rules and two demand periods). Since 40 simulation models are inappropriate from 
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a time perspective, we have limited the number of simulation models. The procedure how the number of 

simulation models are limited is described in the next paragraph. 

The decisions made are mainly based on the results of previous research question. In short, we have 

designed ten different simulation models in which the two sequencing rules and the five workforce 

allocation policies were designed during a regular demand period using lead times derived from the regular 

demand case. Using these results (Figure 15), it is expected that EDD also outperforms FCFS during TAR 

demand periods. This is in line with literature, since EDD is aimed to reduce due date related objectives 

(Pinedo, 2005). 

Next, simulation models SM11-SM15 are added to visualize how the workforce allocation policy affects the 

service levels during TAR demand periods. In here, the EDD sequencing rule is applied. Based on the results 

(Figure 16, Figure 17, Figure 18), it is shown that lead times regarding the regular demand arrivals cause 

problems in terms of the average service level. Moreover, a 98% service level target regarding the TAR 

demand arrivals can be achieved for most cost factors. As such, we have limited the number of simulation 

models by establishing a lead time control rule that results in a 98% service level performance and 

decreases the current average lead time. This lead time control rule is established for a model in which a 

partially cross-trained workforce policy (PACTW) is applied and jobs are scheduled according to the FCFS 

sequencing rule. A PACTW model is selected because it can be implemented directly (no other workforce 

types are required). The FCFS sequencing rule is selected, because this rule minimizes the average cycle 

time variance (Nahmias & Cheng, 1993). Table 11 provides an overview of all 17 simulation models 

designed in this study. 

Table 11: Overview of all simulation models involved 

 
4.3 Simulation Scope 
Section 4.3 discusses 5 aspects to specify the research boundaries. 

The first boundary relates to the facility that will be analyzed. Since shop floor control systems deal with 

the control of one operation, it is expected that the shop floor control system can be designed for one of 

the facilities within PLVS and that the provided recommendations can serve as a starting point for the shop 

floor control design of other MDs. Table 3 shows the average monthly demand for each facility based on 

data from 1 January 2014 till August 2016. Since Facility B consists of the highest sales, it is expected that 

changing the shop floor control system for this facility will be most beneficial for PLVS. As such, data 

regarding Facility B will be used to design the operations planning and control system for PLVS. 

Sequencing rule

Workforce flexibility

Lead Time
Demand 

period

From data Regular SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10

From data TAR SM11 SM12 SM13 SM14 SM15

Decision variable Regular
SM16 & 

SM17

Decision variable TAR

FCFS EDD

3PUFUCTWAEFUCTWPACTWNOCTW3PUFUCTWAEFUCTWPACTWNOCTW
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Since all three operations are managed without concerning input about the shop floor control problem of 

other facilities, it is expected that the shop floor control system can be designed for one facility and that 

the provided recommendations can serve as a starting point for the design of other shop floor control 

systems within a MD. Table 3 contains the average monthly demand for each facility based on data from 1 

January 2014 till August 2016. The product group safety valves is selected for two reasons. First, as 

visualized in Table 3, the sales volumes regarding the safety valves are significantly higher than the other 

product groups. Second, as explained in Appendix A.2, sufficient additional data is only collected for the 

product group safety valves. This data is required to design a simulation model. As such, the other two 

product groups cannot be analyzed by a simulation approach using the current data. 

Third, the research is further scoped regarding the specific product types. As mentioned in Section 3.2, 

PLVS does not record data about process characteristics such as processing time or routings. This indicates 

that data needs to be gathered first. Since PLVS distinguishes over 30 different safety valve types (SABIC 

Europe, 2009), a selection is made based on the valve sizes (i.e. DN-size). As explained in Section 3.1, a 

valve’s DN-size is the main factor which influences the processing times. In consultation with PLVS 

management and based on data analysis, it is chosen to gather data regarding the product types DN-25, 

DN-50 and DN-80, since these valve sizes cumulatively account for 84% of the total sales volume (Table 4). 

We furthermore differentiate between periods in which TARs are executed and regular demand periods. 

As such, regular demand periods incorporate TALs, emergency orders and service contract demands. This 

is valid by assuming that high order sizes in the regular demand model represent the TALs and small order 

sizes with short lead times relate to emergency orders.  

Finally, we only consider the shop floor control problem. This indicates that the order acceptance function 

as executed by planners is out of scope. The lead time control rule which is discussed in research question 

4 is meant to specify a lead time at the moment a customer order arrives at the PLVS facility. 
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5 Models and Cases 
In this Section, models are described that are used in this study to evaluate how workload can be managed 

in the MD. First, Section 5.1 describes the general model logic used within each alternative model. Next, 

Section 5.2 describes the five alternative models that are established based on literature. Last, Section 5.3 

introduces the cases that will be analyzed. 

5.1 Basic Simulation Model 
This section explains how the MD is designed in the simulation model and is used as the foundation within 

each of the alternative models. In here, the general system variables, model description, model 

assumptions, control mechanisms are described. Finally, the model is verified and validated to assess how 

representative the model is. We refer to Appendix E.1 in which all variables are explained for this study. 

5.1.1 Model description 

The valve overhaul production system consists of a network of 20 different processes, 𝑝𝑟 = {1,2,… ,20}, 

through which jobs are processed. A job, 𝑗 ∈ 𝐽, always starts at process 1 and is successfully overhauled as 

soon as the job finishes process 20. Each job is of job type 𝑑 = {1,2,3} with probabilities 0.681, 0.203 and 

0.116 (Appendix B.1). These job types represent the job types DN-25, DN-50, and DN-80, respectively. 

A job is in the system at the moment a customer order 𝑐𝑜 ∈ 𝐶𝑂 arrives at the system. Customer orders 

arrive with interarrival times 𝜏𝑐𝑜,𝑐𝑜+1
𝑑𝑡  and consist of an order size 𝑄𝑐𝑜

𝑑𝑡 which distributions depend on the 

demand type 𝑑𝑡 = {1,2}. Moreover, for each job that arrives within customer order 𝑐𝑜, 𝑗 ∈ 𝐽𝑐𝑜, a lead time 

𝐿𝑇𝑗
𝑑𝑡 is sampled from a distribution which also depends on its demand type 𝑑𝑡. We refer to Section 5.3 in 

which the demand types are explained. 

Once a job arrives at the system, it starts its overhaul process at process one and continuous the overhaul 

process by moving from one process to another until the job departs the system as soon as process 20 is 

finished. Based on process mining (Appendix B.3), it is known that jobs are not faced with fixed routings. As 

such, an algorithm is developed to determine a jobs next process (Appendix E.4).  

In general, a job moves from process 𝑝𝑟 ∈ 𝑃𝑅 to process 𝑝𝑟 + 1 at rate 𝑟𝑝𝑟+1. As such, the relative number 

of jobs that are served at a particular process, 𝑋̅𝑝𝑟, approaches 𝑟𝑝𝑟. However, two main exceptions have to 

be addressed. First, inspection (process 7) may conclude that spare parts have to be ordered before the 

job can be further processed. Therefore the job is put on hold with rate 𝑟𝑂𝐻. Second, after the job is tested 

(process 16), jobs may be sent back for rework activities with probability 𝑟𝑅𝑒𝑤. Jobs that are faced with 

rework activities always first follow the same sequence of processes 𝑝𝑟 ∈ 𝑃𝑅𝑅𝑒𝑤, after which the job 

returns to the normal procedure again. Table 12 shows the rates and the associated confidence interval 

that are included in the model. Appendix B.3 explains the procedure about how these rates are obtained. 
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Table 12: Processing rates and confidence intervals for each of the 20 processes involved in the valve overhaul production process 
and the relative probability that rework occurs or jobs are put on hold. 

𝒑𝒓 Sample size 𝒏𝒑𝒓 𝒓𝒑𝒓 
Normally  
approached? 

𝒓𝒑𝒓 ± 𝟏. 𝟗𝟔√
𝒓𝒑𝒓(𝟏 − 𝒓𝒑𝒓)

𝒏𝒑𝒓
 

1 87 1.00 No N.A. 

2 87 0.83 Yes 0.83±0.08 

3 87 1.00 No N.A. 

4 87 0.89 Yes 0.89±0.08 

5 87 0.17 Yes 0.17±0.08 

6 87 0.92 Yes 0.92±0.06 

7 87 1.00 No N.A. 

8 87 0.20 Yes 0.20±0.08 

9 65.8 0.82 Yes 0.82±0.09 

10 65.8 0.17 Yes 0.17±0.09 

11 87 0.03 No N.A. 

12 87 0.52 Yes 0.52±0.11 

13 87 1.00 No N.A. 

14 87 1.00 No N.A. 

15 87 0.08 Yes 0.08±0.06 

16 87 1.00 No N.A. 

17 87 0.48 Yes 0.048±0.11 

18 87 0.22 Yes 0.22±0.09 

19 87 0.52 Yes 0.52±0.11 

20 87 1.00 No N.A. 

On hold N.A. 𝑟𝑂𝐻 = 0.03 N.A. N.A. 

Rework 87 𝑟𝑅𝑒𝑤 = 0.02 No N.A. 

 

Each process 𝑝𝑟 ∈ 𝑃𝑅𝑠𝑘 requires an operator 𝑜 ∈ 𝑂𝑠𝑘 who is skilled to execute the process, and a 

corresponding machine 𝑚𝑎 ∈ 𝑀𝐴𝑘. The model recognizes 7 different machine types 𝑘 = {1,2,… ,7}, which 

are related to workbenches, test machines, cleaning cabins, blasting machines, patching machines, the 

conserving installation and the conserving wall, respectively. Each machine type 𝑀𝐴𝑘 has a finite number 

of machines. Besides the machines, the system distinguishes 4 operator competence levels. These 

competence levels are A, B, C and D and mathematically denoted by 𝑠𝑘 = {𝐴, 𝐵, 𝐶, 𝐷}. Additionally, the 

processes 𝑝𝑟 ∈ 𝑃𝑅 are also divided into subsets using these four competence levels, such that 

𝑃(𝑝𝑟 ∈ 𝑃𝑅|𝑝𝑟 ∈ 𝑃𝑅𝑠𝑘) = 1. Which operator type is allowed to execute a particular process type depends 

on the model considered. Whenever an operator type is selected, we assume that idle operators from this 

particular operator type are scheduled according to a FCFS policy. This sequencing rule balances the 

utilization rate between operators of a particular operator type. Note that none of the operators in the 
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system is allowed to execute process 8, which means that process 8 is executed through a different 

department within the company under analysis. 

If a job arrives at process 𝑝𝑟 ∈ 𝑃𝑅 and a competent operator is free and a machine idle, the job is 

processed. The required processing time 𝑝𝑡𝑗,𝑑,𝑝𝑟 is a BetaPERT IID random variable with input parameters 

𝑎𝑑,𝑝𝑟, 𝑚𝑙𝑑,𝑝𝑟, 𝑏𝑑,𝑝𝑟 for the minimum, most-likely and the maximum processing times, respectively (see 

Appendix B.2 how this theoretical distribution is determined). Table 13 shows the mean and standard 

deviation for each process 𝑝𝑟 and job type 𝑑, which are independent from whether or not a job is faced 

with rework. If no competent operator is free, the job joins the list of jobs waiting for this operator type. 

On the other hand, in case an operator is free but no machine is idle, the job and the operator together 

joins the queue of the particular process.  

Table 13: Mean and standard deviation for the input parameters regarding the processing times per process 𝒑𝒓 and job type 𝒅. 

 Job type 𝒅 = 𝟏 Job type 𝒅 = 𝟐 Job type 𝒅 = 𝟑 

𝒑𝒓 𝝁𝟏,𝒑𝒓 𝝈𝟏,𝒑𝒓 𝝁𝟐,𝒑𝒓 𝝈𝟐,𝒑𝒓 𝝁𝟑,𝒑𝒓 𝝈𝟑,𝒑𝒓 

1 3.00 0.00 3.00 0.00 3.00 0.00 

2 10.34 1.77 12.46 2.13 14.54 2.08 

3 15.83 2.14 19.39 2.42 22.24 2.63 

4 13.75 2.29 19.17 3.06 21.67 2.14 

5 9.17 0.83 9.17 0.83 9.17 0.83 

6 13.79 1.83 17.67 2.00 17.02 1.79 

7 10.19 1.76 11.72 1.86 11.97 1.72 

8 N.A. N.A. N.A. N.A. N.A. N.A. 

9 13.02 2.40 13.75 2.36 15.48 2.38 

10 18.71 2.29 18.60 1.67 17.78 1.67 

11 18.71 2.29 18.60 1.67 17.78 1.67 

12 11.67 2.08 15.58 2.62 13.92 2.26 

13 8.69 1.31 8.27 1.17 9.05 1.17 

14 15.50 2.12 19.33 1.94 24.04 2.37 

15 8.21 1.17 8.21 1.17 8.21 1.17 

16 18.27 2.33 21.27 2.33 22.33 2.33 

17 10.72 1.72 11.53 2.00 13.67 1.93 

18 15.33 1.75 17.50 1.67 16.00 1.67 

19 14.17 0.83 14.17 0.83 19.17 0.83 

20 9.62 1.38 10.65 1.27 11.89 1.48 

 

Sometimes, a job is not sent to a process 𝑝𝑟 ∈ 𝑃𝑅𝐷. That is, a job requires process 8 or is put on hold due 

to the absence of materials. In both cases, the processing times 𝑝𝑡𝑗
𝑀𝑀, 𝑝𝑡𝑗

𝑂𝐻 for process 8 (i.e. mechanical 

machining) and on hold equal exactly 1 day (i.e. 480 minutes). 
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5.1.2 Assumptions 

Table 14 describes the general assumptions that are used in each model. The assumptions are divided into 

4 categories, which are jobs, operators, processes and machines. 

Table 14: Overview of the assumptions made in the simulation model. These assumption are decomposed into four categories, which 
are jobs, operator, processes and machines. 

Notation Assumption 

J1 Jobs always finish the overhaul process. As such, no escalation procedure exists. 
J2 All incoming customer orders are accepted. 
O1 A job can be processed only by one operator at the same time. 
O2 An operator is 100% effective, which means an operator is never sick, in meetings, etc. 
O3 We assume no processing time loss if processes are unfinished due to breaks or end of 

working days 
O4 All operators contain the same work pace, i.e. processing times are independent from the 

operators. 
O5 1 operator accounts for 1 FTE. 
O6 Operators work 8 hours a day, 5 days a week during weekdays. As such, no overtime or 

weekend time is included in the model. 
O7 Operators within each operator competence level are scheduled according to a FCFS policy 
P1 The processing time for mechanical machining activities (process 8) is deterministic and 

equals 8 hours. 
P2 The time a job is put on hold due to the absence of spare parts is deterministic and equals 8 

hours. 
P3 Transportation times between processes are not modeled and are assumed to be included 

in the processing times.  
P4 A job is faced with rework activities only once per overhaul. 
P5 When a job requires rework, the processes and the routing in which the processes are 

executed are fixed.  
P6 If a job needs to be checked by a contractor through an acceptance test (process 16), this 

test will be executed immediately after testing (process 15) is performed. As such, we 
assume that the contractor is at the facility and we expect no cycle time loss. 

M1 Machines are 100% effective, which means no break downs occur. 
M2 Machines only process jobs that are included in the scope. As such, no capacity is reserved 

to process jobs from other product types. 

5.1.3 Control Mechanisms 

This section describes the control mechanisms that are incorporated within each model. The control 

mechanisms that are designed for each model specifically are explained in Section 5.2.  

Release method: customer order arrival 

All jobs from a customer order arrival are always immediately released to the production area. The order 

in which jobs are processed depends on the sequencing rule, which is an input parameter to the model. A 

job is processed in case an operator who is competent and allowed to start the overhaul process is free. 

Whether an operator is allowed to start the valve overhaul process depends on the model type. If no 

operator who is allowed to start the valve overhaul process is free, the job joins the queue of jobs waiting 

to start the overhaul process. For simplicity, this queue is henceforth called the start queue 𝑄𝑢𝑒𝑢𝑒𝑠𝑡𝑎𝑟𝑡.  
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Release method: spare parts arrived or mechanical machining activities are successfully performed 

Jobs that were put on hold due to the unavailability of spare parts or have left the production department 

for mechanical machining activities immediately return into the production system as soon as the spare 

parts are delivered or the mechanical machining activities have been completed successfully. If an operator 

is free who is allowed to fulfill the job’s next process, the job is allocated to this operator. On the other 

hand, if no operator is free to execute the next process, the job joins the queue of the operator competence 

level 𝑄𝑢𝑒𝑢𝑒𝑠𝑘 that belongs to the minimum operator competence level class of process 𝑝𝑟 ∈ 𝑃𝑅𝑠𝑘. 

Control rule: next job scheduled from waiting for a machine queue 

A job which moves from process 𝑝𝑟 = {1,2,… , 𝑝𝑟̃ − 1} to a next process, 𝑝𝑟 + 𝑖 ∈ 𝑃𝑅 for 𝑝𝑟 + 𝑖 ≠ 𝑝𝑟, 

may be executed on the same machine type, i.e. 𝑝𝑟 ∈ 𝑃𝑅𝑘 ∧ 𝑝𝑟 + 𝑖 ∈ 𝑃𝑅𝑘. If an operator is available to 

execute this next process 𝑝𝑟 + 𝑖, the job is processed on the same machine. On the contrary, if a job’s next 

process is executed on a different machine type or no operator is available to execute the next process, the 

machine becomes idle. Then, the following algorithm is applied: 

1. IF 𝑄𝑢𝑒𝑢𝑒𝑘 > 0, for 𝑘 = {1,2,… , 𝑘̃} THEN machine starts processing the next job in line. Which job 

is scheduled next depends on the sequencing rule applied in the model. 

2. ELSE machine becomes idle. 

5.1.4 Model Validation 

The most definitive test of a simulation model’s validity is to establish that the outputs obtained closely 

resemble the outcomes that would be expected from the actual system (Law & Kelton, 2015). As such, the 

model is validated which is done through hypothesis tests on the mean total processing times per job type 

𝑑. This statistical test is chosen since the expected mean total processing times per job type are the only 

parameters which are known by PLVS. These parameter values contain the total processing times for all 

processes except pretesting (process 2), mechanical machining (process 8) and constructing an identity tag 

(process 15) (SABIC Europe, 2009). Furthermore, these mean total processing times are calculated without 

concerning about time losses due to e.g. queue time. As such, the simulation model is designed concerning 

infinity many resources and operators to be fully cross-trained. In addition, the time required for process 

2, 8, 15 and waiting times due to spare parts that are out of scope were removed from the model.  

The hypotheses test on the mean is constructed as follows. For each job type 𝑑, 25 replications (𝑛 = 25) 

are simulated in which 𝑚 jobs (𝑚 ≈ 7,750) per replication are processed. Then, for each replication 𝑟𝑒𝑝𝑙 =

{1,2,… , 𝑛}, the mean total processing time 𝑋𝑟𝑒𝑝𝑙,𝑑 is calculated for each job type 𝑑. These mean total 

processing time outcomes are IID observations and can be assumed to be normally distributed (Law & 

Kelton, 2015). The obtained values are then used to calculate the sample mean total processing time 

𝑋̅𝑑(𝑛), the sample variance 𝑆𝑑
2(𝑛) and the test statistic 𝑡𝑛

𝑑, which are calculated according to the formulas 

provided in Law and Kelton (2015). These parameters are used to test the hypothesis on the mean, which 

is defined as: 

{
𝐼𝑓 |𝑡𝑛

𝑑| > 𝑡𝑛−1,1−𝛼/2, 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0: 𝜇
𝑑 = 𝜇0

𝑑               

𝐼𝑓 |𝑡𝑛
𝑑| > 𝑡𝑛−1,1−𝛼/2, 𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0: 𝜇

𝑑 = 𝜇0
𝑑
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Where all 𝜇0
𝑑 are fixed, obtained from PLVS and hypothesized values for the 𝜇𝑑s. The 𝜇𝑑s are estimated 

and replaced by the unbiased estimators 𝑋̅𝑑(𝑛) (Law & Kelton, 2015). 

Table 15 shows the results of the hypothesis tests. Since for all 𝑑 ∈ 𝐷 the test statics |𝑡𝑛
𝑑| exceeds the cutoff 

score 𝑡𝑛−1,1−𝛼/2 = 2.064, we have to reject all null hypotheses. Rejecting the null hypotheses indicate that 

the proposed simulation model does not represent the reality for each of the job types. Therefore, one 

normally has to design a different simulation model. However, the proposed simulation model design is 

still used as a basis to analyze alternative models, because of three reasons. First, the mean total processing 

times are based on time studies which are executed before 2010. It is expected that some of the process 

times measured are outdated due to investments in new machine types and/or changes in the procedures 

which are for example caused by new technologies (e.g. test reports are constructed digitally instead of 

manually). Second, as mentioned in Section 3.1, the mean total processing times available for operators 

contain only a proportion of the total processing times measured by the time motion study from SABIC 

Europe (2009), which is aimed to stimulate operator’s work pace. It is expected that these proportions do 

not necessarily represent reality. Last, since the absolute time difference between the 𝑋̅𝑑(𝑛) and 𝜇0
𝑑 for all 

𝑑 ∈ 𝐷 are small and the fact that processing times per process individually were not available from data, 

PLVS’ management is satisfied with the mean total processing times obtained from the simulation model. 

Based on these reasons, it is decided to use the simulation model as a basis to compare alternative models 

with. 

Table 15: Results of the hypothesis tests on the mean total processing times with the null-hypothesis: 𝑯𝟎: 𝝁
𝒅 = 𝝁𝟎

𝒅 

Job type 𝒅 𝝁𝟎
𝒅 𝑿̅𝒅(𝒏) 𝑺𝒅

𝟐(𝒏) 𝒕𝒏
𝒅 𝒕𝒏−𝟏,𝟏−𝜶/𝟐 

1 151.2 145.9 0.042 129.6 2.064 

2 159.6 170.5 0.050 243.8 2.064 

3 180.6 186.9 0.052 139.0 2.064 

5.2 Alternative Models 
As mentioned in Section 3.1.1, MD’s demand pattern highly fluctuates due to the maintenance strategies 

applied by customers in the Gas and Oil industry. Since we cannot control the customer’s strategy, models 

have to be developed that account for these demand fluctuations. Literature has shown that one who 

wants to stabilize cycle times have to keep the throughput rate proportionally to the WIP levels (Little, 

1961). The effective throughput rate, however, is often constrained by capacity restriction in terms of 

equipment or workforce (Hopp & Spearman, 2011). Since the MD under analysis contains much more 

equipment than workforce, it is expected that workforce limits the effective throughput rate. In such 

systems, cross-trained workers can significantly increase the effective throughput rates without increasing 

equipment or workforce levels (Nahmias & Cheng, 1993). Hence, three models are established which are 

used to evaluate the impact of cross-trained workers in the current situation. In order to be able to verify 

whether equipment constraints the performance output, a fourth model is developed which includes full 

flexibility regarding the equipment. Lastly, a fifth model is developed which relies on the principles of the 

EPF. According to Bertrand et al. (1991), one can deal with complexity by decomposing a complicated 

production system into smaller less complicated production units. As such, the fifth model consists of three 
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production units, in which two production units are within the scope. These five models are successively 

explained in the sections below.  

5.2.1 Workforce Allocation Policy 1: No Cross-Trained Workforce  

Workforce allocation policy 1 is called the no cross-trained workforce (NOCTW) allocation policy. This 

workforce allocation policy allocates operators only to those jobs that need to be processed at a process 

of their competence level (Table 16). Furthermore, the number of machines used in this workforce 

allocation policy equals the number of machines available at the MD under analysis. As such, this model is 

characterized as the least flexible workforce allocation policy of all workforce allocation policies considered. 

The control rules included in this policy are explained below. 

Table 16: Cross diagram regarding the operator competence levels 𝑶𝒔𝒌∀𝒔𝒌 and the process subsets 𝒑𝒓𝒔𝒌∀𝒔𝒌 for model 1: NOCTW. 

 𝒑𝒓 ∈ 𝑷𝑹𝑨 𝒑𝒓 ∈ 𝑷𝑹𝑩 𝒑𝒓 ∈ 𝑷𝑹𝑪 𝒑𝒓 ∈ 𝑷𝑹𝑫 

𝒐 ∈ 𝑶𝑨 X    
𝒐 ∈ 𝑶𝑩  X   
𝒐 ∈ 𝑶𝑪   X  
𝒐 ∈ 𝑶𝑫    X 

 

Control rule: operator’s next task 

Once an operator finishes a job at process 𝑝𝑟, the job moves to the next process 𝑝𝑟 + 𝑖 for 𝑖 =

{1,2,… , 𝑝𝑟 − 𝑖}. If 𝑝𝑟 and 𝑝𝑟 + 𝑖 relate to the same competence level class 𝑠𝑘, that is 𝑝𝑟 ∈ 𝑃𝑅𝑠𝑘 ∧ 𝑝𝑟 +

𝑖 ∈ 𝑃𝑅𝑠𝑘, the same operator executes the job’s next process. On the other hand, an operator who executes 

process 𝑝𝑟 may become free if the next process 𝑝𝑟 + 𝑖 is executed at a different competence level class. 

Then, the algorithm below is used to determine the operator’s next task. This algorithm is furthermore 

used in case an operator finishes the last overhaul process 𝑝𝑟̃. 

1. IF operator 𝑜 ∈ 𝑂𝑠𝑘 AND 𝑄𝑢𝑒𝑢𝑒𝑠𝑘 > 0, for 𝑠𝑘 = {𝐴, 𝐵, 𝐶, 𝐷} THEN operator moves to the next job. 

Which job is picked depends on the sequencing rule that is applied in the policy. 

2. ELSEIF operator 𝑜 ∈ 𝑂𝐴 AND 𝑄𝑢𝑒𝑢𝑒𝐶𝑊 > 0 THEN operator moves to a job which has to start the 

overhaul process from the beginning. Which job is picked depends on the sequencing rule that is 

applied in the policy. 

3. ELSE operator becomes free. 

5.2.2 Workforce Allocation Policy 2: Partially Cross-Trained Workforce  

According to Nahmias and Cheng (1993), partially cross-trained workers can significantly increase the 

effective throughput rates without increasing equipment or workforce levels. As such, workforce allocation 

policy 2: partially cross-trained workforce (PACTW) is established in which workforce is allowed to fulfill 

processes of a different operator competence level. Table 17 visualizes which operator competence level 

is allowed to execute which process subsets. The operator control rules are explained below. 

Table 17: Cross diagram regarding the operator competence level 𝑶𝒔𝒌∀𝒔𝒌 and the process subsets 𝑷𝑹𝒔𝒌∀𝒔𝒌  for model 2: PACTW. 

 𝒑𝒓 ∈ 𝑷𝑹𝑨 𝒑𝒓 ∈ 𝑷𝑹𝑩 𝒑𝒓 ∈ 𝑷𝑹𝑪 𝒑𝒓 ∈ 𝑷𝑹𝑫 
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𝒐 ∈ 𝑶𝑨 X    
𝒐 ∈ 𝑶𝑩 X X   
𝒐 ∈ 𝑶𝑪 X X X  
𝒐 ∈ 𝑶𝑫 X   X 

 

Control rule: Customer order arrival 

As mentioned in Section 3.1, each job from a customer order arrival is released immediately to the 

production area. In workforce allocation policy 2, which operator is allocated to the job depends on the 

following algorithm: 

1. IF 𝑂𝐵𝑈𝑆𝑌𝐴(𝑡) < #𝑂𝐴 THEN an operator 𝑜 ∈ 𝑂𝐴starts processing the first activity of this job 

2. ELSEIF 𝑂𝐵𝑈𝑆𝑌𝐵(𝑡) < #𝑂𝐵 THEN an operator 𝑜 ∈ 𝑂𝐵 starts processing the first activity of this job. 

3. ELSEIF 𝑂𝐵𝑈𝑆𝑌𝐷(𝑡) < #𝑂𝐷 THEN an operator 𝑜 ∈ 𝑂𝐷starts processing the first activity of this job. 

4. ELSEIF 𝑂𝐵𝑈𝑆𝑌𝐶(𝑡) < #𝑂𝐶  THEN an operator 𝑜 ∈ 𝑂𝐶  starts processing the first activity of this job. 

5. ELSE all operators are busy and the job joins the queue of jobs waiting to start the overhaul process, 

𝑄𝑢𝑒𝑢𝑒𝐶𝑊. 

Control rule: operator priority change 

Since processes regarding a particular competence level are spread throughout the entire valve overhaul 

process, a control rule is specified to evaluate whether an operator should change to a different job. This 

function is invoked in case an operator has executed a process which does not relate to its own competence 

level. Furthermore, in case the next process 𝑝𝑟 + 𝑖 is of a lower competence level, an algorithm is 

developed which first checks whether a job is waiting in the queue for the particular competence level of 

the operator. Below the algorithms are introduced for both the priority evaluation after a process is finished 

and after the next process is determined for the job. 

Algorithm to evaluate an operator’s priority after a job has finished process 𝑝𝑟. 

1. IF 𝑜 ∈ 𝑂𝑠𝑘 AND 𝑝𝑟 ∉ 𝑃𝑅𝑠𝑘 THEN 

 IF 𝑄𝑢𝑒𝑢𝑒𝑠𝑘 > 0 THEN the operator start processing the next job waiting in 𝑄𝑢𝑒𝑢𝑒𝑠𝑘. 

 ELSEIF 𝑜 ∈ 𝑂𝐷 AND 𝑄𝑢𝑒𝑢𝑒𝐴 > 0 THEN the operator starts processing the next job waiting 

in 𝑄𝑢𝑒𝑢𝑒𝐴. 

 ELSEIF 𝑜 ∈ 𝑂𝐶  AND 𝑝𝑟 ∈ 𝑃𝑅𝐴 AND 𝑄𝑢𝑒𝑢𝑒𝐵 > 0 THEN the operator starts processing the 

next job waiting in 𝑄𝑢𝑒𝑢𝑒𝐵. 

2. Else the operator remain at the job until the job’s next activity 𝑝𝑟 + 𝑖 is determined. 

 

 

Algorithm to evaluate an operator’s priority after a job’s next process 𝑝𝑟 + 𝑖 is determined. 
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1. IF 𝑝𝑟 + 𝑖 ∈ 𝑃𝑅𝐴 AND 𝑜 ∈ 𝑂𝐷 AND 𝑄𝑢𝑒𝑢𝑒𝐷 > 0 THEN operator starts processing a job waiting in 

𝑄𝑢𝑒𝑢𝑒𝐷 > 0. 

2. ELSEIF 𝑝𝑟 + 𝑖 ∈ 𝑃𝑅𝐴 AND 𝑜 ∈ 𝑂𝐵 AND 𝑄𝑢𝑒𝑢𝑒𝐵 > 0 THEN the operator starts processing a job 

waiting in 𝑄𝑢𝑒𝑢𝑒𝐵 > 0. 

3. ELSEIF 𝑝𝑟 + 𝑖 ∈ 𝑃𝑅𝐵 AND 𝑜 ∈ 𝑂𝐶  AND 𝑄𝑢𝑒𝑢𝑒𝐶 > 0 THEN the operator starts processing a job 

waiting in 𝑄𝑢𝑒𝑢𝑒𝐶 > 0. 

4. ELSEIF 𝑝𝑟 + 𝑖 ∈ 𝑃𝑅𝐴 AND 𝑜 ∈ 𝑂𝐶  AND 𝑄𝑢𝑒𝑢𝑒𝐶 > 0 THEN the operator starts processing a job 

waiting in 𝑄𝑢𝑒𝑢𝑒𝐶 > 0. 

5. ELSE the current operator executes the next process 𝑝𝑟 + 𝑖 

Control rule: operator’s next task 

In case an operator is not allowed to execute a job’s next process or the job has successfully finished the 

overhaul process, the operator is freed in case no jobs are available that can be processed by this operator. 

The algorithm to determine whether an operator becomes free is explained as follows: 

1. IF operator 𝑜 ∈ 𝑂𝑠𝑘 AND 𝑄𝑢𝑒𝑢𝑒𝑠𝑘 > 0, for 𝑠𝑘 = {𝐴, 𝐵, 𝐶, 𝐷} THEN the operator is allocated to a 

job waiting in 𝑄𝑢𝑒𝑢𝑒𝑠𝑘. Which job is picked depends on the sequencing rule that is applied in the 

model. 

2. ELSEIF operator 𝑜 ∈ 𝑂𝐶  OR 𝑜 ∈ 𝑂𝐵 AND 𝑄𝑢𝑒𝑢𝑒𝑠𝑘−1 > 0 THEN the operator is allocated to a job 

waiting in 𝑄𝑢𝑒𝑢𝑒𝑠𝑘−1. Which job is picked depends on the sequencing rule that is applied in the 

model. 

3. ELSEIF operator 𝑜 ∈ 𝑂𝐶  AND 𝑄𝑢𝑒𝑢𝑒𝐴 > 0 THEN the operator is allocated to a job waiting in 

𝑄𝑢𝑒𝑢𝑒𝐴. Which job is picked depends on the sequencing rule that is applied in the model. 

4. ELSEIF operator 𝑜 ∈ 𝑂𝐷 AND 𝑄𝑢𝑒𝑢𝑒𝐴 > 0 THEN the operator is allocated to a job waiting in 

𝑄𝑢𝑒𝑢𝑒𝐴. 

5. ELSEIF 𝑄𝑢𝑒𝑢𝑒𝑠𝑡𝑎𝑟𝑡 > 0 THEN the operator is allocated to a job waiting in 𝑄𝑢𝑒𝑢𝑒𝑠𝑡𝑎𝑟𝑡. 

6. ELSE operator becomes free. 

5.2.3 Workforce Allocation Policy 3: Fully Cross-Trained Workforce  

Although partially cross-trained workforce may already result in near optimal throughput rates, according 

to literature, fully cross-trained workforce (FUCTW) will outperform less cross-trained workforce (Nahmias 

& Cheng, 1993). As such, workforce allocation policy 3 evaluates the system’s performance based on 

operators who are fully cross-trained. In this policy, only one operator type is defined who executes all 

processes from start to finish. Since PLVS’ current workforce level has not yet incorporated operators who 

are fully competent, the current workforce level need to be modified when applying this workforce 

allocation policy. For this reason, the operator skill class 𝑂𝐸 is introduced such that each operator 𝑜 ∈ 𝑂𝐸 

is allowed to execute all processes 𝑝𝑟 ∈ 𝑃𝑅𝐸 = 𝑃𝑅𝐴 ∪ 𝑃𝑅𝐵 ∪ 𝑃𝑅𝐶 ∪ 𝑃𝑅𝐷. Only one control rule is 

determined to specify the prioritization of an operator’s next job once he completes his previous job. 
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Control rule: operator’s next task 

1. IF operator 𝑜 ∈ 𝑂𝐸 AND 𝑄𝑢𝑒𝑢𝑒𝐸 > 0 THEN the operator is allocated to a job waiting in 𝑄𝑢𝑒𝑢𝑒𝐸. 

That is, a job returns from mechanical machining department or spare parts are successfully 

ordered. 

2. ELSEIF 𝑄𝑢𝑒𝑢𝑒𝑠𝑡𝑎𝑟𝑡 > 0 THEN the operator is allocated to a job waiting in 𝑄𝑢𝑒𝑢𝑒𝑠𝑡𝑎𝑟𝑡 to start the 

overhaul process from the beginning. 

3. ELSE operator becomes free. 

5.2.4 Workforce Allocation Policy 4: Fully Cross-Trained Workforce and Ample 

Equipment 

Throughput rates can be constraint by capacity in terms of workforce and equipment (Hopp & Spearman, 

2011). So far, workforce allocation policies 1 to 3 only evaluate the impact of workforce flexibility. 

Workforce allocation policy 4, on the contrary, is similar to workforce allocation policy 3, but includes 

besides fully cross-trained workforce also ample equipment (FUCTWAE). That is, the number of machines 

#𝑀𝐴𝑘 for all 𝑘 ∈ 𝐾 equals the number of operators in the system. As such, jobs and operators will never 

be blocked due to machines that are fully utilized at a particular moment in time. The same control rule is 

used as in workforce allocation policy 3 in case an operator has finished a previous job. 

5.2.5 Workforce Allocation Policy 5: 3 Production Units 

In contrast to the previous workforce allocation policies, workforce allocation policy 5, henceforth called 

the 3PU policy, decomposes the production system into production units (PUs). This policy is proposed, 

because MD’s production complexity can be reduced through decomposing the system into separated 

production units (Bertrand et al., 1998). Bertrand et al. (2016) have identified four reasons to decouple 

processes into production units. When applying these reasons, almost every process has to be decoupled 

into PUs because successive processes are not often not synchronized in either speed, setup or uncertainty. 

Since it is not useful to consider each process separately (Bertrand et al., 2016), it is decided to decompose 

the production system into three PUs. Three PUs are proposed because of the following reasoning. First, a 

production unit is designed for the mechanical machining activities (process 8), since these activities are 

already executed by a different department. Second, in practice and stated in literature as well, the 

overhaul processes can be grouped into cleaning, inspection, reassembling and testing activities. Since a 

job’s content is only known after the inspection activity is executed, it is expected that a PU that includes 

the activities until inspection and a PU which starts their activities after the inspection activity can be 

implemented in practice. As such, the processes within each PU, 𝑝𝑟 ∈ 𝑃𝑅𝑝𝑢 for 𝑝𝑢 = {1,2,3}, is 

mathematically expressed as follows. PU1 contains the processes 𝑃𝑅1 = {1,2,… ,7}, PU2 only contains 

process 8; 𝑃𝑅2 = {8}. Last, PU3 consists of the processes 𝑃𝑅1 = {9,10,… ,20}. 

According to Bertrand et al. (1998), PUs are black boxes that transform input materials into output PU-end 

items without using any information about how the design problem of other PUs is solved (Bertrand et al., 

2016; de Kok & Fransoo, 2003). As such, applying the EPF (i.e. decomposing the production system into 

PUs) results in a specific allocation of available resources. Although the decision variables in this study relate 

to the number of operators per operator type, we still have to adjust the current workforce levels. Namely, 

both production units require at least one operator of competence level 𝐷, which is more than the one 
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operator currently included in the workforce level. Next, machines are divided over the production units as 

follows. All cleaning cabines and blasting machines are allocated to PU1, since none of these machine types 

are required in PU3. Similarly, the lapping machines and conservation equipment are allocated to PU3. The 

test machines and workbenches are divided in the way how operators are divided over the PUs. For 

example, in case the number of operators who are allowed to use the testing machines equals 1 and 2 for 

PU1 and PU3 respectively, then, the testing machines are allocated accordingly. In case the number of 

operators who are able to use the test machines and workbenches exceeds the number of available 

machines in the system, the machines are divided proportionally. 

The control rules applied in the 3PU policy are similar to the control rules applied in the PACTW policy. One 

exception is made, operators can only execute processes in the PU they are assigned to.  

5.3 Cases 
Data from Section 3.1.2 is used to establish the input distributions regarding the interarrival times, lead 

times and customer order sizes for both the regular demand data as well as for the TAR demand data (Table 

18 and Table 19). We refer to Appendix C and Appendix B how these distributions are obtained. Note that 

some distributions are truncated to ensure that observations will not result in an impossible value. That is, 

the minimum and maximum values are finite instead of infinity to ensure that undesired values are 

obtained from the model. Although truncating models will influence the mean and variance of the 

distribution, we mention that the impact regarding the mean is not significant.  

Table 18: Input distributions regarding the regular demand data 

 

Sample 
size 𝒏  Mean(𝒏) 

Best fitted 
distribution P1 P2 P3 Domain Mean 

Inter-
arrival 
times 39 147.59 Exponential λ=147.59   [0,960] ±145 
Lead 
times 36 1106.14 Log-Logistic α=1.3833 

β=531.36
56 

ϒ = 
0.3986 [0,4800] ±950 

Order 
size 41 2.171 

Negative-
Binominal s=1 

p=0.4606
7 ϒ = -1 [0,Inf] 2.171 

 

Table 19: Input distributions regarding the TAR demand data 

 

Sample 
size n  Mean(n) 

Best fitted 
distribution P1 P2 P3 Domain Mean 

Inter-
arrival 
times 36 187.69 Weibull 

α 
=1.3597 β =211.38 

ϒ = -
6.7627 [0,502] ±172 

Lead 
times 181 1421.23 

Empirical  
distribution   [0,4800] 

1421.
23 

Order 
size 36 2.171 

Negative-
Binominal s=1 p=0.20809 ϒ = -1 [0,Inf] 2.171 
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These distributions will be used for the two cases that will be analyzed. Case 1: Regular demand case, 

contains only the distributions provided in Table 18. On the other hand, in the TAR demand case the 

distributions from both datasets are implemented in the simulation models. 
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6 Results 
In Chapter 6, the results regarding research questions 2, 3 and 4 are provided. Research question 1 is not 

included in this section, since the answer to this research question is already provided in Section 5.1.4. This 

section starts with a description about the simulation design (Section 6.1). Subsequently, the results 

regarding the research questions are provided in succession.  

6.1 Simulation Design 
The alternative workforce allocation policies proposed in Section 5.2 are built into the simulation model 

described in Section 5.1. Using these models, simulation experiments are performed to gather results. 

These simulation experiments are based on the guidelines provided in Law and Kelton (2015) and briefly 

described below.  

For each of the replications performed, a warm-up period and simulation length are determined which are 

constructed using Welch’s approach (Law & Kelton, 2015). According to this approach, the warmup period 

regarding the regular demand period is set to 175,200 time units (i.e. 1 year) and 87,600 time units for TAR 

demand periods. Each replication ends at respectively 1,401,600 and 700,800 time units, after which the 

statistics are recorded. We have selected the metric operator’s utilization level to determine whether the 

initial transient period is smoothed out. This metric was chosen over the KPI service level, since service level 

is discrete time statistic which changes each time a job finishes his overhaul. On the other hand, operator 

utilization level is continuous over time.  

Within each simulation experiment, we performed at least 25 replications. A simulation experiment 

incorporated two stopping criteria. First, and most often used, a simulation experiment ended we reached 

an absolute precision for both the average service level and the operator utilization rates less than ±0.002 

with 95% confidence. Second, a maximum number of replications was built in due to memory issues of the 

computer used for the simulation runs. These maximum replication numbers are 65 and 73 for respectively 

the TAR demand periods and the regular demand periods. When all simulation experiments are considered, 

the maximum absolute precision error observed at the 95% confidence level equals ±0.003.  

Last, we want to mention that we have applied common random numbers (CRN) as a variance reduction 

technique. This technique is chosen for two reasons. First, the technique is especially useful when 

comparing two or more models (Law & Kelton, 2015). Second, according to Law and Kelton (2015), CRN is 

the most useful variance reduction technique. However, due to this variance reduction technique, the 

models in Section 6.2 are compared according to the sample-t test statistic since this test statistic allow for 

dependence between observations where other tests do not (Law & Kelton, 2015).  

6.2 Results Research Question 2 
Section 6.2 provides the results regarding research question 2: Which sequencing rule results in the best 

service level performance during regular demand periods? The results regarding the sequencing rules are 

displayed in Figure 15 (a,b,c,d,e) for each of the five models separately. For each sequencing rule, the 

average tardiness, which equals 1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑒𝑣𝑒𝑙, is plotted against the relative costs. The 

relative costs are calculated for each individual experiment by dividing the total hourly costs by the current 

hourly costs. This current hourly cost factor is based on the workforce level currently on the payroll.  
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Since all graphs show that the average tardiness level flattens out as the cost increases, the results are only 

displayed for a particular subset. The domain of these subsets are determined as follow. The minimum cost 

factors are those where the average tardiness level is below 20%, that is, the average service level is higher 

than 80%. The maximum cost factors are those for which the difference between the average tardiness of 

two subsequent cost factors are less than 0.02%. Appendix E.5 contains the results of all simulation 

experiments are displayed including their input variables.  

As displayed in Figure 15 (a,b,c,d,e), the sequencing rule EDD outperforms FCFS for average tardiness levels 

below 20%. This outcome is additionally confirmed by the paired-𝑡 95% confidence interval test statistic 

(Appendix E.4), which allows us to state with 95% reliability that EDD outperforms FCFS for each cost factor 

with average tardiness levels below 20%. 

The results furthermore show that only model 4 can achieve the service level target of 98% (Figure 15d). 

When the fully cross-trained workforce and ample equipment strategy is applied, a minimum relative 

hourly costs of 146.1% will result in an average service level equal to 98.03%. Note that the average 

operator utilization rate regarding this strategy equals 20.55%± 0.10% with 95% confidence interval 

(Appendix E.5).  

Last, model M2 shows that, independent from which sequencing rule applied, which operator type need 

to be hired should be evaluated cautiously. This, because hiring a higher qualified operator (e.g. 

competence level C instead of A) will not automatically result in lower average tardiness levels. Although 

the differences are small, the average tardiness level regarding the associated cost factors 107.4% and 

112.2% are 2.447% and 2.455%, respectively (Appendix E.5). 
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Figure 15a,b,c,d,e: Results regarding the sequencing rules for each of the five models. In here, the average tardiness is plotted against 
the relative costs. 

6.3 Results Research Question 3 
Section 6.3 provides the results regarding research question 3, which is about the model design best 

applicable for the MD under analysis sensitive to the demand type period. The results regarding the regular 
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demand period are described in Section 6.3.1. Subsequently, Section 6.3.2 provides the results with regard 

to the period in which a TAR is scheduled next to the regular demand. 

6.3.1 Model evaluation - regular demand period 

Figure 16 plots the tardiness against the relative cost factors for the five models using their sequencing 

rule which results in the lowest average tardiness levels. Since the models do not provide results for 

similar cost factors, it is hard to state which model is best based on statistics. However, models SM6 and 

SM7 and models SM8 and SM9 provide results for similar cost factors. As such, for these models, a 

paired-𝑡 95% confidence interval test statistic is used to examine if one of these models outperform the 

other one. According to Law and Kelton (2015), the paired-𝑡 95% confidence interval test statistic is used 

to construct a confidence interval, 𝜁 = 𝜇1 − 𝜇2, to test whether one variable differs from the other 

variable with 95% confidence. Table 20 and Table 21 show that with 95% confidence model SM6 is 

outperformed by model SM7 and model SM9 outperforms model SM8 for similar cost factors in terms of 

average service levels, respectively. Furthermore, a different pattern is observed between the two model 

comparison tests. Namely, the observed difference between models SM7 and SM6 is a declining function 

as the costs increases, whereas the observed difference between models SM9 and SM8 seems to be a 

parabolic function. This parabolic pattern might be explained by the fact that the available equipment 

constraint the workforce relatively more for higher costs levels than for lower costs levels. The declining 

function in Table 20 is an argument that the advantages from partially cross-trained workforce decreases 

as the costs increases. Or in different words, as the utilization rate decreases, the advantages in terms of 

service levels from partially cross-trained workforce decreases. Note however that the maximum cost 

factor in Table 20 is lower than in Table 21, which might explain why the pattern in between models SM9 

and SM8 is not observed between models SM7 and SM6.  

Table 20: Results of the paired-t 95% confidence interval test statistic to test whether model 6 or model 2 is superior for certain cost 
factors. 

Costs 𝑺𝑳̅̅̅̅ 𝟔 𝑺𝑳̅̅̅̅ 𝟕 95% CI for 

𝜻 = 𝑺𝑳̅̅̅̅ 𝟕 − 𝑺𝑳̅̅̅̅ 𝟔 

Best Model 

49% 84.3% 92.5% [0.5313, 0.5553] SM7* 

59% 91.2% 95.0% [0.1045, 0.1087] SM7* 

69% 93.1% 96.2% [0.0486, 0.0512] SM7* 

80% 95.4% 96.9% [0.0365, 0.0384] SM7* 

90% 96.5% 97.2% [0.0171, 0.0185] SM7* 

100% 96.7% 97.4% [0.0092, 0.0106] SM7* 

112% 97.5% 97.5% [0.0067, 0.0077] SM7* 
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Table 21: Results of the paired-t 95% confidence interval test statistic to test whether model 8 or model 9 is superior for certain cost 
factors. 

Relative Costs 𝑺𝑳̅̅̅̅ 𝟖 𝑺𝑳̅̅̅̅ 𝟗 95% CI for 

𝜻 = 𝑺𝑳̅̅̅̅ 𝟗 − 𝑺𝑳̅̅̅̅ 𝟖 

Best Model 

37% 68.3% 68.8% [0.0042, 0.0057] SM9* 

49% 90.0% 90.1% [0.0015, 0.0022] SM9* 

61% 94.2% 94.4% [0.0016, 0.0022] SM9* 

73% 95.9% 96.1% [0.0015, 0.0022] SM9* 

85% 96.7% 97.0% [0.0017, 0.0024] SM9* 

97% 97.2% 97.4% [0.002, 0.0026] SM9* 

110% 97.5% 97.7% [0.0019, 0.0025] SM9* 

122% 97.6% 97.9% [0.0022, 0.0029] SM9* 

134% 97.7% 98.0% [0.0022, 0.0027] SM9* 

146% 97.8% 98.0% [0.0023, 0.0028] SM9* 

In Figure 16, the tardiness patterns of each model individually are equivalent to the patterns displayed in 

Figure 15 (a,b,c,d,e), since the graph uses the same data. The results, however, are only displayed for 

tardiness levels below 10%. Figure 16 shows that no particular model performs best in terms of the 

tardiness level for all costs factors. The cut-off point is at 107.4%. For cost factors below 107.4%, the PACTW 

model (SM2) performs best, whereas the FUCTWAE model (SM4) outperforms all other models after this 

cost factor. Although we state that only two models are favorable, note that some costs factors can only 

be obtained by one model. For example, if one wants to apply a model structure which includes 97.4% 

relative costs, the 3PU model (SM10) has to be selected. However, the graph shows that the 3PU model is 

outperformed by all models for tardiness levels below the 5%. That is, for each tardiness level in the 3PU 

model there exists a cost factor in all other models which is lower and results in even lower tardiness levels. 

 

Figure 16: Workforce allocation policy evaluation regarding in the Regular demand case. In here, the models are plotted using the EDD 
sequencing rule. 
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6.3.2 Model evaluation – regular demand and TAR period 

The results regarding the tardiness performance levels during a period in which a TAR is planned while 

regular demand arrives as well are plotted in Figure 17 and Figure 18 concerning TAR demand arrivals and 

the regular demand arrivals respectively. In these figures, the tardiness performance levels are displayed 

against the relative cost factors for all five models. Furthermore, the targeted service level performance is 

included in the figures as well. Figure 17 shows that the tardiness levels are a declining function as the costs 

increase. In addition, at some cost factor, all models achieve a 100% service level performance, i.e. 0% 

tardiness. As such, the maximum tardiness performance target (2%) can be achieved for all model types. 

The associated cost factors at which the model types first achieve the target performance level, however, 

differ per model type. These cost factors are 109.2%, 89.2%, 109.6%, 109.6% and 97.2% for models SM11, 

SM12, SM13, SM14 and SM15 respectively. 

 

Figure 17: Workforce allocation policy evaluation regarding TAR demand arrivals in the TAR demand case. In here, the models are 
plotted using the EDD sequencing rule. 

Next, Figure 17 shows the results of the tardiness performance levels for the regular demand arrivals during 

a TAR demand period. As visualized, the tardiness performance levels are a declining function over the 

costs with some exceptions in between regarding the models SM11 and SM15. In these models, the 

decision which operator type is hired should be made cautiously, since hiring a more expensive operator 

type may not necessarily result in a lower tardiness performance level. 

The Figure furthermore visualizes that only the FUCTWAE model (SM12) achieves the tardiness 

performance level target. SM14 achieves this tardiness performance level target when the hourly wages 

are at least 244% of the current hourly costs.  
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Figure 18: Workforce allocation policy evaluation regarding the regular demand arrivals in the TAR demand case. In here, the models 
are plotted using the EDD sequencing rule. 

When comparing Figure 17 and Figure 18, the following conclusions are drawn. First, for each cost factor 

and for each model type, it is concluded that the average tardiness levels are lower regarding the TAR 

demand arrivals compared to the regular demand arrivals. This might be due to the lower allowance factor 

used for regular demand arrivals than for TAR demand arrivals. Second, the policy which results in the 

lowest average tardiness level for the current cost factor relates to the PACTW model (SM12). The PACTW 

model results in the lowest average tardiness levels for both regular demand arrivals as for TAR demand 

arrivals. Third, based on the models analyzed, no model exists that achieves the tardiness performance 

level target during a TAR demand period for both demand types individually without making any equipment 

investment. This is concluded since only model M5 (FUCTWAE) achieves the service level targets for both 

demand types. 

6.3.3 Discussion regarding demand type sensitivity 

Section 6.3.1 and Section 6.3.2 discussed the results regarding a regular demand period and a TAR demand 

period respectively. The graphs included in these sections show similar declining patterns for each model 

type regarding the tardiness performance level for increasing cost factors. Furthermore, only model M5 

(FUCTWAE) achieves the tardiness performance level target (2%) during both demand periods. As such, 

management is recommended to use the workforce allocation strategy applied in M4. Then, the minimum 

hourly cost factor increases by at least 46% during regular demand periods and by at least 144% TAR 

demand periods. Although these investments in hourly wages are required to ensure the tardiness level 

performance is achieved, the operator utilization rates associated with these cost investments are relatively 

low (20.6% and 35.4%, respectively). This implies that the proposed due dates (i.e. arrival time + throughput 

time) are hard to achieve for higher utilization rates. Since operator utilization rates are often around 80% 
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in production and maintenance industries (Silver et al., 1998), next Section provides results on the lead 

time control rule. 

6.4 Results Research Question 4 
According to Hopp and Spearman (2011, P.332), the lead time control rule that satisfies a particular service 

level is a function of both the mean and standard deviation of the cycle time. If those cycle times (CT) are 

normally distributed, then for a service level (SL) the minimum lead time (LT) equals (Hopp & Spearman, 

2011; Bertrand et al., 1998): 

𝐿𝑇 = 𝐶𝑇 + 𝑧𝑆𝐿 ∗ 𝜎𝐶𝑇 

In here, 𝑧𝑆𝐿 equals the value in the standard normal table for which 𝛷(𝑧𝑆𝐿) = 𝑆𝐿. The term 𝑧𝑆𝐿 ∗ 𝜎𝐶𝑇 is 

called the safety lead time (Hopp & Spearman, 2011). Note that this formula assumes cycle times to be 

normally distributed. Therefore, a K-S goodness of fit test is used to establish whether this assumption is 

valid. As explained in Appendix E.5, based on the K-S test statistic the null-hypothesis: cycle times are 

normally distributed, is rejected (1.242>1.035, at the 𝛼 = 0.01 confidence level). This conclusion remained 

intact after log-normalizing the cycle times. As such, the cycle times are analyzed using its empirical 

distribution.  

Figure 19 depicts the cumulative distribution function (CDF) regarding the cycle times respectively for both 

operator utilization levels 62% and 83% using the PACTW workforce allocation policy (SM16) and a FCFS 

sequencing rule. A FCFS sequencing rule is applied, since this rule minimizes cycle time variances (Nahmias 

& Cheng, 1993). The PACTW workforce allocation policy is selected instead of the NOCTW policy and 3PU 

policy, since this policy requires a minimum number of operators that result in already medium operator 

utilization rates. On the other hand, the PACTW workforce allocation policy is privileged over the FUCTW 

policies, because the operational costs embedded with the PATCW are lower. The cycle times observed 

stems off from 1 simulation run in which 25,000 jobs were overhauled.  
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Figure 19: Empirical CDFs of the cycle times observed for operator utilization levels equal to 62% and 83%. The empirical CDFs are 
based on 25,000 jobs. 

As shown, the minimum values which guarantee a 98% service level target correspond to 833.7 and 2105.4 

minutes respectively for utilization rate levels 62% and 83%. Since these results are obtained from only one 

simulation run, we have validated the results by simulating 73 replications and constructed a 95% CI t-test 

statistic on the mean service level when including a lead time equal to 840 minutes. Then the observed 

average service level is higher than the 98% service level target with approximately 95% confidence, since 

the 95% CI does not contain zero (Appendix E.5). As such with approximately 95% confidence, we conclude 

that PLVS can apply a deterministic lead time control rule approach during regular demand periods which 

reduces the average lead times (840 < 1106.14), increases the operator utilization rates up to a maximum 

of 62% while at the same time a 98% service level target is met. 
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7 Conclusions and Recommendations 
In this section, we answer the main research question which was formulated as follows: 

How to design a shop floor control system for a maintenance depot which minimizes costs, while meeting 

a 98% aggregate service level target? 

The main research question can only be answered by first providing the conclusions regarding the four 

research questions individually. These conclusions are discussed in the four sections below, which finally 

result in a recommendation for MD’s management. The research questions were formulated as follows: 

1. How to design a simulation model which represents the current safety valve overhaul process? 

2. Which sequencing rule results in the best service level performance given the workforce costs during 

regular demand periods? 

3. Which workforce allocation policy results in the best service level performance given the operational 

workforce costs? 

4. How to design a lead time control rule that results in a 98% service level performance, while maintaining 

current average lead times? 

Simulation model 

The simulation model which is designed to reflect the safety valve overhaul process is based on the 

fundamentals of a job shop. As such, we have used the guidelines provided in Law and Kelton (2015) to 

build a discrete event simulation model while using input parameters estimated from practical data. For 

generality, we have applied theoretical input distributions in our simulation models for those input 

distributions which fitted well on the available data. For example when considering the regular demand 

case study, we have applied a negative binominal distribution for the order size and an exponential 

distribution for the interarrival times such that a compound poisson arrival process is modeled. A 

compound poisson arrival process is often observed in practice when orders arrive in batches (Law & 

Kelton, 2015).  

The simulation model is validated in Section 5.1.4. Although the KS-test statistic results in rejecting the null 

hypothesis that the simulation model fits well with the total planned processing times used by PLVS, the 

model fits satisfactory well according to management.  

Sequencing rules 

As shown in Figure 15 (a,b,c,d,e), the sequencing rule EDD results in higher service level performances as 

compared to FCFS during regular demand periods. In addition, EDD significantly outperforms FCFS 

independent from which workforce allocation policy is applied. This result is in line with literature, which 

states that EDD performs better than FCFS regarding due date related objectives for medium to high 

allowance factors (Baker & Bertrand, 1982). Based on these findings, our first recommendation to MD’s 

management is: 
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Workforce allocation policy 

The results in Section 6.3 demonstrate that the only workforce allocation policy which achieves the 98% 

service level target is the FUCTWAE policy. This 98% service level target is first met for associated workforce 

costs levels 146.1% and 243.5% regarding regular demand periods and TAR demand periods, respectively. 

As such, it is concluded that PLVS can only obtain its 98% service level target when investments are made 

in both workforce and equipment. Note however that it might not be necessary to invest in an ample 

equipment production area, i.e. the number of machines per machine type equals the number of operators 

available in the system, to observe the same results as the FUCTWAE model presents. It is expected that 

the maximum number of machines busy for a machine type concerned with low utilization rates may not 

be equal to the number of operators in the system. For example, when implementing this workforce 

allocation policy, management may not have to invest in blasting machines up to the number of operators 

in the system. 

Although this policy is recommended from a service level target point of view, we do not advise 

management to implement the FUCTWAE model into practice. On the one hand, because the 

implementation costs regarding workforce and equipment are expensive. Workforce investments are 

required to have fully cross-trained workforce. This can be obtained by either contracting new fully cross-

trained operators or by training the current workforce level (Hopp & Spearman, 2011). Additionally, when 

considering the case in which the current workforce level is trained towards fully cross-trained operators, 

we do not recommend this FUCTWAE model because of the willingness of operators. Often in practice, the 

best system will not be implemented, but instead a system is implemented that achieves employee’s 

collaboration (Maskin & Sjöström, 2002). As such, from a practical point of view, we recommend 

management to implement a PACTW model (M2), since this model performs best when leaving out of 

picture the models with fully cross-trained workforce. Accordingly, management is advised to reconsider 

the current performance level target, because it is impossible to achieve a 98% service level target based 

on the models provided and the case studies analyzed. 

 

 

R1: Apply the EDD sequencing rule in the production area. This affects two decisions in the current shop 

floor control management. First, whenever an operator becomes idle and jobs are waiting to start the 

overhaul process, then, the operator should pick the job containing the earliest due date next. Second, 

in case a machine type is busy and operators are waiting in queue, whenever such a machine becomes 

idle the job (and operator) which start processing next is the one with the job containing the earliest due 

date. 

R2: Apply a PACTW model. That is, do not allocate operators to specific jobs (FUCTW), but allocate 

operators to tasks they are competent for. In addition, allow operators to execute tasks from other 

operator competent levels whenever they are idled. Note that, this model can only be applied in 

combination with recommendations 4 and 5. 

R3a: Reconsider the desired service level target. 
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Lead time control rule 

The results in Section 6.4 show that a deterministic lead time control rule can be specified during regular 

demand periods which decreases the average lead time experienced by customers by 24.1%, while at the 

same time a 98% service target is met. Moreover, the operator utilization level can be increased from 24% 

to 62%. This indicates that operational workforce costs can be reduced by 61.1% during regular demand 

periods. Note however that reducing the operational workforce level will increase the costs of hiring 

operators during TAR demand periods.  

Although the results are validated, we highly recommend to interpret these results with caution. This, 

because the results are obtained within the parameter settings as provided in case study 1. Since the 

constructed lead time control rule is deterministic, it is not sustainable and robust for environmental 

changes. Although the annual sales volumes are quite stable (Figure 12), a control rule which is not robust 

for future demand changes is undesired (Bertrand et al., 2016). Fortunately, many researchers have already 

studied lead time control rules (e.g. Hopp & Spearman, 2011). We refer to their work if management 

decides to start researching a sustainable control rule. At this moment, we showed that there exist a lead 

time control rule that decreases the average lead time while increasing operator utilization levels. We 

furthermore expect, that the techniques offered by researchers can even further improve the lead time 

control rule proposed. This all considered, the following recommendation is made to MD’s management: 

 

Shop floor control structure design 

Considering the answers to the four research questions, we conclude that general control mechanisms 

proven in theory can be well applied within a MD. As such, we recommend to apply an EDD sequencing 

rule each time a decision has to be made regarding a queue. Furthermore, PACTW policy provides higher 

average service level performances as compared to NOCTW policy and the 3PU model including PACTW. 

Since the PACTW does not require investments in workforce’s competences, the recommended shop floor 

control structure design applies an EDD sequencing rule and benefits from the advantages of cross-trained 

workforce by applying a partially cross-trained workforce policy.  

7.1 Limitations 
Section 7.1 describes the research limitations, which are divided into three categories. The first category 

contains the limitations about the control mechanisms applied (Section 7.1.1). Subsequently, limitations 

regarding the research scope are provided in Section 7.1.2. Last, Section 7.1.3 discusses limitations 

regarding the assumptions made in the simulation model. 

7.1.1 Control Mechanisms 

In this section, four topics regarding the control mechanisms are discussed.  

R3b: Renegotiate with customers the minimum lead time required to overhaul a valve. When considering 

the current workforce level, the minimum lead time required to overhaul a valve should at least be equal 

to 14 hours (i.e. 840 minutes). 
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Sequencing rules 

In this research, we have examined whether theory about sequencing rules and cross-trained workforce 

can be applied within a MD environment. The sequencing rules evaluated in this study are EDD and FCFS. 

EDD and FCFS are selected, since these rules are static (Pinedo, 2005) and are therefore relatively easy to 

understand and implement in practice (Nahmias & Cheng, 1993). However, researchers have established 

many other sequencing rules (cf. Nahmias & Cheng, 1993; Thomas et al., 1997; Silver et al., 1998; Pinedo, 

2008; Hopp & Spearman, 2011). Literature have indicated that EDD is especially useful for due date related 

objectives (e.g. Pinedo, 2005). Other sequencing rules that optimize due date related objects are for 

example minimum slack (MS) and critical ratio (CR) (Pinedo, 2005; Stockton et al., 2008). Moreover, 

Stockton et al. (2008) claim that CR is often used in a MTO production environment. That all considered, it 

is expected that we have not included the sequencing rule which results in the best performances yet.  

Priority control rules. 

When considering the simulation model, many decisions had to be made about prioritizations. Especially 

in the PACTW model (M4), lots of decisions had to be made. We illustrate five of these decisions in the 

bullet points below. 

 Whenever a valve arrives, which operator competence type starts this job? 

 When an operator finishes a job, which job will he process next? A job that is waiting to start the 

valve overhaul process? A job that is waiting after it returned from the mechanical machining 

department? Or another job?  

 If all machines of a particular machine type are busy, does the job and the operator wait in the line 

or does only the job waits in line? Then, what will be the operator’s next job? Furthermore, who 

will process the job as soon as a machine becomes idle? 

 When a job returns from the mechanical machining department, will the same operator continue 

the valve overhaul process? 

 When a job is waiting for a particular operator who executes a process which belongs to a different 

operator competence level, will he finish or quit the overhaul process regarding his current job? 

Such decisions are extensively researched in the operator allocation field (Hopp & Spearman, 2011). 

According to these authors, chaining and bucket brigade are general research topics that can be consulted  

which deal with operator allocation decisions.  

Although lots of research is provided in literature, our simulation model is limited by including only the 

basic priority control mechanisms. In general, the following two principles are included in the model. First, 

since high WIP levels reduce system’s throughput rates, we have modeled that operators who complete a 

job overhaul always first continue working on a job which is waiting in the system, before start processing 

a job waiting at the beginning of the valve overhaul process. Second, we have modeled that operators 

always process jobs from their own competence level first before working on jobs or other competence 

levels. As such, it may happen that operators are interrupted from their job between two successive 

processes to start working on a different job. Note that this only happens in the PACTW model (M2) and 

the 3PU model (M5).  
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Next, in our simulation models we have designed that whenever a job is waiting for a machine to become 

idle, the operator is waiting as well. We expect that modeling operators according to a bucket brigade 

policy will result in higher average service levels. 

 

CONWIP 

CONWIP is a control mechanisms that aims to keep the WIP level at a predetermined constant level. In 

systems that apply a CONWIP rule, a next job is started as soon as a job departs from the system (Silver et 

al., 1998). This rule is aimed to control system’s cycle times. Since cycle time is a function of the WIP level 

divided by the throughput rate (Little, 1961), limiting the WIP levels result in an upper bound on the cycle 

time when considering a particular throughput rate. The CONWIP rule is especially applicable in MTO 

process line environments (Silver et al., 1998). 

Since the MD production area can be seen as a job shop (Bertrand et al., 1991), the optimal WIP level may 

not be necessarily equal to the number of operators in the system. Hopp and Spearman (2011) claim that 

production systems keep their operators busy instead of idled to achieve the best performances. However, 

literature has indicated that cycle times, and accordingly average service level performance, depends on 

the maximum WIP level the system achieve (Hopp & Spearman, 2011). Since all processes are executed in 

batch sizes equal to 1, it is expected that the average service level performance is a function over the 

maximum WIP level allowed which first remains constant and after a particular cutoff point decreases as 

the maximum WIP level increases. Whether our simulation models exceed this cutoff point is unknown. As 

such, our simulation models are limited by not incorporating a CONWIP rule. However, note that we use a 

control rule that assigns operators first to jobs that are waiting in the system before starting a new job from 

the beginning. This control rule is included to prevent for high WIP levels. Therefore, we advise MD’s 

management to apply such a rule.  

 

Lead time control rule 

The lead time control rule provided in Section 6.4 is deterministic, i.e. for all jobs the same. However, 

according to Little (1961), the time required to process a job also depends on the WIP (workload available) 

and the throughput rates (i.e. number of operators and equipment in the system). As such, applying a 

deterministic processing rule may not be sustainable when shop floor management change the parameter 

settings. Since many researchers have studied the lead time control rule topic (e.g. Hopp & Spearman, 

R4: Allocate operators first to jobs that require their competence level. An idle operator is allowed to 

start processing a job which does not require his specific competence level, i.e. the operator can be 

subjected to jobs that require a lower competence level, until a job is waiting to be processed at the 

operator’s specific competence level. If multiple jobs are waiting for an operator to be processed, then 

the job is selected that is waiting at the highest competence level he is allowed to work on.   

R5: Apply a CONWIP rule or assign operators to jobs waiting in the system before starting a new job 

overhaul process.  
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2011), we expect that the results provided in this study may be outperformed by other more sophisticated 

techniques.  

7.1.2 Research Scope 

In Section 7.1.2, we discuss our research scope and how this limits our research. As mentioned in Section 

4.3, our research is scoped by the number of operations analyzed. Since all operations can operate 

independent from one another, we expect that the main empirical findings regarding the sequencing rules, 

operation allocation model and the lead time control rule can be implemented within the other operations 

as well. However, since they may be faced with different input parameters (e.g. lead times, interarrival 

times, order sizes, number of operators per operator type available, number of machines), the explicit 

results can only be applied to Facility B.  

Next, the research is also scoped regarding the product groups analyzed. Although it is known that the 

safety valve overhaul process differs from the product groups on-off valves and control valves in terms of 

e.g. the processes and machines involved, we emphasize that the main findings can still be applied within 

the other product groups.  

Last, our research is limited by including only the product types up to a DN-size equal to 80, which equals 

84% of all safety valves overhauled (Table 4). Furthermore, we have generalized the job types into three 

categories: DN-25, DN-50 and DN-80, such that we have only included three job types in the simulation 

models. This decision limits our research, since the processing times are mostly a function of the valve size. 

Moreover, including more valve sizes in the analysis gives rise to investigate whether the shortest 

processing time (SPT) sequencing rule may result in better service level performance targets. Baker and 

Bertrand (1982) showed that applying a sequencing rule which combines the advantages of EDD and SPT 

result in better performances for situations in which the proportion total processing time divided by the 

time available are high. 

7.1.3 Assumptions 

In this study, several assumptions are made to cover the issues as observed when designing the general 

simulation model. These assumptions limit the rigorousness of the model. In this section, we will not discuss 

all of these assumptions, but we want to emphasize the assumptions in aggregate terms. 

Input parameters 

The general simulation model consists of many input parameters that are fundamental for our results. Most 

of these input parameters are estimated based on very low sample sizes. Especially the ratios at which 

processes are executed can highly deviate from the ratios applied in our simulation models. In addition, the 

ratios are determined based on safety valves overhauled during a regular demand period. It might be 

reasonable to assume that jobs during TAR demand periods are faced with other ratios, since those jobs 

are often heavily loaded as they are located in customer’s main production areas.  

Next, the assumption is made that whenever jobs are sent to the mechanical machining department 

(process 8) or put on hold due to the absence of spare parts, they always return after a deterministic 

amount of time units equal to 480 minutes. This however can be either lower or higher in practice. We 
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furthermore have assumed that the approved due date extends similarly. This assumption, according to 

PLVS’ management, is valid regarding the regular demand periods, but may not be always valid for TAR 

demand periods. As such, the obtained service level performances have to be interpreted cautiously.   

Furthermore, we want to emphasize that the average rework level does not increase when additional 

workforce capacity is hired. However, we expect that operators who are less familiar with the quality levels 

of PLVS result in a higher rework ratio (Maskin & Sjöström, 2002). According to Silver et al. (1998), rework 

significantly affects cycle time’s mean and variance.  

Last, we have assumed that all capacity available in the simulation model is reserved to process jobs that 

arrive in the system. However, it is known that some machines and operators also process jobs from other 

product groups. As such, their availability is lower than what is used in the simulation models. 

This all considered, the results have to be interpreted with caution. Furthermore, management is advised 

to gather data regarding the production processes. On the one hand, they can verify the results provided 

in this study. On the other hand, they are able to start operational excellence improvement projects.  

 

Case studies 

Two case studies are used to examine if and how control mechanisms can be applied within a MD 

environment. It is assumed that these case studies represent a regular demand period and a TAR. However, 

the average number of jobs that arrive during the regular demand period is 17.4% lower compared to the 

average jobs per day from what is observed in the data between January 2014 and August 2016 (7.1 

jobs/day versus 8.6 jobs/day). On the other hand, data from one of the most extreme TARs is selected to 

simulate the demand pattern during a TAR demand period (in combination with regular demand period). 

7.2 Future Research 
When considering the limitations, assumptions and conclusions to the research questions, we have 

established 2 areas in which projects are specified for future research. 

1. Synergy  

The first recommended future research relates to synergy. Synergy is defined as: “the interaction or 

cooperation of two or more organizations, substances, or other agents to produce a combined effect greater 

than the sum of their separate effects” (thefreedictionary, 2017). It is expected that PLVS can benefit from 

synergy in various ways. Below, we consider future research topics regarding synergy within PLVS, within 

the company and synergy benefits obtained from collaboration with competitors and customers. Note that 

all proposed future research regarding synergy are meant to investigate whether generalization result in a 

decrease in system’s variability. In production environments, it yields that a reduction in system’s variability 

results in lower flexibility levels to maintain the same performance targets (Bertrand et al., 1998; Hopp & 

Spearman, 2011). Since flexibility comes with a costs, it is expected that PLVS can reduce costs through 

applying synergy. 

R6: Collect data on a daily basis regarding the routings and processing times.  
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Synergy within PLVS  

We expect PLVS can benefit from synergy within the production line in two ways. First, when PLVS decides 

to collect data about routings, processes and arrival times for all product groups, they are able to establish 

whether synergy between production groups can result in lower annual average workforce levels. Second, 

when this data is also gathered at each of the facilities, PLVS can examine whether outsourcing of jobs 

between facilities is possible. If outsourcing of jobs is possible, then PLVS is able to reduce demand 

variabilities by themselves.  

Synergy within the company 

Synergy within the company can be obtained in two ways. First, nowadays the mechanical machining 

activities are outsourced to a different department. According to Bertrand et al. (2016), the time required 

to execute a customer order increases as the number of production departments increases. As such, PLVS 

can investigate whether performing the mechanical machining activities by themselves will result in higher 

performance levels in terms of lower average cycle times, higher average service levels or lower workforce 

levels due to a higher average proportion of slack per job. 

Second, as visualized in Figure 10, a job’s actual arrival time highly deviate from its planned arrival time 

during TARs. Since this deviation unnecessarily results in jobs that become urgent, it is expected that PLVS 

can benefit from a better coordination with the company’s operators working on-site during TAR periods. 

Synergy with customers 

As mentioned, customers in the chemical and Gas & Oil industry apply maintenance programs for their 

assets. These maintenance programs contain preventive maintenance policies. The decision in which 

period a job’s preventive maintenance is executed is made by the customer’s maintenance department in 

coordination with production management. It is expected that when PLVS can participate in this decision 

making process, the jobs labeled for preventive maintenance can be planned in periods that demand is low 

such that demand is less peaked and demand variance is reduced.   

2. Evaluate annual workforce cost levels  

As visualized in the results from the simulation experiments in Appendix E.5, current workforce utilization 

levels are low during regular demand periods. Based on the result of the simulation experiments provided 

in Appendix E.5, it is concluded that workforce utilization levels can be significantly improved if the lead 

time control rule can be reevaluated with contractors. Then, the current workforce level can be reduced 

while the same service level target is maintained.  

Although a reduction in the current workforce level will reduce operational costs during regular demand 

periods, the workforce costs during TAR demand periods will increase. This, because more operators need 

to be hired as compared to the current situation. From a cost perspective, it might be interesting to examine 

which workforce level PLVS should apply to minimize annual workforce cost levels. 
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7.3 Academic Contribution 
This research contribute to the existing literature in various ways. First, since most literature conducted in 

the maintenance spare parts supply chain field relate to the spare parts inventory control problem (cf. 

Guide & Srivastava, 1997b; Kennedy et al., 2002; Sherbrooke, 2006; Basten & van Houtum, 2014; Van 

Houtum & Kranenburg, 2015) and the repair shop control problem (Cf. Guide Jr & Srivastava, 2000; Keizers 

et al., 2001; Vernooij, 2011), a literature gap was found regarding the maintenance depot control problem. 

More specifically, earlier research has mentioned the existence of maintenance depots (cf. Vernooij, 2011; 

Driessen et al., 2015), but no literature is available on the maintenance depot control problem explicitly. 

As such, the results provided in this study complement the literature since we have bridged the gap 

between existing theory about shop floor control and a maintenance depot environment. 

Next, we furthermore contribute to the literature, since MDs were only mentioned as being part of the 

asset holder’s company (c.f. Vernooij, 2011; Driessen et al., 2015). Since the MD under analysis have many 

competitors, examining the MD control problem as a separate entity is interesting from a industrial point 

of view. The simulation models provided in this study can then be used as a starting point for further 

analysis.  
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Appendix A - Data collection methods 
Since limited data was available at PLVS, data is gathered by the researcher during the project. The data 

collection methods applied related to surveys to establish processing times. Furthermore, valves were 

tracked during a three week data collection period in order to obtain insights regarding input parameters 

such as routings, inter-arrival times, order sizes, etc. This section describes how these methods are 

constructed. 

A.1 Surveys 

Surveys are designed to determine the processing times for each activity for a particular valve. As will be 

explained in detail in Appendix A.1, operators are asked to specify a minimum, mode and maximum 

processing time required to fulfill a particular activity. These values are then used to establish a Perth-Beta 

distribution for each process individually. Again, we refer to Appendix B.2 for a more detailed explanation. 

The valves that are included in the survey are displayed in Table 22. These valves are chosen in cooperation 

with PLVS management. The activities included in the survey are based on the processes involved in the 

valve overhaul process. Since the activities are different within the three product groups, a survey is 

compiled for each product group individually. Moreover, the surveys are designed differently for the three 

facilities, because of two reasons. First, the overhaul steps differ between facility C and facilities A and B 

(i.e. Valves are coated after cleaning at facility C). Second, the terminology that is used to describe a certain 

task also differs per facility. As a result, multiple surveys are designed to prevent for ambiguities. An 

example of  a survey designed for facility B regarding the product group safety valves is visualized at the 

end of this Section.  

Table 22: Valve types included in the surveys 

 

Table 23 shows the total number of surveys which are returned and the response rate for each facility. The 

average participation is 57%. Note that several operators at facility A have filled in multiple surveys 

regarding different product groups, since they are multi-skilled. On the other hand, the total number of 

surveys does not necessarily mean that each activity included in the survey has the same number of process 

time estimations, which is caused by missing values. 
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Table 23: Number of survey respondents per product group per facility 

 

Table 23 shows that most surveys are filled in regarding the product group safety valves. Since surveys are 

developed iteratively due to new insights about the processes involved in the maintenance process, 

sufficient data is only available regarding the product group safety valves to determine the processing 

times. Therefore, it is decided to analyze only the surveys with respect to this product group. Table 24 

visualizes the total responses conducted for each activity per facility and per surveyed product.  

Table 24: Number of surveys conducted per activity regarding the product group safety valves 

 

A.2 Valve Tracking Procedure 

The valves tracking procedure is designed for various purposes. First, data obtained from this procedure 

can be used to determine the current service level performance during a non-TAR demand period. Second, 

the data can be used to determine the input parameters regarding order-sizes, lead times, interarrival times 

and the probabilities a particular process is executed. Last, data from this procedure can be used to assess 

valves’ routings. 
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The incoming valve tracking procedure starts from the moment a valve arrives at the facility. Then, a form 

(Figure 20) is added to the valve before any overhaul activity is executed. Furthermore, the arrival date and 

time of the valve are noted. Once the valve is released for the overhaul process (i.e. an operator starts with 

the first overhaul activity), the starting date and time are reported on the form. Subsequently, the operator 

mentions all activities in sequence of execution, which he has performed in order to successfully overhaul 

the particular valve. Once the operator(s) finishes the overhaul, operator’s last step is to denote the finish 

date and- time on the form. Next, the researcher checks all collected forms for their correctness first (i.e. 

in case standard activities such as dismantling or reassembling are missing, they are added to the routing 

path according to the flow charts) before they are digitalized. Finally, additional data columns obtained 

from SAP are added to each tracked valve. 

The Incoming valves are tracked during a three week period at facility B. Facilities A and C have tried to 

start the data gathering process, but because of the high workload it is decided to stop the data recording. 

Table 25 shows the total number of tracked valves at each facility per product group. Based on the returned 

forms, it is decided to analyze only the safety valves at Facility B during this stage of the master thesis 

project. The overall response rate regarding the collected forms at facility B during the three week period 

is equal to 79% (121 out of 153), which is based on the registered incoming valves that are manually 

recorded at the registration area (i.e. logistic center). 

Table 25: Number of tracked valves returned per facility per product group 
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Figure 20: Example of a collected form from the valve tracking procedure 
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Appendix B - Data Analysis: input parameters for the simulation 

model 

B.1 Job Type Distribution 

The distribution to determine the job type 𝑑𝑗 for a particular job 𝑗 is determined from data about the safety 

valves overhauled between January 2014 till August 2016. In total, the sample size 𝑛 equaled 10641. This 

data was grouped together to the job types (job’ DN-sizes) PLVS recognizes such that an empirical 

distribution is fitted on this data. These groups are shown in Table 4. However, the empirical distribution is 

not useful for the simulation model, since the simulation model distinguishes only three different job types 

(DN-25, DN-50 and DN-80). As such, the DN-sizes are grouped together and normalized to derive an 

empirical distribution.  

First, all 𝑛 observations were grouped regarding their DN-size into 𝑘 = 4 adjacent intervals of the form <

𝑎0, 𝑎1], < 𝑎1, 𝑎2], … ,< 𝑎𝑘−1, 𝑎𝑘]. Suppose each interval is denoted by 𝑖, where 𝑖 = {1,2,… , 𝑖̃}. Then 𝑖 =

1 represents the jobs belonging to job type DN-25, 𝑖 = 2 the job types DN-50, 𝑖 = 3 the job types DN-80 

and, lastly, 𝑖 = 4 consists of jobs with job types bigger than DN-80. Furthermore, let’s denote 𝑛𝑖 as the 

number of observations in interval 𝑖. The values for the 𝑛𝑖’s are used to specify an empirical distribution 

for 𝑑𝑗, which is formulated below: 

𝑑𝑗(𝑢) =

{
  
 

  
 1, 𝑖𝑓                        0 < 𝑢 ≤

𝑛1
𝑛1 + 𝑛2 + 𝑛3

2, 𝑖𝑓 
𝑛1

𝑛1 + 𝑛2 + 𝑛3
< 𝑢 ≤

𝑛2
𝑛1 + 𝑛2 + 𝑛3

3, 𝑖𝑓 
𝑛2

𝑛1 + 𝑛2 + 𝑛3
< 𝑢 ≤ 1                      

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

 

Where 𝑢~𝑈(0,1) is a random number. 

Table 26: Normalized probabilities to determine the job type 𝒅𝒋 j for all jobs 𝒋 in the simulation model. 

DN size 𝒊 𝒏𝒊 𝒏𝒊
𝒏𝟏 + 𝒏𝟐 + 𝒏𝟑

 
CDF 

DN-25 1 6100 0.681 0.681 

DN-50 2 1825 0.204 0.884 

DN-80 3 1035 0.116 1 

> DN-80 4 1681 
  

 

B.2 Processing Time Distribution 

There are several methods available in literature to determine the process times for an activity. One of the 

most suitable methods consists of a time-motion study. During a time motion study, data about process 

times is collected using a stop watch and recording the start and end time of a certain task (Sammet & 

Hassler, 1951). The gathered data is analyzed to determine the required statistics. Since this data collection 

method is very time consuming (Sammet & Hassler, 1951), it is decided to use a different appropriate 
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technique which relate to the beta-PERT distribution. In here, the best-case, most likely, and the worst-

case process times are estimated for each task individually, denoted by the variables 𝑎, 𝑚, and 𝑏 

respectively. Based on these input parameters the statistics such as the average process time can be 

approximated. 

In this study, the input parameters 𝑎𝑑,𝑝𝑟, 𝑚𝑑,𝑝𝑟, 𝑏𝑑,𝑝𝑟 for job type 𝑑 ∈ 𝐷 at process 𝑝𝑟 ∈ 𝑃𝑅 are estimated 

from the data gathered by the surveys (Appendix A.1). This is done according to the following procedure. 

Let’s denote 𝑉𝑂𝐼 as the variable of interest such that 𝑉𝑂𝐼 = {𝑎,𝑚, 𝑏}. Furthermore, let 𝑉𝑂𝐼𝑑,𝑝𝑟,𝑥 be the 

returned value for input parameter 𝑉𝑂𝐼𝑑,𝑝𝑟 with 𝑥 = {0,1,2, … , 𝑛} where 𝑛 equals the maximum returned 

values for the input parameter of interest. Then, all 𝑉𝑂𝐼𝑑,𝑝𝑟 are determined by subtracting the minimum 

and maximum value observed and dividing by 𝑛 − 2. This procedure is often used for low sample sizes. 

Note that when 1 or 2 observations were obtained, the 𝑉𝑂𝐼𝑑,𝑝𝑟 were determined without subtracting the 

minimum and maximum values. Furthermore, for those processes without having any observation (i.e. 

process 1 and process 13), processing times are determined in cooperation with PLVS’ employees. This 

results in deterministic times for process 1 and the input parameters for process 13 equals the input 

parameters for process 12. 

Using these input parameters, the processing times 𝑡𝑗,𝑑,𝑝𝑟 for job 𝑗 of job type 𝑑 ∈ 𝐷 at process 𝑝𝑟 ∈ 𝑃𝑅 

in the simulation model are sampled from a BetaPERT distribution, such that 𝑡𝑗,𝑑,𝑝𝑟~𝐵𝑒𝑡𝑎𝑃𝐸𝑅𝑇(𝑎𝑑,𝑝𝑟, 

𝑚𝑑,𝑝𝑟, 𝑏𝑑,𝑝𝑟). Using this distribution, the mean 𝜇𝑑,𝑝𝑟 and standard deviation 𝜎𝑑,𝑝𝑟 are determined 

according to the equations below (source http://www.statisticshowto.com/pert-distribution/): 

𝜇𝑑,𝑝𝑟 =
𝑎𝑑,𝑝𝑟 + 4𝑚𝑑,𝑝𝑟 ∗ 𝑏𝑑,𝑝𝑟

6
 

𝜎𝑑,𝑝𝑟 =
𝑏𝑑,𝑝𝑟 − 𝑎𝑑,𝑝𝑟

6
 

Table 27 shows the input values, mean and standard deviation for each process and process type 

individually. 

Table 27: Input values, mean and standard deviation regarding the three job types used in the simulation model. 

 

𝒑𝒓 
DN-25 DN-50 DN-80 

𝒂𝟏,𝒑𝒓 𝒎𝟏,𝒑𝒓 𝒃𝟏,𝒑𝒓 𝝁𝟏,𝒑𝒓 𝝈𝟏,𝒑𝒓 𝒂𝟐,𝒑𝒓 𝒎𝟐,𝒑𝒓 𝒃𝟐,𝒑𝒓 𝝁𝟐,𝒑𝒓 𝝈𝟐,𝒑𝒓 𝒂𝟑,𝒑𝒓 𝒎𝟑,𝒑𝒓 𝒃𝟑,𝒑𝒓 𝝁𝟑,𝒑𝒓 𝝈𝟑,𝒑𝒓 

1 3,0 3,0 3,0 3,0 0,00 3,0 3,0 3,0 3,0 0,00 3,0 3,0 3,0 3,0 0,00 

2 6,6 9,6 17,2 10,3 1,77 7,5 11,8 20,3 12,5 2,13 9,4 14,0 21,9 14,5 2,08 

3 9,6 15,7 22,5 15,8 2,14 12,7 19,1 27,3 19,4 2,42 15,0 21,9 30,8 22,2 2,63 

4 8,1 13,1 21,9 13,8 2,29 11,7 18,3 30,0 19,2 3,06 17,1 20,7 30,0 21,7 2,14 

5 5,0 10,0 10,0 9,2 0,83 5,0 10,0 10,0 9,2 0,83 5,0 10,0 10,0 9,2 0,83 

6 8,4 13,8 19,4 13,8 1,83 11,0 18,0 23,0 17,7 2,00 11,4 17,1 22,1 17,0 1,79 

7 5,5 9,9 16,1 10,2 1,76 6,9 11,3 18,1 11,7 1,86 7,2 11,8 17,5 12,0 1,72 

8 8,3 13,3 16,7 13,1 1,39 10,0 15,0 15,0 14,2 0,83 12,5 15,0 20,0 15,4 1,25 

9 6,9 12,5 21,3 13,0 2,40 7,5 13,3 21,7 13,8 2,36 9,3 15,0 23,6 15,5 2,38 

http://www.statisticshowto.com/pert-distribution/
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1
0 

12,5 18,4 26,3 18,7 2,29 14,0 18,4 24,0 18,6 1,67 13,3 17,5 23,3 17,8 1,67 

1
1 

12,5 18,4 26,3 18,7 2,29 14,0 18,4 24,0 18,6 1,67 13,3 17,5 23,3 17,8 1,67 

1
2 

6,8 11,0 19,2 11,7 2,08 9,3 14,8 25,0 15,6 2,62 8,3 13,4 21,8 13,9 2,26 

1
3 

5,5 8,3 13,3 8,7 1,31 5,5 7,9 12,5 8,3 1,17 6,2 8,7 13,2 9,0 1,17 

1
4 

10,1 15,0 22,9 15,5 2,12 14,2 19,0 25,8 19,3 1,94 17,3 23,8 31,5 24,0 2,37 

1
5 

5,1 8,0 12,1 8,2 1,17 5,1 8,0 12,1 8,2 1,17 5,1 8,0 12,1 8,2 1,17 

1
6 

11,0 18,4 25,0 18,3 2,33 14,0 21,4 28,0 21,3 2,33 16,0 22,0 30,0 22,3 2,33 

1
7 

6,3 10,3 16,7 10,7 1,72 7,0 10,8 19,0 11,5 2,00 8,4 13,4 20,0 13,7 1,93 

1
8 

10,8 15,0 21,3 15,3 1,75 12,5 17,5 22,5 17,5 1,67 11,7 15,7 21,7 16,0 1,67 

1
9 

10,0 15,0 15,0 14,2 0,83 10,0 15,0 15,0 14,2 0,83 15,0 20,0 20,0 19,2 0,83 

2
0 

6,1 9,3 14,4 9,6 1,38 7,4 10,4 15,0 10,6 1,27 8,3 11,4 17,2 11,9 1,48 

B.3 Routings 

Another input parameter to the simulation model relates to the routings how valves move through the 

overhaul process. These routings can be determined using various techniques. In this study, we have 

proposed to determine the routings using process mining and linear regression. Finally, based on interviews 

with operators an algorithm is developed which uses the probabilities that a particular activity is executed.  

Process mining is the activity to determine the different types of paths (i.e. routes) and the probabilities 

that a certain path occurs (Dumas, La Rosa, Mendling, & Reijers, 2013). The data from the valve tracking 

procedure at facility B regarding the product group safety valves are used to assess which routes exist in 

the valve overhaul process. 

First, the 103 collected forms are analyzed at an aggregate level, which results affect the sample size to 

determine the existing paths. Table 28 shows that 16 (±16%) valves are not overhauled according to the 

overhaul procedure as visualized in the flow charts. 14 Of these valves were brand-new and PLVS was 

contracted to execute an inspection (at PLVS this is called ‘ingangskeuring’), which means that at least step 

5 till 14c are never executed. The two other valve overhauls were disrupted during the overhaul process. 

One reason relates to the delivery of a wrong valve, and the other valve was assessed being amortized after 

the inspection step. As a result, the sample size to determine the type of paths is decreased from 103 to 

87.  
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Table 28: Aggregate results of the process mining study for the safety valves 

 

The sample size is even further reduced to 65 due to an updated form which is used after the first 22 valves 

were tracked. As already mentioned in previous section about the results of the flow charts, the flow charts 

have changed iteratively which is a result of new insights obtained from collected data. In line with the 

adjusted flow charts, the incoming valve tracking forms are changed accordingly. 

Table 29: Results of the process mining study for the safety valves 

 

Table 29 depicts the results of the process mining analysis. The table shows that only four routes are 

observed multiple times. Two of these routes are detected four times, and the other routes are recorded 

both three times. Since the number of unique routes are relatively high and the fact that we expect that 

not all routes are already established, it is decided to develop an algorithm which determines the sequence 

in which jobs flow through the system.  

Algorithm 

An algorithm is used to determine the sequence in which jobs move through the simulation model. This 

algorithm is invoked whenever a process is finished. The algorithm is based on the probabilities that a 

process is executed and on the interdependencies of processes. How these probabilities and 

interdependencies are determined is explained next.  

Data from the valve tracking procedure is used to determine the probabilities that a certain process is 

executed. 
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Appendix C - Data Analysis: input parameters regular demand case 
In this Section we explain how the input probability distribution functions are determined regarding the 

interarrival-time, lead time and order size for the regular demand case. According to Law and Kelton (2015), 

three approaches exist to specify a distribution based on collected data about the variable of interest, which 

are: 

1. The collected data values can be used directly in the simulation. This approach is recommended to 

validate the model; 

2. Based on the collected data, an empirical distribution function can be defined. One can sample 

from this distribution whenever an input value is needed; 

3. Last, a theoretical distribution can be fitted on the data from which one can sample if an input 

value is needed. Theoretical distribution functions are preferred over empirical distributions, since 

it ‘smooths out’ the data such that it may provide information about the overall underlying 

distribution. Furthermore, values outside the range of the collected data can be generated as well. 

Another characteristic of interest to argue for theoretical distributions relates to the easiness of 

change. For example, if one wants to perform a sensitivity analysis, he/she can easily change the 

input parameters of interest to assess how the system behave under different circumstances (Law 

& Kelton, 2015). 

In the next sections, the theoretical distributions regarding the interarrival-times, lead times and order size 

are explained in succession. 

C.1 Interarrival-Times Distribution 

The distribution to determine the interarrival-times between successive customer order arrivals is 

estimated based on data collected from the valve tracking procedure. Table 30 and Table 31 show the data 

points and the descriptive statistics for the interarrival-time data, respectively. 

Table 30: 𝑵 = 𝟑𝟗 interarrival-times (minutes) sorted in increasing order 

Interarrival-time data 

0 45 116 218 

1 45 120 270 

5 60 120 270 

15 67 135 300 

15 72 150 300 

20 78 165 350 

23 93 165 405 

30 100 172 550 

40 101 180 600 

45 110 205  
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Table 31: Descriptive statistics for the interarrival-time data 

Descriptive statistic Value 

Sample Size 39 

Minimum 0 

Maximum 600 

Mean 147.59 

Median 110 

Std. Deviation 143.687 

Skewness 1.570 

Kurtosis 2.464 

 

The software @Risk is used to hypothesize appropriate distributions with their estimated parameters for 

the interarrival-time data. Table 32 shows the MLEs of the real input parameters and the results of the 

Kolmogorov-Smirnov (K-S) test statistic. 

Table 32: Distribution estimation for the interarrival-times 

Parameter 𝒇̂(𝒙)~𝑬𝒙𝒑(𝜷̂) 𝒇̂(𝒙)~𝜞(𝜶̂, 𝜷̂) 

Parameter 1 𝛽̂ = 147.59 𝛼̂ = 1.0377 

Parameter 2  𝛽̂ = 145.96 
K-S test statistic 𝑫𝒏 0.04489 0.0588* 

 

The density-histogram plot shows how the probability density functions for both distributions fit on the 

empirical probability density function (Figure 21). Since the distributions are similar to the empirical 

probability density function, it seems reasonable to conclude that these distributions represent the input 

distributions. Next, a goodness-of-fit test is executed to assess whether or not we should reject the null 

hypothesis. Since the lowest K-S test statistic relates to the exponential distribution, we have hypothesized 

this distribution on its goodness-of-fit. When substituting 𝐷𝑛 = 0.04489,  we conclude that we are not 

allowed to reject the null hypothesis (0.262 < 1.308 = 𝑐1−𝛼, at the 𝛼 = 0.01 level). Therefore, the arrival 

times 𝑋𝑖  are sampled from the theoretical distribution 𝑋𝑖~expo(147.59) during the simulation study. 
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Figure 21: Density-histogram plot for the fitted exponential distribution (Red), gamma distribution(Green) and the interarrival-time 
data (blue). 

C.2 Lead Time Distribution 

The distribution to determine the lead times 𝐿𝑇𝑐𝑜 for each customer order 𝑐𝑜 is derived from the data 

collected from the valve tracking procedure. Table 33 and Table 34 show the data points and the descriptive 

statistics for the lead time data, respectively. 

Table 33: Descriptive statistics 

Descriptive statistic Value 

Sample Size 36 

Minimum 150 

Maximum 4440 

Mean 1106.14 

Median 603.50 

Std. Deviation 999.60 

Skewness 1.422 

Kurtosis 5.097 

 

Table 34 N=36 lead times (minutes) sorted in increasing order 

Lead time data 

150 360 1020 2150 

300 360 1050 2190 
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300 367 1155 2430 

305 375 1200 2456 

315 390 1530 3150 

330 390 1669 4440 

330 400 1830 
 

330 570 1860 
 

345 637 1965 
 

350 845 1977 
 

 

The software @Risk is used to hypothesize appropriate distributions with their estimated parameters for 

the lead time data. Table 35 shows the MLEs of the real input parameters and the results of the 

Kolmogorov-Smirnov (K-S) test statistic for the log-logistic, Pearson type 𝑉 and the lognormal distributions, 

respectively. 

Table 35: Distribution estamitations regatrding the lead time for regular demand data 

Parameter 𝒇̂𝟏(𝒙)~𝑳𝑳(𝜶̂, 𝜷̂) + 𝜸̂ 𝒇̂(𝒙)~𝑷𝑻𝟓(𝜶̂, 𝜷̂) + 𝜸̂ 𝒇̂(𝒙)~𝑳𝑵(𝝁̂, 𝝈̂𝟐) + 𝜸̂ 

Parameter 1 𝛼̂ = 1.3833 𝛼̂ = 1.4332 𝜇̂ = 1061.3 

Parameter 2 𝛽̂ = 531.3656 𝛽̂ = 675.2731 𝜎̂ = 1659.6 

Parameter 2 𝛾 = 140.3986 𝛾 = 40.9265 𝛾 = 117.1660 

K-S test statistic 𝑫𝒏=𝟑𝟔 0.2015 0.2033 0.2088 

Adjusted K-S test 

statistic 𝑫𝒏=𝟑𝟔
𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅

 

√𝑛 ∗ 𝐷𝑛 = 1.2089 N.A. N.A. 

 

The density-histogram plot shows how the probability density functions for the three distributions fit on 

the empirical probability density function (Figure 22). Although the graphs look similar to the input data, 

the 𝐷𝑛’s result in undesired high values. Since the adjusted K-S test statistic is higher than the critical value 

𝑐𝑛,1−𝛼 (𝐷36
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑

= 1.2089 > 0.854 = 𝑐20,0.99, at the 𝛼 = 0.01 level), we have to reject the null 

hypothesis.  

Rejecting the null hypothesis means that it is not recommended from a statistical point of view to use the 

log-logistic distribution as a theoretical distribution to sample from whenever a lead time variable is 

required.   
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Figure 22:Density-histogram plot regarding the lead time for a regular demand period 

C.3 Order Size Distribution 

The distribution to determine the order size 𝑄𝑐𝑜 for each customer order 𝑐𝑜 is derived from the data 

collected from the valve tracking procedure. In contrast to the previous two variables of interest, the 

distributions examined in this section are only discrete distributions since customer orders consist of only 

real positive numbers.   
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Table 36 and Table 37 show the data points and the descriptive statistics for the order size data, 

respectively. 
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Table 36: Descriptive statistics 

Descriptive statistic Value 

Sample Size 41 

Minimum 1 

Maximum 15 

Mean 2.171 

Median 1 

Std. Deviation 2.635 

Skewness 3.441 

Kurtosis 17.082 

 

Table 37: N=41 order size per customer order sorted in increasing order 

Order Size data 

1 1 1 2 15 

1 1 1 2 
 

1 1 1 3 
 

1 1 1 3 
 

1 1 1 4 
 

1 1 1 4 
 

1 1 1 4 
 

1 1 1 6 
 

1 1 2 6 
 

1 1 2 8 
 

 

The software @Risk is used to hypothesize appropriate discrete distributions with their estimated 

parameters for the order size data. Table 38 shows the MLEs of the real input parameters and the results 

of the Chi-Square (𝜒2) test statistic. Note that the negative binominal distribution is similar to the geometric 

distribution if 𝑠̂ = 1. 

Table 38: Distribution estimation based on @Risk software 

Parameter 𝒇̂(𝒙)~𝒏𝒆𝒈𝒃𝒊𝒏(𝒔̂, 𝒑̂) + 𝜸̂ 𝒇̂(𝒙)~𝒈𝒆𝒐𝒎(𝒑̂) + 𝜸̂ 

Parameter 1 𝑠̂ = 1 𝑝̂ = 0.46067 

Parameter 2 𝑝̂ = 0.46067 𝛾 = −1 

Parameter 3 𝛾 = −1  

𝝌𝟐 8.8713 8.8713 

 

The frequency comparison graph (Figure 23) shows how the probability density functions for both 

distributions fit on the empirical probability density function. Although the empirical distribution have 

relatively many more orders with order size equal to 1, the pattern of the theoretical distribution is similar 
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to the empirical distribution. Next, a goodness-of-fit test is executed to assess whether or not we should 

reject the null hypothesis. Since we examine a discrete distribution, we cannot use the K-S statistic but we 

will use the 𝜒2 test statistic. We conclude that we are not allowed to reject the null hypothesis (𝜒2 =

8.8713 < 22.2 = 𝜒40,0.99
2 ). As such, the order sizes 𝑄𝑐𝑜 are sampled from the theoretical distribution 

𝑄𝑐𝑜~negbin(1,0.46067) during the simulation study.  

 

Figure 23: Frequency comparison graph regarding the order sizes 
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Appendix D - Data Analysis: input parameters TAR demand case 
In this Section we explain how the input probability distribution functions are determined regarding the 

interarrival-time, lead time and order size for the TAR demand case. These distributions are determined 

according to the same procedure used to determine the input distribution functions for the regular demand 

case. In the next sections, the theoretical distributions regarding the interarrival-times, lead times and 

order size are explained in succession. 

D.1 Interarrival-Times Distribution 

The distribution to determine the interarrival-times between successive customer order arrivals is 

estimated based on the TAR data.  

The software @Risk is used to hypothesize appropriate distributions with their estimated parameters for 

the interarrival-time data. Figure 24shows the MLEs of the real input parameters and the results of the 

Kolmogorov-Smirnov (K-S) test statistic. 

 

Figure 24: Histogram of the estimated distribution for the interarrival-times regarding the TAR demand data 

D.2 Lead Time Distribution 

The distribution to determine the lead times 𝐿𝑇𝑐𝑜 for each customer order 𝑐𝑜 is derived from the TAR data. 

Error! Reference source not found. and Error! Reference source not found. show the data points and the 

descriptive statistics for the lead time data, respectively.  

The density-histogram plot shows how the probability density functions for the three distributions fit on 

the empirical probability density function (Figure 25). This plot shows that the best fitted theoretical 

distribution does not fit well with the empirical distribution. Moreover, the adjusted K-S test statistic is 
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higher than the critical value 𝑐𝑛,1−𝛼 (𝐷36
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑

= 1.2089 > 0.854 = 𝑐20,0.99, at the 𝛼 = 0.01 level). As 

such, we have to reject the null hypothesis. Rejecting the null hypothesis means that it is not recommended 

from a statistical point of view to use the log-logistic distribution as a theoretical distribution to sample 

from whenever a lead time variable is required.   

 

Figure 25: Density-histogram plot for the lead times regarding the TAR demand data 

Since the theoretical distribution does not fit appropriately based on both the density-histogram plot and 

the K-S test statistic, the empirical data is used to specify an empirical distribution Table 39. 
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Table 39: Empirical cumulative distribution function of the lead times regarding the TAR demand data 

Lead times [minutes] CDF 

480 15.1% 

600 16.2% 

720 17.9% 

960 19.0% 

1440 91.1% 

1920 92.2% 

2040 92.7% 

2400 94.4% 

2760 95.0% 

3000 95.5% 

3600 97.8% 

3960 98.3% 

4200 99.4% 

4800 100.0% 

 

D.3 Order Size Distribution 

The distribution to determine the order size 𝑄𝑐𝑜 for each customer order 𝑐𝑜 is derived from the TAR data. 

In contrast to the previous two variables of interest, the distributions examined in this section are only 

discrete distributions since customer orders consist of only real positive numbers.  

The software @Risk is used to hypothesize appropriate discrete distributions with their estimated 

parameters for the order size data. Table 40 shows the MLEs of the real input parameters and the results 

of the Chi-Square (𝜒2) test statistic. Note that the negative binominal distribution is similar to the geometric 

distribution if 𝑠̂ = 1. 

Table 40: Distribution estimation regarding the order size distribution 

Parameter 𝒇̂(𝒙)~𝒏𝒆𝒈𝒃𝒊𝒏(𝒔̂, 𝒑̂) + 𝜸̂ 𝒇̂(𝒙)~𝒈𝒆𝒐𝒎(𝒑̂) + 𝜸̂ 

Parameter 1 𝑠̂ = 1 𝑝̂ = 0.46067 

Parameter 2 𝑝̂ = 0.46067 𝛾 = −1 

Parameter 3 𝛾 = −1  

𝝌𝟐 8.8713 8.8713 

 

The frequency comparison graph (Figure 26) shows how the probability density functions for the geometric 

distribution fit on the empirical probability density function. Although differences are observed, both 

functions show a decreasing pattern except for one outlier in the tail of the empirical distribution. Next, a 

goodness-of-fit test is executed to assess whether or not we should reject the null hypothesis. Since we 

examine a discrete distribution, we cannot use the K-S statistic but we will use the 𝜒2 test statistic. We 

conclude that we are not allowed to reject the null hypothesis (𝜒2 = 8.8713 < 22.2 = 𝜒40,0.99
2 ). As such, 
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the order sizes 𝑄𝑐𝑜 are sampled from the theoretical distribution 𝑄𝑐𝑜~negbin(1,0.46067) during the 

simulation study. 

 

Figure 26: Frequency probability plot of the order size regarding a TAR demand Period 
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Appendix E - Results Simulation Experiments 

E.1 Variable Explanation 
Table 41: List of variables used in the simulation model 

Formulations and Comments Units 
Fixed input variables for each model  
𝑝𝑟 ∈ 𝑃𝑅, 𝑓𝑜𝑟 𝑃𝑅 = {1,2,… ,20} 
 

Dimensionless 

 Set of indices regarding the number of processes. The total number of 
processes 𝑗̃ equals 20. 

 

𝑠𝑘 ∈ 𝑆𝐾, 𝑓𝑜𝑟 𝑆𝐾 = {𝐴, 𝐵, 𝐶, 𝐷} 
 

Dimensionless 

 Set of indices representing the operator skill classes.  
𝑝𝑟 ∈ 𝑃𝑅𝐴, 𝑓𝑜𝑟 𝑃𝑅𝐴 = {………} 
 

Dimensionless 

 Subset of processes which can be executed by operators with skill class A.   

𝑝𝑟 ∈ 𝑃𝑅𝐵, 𝑓𝑜𝑟 𝑃𝑅𝐵 = {………} 
 

Dimensionless 

 Subset of processes which can be executed by operators with skill class B.   
𝑝𝑟 ∈ 𝑃𝑅𝐶 , 𝑓𝑜𝑟 𝑃𝑅𝐶 = {………} 
 

Dimensionless 

 Subset of processes which can be executed by operators with skill class C.   

𝑝𝑟 ∈ 𝑃𝑅𝐷 , 𝑓𝑜𝑟 𝑃𝑅𝐷 = {………} 
 

Dimensionless 

 Subset of processes which can be executed by operators with skill class D.   

  
 Notice that 𝑃𝑅 = 𝑃𝑅𝐴 ∪ 𝑃𝑅𝐵 ∪ 𝑃𝑅𝐶 ∪ 𝑃𝑅𝐷 ∪ 8  

𝑘 ∈ 𝐾, 𝑓𝑜𝑟 𝑘 = {1,2,3,4,5,6} 
 

Dimensionless 

 Set of indices which describe a machine of type 𝑘. 𝑘 = {1,2,3,4,5,6} are 
related to workbenches, test machines, cleaning cabins, cleaning machines, 
lapping machines and conserving equipment, respectively. 

 

𝑝𝑟 ∈ 𝑃𝑅1, 𝑓𝑜𝑟 𝑃𝑅1 = {} 
 

Dimensionless 

 Subset of processes which makes use of machine 𝑚𝑎 ∈ 𝑀𝐴1   

𝑝𝑟 ∈ 𝑃𝑅2, 𝑓𝑜𝑟 𝑃𝑅2 = {} 
 

Dimensionless 

 Subset of processes which makes use of machine 𝑚𝑎 ∈ 𝑀𝐴2  

𝑝𝑟 ∈ 𝑃𝑅3, 𝑓𝑜𝑟 𝑃𝑅3 = {} 
 

Dimensionless 

 Subset of processes which makes use of machine 𝑚𝑎 ∈ 𝑀𝐴3  

𝑝𝑟 ∈ 𝑃𝑅4, 𝑓𝑜𝑟 𝑃𝑅4 = {} 
 

Dimensionless 

 Subset of processes which makes use of machine 𝑚𝑎 ∈ 𝑀𝐴4  

𝑝𝑟 ∈ 𝑃𝑅5, 𝑓𝑜𝑟 𝑃𝑅5 = {} 
 

Dimensionless 

 Subset of processes which makes use of machine 𝑚𝑎 ∈ 𝑀𝐴5  
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𝑝𝑟 ∈ 𝑃𝑅6, 𝑓𝑜𝑟 𝑃𝑅6 = {} 
 

Dimensionless 

 Subset of processes which makes use of machine 𝑚𝑎 ∈ 𝑀𝐴6  

  
 Notice that 𝑃𝑅 = 𝑃𝑅1 ∪ 𝑃𝑅2 ∪ 𝑃𝑅3 ∪ 𝑃𝑅4 ∪ 𝑃𝑅5 ∪ 𝑃𝑅6  
𝑝𝑟 ∈ 𝑃𝑅𝑅𝑒𝑤, 𝑓𝑜𝑟 𝑃𝑅𝑅𝑒𝑤 = {3,7,10,13,14,16} 
 

Dimensionless 

 Subset of processes which have to be executed again and in sequence if a job 
requires rework.  

 

𝑎𝑑,𝑝𝑟, ∀ 𝑑 ∈ 𝐷  ∀ 𝑝𝑟 ∈ 𝑃𝑅 

 

minutes 

 Minimum processing times for job type 𝑑 at process 𝑝𝑟.  

𝑏𝑑,𝑝𝑟, ∀ 𝑑 ∈ 𝐷  ∀ 𝑝𝑟 ∈ 𝑃𝑅 

 

minutes 

 Maximum processing times for job type 𝑑 at process 𝑝𝑟.  
𝑚𝑙𝑑,𝑝𝑟, ∀ 𝑑 ∈ 𝐷  ∀ 𝑝𝑟 ∈ 𝑃𝑅 

 

minutes 

 Most-likely processing times for job type 𝑑 at process 𝑝𝑟.  

𝑟𝑝𝑟,   ∀  𝑝𝑟 ∈ 𝑃𝑅 

 

Dimensionless 

 Rate at which jobs arrive at process 𝑝𝑟.  

𝑟𝑂𝐻 = 0.05 
 

Dimensionless 

 Rate at which jobs are put on hold after inspection (process 𝑝𝑟 = 7)  

𝑟𝑅𝑒𝑤 =
2
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Dimensionless 

 Rate at which jobs are faced with rework activities  

𝑝𝑡𝑝𝑟
𝑀𝑀 = 480 

 

minutes 

 The total time a job spent at the mechanical machining department in case a 
job requires mechanical machining activities (process 𝑝𝑟 = 8). 

 

𝑝𝑡𝑝𝑟
𝑂𝐻 = 480 

 

minutes 

 The total time a job is put on hold in case the required spare parts are out of 
stock. 

 

𝑑 ∈ 𝐷,     𝑓𝑜𝑟 𝐷 = {1,2,3} 
 

 

 The index 𝑑 represents the job type. 𝑑 = {1,2,3} represent the job types 
DN25, DN50 and DN80, respectively. The total number of job types is denoted 

as 𝑑̃ = 3. 

 

𝑐𝑠𝑘 = {30,40,45,60}, ∀𝑠𝑘 ∈ 𝑆𝐾 
 

Euros/hour 

 Costs per operator from skill class 𝑠𝑘.  
𝑛 ∈ 𝑁, 𝑓𝑜𝑟 𝑁 = {1,2,… , 𝑛̃} 
 

Dimensionless 
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 Set of indices used for replications with 𝑛̃ representing the maximum number 
of replications. 

 

 

E.2 Welch’s Approach: warm-up period 

 

Figure 27: Results of Welch’s approach for the regular demand data 

 

 

Figure 28: Results of Welch’s approach for the TAR demand data 

E.3 Common Random Numbers 

The common random number generator from Kelton and Law (2015) is applied in this study. 
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E.4 Simulation  

All simulation models are programmed in Visiual Basic for Applications (VBA). Since the code is extremely 

large, the code is removed from the thesis. One who is interested in the code, can send an e-mail to the 

researcher. 

E.5 Results simulation Experiments 

Due to confidential reasons, the results are removed from the appendix. 


