
 Eindhoven University of Technology

MASTER

Key challenges in software startup processes uncovered
where do they come from?

Bron, P.C.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c44e7fb1-6242-45f3-be7e-2a04ad660af0

Key challenges in software startup processes uncovered: where do
they come from?

Author

Pieter Cornelis Bron

(S106618/0747139)

Supervisor

Bob Walrave, ITEM

Sharon Dolmans, ITEM

Sjoerd Romme, ITEM

ITEM, Eindhoven University of Technology

Date

December 11, 2017

ABSTRACT

Purpose – This paper reports detailed narratives explaining the relationship between Industry-Specific
Knowledge, Product Development Knowledge, and Managerial Experience/knowledge with software
startup processes over time, uncovering where key challenges experience in software startup processes

come from.

Design/Methodology/Approach – The study employs a grounded theory approach with a preliminary
boundary construction phase to gather fabula for a detailed narrative on key challenges software

startups face, and where they come from.

Findings – The founding team is the knowledge broker in software startups. For this role, they need
various types of knowledge present in the team. The results show that three types of knowledge need
to be present. If they are absent, they lead to previously identified key challenges (Wang et al., 2015;
2016) software startups in general face. More specifically, absence of Industry-Specific Knowledge
relates to challenges in the customer learning processes and the integration of external information.

Missing Product Development Knowledge relates to internal development challenges. Finally, a lack
of Managerial Experience and Knowledge relates to challenges in managing the process as a whole.

Originality/Value – The models provide a more detailed understanding on where software startup
processes challenges find their origin. Based on this model, practical implications are crafted.

Keywords – Grounded Theory, Process Analysis, Software Startup Processes, Industry-Specific
Knowledge, Product Development Knowledge, Managerial Experience/Knowledge

2

1 Introduction

This world is on the verge of the most exciting and disruptive wave of technology mankind has
experienced since the dawn of the PC: artificial intelligence, mixed reality and quantum computing
(Nadella, 2017). At its core, these technologies are driven by innovative software products. Software
startups have shown the potential to bring these innovations into the world. For example, DeepMind
used to be a British software startup specialized in artificial intelligence, until it was acquired by
Google in 2014 (Medium.com, 2014). They are now better known as the creator of technology that
beat a world champion Go player called ‘AlphaGo’ - a feat that was deemed impossible for a computer
(BBC, 2016). DeepMind does not stand alone. Software companies like Facebook, LinkedIn, Spotify,
Pinterest, Instagram and Dropbox are all examples of highly successful new software startups. Where
it is hard to imagine a world without Facebook or Spotify, these companies did not exist back in 2000
– Facebook was founded in 2004 and Spotify started only in 2006. Software startups are considered
one of the key drivers of economic and technological growth in our current era (Dishman, 2015).

The huge potential of software startups, also in terms of financial rewards, have drawn many
(experienced) entrepreneurs to take the software path. However, the majority of these entrepreneurs
experience significant challenges (Paternoster, Giardino, Unterkalmsteiner, Gorschek, &
Abrahamsson, 2014; Sutton, 2000), leading to reported failure rates in excess of 90% (Song,
Podoynistyna, Bij & Halman, 2008). What is going on?

This question has also drawn a lot of scholarly attention. In this respect, we know what they key
perceived challenges software startups face are, with detailed yet preliminary explanations by Wang,
Giardino, Bajwa & Abrahamsson (2015). For example, during the early phases of software startups,
such as development and working prototype, startups perceive their biggest challenge as building the
product. A case study by Wang, Edison, Bajwa, Giardino & Abrahamsson (2016) finds that software
startups mention working with new technology as one of the experienced challenges they attribute to
the challenge of building the product. However, the state-of-the-art in software startup research does
not explain where such key challenges originate from (Unterkalmsteiner, Abrahamsson, Wang &
Nguyen-duc, 2016), in view of the entrepreneurial process (Wang, Edison, Bajwa, Giardino, &
Abrahamsson, 2016). In other words, what drives such challenges and when do they occur in the
software startup process? This is the question that drives this research.

As such, in order to better understand what is needed for software startups to succeed, we must first
understand the root cause of these key challenges (Unterkalmsteiner et al., 2016). In order to do so, a
longitudinal multiple-case study is employed. Using a grounded theory approach (Glaser & Strauss,
1967), qualitative data is used to construct explanations through narrative. The main contribution of
this thesis, to the field of software entrepreneurship research, is that it disentangles the intricacies of
software startup processes through a rich presentation of what is going on, using current cases
recorded in 2016 and 2017.

The rest of this thesis is organized as follows: The next section discusses the known literature on
software startup processes. Subsequently, the empirical research design is presented (including a
preliminary analysis upon which early concepts and boundaries are constructed for conducting the
grounded research). Then, the broad results from the grounded analysis are presented which are
translated into an overarching framework—which answers the main research question. I continue with
an in-depth discussion through analysis of the overarching framework over the phases of software
startup processes. Next, a post analysis with startup experts validates findings. Finally, this thesis
concludes with a discussion on the main findings in relation with literature and a conclusion.

3

2 Background

The field of software development, a subset of new product development (Shalloway, Beaver, & Trott,
2009), enjoys a wide body of knowledge (Da Silva, Santos, Soares, Frana, Monteiro & MacIel, 2011;
Kitchenham, Pearl Brereton, Budgen, Turner, Baily & Linkman, 2009). Consider, for example, the
main studies on agile software development, covering crystal methodologies (Cockburn, 2004),
DSDM (Stapleton, 2003), feature-driven development (Palmer & Felsing, 2002), lean software
development (Poppendieck & Poppendieck, 2003), scrum methodology (Schwaber & Beedle, 2001),
and “extreme programming” (Beck, 2004). However, in a systematic mapping study Paternoster et al.
(2014) found that when it comes to new software startup processes, studies are relatively scarce.

The external characteristics in which software startups operate are known. More specifically, they
operate in a context relatively similar to regular startups (Giardino, Unterkalmsteiner, Paternoster,
Gorschek, & Abrahamsson, 2014; Sutton, 2000). Characteristics include limited resources in terms of
economical, human and physical attributes. As such, they rely on third-parties to succeed because of
these limited resources. Next, the teams – especially during early stages – are small, with no need for
upper management and a founder-centric team structure. Last, they aim to grow rapidly and are highly
risky, with failure rates up to 90% (Song et al., 2008). A difference with regular startups is that
software startups experience a higher than usual time-pressure due to the fast-paced development
speed of software products (Giardino, Unterkalmsteiner, et al., 2014).

While we have knowledge on external characteristics, we lack a thorough understanding of the
internal processes that drive software startups (Giardino, Wang, & Abrahamsson, 2014; Paternoster et
al., 2014). This is problematic, as “self-destruction” rather than competition leads the majority of
software startups to fail within their first years of existence (Crowne, 2002).

In order to begin understanding software startup, Wang et al. (2015; 2016) researched key perceived
and experienced challenges that software startups face. Perceived challenges are what startups think
are the key challenges they face, while experienced challenges are what startups reported that actually
happened in their venture process (Wang, Giardino, Bajwa, & Abrahamsson, 2015). They find that
key challenges change over time (see Figure 1), over six distinct from a development perspective: 1)
concept phase, 2) development phase, 3) working prototype, 4) full functional product with limited
users, 5) full functional with high growth, 6) mature product. Their results show that developing a
product in a technological uncertain environment is the biggest perceived challenge during early-stage
development - along with assembling a team capable of carrying out the diverse tasks associated with
software startup processes. Later on, during the growth phases (i.e., IV and V), customer acquisition
and scaling the company become the largest challenges, along with an overburden of things to do.

Next to the development process, software startups go through the customer learning process in
parallel (Giardino, Wang, et al., 2014). Blank (2007) proposed a customer learning process model,
covering four phases: 1) problem definition, 2) problem validation, 3) solution definition, and 4)
solution validation. Wang et al. (2016) continued their research by analyzing how key challenges
changed over the course of this model (see Figure 2). Their results show that building the product is
the biggest challenge at the start of the process, whereas customer acquisition becomes the core
challenge during solution validation, at the end of the process. Building the business model is the
second biggest challenge at the start of the customer learning process.

While the placement of the key challenges on the stages of these processes are important for
understanding software startup processes, the real question is: why are these the key challenges and
how can they be addressed? In other words, where do these challenges find their origin? Wang et al.
(2015) themselves briefly responded on the why through a multiple-case study. While this is a step in
the right direction, their results are not longitudinal. More specifically, they do not position the
identified experienced challenges over the software startup process. This is a problem, as Giardino et

4

al. (2014) suggests that very often software startups tend to address challenges at the wrong time in the
process. For example: while startups first need to find a problem-solution fit (Blank, 2007), they tend
to focus on assessing their solution by trying to find a product-market fit (Giardino, Wang, et al.,
2014). This suggests a longitudinal study is required in order to fully understand what is going on. In
this respect, Wang et al. (2015) themselves also call for a longitudinal study on the identified key
challenges.

Answering this call, this research aims to fill the research gap by finding out where key challenges
come from in order to begin understanding the processes that drive software startups to success.
Therefore, the main research question is:

RQ: Where do key perceived challenges in software startup processes come from over time?

3 Method

In order to answer the research question, a longitudinal narrative process analysis is adopted (Larty &
Hamilton, 2011; Mohr, 1982). Such an approach has offered rich and fruitful new perspectives,
including new theory in startup process research, before (Johansson, 2004).

For the construction of theory, Langley (1999) notes that process analysis deals mainly with sequences
of “events”. These “events” should be linked to “concepts and categories” in order to create theory
(Strauss & Corbin, 1998). In this study, since we already have a host of previously identified key
challenges (Wang et al., 2016), these can become the concepts for initial research. For example, if the
event attained x customers is found, it is linked to the challenge customer acquisition.

Pentland (1999) identifies events as “stories”, explaining how a key challenge was experienced. The
culmination of stories construct a “fabula”: a generic description of a particular set of events
(Pentland, 1999). This study recognizes these “fabula” as general processes related to the key
challenges. As a final step, the underlying “generating mechanisms” – the underlying structures that
drive the fabula (see: Pentland, 1999) - are identified by analyzing how the fabula are related to each
other in order to find a common driver, in line with Van De Ven, Poole, & Poole (1995). These
generating mechanisms should theoretically explain how startups can deal with key challenges, as they
are the core that drives the events, thus explaining where the key challenges came from.

Multiple cases are used for collecting these fabula, as it allows for in-between case analysis and it has
a higher chance of being generalizable (Eisenhardt, 1989). The goal is to find generating mechanisms
that are present in a number of software startups, as it improves the ability to draw conclusions about a
broader population, given the nature of this research approach (Langley, 1999).

Grounded Theory
In order to perform narrative analysis, the data needs to be structured (Larty & Hamilton, 2011).
Langley (1999) defined two general strategies to structure data, through the creation of concepts and
categories: inductive Grounded Theory (Glaser & Strauss, 1967), and deductive Alternate Templates
Theory (Pinfield, 1986). Since the underlying generating mechanisms explaining where key
challenges over the course of software startups come from are currently unknown (Wang et al., 2015;
2016), an inductive approach offers the greatest potential. Thus, the grounded theory strategy is
chosen for structuring the data and producing the theory.

5

Figure 1: Distribution of key challenges as perceived by software startups, per product development stage. Source:
Wang et al. (2016)

Figure 2: Key perceived challenges throughout the learning stages of the customer learning process by Blank (2007).
Source: Wang et al. (2016)

6

This research uses the grounded theory approach of Strauss & Corbin (1998), in which research
questions and boundaries are (partially) pre-determined. This allows for a more effective approach by
directing the analyses to the most important concepts (Coleman & O’Connor, 2008). However, given
the lack of knowledge on software startup processes (Paternoster et al., 2014), defining such concepts
and boundaries is rather challenging. As such, we have a higher chance of finding something more
interesting when we look into the data first, as it allows for surprises to guide the research (Glaser &
Strauss, 1967). As a result, the research is split into two main phases: the first phase uses broad data to
construct initial concepts and categories, refine the research question and set boundaries for research.
Then, the second phase uses the data and results of the first and continues, by means of additional in-
depth data, to construct the generating mechanisms that drive the processes.

Phases
The main source of data are interviews, as they are seen as the best method for collecting qualitative
narrative data (Eisenhardt, 1989). Each research was subject to specific (i.e., different) interviews.
Data for the first phase was collected - and analyzed - first, after which data collection for the second
phase followed. More specifically, Phase I uses a broad interview protocol (see Appendix A1 for more
details) – while Phase II uses an in-depth interview protocol (see Appendix A2 for more details). That
is, the in-depth protocol is constructed based on findings from Phase I. Notably, both data from round
I and round II are used to create a longitudinal dataset from which I construct theory (Figure 3).

Figure 3: Data used for the research

Phase 1: Study Framing
I first collected data through semi-structured explorative interviews with founding members of six
software startups based in the Netherlands. The interview protocol covers fourteen topics that are
present in the process of software startups. They provide a holistic overview of the dimensions present
in startup processes (Macmillan, Zemann, & Subbanarasimha, 1987). The topics include, among
others, team composition, cash flows, product development, intellectual property, and competition
(Appendix A1).

Given the exploratory nature of the first phase, the interviews were provided with a certain degree of
freedom, with respect to the focal topic of the research. Thus, they were asked to “just tell their story
from start to end.” This allows for tales that include stories and events that are outside the (already
wide) protocol, providing an even richer context. This approach also served to prevent “steering by the
interviewer”, which is known to increase chances of getting biased, subjective data (Eisenhardt, 1989).

After they finished their story, topics from the protocol that were not covered by the original narrative
were discussed, in order to maintain maximum comparability between the different obtained datasets.
That is, this approach allows for comparison between cases as the data sets, at their core, all cover the
same topics (Eisenhardt, 1989; Langley, 1999). Additional data is gathered in terms of business plans,

7

technical documentations of the product, and general background information of the startup. These
data serve triangulation (Yin, 1994).

The preliminary interviews were held between July 2016 and March 2017. The complete database for
this phase involves over five hours of narrative. In total, over 50 pages of narrative data is collected
with more than 30000 words. Interviews were transcribed one by one, and subsequently coded: key
challenges are the concepts to which events belong. Related events are grouped together in fabula.
Fabula with similar drivers in turn are grouped together in generating mechanisms (see Figure 4).
Using this approach, generating mechanisms are sought for every key challenge.

Following Goulding, (2002), this process continued until no further codes of interest were found.
More specifically, after three transcriptions (see Appendix B1, B2.1 and B3), saturation was achieved
in terms of concepts and their related events, as no new and unique events were found. Additional data
were collected, such as important quotes from the remaining startups’ interviews (Appendix B4, B5.1,
and B6) – which thus did not provide new insights with respect to events/concepts. However, they
serve as supporting evidence that the events occurred in more than three startups.

Figure 4: The relationships between events, fabula, and generating mechanisms.

Table 1 provides an overview of all the events that occurred in the processes of the startups, along
with their fabula and generating mechanisms (See Appendix C1-C6 for the event tables). This is in
line with Pentland’s (1999) procedure on narrative analysis (see Appendix D for more details on the
method). The table shows that generating mechanisms are based on a lack of or slack in any of the
following three types of knowledge: Industry-Specific Knowledge, Managerial Knowledge or Product
Development Knowledge. This suggests the knowledge-based view (Grant, 1996) provides a good
research lens for the second research phase.

Finalizing Phase I, the available types of knowledge in each founding team are obtained during post
analysis. The startups are asked to reflect on what types of knowledge they think their founding team
possesses. Table 2 provides a summary of their answers. Product Development Knowledge is further
split between having basic knowledge on software architecture, infrastructure and development in
general and being able to actually program, as startups remarked that there is an important difference
between these variants. Furthermore, managerial knowledge is split between knowledge and
experience, as previous research has shown that startup experience seems to drive progress during
early phases, while knowledge drives later stages (Bosch, Olsson, Björk, & Ljungblad, 2013).

8

Table 1: Events, their fabula and their underlying generating mechanisms of the startups, along with the key
challenge to which the event belongs.

Event Fabula Generating Mechanism Key Challenge (Concept)
HRComp

A clear understanding of customer
needs in the market

Problem-solution fit Sufficient Industry-Specific Knowledge Building the Product

Wrote a successful business plan Understanding the market and
business

Sufficient Industry-Specific Knowledge Business Model

Development team negotiations
stranded

Hiring process Lack of Product Development Knowledge Team Assembly

Own team assembly stranded Hiring process Lack of Product Development Knowledge Team Assembly

Year of self-learning in software
development

Obtaining product development
knowledge

Lack of Product Development Knowledge Building the Product

Mutual understanding of what had to
be done + good technical
documentation

Product development Sufficient Product Development Knowledge Building the Product

Successful integration and co-
development of external API

Product development Sufficient Product Development Knowledge Building the Product

Customer needs were met + co-
creation for solution evaluation

Customer growth Sufficient Industry-Specific Knowledge Customer Acquisition

CardComp

Process was closely managed, leading
to rapid and successful app
development

Product development Sufficient Managerial Knowledge/Sufficient
Product Development Knowledge

Building the Product

The founding team does not know
how to program: hired developers to
develop app

Obtaining product development
knowledge, Hiring process

Insufficient Product Development Knowledge Building the Product

Switched target market, as current
target companies do not identify
themselves as having the problem
CardComp envisioned for their
solution

Problem-solution fit, Customer
growth

Insufficient Industry-Specific Knowledge Customer Acquisition

DrinkComp

Founding team cannot program an
app, has no IT knowledge, thus they
hired a developer

Obtaining product development
knowledge, Hiring process

Lack of Product Development Knowledge Team Assembly

Re-boot of development after 9
months, as the sole developer blacked
out, lost communication. No backup
present and no documentation lead to
a reboot.

Product development Lack of Management Knowledge Building the Product

Product did not fit customer problem. Problem-solution fit Lack of Industry-Specific Knowledge Building the Product

Redevelopment through customer
learning processes

Product development Newly obtained product
development/management knowledge

Building the Product

MarketComp

Very rapid product development as
the founding team has programming
skills

Product development Product Development Knowledge Building the Product

Aborted product, rethought value
proposition as product did not catch
on.

Problem-solution misfit Insufficient Industry-Specific Knowledge Customer Acquisition

ClothComp

Wrote successful business plan.
Based on previous experience,
ClothComp was able to assess exactly
what the customer is waiting for.

Understanding the market and
business

Industry-Specific Knowledge Business Model

Finetuning the concept with the
customer, as he realized
understanding the market & business
is not enough to find a good problem-
solution fit

Problem-solution fit, Product
development

Industry-Specific Knowledge Building the Product

Validate the solution with the
customers with a working prototype

Product Development, Problem-
solution fit

Industry-Specific Knowledge and Product
Development Knowledge

Building the Product

SalesComp

Hired developer to develop product,
as founding team can’t program

Hiring process Lack of Product Development Knowledge Team Assembly

First customer remarked that this is
exactly what they want. Excellent
problem-solution fit. Founder got to
the core of the problem in the
business

Problem-solution fit Industry-Specific Knowledge Building the Product

Product easily scalable, rapid
expansion as customers are dying to
get this product. Good problem-
solution fit. Thus: high growth

Customer growth, Problem-solution
fit

Industry-Specific Knowledge Customer Acquisition

Based on previous experiences in
running startups, founder learned how
to deal with chaotic start: ad-hoc
decision making management style

Product development Management Knowledge (Experience) Building the product

9

Figure 5: Boundaries used in the analysis.

10

Table 2: Types of knowledge available in the founding team of the startups.

Profile CardComp HRComp ClothComp MarketComp DrinkComp SalesComp
Industry-
Specific
Knowledge

- + + - - -

Product
Development
Knowledge:
Basic

+ - + + - +

Product
Development
Knowledge:
Programming
Skills

- - + + - -

Managerial
Knowledge

+ - + + - +

Management
(Startup)
Experience

+ - + + - +

The table shows that the dataset provides startups with a great variety of different background
knowledge compositions, offering heterogenetic cases to analyze. The cases range from absolutely no
knowledge at all (e.g. DrinkComp) towards full knowledge in all three (five when counting subsets)
types of knowledge (e.g. ClothComp). This improves chances of generalizability as the startup cases
are vastly different from a knowledge perspective (Yin, 1994).

The analysis in Phase I concludes that three (five when counting subsets) types of knowledge are
generating mechanisms of causes related to key challenges in software startups, suggesting a
knowledge-based view. The research question is thus refined as following:

RQ: From a knowledge-based view, where do key challenges in software startup processes come
from?

The boundaries for the research are set as depicted in figure 5: over the customer learning phases and
product development phases, the contribution of the types of knowledge are analyzed in relation with
the key challenges, focusing on where they drive key challenges in the process.

Phase 2: In-depth interviews & producing grounded theory

In the second phase, data is gathered through additional in-depth interviews with the startups. These
interviews were held between August 2017 and November 2017. At the core, the interviews are
similar (see Appendix 2), again for maximizing comparability. However, since the stories of the
startups are different, specific questions aimed at their unique processes were added. Also, any
remaining questions that arose during the preliminary analysis were discussed in order to confirm
assumptions (see Appendix 2.1 for an example). As explained, the interviews were semi-structured
(and again exploratory in nature) to prevent bias and steering from the interviewer (Eisenhardt, 1989).
Given the resource limitations associated with this project, the in-depth follow-up interviews were
conducted with two startups: HRComp and ClothComp (See Appendix A2.2-A2.3 for the protocols),
who were upfront determined as most likely key informants.

The data from both Round 1 and Round 2 interviews were combined in order to find generating
mechanisms that are present in all researched startups. The results that are discussed are twofold: the
broad results (Section 4) discuss overall connections between knowledge and key challenges. The
results describe the process as a whole, creating a framework that allows in-depth research between
the relationships present in the framework, which is used for the next section.

Next, the in-depth results (Section 5) dive deeper into generating mechanisms by mapping the generic
framework onto the startup processes of customer learning (Blank, 2007) and product development

11

(Wang et al., 2016), uncovering where the generating mechanisms drive what key challenges. From a
knowledge perspective, this ultimately explains where key challenges come from, answering the
research question.

Lastly, the results and the models that are proposed are validated by one startup (SensorComp, see
below) and one expert on entrepreneurship (Section 6). The contacted SensorComp has, from a
knowledge perspective, a founding team in line with ClothComp. Their venture has been very
successful so far, with a high-growing customer base and a successfully launched product. Their first
investment round has resulted into a positive response from investors and a successful funding. Next,
the contacted expert has over 30 years of experience in running startups, and is connected to both
Utrecht University and Eindhoven University of Technology. His expertise served startups with the
types of knowledge, asking him to reflect on success stories with startups he experienced in the past
(See Appendix 3.2 for the protocol). By discussing the models from multiple entities in the research
field, a validity check is possible from multiple perspectives, improving certainty that the models may
be empirically valid (Eisenhardt, 1989).

12

4 Results: Broad

The main theoretical framework as shown in figure 6 is a combination
of the types of knowledge (generating mechanisms) and the relevant
entities found in startups during early phases to which the concepts
belong: founding team as knowledge broker, external environment,
and the internal developers (categories). In figure 6, the development
process concerns the startup process as a whole. The different types of
knowledge are considered as generating mechanisms throughout the
process that allow for dealing with key challenges.

The different types of knowledge contribute towards the process in
different ways:

Industry-Specific Knowledge is the enabler between the external
environment and the founding team, aiding with the customer learning
process. It helps to address key challenges such as finding a problem-
solution fit (quote 1), finding a product-market fit (quote 2), creating
the business model (quote 3), and acquiring customers (quote 4).

Product Development Knowledge in turn is the enabler between the
internal developers and the founding team, aiding the product
development process. It helps with addressing key challenges
including building the product (quote 5), building the team (quote 6),
and scaling up (quote 7).

Lastly, Management Experience in running startups rather than
Managerial Knowledge allows a smooth development process during
early phases (quote 8, 9, 10). This is in line with previous studies.
These studies advocate for ad-hoc decision making and lean strategies
during early phases of the startup process rather than applying
rigorous management principles and strategies (Bosch et al., 2013;
Unterkalmsteiner, 2015).

However, during scaling and maturity phases of the startup process,
Managerial Knowledge becomes an important moderator, rather than
Experience (quote 11, 12). This is an indicator that from a
management perspective, the data needs to be split between early and
scaling/maturity phases. Figure 7 is an adaption of the main
framework for during these scaling/maturity phases. The founding
team transitions into managing the vision and mission of the startup
(quote 11), while newly acquired managers working underneath the
founding team take on the role of the knowledge broker, essentially
creating hierarchy in the work structure. In terms of knowledge,
management knowledge plays an increasingly important role during
these phases as the process stabilizes and the team grows (quote 12),
in line with previous research (Paternoster et al., 2014). The founding
team uses external information such as macro and micro-environment
factors to guide the startup, aided by Industry-Specific Knowledge.

Descriptive quotes from Interviews

1: “You see the needs from the market, the wishes,
and the problems. Based on your [industry-specific]
knowledge you can anticipate on that and formulate a
concept.”

2: “All knowledge as a consumer (with such a
background in retail) made me understand the
demands from consumers to enjoy a perfect shopping
experience.”

3: “I’d say the business model [is empowered by
Industry-Specific Knowledge] as it brings a disruptive
solution to the industry just because we saw what
everybody else has seen but thought what nobody else
has thought”

4: “You need to have an “unfair” advantage in
comparison to other startups to survive in the
software scene. For me, it’s my social capital that
allows me to converse with large companies
[potential customers] others cannot easily get in
contact with. Social capital comes from being in the
industry.”

5: “[My business partner] started development by
hiring an IT Company to do the development for him.
It didn’t go well – they got into a fight... In hindsight,
he realized he didn’t know enough about IT to guide
how the product should be built.”

“If you start a company with a development team…
then you need to constantly control the [product
development] process. You need to document
everything, like “Where are we?” “What are we
going to do”? You need to plan everything. You need
knowledge for that.”

6: “I tried to assemble a team to develop the product
myself. Well, like I said I was a true layman, I didn’t
know anything about software. I didn’t know the
difference between a WordPress developer and an
actual back-end developer. I didn’t know who to
hire.”

7: “Having an understanding of and planning the
required [product] development platforms,
infrastructure, and architecture before you start
development makes a far better ground for scaling up
later.”

8: “Management methodologies and principles are
impossible to apply. You can use learned negotiation
tactics and conversation tactics, however working
structurally is very difficult. You just don’t know
what’s going to happen tomorrow.”

9: “You can’t really manage the process during early
phases. It’s more like guys, we are in this together,
and we must all do as much as we can in order to
reach the next level.”

10: “When we have a clear concept and need to
develop it to a prototype, your management skills will
be the driver of a smooth and efficient development
phase. You can’t draw a good plan if you don’t know
how to manage different tasks, resources and ideas
and most importantly, how to hire the best team you
need for that.”

11: “If you are able to successfully manage the
development phase, leading to an excellent prototype
your role from now on is focused almost entirely on
managing the company according to its mission,
vision and values. The rest is up to each team leader
that you have hired at the right time.”

12: “After a successful product launch and customer
acquisition, the process stabilizes and you need to
start managing scaling up the company… It becomes
more important to apply structure and work far more
systematically… You hire more managers.”

13

Figure 6: The main theoretical framework for early phases.

Figure 7: Theoretical framework for scaling/maturity phases.

14

Founding team as knowledge broker
The key finding in the data that allowed for the construction of the
presented framework is that the founding team is the knowledge broker
between external and internal information during early phases. While
in the past the first developer was usually a software development
manager, who would run the development process on its own
(Coleman & O’Connor, 2008), that role has changed as these type of
developers are not so easily found anymore. A quote by HRComp best
describes the problem the startups are dealing with (quote 13): they do
want to hire software development managers for their founding team,
but they are very hard to find. The result is that out of the seven
analyzed startups, only two had a software development manager in
the founding team. The other five startups employed freelance
developers to do the work for them. The difference is that whereas
software development managers usually manage the software
development process as whole, including the integration of external
information (Coleman & O’Connor, 2008), the freelance developers
only execute the programming/product development part of the startup
process. The founding team then takes on the managing role of the
software development manager. The relationship between freelance
developers and the founding team is summarized by HRComp (quote
14). ClothComp underlines that the process is a two-way information
exchange, in which execution meets management (quote 15).

As such, when a software development manager cannot be hired in the
founding team, the founding teams seem to manage development
(quote 16). This requires them to have an understanding of product
development (quote 17), otherwise knowledge cannot be exchanged.
ClothComp best describes what types of knowledge the founding team
should have at least have for successfully managing product
development (quote 18): they should know how to setup the
development platform in terms of infrastructure and architecture upon
which the future product is built. Without creating a proper base before
starting development, the process is doomed to fail. When the
developers only execute the process, the founding team needs to have
this Product Development Knowledge.

Turning the lens outwards, the startups remark that the members of the
founding team are responsible for gathering customer information for
developing the product (quote 19, 20). They report that they usually do
not bring their developers to customer meetings, as that would cost a
lot of valuable time while the developer should be focused on
developing the product (quote 20). While this seems like a reasonable
strategy, this also requires that the founding team knows about the
properties of the software product that is being built. Without this
knowledge, they cannot integrate customer feedback into their product,
as they interpret and pass on this information. An example scenario
that underlines this notion is found in a B2B scenario by HRComp
(quote 21). Lastly, the startups remarked that having Industry-Specific
Knowledge enables smoother conversation with potential customers.
They were able to better understand feedback they receive (quote 22).
Also, they were able to “speak their language”, increasing a mutual
understanding of the market (quote 23).

Descriptive quotes from Interviews

13: “They also need to have the [entrepreneurial]
mentality, and many developers do not have that. It’s
very difficult to find the developers that do.”

14: “You are actually trying to sell your dream, your
vision, to an external developer and that developer
has to transform your dream into a real product.”

15: “I invited a savvy developer to organize the idea
into a well-structured coding plan… It helped me on
the my-brain-to-his-brain-to-his-computer process. It
worked perfectly the other way around as well. His
knowledge made me change some reasoning wrongly
taken out of my coding ignorance.”

16: “We need to control the process ourselves… So I
managed the development process on a weekly basis,
like okay, we are now going to build this, we are
going to build it like that. I brainstormed with my
developers in terms of how we do it and what
platform we use. In that sense we developed it
ourselves, although I did not write the code. That’s
where the developers came in.”

17: “If you don’t understand what the developer is
doing you cannot look behind the scenes and
understand what is going on. You don’t understand
the process.”

18: “The team needs to have knowledge on setting up
a development environment. This requires an
understanding of infrastructure such as Microsoft
Azure, Hubstaff, Bitbucket (platforms) to welcome
our developers.”

19: “By the end of April we held an evaluation with
our users [after beta launch] which provided
feedback that our app was slow. We passed this
feedback on to our developer, who proposed to build
the product on a different platform.”

20: “The developer is working at home. It does not
make sense to bring along the developer at every
technical meeting with customers as he should be
focused on building the product.”

21: “A [B2B] customer often requests a specific
integration of the product with their systems. You
may know that it’s technically possible, but [if you
lack Product Development Knowledge] you don’t
know what is needed to do it. You don’t know how
long it is going to take or the costs that are
involved… It becomes very difficult to attract
customers if you can’t assess that on the spot.”

22: “Having Industry-Specific Knowledge helped me
to place customer feedback in the context of the
market, resulting in a better understanding of how
the product should change.”

23: “When you speak with people, you speak the
same language. Say that I had an entirely different
background and I went talking to those HR
managers, then we would have two different
conversations.”

15

Figure 8: Startup processes of HRComp and CardComp.

16

Non-linear phases

Next, it was found that no startup went through the development
phases in a linear manner. As an example, Figure 8 shows the startup
processes over time of CardComp and HRComp in terms of
development phases. CardComp never experienced high growth, while
HRComp was forced back into a concept phase after a partnership was
discontinued. CardComp also showed a simultaneous development
phase with a launched product phase, as they were developing two
products at the same time.

There are many external events that may put a startup back into
previous phases that cannot be controlled by the entrepreneurs. For
instance, HRComp’s event that a key partner stopped collaborating put
them back in a concept phase. The founders could not anticipate this
beforehand; it was a risk they had to take (quote 24). CardComp
experienced a negative reception of their first product that was
launched in the market. This forced them to reposition their value
proposition and target market, after which they had to develop new
products that would fit the new market (quote 25). This put them back
into a concept/development phase. MarketComp experienced a similar
event, in which they had to take their entire offering offline to re-think
what they wanted to offer to their customers (quote 26). This set them
back to the concept phase. ClothComp remarked that they were set
back to the development phase from a working prototype phase three
times because of customer feedback (quote 27). This seems to be a
common thing to do, as startups report that in order to convince
partners to collaborate or to obtain feedback, a working product is
needed instead of just an idea (quote 28). As such, they take their
working prototypes to their customers, which in turn tell them that
they may need to change aspects of their product, essentially sending
them back to the drawing boards.

In order to deal with setbacks and surprises, ClothComp remarks that
planning before starting out is key for development, suggesting that it
is the combination of being comfortable to deal with chaos and
maintaining overview and planning throughout the early process is
what drives success during early phases of startups (quote 29). In line
with effectuation principles, ClothComp notes that during early
phases, entrepreneurs should focus on what they can control
(Sarasvathy, 2001).

Concluding, it must be taken into account that actual startup processes
do not necessarily go through phases in a linear manner. Set-backs are
the norm rather than the exception (quote 30).

Descriptive quotes from Interviews

24: “Our key partner contacted us that they
wanted to stop collaborating with us. We had
grown to be a large threat for their own
existence.”

25: “In January/February [2017] we realized
that our first step on the market was too big.
We must focus on something smaller, like
events… That’s when we invented the
dashboard, as we had nothing to offer for our
new target market.”

26: On their website: “We are gone for now,
but we will be back with a new website and app
and a new value proposition. To fix this we
have to quit for now. See you later!”

27: “When we first contacted three private
brands, showing it [the product], that’s when
we got input and reactions from outsiders. We
used the feedback to further develop our
working prototype. We wanted to impress
people from these brands, so we made specific
ads for them.”

28: “Only talking about your idea does not
convince someone to dedicate time to it. Only
when you have something solid you can contact
people to partner up. “

29: “Planning, planning, planning, before
anything else. Listening is very important too.”

30: “There are so many events that could set a
startup back a few steps. It is inevitable that it
will happen.”

17

5 Results: In-Depth

Several fabula are found in the data per type of knowledge. These are discussed here, per knowledge
type, over the phases.

Managerial Experience/Knowledge

Figure 9: Managerial Experience and Knowledge aids the development processes of startups as a whole.

Managerial Experience and Knowledge seems to help managing the startup process as a whole (See
Figure 9). As previously discussed in the generic results, previous experience in startup processes help
during early phases of the development, up to high growth/scaling, as opposed to Managerial
Knowledge. Managerial Knowledge becomes important during high growth/scaling phases, as the
team grows and the process stabilizes.

As a whole, Managerial Experience and Knowledge influence the tools the founding team uses for
managing the process. In similar fashion as Coleman & O’Connor’s (2008) findings on software
development managers, founders reported that they use the tools they have used in previous ventures
and roles (quote 31). Furthermore, bad startup experiences shape their management styles as they try
to avoid them in the future (quote 32, 33, 34). ClothComp noted that they have over 30 years of
accumulated experience as managers in the industry, yet the one experience with a previous startup is
what made him avoid pitfalls they fell into previously (quote 32).

18

Experience
There are a couple of fabula explaining how experience helps and why
knowledge does not during early phases.

First of all, the consensus of the startups is that applying management
principles is impossible because these phases are too unstable to
manage (quote 35). On the other hand, experiencing startup processes
help with creating a gut feeling that improves ad-hoc decision making
skills and pivoting (quote 36, 37).

Second, HRComp notes that previously obtained skills such as
negotiation tactics and conversation tactics can be utilized (quote 38).
Such soft skills come from experience, not from theoretical knowledge
(Engeström, Miettinen, & Punamäki, 1999), supporting the
proposition.

Third, a common pitfall is that inexperienced entrepreneurs do not
want to deviate from the original plan. Previous research found that
novice entrepreneurs tend to see their product as their baby, reluctant
to change their ideas. On the other hand, experienced entrepreneurs are
not afraid to change their value proposition into something that sells
(Nijssen, 2014). This seems to be in line with what is found in this
research: experience in startups seems to be what drives good decision
making for a successful startup.

The difference is seen in the researched startups: in the case of
CardComp, changing the target market led to a novice entrepreneur
leaving the company, as he was unwilling to deviate from the original
plan. Another is example is related to development speed. DrinkComp
consists of three young entrepreneurs running their first startup. They
needed rigorous coaching by a startup mentor to make them realize
their original value proposition was not working. They were reluctant
to change, costing them a lot of time before they actually switched.

On the other hand, MarketComp consists of three seasoned
entrepreneurs (quote 39). Once they realized that their value
proposition was not working, they pulled their product offline and
focused efforts on rebuilding the product (quote 40). Another example
is SalesComp. The founder created multiple software ventures in the
past decade (quote 41) and he showed a clear trend in his ad-hoc
decision making style: he led feedback guide the product’s properties
(quote 42). Both startups show an openness to change, as opposed to
the novice entrepreneurs in CardComp and DrinkComp.

Knowledge
Managerial Knowledge becomes more important when scaling up the
company. Then, management processes and principles become
relevant as the team grows and the process stabilizes (quote 43). The
startups tend to create management hierarchy during these phases,
which they deem require a more structured and systematic
management style.

Controlling the process
The startups report that while management principles do not apply, the
process still needs to be controlled. HRComp, ClothComp, CardComp,

Descriptive quotes from Interviews

31: “Management skills made it far too easy building
up an efficient plan using Microsoft Office 365 as we
are all far (geographically) from each other on a
daily basis.”

32: “[Startup experience] helped me avoiding bad
[management] decisions as the first one didn’t go
well. Planning, planning, planning, before anything
else. Listening became very important also.”

33: “Based on the previous experience that my
business partner had with developing an app with an
external IT company [which failed]... [We realized]
we need to control the process ourselves… So I
managed the development process on a weekly basis,
like okay, we are now going to build this, we are
going to build it like that.”

34: “After three false starts I realized that if I want to
successfully run development in a startup, I need to
be on top of my developers.”

35: “Management methodologies and principles are
impossible to apply… You just don’t know what’s
going to happen tomorrow.”

36: “[Ad-hoc decision making] It’s more gut feeling
than applying methods. You can only improve your
gut feeling by experiencing startup processes.”

37: “You learn about management in early startup
processes by doing it.”

38: “You can use learned negotiation tactics and
conversation tactics, however working structurally is
very difficult.”

39: “We’ve been running startups for the past 25 years.”

40: On their website: “We are gone for now, but we
will be back with a new website and app and a new
value proposition. To fix this we have to quit for now.
See you later!”

41: “I started with entrepreneurship more than seven
years ago, and I’ve been in multiple successful
startups.”

42: “The product changed over time, based on
feedback that I received directly from the customers. I
changed the product based on feedback from my
customers. I use their feedback to evaluate my
solution to see whether the value proposition fits for
them.”

43: “After the process has stabilized and the startup
grows, more people join the company and you need to
hire managers. You need to delegate more. Then it
becomes important to work systematically and
structured.”

44: “If you start a company with a development
team… then you need to constantly control the
process. You need to document everything, like
“Where are we?” “What are we going to do”? You
need to plan and document everything.”

45: “The developer brought in the technical know-
how, and we created the strategy, the business model,
making money, the commerce. That combination
worked really well. Unfortunately, he got a blackout
and he was gone. As we did not keep track of
documentation, we lost everything. No technical
know-how, no documentation. No plan.”

19

and SensorComp note that they successfully managed the early phases because they controlled the
process by creating documentation and a plan before and changing the plan during the process. The
planning mostly involves awareness of the startup’s position in the industry and pivoting possibilities
– e.g. directions (quote 44). As for planning frequency, CardComp remarked that they were on top of
the process, managing it on a weekly basis in order to keep grip on the process (quote 33). On the
other hand, DrinkComp failed to create a smooth development process because they did not document
development during the process; they only created a strategy at the start. They had to restart
development as everything fell apart (quote 45).

Conclusion
Whereas during early phases up to growth Managerial Experience aids entrepreneurs the most,
Managerial Knowledge becomes important during high growth/scaling phases as the team grows and
the process stabilizes. During early phases experience helps avoiding bad decisions made in previous
ventures, such as not planning out the future. It helps with creating gut feeling that helps with ad-hoc
decision making and with pivoting. The startups also reported that it helps with learning to see
opportunities and dealing with unexpected events. As a whole, experience/knowledge helps with
picking the tools to manage the project.

Product Development Knowledge

Figure 10: Product Development Knowledge aids startups with the product development process.

Figure 10 summarizes the fabula related to Product Development Knowledge. Having Product
Development Knowledge in the founding team enables communication with the internal developers.
Overall, the startups narrate that product development with freelance developers is a process that needs
to be closely managed (quote 46). Essentially, the founders try to communicate their vision towards
the development team, and the team has to translate their ideas into a product (quote 47). Without

20

knowledge on software development, the startups note that
communication becomes very difficult (quote 48).

Furthermore, having Product Development Knowledge allows the
founding team to create technical documentation themselves. As
previously remarked, the startups seem to agree that documenting
everything by themselves is of critical importance for a smooth startup
process (quote 44). As an example, HRComp and DrinkComp
experienced problems transferring knowledge to a new developer
when their old developer left, as he did not write documentation, and
neither did they (quote 49). Creating documentation as a founding
team minimizes the risk of losing such important information in the
startup. ClothComp remarks that they experienced similar issues with
previous startups, and they learned that the founding team should set
up a proper development environment with documentation and tools
for proper development management (quote 50).

During the concept phase of development, having Product
Development Knowledge helps by finding the right tools the internal
developers can use to develop the product. This relates to the previous
mentioned need to know how to build the development environment
(quote 50). Furthermore, it helped HRComp in terms of human
resources. HRComp’s lack of Product Development Knowledge lead
to a failure to assemble their own development team, as the founder
simply did not know who to hire to do the job (quote 51). CardComp
and SalesComp also remarked that having Product Development
Knowledge is what helped them understand what developers were
needed for the task.

During the development phase Product Development Knowledge
helps with guiding the idea into a product. Steering and adhering to the
roadmap while documenting the process is enabled through Product
Development Knowledge (quote 48).

When the product reaches a working prototype stage, startups tend to
start using their prototype for showing their idea to customers and
potential partners. The reason they do not do contact them earlier is
that they experienced that a product sells, not an idea (quote 52). Since
early customer adoption greatly increases the chances of venture
success (Nijssen, 2014), a fast-paced development speed to reach the
working prototype stage is important. This creates a relation between
early customer adoption and product development knowledge: more
knowledge creates a smoother (and faster) development process,
which in turns provides a higher chance to attain early customers as
the working prototype stage is reached faster.

After the working prototype stage is reached, software startups often
have to integrate their product. Out of the seven startups, six startups’
success relied on successful technical integration with partners.
Technical integration seems to require knowledge on product
development in the founding team, as the startups tend to not bring
developers during technical meetings (quote 53), while they do need to
discuss technical details (quote 54).

Descriptive quotes from Interviews

46: “I was on top of our developers every day.
Testing every day. Checking progress every day.”

47: “You are actually trying to sell your dream, your
vision, to an external developer and that developer
has to transform your dream into a real product.”

48: “If you don’t have development knowledge
yourself, you cannot look behind the scenes and
understand what is going on. You don’t understand
the process.”

49: “[We had a developer]. Unfortunately, he got a
blackout and he was gone. No technical know-how,
no documentation.”

50: “The founding team needs to have an
understanding about the development platforms,
infrastructure, and architecture of software products
in order to set up a development environment for the
developers.”

51: “I was a complete layman in software
development. I didn’t know who to hire. At one point I
had hired some developers that didn’t turn out to be
real developers. They were WordPress developers.”

52: “You need to have something physical to show. It
is very hard to sell an idea with nothing to show for
it.”

53: “It does not make sense to bring the developer to
every technical meeting. He should be at home,
focusing on developing the product.”

54: “A [B2B] customer often requests a specific
integration of the product with their systems. You
may know that it’s technically possible, but [if you
lack Product Development Knowledge] you don’t
know what is needed to do it. You don’t know how
long it is going to take or the costs that are
involved… It becomes very difficult to attract
customers if you can’t assess that on the spot.”

55: “We were closely listening to customer feedback,
we monitored conversion rates and analyzed usage
statistics and what they [the customers] said about
the product.”

56: “If you are able to successfully manage the
development phase, leading to an excellent prototype
your role [as a founding team] from now on is
focused almost entirely on managing the company
according to its mission, vision and values. The rest
is up to each team leader that you have hired at the
right time.”

21

Next, after the product is launched, MarketComp remarked that it greatly helped them to have Product
Development Knowledge as they had experience in data analytics and metrics (quote 55).
Furthermore, CardComp and ClothComp both hired data analysts to monitor customer reception in
order to improve their product. Data analytics, as MarketComp remarks, is used to measure their
customer conversion rates and customer clicks to see how well the market responds to the product,
which in their eyes is vital for fine-tuning the product.

During scaling phases of the startup, Product Development Knowledge becomes less important. By
now, most startups had hired a dedicated software development manager, now in charge of developing
the product. Having Product Development Knowledge did help them by building up an environment
that is capable of scaling up. However, the core activities of the founding team seems to be that they
now focus on guiding the startup according to its mission and vision, while the managers take over
development roles (quote 56).

Conclusion
Overall, Product Development Knowledge allows communication between the founding team and the
development team. It helps with steering developers and with managing and creating (technical)
documentation. Furthermore, the founding team needs to know how to build a development
environment for their developers that is also future proof for scaling, as freelance developers only
execute the programming part of the software development.

Industry-Specific Knowledge

Figure 11: Industry-Specific Knowledge aids the customer learning process.

Figure 11 summarizes the fabula related to Industry-Specific Knowledge. Industry-Specific
Knowledge helps with understanding the market in which the product is going to operate. As a whole,
it helps with customer development as it enables software startups to understand the market

22

boundaries, its movements and its quirks (quote 57). Furthermore,
seems to allow startups to anticipate changes in the market more easily
(quote 58). Startups also remarked that having Industry-Specific
Knowledge allows them to speak the language of fellow people
operating in the market, making networking/social interaction easier
(quote 59).

Industry-Specific Knowledge is a double-edged sword. While during
early problem identification startups have shown that it helps them
enormously with recognizing a problem in the market (quote 60, 61,
62), it also seems to make startups overconfident that what they think
is true. They seem to ignore problem validation. Instead they rush to
the market with their product. The successful startups like ClothComp
are aware of this problem. They listened very carefully to what their
customers had to say (quote 63). The not so successful startups indeed
rushed to the market, without proper validation whether the problem
they are trying to solve is actually there. DrinkComp remarked that
they did verify whether their identified problem is actually there,
however what they were doing is an evaluation of their solution (quote
64). CardComp also developed a product first. During their beta
launch, they obtained feedback on the usability of the product, not
whether or not people actually believe they would find value in the
product (quote 65). They went on to process this feedback and launch
the product. This resulted in a change of target market after their first
actual product launch as their core target market was not yet interested
in their product (quote 66).

Startups that realize that assumptions need to be validated can greatly
benefit from their Industry-Specific Knowledge. As SalesComp
remarks, their extensive knowledge in the field gave them an unfair
advantage as they had a large social capital (quote 67). Furthermore,
Industry-Specific Knowledge helps processing feedback during
problem and solution evaluation. Startups that have Industry-Specific
Knowledge narrate that they understand the feedback loud and clear
(quote 68), and they can place it in context more easily (quote 69).
This also seems to help with pivoting and positioning the product in
the market.

Lastly, creating opportunities for the startup is deemed more important
than applying rigorous management principles during early phases of
the startup, as mentioned earlier. Since being experienced in the field
yields a higher social capital (quote 67), Industry-Specific Knowledge
also contributes towards the creation of opportunities, as it provides a
larger network of people operating in the field.

Conclusion
Industry-Specific Knowledge provides knowledge on the market
boundaries, as well as an increased capability to anticipate on changes
in the market. Mutual understanding with customers is possible
because the founders can “speak the same language” as their
customers. Having experience in the industry also seems to unlock a
larger social capital, with plenty of networking opportunities. Lastly, it
enables knowledge brokering with the outside world.

Descriptive quotes from Interviews

57: “Throughout my 14 years’ experience in retail,
first behind the counter as a shop assistant then
moving on to shop manager, shop owner, franchisee,
master franchiser and ending up in the last 8 years as
a regional manager for the same international brand
I started with 14 years before, made me realize that
the whole retail industry was obsolete and needed a
global fixing. In my mind, retail needed the same
solution as Uber brought to taxis and Airbnb to
accommodation.”

58: “Despite that a market is always changing, the
basis remains roughly the same. With Industry-
Specific Knowledge, you can put changes in the right
context. You can anticipate what is going to happen
as you understand how the market is changing.”

59: “[With Industry-Specific Knowledge] you speak
the samen language. Had I conversed with HR
managers with a commerce background, we would
essentially have had two different conversations at
the same time.”

60: “Without my industry background I would never
have found this problem.”

61: “My experience in the industry made me realize
there was something very wrong. My years of
experience made me crystallize the core problem.”

62: “we saw what everybody else has seen but
thought what nobody else has thought”

63: “Throughout development we are frequently in
touch with potential customers (brands and retailers)
and with potential users (shoppers). All inputs are
taken into consideration and help correct any
misleading idea we had initially assumed as correct.
Also helps us validate and adding value to the
solution. Yes, we had those moments [where we
assumed too much] but seeking advice and listening
to those influencers helped us avoid any down-term
around the corner.”

64: “We announced to our friends that we are
building this product, and then you also share your
vision. Then you hear from them what they would
like. So yes, we checked, but not a fully-fledged
market research.”

65: “We first launched our product in April. We
obtained a lot of feedback on our product. Things like
that it loaded a bit slow and that we had to improve
that.”

66: “[After launch] In January/February [2017] we
realized that our first step on the market was too big.
We must focus on something smaller, like events…
That’s when we invented the dashboard, as we had
nothing to offer for our new target market.”

67: “You need to have an “unfair” advantage in
comparison to other startups to survive in the
software scene. For me, it’s my social capital that
allows me to converse with large companies
[potential customers] others cannot easily get in
contact with. Social capital comes from being in the
industry.”

68: “Industry-Specific Knowledge helped me
understand customer feedback loud and clear.”

69: “Thanks to my extensive knowledge in the field, I
can easily put customer needs in their context and
truly understand what is needed.”

23

6 Post Analysis

In order to validate findings, the broad and depth models are discussed with an expert in
entrepreneurship and a successful software startup. In general, the expert and the startup agree with the
models, contributing to the validity of the models (Eisenhardt, 1989). There are a couple of specific
subjects on which the expert elaborated, based on his own experience. These are discussed below.

Most notably, the expert stresses the importance of having startup experience during early phases of
the process. In line with what the startups remarked, he notes that the process is too chaotic to manage
using structures principles. He argues that being comfortable with “riding chaos” is indeed core to
success. However, he notes that “riding chaos” does not entail blindly going through the process. In
line with effectuation principles (Sarasvathy, 2001), he notes that entrepreneurs should control what
they can control, and let go of structuring things they cannot control. He sees the process of planning
the process beforehand as incredibly important (quote 70).

Turning our lens to product development, the expert remarks a few
points. As previously discussed, ClothComp notes that the founding
team should have the knowledge to create a development environment
for their freelance developers to operate in. The expert confirms this
finding, stating that he has seen many development processes fail
because they did not create a viable development environment for their
developers. He notes that the founders must create a development
roadmap in order to successfully create a development environment, as
many problems are down the road (quote 71).

Furthermore, another misconception is what leads some startups to
failure: the expert experienced that while many startups understand
what a developer needs, such as a platform to develop the product on,
often they do not actually know how software works. A telling
example of this phenomenon is what happened with HRComp: the
startup knew that the developers needed a software development
platform. However, they hired developers for a platform that was not
viable for their envisioned end-product, as they did not understand
critical core differences between software platforms. The expert
vouches that a basic understanding of software development is needed
to properly manage the developers and prevent issues such as
experienced by HRComp (quote 72). His remark synergizes with the
previous remark about setting up a roadmap: understanding how
software development works allows the creation of a roadmap, as the
team then understands what is going on down the road.

As a last remark on Product Development Knowledge, the expert
elaborates on the importance of having this knowledge while
consulting with partners. He agrees with the role as knowledge broker
of the founding team, vouching that a founder should be able to
communicate technical aspects in order to prevent a misfit between
what the customers want and what is technologically possible (quote
73).

Finally, from a startup coaching perspective, the expert notes that having software startup experience
does not only help as an entrepreneur, but also from his position as an expert. He believes that only
coaches that have actually experienced being in a software startup can properly help entrepreneurs,
due to the unique psychological environment these entrepreneurs operate in (quote 74).

Descriptive quotes from interview

70: “I always suggest startups to add another phase
before everything: planning, planning, and planning.
While being comfortable with riding chaos is core to
success, planning is an incredibly important second.
The better you plan and prepare beforehand, the
higher the chances of a smooth development process.
For example, there is plenty of research showing why
software projects with governments are such a
drama: these show that it often they already fail with
planning, rendering successful development almost
impossible.”

71: “A roadmap is a must. The founders have to plan
and setup a development platform that is future proof.
That is, it should not be built on an architecture that
does not allow scaling, for instance. There are many
projects in which they fail to think ahead, making a
successful end-product impossible.”

72: “Understanding what a developer needs and
understanding how software development works are
two different things. A basic understanding of
programming, logic skills and software development
greatly aids with managing the developers as only
then you truly understand what is going on.”

73: “Having Product Development Knowledge helps
preventing a misfit between what the customers want
and what’s technologically possible. As a founder you
should be able to communicate that at customer
meetings.”

74: “Coaching startups is also part psychology. I
have experienced being in startups, so I know what
it’s like to be there. Any person that wants to run
startups has to experience being in one in order to
create proper skills for decision making. Running
startups is a skill.”

24

7 Conclusion & Discussion

This research has addressed where key challenge in software startups come from, and has shown that a
knowledge-based view uncovers several generating mechanisms that help dealing with them. Whereas
previous research has already shown that Industry-Specific Knowledge, Product Development
Knowledge and Managerial Experience/Knowledge contribute to increased chances of new venture
success in general (Jo & Lee, 1996; Kakati, 2003; Song et al., 2008), these studies do not show the
relationship between key challenges and these types of knowledge. As found in this study, Managerial
Knowledge does not contribute much towards the startup process during early stages of the process as
ad-hoc decision making is the norm and the process is extremely chaotic, rendering knowledge on
structured management principles irrelevant. Managerial Experience does help during early stages, in
line with Unterkalmsteiner et al.’s (2015) research. However, while Unterkalmsteiner et al (2015)
argue that this type of knowledge is relevant due to the intense competition software startups are
facing, this research also finds that successful startups learned the principles of pivoting, embracing
change and planning ahead through previous startup experiences, not from theoretical knowledge.
Most importantly, they let loose of tightly structured development processes and used previous startup
experience instead to guide them through their processes.

The identified knowledge broker role of the founding team has important implications from a
knowledge-based view. Especially during early stages, the team becomes the knowledge integrator
between external information and their development team. Once the process has stabilized, the
founding teams of successful software startups let go of the knowledge broker role and transitions into
a leadership role, in which they do start to structure the process and apply management principles. The
managers underneath the founding team then take on the role of the knowledge broker. This study
finds that having both Industry-Specific Knowledge and Product Development Knowledge is of vital
importance in order to successfully integrate external and internal information, and suggests that the
biggest key challenges with regards to the customer learning process as well as the product
development process come from a lack of either two types of knowledge in the founding team,
answering where key challenges in these processes in software startups as identified by Wang et al
(2015; 2016) come from.

Zooming in on software developers in software startups, the findings in this study contrast previous
findings. Conversely, while Coleman & O’Connor (2008) found that software startups tend to hire
software development managers to guide their development, this study finds that startups nowadays
mostly hire freelance developers. The shift from hiring expensive software development managers to
lead development towards developers that take on an executional role may be attributable to the
software environment we currently operate in. During Coleman & O’Connor’s (2008) research,
developing a software product was only for the people educated in the field. However, the advent of
mobile applications fueled by the launches of iOS in 2007 and Android in 2008 spurred the
development of tools and platform that allows anyone to develop a software product (Nadella, 2017).
This results in a landscape where cheaper alternatives than a software development manager become
available for development, as shown in the narratives. Freelance developers have become an option.
With the recent spur of effectuation principles as a mainstream way of entrepreneurship (Perry,
Chandler, & Markova, 2012), hiring freelance developers instead of full-deck software development
managers seems a logic choice, considering the affordable loss principle of effectuation: minimize
costs as much as possible (Sarasvathy, 2001). While this shift in developers helps in minimizing
investment for startups during early phases, the trade-off is that the founding team needs to have
Product Development Knowledge and Industry-Specific Knowledge for a successful software product
development. Startups should be aware of their new role as a knowledge broker, as it entails that they
need to have knowledge of both the external environment and internal development in their founding
team. They essentially mimic the role of a sales knowledge broker (see: Van Den Berg et al., 2014) in
larger companies.

25

Finally, we focus on Industry-Specific Knowledge. Next to greatly contributing towards the
identification of customer problems, this study shows that Industry-Specific Knowledge helps with
building a large network of contacts within the market a startup aims to operate or in other words, a
large social capital (Sarasvathy, 2001). Successful entrepreneurs are aware of this opportunity and
leverage it accordingly. Having a social capital helps them with getting in contact with potential
customers, suppliers, partners and other entities in the market. However, Industry-Specific Knowledge
is found to be a double-edged sword. On the one hand it unlocks the power of having a social capital
and understand customer needs, but on the other hand, a common pitfall of software startups is that
their extensive knowledge creates a blind spot for things they assume to be true and things that are
true. Entrepreneurs should be aware of their limits of their knowledge, and validate often which
assumptions are valid, and which are not.

Limitations of the study & Future Research
Using grounded theory as a research method, paired with interviews, collects data that is centered on
the insights and opinions of the interviewed respondents (Glaser & Strauss, 1967). Since these insights
and opinions are subjective per interviewee, the responses may be at odds with reality. While
researchers must accept the accuracy of what respondents narrate during interviews (Hansen & Kautz,
2005), the researcher opted for additional validity of the models. This is why the models presented in
this research are validated by a software expert and a software startup outside the datasets, as it gives a
fresh, objective perspective from respected entities in the software startup field that are unrelated to
the software startups used for the construction of the frameworks.

Given the heterogenetic nature of software startup processes (Davidsson, 2016), generalizability is
always a question in process analysis (Langley, 1999). However, the original dataset upon which the
focal lens was built for constructing the grounded theory consisted of a group of startups that, within
this knowledge-based view, was as heterogenetic as it could be. Startups that had none of the types of
knowledge at all were present in the dataset, as well as startups that had all types of knowledge.
Furthermore, while Eisenhardt (1989) suggested to have at least two cases to study per startup phase,
this research used six.

Lastly, using process theory at its core means to approach data in a way that cannot be captured using
variance analysis, as variance theory does not allow for temporal sequences (Abbott, 1990). However,
the results from process analysis may produce alleyways that can be researched using variance
analysis. Whereas the results offer rich narratives on where key perceived challenges come from, they
are not of statistical significance. This is to be expected for a process study (Mohr, 1982). A
suggestion for future research is thus to triangulate this process research with variance research in
order to create empirically solid results (Van de Ven & Poole, 2005). The fabula narrating the various
relationships between the types of knowledge and the entities related to software startups may be
researched for statistical significance, in order to produce a list of statistically significant contributors
to new venture success. This provides a more detailed list than what is currently available in software
startup literature (Paternoster et al., 2014).

26

References

Abbott, A. (1990). A primer on sequence methods. Organization Science, 1(4), 375–392.

BBC. (2016). Google Achieve AI Breakthrough by Beating GO Champion. Retrieved from
http://www.bbc.com/news/technology-35420579

Beck, K. (2004). Extreme Programming Explained: Embrace Change. Addison-Wesley.

Blank, S. G. (2007). The Four Steps to the Epiphany: Successful Strategies for Products that Win.
Evolution (3rd ed.). Quad/Graphics.

Bosch, J., Olsson, H. H., Björk, J., & Ljungblad, J. (2013). The Early Stage Software Startup
Development Model: A Framework for Operationalizing Lean Principles in Software Startups.
Lean Enterprise Software and Systems, 167, 1–15. https://doi.org/10.1007/978-3-642-44930-7

Cockburn, A. (2004). Crystal Clear: A Human-Powered Methodology for Small Teams.

Coleman, G., & O’Connor, R. V. (2008). An investigation into software development process
formation in software start-ups. Journal of Enterprise Information Management, 21(6), 633–648.
https://doi.org/http://dx.doi.org/10.1108/MRR-09-2015-0216

Crowne, M. (2002). Why software product startups fail and what to do about it. Evolution of software
product development in startup companies. IEEE International Engineering Management
Conference, 1, 338–343. https://doi.org/10.1109/IEMC.2002.1038454

Da Silva, F. Q. B., Santos, A. L. M., Soares, S., Frana, A. C. C., Monteiro, C. V. F., & MacIel, F. F.
(2011). Six years of systematic literature reviews in software engineering: An updated tertiary
study. Information and Software Technology, 53(9), 899–913.
https://doi.org/10.1016/j.infsof.2011.04.004

Davidsson, P. (2016). Developments in Entrepreneurship Research. Contemporary Entrepreneurship:
Multidisciplinary Perspectives on Innovation and Growth, 17–28. https://doi.org/10.1007/978-3-
319-28134-6

Dishman, L. (2015). The State of the American Entrepreneur in 2015. Retrieved October 27, 2017,
from https://www.fastcompany.com/3046773/the-state-of-the-american-entrepreneur-in-2015

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. Academy Management
Review, 14(4), 532–550. Retrieved from http://intranet.catie.ac.cr/intranet/posgrado/Met Cual Inv
accion/Semana 3/Eisenhardt, K. Building Theories from Case Study Research.pdf

Engeström, Y., Miettinen, R., & Punamäki, R. L. (1999). Perspectives on activity theory.

Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., & Abrahamsson, P. (2014). What
do we know about software development in startups? IEEE Software, 31(5), 28–32.
https://doi.org/10.1109/MS.2014.129

Giardino, C., Wang, X., & Abrahamsson, P. (2014). Why early-stage software startups fail: A
behavioral framework. Lecture Notes in Business Information Processing, 182 LNBIP, 27–41.
https://doi.org/10.1007/978-3-319-08738-2

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Strategies for Qualitative
Research. Observations, x, 271 . Retrieved from
https://books.google.ca/books?id=rtiNK68Xt08C&printsec=frontcover&dq=Glaser,+BG.,+%26+
Strauss,+A.+(1967).+The+discovery+of+grounded+theory.+Chicago:+Aldine.&hl=en&sa=X&v
ed=0ahUKEwiegsyV6MbPAhVr6YMKHZToC9kQ6AEIHDAA#v=onepage&q&f=false

Goulding, C. (2002). Grounded Theory: A practical guide for management, business, and market
researchers. Thousand Oaks, CA: Sage.

27

Grant, R. M. (1996). Toward a knowledge-based theory of the firm. Strategic Management, 17, 109–
122. https://doi.org/10.1002/smj.4250171110

Hansen, B. H., & Kautz, K. (2005). Grounded Theory Applied - Studying Information Systems
Development Methodologies in Practice. Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, 0(C), 1–10. https://doi.org/10.1109/HICSS.2005.289

Jo, H., & Lee, J. (1996). The relationship between an entrepreneur’s background and performance in a
new venture. Technovation, 16(4), 161–171. https://doi.org/10.1016/0166-4972(96)89124-3

Johansson, A. W. (2004). Narrating the Entrepreneur. International Small Business Journal, 22(3),
273–293. https://doi.org/10.1177/0266242604042379

Kakati, M. (2003). Success criteria in high-tech new ventures. Technovation, 23(5), 447–457.
https://doi.org/10.1016/S0166-4972(02)00014-7

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009).
Systematic literature reviews in software engineering - A systematic literature review.
Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009

Langley, A. (1999). Strategies for theorizing from process data. Academy of Management Review,
24(4), 691–710. https://doi.org/10.5465/AMR.1999.2553248

Larty, J., & Hamilton, E. (2011). Structural approaches to narrative analysis in entrepreneurship
research: Exemplars from two researchers. International Small Business Journal, 29(3), 220–
237. https://doi.org/10.1177/0266242611401796

Macmillan, I. C., Zemann, L., & Subbanarasimha, P. N. (1987). Criteria distinguishing successful
from unsuccessful ventures in the venture screening process. Journal of Business Venturing,
2(2), 123–137. https://doi.org/10.1016/0883-9026(87)90003-6

Medium.com, P. A. B. (2014). The Last AI Breakthrough DeepMind Made Before Google Bought It
For $400m. Retrieved from https://medium.com/the-physics-arxiv-blog/the-last-ai-breakthrough-
deepmind-made-before-google-bought-it-for-400m-7952031ee5e1

Mohr, L. B. (1982). Explaining organizational behavior. Jossey-Bass.

Nadella, S. (2017). Hit Refresh: The Quest to Rediscover Microsoft’s Soul and Imagine a Better
Future for Everyone.

Nijssen, E. J. (2014). Entrepreneurial Marketing: an effectual approach (1st ed.). Routledge.

Palmer, S. R., & Felsing, J. M. (2002). A Practical Guide to Feature-driven Development. Prentice
Hall, Upper Saddle River, NJ.

Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., & Abrahamsson, P. (2014).
Software development in startup companies: A systematic mapping study. Information and
Software Technology, 56(10), 1200–1218. https://doi.org/10.1016/j.infsof.2014.04.014

Pentland, B. T. (1999). Building process theory with narrative: From description to explaination.
Academy of Management Review, 24(4), 711–724. https://doi.org/10.2307/259350

Perry, J. T., Chandler, G. N., & Markova, G. (2012). Entrepreneurial Effectuation: A Review and
Suggestions for Future Research. Entrepreneurship: Theory and Practice, 36(4), 837–861.
https://doi.org/10.1111/j.1540-6520.2010.00435.x

Pinfield, L. T. (1986). A field evaluation of perspectives on organizational decision making.
Administrative Science Quarterly, 31(1), 365–388.

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development - An Agile Toolkit for
Software Development Managers. Addison-Wesley, Boston.

28

Sarasvathy, S. D. (2001). Causation and Effectuation : Toward a Theoretical Shift from Economic
Inevitability to Entrepreneurial Contingency Authors (s): Saras D . Sarasvathy Source : The
Academy of Management Review , Vol . 26 , No . 2 (Apr ., 2001), pp . 243-263 Published by.
The Academy of Management Review, 26(2), 243–263.
https://doi.org/10.5465/AMR.2001.4378020

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum. Prentice Hall, Upper
Saddle River, NJ.

Shalloway, A., Beaver, G., & Trott, J. R. (2009). Lean-Agile Software Development: Achieving
Enterprise Agility.

Song, M., Podoynitsyna, K., Bij, H., & Halman, J. I. M. (2008). Success Factors in New Ventures. The
Journal of Product Innovation Management, 25, 7–27. https://doi.org/10.1111/j.1540-
5885.2007.00280.x

Stapleton, J. (2003). DSDM: Business Focused Development.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research techniques. Sage publications.

Sutton, S. M. (2000). The role of process in software start-up. IEEE Software, 17(4), 33–39.
https://doi.org/10.1109/52.854066

Unterkalmsteiner, M. (2015). Software Business, 210(June). https://doi.org/10.1007/978-3-319-19593-
3

Unterkalmsteiner, M., Abrahamsson, P., Wang, X., & Nguyen-duc, A. (2016). Software Startups – A
Research Agenda, 10(1), 89–123. https://doi.org/10.5277/e-Inf160105

Van de Ven, A. H., & Poole, M. S. (1995). Explaining Development and Change in Organizations.
Academy of Management Review, 20(3), 510–540. https://doi.org/10.2307/258786

Van de Ven, A. H., & Poole, M. S. (2005). Alternative Approaches for Studying Organizational
Change. Organization Studies, 26(9), 1377–1404. https://doi.org/10.1177/0170840605056907

Van Den Berg, W. E., Verbeke, W., Bagozzi, R. P., Worm, L., De Jong, A., & Nijssen, E. (2014).
Salespersons as internal knowledge brokers and new products selling: Discovering the link to
genetic makeup. Journal of Product Innovation Management, 31(4), 695–709.
https://doi.org/10.1111/jpim.12156

Wang, X., Edison, H., Bajwa, S. S., Giardino, C., & Abrahamsson, P. (2016). Key Challenges in
Software Startups Across Life Cycle Stages. Extreme Programming, 48, 385–386.
https://doi.org/10.1007/978-3-642-13054-0

Wang, X., Giardino, C., Bajwa, S. S., & Abrahamsson, P. (2015). Key Challenges in Early-Stage
Software Startups. Lecture Notes in Business Information Processing, 212, 52–63.
https://doi.org/10.1007/978-3-319-18612-2

Yin, R. (1994). Case study research: Design and methods. Beverly Hills.

