
 Eindhoven University of Technology

BACHELOR

Drawing symmetrical graphs using group theory

Tonnaer, L.M.A.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2a6c38a4-e612-4d91-b6e3-8f77809c1806

Drawing symmetrical graphs using
group theory

Bachelor Project

Loek Tonnaer

September 22, 2014

Technische Universiteit Eindhoven

Abstract

Given a graph G = (V,E), it is possible to describe all possible 2- and 3-geometric sub-
groups of the automorphism group Aut(G) using group theory. Using these classifications,
we have designed algorithms to find all 2- and 3-geometric subgroups, up to conjugacy,
or Aut(G). Once we have found these groups, we define a representation that maps an
automorphism of G to an isometry of R2 or R3. Based on this representation, we then
define a drawing that displays the geometric subgroup.

Contents

1 Introduction 1

2 Background 2
2.1 Automorphisms, drawings and symmetries 2
2.2 Geometric automorphisms and automorphism groups 3
2.3 Symmetries represented by matrices . 4
2.4 Characterising n-geometric automorphism groups 4
2.5 Conjugate subgroups . 6
2.6 Choosing a representation . 6

3 Drawing 2-dimensional symmetric graphs 8
3.1 Classification of 2-geometric subgroups . 8
3.2 Finding 2-geometric subgroups . 9

3.2.1 Algorithms . 9
3.2.2 Extensive example: K4 . 10

3.3 Displaying a 2-geometric automorphism group 12
3.3.1 Algorithms . 12
3.3.2 On strictness . 16

4 Drawing 3-dimensional symmetric graphs 18
4.1 Presentation of a group . 18
4.2 Classification of 3-geometric subgroups . 18

4.2.1 The subgroups of SO3(R) . 18
4.2.2 The subgroups of O3(R) not contained in SO3(R) 20

4.3 Finding 3-geometric subgroups . 21
4.4 Representations for 3-geometric automorphism groups 26
4.5 Displaying a 3-geometric automorphism group 28

5 Conclusion 29

6 Neat examples 30
6.1 The Petersen Graph; an extensive example 30
6.2 2-Dimensional examples . 31

A Sage source code for 2 dimensions 34

1 Introduction

Symmetry is one of the most powerful aesthetic tools to improve the visual appearance
of a graph, and to make it appear less complicated. A symmetric drawing of a graph can
give greater insight in its structure and properties. It is however not very straightforward
to construct a symmetric drawing of a graph. Moreover, different drawings might display
different symmetries of the same graph.
The first step to finding symmetric drawings of a graph is to look for automorphisms of
the graph that can be displayed as symmetries of a drawing. Once we have found all such
automorphisms, we construct drawings that display these automorphisms as symmetries.
A drawing in this case can be defined on the (two-dimensional) plane, but more general
on the n-dimensional Euclidian space (or Rn). In this paper we will focus on two- and
three-dimensional drawings. We define an n-geometric automorphism group as one that
can be displayed as symmetries of a drawing in n dimensions. We first gather some
knowledge about graph automorphisms and symmetries in Rn, and use group theory to
design an algorithm to find all the 2- and 3-geometric automorphism groups of a graph.
Once we have found these groups, we design an algorithm to represent every element of
an automorphism group as a symmetry of a drawing. Then we design an algorithm to
construct such a drawing that displays an entire automorphism group as symmetries.
We have implemented these algorithms in Sage [6], which uses GAP [5] for most of its
group theory functionality.

1

2 Background

2.1 Automorphisms, drawings and symmetries

This paper aims at the displaying of automorphisms of graphs as symmetries. To clearly
understand what this means, we first need some definitions.
Let G = (V,E) be a graph, where V is a (finite) set of vertices and E a set of edges
(i.e. 2-tuples of elements from V). In this paper, we will always assume G to be a simple
undirected graph, i.e. there is at most one edge between any two different vertices, there
are no loops (edges connected at both ends to the same vertex) and edges have no specific
direction.

Definition 1. Automorphism: An automorphism of a graph G = (V,E) is a permutation
p of V such that:

{u, v} ∈ E ⇒ {p(u), p(v)} ∈ E.

Aut(G): The set of automorphisms of a graph G form a group denoted by Aut(G).

We want to draw the graph G in such a way that several of its automorphisms are realised
as symmetries (where possible), at first in the 2-dimensional plane, but more generally in
Rn. For this, we need to define what a drawing of a graph is, what a symmetry is and
what displaying an automorphism means.

Definition 2. Drawing: A (proper) drawing D of a graph G is an injective function
D : V → Rn for some n ∈ N . A vertex v is placed at D(v) and an edge {u, v} is
represented by the line segment between D(u) and D(v).
Strictness: A drawing is strict if for all edges {u, v} ∈ E and all vertices w 6= u, v, the
point D(w) does not lie on the line segment between D(u) and D(v).

The quality “proper” indicates that the drawing is injective, i.e. no 2 vertices are drawn
at the same position. Note that if we want a drawing to be such that the underlying
graph can always be found, we must have both properness and strictness. See Figure 1.
Without strictness (a) could be isomorphic to the other two. However, if we know that
the drawing is strict, we know that (a) must be isomorphic to (c), and both cannot be
isomorphic to (b). This way, there is no ambiguity; given a certain strict drawing, the
underlying graph (its sets of vertices and edges) can always be recovered. From here on
we will always assume properness when speaking of a drawing.

(c)(a) (b)

Figure 1: Strictness is an important quality of a drawing

Definition 3. Isometry: An isometry (of Rn) is a mapping of Rn onto itself that preserves
distances.
Symmetry: A symmetry of a drawing D of a graph G is an isometry of Rn that maps the
image of the drawing onto itself.

Definition 4. Displaying an automorphism: A drawing D of a graph G is said to display
an automorphism h if there is a symmetry σ of D such that

h = D−1σD.

2

Note that D−1σD indeed defines an automorphism.

Example 1. See Figure 2(a).
This is a drawing of a graph G = (V,E) with 4 vertices and 5 edges. The drawing is
proper; all 4 vertices are drawn at different positions. It is also strict, no vertex is placed
on an edge between other vertices.
Verify that the permutation (12) (in cycle notation) is not an automorphism of G.
The permutations (24), (13) and (13)(24) however are automorphisms of G. To see this,
carry out these permutations in the drawing, and verify that the lines representing edges
“do not change”; the image appears the same (apart from renumbering). Now note that
this drawing displays these three permutations (as symmetries); (13) e.g. is realised by a
reflection in the line through vertices 2 and 4. The permutation (13)(24) is realised by a
rotation over 180 degrees.
Now consider Figure 2(b). Verify that here, (123)(45) defines an automorphism. This
drawing however does not display this automorphism as a symmetry. For instance, edge
{2,4} is mapped onto edge {3,4}, which has a different length in this drawing. Hence,
distance is not preserved.

1

2 3

4 1 2 3

4 5

(a) (b)

Figure 2: A drawing of a graph

2.2 Geometric automorphisms and automorphism groups

Our goal is now to display automorphisms of a graph, preferably as many as possible. For
this we use the concept of a geometric automorphism, as introduced by Eades and Lin
[2], generalised to n dimensions, as done by Abelson, Hong and Taylor [1].

Definition 5. n-Geometric automorphism: An automorphism h of a graph G is n-
geometric if there is a drawing D : V → Rn of G that displays h.
(Strictly) n-geometric subgroup: A subgroup H of Aut(G) is n-geometric if there is a
single drawing D : V → Rn that displays every element of H. The subgroup is strictly
n-geometric if the drawing D is strict.

Example 2. Consider Figure 3. Here we see two different drawings of the same graph, the
complete graph with 4 vertices, K4. It provides an example that different drawings can
display different automorphism groups; (a) displays a 2-geometric automorphism group
of size 8, (b) displays a 2-geometric automorphism group of size 6. The symmetries of
both groups are represented as rotations and reflections.
Now let’s look again at Figure 2(b). As we have seen, the automorphism (123)(45) is not
displayed as a symmetry by this drawing. As it turns out, there is no drawing (in R2) that
displays it, hence (123)(45) is not 2-geometric. However, e.g. (13)(45) is 2-geometric, as
this drawing displays it.

3

1

2 3

4

(a) (b)

1

2 3

4

Figure 3: Two drawings of K4 displaying (a) a 2-geometric automorphism group of size 8 and (b) a 2-geometric
automorphism group of size 6.

2.3 Symmetries represented by matrices

Note that since V is a finite set, we can always define a drawing D of a graph G = (V,E)
in such a way that the barycentre of its image is at the origin. Now, let In(R) be the group
of isometries of Rn, and let On(R) be the subgroup of In(R) that fixes the origin. The
elements of On(R) are represented by orthogonal n×n-matrices (a matrix A is orthogonal
if and only if AAT = I). Let SOn(R) denote the subgroup of On(R) corresponding to the
matrices of determinant 1.
Now, if we indeed define a drawing such that the barycentre of its image is at the origin,
then all its symmetries form a subgroup of On(R). Furthermore, notice that if H is an
n-geometric subgroup of Aut(G), H is isomorphic to a subgroup of On(R).

2.4 Characterising n-geometric automorphism groups

First, consider the following lemma from [1].

Lemma 1. A group H ⊆ Aut(G) is n-geometric with respect to a drawing D if and only
if there exists an injective homomorphism φ : H → On(R) such that for all v ∈ V and
h ∈ H we have D(hv) = φ(h)D(v).

Proof. As mentioned before we can always define a drawing such that the barycentre of
D(V) is at the origin, so that isometries representing elements of H belong to On(R). Fur-
thermore, we always choose an isometry such that it acts as the identity on the subspace
orthogonal to that spanned by D(V). This way we see that each h ∈ H can be associated
with a unique isometry φ(h). Therefore H is n-geometric if and only if there is a drawing
D : V → Rn and a homomorphism φ : H → On(R) such that φ(h)D(v) = D(hv) for all
h ∈ H and all v ∈ V . From this it follows immediately that φ must be injective. Indeed,
if φ(h) = 1, then D(hv) = D(v) for all v ∈ V . Since D is injective, we have hv = v for all
v ∈ V ; i.e. h = 1.

Such a homomorphism φ : H → On(R) is called a representation of H. In matrix terms,
every element of H is represented by an orthogonal matrix. A representation is called
faithful if φ is injective.
Now consider some basic terms from group theory (see e.g. [3]):

Definition 6. Let H be a group acting on a set U . Let u ∈ U .
Orbit: The subset Hu = {x ∈ U |x = gu for some g ∈ H} of U is the H-orbit of u.
Stabiliser: The subgroup Hu = {g ∈ H|gu = u} of H is the stabiliser of u in H.
Conjugacy: Two elements a and b of H are conjugate if there exists an h ∈ H such that
b = hah−1.

The orbits divide the set U in equivalence classes, so each of them can be specified by a
representative element. Conjugacy is an equivalence relation, we call the corresponding

4

equivalence classes of H the conjugacy classes.
Using these terms, we can now characterise n-geometric groups with the following theorem
(from [1]).

Theorem 1. A subgroup H ⊆ Aut(G) is n-geometric if and only if there is an injective
homomorphism φ : H → On(R) such that for representatives v1, v2, . . . , vk of the orbits
of H acting on V there are distinct points a1, a2, . . . , ak ∈ Rn such that φ(Hvi) = φ(H)ai
for i = 1, 2, . . . , k.

Proof. Say H is n-geometric and let φ : H → On(R) and D : V → Rn be the associated
homomorphism and drawing as in Lemma 1. Then for h ∈ H and v ∈ V we have
D(hv) = φ(h)D(v), and so h ∈ Hv if and only if φ(h) ∈ φ(H)D(v). Now, if v1, v2, . . . , vk
represent the orbits of H on V , we may take ai = D(vi). Clearly, all the ai are distinct,
since D is injective.
To prove the converse, suppose that φ : H → On(R) is an injective homomorphism
and that for representatives v1, v2, . . . , vk of the orbits of H on V we have distinct points
a1, a2, . . . , ak such that φ(Hvi) = φ(H)ai . Note that for any r 6= 0 ∈ R and any a 6= 0 ∈ Rn
we have φ(H)ra = φ(H)a. Therefore we may scale the points a1, a2, . . . , ak such that no
two lie on the same distance from the origin.
For v ∈ V we have v = hvi for some h ∈ H and some orbit representative vi. Then
φ(h)ai depends only on v and not on the choice of h. To see this, suppose that v = gvj
for some g ∈ H. Then vi and vj are in the same orbit of h, and so i = j. We have
h−1gvi = h−1v = vi, and so h−1g ∈ Hvi . But φ(Hvi) = φ(H)ai and so φ(h)−1φ(g)ai = ai.
Thus indeed φ(g)ai = φ(h)ai. This shows that the drawing D(v) = φ(h)ai is well-defined.
We now show that D is injective. Let D(u) = D(v), where u = gvi and v = hvj for some
i and j. Then φ(g)ai = φ(h)aj . Since φ(g) and φ(h) are isometries, we have that ai and
aj are at the same distance from the origin. But since we scaled the points a1, a2, . . . , ak
such that no two lie on the same distance from the origin, we see that i = j. But now
φ(g−1h) ∈ φ(H)ai = φ(Hvi) and since φ is injective we have g−1h ∈ Hvi . Thus gvi = hvi
and so u = v, and therefore D is indeed injective.
Finally, for v = hvi and g ∈ H we have D(gv) = φ(gh)ai = φ(g)φ(h)ai = φ(g)D(v), which
proves that H is n-geometric.

From this proof it follows that the condition that the points a1, a2, . . . , ak are distinct is
equivalent to the requirement that at most one of them is 0.
Our goal is to find all n-geometric automorphism groups of a given graph G = (V,E). It
is evident that every subgroup of Aut(G) is n-geometric for n = |V |. However, for n ≤ 3
the conjugacy classes of subgroups of On(R) are rather limited, which limits the types of
groups that can be 2- or 3-geometric.
Using the characterisation of Theorem 1, we will give classifications of the 2- and 3-
geometric groups in the next sections. We have seen that the group should have a faithful
representation by orthogonal matrices. Since conjugate representations in On(R) produce
equivalent drawings (we will later see in Lemma 2 what exactly this means), we only need
to describe the finite subgroups of On(R) up to conjugacy. For this we need more details
about the matrix presentations and the actions of the groups on Rn. We will summarise
the results here, mathematical details can for instance be found in [4].
From Theorem 1 we know that a permutation group H ⊆ Aut(G) is n-geometric if there
is an isomorphism φ between H and a finite subgroup T of On(R) such that:

• if H fixes more than one vertex, then T fixes a vertex other than the origin; and

• for every vertex v, φ(Hv) is the stabiliser in T of a point in Rn

We refer to this group T as the type of H.
As it turns out, the list of possible types T and stabilisers is quite restricted. Further-

5

more, the following theorem (see [3]) will be useful for the characterisation of geometric
subgroups in the following sections:

Theorem 2. (Orbit Stabiliser Theorem)
Let G be a group acting on a set X, and let x ∈ X. Let Orb(x) be the G-orbit of x and
Stab(x) be the stabiliser of x in G. Then:

|Orb(x)| = |G|
|Stab(x)|

Proof. Define the mapping ϕ : G → Orb(x) given by ϕ(g) = gx. Clearly ϕ is surjective,
as by definition x is acted on by all elements of G. Now, for any g, h ∈ G we have ϕ(g) =
ϕ(h) ⇔ gx = hx ⇔ g−1(gx) = g−1(hx) ⇔ x = (g−1h)x ⇔ g−1h ∈ Stab(x). This means
that g ≡ h (mod Stab(x)). Thus there is a well-defined bijection G/Stab(x) → Orb(x)
given by g Stab(x) 7→ gx. So Orb(x) has the same number of elements as G/Stab(x).
The result immediately follows.

For many finite subgroups of O2(R) and O3(R), the stabilisers are identified up to con-
jugacy by their orders. In such a case only the orbit lengths are needed to determine
whether a group is geometric. The orbits of length less than |H| are called the short
orbits and those of length |H| the regular orbits of H. The orbits of length 1 are said to
be trivial.

2.5 Conjugate subgroups

The following Lemma (from [1]) shows that we basically only need to find n-geometric
subgroups of the automorphism group Aut(G) of a graph G = (V,E) up to conjugacy,
because conjugate n-geometric subgroups essentially have the same drawings. Let Sym(V)
be the group of all permutations of V .

Lemma 2. Let H be an n-geometric subgroup of Aut(G) with respect to a drawing D and
suppose that H ′ = g−1Hg ⊆ Aut(G), where g ∈ Sym(V). Then H ′ is n-geometric with
respect to the drawing D′ defined by D′(v) = D(gv).

Proof. Let φ : H → On(R) be a homomorphism such thatD(hv) = φ(h)D(v) for all h ∈ H
and all vertices v ∈ V (as in Lemma 1). Define φ′ : H → On(R) by φ′(h′) = φ(gh′g−1).
Let h′ ∈ H ′ and v ∈ V , so there is a h ∈ H such that h′ = g−1hg (namely h = gh′g−1).
Then we have D′(h′v) = D(gh′v) = D(hgv). But D(hgv) = φ(h)D(gv) = φ(h′)D′(v),
and so D′(h′v) = φ(h′)D′(v), proving that H ′ is n-geometric with respect to D′.

Example 3. Let G be a circuit if length 5. In Figure 4 there are 4 different drawings
of G. Let H = 〈(12345)〉, then H clearly is a 2-geometric automorphism group of G, as
it is displayed by the drawing in e.g. (a) as a rotation by 2π

5 . Now, let g = (25)(34) ∈
Sym(V). We easily verify that H ′ = g−1Hg = 〈(54321)〉 ⊆ Aut(G). If we define D′ by
D′(v) = D(gv) as in Lemma 2 we find the drawing in Figure 4(d), which displays H ′ as
a rotation by 2π

5 . Apart from renumbering, (a) and (d) look identical.
We can form a similar argument for (b) and (c).

2.6 Choosing a representation

Given an n-geometric subgroup of the automorphism group Aut(G) of a graph G = (V,E),
it’s possible to construct different drawings that display the same geometric automorphism
group, depending on the choice of the representation. To see this, let H ⊆ Aut(G) be a
n-geometric group. Consider two different faithful representations φ, θ of H with a fixed

6

(a)

1

2

3 4

5

(b)

1

4

2 5

3

(c)

1

3

5 2

4

(d)

1

5

4 3

2

Figure 4: Different representations used to display the same automorphism group

image T ⊆ On(R). Then φθ−1 is an automorphism of H. Hence, choosing a different rep-
resentation is equivalent to permuting a particular representation with an automorphism
of H.

Example 4. Consider again Figure 4 of a circuit G of length 5. Let p = (12345) and
H = 〈p〉. Verify that all 4 drawings display H. Each uses a representation that maps a
generator of H (p, p2, p3 or p4 respectively) to a rotation by 2π

5 . Clearly, (a) and (b) are
different, showing that a different representation can result in a different drawing. As we
have already seen in Example 3, (a) and (d), as well as (b) and (c) are the same up to
relabeling, since p and p4, as well as p2 and p3 are conjugate in Aut(G) by (25)(34).
Furthermore, notice that p and p2 are conjugate by (2345) ∈ S5\ Aut(G), therefore the
drawings that display them use the same points for vertices, but with different edges.

7

3 Drawing 2-dimensional symmetric graphs

3.1 Classification of 2-geometric subgroups

We first look at the finite subgroups of SO2(R), represented by orthogonal matrices of
determinant 1. Then we expand this search to subgroups of O2(R).
The only finite subgroups of SO2(R) are the cyclic subgroups Ck of order k, generated by
a single element. Ck fixes the origin, and all its other orbits are regular. The action on
R2 of a generator of Ck can be represented by the rotation matrix(

cos θ − sin θ
sin θ cos θ

)
, where θ =

2πm

k
for some m coprime to k.

Note that geometrically this defines a rotation around the origin over an angle θ.
The finite subgroups of O2(R) that are not contained in SO2(R) are the groups Dk of
order 2k. For k > 1 these are the dihedral groups. A group Dk is the group of symmetries
of a regular polygon with k sides, including both rotations and reflections. The group
D1 is cyclic or order 2 and its orbits have lengths 1 and 2. Thus, the 2-geometric cyclic
permutation groups are D1 and the groups Ck. We therefore find the following result for
cyclic groups:

Result 1. A cyclic permutation group is 2-geometric if and only if its order is 2 or it has
at most one fixed vertex and its non-trivial orbits are regular.

If we draw a vertex somewhere in the plane, but not in the origin, then the action of Ck
will rotate this point around the origin over 2πm

k , with m coprime to k. Therefore, after
exactly k such rotations, it will be back where it started, but not sooner. If we draw the
vertex in the origin instead, it will not move under the action of Ck. See e.g. Figure 5;
here the solid lines represent the image of the x-axis under the action of C10.

-1.5 -1.0 -0.5 0.5 1.0 1.5

x

-1.5

-1.0

-0.5

0.5

1.0

1.5

y

Figure 5: The image of the x-axis under the action of C10 or D10

The intersection of Dk with SO2(R) is the cyclic group Ck, and Dk can be generated by
the rotation matrix given above and the reflection matrix(

1 0
0 −1

)
.

8

Note that this matrix geometrically represents a reflection in the x-axis. Every element
of Dk not in Ck has order 2 and fixes two points on the unit circle. Thus, Dk has two
short orbits of length k on the unit circle. Hence, we find the following result for dihedral
groups:

Result 2. A dihedral group is 2-geometric if and only if it has a 2-geometric cyclic
subgroup of index 2. If k > 2 this subgroup of index 2 is unique.

Look again at Figure 5. Now we let the lines represent the image of the x-axis under the
action of D10. If we place a vertex in the origin, we see that it again remains fixed under
the action of D10. A vertex placed on the x-axis or on any of the other lines in Figure 5
will have an orbit of size 10 under the action of D10. However, if we place a vertex not in
the origin, and not such that the line through that vertex and the origin makes an angle
of iπ

10 with the x-axis, for i = 1, 2, . . . , 20 (these are the solid and dashed lines in Figure
5, it will have an orbit of size 20. This is because it is not in the fixed point space of any
non-trivial element of D10. Notice that the points on the dashed lines are in fact part
of the fixed point space for some non-trivial element of D10; a rotation combined with a
reflection.

3.2 Finding 2-geometric subgroups

3.2.1 Algorithms

We now describe algorithms to find all the 2-geometric automorphism groups of a graph
G = (V,E), first the cyclic groups, then the dihedral groups. We have implemented these
algorithms in Sage. These implementations can be found in the Appendix.
Using Result 1 we specify the following algorithm for finding the 2-geometric cyclic groups.

Algorithm 1. Finding the 2-geometric cyclic groups
Input: A graph G = (V,E), defined by its vertices V and edges E.
Output: All 2-geometric cyclic subgroups of the automorphism group Aut(G) of graph
G, up to conjugacy.

1: Aut(G) ← Automorphism group of the graph G
2: ub← Maximum of the orbit lengths of Aut(G) on V (to be used as an upper bound

for the order of a 2-geometric element)
3: repG← List of representatives for the conjugacy classes of Aut(G)
4: Cks← Empty list (used to store all cyclic 2-geometric cyclic subgroups of Aut(G))
5: for all h ∈ repG do
6: if (order(h) = 2) or (order(h) > 2 and order(h) ≤ ub and |fix(h)| ≤ 1 and all

non-singleton cycles of h are of length order(h)) then
7: Append 〈h〉 to Cks
8: end if
9: end for

10: return Cks

Note that no specific method is mentioned of how to compute Aut(G), its orbit lengths,
and representatives of its conjugacy classes. Computing the automorphism group Aut(G)
is a hard problem, however several quite efficient algorithms are known for it, see for
instance [7], [8] or [9]. Sage has such an algorithm for finding the automorphism group
of a graph implemented, as well as for finding orbit lengths and representatives for the
conjugacy classes of Aut(G).
It is clear that after running the algorithm, Cks contains exactly those (2-geometric)
cyclic permutation groups that correspond to Result 1, up to conjugacy.

9

Definition 7. Normaliser: The normaliser NA(H) of a subset H in the group A is defined
as NA(H) = {a ∈ A|a−1Ha = H}.

We make use of the idea of the previous algorithm and of Result 2 for the following algo-
rithm to find the 2-geometric dihedral groups.

Algorithm 2. Finding the 2-geometric dihedral groups
Input: A graph G = (V,E), defined by its vertices V and edges E.
Output: All 2-geometric dihedral subgroups of the automorphism group Aut(G) of graph
G, up to conjugacy.

1: Aut(G) ← Automorphism group of the graph G
2: ub← Maximum of the orbit lengths of Aut(G) (to be used as an upper bound for the

order of a 2-geometric element)
3: repG← List of representatives for the conjugacy classes of Aut(G)
4: Cks2← Empty list (used to store all cyclic 2-geometric subgroups of Aut(G) with at

most 1 fixed point)
5: for all h ∈ repG do
6: if (order(h) ≥ 2 and order(h) ≤ ub and |fix(h)| ≤ 1 and all non-singleton cycles

of h are of length order(h)) then
7: Append h to Cks2
8: end if
9: end for

10: Dks← Empty list (used to store all 2-geometric dihedral subgroups of Aut(G))
11: for all g ∈ Cks2 do
12: N ← Normaliser of 〈g〉 in Aut(G)
13: Ncr ← List of representatives for the conjugacy classes of N
14: Ncr2← All elements of Ncr of order 2
15: for all a ∈ Ncr2 do
16: if (ga)2 = e and g 6= a then
17: Append 〈g, a〉 to Dks
18: end if
19: end for
20: end for
21: return Dks

Notice that the first part of the algorithm is almost identical to Algorithm 1, it selects
the same elements, apart from those with order 2 and more than one fixed point. The
only other difference is that Cks stores groups generated by a single permutation, whereas
Cks2 only stores single permutations. We use this similarity in our implementation by
combining both algorithms. Again, functions such as computing the normaliser are readily
usable in Sage, so have not been described in more detail.

3.2.2 Extensive example: K4

Example 5. We will demonstrate the algorithms in the previous section for the complete
graph K4 (see also Figure 3). It has 4 vertices and 6 edges; one between every pair
of vertices. Its automorphism group is exactly the symmetry group with 4 elements:
Aut(K4) = S4,where Sn = Sym(n) is the group of all permutations of n elements. We
now simply execute Algorithm 1 step by step to find all cyclic subgroups of K4.
Clearly, the maximum orbit length is 4, so set an upper bound ub← 4 for the order of a
2-geometric element.
We now want to find representatives of the conjugacy classes of S4. It has a total of five
conjugacy classes:

10

• (1)4: No change (1 element: {e}, where e is the unit permutation).

• (2): Interchanging two (6 elements: {(23), (13), (12), (03), (13), (01)}).
• (3): A cyclic permutation of three (8 elements: {(123), (132), (032), (023), (013),

(031), (012), (021)}).
• (4): A cyclic permutation of all four (6 elements: {(0123), (0321), (0231), (0132),

(0312), (0213)}).
• (2)(2): Interchanging two, and also the other two (3 elements: {(01)(23), (02)(13),

(03)(12)}).
Notice that we have numbered the vertices 0 to 3, rather than 1 to 4. This is simply
because it is the convention Sage uses. As representatives, we use the following elements
(arbitrarily chosen): e, (23), (123), (0123), (01)(23).
We now check these representatives one by one, to see if they have order 2, or order
greater than 2 and at most one fixed vertex. If so, we add the group generated by it to
our list Cks. We find:

• order(e) = 1 < 2, so we do not select it. Although it technically can be seen as a
geometric element, e generates the trivial group which is of no real interest to us; it
will always be displayed in any drawing.

• order((23))=2, so we will add 〈(23)〉 to Cks without having to count its fixed points.

• order((123))=3, it has only one fixed point, namely 0, so we add 〈(123)〉 to Cks.

• order((0123))=4, it has no fixed points, so we add 〈(0123)〉 to Cks.

• order((01)(23))=2, so we add 〈(01)(23)〉 to Cks.

So now our list Cks contains four 2-geometric cyclic subgroups of Aut(K4).
Now let’s use Algorithm 2 to find all 2-geometric dihedral subgroups of Aut(K4). The
first part is similar to Algorithm 1; additionally we just need to check the fixed points of
the order 2 elements (23) and (01)(23). We find that fix((23)) = {0, 1}, so |fix((23))| =
2 > 1, so in this case we do not select (23). Furthermore, we find fix((01)(23)) = ∅
so |fix((01)(23))| = 0 ≤ 1, so we do select (01)(23). We then find Cks2 containing 3
permutations:
Cks2 = {(123), (0123), (01)(23)}.
For the normalisers of the groups they generate, we find:

• NAut(G)(〈(123)〉) = 〈(23), (123)〉.
• NAut(G)(〈(0123)〉) = 〈(13), (0123), (02)(13)〉.
• NAut(G)(〈(01)(23)〉) = 〈(23), (01)(23), (0213)〉.

Selecting only those elements of order 2, we find:

• N2(123) = {(23), (12), (13)}.
• N2(0123) = {(13), (01)(23), (02), (02)(13), (03)(12)}.
• N2(01)(23) = {(23), (01), (01)(23), (02)(13), (03)(12)}.

Finally, as representatives of their conjugacy classes we can find the following (ignoring
the unit permutation e):

• N2cr(123) = {(23), (123)}.
• N2cr(0123) = {(13), (01)(23), (0123), (02)(13)}.
• N2cr(01)(23) = {(23), (01)(23), (02)(13), (0213)}.

Now, for every g ∈ Cks2 and a ∈ N2crg we find out if it satisfies (ga)2 = e. If so, we add
〈g, a〉 to Dks, as it is a 2-geometric dihedral group. We ignore those a for which a = g,
since we would actually find a cyclic group in that case. We find:

11

• ((123)(23))2 = e. So we add 〈(123), (23)〉 to Dks.

• ((0123)(13))2 = e, ((0123)(01)(23))2 = e, ((0123)(02)(13))2 = (02)(13). So we add
〈(0123), (13)〉 and 〈(0123), (01)(23)〉 to Dks.

• ((01)(23)(23))2 = e, ((01)(23)(02)(13))2 = e, ((01)(23)(0213))2 = (01)(23). So we
add 〈(01)(23), (23)〉 and 〈(01)(23), (02)(13)〉 to Dks.

So we have now found our list Dks containing five 2-geometric dihedral subgroups of
Aut(G).
In a later example, we will use these groups to choose a representation and a drawing to
display them.

3.3 Displaying a 2-geometric automorphism group

3.3.1 Algorithms

Now that we are able to find all the 2-geometric subgroups of the automorphism group
Aut(G) of a graph G = (V,E), we can design an algorithm to define a drawing of the
graph in the 2-dimensional plane. We have seen that the only 2-geometric automorphism
groups are the cyclic groups and the dihedral groups, and that they can be represented
as rotations and reflections. The general idea is that we will draw the orbits on circles of
different radii, and if there is a fixed point we will draw it at the origin.

However, let us first consider a special case where drawing orbits as circles is not possible:
notice that although most 2-geometric groups have at most one fixed vertex, it is possible
for a cyclic group to be 2-geometric and have more than one fixed vertex, if and only if
its order is 2. This is a special case, since we cannot simply draw its fixed point at the
origin as there are more than one. The idea is that we draw all its fixed points on a single
line, for instance the x-axis. Now notice that all other vertices have orbit length 2. We
will draw two vertices in the same orbit as two points at equal distances above and below
the reflection line. If we take the x-axis as reflection line, this means that we exactly use
the representation φ : H → O2(R) given in matrix form by

φ(h) =

(
1 0
0 −1

)
,

where H = 〈h〉. A question that remains is where exactly to place these points, to make
a clear picture. One option to do this will be described in Algorithm 4. In Section 3.3.2
we will look into the question whether such a drawing can be strict.

For all other cases, we know there is at most one fixed point. If there is one, we will
draw it at the origin. All the other orbits are of length |H| or 1

2 |H|, so according to
Theorem 2 their representatives have a stabiliser of order 1 or 2. We first define a rep-
resentation, recall from Section 3.1 that this is possible with a rotation matrix and (for
dihedral groups) a reflection matrix. Also recall that the choice of the rotation matrix is
not unique because of the choice for m, and that this can influence the appearance of the
drawing.

With these insights, we will firstly design an algorithm to assign a representation to
any 2-geometric subgroup of the automorphism group Aut(G) of a graph G = (V,E).

Algorithm 3. Finding a representation for a 2-geometric subgroup
Input: A 2-geometric subgroup H of the automorphism group Aut(G) of a graph G =
(V,E).
Output: A representation φ : H → O2(R) ofH.

12

1: if |fix(H)| > 1 then
2: h ← The generator of H (we know by construction that H must have a single

generator of order 2 in this case)

3: Define φ(h)←
(

1 0
0 −1

)
4: else
5: Hgens ← The generators of H (we know by construction that there must be 1 or

2)
6: if |Hgens| = 1 then
7: h← The generator of H
8: k ← Order(h)
9: m← 1 (can be any other m < k coprime to k, yielding a different representation)

10: θ ← 2πm
k

11: Define φ(h)←
(

cos θ − sin θ
sin θ cos θ

)
12: Define φ(hi) = φ(h)i for i = 2, . . . , k
13: else
14: h1 ← The generator of H or order 2 (we know there are two generators, at least

one of them has order 2)
15: h2 ← The other generator of H (we know it has order ≥ 2)

16: Define φ(h1)←
(

1 0
0 −1

)
17: k ← Order(h2)
18: m← 1 (can be any other m < k coprime to k, yielding a different representation)

19: θ ← 2πm
k

20: Define φ(h)←
(

cos θ − sin θ
sin θ cos θ

)
21: Define φ(hi1h

j
2) = φ(h1)iφ(h2)j for i = 1, 2, j = 1, . . . , k

22: end if
23: end if

As is implied by the comments in the algorithm, there is some freedom of choice which
can lead to different representations. For groups with more than 1 fixed point, the angle
of the reflection axis can be altered, eventually leading to a rotated drawing. For rotation
matrices, different values for m coprime to k can be chosen. Since m = 1 is always coprime
to any k, this is used as a standard value. For the effect of different choices for m, recall
Section 2.6.

Once we have chosen a representation, the idea is that we draw each orbit on a circle
with a different radius. For every orbit, we pick a representative v, and find its stabiliser
Hv.
If Hv = H, then v is the fixed point so we draw it at the origin.
If the dimension of φ(Hv) is one, Hv must represent a reflection, so we want to draw v
on its reflection line, so that it is indeed fixed by this reflection. The other vertices in
its orbit will be drawn on the same circle around the origin, at equal distances from each
other.
If Hv is the trivial group (that consist of only the identity element), then its orbit is
regular and is represented by a rotation. We draw the vertices of this orbit on a circle
around the origin, with equal distances from each other.

With these ideas we define the following algorithm for defining a drawing D that dis-

13

plays a 2-geometric automorphism group:

Algorithm 4. Defining a drawing that displays a 2-geometric automorphism group
Input: A 2-geometric subgroup H of the automorphism group Aut(G) of a graph G =
(V,E), a representation φ : H → O2(R).
Output: A drawingD that displaysH as symmetries.

1: if |fix(H)| > 1 then
2: Let v1, v2, . . . , vf be the fixed points of H acting on the vertex set V of the graph,

and u1, u2, . . . , um representatives for the orbits of H of length 2. Here f = |fix(H)|
and m = |V |−f

2
3: h ← The generator of H (by construction we know H has exactly one generator,

of order 2)
4: d ← A vector d ∈ R2 such that |d| = 1 and φ(h)d = d (i.e. d is an eigenvector of

φ(h) of length 1 for eigenvalue 1)
5: for i← 1, 2, . . . , f do
6: D(vi)← (i− 1

2 (f + 1))d (this places the fixed points of H on the reflection line,
with in-between distances of 1, centred around the origin)

7: end for
8: for j = 1, 2, . . . ,m do

9: D(uj)← 1
2 (f−1)

(
cos θj − sin θj
sin θj cos θj

)
d, where θj = π

m+1j (this places the orbit

representatives on a circle around the origin through v1 and vf , on one side of
the reflection line, with equal in between distances)

10: D(huj) ← φ(h)D(uj) (this places the other element of the orbit of uj at the
reflection of D(uj) in the reflection axis)

11: end for
12: else if |fix(H)| ≤ 1 then
13: Let v1, v2, . . . , vr be representatives for the orbits of H acting on the vertex set V ,

where r is the number of H-orbits of V .
14: Hgens← The generators of H (we know by construction there must be 1 or 2)
15: rotation ← maxh∈Hgens{ord(h)} (if there are 2 generators, one has order 2 and

the order of the other equals the number of rotations that will be displayed; if
there is only 1 generator, its order also equals the number of rotations that will be
displayed)

16: originfound ← FALSE (boolean that keeps track of whether a point has already
been placed at the origin)

17: for i← 1, 2, . . . , r do
18: if originfound then
19: i2 = i − 1 (if a point has been placed at the origin, i2 indicates the correct

radius for the circle where orbit i should be drawn)
20: else
21: i2 = i
22: end if
23: Hvi ← The stabiliser of vi
24: if Hvi = H then
25: D(vi) ← (0, 0) (if vi is a fixed point, place it at the origin. By construction

there will be at most 1 such fixed point)
26: originfound ← TRUE (ensures that upcoming orbits are drawn on circles

with correct radius)
27: else if Hvi is the trivial group then
28: D(vi) = i2 ·(cos π

2·rotation , sin
π

2·rotation) (this places vi such that it is not in the
fixed point space of any non-trivial element of φ(H), see explanation below)

14

29: else if Hvi can be generated by one element then
30: h← A generator of H
31: D(vi) ← An eigenvector of φ(h) of length i2, for eigenvalue 1 (so that D(vi)

is fixed by φ(h))
32: end if
33: for every u in the H-orbit of vi do
34: Find h ∈ H such that u = hvi
35: D(u)← φ(h)D(vi)
36: end for
37: end for
38: end if

If |fix(H)| > 1, H has one generator h and φ(h) is a reflection matrix. If we use φ(h) =(
1 0
0 −1

)
as in Algorithm 3, then for d in Algorithm 4 we can simply use the vector

(1,0) (however (-1,0) would also work). The fixed points are then placed on the reflection
axis (which in this case would be the x-axis), with distances of 1 in between, centered
around the origin. The other vertices are placed on a circle around the origin, with a
radius equal to the distance of the farthest placed fixed points to the origin. They are
placed at equal distance from each other, and such that they are reflected in the reflection
axis. This is not to display a rotational symmetry, but to prevent edges from passing
through vertices (rendering the drawing not strict).
If |fix(H)| ≤ 1, then orbits are represented as circles around the origin, with radii 1, 2, . . . , r
where r is the number of orbits that contain more than 1 vertex. The vertices of each
orbit are then placed on the same circle, with equal in-between distances, and such that
they also display reflections (if necessary). Note that instead of 1, 2, . . . , r we could use
any other strictly increasing sequence as circle radii, this is purely an aesthetic choice.
If there is a fixed point, its orbit (which is only the point itself) will be placed at the
origin. If in the algorithm this fixed point has index i∗ (so vertex vi∗ is the fixed point),
there would be no orbit drawn at a circle of radius i∗ if we used the for-statement index i
to decide the circle radius. This is where we use the boolean originfound to determine i2
as either i itself, or i− 1. This prevents the drawing algorithm to “skip” a circle radius,
which results in a better and more regular looking drawing.

x x

y y

rotation = 3 rotation = 4

vi

vi

Figure 6: A reflection line rotated an odd (3) and an even (4) number of times

If the stabiliser Hvi of an orbit representative vi is the trivial group, we want to define
D(vi) such that it is not in the fixed point space of any non-trivial element of φ(H).
Otherwise, there would be a non-trivial element of φ(H) that fixes D(vi), and as such D
would not properly display H. Now note that if H has only one generator, that it must be
a cyclic group, and the fixed point space of φ(H) would either be the origin, or the empty
set, depending on whether H has a fixed point. In this case we can place D(vi) anywhere

15

on the circle with radius i2. So let’s assume H has two generators, and is therefore a
dihedral group. If we have a representation as in Algorithm 3, we see that there is a
permutation h ∈ H such that φ(h) represents a reflection in the x-axis. Furthermore, as
mentioned in the algorithm, we can find rotation; the number of rotations that will be
displayed by D. From this, we see that if we rotate the x-axis by a multiple of π

rotation we
find another reflection axis for another element of φ(H). Hence, we don’t want to place
D(vi) on any of those axes, since it would then be in the fixed point space of a non-trivial
element of φ(H). Moreover, note that if rotation is odd, the x-axis rotated over 2π

2·rotation
is also a reflection axis for some element of φ(H), as it is in fact the same line as the
x-axis rotated over b rotation2 c · 2π

rotation (see Figure 6). By construction, for the vertices
u that have a non trivial stabiliser Hu, D(u) will be drawn on one of these reflection
lines. For vertices u that have as stabiliser the trivial group, we want to place them such
that they are not in the fixed point space of any non-trivial representation φ(h). As we
have seen, for odd values of rotation this also includes the x-axis rotated over 2π

2·rotation .
However, this also holds for even values of rotation, as these lines contain the fixed points
of a rotation combined with a reflection. For aesthetic reasons, we want to place D(vi) in
the middle of those fixed-point-space lines. Therefore, in the algorithm, we place Dvi on
the circle with radius i2 at an angle of π

2·rotation . See again Figure 6 for examples where
rotation = 3 and rotation = 4 respectively.
As discussed in Section 2.6, drawings can differ depending on the conjugacy class of
the representation φ. However, with a fixed representation there are still more possible
drawings for this algorithm. For the first part of the algorithm (where there are multiple
fixed points), the order of the fixed points and the orbit representatives is important.
Also, the choice for d influences the drawing. There are however only 2 options for d, and
switching between them is equivalent to rotating the image over 180 degrees.
For the second part (where there is at most one fixed point), the order of the orbit
representatives is also important. Moreover, if the stabiliser Hvi of an orbit representative
vi can be generated by one element h for instance, two different eigenvectors of φ(h) of
length i2 for eigenvalue 1 can be found.

3.3.2 On strictness

An important question is whether a drawing defined by Algorithm 4 is strict, and whether
it is possible at all to find such a drawing. We point out some situations where it is not
possible to find a strict drawing at all.

Let H be a 2-geometric subgroup of the automorphism group Aut(G) of a graph G,
such that |fix(H)| > 1. Let Gf be the subgraph of G containing only the fixed points of
H as vertices. If there is a vertex of Gf of degree greater than 2, then Gf and therefore
G cannot have a strict drawing. See for instance Figure 7, of a graph with 4 vertices
and edges {1, 2}, {1, 3}, {2, 3} and {3, 4}. Note that this graph cannot be drawn strictly
on one line, as should be the case for Gf . A reason for this is that vertex 3 has degree
3, which is greater than 2. If all vertices are placed on a line, it can only “receive” a
maximum of 2 edges for the drawing to remain strict. Also note that if the two outermost
vertices on a line have a degree greater than 1, the drawing can also not be strict. See
for instance vertex 1 in Figure 7. So, to sum up, the subgraph Gf (and therefore the full
graph G) cannot be strict if there are less than two points of degree 1 or smaller, or if
there is a vertex of degree 3 or higher. Note that if this isn’t the case, the subgraph Gf
can always be drawn strictly, by correctly ordering its vertices. This does however not
yet fully guarantee strictness for a drawing of the full graph.

Now let H be another 2-geometric subgroup of Aut(G), such that |fix(H) ≤ 1. To avoid
the problem described above, we can try not to draw vertices on the same line. If H

16

1

2 3 4

Figure 7: Not every drawing displaying an automorphism group can be strict.

is a cyclic group, so that its representations are solely rotations, we only need to draw
each orbit on the same circle around the origin, where the vertices in the orbit have equal
in-between distances on that circle. Thus, we can draw them in such a way that there
is no line in the plane that contains more than 2 vertices, simply by (slightly) rotating
the drawings of the orbit circles independently. However, if H is a dihedral group, its
representations also include reflections. In this case, depending on the number of orbits,
it is possible that multiple vertices from different orbits have the same stabiliser, and
therefore must be drawn on the same line. In this case, a situation as in Figure 7 can
occur, and it might be possible that no strict drawing can be found.

17

4 Drawing 3-dimensional symmetric graphs

4.1 Presentation of a group

Before we start with the classification of 3-geometric subgroups of O3(R), we first discuss
how to define a group by a presentation. A group H can be presented in the form
H = 〈X |R〉, where X is a list of generators for H and R is a list of relations between the
generators. For example, the cyclic group Ck can be presented as 〈g|gn = e〉, where e is the
unit permutation. The dihedral group Dk can be presented as 〈r, f |rk = f2 = (rf)2 = e〉.
Here r represents a rotation and f a reflection.

4.2 Classification of 3-geometric subgroups

4.2.1 The subgroups of SO3(R)

The finite subgroups of SO3(R) are the groups Ck,Dk (for k > 1), T ,O and I. Here Ck
are the cyclic groups and Dk the dihedral groups, as seen in the previous section.
T is the tetrahedral group of order 12, which represents the rotations of a regular tetra-
hedron. It is isomorphic to the permutation group Alt(4), where Alt(n) is the subgroup
of Sym(n) consisting of all even permutations of n objects.
O is the octahedral group of order 24, which represents the rotations of a regular octahe-
dron. It also represents the rotations of a cube, since a cube is the dual polyhedron of an
octahedron. It is isomorphic to Sym(4).
I is the icosahedral group of order 60, which represents the rotations of a regular icosa-
hedron. It is isomorphic to Alt(5).
The fixed points of a cyclic rotation group form a line, its axis. Therefore, we find the
following result:

Result 3. A cyclic permutation group is 3-geometric if and only if all of its orbits are
trivial or regular.

In particular, we see that every cyclic group of prime order is 3-geometric. To see this,
let H = 〈g〉 be a group of order p acting on a finite set X, where p is prime. Suppose H
does have a non-trivial short orbit, say of size q < p. Then, for x ∈ X in that orbit, we
find that gqx = x, and so gd

p
q eq−px = x. However, dpq eq − p < q, which contradicts the

assumption that the orbit size is q. Therefore, H has no non-trivial short orbits, so every
orbit is either trivial or regular, hence H is 3-geometric.
Now, let T be a rotation group that is not cyclic. As it turns out (see [4]), T has exactly
three short orbits on the unit sphere. Let k1, k2 and k3 respectively be the orders of the
stabiliser of a point in these three orbits. Then we find the following famous formula of
Jordan:

1

k1
+

1

k2
+

1

k3
= 1 +

2

|T |
We now assume, without loss of generality, that k1 ≤ k2 ≤ k3. Then for T = Dk we find

1

k1
+

1

k2
+

1

k3
= 1 +

1

k
,

so that the only possible triple (k1, k2, k3) is (2, 2, k). For T = T we find

1

k1
+

1

k2
+

1

k3
= 1 +

1

6
,

so that the only possible triple (k1, k2, k3) is (2, 3, 3). For T = O we find

1

k1
+

1

k2
+

1

k3
= 1 +

1

12
,

18

so that the only possible triple (k1, k2, k3) is (2, 3, 4). For T = I we find

1

k1
+

1

k2
+

1

k3
= 1 +

1

30
,

so that the only possible triple (k1, k2, k3) is (2, 3, 5). Furthermore, note that we can
include the cyclic group Ck by associating it with the triplet (1, k, k). Now, these groups
have presentations (see Section 4.1)

〈x, y|xk1 = yk2 = (xy)k3 = e〉.

For type Dk we always assume that k > 1, since D1 = C2 (so we will consider it as a cyclic
group).
From these descriptions, we find the following results.

Result 4. A dihedral group of order 4 that fixes at most one vertex can always be
represented as a group of rotations.
A dihedral group of order greater than 4 that fixes at most one vertex can be represented
as a group of rotations if and only if this is true for its cyclic subgroup of index 2.

Note that the tetrahedral, octahedral and icosahedral groups are based on the rotational
symmetries of the Platonic Solids. Although there are five of these solids (see Figure 8),
there are only three groups representing them, since the cube is the polyhedral dual of
the octahedron, and the dodecahedron is the polyhedral dual of the icosahedron. The
tetrahedron is its own dual. We will use these solids to try to geometrically understand
the following results.

Figure 8: The Platonic Solids

Result 5. A permutation group isomorphic to T can be represented as a group of rota-
tions if and only if

• it has at most one fixed vertex, and

• the lengths of its non-trivial short orbits are 4 or 6.

Note that this result excludes groups with orbits of length 3. To understand this result
from a geometrical point of view, note that a regular tetrahedron has 4 vertices, 4 faces and
6 edges. Hence, a short orbit of length 4 can be associated to the rotational symmetries
of a regular tetrahedron acting on one of its vertices or faces. Similarly, a short orbit of
length 6 can be associated to the rotational symmetries of a regular tetrahedron acting
on one of its edges.
For the next result, we first need the following definition:

Definition 8. Centraliser: The centraliser CA(H) of a subset H in the group A is defined
as CA(H) = {a ∈ A|ah = ha for all h ∈ H}.

19

Result 6. A permutation group isomorphic to O can be represented as a group of rota-
tions if and only if

• it has at most one fixed vertex,

• the lengths of its non-trivial short orbits are 6, 8 or 12,

• the vertex stabilisers are all cyclic, and

• if an orbit of length 12 occurs, then the stabilizer of a vertex in the orbit is not
contained in a normal subgroup of order 4 (equivalently, its centralizer has order 4).

Note that this excludes groups with orbits of length 3 or 4. From a geometrical point
of view, we could consider the rotations of a regular octahedron. However, since O also
represents the rotations of a cube, the dual polyhedron of a regular octahedron, we instead
look at the rotational symmetries of a cube. Note that a cube has 6 faces, 8 vertices and
12 edges. Therefore, a short orbit of size 6, 8 or 12, can be associated to the rotational
symmetries of a cube acting on its faces, vertices or edges respectively.
Now consider a point x, either a vertex or the centre of an edge or face of a cube, and
consider all rotational symmetries of the cube that fix x (i.e. the stabiliser of x in O).
Geometrically it’s not hard to see that all these rotations must be around one axis, which
is the line through x and the origin. Hence, this stabiliser must be cyclic.

Result 7. A permutation group isomorphic to I can be represented as a group of rotations
if and only if

• it has at most one fixed vertex, and

• the lengths of its non-trivial short orbits are 12, 20 or 30.

Note that this excludes groups with orbits of length 5, 6, 10 or 15. Analogue to the pre-
vious groups, we can associated the non-trivial short orders to the rotational symmetries
of a regular icosahedron acting on its vertices, faces or edges respectively, as it has 12
vertices, 20 faces and 30 edges.
Lastly, note that for a permutation group to be 3-geometric, it is not necessary that all
possible orbit lengths occur.

4.2.2 The subgroups of O3(R) not contained in SO3(R)

Let S be a group of rotations as in the previous subsection. From such a group, we get
a larger group by taking the direct product S∗ = S × 〈z〉 of S with the central inversion
z = −I. We therefore find another result:

Result 8. Let S be a group of rotations, and S∗ = S × 〈z〉 with z = −I. A permutation
group isomorphic to S∗ is 3-geometric if and only if it can be written as the direct product
of a group of type S that can be represented by rotations with a cyclic group of order 2
whose generator has at most one fixed point.

Now all we need to find are those finite groupsK of O3(R) not contained in SO3(R) that do
not contain the central inversion. LetK be such a group, let S be the intersection ofK×〈z〉
with SO3(R) and let T be the intersection of K with SO3(R). Then K × 〈z〉 = S × 〈z〉,
and so K is isomorphic to S. What’s more, T is a subgroup of index 2 in both K and
S. Conversely, if S is a subgroup of SO3(R) that has a subgroup T of index 2, then the
set K = T ∪ (S\T)z is a group. Thus, K can be described by the symbol (S|T). There
are only four possibilities for the type of K: (C2k|Ck), (Dk|Ck), (D2k|Dk) and (O|T). Note
that there are no possibilities with S = T or S = I. These groups are isomorphic to
Alt(4) and Alt(5) respectively, which have no subgroup of index 2. Since O is isomorphic
to Sym(4), we see immediately that T is a subgroup of index 2 in O, since Alt(4) is a
subgroup of index 2 in Sym(4).
Since, as we have seen before, D1 = C2, we find that (D1|C1) = (C2|C1) and (D2|D1) =

20

(D2|C2), so we can refrain from using the notation D1, and will again always assume k > 1
when considering Dk.
Note that although the groups C2 and C∗1 are isomorphic, their representations in O3(R)
are not conjugate; the first one is contained in SO3(R), whereas the second one is not.
Likewise, D2, C∗2 and (D2|C2) are isomorphic, but their representations in O3(R) are not
conjugate; D2 is contained in SO3(R) and C∗2 contains the central inversion.
Now, for these four types of finite subgroups K of O3(R) not contained in SO3(R) and
not containing the central inversion, we find the following results:

Result 9. A cyclic group of order 2k is 3-geometric of type (C2k|Ck) if and only if it is
generated by an element g such that

• g has at most one fixed vertex, and

• all of the non-trivial short orbits of g have lengths 2 or k if k is odd, or length 2 if
k is even.

A group of type (Dk|Ck) has a fixed axis and acts on the 2-dimensional space orthogonal
to that axis. We therefore find the following result:

Result 10. A dihedral group of order 2k is 3-geometric of type (Dk|Ck) if and only if all
of its non-trivial short orbits have length k.

Result 11. A dihedral group of order 4k is 3-geometric of type (D2k|Dk) if and only if

• it has at most one fixed vertex, and

• it has a 3-geometric cyclic subgroup of index 2.

Result 12. A permutation group H isomorphic to O is 3-geometric of type (O|T) if and
only if

• it has at most one fixed vertex, and

• the stabilisers of the vertices in the non-trivial short orbits are not contained in the
(unique) normal subgroup of order 4 and are of type C2,D2 or D3.

Thus we see that the possible lengths of the non-trivial short orbits for a 3-geometric
permutation group H isomorphic to O of type (O|T) are 4, 6 and 12. The group (O|T)
is the group of all rotations and reflections of the tetrahedron.

To sum up, the finite subgroups of O3(R), up to conjugacy, are:

Ck,Dk, T ,O, I, C∗k ,D∗k, T ∗,O∗, I∗, (C2k|Ck), (Dk|Ck), (D2k|Dk) and (O|T).

4.3 Finding 3-geometric subgroups

As we have seen in the previous section, there are five types of 3-geometric groups that
can be represented by rotations in R3: cyclic groups Ck, dihedral groups Dk, the tetrahe-
dral group T , the octahedral group O and the icosahedral group I. We saw that Dk has
presentation 〈x, y|x2 = y2 = (xy)k = e〉 and the groups T ,O and I have presentations
〈x, y|x2 = y3 = (xy)j = e〉 for j equals 3, 4 or 5 respectively. We will only use the type
Dk for k ≥ 2, since D1 = C2.
From each rotation group S, we can get a larger group S∗ by taking the direct product
of S with the central inversion −I. If H is a geometric subgroup of type S, we find
candidates for the groups of type S∗ by looking inside the centraliser of H for elements of
order 2 with at most one fixed vertex. Such an element will be represented by the central
inversion.
Furthermore, there are four other types that do not consist entirely of rotations. They
can be described by the symbol (S|T), where S and T are finite groups of rotations. This

21

entails that the group itself is isomorphic to a group of type S, and contains a subgroup
of rotations of index 2 of type T . The four possible types are (C2k|Ck), (Dk|Ck), (D2k|Dk)
and (O|T).
Note that it is possible that a permutation group H can be represented as a 3-geometric
group in multiple ways. For example, a cyclic group of order 4m that fixes at most one
vertex and with all other orbits regular can be presented as the types C4m and (C4m|C2m).

We start with defining an algorithm to find all 3-geometric groups (up to conjugacy)
of types Ck, C∗k and (C2k|Ck), using Results 3, 8 and 9.

Algorithm 5. Finding the 3-geometric groups of types Ck, C∗k and (C2k|Ck)
Input: A graph G = (V,E), defined by its vertices V and edges E.
Output: All 3-geometric subgroups of the automorphism group Aut(G) of graph G of
types Ck, C∗k and (C2k|Ck), up to conjugacy.

1: Aut(G)← Automorphism group of the graph G
2: repG← List of representatives for the conjugacy classes of Aut(G)
3: Ck,Ckr, C2k ← Empty lists (used to store all 3-geometric subgroups of Aut(G) of

types Ck, C∗k and (C2k|Ck) respectively)
4: for All g in repG do
5: k ← order(g)
6: geometric← True (initiate value)
7: for All cycles c of g do
8: if length(c) 6= 1 and length(c) 6= k then
9: geometric← False (if there is a cycle of length other than 1 or k, 〈g〉 cannot

be 3-geometric)
10: end if
11: end for
12: if geometric then
13: Append 〈g〉 to Ck.
14: C ← The centraliser of 〈g〉 in Aut(G)
15: for All a in C do
16: if order(a)=2 and |fix(a)| = e then
17: Append 〈g, a〉 to Ckr
18: end if
19: end for
20: if k is even then
21: for All a in C do
22: if |fix(a)| ≤ 1 and a2 = g then
23: Append 〈a〉 to C2k (note that a will have cycles of length 1, 2 and/or

2k)
24: end if
25: end for
26: end if
27: end if
28: end for
29: return Ck,Ckr, C2k

For a graph G = (V,E), this algorithm returns all 3-geometric subgroups (up to conju-
gacy) of the automorphism group Aut(G) of types Ck, C∗k and (C2k|Ck) respectively in the
three lists Ck,Ckr and C2k.
As was the case for the algorithms for finding 2-geometric groups, no specific methods are
mentioned for functions such as computing the automorphism group Aut(G) of a graph

22

G, or the centraliser CA(h) of a permutation h in the group A. These functions are im-
plemented in Sage, so we can readily use them in our implementation.

We continue with describing an algorithm for finding all 3-geometric groups (up to con-
jugacy) of types Dk,D∗k, (Dk|Ck) and (D2k|Dk). For this, we use Results 4, 8, 10 and 11.
We start by finding representatives for the conjugacy classes of 3-geometric elements, as
done in the previous algorithm. For clarity, we copy the pseudocode that does this from
the previous algorithm. In our implementation we simply use the results of the previous
algorithm, so we do not have execute the same computations twice.

Algorithm 6. Finding the 3-geometric groups of types Dk,D∗k, (Dk|Ck) and (D2k|Dk)
Input: A graph G = (V,E), defined by its vertices V and edges E.
Output: All 3-geometric subgroups of the automorphism group Aut(G) of graph G of
types Dk,D∗k, (Dk|Ck) and (D2k|Dk), up to conjugacy.

1: Aut(G)← Automorphism group of the graph G
2: repG← List of representatives for the conjugacy classes of Aut(G)
3: Dk,Dkr,DkCk,D2k ← Empty lists (used to store all 3-geometric subgroups of

Aut(G) of types Dk,D∗k, (Dk|Ck) and (D2k|Dk) respectively)
4: for All g in repG do
5: k ← order(g)
6: geometric← True (initiate value)
7: for All cycles c of g do
8: if length(c) 6= 1 and length(c) 6= k then
9: geometric← False (if there is a cycle of length other than 1 or k, 〈g〉 cannot

be 3-geometric)
10: end if
11: end for
12: if geometric then
13: N ← The normaliser of 〈g〉 in Aut(G)
14: Ncr ← List of representatives for the conjugacy classes of N
15: Ncr2← All elements of Ncr of order 2
16: for all a ∈ Ncr2 do
17: if (ga)2 = e and g 6= a then
18: Append 〈g, a〉 to Dk
19: C ← The centraliser of 〈g, a〉 in Aut(G)
20: for All c in C do
21: if order(c)=2 and |fix(c)| = e then
22: Append 〈g, a, c〉 to Dkr
23: end if
24: end for
25: if |fix(〈g, a〉)| > 1 then
26: geometric← True (initiate value)
27: for All orbits o of 〈g, a〉 do
28: if |o| 6= 1 and |o| 6= k and |o| 6= 2k then
29: geometric ← False (if 〈g, a〉 has an orbit of length other than 1, k

or 2k, it cannot be 3-geometric of type (Dk|Ck))
30: end if
31: end for
32: if geometric then
33: Append 〈g, a〉 to DkCk
34: end if

23

35: end if
36: if |fix(〈g, a〉)| ≤ 1 then
37: if k is even then
38: m← k

2
39: Append 〈g, a〉 to D2k (〈g, a〉 is of type (D2m|Dm))
40: end if
41: Append 〈g, a〉 to DkCk (if 〈g, a〉 fixes at most one vertex, it is of type

(Dk|Ck))
42: end if
43: end if
44: end for
45: end if
46: end for
47: return Dk,Dkr,DkCk,D2k

This algorithm returns four lists of permutation groups, Dk,Dkr,DkCk and D2k, con-
taining all 3-geometric subgroups (up to conjugacy) of the automorphism group Aut(G)
of a graph G = (V,E) of types Dk,D∗k, (Dk|Ck) and (D2k|Dk) respectively.

Finally, we define an algorithm to find all the other 3-geometric groups, those of type
T ,O, I, T ∗,O∗, I∗ and (O|T). For this, we make use of Results 5, 6, 7, 8 and 12.

Algorithm 7. Finding the 3-geometric groups of types T ,O, I, T ∗,O∗, I∗ and (O|T)
Input: A graph G = (V,E), defined by its vertices V and edges E.
Output: All 3-geometric subgroups of the automorphism group Aut(G) of graph G of
types T ,O, I, T ∗,O∗, I∗ and (O|T), up to conjugacy.

1: Aut(G)← Automorphism group of the graph G
2: T,O, I, T r,Or, Ir,OT ← Empty lists (used to store all 3-geometric subgroups of

Aut(G) of types T ,O, I, T ∗,O∗, I∗ and (O|T) respectively)
3: repG← List of representatives for the conjugacy classes of Aut(G)
4: repG2← All elements of repG of order 2
5: AutG3← All elements of Aut(G) of order 3
6: for All g in repG2 do
7: C ← The centraliser of g in Aut(G)
8: repG3← AutG3 (initiate the list repG3)
9: while There exist elements h1, h2 ∈ repG3 such that a−1h1a = h2 for some a ∈ C

do
10: Delete h2 from repG3 (upon termination of the while statement, repG will con-

tain representatives for the conjugacy classes of the elements of order 3 in Aut(G)
under the action of the centraliser C)

11: end while
12: for All h in repG3 do
13: if order(gh)=3 and |fix(〈g, h〉)| ≤ 1 then
14: geometric← True (〈g, h〉 is a candidate of type T)
15: for All orbits o of 〈g, h〉 do
16: if |o| = 3 then
17: geometric← False (〈g, h〉 has a non-trivial short orbit of size other than

4 or 6, so it cannot be 3-geometric)
18: end if
19: end for
20: if geometric then
21: Append 〈g, h〉 to T

24

22: C ← The centraliser of 〈g, h〉 in Aut(G)
23: for All a in C do
24: if order(a)=2 and |fix(a)| = e then
25: Append 〈g, h, a〉 to Tr
26: end if
27: end for
28: end if
29: else if order(gh)=4 and |fix(〈g, h〉)| ≤ 1 then
30: geometric← True (〈g, h〉 is a candidate of type O)
31: for All orbit representatives v of 〈g, h〉 do
32: S ← The stabiliser of v in 〈g, h〉
33: if S is not cyclic or (order(S) 6= 1 and order(S) 6= 2 and order(S) 6= 3

and order(S) 6= 4 and order(S) 6= 24) or (order(S) = 2 and centraliser
C〈g,h〉(S) has order 4) then

34: geometric← False
35: end if
36: end for
37: if geometric then
38: Append 〈g, h〉 to O
39: C ← The centraliser of 〈g, h〉 in Aut(G)
40: for All a in C do
41: if order(a)=2 and |fix(a)| = e then
42: Append 〈g, h, a〉 to Or
43: end if
44: end for
45: end if
46: geometric← True (〈g, h〉 is also a candidate of type (O|T)
47: for All orbit representatives v of 〈g, h〉 do
48: S ← The stabiliser of v in 〈g, h〉
49: if order(S) 6= 1 and order(S) 6= 2 and order(S) 6= 4 and order(S) 6= 6 and

order(S) 6= 24 then
50: geometric← False
51: else if (order(S) = 6 and S is not of type C2) or (order(S) = 4 and S is

not of type C2) or (order(S) = 2 and S is not of type C2) then
52: geometric← False
53: else if centraliser C〈g,h〉(S) has order 4 and order(S) 6= 1 and order(S) 6=

24 then
54: geometric← False
55: end if
56: end for
57: if geometric then
58: Append 〈g, h〉 to OT
59: end if
60: else if order(gh)=5 and |fix(〈g, h〉)| ≤ 1 then
61: geometric← True (〈g, h〉 is a candidate of type I)
62: for All orbits o of 〈g, h〉 do
63: if |o| = 5 or |o| = 6 or |o| = 10 or |o| = 15 then
64: geometric← False (〈g, h〉 has a non-trivial short orbit of size other than

12, 20 or 30, so it cannot be 3-geometric)
65: end if
66: end for
67: if geometric then
68: Append 〈g, h〉 to I

25

69: C ← The centraliser of 〈g, h〉 in Aut(G)
70: for All a in C do
71: if order(a)=2 and |fix(a)| = e then
72: Append 〈g, h, a〉 to Ir
73: end if
74: end for
75: end if
76: end if
77: end for
78: end for
79: find groups with reflection
80: return T,O, I, T r,Or, Ir,OT

This algorithm returns seven list of permutation groups, T,O, I, T r,Or, Ir and OT , con-
taining all 3-geometric subgroups (up to conjugacy) of the automorphism group Aut(G)
of a graph G = (V,E) of types T ,O, I, T ∗,O∗, I∗ and (O|T) respectively.
We now have three algorithms that together, given a graphG = (V,E), find all 3-geometric
subgroups of its automorphism group Aut(G).

4.4 Representations for 3-geometric automorphism groups

Given a graph G = (V,E) and a 3-geometric subgroup S of Aut(G) or a certain type T ,
we need to describe how to represent each element of S, by defining an injective homomor-
phism φ : S → T , see Theorem 1. As we have seen, the groups of type Ck,Dk, T ,O and
I will be represented purely by rotations matrices, and the groups of type Ck,Dk, T ,O
and I will have an additional element represented by the central inversion −I. To fully
define φ, we only need to define it for the generators of S (note that we have defined the
groups S by their generators as well in the algorithms of the previous subsection). We
now describe per type how to represent the generators.

If T = Ck, then S = 〈g〉 for some generator g. We can represent this group as a ro-
tation around the z axis, so as a representation we take

φ(g) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

where θ = 2πm
k for some m coprime to k. For T = C∗k , we found by Algorithm 5 the group

S = 〈g, a〉, for which we define φ(g) as above and φ(a) = −I, the central inversion.

If T = Dk, then by Algorithm 6 we found a group S = 〈g, a〉, with order(g) = k and
order(a) = 2. Here we represent the action of g as a rotation around the z axis, as we did
for the cyclic groups:

φ(g) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

where θ = 2πm
k for some m coprime to k. Furthermore, we represent the action of a as a

2-fold rotation around an axis perpendicular to the z-axis, for this we choose the x-axis.
Hence, we find

φ(a) =

 1 0 0
0 −1 0
0 0 −1

 .

For a group of type D∗k (so that, by Algorithm 6, S = 〈g, a, c〉), we find the same values
for φ(g) and φ(a), and we define φ(c) to be the central inversion, φ(c) = −I.

26

A group of type T will be represented by the rotational symmetries of a tetrahedron.
By Algorithm 7 we found a group S = 〈g, h〉, where order(g) = 2 and order(h) = 3.
Imagine we place a regular tetrahedron with vertices A,B,C,D in a 3-dimensional space
with axes x, y, z. We do this such that vertex A is on the positive z-axis, vertices B,C,D
form a triangle parallel to the (x, y)-plane with negative z-coordinates, vertex B is on the
(x, z)-plane and the barycentre of the vertices is in the origin. Note that vertices C and
D will each be on one side of the (x, z)-plane, which gives two options; it is irrelevant for
now which option we choose. Now we see there is a 3-fold rotational symmetry around the
z-axis. We will therefore represent the permutation h of S as a rotation over 2π

3 around
the z axis:

φ(g) =

 − 1
2 −

√
3
2 0√

3
2 − 1

2 0
0 0 1

 .

Furthermore, we see there is also a 2-fold rotational symmetry around the line through the
centre of edge (A,B) and the centre of edge C,D (note that this line also goes through the
origin). Therefore we will represent the generator g of S as a rotation over π around this
line. We have already seen rotation matrices around an axis, we can define the rotation
around this line by a matrix multiplication of 3 such matrices; a rotation over 2π around

the y-axis over π
2 − arctan

√
2 (placing the centres of edges (A,B) and (C,D) on the

x-axis), a rotation over π around the x-axis, and the inverse of the first rotation (around
the y-axis). If we work out this multiplication, we find:

φ(h) =

 − 1
3 0 2

√
2

3
0 −1 0

2
√
2

3 0 1
3

 .

Note that the order of (φ(g)φ(h)) is indeed 3, such that this defines a correct represen-
tation of the rotational symmetries of a regular tetrahedron. Again, for type T ∗ we add
the central inversion as representation for a (as in Algorithm 7); φ(a) = −I.

Now consider a group of type O. It will be represented by the rotational symmetries
of a regular octahedron or a cube (its polyhedral dual). As in the previous subsection, we
will consider the cube. Place a cube with edges of length

√
2 in a 3-dimensional space with

axes x, y, z. Do this in such a way that the vertices have coordinates (0,±1,± 1√
2
) and

(±1, 0,± 1√
2
). Now we see that there is a 2-fold rotational symmetry around the x-axis,

which we will use to represent the generator g (as defined in Algorithm 7):

φ(g) =

 1 0 0
0 −1 0
0 0 −1

 .

Furthermore we search for a 3-fold rotational symmetry for the representation φ(h), such
that the order of φ(g)φ(h) is 4. We find this by taking a rotation over 2π

3 around the
line through coordinates (−1, 0,− 1√

2
) and (1, 0, 1√

2
). Similar to what we did for the

tetrahedron, we find the matrix for this my multiplying three matrices, those representing
a rotation over − arctan 1√

2
around the y-axis, a rotation over 2π

3 around the x-axis and

the inverse of the first rotation (around the y-axis). Working out this multiplication, we
find

φ(h) =

 0 − 1√
2
− 1√

2
1√
2

− 1
2

1
2

− 1√
2
− 1

2
1
2

 .

27

Again, for type O∗ we represent a as found in Algorithm 7 by the central inversion,
φ(a) = −I.

4.5 Displaying a 3-geometric automorphism group

To generate a drawing of a graph G = (V,E) that displays a 3-geometric subgroup H of
the automorphism group Aut(G), given a representation φ, we use the same principles
as for 2 dimensions, and extend them to three dimensions. Therefore, for each orbit
representative vi we first find the stabiliser Hvi . If it equals the group H itself, we have
found the one fixed point, so we will place it at the origin. If Hvi can be generated by
one (non-trivial) generator, we draw vi such that it is fixed by φ(Hvi). To make sure we
draw each orbit at a different distance to the origin, we take a vector of length i. If Hvi

is generated by 2 generators, then one of these generators must be a reflection, say r. We
now draw vi at a point of distance i to the origin such that it is fixed by r, and not fixed
by any other element in a subgroup of φ(H) containing r. If Hvi is the trivial group, we
draw it such that it is not fixed by any (non-trivial) element of φ(H), so that it will indeed
have a regular orbit. This gives is the following general algorithm to define a drawing:

Algorithm 8. Displaying a 3-geometric automorphism group Input: A 3-geometric sub-
group H of the automorphism group Aut(G) of a graph G = (V,E), a representation
φ : H → O3(R).
Output: A drawingD that displaysH as symmetries.

v1, v2, . . . , vn ← Representatives of the orbits of H acting on V .
for i← 1ton do
Hvi ← Stabiliser of vi
if Hvi = H then
D(vi)← The origin

else if φ(Hvi) is generated by one generator then
D(vi)← A eigenvector of φ(Hvi) of length i for eigenvalue 1.

else if φ(Hvi) is generated by two generators then
r ← The reflection generating φ(Hvi)
D(vi)← A vector of length i, fixed by r, and not fixed by any other element in a
subgroup of φ(H) containing r

else if φ(Hvi) is the trivial group then
D(vi)← A vector of length i not in the fixed point space of any non-trivial element
of φ(H)

end if
for All v in the orbit of vi do
h← The permutation such that v = hvi
D(v)← φ(h)D(vi)

end for
end for

The exact details for this algorithm are different for the different types of groups,
and there is still quite some freedom in choice, in for instance the ordering of the orbit
representatives. In particular, a vertex with the trivial group as stabiliser gives a lot of
choice.

28

5 Conclusion

Given a graph G = (V,E), we have seen what n-geometric subgroups of the automorphism
group Aut(G) are, and how they can be used to provide nice symmetrical drawings of
G. For n = 2, 3 we have seen how to find all geometric subgroups, using group-theoretic
arguments. Then, given such a geometric group, we have seen how to define a drawing
that displays this group. We have implemented these methods using Sage.

29

6 Neat examples

6.1 The Petersen Graph; an extensive example

The Petersen graph is a famous example and counterexample in graph theory. It is a
strongly regular graph. It is often drawn as a pentagram within a pentagon, where every
corner points of the pentagram is connected with a corner point of the pentagon, as in
Figure 10d. In this drawing, it clearly displays a rotation over 2π

5 , along with a reflec-
tion. So with the knowledge of this article, we know that the automorphism group of the
Petersen graph contains a 2-geometric dihedral subgroup of order 10. There are however
more symmetries that can be displayed, using different drawings.
In Figure 9 we see 3 different drawings of the Petersen, which are a direct result of our
own implementation (see Appendix). All 3 drawings display a different 2-geometric auto-
morphism group that is cyclic. Figure 9a and Figure 9b display groups of order 2, their
representations are realised by a reflection in the x-axis (the central horizontal line). Both
of the groups have more than one fixed point, which is why they cannot be represented
by a rotation. We can see that the drawing in Figure 9a is not strict; vertex 2 is drawn on
edge {1,6}. As we can see from this picture, 0, 1, 2 and 6 are the fixed points of the cyclic
group that is being displayed. Since in the subgraph on 0, 1, 2 and 6, vertex 1 has degree
3, we find that it is not possible to find a strict drawing that displays this cyclic group, as
we have seen in Section 3.3.2. The drawing in Figure 9b however is strict. In Figure 9c
we see a drawing that displays a cyclic group of order 3, represented by a rotation over
2π
3 . This drawing is strict.

(a) A cyclic group of order 2 (b) A cyclic group of order 2 (c) A cyclic group of order 3

Figure 9: Several drawings of the Petersen graph displaying different 2-geometric cyclic groups

Now take a look at Figure 10. Here we see several drawings of the Petersen graph, display-
ing different dihedral groups. The drawings in Figure 10a and 10b display two different
dihedral groups of order 6, by a rotation over 2π

3 and a reflection. Neither of these draw-
ings are strict. In Figure 10a we see again the same problem as described in Section
3.3.2. For instance the vertices 0, 1, 2 and 6 must be drawn on one line, as they have the
same stabiliser. In the subgraph containing exactly those vertices, vertex 1 has degree 3,
making it impossible to find a strict drawing. In Figure 10b we see a different problem.
The edges {2,7}, {3,8} and {6,9} are drawn such that they go through vertex 0.
In Figure 10c we see a drawing displaying a 2-geometric dihedral group of order 10, rep-
resented by a rotation over 2π

5 and a reflection. This drawing is clearly strict. Using our
algorithm, we find that the Petersen graph has a total of 3 different 2-geometric dihedral
groups (up to conjugacy). However, we have not yet found the famous representation
as can be seen in Figure 10d. Recall that in Algorithm 3, in step 9 we can choose any

30

m < k coprime to k. For Figure 10c, we used m = 1. However, as we have seen in Section
2.6, choosing a different representation may influence the drawing. Now, if we use m = 3
instead (note that k = 5, so that this is the only other option), we find the quite famous
drawing of the Petersen graph as shown in Figure 10d.

(a) A dihedral group of order 6 (b) A dihedral group of order 6

(c) Yet another cyclic group (d) Yet another cyclic group

Figure 10: Several drawings of the Petersen graph displaying different 2-geometric dihedral groups

6.2 2-Dimensional examples

In Figure 11 we see three drawings of the Icosahedral graph (representing the vertices
and edges of a icosahedron) displaying 2-geometric dihedral groups of order 12, 6 and 6
respectively. They are represented by rotations and a reflection. Only the drawing in

31

Figure 11b is strict. The icosahedral graph has 12 vertices and 30 edges.

(a) A dihedral group of order 12 (b) A dihedral group of order 6 (c) A dihedral group of order 6

Figure 11: Several drawings of the Icosahedral graph displaying different 2-geometric dihedral groups

In Figure 12 we see a drawing of the Schläfli graph, displaying a dihedral group of order
18. The Schläfli graph is a strongly regular graph with 27 vertices and 216 edges.

Figure 12: A drawing of the Schläfli graph, displaying a dihedral group of order 18

Now let’s take a look at a larger graph. The M22 graphis a strongly regular graph with
77 vertices and 616 edges. Using our algorithm, we find that its automorphism contains
(among others) a 2-geometric dihedral subgroup of order 22. The drawing in Figure 13
displays this group.

32

Figure 13: A drawing of the M22 graph, displaying a dihedral group of order 22

References

[1] D. Abelson, S. Hong and D. Taylor, A Group-Theoretic Method for Drawing Graphs
Symmetrically.

[2] P. Eades and X. Lin, Spring Algorithms and Symmetries, Theoretical Computer Sci-
ences, 240, pp. 379-405, 2000.

[3] W. Ledermann, Introduction to Group Theory, Longman, 1973

[4] L. Grove and C. Benson, Finite Reflection Groups, Springer, 1971

[5] GAP, http://www.gap-system.org

[6] Sage, http://www.sagemath.org

[7] nauty, http://pallini.di.uniroma1.it

[8] bliss, http://www.tcs.hut.fi/Software/bliss/

[9] Saucy, http://vlsicad.eecs.umich.edu/BK/SAUCY/

33

http://www.gap-system.org
http://www.sagemath.org
http://pallini.di.uniroma1.it
http://www.tcs.hut.fi/Software/bliss/
http://vlsicad.eecs.umich.edu/BK/SAUCY/

Appendix

A Sage source code for 2 dimensions

AUXILIARY FUNCTIONS

FUNCTION "fixp": returns fixed points of permutation in cycle notation

def fixp(cycles):

c = cycles.cycle_tuples(singletons=True)

f = []

for i in range(len(c)):

if len(c[i])==1:

f.append(c[i])

return f

FUNCTION "eq_cycles": checks if all (non-singleton) cycles have length m

def eq_cycles(cycles,m):

c = map(len,cycles.cycle_tuples())

if len(c)==0:

return True

else:

return c.count(m)==len(c)

input graph G

#G = graphs.PetersenGraph()

#G = graphs.CompleteGraph(4)

G = graphs.IcosahedralGraph()

#G = graphs.M22Graph()

#G = graphs.SchlaefliGraph()

ALGORITHM: Find all 2-geometric subgroups of automorphism group Aut(G) of graph G

INPUT: Graph G

OUTPUT: List Cks of cyclic and Dks of dihedral 2-geometric subgroups of Aut(G)

INITIATE

[AutG,orbitsG] = G.automorphism_group(return_group=True, orbits=True)

V = G.vertices()

FIND 2-GEOMETRIC CYCLIC GROUPS

find upper bound (up) for order of 2-geometric cyclic group

ub = max(map(len,orbitsG))

find representatives "repG" for the conjugacy classes of Aut(G)

repG = AutG.conjugacy_classes_representatives()

Put all elements (of order 2) AND (order m>2 with at most one fixed vertex and all

other cycles of length m) in "Cks"

for next algorithm: also require elements of order 2 to fix at most one vertex, put

in "Cks2"

Cks = []

Cks2 = []

for i in range(len(repG)):

34

m = order(repG[i])

if m>=2 and m<=ub and len(fixp(repG[i]))<=1 and eq_cycles(repG[i],m):

Cks.append(PermutationGroup([repG[i]],domain=V))

Cks2.append(PermutationGroup([repG[i]],domain=V))

elif m==2:

Cks.append(PermutationGroup([repG[i]],domain=V))

FIND 2-GEOMETRIC DIHEDRAL GROUPS (uses previous algorithm)

use Cks2 as found in previous algorithm

For all g in Cks2, compute normalizer "N" of <g> in AutG

Dks = []

for i in range(len(Cks2)):

N = AutG.normalizer(Cks2[i])

Ncr = N.conjugacy_classes_representatives()

Ncr2 = []

for j in range(len(Ncr)): # "Ncr2" conjugacy class representatives of order 2 in N

if Ncr[j].order()==2:

Ncr2.append(Ncr[j])

for j in range(len(Ncr2)):

if AutG(Ncr2[j]).cycles()!=[] and AutG(Ncr2[j])!=AutG(Cks2[i].gen()) and

((AutG(Ncr2[j])*AutG(Cks2[i].gen()))^2).cycles()==[]:

Dks.append(PermutationGroup([Cks2[i].gen(),Ncr2[j]],domain=V)) #accept those

elements for which (ga^2)=e and a!=e

print cyclic and dihedral 2-geometric subgroups of Aut(G)

len(Cks); Cks; len(Dks); Dks

input

H=Dks[8]

ALGORITHM: Choose representation phi for 2-geometric automorphism group H

INPUT: 2-geometric automorphism group H

OUTPUT: Representation phi for 2-geometric automorphism group H

fixH = H.fixed_points()

if len(fixH)>1:

h=H.gen()

phi = {}

phi[h]=matrix([[1,0],[0,-1]]) # use x-axis as reflection line

else:

Hgens=H.gens()

phi = {}

if len(Hgens)==1:

reflectionfound = True #cyclic group, no reflection needed

else:

reflectionfound = False #in case of dihedral group, one reflection needed

for i in range(len(Hgens)):

if reflectionfound==False and Hgens[i].order()==2:

phi[Hgens[i]]=matrix([[1,0],[0,-1]])

35

reflectionfound = True

else:

k=Hgens[i].order()

m=1 # choose m coprime with k, multipe choices!

1 always works

theta = 2*pi*m/k

phi[Hgens[i]]=matrix([[cos(theta),-sin(theta)],[sin(theta),cos(theta)]])

for i in range(Hgens[0].order()):

phi[Hgens[0]^i]=phi[Hgens[0]]^i # define phi for all powers of the

first generator

if len(Hgens)==2: # if there is a second generator

for j in range(Hgens[1].order()-1):

phi[Hgens[0]^i*Hgens[1]^(j+1)]=phi[Hgens[1]]^(j+1)*phi[Hgens[0]]^i

define phi for all

ALGORITHM: Define drawing D that displays the 2-geometric automorphism group H

INPUT: 2-geometric automorphism group H (domain H = vertices G). (if |fix(H)|>1,

assumes reflection in x-axis as representation)

OUTPUT: drawing D defined on the domain of H (should equal vertices of G) that

displays H

D={}

fixH = H.fixed_points()

lenfixH = len(fixH)

orbH=H.orbits()

if lenfixH>1:

orbreprH=[]

for i in range(len(orbH)):

if len(orbH[i])==2:

orbreprH.append(orbH[i][0])

m=len(orbreprH)

h=H.gen()

d=vector([1,0]) # assume reflection in x-axis as

representation

for i in range(lenfixH): # place fixed points on line

D[fixH[i]]=(i-1/2*(lenfixH-1))*d

for j in range(m): # place orbits around reflection axis

(in a circle)

thetaj=pi*(j+1)/(m+1)

D[orbreprH[j]]=1/2*(lenfixH-1)*matrix([[cos(thetaj),-sin(thetaj)],

[sin(thetaj),cos(thetaj)]])*d

D[h(orbreprH[j])]=phi[h]*D[orbreprH[j]]

else:

Hgens = H.gens()

rotation = max(map(order,Hgens))

originfound = false # checks if a point has already been placed at origin

for i in range(len(orbH)): # for all orbit representatives

if originfound: # ensures distances between consecutive orbit circles

are all 1

i2=i

36

else:

i2=i+1

v = orbH[i][0]

stab = H.stabilizer(v) # compute stabilizer

stabgens = stab.gens() # find generators of stabilizer (max 2)

if stab==H: # holds for a maximum of one vertex (the fixed point)

D[v]=vector([0,0])

originfound = true

elif stabgens[0].cycles()==[]:

D[v]=i2*vector([cos(pi/(2*rotation)),sin(pi/(2*rotation))])

elif len(stabgens)==1:

stabphi = phi[stabgens[0]]

stabphieigv = stabphi.eigenvalues()

for j in range(len(stabphieigv)):

if type(stabphieigv[j])==type(cos(1)): # if stapphieigv[j] is

a (trigonometric) expression

stabphieigv[j] = stabphieigv[j].simplify_trig() # simplify

eigenvectors to find value 1

eigv1=stabphi.eigenvectors_right()[stabphieigv.index(1)][1][0] # find

eigenvector with value 1

D[v]=i2*eigv1/eigv1.norm() # of length i2

for j in range(len(orbH[i])-1): # for all u in H-orbit of v

for l in range(H.order()): # find h in H such that hv=u

if H[l](v)==orbH[i][j+1]:

D[orbH[i][j+1]]=phi[H[l]]*D[v]

break

ALGORITHM: plot drawing D of graph G

INPUT: graph G, drawing D (defined on G.vertices())

OUTPUT: drawing L with edges as lines and vertices as labeled points

L=line((0,0))

for v in G.vertices():

L=L+point(D[v])+text(v,D[v],vertical_alignment=’bottom’)

for e in range(len(G.edges())):

L=L+line([D[G.edges()[e][0]],D[G.edges()[e][1]]])

L.set_aspect_ratio(1)

L.axes(false)

L

37

	Introduction
	Background
	Automorphisms, drawings and symmetries
	Geometric automorphisms and automorphism groups
	Symmetries represented by matrices
	Characterising n-geometric automorphism groups
	Conjugate subgroups
	Choosing a representation

	Drawing 2-dimensional symmetric graphs
	Classification of 2-geometric subgroups
	Finding 2-geometric subgroups
	Algorithms
	Extensive example: K4

	Displaying a 2-geometric automorphism group
	Algorithms
	On strictness

	Drawing 3-dimensional symmetric graphs
	Presentation of a group
	Classification of 3-geometric subgroups
	The subgroups of SO3(R)
	The subgroups of O3(R) not contained in SO3(R)

	Finding 3-geometric subgroups
	Representations for 3-geometric automorphism groups
	Displaying a 3-geometric automorphism group

	Conclusion
	Neat examples
	The Petersen Graph; an extensive example
	2-Dimensional examples

	Sage source code for 2 dimensions

