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Abstract

This report gives a thorough analysis on an O(km)-algorithm that is used to find perfect matchings
and minimum edge colorings in bipartite multigraphs with degree k and number of edges m. First,
the reader is given some background knowledge needed for a good understanding of the proposed
methods. Several constructive graph algorithms will be mentioned and analysed. Available data
structures are named and graph algorithms will be implemented as efficient as possible in terms of
running time complexity. Using one of the available methods from the literature, we propose two
new algorithms that have complexity O

(
m logn

)
. Empirical analysis on several graph algorithms

and subroutines is conducted, using a certain subset of regular bipartite graphs.
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Nomenclature

d(v) the degree of vertex v

E the set of edges

V the set of vertices

χ′(G) edge chromatic number

∆(G) The maximum of the degrees of the vertices in a graph G

δ(v) the set of edges incident to vertex v

Γ(X ) the set of vertices that are adjacent to a vertex v ∈V

dG (v) the degree of vertex u with respect to graph G
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Chapter 1

Introduction

In a wide range of applications, members of two distinct sets A and B of objects need to be matched
to each other in such a way that each object from set A is connected to only one specific object from
set B .

A famous example of this was first mentioned by Philip Hall [6]. Imagine that there is a set A of
women and a set B of men, with |A| = |B | = n for some natural number n. Prior to a party, each
woman and each man had to create a list of names of members of the other gender that they prefer
to dance with. The organiser of the party wanted to match as many men and women to each other
while complying to each person’s preferences. This problem could be modelled by constructing a
graph of men and women, and including edges between a man and a woman when they prefer to
dance with each other.

Other problems revolve around repetitively matching members of two distinct sets such that two
objects are never matched twice or more. For example, this problem arises when we want to find a
fixture schedule in round-robin tournaments with a home-away structure such as national football
leagues. In this case, each team appears once in both sets. Namely, the first set, called A, consisting
of the home teams and the second set, called B , consists of the away playing teams. Matching the
teams once means that we have obtained two rounds of the league and in each matching, teams
that are matched play a football match that should not occur more than once. When one wants
to obtain a fixture schedule for a round-robin tournament, all he has to do is produce the graph
of home teams and away teams and connect all the teams that have to play against each other
(all teams are connected to all other teams in the beginning). When a matching is found in this
graph, the matches implied by the matching are played in the same weekend and the matching is
removed from the graph. Then iteratively, find a round for the next weekend until all matches are
played.

Mathematical methods for solving problems as described above are described and defined in this
report. However, what we want to answer this paper is not how we obtain the solutions to those
problems, but how fast we can obtain it. The definition of fast in this context is not the same as in
plain English, as we will learn later.
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Chapter 2

Theoretical background

2.1 Preliminaries

In this report, we will make extensive use of the mathematical field of graph theory and the prop-
erties of its most frequently used concepts. For this reason, this section introduces these concepts
in a mathematical manner, in order to eliminate any confusion that may arise to the reader. We
assume that the reader has basic knowledge of set theory.

The most elementary objects that we are going to work with are graphs. More formally:

Definition 2.1. (Graph)
An undirected graph is an ordered tuple G = (V ,E) of a set of vertices V and a set of edges E, such
that each element of E is a unordered pair of distinct elements of V . An edge e ∈ E is called incident
to a vertex v ∈ V if v ∈ e and vertices u, v ∈ V are called adjacent or neighbours if there exists an
edge e ∈ E with e = {u, v}. A multigraph is a graph such that each edge is allowed two or more times
in the set of edges.

From now on, when we speak of graph algorithms in this report, the input of these algorithms are
multigraphs. Note that "normal" graphs are a special subset of multigraphs, therefore increasing
the generality of algorithms. This report is not focused on graphs in general, but our special interest
goes to inventing and applying algorithms on bipartite multigraphs.

Definition 2.2. (Bipartite graph)
Let G = (V ,E) be a graph. A bipartition of the vertices V is a partition into subsets V1 and V2 such
that:

∀e ∈ E : e = {u, v} for some u ∈V1, v ∈V2

A graph G = (V ,E) is bipartite if there exists a bipartition of V .

This means that for each edge e ∈ E , one vertex of e is an element of V1, while the other is in V2.
From now on, a bipartite graph G = (V ,E) will also be denoted by G = (V1 ∩V2,E). As we will prove
later on in section 3.1 in the literature review section, theorems on the worst case performance of
the graph algorithms that we are interested in only need to be proven for regular bipartite graphs.
A measure of performance of algorithms will be formalised in the next chapter. To be able to in-
troduce the definition of regular bipartite graphs, we first need to formally define the number of
edges that are adjacent to a vertex:
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Definition 2.3. (Degree)
Let G = (V ,E) be a graph and let v ∈ V . The star of v is defined as δ(v) := {e ∈ E : v ∈ e}. The degree
of vertex v is d(v) := |δ(v)|. Furthermore, the maximum degree of G is denoted by ∆(G) := max

v∈V
d(v).

In more intuitive terms, this means that the degree of a vertex is the number of edges that are
incident to v . Regularity of graphs can now be defined as follows:

Definition 2.4. (k-regular graph)
A graph G = (V ,E) is k-regular if:

∀v ∈V : d(v) = k

This definition implies that in a k-regular bipartite graph G = (V1 ∪V2,E), the subsets of the bipar-
tition have equal cardinality:

Lemma 2.5. For a k-regular bipartite graph G = (V1 ∪V2,E), we have that |V1| = |V2|

Proof. Let G = (V1 ∪V2,E) be a k-regular bipartite graph. Then:

k|V1| =
∑

v∈V1

d(v) = ∑
v∈V2

d(v) = k|V2|

Dividing both sides by k 6= 0 gives the statement.

∑
v∈V1

d(v) = ∑
v∈V2

d(v) ⇔|V1|k = |V2|k ⇔|V1| = |V2|

Furthermore, the concept of a circuit and the concept of the absence of circuits will be used in the
description of the algorithm on which this paper is based, the definitions of these concepts will be
given as well:

Definition 2.6. (Walk, path, circuit)
In a graph G = (V ,E), a walk from vertex v0 to vk is defined as a sequence of vertices (v0, v1, . . . , vk ),
with vi ∈V for i = 0,1, . . . ,k, such that {vi−1, vi } ∈ E for i = 1,2, . . . ,k.
A path from v0 to vk is a walk such that vi 6= v j for i , j = 0,1, . . . ,k, i 6= j .
A circuit is a walk (v0, v1, . . . , vk ) such that vi 6= v j for i , j = 1,2, . . . ,k, i 6= j and such that v0 = vk .
The length of a circuit is equal to k.

Definition 2.7. (Forest)
Let G = (V ,E) be a graph. Then G is a forest if G contains no circuits.

If in a graph G = (V ,E) it holds that for any v1, v2 ∈ V , there exists a path from v1 to v2, then G
is called a connected graph. Moreover, note that the definitions of bipartite graphs and circuits
lead to the somewhat intuitive observation that a graph G is bipartite if and only if G contains no
circuits of odd length, where circuit length is measured as the number of edges in the circuit. This
result was first proven by Hungarian graph theoretician Dénes König in 1936.

Another goal of the algorithm that will be analysed in the following chapters is solving a subprob-
lem of edge coloring bipartite graphs. What this means in concrete terms, is given in the next
definition:
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Definition 2.8. (Edge coloring, edge chromatic number)
A k-edge coloring of a graph G = (V ,E) is a function f : E → {1,2, . . . ,k} such that:

f (e1) 6= f (e2) for any two adjacent edges e1,e2

A graph G = (V ,E) is called k-edge-colorable if there exists a k-edge coloring of G.
The edge chromatic number of a graph G = (V ,E), denoted by χ′(G), is defined as:

min{k ∈N | there exists a k-edge coloring of G}

In more intuitive terms, this means that the edge chromatic number χ′(G) of a graph G is equal to
the number of colors minimally needed to obtain a valid coloring of G , i.e. satisfying the condition
given in definition 2.8. In order to formulate edge coloring algorithms that are understandable and
practical in use, we need to consider the subproblem of finding a perfect matching. Mathemati-
cally speaking, this means:

Definition 2.9. (Matching)
A matching in a graph G = (V ,E) is a subset M ⊆ E such that:

∀e,e ′ ∈ M , e 6= e ′ : e ∩e ′ =;

A matching M is perfect if it covers all vertices v ∈V , that is:

∀v ∈V ∃e ∈ M : v ∈ e

Therefore, a perfect matching F in a k-regular bipartite graph G = (V ,E), always satisfies |F | = 1
2 |V |.

Apart from a technique for finding perfect matchings in regular bipartite graphs, a technique is in-
troduced for partitioning graphs in smaller subgraphs. This technique uses the concept of Eulerian
orientations:

Definition 2.10. (Eulerian orientation)
Let G = (V ,E) be an undirected graph. An Eulerian orientation of G is an assignment of a direction
to each edge of G such that the number of edges directed into v (indegree of v) is equal to the number
of edges directed away from v (outdegree of v) for all v ∈V .

With the definitions given above, we have enough basic knowledge on the field of graph theory to
understand the main algorithm to be analysed in this paper.

2.2 Time complexity

Now that we have introduced the necessary concepts for our research, we can verbalize our prob-
lem definition in more explicit formal terms. In the literature study, our focus will go out to the
technical aspects of graph algorithms that are used for finding minimal edge colorings for bipartite
graphs. When we change subroutines of an algorithm or even find completely different algorithms
that also give the appropriate output, we want to have a measure of comparing these different algo-
rithms. In complexity theory, this is done by asymptotic analysis or complexity analysis. Of course,
research on certain kinds of graph algorithms is conducted in order to find faster algorithms or in
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order to prove that certain existing algorithms cannot be improved.

The asymptotic running time complexity of an algorithm is a measure of the order of magnitude
of the number of steps that need to be performed to successfully execute the algorithm. The time
complexity is often given using the big-O notation, which yields an upper bound on the order of
magnitude on the number of operations needed. This upper bound should be as sharp as possible,
to not overestimate the order of magnitude of the number of operations, but big enough to ensure
that it does not contain fewer operations than the worst-case scenario for the input. More formally,
this notation can be defined as follows:

Definition 2.11. (Big-O notation)
Let f (n) be the number of elementary operations needed to successfully execute an algorithm with
input length n and let g be a function defined on a (not necessarily strict) subset of the natural
numbersN. For n →∞, we say:

f (n) = O
(
g (n)

)
if and only if there exists a positive constant M > 0 such that for sufficiently large n, say n ≥ n0 for
n0 ∈N, it holds that:

∃M > 0 ∃n0 ∈N ∀n ≥ n0 : | f (n)| ≤ M |g (n)|

The definition can be extended to functions with multiple variables, such that the statement holds
if all the variables specified in the function are greater than a certain threshold, as we will see later
in this report. We will see that this last observation is needed for examining the complexity of the
algorithms we are interested in.

Throughout this report, as we are interested only in graph algorithms, we will make use of a few
notations:

• ∆ is the maximum degree in a bipartite graph (which equals k for k-regular bipartite graphs).

• m is the number of edges in a bipartite graph.

• n is the number of vertices in a bipartite graph (in both vertex classes combined, so n
2 vertices

per vertex class).

In the context of graph algorithms, we refer to table 5.1 for the fundamental operations used in
graph algorithms. When we say that the running time complexity of a graph algorithm equals
O(m), this means that the total number of fundamental operations needed to successfully execute
the algorithm will (at most) grow linearly when m grows. This typically occurs in an algorithm
where a certain fundamental operation has to be performed for each edge of the input graph, such
as updating the weight function for each edge. Obviously, the number of fundamental operations
increases when m increases.

2.3 Theorems for understanding

The previous section was useful for understanding the concept of complexity and comparison of
different (graph) algorithms. Apart from this, we need to make sure that the output we desire can
reasonably be expected from an algorithm, i.e. does a desired output actually exist for each valid

Department of Mathematics and Computer Science 8
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input. Therefore, we need a more formal definition of algorithms in order to fully understand what
mathematical properties of k-regular bipartite graphs we need to answer this problem:

Definition 2.12. (Algorithm)
An algorithm (for a problem) is a method that, for each valid input instance of the problem, solves
the problem. To qualify as a deterministic algorithm, the following four requirements need to be
satisfied:

1. Finiteness (the algorithm can be described in a limited number of instructions)

2. Runnability (the algorithm is mechanically executable)

3. Termination (the algorithm stops after a finite number of iterations)

4. Determinism (the algorithm will, given a particular input, always return the same output
after passing through the same sequence of states.)

Of those four requirements, showing the third requirement "termination" for all valid inputs is
often the hardest part of proving that a method classifies as an algorithm. The other properties
are more trivial when we read and try to interpret an algorithm. In our situation, showing that an
algorithm terminates means that if we have a valid input, i.e. a k-regular bipartite graph for some
k ∈N, in our algorithm, can we assure that the desired output exists in the first place? This is in fact
equivalent to proving that a k-regular bipartite graph always has a k-edge coloring and a perfect
matching. To prove this statement, we need to introduce a theorem by König [10]:

Theorem 2.13. (König)
Every bipartite graph G = (V ,E) has the following property:

χ′(G) =∆(G)

Proof. Let G = (V ,E) be a bipartite graph. We have that χ′(G) ≥ ∆(G). Indeed, find a vertex v ∈ V
such that d(v) =∆(G), then the edges that are incident to v all need to have a different color. There-
fore, the smallest number of colors needed for a correct edge coloring is greater than or equal to
d(v) =∆(G).
What we have left to prove is: χ′(G) ≤∆(G)
Let ∆(G) = k. Then we prove the statement by induction on m:

Let |E | ≤ k, then there trivially exists an k-edge coloring on G .
For the induction hypothesis, suppose now that the statement is true for all bipartite graphs with
|E | < m, for some m > k.
Let now G be a bipartite graph on m edges. Consider the graph G ′ = G\{e} for some e ∈ E , then
G ′ is still a bipartite graph with fewer edges. By the induction hypothesis, we have that G ′ has a
k-edge coloring. Color its edges with k colors this gives a colouring of G except for edge e. Let now
e = {u, v} for some vertices u, v ∈ V of the bipartite graph. Clearly, u and v are in different color
classes. We have two cases to take into account, and prove the statement per case:

1. There is no edge adjacent to u with color i , where 1 ≤ i ≤ k, and the same holds for v . Then
color edge e with color i and the statement follows.

Department of Mathematics and Computer Science 9
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2. There is a color, say color 1, such that there is an edge with this color incident to u, but there
is no edge with color 1 incident to v . Let e ′ = {u, w1} the edge with color 1 with endpoint u.
As dG ′(u)= dG (u)−1 ≤ k−1, there is a color, without loss of generality color 2, such that there
is no edge with color 2 incident to u. Possibly, there is an edge {w1, w2} with, without loss
of generality, color 2, {w2, w3} with color 1, and so forth. Build a path of maximum length
with edges alternately having color 1 and 2 starting from u. This path does not visit v , as this
could only happen with an edge of color 2. But if that would be the case, then there exists
a path of even length from u to v , a contradiction by definition of a bipartite graph. Now
interchange the colors of the edges on the path found, so that each edge with color 1 now
has color 2 and vice versa. It now happens to be that there is no edge incident to u with color
1, just like vertex v . Now color edge e with color 1 and the statement is proven.

The generality of this theorem makes its result very useful to use in algorithms for finding minimal
edge colorings, as it holds for all bipartite graphs, so for k-regular bipartite graphs in particular. As
our focus will go to k-regular bipartite graphs, we can conclude from this theorem that a minimal
edge coloring of a k-regular bipartite graph can be realised by taking a set of k different colors.

We also have a theorem, whose proof contains an technical element due to Hall [6], that directly
implies the existence of a perfect matching in a k-regular bipartite graph:

Theorem 2.14. Every k-regular bipartite graph has a perfect matching

Proof. Let G = (V1∪V2,E) be a k-regular bipartite graph, where V1 and V2 are the two color classes
of G . Let X ⊆ V1 arbitrary. Put Γ(X ) = {y ∈ V2 | ∃x ∈ X : {x, y} ∈ E }. Then it immediately follows
that |Γ(X )| ≥ |X |, as otherwise, there exists a vertex y ′ ∈ Γ(X ) such that d(y ′) > k, contradicting the
definition of G . Indeed, if |Γ(X )| < |X |, Γ(X ) is adjacent to at least k|X | edges, making the average
number of edges incident to a vertex in Γ(X ) greater than k. This means that by Hall’s Marriage
Theorem, as X was picked arbitrarily, there exists a matching that saturates V1 (this is also called a
complete matching), so there exists a perfect matching, as |V1| = |V2| as shown before.

We can use this theorem to conclude that for each input graph, we can retrieve a perfect matching
when we have an appropriate algorithm to find it. Furthermore, it also leads us to observe that a k-
regular bipartite graph could be split into k disjoint perfect matchings. If a perfect matching F ⊆ E
is found in a k-regular bipartite graph G = (V ,E), F could be removed from the graph to obtain the
(k −1)-regular bipartite graph G ′ = (V ,E\F ). This argument could be used iteratively until the final
graph is just a perfect matching.

The theory above was to show the existence of a valid output (a k-edge coloring) for each input (a
k-regular bipartite graph) of the algorithm. The last observation leads to a subproblem related to
edge coloring bipartite graphs, namely constructing an algorithm for finding perfect matchings in
bipartite graphs that is as fast as possible, i.e. the asymptotic complexity bound of the algorithm
is as sharp as possible. The following chapter will describe algorithms that find perfect matchings
in bipartite graphs and provide an explanation on their running time complexities. Furthermore,
it will be shown that it suffices to have an algorithm that finds a perfect matching for k-regular
bipartite graphs only.

Department of Mathematics and Computer Science 10



Chapter 3

Schrijver’s algorithm for matching and
coloring regular bipartite graphs

In this chapter, we will describe one of the most efficient algorithms known today in graph theory
on the subject of perfect matchings in bipartite graphs and its practical use as a subroutine of
edge-coloring algorithms for bipartite graphs. Summarised, the main problems that we want to
solve are:

– Given: a bipartite graph G = (V ,E).
Find: a ∆(G)-edge coloring of G .

– Given: a k-regular bipartite graph G = (V ,E).
Find: a perfect matching F in G .

3.1 Reduction to k-regular bipartite graphs

Finding a ∆(G) = k-edge coloring for general bipartite graphs is equivalent to finding a k-edge col-
oring in a k-regular bipartite graph. The reason for this is that each general bipartite graph G with
maximum degree ∆(G) can be easily transformed to a ∆(G)-regular bipartite graph G ′ by manipu-
lating the original graph by adding edges and vertices such that it becomes regular. The procedure
to do this is as follows:

Let G = (V ,E) be a bipartite graph. For each of the two vertex color classes, merge together two
vertices if the sum of their degrees is smaller or equal to k until there is at most one vertex v left
with d(v) ≤ 1

2 k. This means that at most two vertices are left with degree smaller than or equal
to 1

2 k. For other vertices v ∈ V , k − dG (v) ≤ 1
2 k ≤ dG (v) Make a copy H ′ of the resulting graph

H = (VH ,EH ) and connect each v with its copy v ′ ∈ H ′ with k−dH (v) = k−d ′
H (v) edges. This yields

a k-regular bipartite graph G̃ = (Ṽ , Ẽ) with:

|Ẽ | = |E |+ ∑
v∈VH

(k −dH (v)) ≤ |E |+ ∑
v∈V

(k −dG (v)) ≤ |E |+ ∑
v∈V

dG (v) = |E |+2|E | = 3|E |

so |Ẽ | = O(|E |). As the number of edges of the original graph G and the resulting graph G̃ are of
the same order of magnitude, and the same holds for vertices as |Ṽ | ≤ 2|V | = O(|V |), edge color-

11



Danny Blom Bachelor final project

ing algorithms will have a similar worst-case complexity bound on both graphs. Because of this
result, the rest of the paper will focus merely on k-regular bipartite graphs, as this kind of bipar-
tite graphs has properties that allow clever techniques that decrease the running time complexity.
These techniques will be treated more thoroughly further in this paper.

Figure 3.1: The bipartite graph G = (V ,E), given on the left by dark red and green vertices and solid
edges, is copied to copy G ′ = (V ′,E ′), and vertices v ∈ V with non-maximal degree are connected
with their copies v ′ ∈V ′ to make a 3-regular bipartite graph.

3.2 Schrijver’s linear time perfect matching algorithm for fixed k

In this section, we will consider the article on which this report is based, Bipartite Edge coloring
in O(∆m) time written by Alexander Schrijver [11]. In contrast to earlier bipartite matching algo-

rithms, such as the O
(
n

5
2

)
algorithm by Hopcroft-Karp [7] and the O

(
m logm

)
algorithm by Cole-

Hopcroft (Alon [1] has elaborated a simpler algorithm with the same time bound, which will be
mentioned in section 4.2) the algorithm by Schrijver was the first perfect matching algorithm that
was linear with respect to the number of edges m for fixed values of ∆, namely O(∆m). Using
a divide-and-conquer technique due to Gabow [4], we will also derive that the time complexity
of a perfect matching algorithm is equivalent to the time complexity of a minimal edge coloring
algorithm.

3.2.1 Explanation and time complexity of the algorithm

The algorithm is given in the theorem below, immediately proving the time complexity bound of
O(km).

Theorem 3.1. A perfect matching in a k-regular bipartite graph G can be found in O(km) time,
where m is the number of edges of G.

Proof. (by construction)
Let G = (V ,E) be a k-regular bipartite graph on m edges. Let w : E → Z+ be a weight function
defined on the edges of G .
Put Ew = {e ∈ E |w(e) > 0}. Furthermore, for any matching F ⊆ E , let w(F ) = ∑

e∈F
w(e). Lastly, we
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denote the incidence vector of F by χF , where the entries of χF ∈ {0,1}E are such that

χF (e) =
{

1, for e ∈ F

0, for e 6∈ F

Below is given the pseudo code of the algorithm by Alexander Schrijver, which is loosely based on
an older matching algorithm with alternately adding and deleting edges due to Csima and Lovász
[3] to find perfect matchings in k-regular bipartite graphs:

Algorithm 1 Finding a perfect matching in a k-regular bipartite graph

1: Input: k-regular bipartite graph G = (V ,E), weight function w : E →Z+.
2: Output: perfect matching F ⊆ E in G .
3: for e ∈ E do
4: w(e) := 1;
5: end for
6: while Ew is not a forest do
7: Find a circuit C in G ;
8: Define M , N matchings with C := M ∪N , w(M) ≥ w(N );
9: α := min

e∈N
w(e)

10: w := w +α(χM −χN );
11: end while
12: return Ew ;

At first, the weight function is initialized and each edge is given weight value 1. When the graph
limited to Ew is a forest, no circuits can be found anymore and this means the weights on the
edges cannot be updated. This can only be the case when each edge in Ew has weight k, therefore
implying a perfect matching is found. Furthermore, circuits in a bipartite graph are always of even
length in terms of number of edges, so it is always possible to split a circuit in two matchings by
traversing the circuit and alternately adding an edge to respectively the first and second matching.

Using the expression in line 10 instead of (3.1), one can assure that at least one of the edges that
occurs in N will have zero weight after the update statement. As each vertex is visited at most once
during the circuit and the two matchings in the circuit are chosen by alternately picking edges from
the circuit, this means that all vertices visited in the circuit are incident to an edge in M and to an
edge in N . This also means that w(δ(v)) = k is met for all vertices v and for each iteration of the
algorithm, as the weight on the edge incident to v belonging to M increases by the same amount
as the weight on the edge incident to v belonging to N decreases. Moreover, as in each iteration
|Ew | will decrease by at least 1, this shows us that algorithm 1 is indeed terminating. We next argue
that the time complexity is O(km), namely by noting that the sum of the squares of the weights on
the edges has an upper bound, as for all edges in the graph it holds that w(e) ≤ k. Before starting
the first iteration, the sum of squares of weights is m = 1

2 nk, as each edge’s weight is initialized at
1. The change in the sum of squares of weights in one iteration is:
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∆(
∑
e∈E

w(e)2) = ∑
e∈E

w(e)2
new − ∑

e∈E
w(e)2

ol d

= ∑
e∈M

((w(e)+α)2 −w(e)2)+ ∑
e∈N

((w(e)−α)2 −w(e)2)

= ∑
e∈M

(2αw(e)+α2)+ ∑
e∈N

(−2αw(e)+α2)

= 2α (w(M)−w(N ))+α2 (|M |+ |N |)
≥α2|C |
≥ |C |

Note that in this calculation, ∆ does not denote the maximum degree of a bipartite graph, but the
change in the sum of squares of weights in a single iteration. Besides, the weight value of an edge
e after the update statement given in (10) is denoted by w(e)new , and w(e)ol d the weight value of
edge e before. Note that the weights on the edges of Ew are always integer valued and positive, in
other words α> 0,α ∈N, so that α≥ 1, so this means that

∑
e∈E

w(e)2 will always increase by at least

the number of edges in the circuit found.

Until now, no description on how to find a circuit in a bipartite graph is given. At the start of the
execution, we begin with an empty path P , which will be filled with edges e such that 0 < w(e) < k.
Indeed, if we search for a circuit in Ew , this means that edges of weight zero are already eliminated
and edges of weight k are element of the perfect matching to be found and not incident to other
edges in Ew , so there is no possibility we will find a circuit that contains these maximum weight
edges. We start at a random vertex v such that there is no edge of weight k incident to it. Then
choose an edge e = {v, w} and after that, keep visiting edges in Ew that are not visited earlier until a
visited vertex is reached. Note that these edges are always of the desired weight between zero and k
and the time complexity of finding a circuit is therefore O(|C |). Now, apply the update statements
of algorithm 1 on the edges of circuit C ⊂ P and delete C from the path P . A next circuit, if it exists,
will be found by using the part of P that was not deleted and doing the same iteration method as
above.

Proving the complexity of the algorithm can be done by looking at the sum of squares of weights
on the edges. Let us denote this sum by w(E)2 = ∑

e∈E
w(e)2. At the start of the algorithm, all edges’

weights are set to one, so w(E)2 = 1
2 nk = m. When we have found a perfect matching in the graph,

we will have w(E)2 = 1
2 nk2 = km. Earlier, we observed that in each iteration, the increase in this

sum of squares is at least the length of the circuit |C|. A circuit could be found in O(|C |) time, as we
have shown before. The difference between the start and the end of the algorithm in terms of the
sum of squares is:

w(E)2
end −w(E)2

st ar t = km −m = (k −1)m

To find circuits with a total length of (k − 1)m takes time O((k −1)m) = O(km) As the algorithm
indeed terminating, this means that the algorithm can find a perfect matching in a k-regular bi-
partite graph in O((k −1)m) = O(km) time.

The execution of the algorithm is shown below in an example. The example 3-regular bipartite
graph shown below in Figure 3.2- 3.7 is input of the above algorithm. The algorithm iteratively
finds a circuit and divides it in two matchings, which are distinguished by color. Namely, M is given
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by the blue-colored edges and N by the red-colored edges. The weight on an edge is proportional
to the thickness of the edge, i.e. the thicker the edge, the higher the weight on it. When after an
update statement, an edge has weight zero, it is deleted from the graph and not visible anymore.

A B C D E

1 2 3 4 5

Figure 3.2

A B C D E

1 2 3 4 5

Figure 3.3

A B C D E

1 2 3 4 5

Figure 3.4

A B C D E

1 2 3 4 5

Figure 3.5

A B C D E

1 2 3 4 5

Figure 3.6

A B C D E

1 2 3 4 5

Figure 3.7

Of course, choosing an unvisited edge to add to the circuit finding path occurs randomly in this
interpretation. In the research part of this paper, we will analyse a few heuristics for choosing these
edges and compare their performances on a randomly generated subset of regular bipartite graphs.
These are introduced in a later part of the report, as the heuristics heavily rely on information on
data structures for graphs that we have not mentioned yet.

Compared to the algorithm described by Schrijver in his paper, this implementation is slightly
more efficient than Schrijver’s because of the replacement of the update statement in his algorithm
by the code in line 10. The original algorithm by Schrijver had an alternative update statement that
required generally more iterations of the while-loop as the one given in line 10, namely:

w := w +χM −χN (3.1)

In this implementation, the circuit’s edges’ weights are only either increased or decreased by one.
Therefore, the algorithm will need more iterations to decrease the cardinality of Ew , indirectly im-
plying that the implementation also needs more iterations in general.

This description and proof of the algorithm above raises the following questions, which we will try
to answer in this report:

Question on worst-case running time (chapter 4):
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• Can we develop an algorithm, whether or not related to the algorithm of Schrijver, that
asymptotically performs better than Schrijver’s algorithm, at least for a specific subclass of
k-regular bipartite graphs?

Question on average-case running time (chapter 7):

• What can we say about the running time complexity of Schrijver’s algorithm for finding per-
fect matchings in k-regular bipartite graphs in practice? (in theory, it is O(km)) (own re-
search)

Questions on choices on the algorithm’s implementation (chapter 5):

• How can we implement the algorithm in a programming language such that the theoretically
promised complexity bound is attained?

• What is the most efficient strategy for finding circuits in bipartite graphs for the purpose of
Schrijver’s algorithm?

Questions on the interpretation of observed behaviour (chapter 7):

• How does the length of a circuit relate to the benefit (the increase in sum of squares of the
edge’s weights) gained from adjusting the weights of the circuit’s edges?

• What is the behaviour (measured in number of traversed edges until the end of execution)
of the algorithm when we vary the number of vertices n and the degree k?

3.3 Equivalence of complexity bounds for perfect matchings and k-edge
colorings

From the above time complexity bound of O(km) of finding a perfect matching, one could derive
a statement about the same bound for finding a k-edge coloring in a k-regular bipartite graph. A
weaker statement for finding k-edge colorings in k-regular bipartite graph can be easily deduced
from theorem 3.1, namely that it could be found in O

(
k2m

)
time:

Let G = (U ∪V ,E) be a k-regular bipartite graph with U and V the two color classes of vertices
of G . Then, by theorem 2.14, there exists a perfect matching M , which could be found in O(km)
time. Deleting this perfect matching M from G leaves us the (k −1)-regular bipartite graph G ′ =
G\M . Recursively finding perfect matchings and giving each matching another color yields a k-
edge coloring of G with the complexity bound:

O(km + (k −1)m + (k −2)m + ...+2m +m) = O

(
m

k∑
i=1

i

)
= O

(
k(k +1)

2
m

)
= O

(
k2m

)

3.3.1 Eulerian orientations in bipartite graphs

The result above however is not yet useful enough for our purposes and too slow for practice. Nev-
ertheless, the result can be sped up by using a technique that was introduced by Harold Gabow [4].
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His approach made use of a technical algorithm that finds an Eulerian orientation of the graph in
the case that k is even. Trivially, this only works when each vertex has even degree. Therefore, we
can only apply this method for algorithms when the input is a k-regular bipartite graph where k
is an even number. Gabow’s algorithm was based on general bipartite graphs, but as our specific
interest goes to regular bipartite graphs, it is more relevant to adapt the algorithm for examining
k-regular bipartite graphs. The pseudo code of his algorithm adapted to k-regular bipartite graphs
is as follows:

Algorithm 2 Finding an Eulerian orientation in a k-regular bipartite graph, k 6= 0 even

1: Input: k-regular bipartite graph G = (V ,E).
2: Output: List of paths L of the edges E .
3: initialise empty list of paths L
4: initialise empty queue of vertices Q
5: put all vertices in Q
6: while Q is not empty do
7: s first element in Q
8: delete s from Q
9: if d(s) 6= 0 then

10: instantiate empty path of edges p
11: v := s
12: while d(v) 6= 0 do
13: pick random edge {v, w} ∈ E
14: delete {v, w} from E
15: p := p ∪ {v, w}
16: v := w
17: end while
18: put p in L
19: end if
20: end while
21: return L;

The above algorithm runs in O(m) time for k-regular bipartite graphs G = (V1 ∪V2,E) where |E | =
m. The algorithm starts by initialising a queue of all the vertices and an empty list of paths. The
first vertex of the queue is pulled from the queue and an empty path is initialized. The path is
iteratively elongated (by picking edge from the edge list of the current vertex, adding it to the path
and deleting it from the graph, and updating current vertex to the value of the vertex on the other
side of the picked edge) until we arrive at a vertex that has no edges left in its edge list. A new vertex
is polled from the queue and a new list is initialised, repeating the argument above until there are
no edges left in the graph. As an output of the algorithm, we have a list of paths. The assignment
of the direction of an edge is made according to how the edge is traversed in the algorithm. As we
see, only a constant number of operations is done per edge in this algorithm, justifying the claim
made on the algorithm’s complexity.

Let us prove that the time bound of finding k-edge colorings can be lowered to O(km) time as well.
This is done as follows:

Let G = (V1 ∪V2,E) be a k-regular bipartite graph. If k is an odd integer, we can find a perfect
matching M with algorithm 1, then assign a color to the edges in this matching, and recursively
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find a (k − 1)-edge coloring on the resulting graph G ′ = (V1 ∪V2,E\M) using a set of colors not
containing the color used for the matching. If k is an even number, the graph could be split into
two k

2 -regular bipartite graphs by determining an Eulerian orientation of G . The split is made by

first making a k
2 -regular bipartite subgraph G1 = (V1 ∪V2,E1) by taking the edges that are directed

from V1 to V2 in the Eulerian orientation and the second subgraph G2 = (V1 ∪V2,E2) by taking the
edges directed from V2 to V1. Then |E1| = |E2| = m

2 and ∆(G1) =∆(G2) = k
2 . This process of splitting

even degree regular bipartite graphs G = (V1 ∪V2,E) by means of an Eulerian orientation of G will
from now on be called Euler split.

The time bound for finding a k-edge coloring for regular bipartite graphs can be calculated as
follows: Let T (k,m) be the running time of the algorithm on a k-regular bipartite graph on m
edges. Then finding a perfect matching, if necessary, and Euler splitting the graph takes time ckm
for some positive constant c > 0. Then T (k,m) ≤ 2ckm as we see that:

T (k,m) = ckm+2T (bk

2
c,bm

2
c) = ckm+2(cbk

2
cbm

2
c+2T (bb

k
2 c
2

cbb
m
2 c
2

c) ≤ ckm+ck
m

2
+ck

m

4
+. . . ≤ 2ckm

using that bkc ≤ k for all k ∈R. The time needed for finding an Eulerian orientation is not taken into
account in the separate terms that include ckm, as it is negligible compared to the time needed for
finding perfect matchings.

Figure 3.8: Visualisation of the edge coloring algorithm described above for k = 13. Except for the
bottommost layer, arrows that point towards a 1 imply executing algorithm 1, while arrows that
divide a number into two halves imply performing Euler splits.

Also, research will be conducted on the minimal edge coloring algorithm. This paper tries to solve
the following questions:

• For small k, is there an optimal strategy for edge coloring a k-regular bipartite graph? (chap-
ter 4)

• How many matchings are needed to edge color a graph? (chapter 4)
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Chapter 4

Literature review

In this chapter, we are going to review literature that has been recently published on matching and
coloring algorithms for bipartite graphs. As the paper by Schrijver has arrived almost two decades
ago, a lot of new research on the subject has been conducted. Several scientific papers have been
published in which mathematicians and computer scientists tried (and succeeded) to improve the
time complexity of the perfect matching algorithm and the edge coloring algorithm.

Below we will give an overview of relevant, available techniques for decreasing the running time
complexity of the algorithms. The reason for this is that our research will try to blend the meth-
ods described below to improve the algorithms in terms of asymptotic running time complexity.
If improving the algorithms is not a possibility, we will try to develop an algorithm with the same
or a slightly worse asymptotic running time complexity as the best algorithm known that is much
simpler and easier to understand. We will go over the techniques described by the following re-
searchers:

• Schrijver [11]

• Alon [1]

• Kapoor and Rizzi [8]

4.1 Using prime factorisation to edge color bipartite graphs

Schrijver himself provided a technique for speeding up his own algorithm, which makes us of the
prime factorisation of the degree k. It could be derived as follows:

Suppose G = (V ,E) is a k-regular bipartite graph with k = p1p2 . . . pt the prime factorisation of
k such that p1 ≤ p2 ≤ . . . ≤ pt primes. We will now give a definition that will be of great use in
explaining the algorithm involving the prime factorisation of k.

Definition 4.1. Let k ∈N and suppose k = p1p2 . . . pt where each pi is prime and p1 ≤ p2 ≤ . . . ≤ pt .
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Then we define φ(k):

φ(k) =
t∑

i=1

pi

i−1∏
j=1

p j

This definition is needed for both the formulation and the proof of the next theorem:

Theorem 4.2. Let G = (V ,E) be a k-regular bipartite graph. Then G could be k-edge colored in
O

(
(φ(k)+ logk)m

)
time.

Proof. Suppose that k = p1p2 . . . pt where each pi is prime and p1 ≤ p2 ≤ . . . ≤ pt . Put k ′ = p2p3 . . . pt .
Then k = p1k ′. Then G can be partitioned in p1 bipartite subgraphs which are all k ′-regular, as fol-
lows:

Put k ′ = p2p3 . . . pt . Then, for each vertex v ∈ V , replace v by new vertices v1, v2, . . . vk ′ and dis-
tribute the p1k ′ edges incident to v equally over the newly created vertices. The resulting graph
H is therefore a p1-regular bipartite graph with k ′|V | vertices. Then H can be p1-edge colored in
O

(
p1m

)
time where m is the number of edges of H , which is in fact the same number as for G .

When each group of k ′ vertices belonging to an original vertex are merged together, we see that the
edges of the original graph G can be partitioned in p1 groups, which we will call E1,E2, . . .Ep1 , as
we can put all edges having the same color into one group, and we obtained an edge coloring of p1

colors, yielding p1 bipartite graphs that are k ′-regular, namely Gi = (V ,Ei ) for i = 1,2, . . . p1.

Figure 4.1: Result of the partitioning process described above. Now the first subgraph needs to be
edge colored using iteration on the primes in the factorisation of k.

After the decomposition step as proposed above, we can proceed to edge coloring the original
graph G by first finding a k ′-edge coloring, without loss of generality, of G1. When the algorithm
for finding this edge coloring is terminated, we have partitioned E into the sets of edges of k ′-
regular bipartite graphs E2,E3, . . . ,Ep1 and perfect matchings M1, M2, . . . , Mk ′ . So the number of
regular bipartite graphs is p1 −1 and the number of matchings is k ′. Now we need to define the
following variable, where we start at α= 1:

ξ := min{α, p1 −α}

This variable keeps track of the minimum of the following two quantities: the number of k ′-regular
bipartite graphs that still need to be colored and the number of k ′-regular bipartite graphs that are
already broken up into perfect matchings. Now merge ξ (which is 1 in the first iteration) bipartite
graphs that still need to be colored and add r readily obtained perfect matchings to the result
such that ξk ′+ r = 2t for some t ∈N and r ≤ ξk ′. We can efficiently edge color this final graph by
recursively performing Euler splits on it (see algorithm 2). After this iteration, we therefore have
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(ξk ′ + r )+ (k ′ − r ) = (ξ+ 1)k ′ perfect matchings and p1 − 1− ξ regular bipartite graphs still to be
colored. In fact, repeating this argument means that ξ will always double, except maybe the last
iteration. In each iteration, edge coloring the merged graph G̃ = (V , Ẽ) with degree a power of
two is done in O

(|Ẽ | logξk ′+ r
)

= O
(|Ẽ | logk

)
, as we work with subgraphs of the original k-regular

bipartite graph G . We have that Ẽ = 1
2 (ξk ′ + r )n ≤ ξk ′n, and ξ doubles in each iteration, so all

iterations together take a certain running time complexity of:

O
(
(1+2+22 + . . .+2log p1 )k ′n logk

)
= O

(
2p1k ′n logk

)= O
(
m logk

)
(4.1)

The above gives us the following general information above the time complexity of the proposed
algorithm. At first, we need to find an edge coloring for a p1-regular bipartite graphs on m edges.
This takes O

(
p1m

)
. We obtain the k ′-regular subgraphs, of which one is edge colored. This graph

we have to color has m
p1

edges and k ′ = p2p3 . . . pt . So this graph can be recursively split in p2 differ-
ent subgraphs. Repeating this argument will finally yield the edge coloring of a pt -regular bipartite

graphs into pt perfect matchings. Up until then, this step has taken O
(
p2

m
p1

)
+O

(
p3

m
p1p2

)
+ . . .+

O
(
pt

m
p1p2...pt−1

)
= O

(
φ(k ′)m

)
time. Then, the reasoning as to make the degree a power of two can

be applied, which takes O
(
m logk ′) time in total, as we saw in equation 4.1. So the edge coloring

of the k ′-regular bipartite graph takes O
(
(φ(k ′)+ logk ′)m

)
time. Combining the first split into k ′-

regular bipartite graphs, finding one k ′-edge coloring and using the argument of making the degree
a power of two, we have obtained an algorithm with complexity O

(
p1m

)
+ O

(
(φ(k ′)+ logk ′)m

)
+

O
(
m logk

)
= O

(
(φ(k)+ logk)m

)
, as we have:

φ(k) =
t∑

i=1

pi

i−1∏
j=1

p j

= p1 +
t∑

i=2

pi

i−1∏
j=1

p j

= p1 + φ(k ′)
p1

(4.2)

It might not seem very trivial that the time bound proposed by this algorithm is indeed (much)
better than the O(km) bound we saw earlier. One might observe that, if k = p1p2 . . . pt , it holds
that:

φ(k) =
t∑

i=1

pi

i−1∏
j=1

p j

≤
t∑

i=1

pmax

2i−1
≤ 2pmax

Therefore the algorithm above could be estimated by a time complexity of O
(
(pmax + logk)m

)
.

This means that the algorithm proposed above is not efficient for k that have a prime factorisation
consisting of big maximum primes, and especially k that are prime themselves, as φ(p) = p if p is
prime. Later on, we will research the time complexity of a new, completely different algorithm that
might resolve this problem in some special cases of odd or prime degrees k. Given below is a table
that gives the value of φ(k) for k = 2,3, . . . ,30:
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k φ(k) k φ(k) k φ(k)

11 11 21 16
3

2 2 12 15
4 22 15

2
3 2 13 13 23 23
4 3 14 11

2 24 31
8

5 5 15 14
3 25 6

6 7
2 16 15

4 26 17
2

7 7 17 17 27 17
3

8 7
2 18 4 28 19

4
9 4 19 19 29 29
10 9

2 20 17
4 30 13

3

Table 4.1: Values of φ(k) for small k = 2,3, . . . ,30

4.2 Adding perfect matchings

Another algorithm to take into account before we can look at the characteristics of interest of the
algorithm by Schrijver and before we can try to improve its time complexity in terms of the degree
k and the number of vertices n, is the algorithm proposed by Noga Alon [1]. As suggested earlier,
the algorithm by Alon is simpler than the algorithm by Cole and Hopcroft [7], yet attains the same
time bound of O

(
m logm

)
. We will now explain its characteristic steps:

Theorem 4.3. Let G = (V ,E) be a k-regular bipartite graph on m edges. Then a perfect matching on
G can be found in O

(
m logm

)
time.

Proof. Let m = 1
2 nk be the number of edges of G and let 2t ≥ m such that t is as small as possible.

Define γ = b2t

k c and β = 2t −γk < k. Find a random matching M in the complete bipartite graph
K n

2 , n
2

, this can be done in O(n) time, but it can also be precomputed for each possibility of n ∈ N
even, making its running time negligible in this algorithm. Now, do the following:

Create an empty graph G̃ = (V ,;). For each edge e ∈ E , add γ copies of e to G̃ . Then also add β

copies of each edge e ∈ M of the random matching. For each copy of an edge from this random
matching, mark it as a dummy edge, so one can see that it does not belong to the original graph. In
this case, we have that G̃ is 2t -regular with a total number of 1

2βn < 1
2 kn = m < 2t dummy edges.

We can perform an Euler split and from the two subgraphs obtained, consider the 2t−1-regular
bipartite graph with the fewest dummy edges, i.e. at most 1

4βn < 1
4 kn = m

2 < 2t−1 dummy edges.
Repeating this argument t = dlogme times, we have obtained a 1-regular bipartite graph with less
than 1 dummy edge, so this means it is in fact a perfect matching from the original graph G . As
we saw earlier, in a regular bipartite graph with degree k = 2t , a perfect matching could be found
in O(tm) = O

(
m logk

)
time, as it involves performing t Euler splits where each split takes O(m)

time. In this case, the degree of the regular bipartite graph is O(m), so this implies a O
(
m logm

)
algorithm.
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Figure 4.2: The 3-regular bipartite graph given by the black edges is expanded by adding one
dummy perfect matching (given in red) to make k a power of 2, i.e. 4.

4.3 Strategy for finding minimal edge colorings in k-regular bipartite
graphs

In their 2000 paper, Kapoor and Rizzi [8] give a strategy for finding minimal edge colorings in k-
regular bipartite graphs. In their paper, they introduced new graph theory concepts that need to
be defined here as well to be able to understand their method. Firstly, they introduce bins:

Definition 4.4. (Bin, almost solved bin)
A bin of a k-regular bipartite graph G = (V ,E) is a list of integers (b1,b2, . . . ,bp ) such that E is par-
titioned into subsets E1,E2, . . . ,Ep and Gi = (V ,Ei ) is a bi -regular bipartite graph. A bin is almost
solved if:

• b1 = 1

• bi ≤
i−1∑
j=1

b j

The notion of bins in the proposed method drastically increases the simplicity of the notations, as
operations as executing a perfect matching algorithm and performing Euler splits are summarised
by the degrees of the subgraphs obtained from the original graph. Apart from perfect matching
algorithms and Euler splits, a new variation on Euler splits is introduced, namely Euler splits on
even degree regular bipartite graphs after two odd degree regular bipartite graphs have merged.
This method is denoted by Odd-Euler(k1, k2) when k1 ≡ k2 ≡ 1(mod 2) degrees of regular bipartite
graphs.

Furthermore, the method that they propose proves a useful theorem. But first, we need to define
subroutine for finding almost solved bins to make the proof of the theorem easier to understand.
For odd k, the inevitable start of the method is to find a perfect matching first, and performing an
Euler split on the residual (k−1)-regular bipartite graph, yielding the starting bin (1, k−1

2 , k−1
2 ). This

starting bin can be transformed in an almost solved bin by performing the following algorithm:
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Algorithm 3 Finding an almost-solved bin of a k-regular bipartite graph, k odd

1: Input: odd k.
2: Output: almost solved bin of k.
3: H := (1, k−1

2 , k−1
2 ) = (a,b,b);

4: T :=;;
5: B := (H ,T );
6: while a 6= b do
7: while b ≡ 0(mod 2) do
8: T = (b,T );
9: H = (a, b

2 , b
2 );

10: b = b
2 ;

11: end while
12: if a 6= b then
13: while a+b

2 ≡ 1(mod 2) do
14: H = (b,Odd-Euler(a,b));
15: temp = a;
16: a = b;
17: b = temp+b

2 ;
18: end while
19: end if
20: end while
21: return B ;

At the start of the algorithm’s execution, we see that the bin is given as the concatenation of the
header H = (1, k−1

2 , k−1
2 ) = (a,b,b) and the empty tail T . This means that in the beginning, a 6= b,

so the code inside the loop defined by line 6-20 is always executed.

First, lines 7-11 make sure that the second and third element of the header are odd natural num-
bers. This is done by possibly performing Euler splits on one of the even degree regular bipartite
graph represented by b and pushing the graph that is left over in the process to the front of the tail
part of the bin. An important aspect that we can conclude from this is that the natural numbers
that occur in the tail part of the bin are smaller or equal than the sum of the header elements and
the tail elements appearing earlier in the tail. More formally, this means that for all elements ti ∈ T :

ti ≤V al (H)+ ∑
j<i

t j

where Val(H) is the sum of the elements in the header H . This complies with the desired property
of almost solved bins, so with this explanation, the statement is proven for the tail of the bin.

Now, look at the header of the bin. It consists of three odd natural numbers, of which the second
and third are equal. Then, repeatedly change the header from (a,b,b) to (b, a+b

2 , a+b
2 ) and updat-

ing a and b to the new values, by taking the first and second subgraph induced by the elements
in the bin, merging the subgraphs and performing an Euler split upon them, which is possible as
the degrees of the subgraphs were both odd, so an even degree regular bipartite graph was cre-
ated. In this repeated process, the new second and third subgraph represented by the header ele-
ments will eventually become even degree subgraphs. This way the sum of the header’s elements
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decreases when the whole algorithm performs an iteration defined in lines 6-20. This algorithm
clearly terminates, as V al (H) decreases each iteration in 6-20 and V al (H) ≥ 3, as the minimum
objects considered are perfect matchings or 1-regular bipartite graphs. Furthermore, at the end of
the execution a = b, so clearly, as already proven for the tail of the bin, also the header complies to
the definition of almost solved bins, so the algorithm outputs an almost solved bin.

Now, all the tools needed to understand the method by Kapoor and Rizzi have been introduced.
We prove the following statement by giving their strategy:

Theorem 4.5. Let G = (V ,E) be a k-regular bipartite graph with k ∈N arbitrary. Then we only need
to perform the perfect matching algorithm at most once to be able to find a minimal edge coloring,
i.e. using k colors, for G.

Proof. First, consider the case k is even. Then one can rewrite k := s ·2r where s is odd. Then you
should recursively perform Euler splits on one of the two subgraphs obtained by an Euler split (and
subsequent subgraphs) until you have two regular bipartite subgraphs with degree s:

Figure 4.3: Visualisation of the strategy for even k.

Edge coloring the original k-regular bipartite graph is done as follows: Find recursively a s-edge
coloring of the first s-regular subgraph. This yields us s perfect matchings. Then, we can edge
color the other subgraphs without having to find a perfect matching. Firstly, the other s-regular
subgraph is colored by adding a subset of the s perfect matchings we already have to it such that
we obtain a 2t -regular bipartite graph for some t ∈N. This is possible, as there always exists t ∈N
such that s ≤ 2t < 2s. After this we have 2s perfect matchings. Repeat this argument while going
back up the subtree as shown in Figure 4.3 until a k-edge coloring is found for G . This argument
implies that we only need to prove the statement for odd k.

Therefore, let us focus on odd k. As we saw earlier, the inevitable start of a k-edge coloring algo-
rithm for odd k is to find a perfect matching and Euler split the remaining (k −1)-regular bipartite
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graph. At the start of the execution of algorithm 3, we see that the bin is given as the concatenation
of the header H = (1, k−1

2 , k−1
2 ) = (a,b,b) and the empty tail T . This means that in the beginning,

a 6= b if k 6= 3, so the code inside the loop defined by line 6-20 is always executed.

We see that algorithm 3 does not make use of finding perfect matchings at all, making the call to the
perfect matching algorithm before finding the starting bin the only time that we need to execute
the perfect matching algorithm for odd k until we have an almost solved bin.

When we have an almost solved bin, all we have to do to find a k-edge coloring from this bin is
iteratively solve subbins with the property (1, . . . ,1,bi ) with at least bi ones. This is analogous to the
reasoning used above in the iterative process of edge coloring subgraphs by using already found
matchings to make regular bipartite graphs with degree a power of two, as those kind of regular
bipartite graphs can be colored efficiently. Therefore, the process after obtaining an almost solved
bin does not require finding another perfect matching anymore, thus proving the statement.
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Chapter 5

Explanation of JAVA model

5.1 JAVA implementation of Schrijver’s O(km) algorithm

The main goal of the research is to efficiently implement the algorithm described by Alexander
Schrijver in his paper (algorithm 1). For the implementation of the code, JAVA was used as the pro-
gramming language. To be able to implement the code such that the theoretical bound of O(∆m)
could be obtained, this required an analysis on the algorithm itself and on useful data structures
that are available in JAVA. Therefore, the next section will thoroughly analyse which data structures
to use for this implementation.

5.2 Use of data structures

The concept of graphs is widely used in computer programming languages and there are a lot of
ways to program graphs, where each implementation has its own applications in which it is effi-
cient.

The two most commonly used data structures for implementing graphs are adjacency matrices
and adjacency lists. The adjacency matrix A of a graph G = (V ,E) is a |V |× |V |-matrix in which the
matrix element ai j has value 0 if there is no e ∈ E such that e = {i , j }, and 1 if there actually exists
an edge connecting vertices i and j . Although accessing edges and vertices in the graph is very
time-efficient in this way, namely O(1), as it only taking reading a value from a matrix, this imple-
mentation is mostly very inefficient in terms of memory space, as zero-valued array elements do
not actually contain any useful information about the graph, except that there is no edge between
two vertices of the graph. This bottleneck really plays a role when you are dealing with sparse
graphs, that is a graph with a relatively low number of edges compared to the maximum possible
number of edges or in other words, a graph with an adjacency matrix that relatively contains a lot
of zeroes. Furthermore, adjacency matrices cannot be used for multigraphs, as each matrix co-
efficient only determines if there exists an edge between two vertices, not how many edges. This
problem can be overcome by changing the matrix elements to the number of edges between i and j

On the other hand, in a graph G = (V ,E), an adjacency list of a vertex v ∈ V is a list of edges that
are incident to v . These edges can be characterized by giving the other endvertex of the edge and
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the weight of the edge. A graph therefore consists of the set of adjacency lists of all vertices in the
graph. However, this means that each edge is represented twice in each graph, as it occurs in its
both endpoints’ adjacency lists. Because of this, each representation of an edge needs to be linked
to the other representation, in order to avoid the case in which one representation is deleted while
the other still exists. This tiny waste of loss of memory space could be justified as it only takes
memory space if there exists an edge. Especially in sparse graphs this implementation should,
depending on which algorithm or subroutines you want to apply, often be chosen over the use of
an adjacency matrix. The main disadvantage of this result is that edges could not be accessed in
O(1) time, except for the first and last c edges of the doubly linked list where c is a constant natu-
ral number. However, heuristics on finding circuits for Schrijver’s algorithm will be described that
only require accessing the first c edges in a doubly linked list where c is a constant, so this dis-
advantageous property of doubly linked lists does not negatively influence the complexity bound
of our implementation of Schrijver’s algorithm anymore. This implementation makes use of a so-
called adjacency map, which is a mapping f : V → E so that f (v) is the adjacency list of vertex v .
This means that each vertex contains a doubly linked list of the edges that are incident to it.

For our implementation of algorithm 1, the use of adjacency lists is preferred, as the algorithm
will mostly be applied to k-regular bipartite graphs such that k is either bounded or fixed, the as-
sumption is made that this particular set of graphs is rather sparse (i.e. k << n), so the adjacency
matrix implementation is especially abandoned for its high space complexity, to avoid the fact that
the amount of space needed for storing and referencing variables of an algorithm exceeds the size
of a heap. Furthermore, the asymptotic running time complexity of algorithm 1 is higher than the
complexity of the algorithm described later on in theorem 6.1, so our focus with Schrijver’s algo-
rithm can be narrowed to finding perfect matchings in relatively sparse graphs. The most efficient
data structure for adjacency lists are doubly linked lists [5]. In a doubly linked list, each element of
the list has a pointer to the element that is directly previous and directly next to it in the list. The
main advantage of doubly linked lists is that adding and removing edges from a graph are O(1), as
this only takes a constant number of operations assuring the pointers point to other elements in
the list. In the explanation of the JAVA algorithm, it will become clear why this is so essential.

Figure 5.1: In a doubly linked list, each list element contains a pointer to the previous and next
element in the list. Removing an element now only involves updating pointer values.

5.3 Complexity of elementary operations

This subsection will deal with the elementary operations that are needed to perform the algorithms
of interest. The complexity bounds are derived from the structure of doubly linked lists. A list of
the fundamental operations needed is given below:
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Operation Complexity

Get the number of vertices O(1)
Get the set of vertices O(n)
Get the number of edges O(1)
Get the set of edges adjacent to u O(du)
Check if the edge e = {u, v} exists O(min{du ,dv })
Get the degree of u O(1)
Add to / remove from the graph the vertex u O(du)
Add to / remove from the graph the edge e O(1)
Move edge e to the end of the edge list O(1)
Get the first / last of an edge list O(1)
Check or mark the visited variable of an edge or a vertex O(1)
Get or set the weight of an edge O(1)
Get or set corresponding edge of an edge O(1)
Get or set previous or next pointer in an edge list O(1)

Table 5.1: Table with the fundamental operations needed for implementing Schrijver’s algorithm
with doubly linked lists. The letters u and v are used for referencing vertices, and e for edges.

The complexity bounds of the operations described are trivial, but mentioned for completeness
sake. Therefore, from now on, these operations will be used in explaining the computer program
without proof of their complexities

5.4 Graph concepts for Schrijver’s algorithm

When analyzing the algorithm of Schrijver, one should take into account which operations have to
be performed to successfully execute the algorithm. These operations are defined in table 5.1 and
also determine what information should be contained in the objects’ vertices and edges to perform
the algorithm. Firstly, an empty list P is created. This list P will be the list of edges that form the
circuit-finding walk. A random vertex u is picked from the k-regular bipartite graph in the input
and marked visited and an edge in the adjacency list of u is picked by means of a specific heuristic
and added to L. This edge is marked visited, as well as its corresponding edge in the adjacency
list of the other endvertex of the edge. Then the added edge is traversed and u becomes the value
of the other endvertex of the added edge. This process is repeated until the updated u is already
marked visited, as this means that the circuit-finding path has found a circuit in the graph. The
circuit will be traversed once again to determine the minimum weight of the edges in the circuit
and to determine matchings M and N such that w(M) ≥ w(N ). Depending on which matching
an edge is contained in, the edge will be updated above or below depending on the choice of the
maximal matchings M and N in the circuit.

In case an edge is updated to value zero, the edge and its corresponding edge are moved to the end
of the respective adjacency lists they are elements of. This is done by removing the edge from the
adjacency lists and remembering its reference, and adding it back to the end of the list, doing the
same for the corresponding edge. In this way, no information about the edge is lost in the process,
while pushing a zero weight edge to the end of the list is analogous to removing an edge from
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Ew := {e ∈ E |w(e) > 0}. After updating, a new circuit-searching path is constructed by starting with
the tail of P not contained to the found circuit, i.e. P := P\C and the process of adding edges and
updating u is repeated iteratively. (When P is empty, this means that we have to search for a vertex
such that the first edge in its adjacency list does not have weight equal to k). The algorithm ends
when the weight of the first edge in each vertex’ adjacency list is equal to k, this means a perfect
matching is found and given by the first edges in each vertex’ doubly linked list of edges.

5.4.1 Attributes of the graph’s subobjects EDGE and VERTEX

The explanation above makes clear what information the objects VERTEX and EDGE need to con-
tain in order to execute the steps. Essential information for vertices is a boolean variable isVisited,
and the name of the vertex. The variable isVisited is set to false for all vertices and edges at the
start of execution, and when a vertex is being visited it is set to true. The name of the vertex is used
to identify a vertex. For edges, much more information is needed. An object EDGE should con-
tain information about the two vertices it is incident to (the first vertex is the vertex whose doubly
linked list contains this EDGE object and the second is the adjacent vertex), its weight, a pointer to
the corresponding EDGE object (contained in the second vertex’ doubly linked list), also a boolean
variable isVisited and of course pointers to the previous and next edge in the adjacency list it is
contained in, as these adjacency lists are doubly linked. In the algorithm for finding minimal edge
colorings, edges trivially also need to reserve memory space for the color of the edge.

5.5 Methods for performing simulation of Schrijver’s algorithm

5.5.1 Choosing edges in the circuit-finding path

Up until now, we have the basic knowledge on the objects VERTEX and EDGE that are needed
to perform the algorithm speaking in general pseudo code language. However, the algorithm of
Schrijver leaves space to choosing techniques for picking edges in the circuit-searching path due
to the general description of the algorithm. Using the defining characteristics of doubly linked
lists, there are several heuristics that we want to pinpoint and investigate in the research part, the
names of the methods are given in between brackets:

• pick the first edge of the list, or the second if the first is already visited (FIRST)

• Suppose c ∈ N a constant. Pick from the first c edges in the list the edge with maximum
weight (FIRST c MAXIMUM)

• Analogous to (FIRST c MAXIMUM), but now take the minimum (FIRST c MINIMUM)

• Analogous to (FIRST c MAXIMUM), but now pick alternately the edge with maximum weight
and the edge with minimum weight from the first C edges of the list (FIRST c ALTERNATE)

For each heuristic, except for FIRST, edges that appear earlier in the list are prioritised when there
are multiple maximum weight edges are found. For example, if from the first five edges, both the
second and the fifth edge have maximum weight, we will pick the second as it appears earlier in
the list. The reason for considering the methods listed above is that the complexity of picking an
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edge and adding it to the circuit finding path is O(1) for all of them, while other methods contain
iteration over a nonconstant number of edges, inherently implying higher complexity bounds than
constant time.

The main question that we want to answer with the analysis of the methods listed above is:

• Which of the above methods should be chosen in order to specify Schrijver’s algorithm such
that it is as efficient as possible in terms of number of fundamental operations, as specified
in table 5.1?

5.5.2 Performing Euler split regular bipartite graphs of even degree

Another aspect of the algorithms of Schrijver, specifically for the edge coloring algorithm, is using
a way to divide a regular bipartite graph into smaller regular bipartite graphs that are equally large
in terms of number of edges. Earlier, we already saw that this can be done by a technique due
to Gabow called ’Euler splits’ [4], as it is derived from the fact that even degree regular bipartite
graphs do actually have the property of being Eulerian graphs. In the JAVA model, the technique is
much more equivalent to the definition we described earlier in algorithm 2 than generally known
algorithms for finding an Euler tour in regular bipartite graphs.

At the start of the algorithm of Gabow, we have an original input graph G and an empty list of paths
L is used for maintaining edge paths that are to be found during the execution of the algorithm.
Furthermore, an empty queue Q is initialized for vertices of G . All vertices are consecutively offered
to the queue. While the queue is not empty, a new path P is initialized. Then, pick the first element
in the queue and iteratively pick an edge from the vertex’ adjacency list and traverse the edge to
the other endvertex of the edge. The traversed edge is removed from G and added to path P . This
process stops if a vertex is attained that has no edges left in its adjacency list and P is added to L.
Again, the first element of the queue is picked. If the element has no edges in its adjacency list,
the next vertex in the queue is polled, otherwise the statement above of making paths as described
above is repeated until the queue is empty.

5.5.3 Generating random regular bipartite graphs

In order to perform an analysis of the algorithm by means of the JAVA model, we need to provide
a function that can generate random regular bipartite graphs that corresponds with the input of
the degree k and the number of vertices n such that the algorithm of Schrijver can be tested on the
generated graph. This is done in the following way:

Let us consider the model graph G = (V1 ∪V2,E) in which we denote the vertices in vertex color
class V1 by v1, v2, . . . , v n

2
and the vertices in the second color class V2 by v n

2 +1, v n
2 +2, . . . , vn . We

want to create a random k-regular bipartite graph G = (V1 ∪V2,E) and to be able to do this, we
create an array (or a similar data structure that is more efficient) of the 1

2 nk edges which we will
denote by e1,e2, . . . ,e 1

2 nk .

Department of Mathematics and Computer Science 31



Danny Blom Bachelor final project

In the implementation used, to create k-regularity in the first vertex class V1, let e1, . . . ,ek be the
edges incident to v1, ek+1, . . . ,e2k the edges incident to v2 and so forth until v n

2
. Then, perform a

shuffle technique on the array A of edges (now ordered such that A[i ] = ei+1 for i = 0,1, . . . , 1
2 nk −

1 (as array coefficients start at 0). In this implementation, the technique introduced by Donald
Knuth is used [9], known as Knuth shuffle or Fisher-Yates shuffle in a slightly different form. Note
that the first element of the array gets index 0. It performs the following algorithm on an array of
length n:

Algorithm 4 Shuffling the elements in an array (Knuth, 1997)

1: Input: An array A of length n.
2: Output: An array A′ of length n with A’s elements’ names, but shuffled.
3: for i from n −1 downto 1 by 1 do
4: j = random integer such that 0 ≤ j ≤ i ;
5: temp = A[i ];
6: A[i ] = A[ j ];
7: A[ j ] = temp;
8: end for
9: return A;

The output of algorithm 4 is an array A′ ordered as e ′1,e ′2, . . . ,e ′1
2 nk

. Now, consider the second vertex

class V2 and let e ′1, . . . ,e ′k be the edges incident to v n
2 +1, e ′k+1, . . . ,e ′2k be the edges incident to v n

2 +2

and so forth until vn . This results in a k-regular bipartite graph, generated randomly due to the
stochastic character of algorithm 4. So our initial array determines the first vertex (in V1) of the
edge, and the output of the algorithm determines the second vertex (in V2) of the edge, yielding a
k-regular bipartite graph.

5.6 Methods for the algorithm based on Alon’s

The implementation of the algorithm by Alon is not very different. It uses all the tools described
in section 5.5 as well, except for the method concerning finding circuits. The only difference is an
extra method that is used for pre-processing purposes.

5.6.1 Generating and adding random ’dummy’ matchings

This method contains the same technique for vertex labelling as described in section 5.5.3. In
the input of the algorithm based on Alon, we can derive n easily from the vertex set of the input
graph, or it can be asked as input as well. Given the number of vertices n, we can generate a ran-
dom matching in O(n) time, but as it can be used for any input graph with number of vertices n,
these random matchings can be pre-processed and kept in a database. The generation of random
matchings is done as follows:

For an input graph G = (V ,E), which evidently has to be a regular bipartite graph, let the number of
vertices be |V | = n. Let V be partitioned in sets V1 and V2. Then, label the vertices that are element
of V1 with v1, v2, . . . , v n

2
and the vertices in V2 with v n

2 +1, . . . , vn . Trivially, as it does not matter which
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matching is used, as long as it is perfect, one can construct a perfect matching by taking the set of
edges with end-vertices vi and vi+ n

2
for i = 1,2, . . . , n

2 .

Another problem that needs to be addressed is the fact that the generated dummy edges need
to be added a specific number of times to the original graph, dependent of k. However, adding
matchings are desired to be done in constant time. This means that pre-processing needs to be
done on adding perfect matchings of dummy edges as well. The input of the algorithm should
be a regular bipartite graph G = (V ,E), k = 2|E |

|V | and n = |V |. If that is the case, a regular bipartite
graph can be generated with degree a power of two in constant time. This argument is repeated in
the case that an iteration does not find a perfect matching that consists of merely real edges of the
original graph G .
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Chapter 6

Research

This chapter contains the new discoveries we made using the theory available. At first, one of
the existing algorithms examined will be improved in terms of complexity in two different ways.
Description of these discoveries are needed for understanding the empirical research where the
methods are compared to Alon’s.

6.1 Improving Alon’s algorithm

In this section, a new algorithm for finding perfect matchings is proposed, which is heavily based
on the algorithm by Alon [1]. We will compare the complexity bounds of both algorithms after
proving the following theorem:

Theorem 6.1. Let G = (V ,E) be a k-regular bipartite graph on n vertices and m = 1
2 nk edges. Then

a perfect matching in G can be found in O
(
m logn

)
time.

Proof. Let r be such that 2r−1 < k ≤ 2r . Then define α := 2r −k < 2r−1. Using the same technique
as Alon, pick a random perfect matching from the complete bipartite graph K n

2 , n
2

, which can be
pre-computed for general n taking O(n) time. Create an empty graph G ′ = (V ,;) and add the
set of edges E to G ′, as well as α copies of each edge in the random perfect matching, which we
mark as being dummy edges. This means that we have obtained a 2r -regular bipartite graph G ′

with 1
2 nα < 1

2 n2r−1 = n2r−2 dummy edges. Perform an Euler split on H = G ′ and from the two
subgraphs, consider the one with the fewest dummy edges. When we repeat this argument until
we have a 1-regular bipartite graph M̃ , we can assure that M̃ has at most 1

2
1

2r nα< 1
2

1
2r n2r−1 = 1

4 n
dummy edges. In the case of n < 4, this implies that you have indeed found a perfect matching, as
the number of dummy edges is less than one in this case. Now, instead of using a random perfect
matching on K n

2 , n
2

, use the obtained matching M̃ and overwrite the G ′ by copying the original graph

G and addingα copies of M̃ . Now we have accomplished to get a 2r -regular bipartite graph G ′ with
less than 1

4 nα < 1
4 n2r−1 = n2r−3 dummy edges. One can find a perfect matching with fewer than

1
8 n dummy edges now.

When we generalise this statement, after i iterations, including the first in which we use a random
matching, we have a perfect matching from the 2r -regular auxiliary graph with fewer than 1

2i+1 n
dummy edges. This perfect matching of the auxiliary graph is a perfect matching of the original
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graph for the first time after i iterations when:

1

2i+1
n < 1 ≤ 1

2i
n (6.1)

2i

n
≤ 1 < 2i+1

n
(6.2)

2i ≤ n < 2i+1 (6.3)

i ≤ logn < i +1 (6.4)

This means that the number of iterations needed to perform the algorithm is O
(
logn

)
. In each

iteration, we perform an Euler split on a 2r -regular, on a 2r−1-regular, . . ., and a 2-regular bipar-
tite graph, taking O

(1
2 n(2r +2r−1 +2r−2 + . . .+2)

)= O
(1

2 n2r−1(2+1+ 1
2 + 1

4 + . . .+ 1
2r−2 )

)= O(2nk) =
O(m) time. Because of this, we have the required time bound.

For the technique described above, significantly fewer dummy edges need to be added to the orig-
inal graph, at the cost of needing multiple iterations to finish the algorithm. An iteration of this
algorithm is defined as the process of splitting down a 2t -regular bipartite graph until an 1-regular
bipartite graph is obtained (not necessarily only consisting of edges of the original graph G).

Theorem 6.1 gives us an algorithm with an better worst-case complexity than Schrijver’s O(km)
algorithm for a specific subclass of regular bipartite graphs, namely regular bipartite graphs for
which logn < k, or in other words n < 2k . This means that the algorithm is faster for regular bipar-
tite graphs that satisfy a certain graph density, specifically when the number of vertices is at most
exponential in the degree of the graph. Asymptotically speaking, this is an significant improve-
ment for a subclass of regular bipartite graphs. However, as the complexity of algorithms in this
report are given by their worst-case scenario running time, we cannot draw strong conclusions on
the average-case behaviour of both Schrijver’s algorithm and the algorithm described in theorem
6.1.

6.2 Improving the O
(
m logn

)
method

In section 6.1, a new method for finding perfect matchings in regular bipartite graphs was de-
fined based on a known scheme by Noga Alon [1]. This section will give an improvement on the
aforementioned method. The method is described below, and we will show that it actually is an
improvement of the method described in the proof of theorem 6.1:

Let r and t be such that 2r−1 < k ≤ 2r . Using the same technique as Alon and algorithm described
in theorem 6.1, pick a random perfect matching from the complete bipartite graph K n

2 , n
2

, which
can be precomputed for general n taking O(n) time. Then apply the following algorithm, which is
fully based on the degree k of the regular bipartite graph G :
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Algorithm 5 Finding a perfect matching in a k-regular bipartite graph

1: Input: k-regular bipartite graph G = (V ,E).
2: Output: perfect matching F ⊆ E in G .
3: Create copy G ′ of original graph G ;
4: Create random dummy matching M with |M | = 1

2 |V |;
5: repeat
6: while k 6= 1 do
7: if k ≡ 1(mod 2) then
8: G ′ := (V ,E ∪M);
9: end if

10: EulerSplit(G ′);
11: G ′ becomes the subgraph obtained by the previous command with the fewest dummies.
12: end whileM :=G ′

13: until M contains no dummy edges
14: return M ;

What the algorithm does, contrary to the algorithm in theorem 6.1, is performing an Euler split on
a regular bipartite graph when possible, and if not possible, this is always caused by the fact that
the current graph has odd degree. When this is the case, a dummy matching (in later iterations this
matching is a combination of ’real’ and dummy edges) is added to the graph to make the degree
even. During an iteration, we continue performing Euler splits and possibly adding matchings un-
til we obtain a perfect matching. Then, there are two cases we should consider. In the first case,
this perfect matching consists only of edges occurring in the original graph G and the algorithm
terminates. In the other case, the perfect matching consists also of dummy edges, so another it-
eration is needed before the algorithm can terminate. Then, at the start of the new iteration, not
a random pre-processed matching is used, but the matching obtained in the previous iteration.
The advantage of this is that this perfect matching contains fewer dummy edges, so in an iteration,
fewer dummy edges are added to the graph.

The calculation for the complexity bound is as follows. We will focus on proving the statement for
odd k. Namely, when the degree k is even, we can write k = 2s t with t ∈N odd. Then, performing
s Euler splits on the original k-regular bipartite graph results in a t-regular bipartite graph. This

can be done in O
(

n
2 t

(
2s +2s−1 + . . .2

))
= O

(
n
2 t2s

(
1+ 1

2 + . . .+ 1
2s−1

))
= O

(n
2 t2s

)
= O

(n
2 k

)
= O(m) time.

This complexity bound is smaller than the complexity bound we try to prove for the whole algo-
rithm, so we can justify our focus. Obviously, the worst case scenario is the case where after adding
a matching and performing an Euler split, the resulting subgraph always has odd degree. This is
actually the case for k = 2t +1 with t ∈N. Namely:

k = 2t +1 ⇒ k +1

2
= 2t +1+1

2
= 2t−1 +1

During the first iteration of the algorithm, this means that for each added matching (this happens
t times), a total number of n

2 dummy edges are added to the graph. In total, t +1 Euler splits are
performed. After the addition of the first matching, an Euler split is performed and maximally
n
4 dummy edges are left in the sub-graph. So adding another matching brings us maximally 3n

4
dummy edges which is decreased to maximally 3n

8 after the next Euler split and this process re-
peats until a perfect matching (whether or not containing dummy edges) is found. At last, two
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consecutive Euler splits are performed, after a matching is added to make the degree equal to 4.
This makes the maximum number of dummy edges after the first iteration equal to 2t−1

2t+2 n. Notice
that for large t , this value converges to n

4 from below. Therefore, an upper bound on the number of
dummy edges after the first iteration of the algorithm could be given by n

4 . Working with his newly
obtained perfect matching in the second matching yields an upper bound of n

8 dummy edges in
the perfect matching acquired after the second iteration. In general, this means that the upper
bound of dummy edges in the perfect matching after i iterations equals 1

2i+1 n. The algorithm ter-
minates when the number of dummy edges is equal to zero, in other words smaller than one, so
the number of iterations is O

(
logn

)
.

Figure 6.1: Strategy for the first iteration of the algorithm for k = 17. The nodes give the degrees of
the graphs on which operations (add matching and Euler splits) are applied, until k = 1. Further-
more, the maximum number of dummy edges, i.e. in a worst case scenario, is given underneath
the nodes.

During each iteration, a total number of t matchings needed to be added to the graph, taking
O(tn) = O

(
n logk

)
time. Furthermore, Euler splits needed to be performed on regular bipartite

graphs with the following degrees:

2t +2,2t−1 +2, . . . ,4 and 2

This takes asymptotically:

O
(
n

(
(2t +2)+ (2t−1 +2)+ . . .+4+2

))
= O

(
n

(
(2t+1 +2t + . . .+4+2

))
= O

(
n2t+1

(
1+ 1

2
+ . . .+ 1

2t−1 + 1

2t

))
= O(4nk)

= O(m)

time. Therefore, the time needed for successfully executing the algorithm is O
(
logn

(
n logk +m

))
= O

(
m logn

)
.

The asymptotical running time complexity of this algorithm might not be faster than the algo-
rithm described in theorem 6.1, but the number of dummy matchings that are added to the graph
is smaller. Moreover, an equal number of Euler splits need to be performed, but these splits are per-
formed on smaller graphs, which means that the number of steps needed to execute the algorithm
is decreased by a positive constant. Because of this, the algorithm described above is considered
an improvement of the algorithm proven in theorem 6.1.
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Chapter 7

Results

In the previous chapters, tools are given that are needed to obtain data of interest of the algorithm
in a programming context. Later in this chapter, we pose questions that we want to answer with
our simulation study. The results of this simulation study, conducted both on algorithm 1 and the
new algorithm that is derived from Alon’s, are given as well. We will examine strategies of both
algorithms that can be interpreted in multiple ways. In the case of algorithm 1, an example of this
is the choice of edges from a vertex’ adjacency list that defines a path traversed to find a circuit in
a bipartite graph. Earlier, several heuristics were described for this way of choosing edges and in
this chapter, we will especially examine differences in performance between these heuristics.

7.1 Empirical results of simulations on the algorithm of Schrijver

Simulations are conducted on the algorithm of Schrijver in order to examine the strategy for find-
ing circuits during the algorithm’s execution. Furthermore, the theoretical complexity bound for
worst case scenarios will be compared to the actual average running time for a specified subset of
regular bipartite graphs. As proven earlier, the worst case bound is equal to O(km) for k-regular
bipartite graphs consisting of m = 1

2 nk edges. For these purposes, random regular bipartite graphs
are generated for simulation. More specifically, four different subsets of regular bipartite graphs,
each with their own specific properties, are generated:

1. Set of 100, with n = 500 and k = 10,20, . . . ,100, such that there are 10 graphs per k (FIXED
VERTICES, DETERMINISTIC DEGREE)

2. Set of 100, with k = 50, and n = 100,200, . . . ,1000, such that there are 10 graphs per n (FIXED
DEGREE, DETERMINISTIC VERTICES)

3. Set of 100, with n = 500 and k ∈N∩[10,100] arbitrary (FIXED VERTICES, RANDOM DEGREE)

4. Set of 100, with k = 50, and n ∈ N∩ [100,1000] arbitrary (FIXED DEGREE, RANDOM VER-
TICES)

The strategies of interest of algorithm 1 are described as the heuristics used for finding circuits in
the graph induced with the edges with nonzero weight, as using different heuristics might cause
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different numbers of iterations of the algorithm for the same input graph. Specifically, the follow-
ing heuristics are considered:

• FIRST: Pick the first edge from an adjacency list, or the second if the first was visited earlier.

• FIRST THREE MAXIMUM: Pick the edge with maximum weight from the first three edges of
an adjacency list, or the second maximum weight if the maximum weight edge was visited
earlier.

• FIRST THREE MINIMUM: Pick the edge with minimum weight from the first three edges of
an adjacency list, or the second minimum weight if the minimum weight edge was visited
earlier.

• FIRST THREE ALTERNATE: Alternately, pick from the first three edges in an adjacency list
the edge with maximum weight (step 1) and for the next edge, pick from the first three edges
from the adjacency list of the other vertex of the edge picked in step 1 the edge with mini-
mum weight

• FIRST FIVE MAXIMUM: analogous to FIRST THREE MAXIMUM

• FIRST FIVE MINIMUM: analogous to FIRST THREE MINIMUM

• FIRST FIVE ALTERNATE: analogous to FIRST THREE ALTERNATE

Now that we have described the data input set and the heuristics to be tested, we can formalize a
research question that we want to answer with the data:

• Which of the aforementioned heuristics for finding circuits in k-regular bipartite graphs
should we use, such that the algorithm’s performance is as efficient as possible in terms of
number of steps needed until termination?

The four data sets are used to compare the performance of the different heuristics and the conclu-
sions for each data set will be compared to come to a final conclusion on which heuristic to choose
if we prioritise efficiency.

Empirical data on the heuristics are gathered through simulation and the graphics are generated
by means of the statistical software R. The first piece of information that the algorithm gives that is
analysed with the different heuristics for searching circuits is the increase in the sum of squares of
weights on the edges scaled by the length of the found circuits after each iteration. The graphs of
the subsets are used as input in algorithm 1 for each heuristic implementation of the method for
finding circuits, and information of all iterations (The sum of squares of weights (SSW), increase
in SSW, circuit length and number of traversed edges) of the algorithm are kept track of in a data
frame per graph, and averages on the increased SSW per edge in the circuit are calculated by means
of an R script. The averages are given below per heuristic in scatter plots. Furthermore, the number
of traversed edges are compared per method, as this quantity also gives us a reliable measure of
the order of magnitude of the number of steps needed to execute the algorithm on specific input
depending on degree and number of vertices.
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7.1.1 Results of data of the subsets with incrementing degree and fixed number of ver-
tices

Let us first apply the algorithm with the different heuristic methods for finding circuits in a regular
bipartite graph on the first data set: (FIXED VERTICES DETERMINISTIC DEGREE). Testing the
increase of the sum of squares of weights of the edges (SSW) of each graph on each method gives
the following results, where each dot represents one graph:
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Figure 7.1: Scatter plots of the average increase in SSW per heuristic for FIXED VERTICES DETER-
MINISTIC DEGREE

Furthermore, a big deal of the number of operations to successfully execute the algorithm depend
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on the number of traversed edges during the execution of the algorithm. The number of traversed
edges is defined as the sum of the number of edges added to the circuit-finding path until a circuit
was found of all iterations of the algorithm. The edges of a tail left over from a previous iteration
were not taken into account in this sum. This results in the following scatter plots of the number
of traversed edges for the different heuristics:
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Figure 7.2: Scatter plots of the number of traversed edges in the algorithm until the desired output
is obtained per heuristic (FIXED VERTICES DETERMINISTIC DEGREE)
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Looking at the scatter plots above, we see that notable phenomena occur. For all seven heuristic
methods, both the average increase in SSW and the number of traversed edges grow linearly in the
degree of the regular bipartite graph. In theory, for a fixed number of vertices n, we would expect
quadratic behavior in the number of traversed edges for increasing degree k, as the algorithm has
complexity bound O(km) = O

(
k2n

)
. However, the average increase in SSW grows linearly, thus it

is not behaving constantly. As the average increase in SSW grows linearly, the number of traversed
edges is not expected to grow quadratically in the degree anymore, but linear as is the behaviour
we see. One could argue that the average running time (in practice) of the algorithm of Schrijver
might not be O(km), but even O(m), which is as fast as the fastest worst-case scenario bound
known on the problem, due to Cole, Ost and Schirra [2]. Moreover, the number of traversed edges
per heuristic have differentiating orders of magnitude. For the heuristics FIRST, FIRST THREE
ALTERNATE and FIRST FIVE ALTERNATE, the number of traversed edges for degree equal to 100 is
more than three times as small compared to this number for the four other methods. This subset
therefore gives us stronger arguments for choosing one of the three methods with the significant
smaller number of traversed edges regarding efficiency of the algorithm.
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7.1.2 Results of data of the subsets with incrementing number of vertices and fixed
degree

The second subset (FIXED DEGREE DETERMINISTIC VERTICES) is analysed similarly:
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Figure 7.3: Scatter plots of the average increase in SSW per heuristic for FIXED DEGREE DETER-
MINISTIC VERTICES

Most surprisingly, for the second data set consisting of graphs with fixed degree and vertices in-
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creasing in steps of 10, the results of the heuristics FIRST, FIRST THREE ALTERNATE and FIRST
FIVE ALTERNATE coincide exactly. An explanation of this phenomenon is to be found yet and this
will be a topic of interest for future research.

For the three heuristics with coinciding results, we clearly have that the increase in sum of squares
of weights, scaled by length of circuits, behaves constantly as n grows and the average increase is
also much larger than for the other four methods. For the other four heuristics, i.e. FIRST THREE
MAXIMUM, FIRST THREE MINIMUM, FIRST FIVE MAXIMUM and FIRST FIVE MINIMUM, we see that
the average increase in sum of squares of weight decreases as n grows. For relatively small n, the
decrease is much faster than when n is large, because for large n, it seems like the decrease behaves
linearly, while for smaller n, the decrease behaves quadratically. If we combine this with the results
retrieved from the data on the number of edges used in all circuit finding paths, we will get an
indication of the performance of the algorithm in terms of the number of vertices n and the degree
k.
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Figure 7.4: Scatter plots of the number of traversed edges in the algorithm until the desired output
is obtained per heuristic (FIXED DEGREE DETERMINISTIC VERTICES
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For all different heuristics, the behaviour of the number of traversed edges is clearly linear in the
number of vertices. For the heuristics that have a constant average increase of sum of squares
of weights, the behaviour of the number of traversed edges is almost perfectly linear in the num-
ber of vertices, while the behaviour of the number of traversed edges for the other four heuristics
shows a bigger variance when n gets large enough. Furthermore, as the average increase of sum of
squares of weights decreases for the other four heuristics, this directly means that the number of
traversed edges is much larger, looking at the windows of the y-axes of the scatter plots. The results
above again imply that the most efficient heuristic strategies for finding circuits in regular bipartite
graphs are given by the heuristics FIRST, FIRST THREE ALTERNATE and FIRST FIVE ALTERNATE,
with no pairwise difference between these three whatsoever.
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7.1.3 Results of data of the subsets with random degree and fixed number of vertices

We will again perform the same empirical analysis as described in the previous subsection. We
begin with scatter plots of the subset FIXED VERTICES RANDOM DEGREES:
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Figure 7.5: Scatter plots of the average increase in SSW per heuristic for FIXED VERTICES RANDOM
DEGREES

In all seven methods, we clearly see a linear trend in the average increase in SSW per heuristic in the
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degree of the regular bipartite graphs. The average increase of SSW is smaller for the four heuris-
tics involving looking at minimum weight edges and alternating maximum and minimum weight
edges, i.e. FIRST THREE MINIMUM, FIRST FIVE MINIMUM, FIRST THREE ALTERNATE and FIRST
FIVE ALTERNATE. Results from the number of traversed edges will be needed to draw strong con-
clusion from these results:
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Figure 7.6: Scatter plots of the number of traversed edges in the algorithm until the desired output
is obtained per heuristic (FIXED VERTICES RANDOM DEGREES)

Again, we see a linear trend in both the average benefit in SSW and the number of traversed edges
for a subset with a fixed number of vertices. This makes the need for investigating whether or not
the average running time is O(m) even stronger, as we can draw the same conclusions from these
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data as from the first data set FIXED VERTICES DETERMINISTIC DEGREES. However, the number
of traversed edges is now much larger for the heuristic methods FIRST THREE ALTERNATE and
FIRST FIVE ALTERNATE, so this gives evidence to thinking that FIRST is the method that should
be chosen when the number of vertices n is fixed, although the performance in terms of number
of traversed edges of FIRST THREE MAXIMUM and FIRST FIVE MAXIMUM is similar for random k.
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7.1.4 Results of data of the subsets with random number of vertices and fixed degree

The data set FIXED DEGREE RANDOM VERTICES yields us the following results:
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Figure 7.7: Scatter plots of the average increase in SSW per heuristic for FIXED DEGREE RANDOM
VERTICES

In all seven methods, we clearly see the same trend in the average increase in SSW per heuristic
for increasing number of vertices of the regular bipartite graphs as in the second data set FIXED

Department of Mathematics and Computer Science 49



Danny Blom Bachelor final project

DEGREE DETERMINISTIC VERTICES. However, the average increase is slightly bigger for the two
heuristics FIRST THREE MAXIMUM and FIRST FIVE MAXIMUM than for FIRST. Again, we will need
results from the number of traversed edges to draw strong conclusions from these results:
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Again, we can observe a linear trend in the number of traversed edges for all seven methods. We see
that the heuristics FIRST THREE MAXIMUM and FIRST FIVE MAXIMUM slightly outperform FIRST
in terms of number of traversed edges. In practice however, FIRSTwill be faster, as in the other two
heuristics, every time that an edge needs to be picked, three or five edges need to be considered.
So, also for fixed k, the heuristic FIRST is the most efficient in use.

Department of Mathematics and Computer Science 50



Danny Blom Bachelor final project

7.1.5 Summary

The empirical data gave a lot of information on the behaviour of the algorithm on the number of
operations that are needed for successfully executing the algorithm. For fixed number of vertices
and increasing degree, we saw that the algorithm is almost perfectly linear for the heuristics FIRST,
FIRST FIVE ALTERNATE and FIRST THREE ALTERNATE when we look at the number of edges that
are added to the circuit-searching paths of the algorithm. For fixed degree and increasing number
of vertices, the average increase of SSW is monotone decreasing, while the number of traversed
edges behaves linearly for increasing n. As the number of traversed edges behaves linear for both
degree k and number of vertices n, and regular bipartite graphs only have these two properties
defining the size of the graph,the results give space to thinking that the average running time is
in fact O(m), as fast as the fastest methods available. Both for fixed k, increasing n and fixed n,
increasing k, the most efficient strategy for the seven proposed heuristics is FIRST.

7.2 Empirical results of Alon’s and new algorithms

The previous descriptions of Alon’s [1] and the two new algorithms, respectively given by theorem
6.1 and algorithm 5, are also inviting to perform empirical analyses on the order of magnitude
of the number of steps needed to terminate the algorithms. As the three algorithms are closely
related, comparison between the three algorithms is a logical next step for the research. All three
algorithms make use of only adding (partially) dummy matching and Euler splits, which makes
the data structures involved much simpler than the data structures needed for the algorithm of
Schrijver. As a measure of the number of steps that it takes before termination of the algorithm, in
the case of Euler splits we say that the algorithm ’traverses’ all edges in the regular bipartite graph
that is split. This number of traversed edges is again our quantity of interest. The same data sets are
used as the ones used for conducting the empirical research on the heuristic methods that could
be used in Schrijver’s algorithm. A question that we want to see answered by this research is as
follows:

• Although the complexity bounds of Alon’s and both own algorithms are the same, what is the
difference in the practical running time of the three algorithms?

• Do the own algorithms really deem more efficient compared to Alon’s?

Once again, depending on the data set that the three algorithms are tested for, the number of
traversed edges is plotted against either the degree of the graph or the number of vertices. The al-
gorithm induced by theorem 6.1 is referred to as version 1, and algorithm 5 is referred to as version
2. This yields the following results for the four data sets:
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Figure 7.8: Number of traversed edges for Alon, version 1 and version 2 on the data set FIXED
VERTICES DETERMINISTIC DEGREES.
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Figure 7.9: Number of traversed edges for Alon, version 1 and version 2 on the data set FIXED
VERTICES DETERMINISTIC VERTICES.
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Figure 7.10: Number of traversed edges for Alon, version 1 and version 2 on the data set FIXED
VERTICES RANDOM DEGREES.
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Figure 7.11: Number of traversed edges for Alon, version 1 and version 2 on the data set FIXED
DEGREE RANDOM VERTICES.

Let us first discuss the results of the two data sets with a fixed number of vertices. In these data
sets, the number of traversed edges in Alon’s algorithm does not directly relate to the degree of a
graph, but to 2t , where 2t ≥ k and t as small as possible. For version 1 and version 2, the number of
traversed edges directly relates to the degree k, and the number of traversed edges is much larger
if a lot of (partially) dummy matchings need to be added to the graph. In version 1 this happens for
degrees k that are a tiny bit larger than a power of two, compliant to the theory. This explains why
the number of traversed edges is sometimes larger even for smaller k. This effect is not as signifi-
cant for version 2, but still visible in the results. We observe that the order of magnitude of version
1 and version 2 do not scale with Alon’s algorithm, as Alon’s algorithm traverses significantly larger
numbers of edges, often with a factor even larger than 50.
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The two data sets with a fixed degree show a completely different behaviour. For Alon’s algorithm,
between each two powers of two of n logn we see a strong linear relation when the number of ver-
tices increases. The slopes of these linear trends tend to increase significantly when m becomes
a power of two. For version 1 and version 2, two different trends can be observed. Finding a rea-
sonable explanation for the existence of multiple trends will be of interest when conducting future
research. Notice again that the windows on the y-axis are not in the same order of magnitude when
we compare the graphs of Alon’s algorithm and the graphs of the other two algorithms. This means
that on all data sets tested, version 1 and version 2 seem to be very significant improvements of the
already existing algorithm by Alon.
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Chapter 8

Conclusion

The goal of this report was to do more thorough analysis on the perfect matching algorithm of
Schrijver (algorithm 1) and try to find variations or completely new algorithms that outperform it in
a certain way. The two methods we proposed are asymptotically faster for regular bipartite graphs
for which logn < k. Nevertheless, this conclusion is drawn based only on worst-case bounds. From
the empirical analysis, algorithm 1 seems to have complexity O(m) in practice, making the algo-
rithms proposed in this report unnecessary. However, we observe that the new algorithms are very
simple and an improvement to the method of Alon’s, specifically when we look at the performance
in practice.

As research is conducted especially on relatively sparse graphs, the data structures used are ad-
jacency lists, specifically speaking doubly linked lists, due to their low complexity for adding and
removing edges from graphs. According to empirical analysis, we can furthermore conclude that
finding circuits in regular bipartite graphs as a subroutine of algorithm 1 is most efficiently done
by always taking the first edge of a vertex’ adjacency list.

Also, we dedicated a part of our report to edge coloring bipartite graphs. The conclusion we can
draw about this topic is that the method by Kapoor and Rizzi needs to execute a perfect matching
algorithm at most once, rendering it a very efficient method, not only for small degrees k.

Nevertheless, most of the conclusions are based on empirical analysis. Points of interest for future
research is trying to find a mathematical explanation or proof for the complexity of algorithm 1
being O(m). Also, we still want to find out the reason why the results of the heuristics FIRST,
FIRST, FIRST THREE ALTERNATE and FIRST FIVE ALTERNATE coincided for the subset with fixed
vertices and incrementing degree. Finally, also an explanation for the double linear trend in the
algorithms we proposed is yet to be found.
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