
 Eindhoven University of Technology

BACHELOR

Discrete event simulation in Java with the use of frameworks

Verhoef, Céline

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/84365696-1253-46a7-bae3-fa06eb83d337

Discrete event simulation in Java with the use of
frameworks

Céline Verhoef (0896270)
supervisor: Marko Boon

Bachelor Final Project

May 18, 2017

Abstract

Frameworks are developed in the Java programming language in order to support the im-
plementation of discrete event simulations. In this report, we explore the pros and cons of
programming with the use of frameworks. We consider the frameworks that are recently up-
dated and support the process-interaction approach. We compare the implementations based
on several criteria and conclude the report with a recommendation for which implementation
is the best to use.

2

Contents

1 Introduction 4

2 Discrete event simulation 5

3 Models 6
3.1 M/M/c tandem queue . 6
3.2 Polling system with gated service . 7
3.3 Discrete-time fixed-cycle traffic light . 8

4 Implementation without the use of frameworks 10
4.1 M/M/c tandem queue . 10
4.2 Polling system with gated service . 14
4.3 Discrete-time fixed-cycle traffic light . 17
4.4 Improvements . 20

5 Choice of frameworks 23
5.1 Selection . 23
5.2 Description of DESMO-J . 24
5.3 Description of SSJ . 25

6 Implementation with the use of frameworks 27
6.1 DESMO-J . 27

6.1.1 M/M/c tandem queue . 27
6.1.2 Polling system with gated service . 30
6.1.3 Discrete-time fixed-cycle traffic light . 32
6.1.4 Output . 33

6.2 SSJ . 34
6.2.1 M/M/c tandem queue . 34
6.2.2 Polling system with gated service . 35
6.2.3 Discrete-time fixed-cycle traffic light . 37
6.2.4 Output . 39

7 Results 41

8 Conclusion 47

Appendix 49
A Performance Results . 49

3

Chapter 1

Introduction

A discrete event system is a system which is completely determined by stochastic events.
When an event happens, it causes a change in the state of the system. Between these events
the state of the system will only change according to some deterministic pattern. We are
interested in performance measures for these types of systems. For complex systems, closed
form formulas for the performance measures are not always available. In order to analyse
these type of systems simulation is used.

There are numerous tools developed to provide the means for discrete event simulation. Tools
such as Arena [1] provide a ”drag-and-drop” interface and can therefore be used by people
without any programming experience. However, these kinds of tools do not offer the func-
tionality to simulate all complex systems. A general purpose programming language such
as Java does provide all flexibility that is needed. Since Java is very suitable for simulation
purposes, numerous frameworks are developed to decrease the implementation effort and to
make the resulting code more understandable. Especially complex systems result in complex
code. For such systems frameworks could be helpful. In this project we investigate the pros
and cons of using a framework and which framework is the best based on the criteria per-
formance, understandability, implementation effort, scalability, reliability and data collection.

By means of three queuing models we investigate the advantages and disadvantages of the
implementations with and without frameworks. The models are an M/M/c tandem queue,
a polling system with gated service and a discrete-time fixed-cycle traffic light. After having
described each model in Chapter 3, we explain in Chapter 4 the implementation details of
the programs without using a framework. These implementations provide a baseline for the
performance of the simulation programs. In Chapter 5, we select and describe two frameworks
that seem to offer the best functionality: DESMO-J and SSJ. We explain the implementation
details of the same models with the use of these frameworks in Chapter 6. At last, the im-
plementations are compared based on several criteria in Chapter 7 and a conclusion is given
in Chapter 8.

In the literature numerous papers are written about discrete event simulation and also specific
about the frameworks that can be used for that. However, the terms used in these papers
vary between framework, library and toolkit. To avoid confusion, we will use in this report
only the term framework.

4

Chapter 2

Discrete event simulation

A discrete event simulation can be written from different viewpoints. One viewpoint is to see
the system as a sequence of stochastic events that causes changes in the system. The other
viewpoint is to see the entities of the system as processes that have a certain behaviour during
the simulation. These viewpoints result in two different approaches for implementing a sim-
ulation: the event-scheduling approach and the process-interaction approach. In general the
event-based approach results in a faster implementation, while the process-based approach is
more understandable. In this chapter we explain the use of these two approaches using an
M/M/1 queueing model as main example.

In the event-scheduling approach the model is seen as a collection of events. When an event
occurs, the state of the systems change. In the M/M/1 queueing model multiple types of
events occur. These events are the arrival and departure of a customer, the server taking a
customer into service and the server finishing serving a customer. The events that a server
is finished serving a customer and that the customer departs coincide. Also the arrival of a
customer and the server taking that customer into service may coincide. In order to handle
the events a Future Event Set (FES) should be created. Within this set the events are listed
sorted on time of occurrence. When the simulation is running, each time the next scheduled
event is handled.

The process-interaction approach has a more intuitive way of programming than the event-
scheduling approach. However, the process-interaction is more difficult to implement. This
difficulty is the cause that many frameworks are developed in order to increase the under-
standability of the simulation programs. In this approach the model is seen as a collection of
processes. These processes describe the behaviour of entities during the simulation. In the
M/M/1 queueing model two types of processes can be distinguished: the customer process
and the server process. There is one server process during the course of one simulation, while
multiple customer processes start and end before the end of the simulation. The entities in
the system interact with each other, implying that the processes need to be synchronized.

In this project the event-scheduling approach is used to implement the models without a
framework. For the implementation with the use of frameworks the process-interaction ap-
proach is used. The frameworks provide the means of describing the behaviour of processes
and the way they interact with each other.

5

Chapter 3

Models

In this chapter we describe the three models we implemented and used to compare the different
implementations. The models are an M/M/c tandem queue, a polling system with gated
service and a discrete-time fixed-cycle traffic light. Each of these models can also be analysed
theoretically. The results of the theoretical analysis can be compared with the results obtained
in the simulations to verify the correctness of the implementations.

3.1 M/M/c tandem queue

The tandem queue is a queueing network that consists of multiple queues and serving stations
lined up one behind the other. The departure from one station results in an arrival in the
next queue. Figure 3.1 depicts a schematic representation of this model. A customer enters
the system in the first queue and leaves the system after he is served at the last station.

Figure 3.1: M/M/c tandem queue

We consider an M/M/c tandem queue, which means that at each station there are c servers.
We assume that the service times are exponentially distributed and that all servers are equal.
The arrival of customers in the system is assumed to follow a Poisson distribution. We also
assume that there is no travel time between a station and the next queue.

The parameters in this model are:

• the arrival rate λ;

• the service rate µ;

6

• the number of stations N ;

• and the number of servers per station c.

In order for the system to be stable it should hold that ρ = λ
cµ < 1. If this condition is

violated, more customers arrive than the servers can handle.

The performance measures of interest are:

• the mean waiting time per station;

• and the mean sojourn time.

The arrival of customers follows a Poisson distribution. A remarkable result for this system,
is that the departure process from each station is also a Poisson process, similar to the arrival
process. The arrival rate remains constant for all stations. This implies that the mean waiting
time is the same at each station. A closed-form formula for the mean waiting time is described
in the lecture notes of Adan and Resing [2]. It states that the mean waiting time is given by:

E[W] =
(cρ)c

c!

(
(1 − ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

· 1

1 − ρ
· 1

cµ
. (3.1)

Since the service time is exponentially distributed with parameter µ, the mean service time is
given by 1

µ . To obtain the mean sojourn time we simply have to add the mean waiting time
and mean service time and multiply it by the number of stations. So, the mean sojourn time
is given by:

E[S] = N(E[W] +
1

µ
). (3.2)

3.2 Polling system with gated service

In a polling system there are multiple queues and only one server. The server serves one
queue at the time. After the server is finished serving one queue, he switches to the next one.
When the server has served all queues, the server starts again with serving the first queue.
Figure 3.2 shows a sketch of this model. The gated service means that only the customers
that are in the queue the moment the server arrives will be served that round.

Figure 3.2: Polling system

7

We assume again that the service time is exponentially distributed and that the arrival of
customers follows a Poisson distribution. The arrival of customers in a queue is independent
of the arrivals in the other queues. The time that the server needs to switch between the
queues is called the switch-over time. We assume that the switch-over time is constant. We
consider a symmetric system, which means that the server has always the same service rate
and switch-over time and customers arrive at the same rate at each queue.

The parameters in this model are:

• the arrival rate λ;

• the service rate µ;

• the switch-over time s;

• and the number of stations N ;

In order for the system to be stable it should hold that ρ = Nλ
µ < 1.

The performance measures of interest are:

• the mean waiting time per station;

• and the mean cycle time of the server.

For these performance measures closed form formulas are derived by Boxma and Groenendijk
[3]. The formulas described in this paper apply to more general and asymmetric polling
systems. Since we consider a symmetric polling system, we can simplify these formulas. This
results in the following formula for the mean waiting time per station:

E[W] =
ρ

1 − ρ

(
1

µ
+ s

)
+
Ns

2
+

Nsρ

2(1 − ρ)

(
1 − 1

N

)
. (3.3)

The formula to compute the mean cycle time becomes:

E[C] =
Ns

1 − ρ
. (3.4)

3.3 Discrete-time fixed-cycle traffic light

In this model we consider a single traffic light. The time in the model is discrete, which means
that the simulation time is divided into equal length time slots. In each time slot the traffic
light is either red or green. It is a fixed-cycle traffic light, which means that for a specified
number of time slots the light is repeatedly green and red. Independent of the time slots cars
arrive at the traffic light. We assume that the arrival of cars follows a Poisson distribution.
When cars arrive in a time slot that the traffic light is red, they enter a queue. When the
light becomes green, exactly one car leaves the queue. In the case that cars arrive when the
light is green and the queue is empty, they pass the light without queueing.

8

The parameters in this model are:

• the arrival rate λ;

• the number of successive time slots the light is red r;

• and the number of successive time slots the light is green g.

The successive time slots in which the light is green and red is called the green period and red
period, respectively. In order for the system to be stable the number of arriving cars must be
less than the number of cars that can pass the light. Therefore, it should hold that (g+r)λ < g.

The performance measures of interest are:

• the mean queue length at the end of green periods;

• and the mean queue length at the end of red periods.

A closed form formula for the mean queue length at the end of green periods, denoted by
E[Xg], is described by Van Leeuwaarden [4]. Computing this value requires solving a set of
linear equations. In this paper also a table is provided with results of specific values for λ, r
and g. We can use the values in this table to verify the results of the simulation. The values
in which we are interested can be found in Table 3.1. The values for r and g are both 5.

λ E[Xg]

0.30 0.1800

0.40 1.0971

0.45 3.3998

0.49 23.2249

Table 3.1: Mean queue length at the end of green periods

The mean queue length at the end of red periods is simply the mean queue length at the end
of green periods plus the number of red slots times the arrival rate:

E[X0] = E[Xg] + rλ. (3.5)

9

Chapter 4

Implementation without the use of
frameworks

In this chapter we describe the implementations of the models explained in the previous
chapter without the use of frameworks. We already discussed the mathematical model with
its notation and assumptions and we already defined the performance measures in which we
are interested. Before we start writing a simulation, we identify the following parts of the
model:

• the entities in the model;

• the attributes of the entities;

• and the events in the model.

In the following sections we start by identifying the above parts. Next, we describe the
simulation program step by step and explain the implementation details. Only the core
function of the simulation is presented in the sections. In all models we need to sample from
the exponential distribution. To obtain a sample from this distribution we applied the inverse
transformation method.

4.1 M/M/c tandem queue

In the first model the entities that play a role are the server, the customer and the queue.
For the customer we need to keep track of the arrival time and service time at each station.
Since we are also interested in the sojourn time, we also need to save the time the customer
enters the system. Therefore, we create a Customer class with the attributes arrivalTime,
serviceTime and systemIn. A server class does not have to be implemented, because the
arrival and departure times of a customer are attributes of the customer. For each queue we
need to know the length of it and which customers are currently in the queue. Therefore, we
create a Queue class that contains a list of the customers that are currently in the queue. We
create one customer object for each customer that enters the system and one queue object
for each station.

The following events change the state of the system:

10

• a customer arrives at a queue;

• a server takes a customer into service;

• a server is finished serving a customer;

• and a customer leaves a station.

Some of these event take place simultaneously. When a customer arrives at an empty queue,
the server takes the customer into service immediately. In that case the first two events co-
incide. The third and fourth events always coincide, because a customer leaves the station
at the same moment the server has finished the service. Also when a server finished serving
a customer and there are customers waiting, a new customer will be taken into service at
the same moment. With these co-occurring events we do not have to implement all of them,
but only the arrival and departure events of a customer. We create the class Event with
attributes type, station, time and customer. In order to control the events we schedule the
events in a Future Event Set, denoted by FES. The class FES contains a list with scheduled
events sorted on time.

Listing 4.1 shows the structure of the core method for the simulation. Before the while-
loop is entered, the objects that are needed for the simulation are initialized and the first
customer arrival is scheduled. The while-loop runs until the time of a scheduled event ex-
ceeds the specified simulation time given by simulationTime. The FES is named eventq and
lists the scheduled events. The method checkEvent() returns the first event in this list and
with the method getTime() we obtain the time for which this event is scheduled. When the
time of the next event exceeds the simulation time we return the results. In each iteration one
event is handled. The event to be handled is returned and removed from the FES with the use
of the method nextEvent(). We register information about the current event in the object
results with the use of registerEvent(). In the results object the performance measures
are computed. The main part of the simulation function is to handle the events. Both types
of events, which are a customer arrival and a customer departure, causes a different state
change in the system and therefore need to be handled differently.

The code for handling an arrival event is shown in Listing 4.2. When the event is an ar-
rival, the following actions need to be taken:

• the arriving customer is added to the queue of the corresponding station;

• if at least one of the servers is available, the customer is taken into service immediately;

• and if the customer arrives at the first station, a new customer arrival is scheduled.

A customer is always added to the corresponding queue, even in the case a server is available.
The moment that a customer is taken into service the departure event is scheduled. The
departure is scheduled at the time of the arrival plus the service time. Only in the case that
the arrival is at the first station a new customer arrival is scheduled. New customers do not
have to be created at the other stations, since customers are already present in the system.

11

Listing 4.1: The simulation function

public Resu l t s s imulate (double s imulationTime) {
. . .

while (eventq . checkEvent () . getTime () < s imulationTime) {
Event e = eventq . nextEvent () ;
int s = e . g e tS ta t i on () ;
double t = e . getTime () ;
Customer c = e . getCustomer () ;

r e s u l t s . r e g i s t e rEven t (e) ;

// Handle the event .
i f (e . getType () == Event .ARRIVAL) { // ARRIVAL

. . .
} else { // DEPARTURE

. . . .
}

}

return r e s u l t s ;
}

Listing 4.2: Handling of an arrival event

// Add customer to the queue .
queues [s] . addCustomer (c) ;

// I f a s e r v e r i s ava i l ab l e , take the customer in to s e r v i c e .
i f (queues [s] . g e tS i z e () <= nrOfServers) {

// Schedule departure event o f the customer .
time = t + c . getServiceTime () ;
newEvent = new Event (Event .DEPARTURE, s , time , c) ;
eventq . addEvent (newEvent) ;

}

// I f the a r r i v a l i s at the f i r s t s ta t i on , c r e a t e and schedu le a new customer .
i f (s == 0) {

// Create new customer .
arr iva lTime = t + a r r i v a lD i s t . nextRandom () ;
serv iceTime = s e r v i c eD i s t . nextRandom () ;
systemIn = arr iva lTime ;
newCust = new Customer (arr iva lTime , serviceTime , systemIn) ;

// Schedule a r r i v a l event .
s t a t i o n = 0 ;
time = newCust . getArr ivalTime () ;
newEvent = new Event (Event .ARRIVAL, s ta t i on , time , newCust) ;
eventq . addEvent (newEvent) ;

}

12

The code for handling a departure event is shown in Listing 4.3. When the event is a departure,
the following actions need to be taken:

• the departing customer is removed from the queue of the corresponding station;

• the server that becomes available serves the next waiting customer if there is any;

• and the departing customer enters the queue of the next station or leaves the system.

At the moment a customer is served he is removed from the queue. After the departure of
a customer it is checked whether there are customers waiting in the queue. The number of
customers in the queue is compared with the number of servers at the station. Since customers
remain in the queue while they are being served, a customer is waiting when the queue size
is greater or equal than the number of servers. When the departing customer remains in
the system by entering the next queue, the arrival time and service time of the customer are
updated. We assume that there is no travel time between a station and the next queue, so
the current departure time becomes the next arrival time. Since the arrival time is updated
at each station, the arrival time at the first station need to be saved in order to compute the
sojourn time.

Listing 4.3: Handling of an departure event

// Remove customer from the queue .
queues [s] . removeCustomer (c) ;

// I f the re i s a customer wait ing , take the customer in to s e r v i c e .
i f (queues [s] . g e tS i z e () >= nrOfServers) {

// Schedule departure event o f the customer .
nextCust = queues [s] . getCustomerAtPosit ion (nrOfServers − 1) ;
time = t + nextCust . getServ iceTime () ;
newEvent = new Event (Event .DEPARTURE, s , time , nextCust) ;
eventq . addEvent (newEvent) ;

}

// I f the departure i s not at the l a s t s ta t i on , s chedu le next a r r i v a l event .
i f (s < nrOfStat ions − 1) {

// Update the a r r i v a l time and s e r v i c e time .
c . ar r iva lTime = t ;
c . serv iceTime = s e r v i c eD i s t . nextRandom () ;

// Schedule a r r i v a l event .
s t a t i o n = s + 1 ;
time = c . getArr ivalTime () ;
newEvent = new Event (Event .ARRIVAL, s ta t i on , time , c) ;
eventq . addEvent (newEvent) ;

}

13

4.2 Polling system with gated service

In the second model the entities that play a role are again the server, the customer and
the queue. For the customer we need to keep track of the arrival time and service time.
Therefore, we created a Customer class with the attributes arrivalTime and seviceTime.
In this model we also had to implement a class for the server. Since we are interested in
the cycle time of the server, we need to keep track of the start time and end time of serving
one round of stations. At each station the server only serves the customers that are in the
queue at the moment the server arrived. Therefore, the server needs to keep track of the
number of customers he has already served. We created a Server class with the attributes
startCycleTime, endCycleTime and serveCustomers. The Queue class could be reused from
the previous model. We create one server object, one customer object for each customer that
enters the system and one queue object for each station.

The following events change the state of the system:

• a customer arrives at a queue;

• the server takes a customer into service;

• the server is finished serving a customer;

• a customer leaves a station;

• the server leaves a station;

• and the server arrives at a station.

Some of these event take place at the same time. A customer arrival never coincide with
one of the other events at the same station. When a server arrives at a station the event
coincide with the event that the server takes the customer into service. This happens when
the queue of the corresponding station is not empty. The event that the server is finished
serving a customer always coincide with a customer leaving a station. When the server has
served all customers it also coincide with the event that the server leaves the station and
otherwise that the next customer is taken into service. With these co-occurring events we
only had to implement the customer arrival, customer departure and server arrival. We could
reuse the class Event from the previous model with the attributes type, station, time and
customer. The difference with the previous model is that an event not always corresponds
to a customer. So, in case the type of the event is a server arrival the customer attribute is
null. The events are again scheduled in a FES object.

Listing 4.4 shows the structure of the core method for the simulation. The structure is
the same as in the previous model. The simulation function handles next to the customer
arrival and customer departure also the server arrival.

14

Listing 4.4: The simulation function

public Resu l t s s imulate (double s imulationTime) {
. . .

while (eventq . checkEvent () . getTime () < s imulationTime) {
Event e = eventq . nextEvent () ;
int s = e . g e tS ta t i on () ;
double t = e . getTime () ;
Customer c = e . getCustomer () ;

r e s u l t s . r e g i s t e rEven t (e) ;

// Handle the event .
i f (e . getType () == Event .ARRIVAL) { // ARRIVAL

. . .
} else i f (e . getType () == Event .DEPARTURE) { // DEPARTURE

. . .
} else { // SERVER ARRIVAL

. . .
}

}

return r e s u l t s ;
}

The code for handling an arrival event is shown in Listing 4.5. When the event is an arrival,
the following actions need to be taken:

• the arriving customer is added to the queue of the corresponding station;

• and a new customer arrival is scheduled.

In this model it never happens that an arriving customer is immediately taken into service,
because the server only serves the customers that were in the queue at the moment the server
arrived. A new customer arrival is always scheduled at the same station as the current arriving
customer.

Listing 4.5: Handling of an arrival event

// Add customer to the queue .
queues [s] . addCustomer (c) ;

// Create new customer .
arr iva lTime = t + a r r i v a lD i s t . nextRandom () ;
serv iceTime = s e r v i c eD i s t . nextRandom () ;
newCust = new Customer (arr iva lTime , serv iceTime) ;

// Schedule a r r i v a l event .
time = newCust . getArr ivalTime () ;
newEvent = new Event (Event .ARRIVAL, s , time , newCust) ;
eventq . addEvent (newEvent) ;

15

The code for handling a departure event is shown in Listing 4.6. When the event is a departure,
the following actions need to be taken:

• the departing customer is removed from the queue;

• if the server has served all customers, the server switches to the next station;

• and if the server has not served all customers, the next customer is taken into service.

The method getServeCustomers() returns the number of customers that the server still
needs to serve. This value is updated each time a customer is served. When this value is
equal to zero, the server has to switch to the next station. The time it takes to move to the
next station is given by switchTime. For the switch of the server an event is scheduled of
type ServerARRIVAL at the current time plus the switch time.

Listing 4.6: Handling of an departure event

// Remove customer from the queue .
queues [s] . removeCustomer (c) ;

// I f the s e r v e r has served a l l customers , switch the s e r v e r .
i f (s e r v e r . getServeCustomers () == 0) {

nextStat ion = (s + 1) % nrOfStat ions ;
time = t + switchTime ;
newEvent = new Event (Event . ServerARRIVAL , nextStat ion , time , null) ;
eventq . addEvent (newEvent) ;

} else {
// Schedule departure event o f the customer .
nextCust = queues [s] . getFirstCustomer () ;
time = t + nextCust . getServ iceTime () ;
newEvent = new Event (Event .DEPARTURE, s , time , nextCust) ;
eventq . addEvent (newEvent) ;

// Decrease the customers to be served with one .
s e r v e r . serveCustomers−−;

}

The code for handling a server arrival is shown in Listing 4.7. When the event is a server
arrival, the following actions need to be taken:

• if the server is back at the first station, the cycle time is registered;

• if there are customers waiting in the queue, the first customer is taken into service;

• and if the queue is empty, the server switches to the next station.

If the server is back at the first station, the information about the cycle time is registered in
the object results with the use of the method registerCycleTime(). The time the previous
cycle ended is the start time of the current cycle. The moment the server arrives at a station,
the number of customer in the corresponding queue needs to be counted. In the situation
there is at least one customer waiting the first customer is taken into service. Otherwise,
when the value serveCustomers is zero, the server moves to the next station.

16

Listing 4.7: Handling of a server arrival

// I f the s e r v e r i s back at begin , r e g i s t e r c y c l e time .
i f (s == 0) {

s e r v e r . endCycleTime = t ;
r e s u l t s . r eg i s t e rCyc l eTime (s e r v e r) ;
s e r v e r . startCycleTime = t ;

}

// Count the number o f customers to be served .
s e r v e r . serveCustomers = queues [s] . g e tS i z e () ;

// I f the re i s a customer wait ing , take the customer in to s e r v i c e .
i f (s e r v e r . getServeCustomers () > 0) {

// Schedule departure event o f the customer .
nextCust = queues [s] . getFirstCustomer () ;
time = t + nextCust . getServ iceTime () ;
newEvent = new Event (Event .DEPARTURE, s , time , nextCust) ;
eventq . addEvent (newEvent) ;

// Decrease the number o f customers to be served with one .
s e r v e r . serveCustomers−−;

} else { // Switch the s e r v e r again .
nextStat ion = (s + 1) % nrOfStat ions ;
time = t + switchTime ;
newEvent = new Event (Event . ServerARRIVAL , nextStat ion , time , null) ;
eventq . addEvent (newEvent) ;

}

4.3 Discrete-time fixed-cycle traffic light

In the last model the entities that play a role are the car, the traffic light and the queue. The
car does not contain any attributes, since we are not interested in the time the car spends
in the system. However, we implemented a Car class without any attributes so that we can
easily extend the model when needed. We created a Queue class that contains a list of the
cars that are currently in the queue. When we would not have chosen to implement the cars,
we could have only created a counter that keeps track of the queue length. For the traffic
light we need to keep track of the current status of the light and how many slots until the
status has to change. Therefore, we created a Light class with the attributes status and
slots. We create one car object for each arriving car, one light object and one queue object.

The following events change the state of the system:

• a car arrives at the queue;

• a car passes the traffic light;

• and the light changes its color.

The time in this model is discretized. It depends on the time slots when the light changes its
colour. The arrival of cars happens at any moment in time and does not depend on the time
slots. How the arrival of a car is handled depends on the current status of the light. Also
the event that a car passes the traffic light depends on the colour of the light. Because of the

17

dependence on the light, the events are handled differently than in the previous model. We
still need the class Event, but with only the attributes time and car, and the class FES to
schedule the arrival events.

Listing 4.8 shows the structure of the core method for the simulation. Before we enter the
while-loop, the objects that are needed for the simulation are initialized and the first car
arrivals are scheduled. The while-loop runs for the specified number of time slots given by
timeslots. In each iteration the events that occur during one time slot are handled. How
the events are handled depends on whether the light is green or red. The variable n is an
integer that indicates the current time slot and is increased in each iteration. The method
checkEvent() only returns the next scheduled event, but does not remove it yet from the
FES. At the moment an event is handled it is removed. After all events in the current time
slot are handled, new cars are generated and there need to be checked whether the traffic
light has to change its status.

Listing 4.8: The simulation function

public Resu l t s s imulate (int t ime s l o t s) {
. . .

while (n < t ime s l o t s) {
Event e = eventq . checkEvent () ;
double t = e . getTime () ;
Car c = e . getCar () ;

// Handle the events in the cur rent time s l o t .
i f (l i g h t . ge tStatus () == Light .GREEN) { // GREEN

. . .
} else { // RED

. . .
}

// Generate next a r r i v a l s .
. . .
// Check whether the l i g h t has to change i t s s t a tu s .
. . .

}

return r e s u l t s ;
}

The code for handling the arrivals when the light is green is shown in Listing 4.9. When the
status of the light is green, the following actions need to be taken:

• if the queue is empty, arriving cars pass the light without delay;

• if the queue is not empty, arriving cars are added to the queue;

• and the first car in the queue leaves.

The current time slot is indicated with the time between n and n + 1. So, when the time of
an arrival is below n + 1 it occurs during the current time slot. If the queue is not empty
the car is added to the queue and otherwise it passes without being added to the queue. In
both cases the arrival event is handled and it can be removed from the list with the use of

18

the method removeEvent(). It is checked whether the next arrival occurs in the current time
slot, otherwise the while-loop is exited. When all arrival events are handled, we remove the
first car from the queue. We could not do this before the arrivals are handled, because the
queue could be falsely interpreted as empty.

Listing 4.9: Handling of events when the light is green

// Handle the a r r i v a l s that are scheduled in the cur rent time s l o t .
while (t < n + 1) {

// I f the queue i s not empty , the car en t e r s the queue .
i f (q . g e tS i z e () > 0) {

q . addCar (c) ;
eventq . removeEvent () ;

} else {
eventq . removeEvent () ;

}

// Check next a r r i v a l .
e = eventq . checkEvent () ;
t = e . getTime () ;
c = e . getCar () ;

}

// I f the re are ca r s wait ing , the f i r s t car l e av e s the queue .
i f (q . g e tS i z e () > 0) {

q . removeFirstCar () ;
}

The code for handling the arrivals when the light is red is shown in Listing 4.10. When the
status of the light is red, arriving cars only have to be added to the queue.

Listing 4.10: Handling of events when the light is red

// Handle the a r r i v a l s that are scheduled in the cur rent time s l o t .
while (t < n + 1) {

q . addCar (c) ;
eventq . removeEvent () ;

// Check next a r r i v a l .
e = eventq . checkEvent () ;
t = e . getTime () ;
c = e . getCar () ;

}

The code for preparing the next time slot is shown in Listing 4.11. We need to generate
new arrivals and check whether the light has to change its status. The current iteration
represents the time slot between time n and n + 1. We want to generate arrivals for the
time slot between n + 1 and n + 2. The value of arrivalTime is the time of the first event
that did not happen in the current time slot anymore. The arrival time is updated with
arrivalDist.nextRandom() after each scheduled arrival. We generate car arrivals until we
generate an arrival that occurs not in the next slot anymore. After we generated the next
arrivals we increased the counter for the current slot and decreased the slots until the status of
the light has to change with one. In case the slots has the value zero, the light has to change
its color. At this moment we register the length of the queue with the use of the method
registerLength(). We change the status and update the number of slots that indicate when
the light has to change its status again.

19

Listing 4.11: Preparation for the next time slot

// Generate a r r i v a l s in the next time s l o t .
ar r iva lTime = t ;
while (ar r iva lTime < n + 2) {

arr iva lTime += a r r i v a lD i s t . nextRandom () ;
time = arr iva lTime ;
newEvent = new Event (time , new Car ()) ;
eventq . addEvent (newEvent) ;

}

n++;
l i g h t . s l o t s −−;

// Check whether the l i g h t has to change i t s s t a tu s .
i f (l i g h t . g e t S l o t s () == 0) {

// Reg i s t e r the queue l ength .
r e s u l t s . r e g i s t e rLeng th (q , l i g h t) ;

// Change the l i g h t to the other c o l o r .
i f (l i g h t . ge tStatus () == Light .GREEN) { // Change to red .

l i g h t . s t a tu s = Light .RED;
l i g h t . s l o t s = nrOfRedSlots ;

} else { // Change to green .
l i g h t . s t a tu s = Light .GREEN;
l i g h t . s l o t s = nrOfGreenSlots ;

}
}

4.4 Improvements

The performance of simulations becomes important when they have to run for a long simu-
lated time or when multiple replications are needed. The performance can be increased by
using a faster random number generator and by using the best suitable data structures. In
this section we investigate to what extent the performance can be improved. In order to
measure the results of a performance improvement we need to simulate a large number of
events. We do this by running a simulation of an M/M/c tandem queue model consisting of
three stations on which 100 servers are working. All servers work at a service rate of 1.0 and
customers arrive with a rate of 99.0. The system satisfies the stability condition, but a large
number of events will be scheduled. We use the implementation explained in the previous
section as a baseline.

For the random number generator we originally used the standard random number gener-
ator in Java from the class Random. This is however not the fastest implementation for
generating random numbers. One of the best implementations at this moment with respect
to performance is the Mersenne Twister. This is the standard random number generator used
in the statistical software R. We used the implementation from the Apache Commons, which
is described in the paper by M. Matsumoto and T. Nishimura [5].

20

Listing 4.12: Adding a new event to the list

public void addEvent (Event newEvent) {
int index = 0 ;

while (index < events . s i z e ()) {
Event e = events . get (index) ;

i f (e . getTime () <= newEvent . getTime ()) {
index++;

} else {
break ;

}
}

events . add (index , newEvent) ;
}

For the implementation of the queues and the FES we originally used an ArrayList. The list
of the FES is sorted, which is obtained in a naive way by inserting a new scheduled event at
the right place in the list. Listing 4.12 shows the code for adding a new event to this list. For
both the list of the queue and the list of the FES the operations add(), get() and remove()

are used. Instead of using the ArrayList we could also have used the LinkedList. However,
the implementation of this data structure would decrease the performance. The LinkedList

has advantage over the ArrayList in the situation that elements are added and deleted in
the front of the list. This does not outweigh the disadvantage of the often used operation
get(), which is much slower in case of the LinkedList. For the implementation of the queue,
we believe that the ArrayList is the best suitable data structure. For the implementation
of the FES there exists a better data structure. The implementation of adding an event to
the FES is not very efficient. A more efficient implementation would be to make use of a
PriorityQueue. This data structure ensures that the list remains sorted on time.

In order to measure the performance improvement we implemented the simulation with the
use of the alternative random number generator and data structure for the FES. In Table 4.1
is shown which data structure and generator is used in the implementations. Implementa-
tion 1 is the original, which is used in the previous section. In implementations 2 and 3 the
Mersenne Twister and the PriorityQueue are used, respectively. In implementation 4 we
combined the two alternatives in order to measure the total performance improvement.

Implementation FES Random number
generator

1 ArrayList standard

2 ArrayList Mersenne Twister

3 PriorityQueue standard

4 PriorityQueue Mersenne Twister

Table 4.1: Details of the implementations

We ran the simulation for 100.000 time units. Because of the high parameter values, a large
number of arrivals and departures is scheduled. Therefore, the improvement when using
an alternative implementation can be measured well. Figure 4.1 shows the performance

21

improvement for the alternative implementations. The results are based on 10 replications
for each implementation. The individual observations can be found in Appendix A. When
the original implementation is used the running time is 36.0 seconds. Using the Mersenne
Twister instead of the standard random number generator in Java results in a decrease of
the running time to 34.3 seconds, which is a decrease of about 5%. Using a PriorityQueue

instead of using an ArrayList for the FES results in a decrease of the running time to 29.8
seconds, which is a decrease of about 17%. Combining the two alternatives results in a total
improvement of 21% to a running time of 28.4 seconds.

Figure 4.1: Running times of the implementations

In the situation that a sorted list is needed in the simulation it is preferred to use a PriorityQueue
instead of a sorted ArrayList. Without much implementation effort there is a significant
increase in performance. Also with the use of a better random number generator the per-
formance improves, although the improvement is not as high as for the alternative data
structure.

22

Chapter 5

Choice of frameworks

In the previous chapter, we implemented the models without the use of frameworks. For these
implementations we made use of the event-scheduling approach. Using the process-interaction
approach would decrease the implementation effort and improve the understandability of the
program. The means for that implementation approach are provided by frameworks. Since
numerous frameworks are developed, we needed to make a selection of which we would use in
this project. Therefore, we defined a few criteria that the framework needs to satisfy. In this
chapter we select the frameworks that seem to offer the best functionality and explain their
characteristics.

5.1 Selection

We selected the frameworks based on the following criteria:

• flexibility;

• recent release or update;

• and support for the process-interaction approach.

The first criterion is flexibility, by which we mean that it should be possible to implement all
types of discrete event models. We are not able to check whether a framework satisfies this
criterion. Therefore, we consider a framework flexible when we are able to implement each of
the three models with the use of the specific classes of the framework.

In the scope of this project, we do not consider frameworks that are currently not used or
developed anymore. While studying the literature, numerous frameworks came across. Most
papers that are written about frameworks date from the period around the year 2000. Some
of these frameworks that are described in this period are recently updated or used, but others
were discontinued (possible due to better alternatives or not enough support). For example
the framework named Silk described by Andradöttir and Healy [6] is such a framework that
was discontinued. It is developed by the company ThreadTec, which does not exist anymore.
The first papers written about Silk date from 1997 and it is mentioned in many other papers
written around that time. The development of Silk stopped within a few years.

23

We want to use frameworks to support the implementation of the process-interaction ap-
proach. Most frameworks offer this approach, but also frameworks exist that only support
the implementation of the event-scheduling approach. The framework SimKit described by
Buss and Stork [7] is such a framework that does not support the process-interaction ap-
proach. It is debatable whether the framework DSOL described by Jacobs et al [8] should
be selected based on the three criteria. DSOL is currently still developed at the university of
Delft and seems to offer enough flexibility. Both approaches are supported, but the focus of
this framework is the support of the event-scheduling approach. The means for implementing
the process-interaction are provided, but at runtime this implementation is handled as an
event-based implementation. Instead of handling the processes as threads and synchroniz-
ing the threads, the behaviour of the processes is translated to a FES. The translation from
processes to events has a significant negative impact on the performance of the simulation.
The framework SSJ also offers the possibility to use this implementation next to the thread
based implementation. In the SSJ User’s Guide about the package simprocs states that the
implementation of the process-interaction by DSOL is about 50 times slower than the thread
based implementation. Therefore, other frameworks that do not have this large decrease in
performance are preferred over DSOL. Also because of the lack of a good tutorial for using
the process-interaction approach, we decided to not select this framework.

Based on the three criteria we selected the frameworks DESMO-J and SSJ. Both frame-
works have recent releases and are currently still being developed. In Chapter 6 it can be
seen that these frameworks offer enough possibilities to implement the three models. Both
the event-scheduling and process-interaction approaches are supported in these frameworks,
but we only used the process-interaction approach. In the next two sections we explain the
characteristics of both frameworks.

5.2 Description of DESMO-J

DESMO-J stands for Discrete Event Simulation and Modeling in Java. It is developed at
the university of Hamburg. The first version dates from 1999 and it is currently still under
development. Approximately once a year a new version is released. In this project we used
the latest version (2.5.1c) which dates from November 2015 and can be downloaded from the
website of Sourceforge [9]. In the paper by Göbel et al. [10] the core functionality is described,
which we summarize in this section.

Several classes are offered that are ready to use and of which the code should not be touched
by the user. One of these classes is the Experiment, which is responsible for running the
simulation. Also classes for queues, random number generators and collection of statistical
data are provided. For each process that play a role in the model a class should be created
that extends the class SimProcess. Within this class the behaviour of the process during the
simulation is described in the method lifeCycle(). A thread runs for each active process
and ends when the process ends.

DESMO-J provides methods such that these threads are synchronized. Either a process
is held for a specified time or it is passivated until an other process activates it again. A
process can only hold or passivate itself by calling the method hold() or passivate(), re-

24

spectively. Another process can activate a passive process by calling the method activate().
The interaction between processes is possible with the use of queues. DESMO-J provides a
class specifically for process queues in which processes can be inserted and removed either by
itself or by another process. Information about the queue, such as values as the mean queue
length and the mean waiting is automatically collected.

Two types of random number generators are provided by the framework: a Linear Congru-
ential Generator and a Mersenne Twister. When no generator is set the Linear Congruential
Generator is used. In the implementation of the models we used this default generator. The
initial seed is always 42, but an other value can be set by calling the method setSeed().

An HTML report about the simulation will be created when the method report() is called.
This report provides information about the simulation. Next to the statistical data collection
from the process queues, additional so called ”tallies” can be created. During the simulation
values are added to the tally of which it computes statistical information. Both the results of
the data collection from the process queues and the tallies are included in the report. Next
to the possibility to create a report, it is possible to create a trace of the simulation. Within
such a trace all steps of the simulation can be included for a specified time period. Creating
the trace is a helpful tool in debugging the code.

5.3 Description of SSJ

SSJ is the abbreviation of Stochastic Simulation in Java. It is developed at the university of
Montreal. The first version came out in 2000 and the framework is currently still developed.
The latest version is 3.2.0 and is last updated in September 2016. In this last version the
classes needed for the process-interaction approach are not included. However, these classes
are mentioned in the documentation of the latest version. Therefore we used the previous
version 2.6.2 from a year before, which can be downloaded from the website of SSJ [11]. Some
of the functionality provided for the process-interaction approach is described by L’Ecuyer
et al. [12]. We will summarize this description and explain how we handle the processes
interaction within this framework.

The implementation with a process-interaction approach can be combined with that of an
event-scheduling approach. The packages simprocs and simevents are provided for the
process-interaction and event-scheduling approach, respectively. We only make use of the
event-scheduling approach to schedule the ”end of simulation” event, which will stop the sim-
ulation. For each process that play a role in the model a class should be created that extends
the class SimProcess. Within this class the behaviour of the process during the simulation
is described in the method actions(). A thread runs for each active process and ends when
the process ends. Describing the behaviors of processes is similar as that in DESMO-J, but
the means for synchronization differ. The synchronization and interaction between processes
coincide in this framework. For this, we make use of two classes: Resource and Condition.

A resource has a specified capacity and a process can request part of that capacity. In the
example of an M/M/c queueing model a resource would be the station with capacity c and
each arriving customer would request one unit of that capacity. Requests for a resource are

25

handled until there is no capacity left. When the request of a process can not be handled, the
process is automatically put into a queue. Eventually a process that holds part of the capacity
of a resource releases it again. At the moment enough capacity is available for the first waiting
process, the process can proceed. By calling the method request() a resource is requested
and by calling the method release() the capacity of the resource is made available again.
The number of units that is requested or released is specified in the parameter of that method.

The other class that is used for synchronization and interaction is Condition. A condi-
tion can either be set to true or false. When a process encounters a condition that is false
it has to wait for the condition to become true. While the process waits, it is automatically
put into a list. In contrast to the queue for a resource, the list of processes that wait for a
condition is not ordered. When the condition is set to true, all waiting processes proceed.
Information about the waiting lists for the resources and conditions is automatically collected.

SSJ provides several implementations for the random number generation. In the implemen-
tation we used the generator called MRG32k3a, since this is also the one used in the tutorial
examples. According to the documentation about the generators, this generator is also the
most extensively tested and is proposed by one of the developers of the framework [13]. At
the moment faster generators are also available such as variants of the Mersenne Twister. The
MRG32k3a is a Combined Multiple Recursive Generator. The seed consists of six long num-
bers and can be set by the method setPackageSeed(). There are some constraints about the
values in the seed. The first three values must be less than 4294967087 and not all 0 and the
last three values must be less than 4294944443 and not all 0. When the seed is not explicitly
set the default seed is used, which consists of six times the value 12345.

In SSJ there is no function to create a report or trace such as in DESMO-J. However, printed
output with statistical data about the waiting lists for the resources and conditions and
statistical data about the tallies can be generated.

26

Chapter 6

Implementation with the use of
frameworks

In this chapter we explain the implementation details of the three models with the use of the
selected frameworks DESMO-J and SSJ. First, we discuss the implementation with DESMO-J
and next the implementation with SSJ. We do not first explain the behaviour of the processes
that play a role in the model as what we did for the entities and events in Chapter 4. Before
we implemented the models, we did this first step. However, it should be clear when we
explain the behaviour of the processes by means of the process implementation.

6.1 DESMO-J

In the previous chapter we mentioned some of the characteristics of the framework DESMO-J
about how the behaviour of the processes is described and how the active processes interact.
The initialization of the simulation and the generation of processes that enter the system is
the same in all models besides the names and parameter values. Therefore, we discuss this
part of the programs only for the first model.

6.1.1 M/M/c tandem queue

The initialization of the simulation of the first model is shown in Listing 6.1. In the class
TandemQueue we initialize the objects we need in the simulation and specify the distributions
and parameters. For all three models we need the exponential distribution. An important note
is that the parameter of the exponential distribution is not λ but λ−1. We need to override in
this class three abstract methods of the class Model: description(), doInitialSchedules()
and init(). Within the method description() a textual description needs to be given about
the model that will appear in the report. The methods doInitialSchedules() and init()

create the dynamic and static model components, respectively. The dynamic components
that are activated are the server processes and the customer generator process. For each
server in the system, a server process is created. For each of the stations in the system,
a ProcessQueue is created in which the servers of the corresponding station are inserted.
The customer generator process will generate the arriving customers in the system and will
activate the customer processes.

27

Listing 6.1: Initialization of the simulation

public class TandemQueue extends Model {
. . .

// Returns a d e s c r i p t i o n o f the model to be used in the r epor t .
public St r ing d e s c r i p t i o n () {

. . .
}

// Act ivate s dynamic model components (s imu la t i on p ro c e s s e s) .
public void do I n i t i a l S c h edu l e s () {

. . .
}

// I n i t i a l i z e s s t a t i c model components .
public void i n i t () {

. . .
}

public stat ic void main (java . lang . S t r ing [] a rgs) {
// Create model and experiment .
TandemQueue model = new TandemQueue(null , ”Tandem queue” , true , true) ;
Experiment exp = new Experiment (”Tandem queue”) ;

// Connect both .
model . connectToExperiment (exp) ;
// Stop cond i t i on .
exp . stop (new TimeInstant (100000)) ;
// Star t the experiment at s imu la t i on time 0 . 0 .
exp . s t a r t () ;
// Generate the r epor t .
exp . r epor t () ;
// Stop a l l threads s t i l l a l i v e and c l o s e a l l output f i l e s .
exp . f i n i s h () ;

}
}

In the main method we define the model TandemQueue and create an experiment. The model
has four parameters. The first parameter is set to null, which indicates there is no main
model associated with this model. The second parameter is the name of the model. The
third and fourth parameter indicate whether this model should appear in the report and in
the trace, respectively. We can specify the simulation time of the experiment by setting the
stop condition. This simulation runs for a 100.000 time units.

The implementation of the customer generator process is shown in Listing 6.2. There is
one customer generator process that never stops during the simulation. It creates a new cus-
tomer and activates the customer process immediately after the creation. The parameters of
the customer specify the model it belongs to, the name of the process and whether is should
appear in the trace. The generator process is set to hold until the next customer should
arrive.

28

Listing 6.2: Customer generator process

while (true) {
Customer customer = new Customer (model , ” customer” , true) ;
customer . a c t i v a t eA f t e r (this) ;

// Wait u n t i l the customer a r r i v e s to schedu le a new a r r i v a l .
hold (new TimeSpan (model . getArr ivalTime ())) ;

}

The implementation of the customer process is shown in Listing 6.3. A customer enters the
system at the first station and leaves the system after it went through all stations. We get
the arrival time of the customer and specify that the customer starts at the first station. The
number of stations in this model is given by the value nrOfStations. While the customer
is not at the last station it enters the customer queue of the next station. When the queue
of idle servers is empty, which means that all servers are busy serving another customer, the
customer process passivates. The customer process waits until it will be activated by a server
process. When the customer is activated again, it means that the customer is served and he
can go to the next station. In the case that there is a server in the idle server queue, the server
is removed from the queue and immediately activated by the customer. When the customer
leaves the last station the tally that keeps track of the mean sojourn time is updated.

Listing 6.3: Customer process

// Spec i f y the a r r i v a l c ond i t i on s .
double arr iva lTime = presentTime () . getTimeAsDouble () ;
int s t a t i o n = 0 ;

// Customer goes through a l l s t a t i o n s .
while (s t a t i o n < model . nrOfStat ions) {

// I n s e r t the customer in the queue o f the cur rent s t a t i o n .
model . customerQueues [s t a t i o n] . i n s e r t (this) ;

// Check i f a s e r v e r i s a v a i l a b l e .
i f (! model . id l eServerQueues [s t a t i o n] . isEmpty ()) {

// Act ivate an i d l e s e r v e r .
Server s e r v e r = model . id l eServerQueues [s t a t i o n] . f i r s t () ;
model . id l eServerQueues [s t a t i o n] . remove (s e r v e r) ;
s e r v e r . a c t i v a t eA f t e r (this) ;

}

// Wait f o r s e r v i c e .
pa s s i v a t e () ;

// The customer i s served at the s t a t i o n and goes to the next .
s t a t i o n++;

}

// Reg i s t e r the system time o f the customer .
model . sojournTime . update (presentTime () . getTimeAsDouble () − arr iva lTime) ;

The implementation of the server process is shown in Listing 6.4. In contrast to a customer
process, server processes do not end during the simulation. Therefore, the behaviour is
described in a while-loop of which the condition is always true. A server can either serve a
customer or be idle in the idle server queue. When the customer queue at the station of the
server is empty, the server will insert itself in the idle server queue. The process passivates

29

until a customer arrives and activates the server again. When the customer queue is not
empty, the server process removes the first customer from the queue and the process holds
for a time given by getServiceTime(). When this time is over the server is finished serving
the customer and activates the customer to finish its life cycle.

Listing 6.4: Server process

while (true) {
// Check i f the re i s a customer wai t ing .
i f (model . customerQueues [s t a t i o n] . isEmpty ()) { // EMPTY

// In s e r t s e r v e r in to the i d l e s e r v e r queue .
model . id l eServerQueues [s t a t i o n] . i n s e r t (this) ;

// Wait u n t i l a customer a r r i v e s .
pa s s i v a t e () ;

} else { // NOT EMPTY
// Remove the f i r s t customer from the queue .
Customer nextCustomer = model . customerQueues [s t a t i o n] . f i r s t () ;
model . customerQueues [s t a t i o n] . remove (nextCustomer) ;

// Serve the customer .
hold (new TimeSpan (model . getServ iceTime ())) ;

// React ivate the customer f o r f i n i s h i n g h i s l i f e c y c l e .
nextCustomer . a c t i v a t e () ;

}
}

6.1.2 Polling system with gated service

As already mentioned we do not explain the implementation of the initialization and the
customer generator process for this model. The difference is that we have a customer generator
process for multiple queues instead of for a single one. The implementation of the customer
process is shown in Listing 6.5. The only behaviour a customer has is arriving at a queue
and waiting for service. Within DESMO-J this is very easy to implement. The customer only
inserts itself in the queue and waits for service. When the server activates the customer, it
means that the customer is served and the customer process ends.

Listing 6.5: Customer process

// I n s e r t the customer in the queue .
myModel . customerQueues [s t a t i o n] . i n s e r t (this) ;

// The customer wait s f o r s e r v i c e .
pa s s i v a t e () ;

The implementation of the server process is shown in Listing 6.4. There is one server that
never stops working. Before the server starts serving customers, it is specified that the server
starts at station 0. When the server arrives at a station, the number of customers in the
corresponding queue are counted. All customers that are at that moment in the queue will
be served that round. The service of the customer is described in the same way as in the
previous model. When all customers are served or when no customers had to be served the
server moves to the next station. The server is set to hold until the switch-over time has

30

passed. The position of the server is updated and in case that the server is back at the first
station the tally that keeps track of the mean cycle time is updated.

Listing 6.6: Server process

// Spec i f y the s t a r t c ond i t i on s o f the s e r v e r
int s t a t i o n = 0 ;
double startTime = 0 . 0 ;

while (true) {
// Count the number o f customers to be served .
int serveCustomers = model . customerQueues [s t a t i o n] . s i z e () ;

// I f the re are customers wait ing , s e rve the customers .
i f (serveCustomers > 0) {

for (int i = 0 ; i < serveCustomers ; i++) {
// Get the f i r s t customer
Customer nextCustomer = model . customerQueues [s t a t i o n] . f i r s t () ;
model . customerQueues [s t a t i o n] . remove (nextCustomer) ;

// Serve the customer .
hold (new TimeSpan (model . getServ iceTime ())) ;

// React ivate the customer f o r f i n i s h i n g h i s l i f e c y c l e .
nextCustomer . a c t i v a t e () ;

}
}

// Switch the s e r v e r .
hold (new TimeSpan (model . switchTime)) ;
s t a t i o n = (s t a t i o n + 1) % model . nrOfStat ions ;

// I f the s e r v e r i s back at begin , r e g i s t e r the cy c l e time .
i f (s t a t i o n == 0) {

model . cycleTime . update (presentTime () . getTimeAsDouble () − startTime) ;
startTime = presentTime () . getTimeAsDouble () ;

}
}

31

6.1.3 Discrete-time fixed-cycle traffic light

In the last model we have to describe the behaviour of a car and a traffic light process. The
customer generator process from the first model is reused, with the difference that it creates
cars instead of customers. The implementation of the car process is shown in Listing 6.7.
The value of status can either be red or green, which indicates the colour of the traffic light.
When a car arrives and the light is red, it inserts itself in the queue and waits. In the case
the light is green it depends on the queue being empty or not whether the car inserts itself in
the queue. When the queue is empty, the car passes the light without delay and otherwise it
inserts itself in the queue and waits. The car process ends when it is activated by the traffic
light, which means that the car passes the light.

Listing 6.7: Car process

// Check the s t a tu s o f the t r a f i c l i g h t .
i f (model . s t a tu s == model .RED) { // RED

// Car en t e r s the queue .
model . carQueue . i n s e r t (this) ;

// Wait in the queue .
pa s s i v a t e () ;

} else { // GREEN
// Enter the queue when the queue i s not empty .
i f (! model . carQueue . isEmpty ()) {

// Enter the queue .
model . carQueue . i n s e r t (this) ;

// Wait in the queue .
pa s s i v a t e () ;

}
}

The implementation of the traffic light process is shown in Listing 6.8. Initially the status of
the light is red, which is specified at the initialization of the simulation. The status is not
declared within the traffic light process, because the car processes should also always have
access to the current value. In each iteration, first it is checked whether a car can leave. Then,
slotsToChange is decreased with one, which indicates the number of slots until the light has
to change its colour. When the colour has to change, the tally that keeps track of the queue
length is updated. At the end of each iteration the process is set to hold for one time unit,
which is the remaining of a time slot.

32

Listing 6.8: Traffic light process

// T r a f f i c l i g h t s t a r t s with red per iod .
int slotsToChange = model . nrOfRedSlots ;

while (true) {
// When the l i g h t i s green , the f i r s t l e av e s .
i f (model . s t a tu s == model .GREEN && ! model . carQueue . isEmpty ()) {

Car f i r s tC a r = model . carQueue . f i r s t () ;
model . carQueue . remove (f i r s tC a r) ;

// React ive the car f o r f i n i s h i n g i t s l i f e c y c l e .
f i r s tC a r . a c t i v a t e () ;

}

slotsToChange−−;

// Check whether the s t a tu s has to change .
i f (slotsToChange == 0) {

i f (model . s t a tu s == model .GREEN) { // Change to red .
model . nrOfCarsEndGreen . update (model . carQueue . s i z e ()) ;
model . s t a tu s = model .RED;
slotsToChange = model . nrOfRedSlots ;

} else {
model . nrOfCarsEndRed . update (model . carQueue . s i z e ()) ;
model . s t a tu s = model .GREEN; // Change to green .
slotsToChange = model . nrOfGreenSlots ;

}
}

// Wait u n t i l the next time s l o t s t a r t s .
hold (new TimeSpan (1 . 0)) ;

}

6.1.4 Output

DESMO-J automatically collect data about queues and shows the results in an HTML re-
port. In this report the statistical data about queues, the tallies and other information about
the simulation are included. Figure 6.1 shows a part of the report from the simulation of
an M/M/c tandem queue. The network consists of three stations with at each station three
servers. All servers have a service rate of 1.0 and customers arrive with an arrival rate of 2.5.
The simulation ran for 100.000 time units.

We are interested in the mean waiting time at each station and in the sojourn time. Statistical
data about the three customer queues can be found in the section Queues. We see that the
average waiting times at the queues are 1.4485, 1.3921 and 1.4747. The theoretical value is
1.4045. The result of the simulation becomes more accurate when the simulation runs for a
longer time or has multiple replications.

33

Figure 6.1: Report M/M/c tandem queue

6.2 SSJ

In this section we explain the implementation details with the use of SSJ. The processes behave
the same as in the implementation with the use of DESMO-J, but the synchronization and
interaction between processes is handled differently. Again, the initialization of the simulation
and the generation of processes that enter the system is the same in all models. Therefore,
we discuss these parts of the program only for the first model.

6.2.1 M/M/c tandem queue

The initialization of the simulation of the first model is shown in Listing 6.9. In the method
simulate() the simulation is started and the objects that are needed for the simulation are
initialized. The class SimProcess provides the process scheduling tools. With the method
init() the simulator to use processes is initialized. Next to the processes in the simulation,
we also schedule one event that indicates the end of the simulation. This event is scheduled
over a time given by the value of simulationTime. The class Sim provides the tools for the
event-scheduling approach and is activated by calling the method start().

The implementation of the customer generator process is shown in Listing 6.10. The im-
plementation of this process is very similar to the implementation in DESMO-J. The arrival
time of the customer is determined and a new customer process is activated at that time.
Then, the generator waits until the customer process is activated before a new customer is
created.

34

Listing 6.9: Initialization of the simulation

public void s imulate (double s imulationTime) {
SimProcess . i n i t () ;
. . .

// Spec i f y the s imu la t i on time .
new EndOfSim () . s chedu le (s imulationTime) ;
// Star t the s imu la t i on .
Sim . s t a r t () ;

}

class EndOfSim extends Event {
public void a c t i on s () {

Sim . stop () ;
}

}

Listing 6.10: Customer generator process

while (true) {
// Schedule a r r i v a l o f the next customer .
double nextArrivalTime = genArr . nextDouble () ;
new Customer () . s chedu le (nextArrivalTime) ;

// Wait u n t i l the customer a r r i v e s be f o r e s chedu l ing a new a r r i v a l .
de lay (nextArrivalTime) ;

}

The implementation of the customer process is shown in Listing 6.11. The arrival time of
the customer is saved before the customer enters the first station. Then, at each station the
customer requests one unit of the server resource. When this request can be handled, the
customer is delayed for the time of the service. After the delay one unit of the resource is
released again and the customer goes to the next station. When the customer leaves the last
station, the tally that keeps track of the sojourn time is updated. Because we implemented
the servers as resources, we do not need to implement a server process.

Listing 6.11: Customer process

// Spec i f y the a r r i v a l time .
double arr iva lTime = Sim . time () ;

// Customer goes through a l l s t a t i o n s .
for (int i = 0 ; i < nrOfStat ions ; i++) {

s e r v e r [i] . r eque s t (1) ;
de lay (genServ . nextDouble ()) ;
s e r v e r [i] . r e l e a s e (1) ;

}

// Reg i s t e r the so journ time o f the customer .
sojournTime . add (Sim . time () − arr iva lTime) ;

6.2.2 Polling system with gated service

The initialization and the customer generator process are the same as in the previous model.
In the previous model it was not needed to implement a server process, but in the polling

35

model the server has some behaviour that needs to be described. The implementation of the
customer process differs a lot from the implementation in DESMO-J. In the implementation
with DESMO-J the customer simply added itself to the queue and waited for service. In the
implementation with SSJ we do not have process queues available and we need to work with
resources and conditions.

The implementation of the customer process is shown in Listing 6.12. We first get the arrival
time of the customer. Then, the customer waits on the condition arrival[station] to be-
come true by calling the method waitFor(). The condition becomes true for a short time
when the server arrives at the corresponding station. Then, all customers that are waiting on
that condition proceed. The processes encounter the server resource and request for a unit
of the resource. The server is initialized with a capacity of one, since there is only one server
that is able to serve one customer at the time. One customer request at the time is handled
by the server. When the last customer is being served, the queue for the server resource is
empty and the server is notified by setting the condition finished shortly to true.

The implementation of the server process is shown in Listing 6.13. Before the server starts
serving customers it is specified that the server starts at station 0. When the server arrives
at a station, the number of customers in the corresponding queue are counted. When there
is at least one customer in the queue, the customers in that queue will be notified by setting
the condition arrival[position] shortly to true. The server process waits until it is being
notified that all customers are served. When all customers are served or when no customers
had to be served, the server moves to the next station. The server is delayed until the switch-
over time has passed. The position of the server is updated and in case the server is back at
the first station the tally that keeps track of the mean cycle time is updated.

Listing 6.12: Customer process

// Spec i f y the a r r i v a l time .
double arr iva lTime = Sim . time () ;

// Wait f o r the s e r v e r to a r r i v e at the s t a t i o n .
a r r i v a l [s t a t i o n] . waitFor () ;

// Server has a r r i v ed and the customers in the queue w i l l be served .
s e r v e r . r eque s t (1) ;

// The s e r v e r s t a r t s s e rv ing .
waitingTime [s t a t i o n] . add (Sim . time () − arr iva lTime) ;
de lay (genServ . nextDouble ()) ;

// Check whether a l l customers are served .
i f (s e r v e r . wa i tL i s t () . isEmpty ()) {

// Not i fy the s e r v e r that he i s done .
f i n i s h e d . s e t (true) ;
f i n i s h e d . s e t (fa l se) ;

}

// The customer i s served .
s e r v e r . r e l e a s e (1) ;

36

Listing 6.13: Server process

// Spec i f y the s t a r t c ond i t i on s o f the s e r v e r .
int po s i t i o n = 0 ;
double startTime = 0 . 0 ;

while (true) {
// Count the number o f customers to be served .
serveCustomers = a r r i v a l [p o s i t i o n] . wa i tL i s t () . s i z e () ;

// I f the re are customers wait ing , s e rve them .
i f (serveCustomers > 0) {

// Not i fy the customers that they w i l l be served t h i s round .
a r r i v a l [p o s i t i o n] . s e t (true) ;
a r r i v a l [p o s i t i o n] . s e t (fa l se) ;

// Wait u n t i l a l l customers are served .
f i n i s h e d . waitFor () ;

}

// Switch the s e r v e r .
de lay (switchTime) ;
p o s i t i o n = (po s i t i o n + 1) % nrOfStat ions ;

// I f the s e r v e r i s back to the begin , r e g i s t e r c y c l e time .
i f (p o s i t i o n == 0) {

cycleTime . add (Sim . time () − startTime) ;
startTime = Sim . time () ;

}
}

6.2.3 Discrete-time fixed-cycle traffic light

For the last model we have to describe the behaviour of the car and the traffic light. The
traffic light process is responsible for keeping track of the time slots. This is done by setting
a condition nextSlot shortly to true at the beginning of a new time slot. The traffic light is
implemented as a resource with capacity one. This capacity indicates that at most one car
can leave the queue during a time slot.

The implementation of the traffic light process is shown in Listing 6.14. Initially the sta-
tus of the light is red, which is specified at the initialization of the simulation. At the start of
each iteration, the light notifies a car process that the next time slot starts by shortly setting
the condition nextSlot to true. Then, the light process is delayed for the time of one time
slot. The value of slotsToChange is decreased by one, which indicates the number of slots
until the light has to change its colour. When the colour has to change, the tally that keeps
track of the queue length is updated and the green condition is either set to true or false.
The traffic light process is scheduled in such a way that it first changes the colour of the light
and then notifies a car that the next slot starts.

37

Listing 6.14: Traffic light process

// T r a f f i c l i g h t s t a r t s with red per iod .
int slotsToChange = nrOfRedSlots ;

while (true) {
// Not i fy that the next time s l o t s t a r t s .
nextS lo t . s e t (true) ;
nextS lo t . s e t (fa l se) ;

// Duration o f one time s l o t .
de lay (1 . 0) ;
slotsToChange−−;

// Check whether the l i g h t has to change i t s s t a tu s .
i f (slotsToChange == 0) {

i f (s t a tu s == GREEN) { // Change to red .
nrOfCarsEndGreen . add (l i g h t . wa i tL i s t () . s i z e () +

green . wa i tL i s t () . s i z e ()) ;
s t a tu s = RED;
green . s e t (fa l se) ;
s lotsToChange = nrOfRedSlots ;

} else { // Change to green .
nrOfCarsEndRed . add (l i g h t . wa i tL i s t () . s i z e () +

green . wa i tL i s t () . s i z e ()) ;
s t a tu s = GREEN;
green . s e t (true) ;
s lotsToChange = nrOfGreenSlots ;

}
}

}

The implementation of the car process is shown in Listing 6.15. When a car arrives and the
light is green and there is no car waiting in the queue or passing the light, the car passes the
light without delay. Otherwise, the car requests the light for passing. Only the request of the
first car in the queue is handled. Then, in case the light is red the car still has to wait before
it can pass the light. When the light changes its colour to green it notifies the car by setting
the condition green to true. The car that was waiting for the red light waits for the next slot
to become true. Because the traffic light first notifies that the colour has changed to green
and then that the next time slot starts, the first car leaves during the first green time slot.

38

Listing 6.15: Car process

// Check the s t a tu s o f the t r a f f i c l i g h t and the s i z e o f the queue .
i f (s t a tu s == GREEN && l i g h t . wa i tL i s t () . isEmpty () &&

nextS lo t . wa i tL i s t () . isEmpty ()) {
// Pass the l i g h t without de lay

} else {
// Get in to the queue .
l i g h t . r eque s t (1) ;

// When the l i g h t i s red , wait u n t i l i t becomes green .
i f (s t a tu s == RED) {

green . waitFor () ;
}

// The car pas s e s the l i g h t .
nextS lo t . waitFor () ;
l i g h t . r e l e a s e (1) ;

}

6.2.4 Output

SSJ automatically collects data about the waiting lists for resources and conditions. Whether
the statistical results of this data are printed should be specified for each waiting list. The
same holds for additional tallies that are created. Figure 6.2 shows the output of the simu-
lation of an M/M/c tandem queue with the same settings as used for the output generated
with DESMO-J in the previous section.

There are three resources named server, each corresponding to one of the stations. We can
see that the average waiting times are 1.473, 1.470 and 1.454. In contrast to the output of
DESMO-J the service times are also included. Although we could compute the system time
by simply adding the waiting times and service times at each station, we introduced a tally.

The output of a simulation is not always generated. SSJ has some difficulties with the
synchronization and handling of processes. When there are too many processes active at the
same time, so a lot of concurrent threads, the program executes code that should not be
possible. We encountered the following three errors:

calling delay() for a process not in EXECUTING state

calling resume () for a dead process

trying to release more units of a Resource than the process currently holds

39

Figure 6.2: Output M/M/c tandem queue

40

Chapter 7

Results

In this chapter we discuss the implementations without framework and the two implemen-
tation with framework. We compare the implementations based on the following criteria:
performance, understandability, implementation effort, scalability, reliability and data collec-
tion. For the criteria performance and scalability running times are measured. For each result
we ran the simulation ten times and took the average of these observations. All individual
observations and the exact mean value is listed in appendix A.

Performance
We measured the performance by simulating the M/M/c tandem queue for a million time
units. We chose the settings in such a way that the number of customers in the system
remains small. There are three stations with at each station three servers. The arrival rate of
customers is 2.5 and the service rate is 1.0. With these settings the FES is filled with a few
events or the number of threads during the simulation is low in case of the implementation
without framework and with frameworks, respectively. The performance with a high number
of customers is measured when we compare the scalability of the implementations. Figure
7.1 shows the running times of the three implementations. We combined the results in one
graph such that the relative performance is clearly visible. When we look at this graph, we
see that the performance significantly decreases when frameworks are used. When a million
time units are simulated, the performance when SSJ is used is decreased with about a factor
60 and when DESMO-J is used even with about a factor 250.

Understandability
This criterion and also the criterion implementation effort are subjective. We believe that the
understandability of a program that is implemented with the process-interaction approach
is higher than with the event-scheduling approach. The lines of code that are needed is
less and different parts of the program are naturally separated. It is easier to understand
what the behaviour of a customer and a server is, than to understand what happens and
who are involved in a particular event. So, we believe that the understandability of the
implementation with the use of one of the frameworks is higher than the implementation
without framework. Both frameworks have each there own methods for the process interaction
and synchronization. DESMO-J uses queues in which processes are inserted and removed and
SSJ uses resources and conditions. Both frameworks are best understood in one of the models.
For the implementation of the M/M/c tandem queue SSJ only had to implement the customer

41

Figure 7.1: Performance of the implementations

process and needed only a few lines of code. With the use of DESMO-J the server process
also needed to be implemented and more lines of code were used. On the other hand, the
implementation of the polling system with DESMO-J is much clearer than with SSJ.

Implementation effort
This criterion mostly coincides with the understandability. When a program is more under-
standable, the implementation effort is probably also less. The implementation effort without
using a framework is the highest. All standard classes such as queues, the FES and the classes
for the data collection are not included in Java itself. Both frameworks provide enough classes
to implement the models without complex constructions. Although the understandability of
both frameworks is about the same, we believe that the implementation effort is higher for
DESMO-J than for SSJ. To illustrate this, we consider the example of a server process in the
M/M/c tandem queue. In DESMO-J each server process needs to be activated separately
and it needs to be specified at what station it should be positioned. For this we create an
idle server queue at each of the stations. The resulting code is clearly understandable, but
it takes some effort to create the queues and use them. In SSJ the server processes are only
described by a resource at each station. Also the initialization is faster to implement in SSJ
than it is in DESMO-J.

Scalability
We tested the scalability of the implementations by simulating 100.000 time units of the
tandem queue and the polling system for different number of stations. With the use of Little’s
law, we compute the mean number of customers in the system. For the tandem queue, this
results in the formula:

E[C] = λE[S] = λN(E[W] +
1

µ
). (7.1)

The mean waiting time at a station, denoted by E[W], does not depend on N . When we scale
the number of stations in the tandem queue, the number of active processes scales linear with
the number of stations. For the simulation of this model we choose the number of servers
at each station equal to three with a service rate of 1.0 and the customer arrival rate equal

42

to 2.5. When we fill in these values, the formula for the mean number of customers in the
system is:

E[C] = 6.011N. (7.2)

Figure 7.2: Mean number of customers in the tandem queue

Figure 7.3: Running times of the scaled tandem queue model

Figure 7.2 shows the mean number of customers in the system for different number of stations.
In Figure 7.3 the results are shown of the running times for the different implementations.
We see that the running time increases linear with the number of stations. The difference
between the implementations without and with frameworks is that the running times for more
stations becomes more unpredictable. The number of active processes in this simulation is
limited, so we also tested the scalability when we increase the number of concurrent processes
significantly. We do this by simulating the polling system.

For the simulation of the polling system we choose the switch-over time equal to 1.0, the
arrival rates equal to 1.0 and the service rate equal to the number of stations plus one. Then,

43

the stability condition that Nλ
µ < 1 is satisfied, but it goes to one when the number of station

increases. Again with the use of Little’s law, we obtain for the mean number of customers in
the system:

E[C] = λNE[W] = λN

(
ρ

1 − ρ

(
1

µ
+ s

)
+
Ns

2
+

Nsρ

2(1 − ρ)

(
1 − 1

N

))
. (7.3)

When we fill in the values s = 1.0, λ = 1.0 and µ = N + 1, we get:

E[C] = N

(
N
N+1

1 − N
N+1

(
1

N + 1
+ 1

)
+
N

2
+

N N
N+1

2(1 − N
N+1)

(
1 − 1

N

))
. (7.4)

Simplifying this formula results in:

E[C] =
N3

2
+N2 +

N2

N + 1
. (7.5)

When we increase the number of stations, the number of customers that is on average in the
system increases cubically. Figure 7.4 shows the mean number of customers in the system
for different number of stations. Figure 7.5 shows the results of the running times for the
different implementations. In case no framework is used the running time increases linear
with the number of stations. The cubic increase of the number of customers in the system
does not result in a cubic increase of the running time. The running time in comparison with
the tandem queue model is even faster. The running times of both the implementations with
DESMO-J and SSJ increase with the number of active processes in the system. For these
implementations, a cubic function fits the increase in running time best.

Figure 7.4: Mean number of customers in the polling system

44

Figure 7.5: Running times of the scaled polling system model

Important to note is that increasing the number of stations in the polling system to more than
15 with these settings is not possible when the frameworks are used. Then, the number of
concurrent processes exceeds the maximum number of threads. In the case of SSJ, the running
times in comparison with the previous model are approximately equal. When DESMO-J is
used, the running time increases with about a factor 5 for 15 number of stations. Since both
frameworks are not able to handle the situation in which a lot of concurrent processes are
active, the implementations with framework score low on the scalability criteria.

Reliability
The reliability of the implementation without framework and with DESMO-J is high. There
occurred never problems during the simulation and the output is always as expected. As
already mentioned in Chapter 6 the use of SSJ resulted in problems with the thread synchro-
nization. These problems did not occur when the number of concurrent processes is limited,
but occurred frequently when this number increases. For example, the simulations for which
we measured the scalability of the polling system failed about half of the times when the
number of stations was more than 10.

Data collection
Automatic data collection is not provided in Java, so we can not give a score to this for the
implementation where no framework is used. Methods for data collection and for the output
of the statistical results are provided in both frameworks. The report that is generated in
DESMO-J is more extensive than the output that SSJ generates. Also other possibilities for
data collection are provided in DESMO-J. These include counters, accumulates, histograms,
regressions and time series. SSJ only provides the possibility to collect the data about the
queues of resources and conditions.

The results are summarized in Table 7.1. The number of pluses is an indication of how
well the criterion is satisfied. The performance is best for the implementation without frame-
work, then with SSJ, and worst with DESMO-J. The understandability is worst when no
framework is used. We gave three pluses to both frameworks for the understandability, be-
cause it is subjective which one is preferred. The implementation effort is believed to be

45

higher for DESMO-J than it is for SSJ. Scalability scores low for both frameworks, because
the simulation may only contain a maximum number of concurrent processes. Without the
use of a framework there is no such limit. The reliability is high for both the implementation
without framework and with DESMO-J. Only with the use of SSJ errors occurred frequently
during the simulation. For the data collection DESMO-J scores the highest, because there
are more methods provided for this purpose than in SSJ.

criterion without
framework

DESMO-J SSJ

performance +++ + ++

understandability + +++ +++

implementation
effort

+ ++ +++

scalability +++ + +

reliability +++ +++ +

data collection 0 +++ ++

Table 7.1: Comparison of the three simulation programs

Counting the number of pluses results in DESMO-J to be the best way of implementing a
simulation. In comparison with SSJ only the performance is less. However, it is much more
reliable than SSJ. A framework with high performance but with low reliability should not
be preferred over a framework that is reliable with a lower performance. Only at under-
standability and implementation effort the implementation without framework scores low.
However, it should be kept in mind that learning a framework also takes some time. Espe-
cially performance is an important criterion for simulation and the computation of results can
be implemented by hand. So, when multiple replications or a long simulation time is needed
an implementation without framework is the best choice.

46

Chapter 8

Conclusion

In this report we studied the best way to implement discrete event simulations in Java. We
did this by means of implementing three different models. We implemented the models with
the use of the event-scheduling approach and the process-interaction approach. The event-
scheduling approach is implemented with only the standard classes provided in Java and the
process-interaction approach with frameworks. First, we explained the implementation details
of the event-scheduling approach. We used the standard random number generator provided
in Java and the ArrayList data structure for the Future Event Set. A performance improve-
ment can be achieved by using an alternative random number generator and data structure.
The Mersenne Twister for the random number generator already improves the performance.
An even better improvement can be obtained by implementing the PriorityQueue as alter-
native for the ArrayList of the FES. The improvement for the implementation of the M/M/c
tandem queue with these alternative implementations is about 21%.

Next, we explained the implementation details of the process-interaction approach. For the
implementation of the models we used the two frameworks that seemed to offer the best
functionality: DESMO-J and SSJ. The frameworks provide different methods for process in-
teraction and synchronization. In order to investigate whether the frameworks are a good
support for the implementation of a discrete event simulation, we ranked the frameworks
on several criteria. Whether the implementation effort decreases and the understandability
of the program increases is subjective. Based on these criteria no conclusion can be drawn
which of the two frameworks is best. We do conclude that the implementation with the use
of one of the frameworks is more understandable and requires less implementation effort than
the implementation without framework. The frameworks are also compared on the objective
criteria performance, scalability, reliability and data collection. We summarized the scores
for the criteria in Table 7.1 presented in Chapter 7. After we added the scores for all criteria,
the framework DESMO-J turned out to be the best choice.

We conclude that DESMO-J is the best framework to use. However, a process-interaction
approach limits the scalability of a simulation, because the number of concurrent threads is
limited. Also the performance is decreased significantly when the process-interaction approach
is used. When a long simulated time or multiple replications are needed, the performance of
the program becomes more important. Then, a process-interaction approach should not be
preferred over the event-scheduling approach.

47

Bibliography

[1] Arena simulation software. Internet: www.arenasimulation.com, [Mar. 20, 2017].

[2] I.J.B.F. Adan, J.A.C. Resing. Lecture notes, Topic: Queueing Systems. Department of
Mathematics and Computing Science at Eindhoven University of Technology, 2015.

[3] O. J. Boxma, W. P. Groenendijk. Pseudo-conservation laws in cyclic-service systems.
Journal of Applied Probability, vol. 24(4), pp. 949964, 1987.

[4] J.S.H. van Leeuwaarden. Delay Analysis for the Fixed-Cycle Traffic-Light Queue. Trans-
portation Science, vol. 40(2), pp. 189-199, 2006.

[5] M. Matsumoto, T. Nishimura. Mersenne Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator. ACM Transactions on Modeling and Com-
puter Simulation, vol. 8(1), pp. 3-30, 1998.

[6] S. Andradöttir, K.J. Healy. Silk: a Java-based process simulation language. Proceedings
of the 1997 Winter Simulation Conference, 1997, pp. 475-482.

[7] A.H. Buss, K.A. Stork. Discrete event simulation on the world wide web using Java.
Proceedings of the 1996 Winter Simulation Conference, 1996, pp. 780-785.

[8] P.H.M. Jacobs, N.A. Lang, A.Verbraeck. D-SOL; a distributed Java based discrete event
simulation architecture. Proceedings of the 2002 Winter Simulation Conference. 2002, pp.
793-800.

[9] Download link DESMO-J. Internet: www.desmoj.sourceforge.net, [Feb. 19, 2017].

[10] J. Göbel, P. Joschko, A. Koors, B.Page. The discrete event simulation framework
DESMO-J: review, comparison to other frameworks and latest development. Proceedings
27th European Conference on Modelling and Simulation, 2013, pp. 100-109.

[11] Download link SSJ. Internet: simul.iro.umontreal.ca/ssj-2, [Mar. 06, 2017].

[12] P. L’Ecuyer, L. Meliani, J. Vaucher. SSJ: a framework for stochastic simulation in Java.
Proceedings of the 2002 Winter Simulation Conference. 2002, pp. 234-242.

[13] P. L’Ecuyer. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1), pp. 159-164, 1999.

48

Appendix

A Performance Results

In this appendix we present the individual observations of the mean running time for different
implementations. The first table presents the running times of the improvements for the
implementation without framework as discussed in Chapter 4. The other tables present the
running times of the different implementations to test the performance and scalability as
discussed in the Chapter 7.

implementation mean running
time (ms)

observations

1 35994 35409, 36429, 36453, 36854, 35522, 36374, 35030,
35839, 36282, 35749

2 34337 33838, 34158, 34648, 33877, 34516, 34532, 34804,
34325, 34196, 34475

3 29831 30519, 29399, 29642, 30507, 30061, 29412, 30044,
29541, 29515, 29673

4 28496 28789, 28884, 28590, 28163, 28333, 28547, 28497,
28646, 28340, 28173

Table 1: Running times different implementations

simulated
time

mean running
time (ms)

observations

100.000 308 297, 313, 297, 297, 297, 344, 297, 313, 313, 313

200.000 591 579, 594, 594, 593, 593, 578, 594, 593, 594, 594

300.000 875 860, 906, 859, 859, 875, 875, 875, 859, 859, 922

400.000 1147 1140, 1157, 1141, 1125, 1140, 1141, 1156, 1141, 1141, 1187

500.000 1439 1422, 1437, 1432, 1468, 1422, 1406, 1503, 1422, 1422, 1453

600.000 1715 1703, 1703, 1703, 1719, 1704, 1703, 1703, 1704, 1781, 1725

700.000 2007 1984, 2000, 2047, 1984, 1968, 2178, 1984, 1953, 1984, 1984

800.000 2261 2251, 2266, 2265, 2281, 2265, 2282, 2250, 2266, 2235, 2250

900.000 2566 2531, 2563, 2532, 2531, 2547, 2578, 2570, 2587, 2641, 2578

1.000.000 2874 2812, 2848, 2860, 2984, 2852, 2860, 2906, 2828, 2875, 2913

Table 2: Running times tandem queue without framework for different simulated times.

49

simulated
time

mean running
time (ms)

observations

100.000 80108 120001, 69899, 87195, 73553, 74620, 69379, 73765, 71644,
77127, 83896

200.000 167219 177900, 150687, 186657, 159548, 153802, 166205, 188172,
163199, 159522, 166496

300.000 237346 219839, 270373, 233837, 230543, 225213, 269424, 265874,
233739, 207336, 217282

400.000 337156 317823, 295586, 308493, 324361, 318290, 308519, 354690,
387146, 440207, 316440

500.000 367681 381202, 371880, 385061, 358530, 411848, 385345, 348886,
344452, 346825, 342779

600.000 613166 660987, 781795, 458706, 561669, 470313, 496181, 511385,
995342, 654915, 540370

700.000 634769 730237, 497208, 572121, 578949, 847410, 776740, 590181,
569220, 577679, 607942

800.000 686585 559626, 565263, 663550, 691403, 598604, 823372, 666978,
625971, 855038, 816046

900.000 765610 753212, 804656, 840722, 701905, 675583, 788283, 765832,
844048, 772774, 709087

1.000.000 800645 713953, 945599, 821005, 708928, 792420, 885554, 722511,
814841, 759616, 842026

Table 3: Running times tandem queue with DESMO-J for different simulated times.

50

simulated
time

mean running
time (ms)

observations

100.000 16778 14922, 16923, 19047, 21234, 12282, 11187, 10578, 21376,
17093, 23141

200.000 29461 31913, 27335, 49735, 23661, 30750, 21438, 31375, 34001,
21437, 22969

300.000 50569 50504, 55750, 44891, 44247, 44063, 50626, 44803, 40394,
64789, 65620

400.000 75359 90598, 56316, 78391, 68799, 81503, 88292, 85191, 66738,
68983, 68781

500.000 106586 64180, 104250, 60900, 132124, 122686, 89193, 133052,
133312, 76778, 149380

600.000 99489 65287, 65316, 98270, 68833, 69019, 115248, 100384, 128649,
106274, 177610

700.000 144479 134283, 164744, 182430, 144924, 137749, 141233, 143860,
106408, 131693, 157467

800.000 153430 172509, 167825, 154486, 170279, 166119, 126230, 164823,
134011, 179662, 98355

900.000 142397 131858, 149392, 195902, 142131, 118817, 119254, 140834,
103369, 175704, 146706

1.000.000 171958 214977, 141738, 131308, 147704, 191580, 200237, 200071,
173470, 148497, 170002

Table 4: Running times tandem queue with SSJ for different simulated times.

number of
stations

mean running
time (ms)

observations

1 128 140, 125, 125, 125, 140, 125, 172, 109, 109, 109

2 217 219, 203, 218, 219, 219, 218, 219, 219, 219, 219

3 313 344, 313, 297, 312, 312, 328, 297, 312, 313, 297

4 402 406, 391, 406, 391, 407, 407, 406, 391, 407, 406

5 497 500, 484, 500, 485, 500, 484, 531, 485, 500, 500

6 558 672, 562, 547, 547, 547, 531, 547, 547, 531, 547

7 672 766, 719, 656, 687, 657, 656, 640, 657, 640, 641

8 775 812, 781, 750, 766, 766, 765, 828, 750, 766, 766

9 939 1109, 906, 1094, 891, 906, 891, 906, 890, 907, 890

10 1044 1031, 1016, 1031, 1016, 1110, 1046, 1031, 1047, 1047, 1062

11 1161 1266, 1125, 1125, 1281, 1109, 1141, 1187, 1141, 1109, 1125

12 1325 1422, 1328, 1187, 1188, 1266, 1328, 1375, 1187, 1282, 1687

13 1380 1469, 1328, 1531, 1422, 1312, 1297, 1297, 1297, 1297, 1547

14 1427 1515, 1422, 1485, 1390, 1407, 1406, 1422, 1406, 1406, 1407

15 1613 1594, 1641, 1578, 1608, 1678, 1610, 1547, 1625, 1640, 1609

Table 5: Running times tandem queue without framework for different number of stations.

51

number of
stations

mean running
time (ms)

observations

1 56541 63657, 54716, 54395, 55286, 56736, 62014, 55491, 54002,
54323, 54791

2 72437 61329, 79098, 62593, 91935, 62811, 71825, 63144, 68857,
92047, 70733

3 71756 69643, 70503, 71773, 70258, 71445, 74186, 70365, 73444,
76557, 69583

4 87432 80494, 85572, 88481, 77225, 76534, 89432, 134719, 83480,
79238, 79146

5 110554 130188, 123949, 89354, 94981, 104855, 103909, 117328,
121876, 129860, 89236

6 141411 162126, 107446, 142192, 141558, 162521, 89339, 228849,
145122, 140568, 94393

7 132711 104457, 129824, 108780, 178931, 108536, 104903, 242731,
108237, 112005, 128705

8 143908 115481, 116312, 140597, 122926, 145983, 264264, 137799,
144490, 113126, 138099

9 150122 120272, 144405, 152225, 167424, 120028, 185808, 154756,
167546, 163739, 125021

10 176829 169101, 228080, 182747, 146014, 156422, 148532, 156112,
228719, 175731, 176828

11 175908 154270, 157447, 142932, 155375, 189846, 185159, 198094,
249103, 176481, 150371

12 200155 172583, 225217, 180503, 189259, 179295, 156294, 251603,
163165, 176187, 307444

13 201604 167041, 177613, 188244, 238138, 275250, 193734, 238017,
178750, 190427, 168829

14 194015 294581, 180047, 179340, 180301, 163665, 193153, 190334,
203331, 186855, 168540

15 185392 191890, 202221, 205188, 185104, 172192, 171828, 210988,
171377, 176189, 166938

Table 6: Running times tandem queue with DESMO-J for different number of stations.

52

number of
stations

mean running
time (ms)

observations

1 6341 5335, 11282, 6287, 5187, 5268, 6164, 5773, 6300, 5318, 6493

2 9143 8407, 11078, 9309, 9307, 9031, 8313, 8298, 8895, 9563, 9232

3 15888 16031, 18318, 10904, 15914, 14338, 14645, 25266, 11617,
10746, 21104

4 18149 28048, 18053, 17314, 23518, 17789, 13469, 13059, 18120,
19216, 12900

5 20579 27298, 16933, 17889, 17339, 15555, 22662, 24057, 17147,
21276, 25637

6 31365 31240, 18649, 54107, 43880, 28469, 30500, 39515, 19209,
26670, 21406

7 34075 40766, 34637, 43720, 35453, 27716, 30801, 23594, 27382,
28391, 48294

8 33383 32530, 49594, 30719, 45438, 43469, 31922, 28126, 24141,
24031, 23860

9 33570 33869, 50126, 34641, 34656, 31969, 26829, 35031, 31329,
29906, 27344

10 46674 38756, 44243, 42853, 46298, 34653, 34459, 70317, 60100,
63457, 31600

11 38643 52976, 31860, 45797, 44751, 31625, 39281, 34798, 34203,
35438, 35703

12 39611 40578, 38376, 41750, 37172, 40376, 39656, 34360, 41594,
39251, 43000

13 42307 48023, 57079, 40906, 40141, 39532, 40016, 39313, 37328,
43454, 37282

14 48450 73775, 59033, 40989, 41736, 48569, 45160, 42579, 42319,
43394, 46944

15 59817 57437, 64806, 61304, 53158, 58782, 57313, 69233, 52124,
55992, 68019

Table 7: Running times tandem queue with SSJ for different number of stations.

53

number of
stations

mean running
time (ms)

observations

1 62 62, 62, 62, 62, 63, 62, 62, 62, 63, 63

2 100 94, 110, 93, 93, 109, 94, 93, 110, 109, 94

3 155 172, 188, 125, 188, 140, 141, 141, 172, 141, 139

4 191 188, 188, 187, 219, 187, 188, 188, 188, 187, 187

5 230 219, 235, 235, 235, 219, 234, 219, 234, 234, 235

6 245 266, 250, 234, 235, 234, 234, 235, 250, 234, 281

7 298 297, 296, 422, 282, 281, 281, 281, 282, 281, 281

8 341 343, 454, 328, 328, 328, 312, 329, 328, 328, 328

9 376 391, 397, 374, 375, 375, 359, 375, 359, 375, 375

10 483 515, 453, 500, 453, 625, 453, 453, 453, 453, 468

11 494 594, 469, 484, 484, 469, 468, 516, 500, 487, 468

12 519 547, 531, 503, 516, 515, 516, 515, 516, 516, 515

13 579 594, 578, 593, 567, 563, 609, 562, 576, 566, 578

14 657 640, 649, 652, 610, 657, 640, 672, 813, 609, 625

15 733 797, 703, 703, 719, 719, 703, 703, 812, 718, 750

Table 8: Running times polling system without framework for different number of stations.

54

number of
stations

mean running
time (ms)

observations

1 25624 21998, 23375, 22360, 22062, 22250, 26062, 48865, 23160,
23327, 22777

2 47293 76884, 43039, 43000, 43407, 42880, 43114, 51813, 42827,
42722, 43244

3 73989 121952, 64783, 64918, 67964, 66814, 63975, 85661, 65263,
68498, 70061

4 93351 95386, 104219, 93212, 92339, 92446, 97658, 93402, 89909,
87696, 87241

5 137871 173811, 114410, 124251, 146985, 133501, 131426, 146135,
135220, 140738, 132230

6 212452 292796, 313666, 151806, 341734, 222369, 162654, 170565,
159195, 152640, 157099

7 248285 290543, 238970, 227700, 295211, 217645, 230022, 274175,
213709, 266893, 227977

8 281247 325812, 254488, 351445, 202761, 213454, 252288, 374473,
275345, 311169, 251231

9 291163 423845, 307603, 318283, 289766, 272486, 291753, 273488,
232309, 266222, 235873

10 447567 387475, 491223, 405562, 669475, 784672, 421341, 302445,
300786, 338179, 374511

11 512311 440745, 474037, 606262, 598731, 369736, 425353, 474425,
478385, 701858, 553573

12 452792 539245, 495404, 443965, 409110, 456008, 391340, 517501,
390601, 422738, 462008

13 844480 922870, 681042, 1160071, 760573, 1028566, 809971, 776284,
871628, 765990, 667806

14 837835 607512, 853976, 861436, 739905, 987488, 740113, 822185,
1088433, 974988, 702313

15 883984 868802, 915641, 1232495, 1058241, 762270, 821793, 714549,
906161, 825310, 734575

Table 9: Running times polling system with DESMO-J for different number of stations.

55

number of
stations

mean running
time (ms)

observations

1 4469 8250, 5734, 3359, 3516, 6297, 3063, 3266, 5203, 2969, 3031

2 9797 16531, 14376, 7125, 6250, 12860, 5782, 7219, 10719, 5437,
11672

3 11575 15419, 11567, 8315, 7938, 16434, 8388, 14141, 13486, 8963,
11098

4 12090 11670, 11037, 10761, 10928, 16438, 10954, 11455, 11318,
11387, 14948

5 17351 20544, 13741, 16377, 13606, 14016, 13344, 14727, 17710,
25016, 24425

6 26551 23734, 42688, 32798, 16230, 29625, 27203, 19251, 31141,
25094, 17750

7 24669 20473, 20489, 18964, 37502, 28451, 24172, 20235, 22140,
29266, 25001

8 28508 27170, 22381, 22246, 24458, 25082, 22516, 39846, 35889,
28253, 37236

9 30795 29319, 27608, 29210, 26734, 30277, 37659, 28600, 34338,
38041, 26160

10 35759 34523, 38416, 41351, 32966, 32783, 34741, 36436, 32925,
37776, 35669

11 62326 70142, 63140, 46077, 49885, 78339, 68140, 59775, 51978,
53219, 82568

12 58756 50787, 64731, 53742, 59648, 58488, 85552, 60288, 40690,
50068, 63567

13 60180 61755, 60914, 58479, 56141, 64654, 54352, 59707, 79160,
51282, 55353

14 83174 96794, 79924, 72436, 83027, 58324, 67283, 86662, 106589,
106638, 74062

15 81812 97553, 106125, 76554, 74069, 70906, 63770, 71647, 102951,
75106, 79435

Table 10: Running times polling system with SSJ for different number of stations.

56

	Introduction
	Discrete event simulation
	Models
	M/M/c tandem queue
	Polling system with gated service
	Discrete-time fixed-cycle traffic light

	Implementation without the use of frameworks
	M/M/c tandem queue
	Polling system with gated service
	Discrete-time fixed-cycle traffic light
	Improvements

	Choice of frameworks
	Selection
	Description of DESMO-J
	Description of SSJ

	Implementation with the use of frameworks
	DESMO-J
	M/M/c tandem queue
	Polling system with gated service
	Discrete-time fixed-cycle traffic light
	Output

	SSJ
	M/M/c tandem queue
	Polling system with gated service
	Discrete-time fixed-cycle traffic light
	Output

	Results
	Conclusion
	Appendix
	Performance Results

