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Abstract

We begin with explaining graphs, graph coloring and the chromatic polyno-
mial which arises from graph coloring. After that we continue with the deletion-
contraction theorem and some specific examples of graphs and their chromatic poly-
nomial. The last section is about Hubai’s improvement of Sokal’s theorem about
bounding complex roots, where we address Hubai’s proof in greater detail.
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1 Introduction

In 1736 Euler introduced graphs in his paper about the Seven Bridges of Königsberg Prob-
lem. Graphs G consist of a set of vertices V (G) with a set of edges E(G), who are drawn
between some of the vertices. Graph Theory concerns itself with the problems which can
be expressed with the help of graphs. One of the areas in Graph Theory concerns the col-
oring of the vertices or the edges of graphs, which is called graph coloring. Starting with
the Four Color Problem in 1852, graph coloring has become a relevant help in solving
problems related to scheduling, register allocation and other limited resource divisions.

Graph coloring in its origins searches for the smallest k for which a given graph G
can be properly colored with k colors. A natural next choice for research is in how many
ways this given graph can be properly colored with k colors. This results in a function
chr(G, k) which outputs in how many different ways the graph G can be properly colored
with k colors. This function turns out to be a polynomial, which makes it easier to work
with. Finding this polynomial for any given graph is too difficult, but for a few specific
examples we can give the explicit polynomial.

One of the interesting parts of polynomials are its roots. Even so much that these
roots define the polynomial up to multiplicative constant factor. Therefore it is an inter-
esting research topic. Tamás Hubai[1] improved the bound for the roots of the chromatic
polynomial related to the maximum degree of the graph. In this paper we will recreate
that proof.

2 Preliminaries

2.1 Basic Definitions and Introductions into Graphs

Every advanced interesting subject has its roots in a simple object. For roots of chromatic
polynomials of graphs this is, unsurprisingly, graphs. So we will start with some basic
definitions and other introductions into graphs.

2.1.1 Basic definitions

Definitions are the best if everybody uses the same ones for the same named objects. Thus
we will use the basic definitions of Graph Theory, as described by Robin J. Wilson in his
book Introduction to Graph Theory [3]:

• A graph G consists of a non-empty finite set V (G) of elements called vertices,
and a finite family E(G) of unordered pairs of (not necessarily distinct) elements
of V (G) called edges.
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• V (G) is called the vertex set and E(G) is called the edge family of G.

• If an edge is the unordered pair v, w, the edge is said to join the vertices v and w
and is labeled vw.

• Two vertices v and w of a graph G are said to be adjacent if there is an edge vw
joining them; the vertices v and w are also said to be incident with the edge vw.

• The degree of a vertex v of a graph G is the number of edges incident with v.

• A simple graph is one in which there is at most one edge joining a given pair of
vertices and there are no loops, or edges joining a given vertex with itself.

• A graph is connected if for each pair of vertices u, v there is a sequence of vertices
v0, v1, v2, . . . vn, where v0 = u and vn = v, such that vivi+1 is an edge, for all i with
0 ≤ i ≤ n− 1.

With these definitions, we can now describe some specific interesting types of graphs.

• A null graph is one in which the edge family, E(G) is empty. A null graph of n
vertices is denoted by Nn.

• A complete graph is a simple graph in which each pair of distinct vertices are
adjacent. Complete graphs on n vertices are denoted by Kn.

• A cycle graph is a connected graph in which the degree of each vertex is 2. A cycle
graph of n vertices is denoted by Cn.

• A path graph on n vertices is the graph obtained when an edge is removed from
the cycle graph Cn. A path graph of n vertices is denoted Pn.
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In the pictures below examples of aforementioned graphs are given.

Null graph N5 Complete graph K5

Cycle graph C5 Path graph P5

2.2 Graph Coloring

Graph coloring, or more specifically vertex coloring means the assignment of colors to
the vertices of a graph in such a way that no two adjacent vertices share the same color.

It is easy to see that every simple graph can be colored by giving every vertex a
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different color. So, to make it mathematically interesting the different colors have to
be restricted to a fixed finite set S. It is easy to see that the choice of actual colors is
irrelevant, and therefore any graph property related to coloring may and will only depend
on the cardinality |S| = k. Instead of colors we may as well label the nodes using the
numbers 1, 2, . . . , k.

Formally, a k-coloring of a graph G is a function σ : V (G) → {1, 2, . . . , k} which
satisfies σ(i) 6= σ(j) for any edge ij = e ∈ E. Note that it is not required to use all
the colors. The graph is said to be k-colorable if such a function exists. The chromatic
number χ(G) is the minimal k for which the graph G is k-colorable, and we say that G is
k-chromatic if χ(G) = k.

Clearly, a graph containing a loop cannot be properly colored while multiple edges
don’t add any additional restriction on the coloring. The extra components of multi graphs
versus simple graphs are, for our purposes, thus uninteresting or unnecessary. Therefore
we’ll assume that the graphs being examined are simple.

2.2.1 Applications for Graph Coloring

Graph coloring has its origins in the Four Color Conjecture. The conjecture (now theo-
rem) states that given a plane divided in contiguous regions, the regions can be colored by
at most 4 different colors such that no 2 adjacent regions have the same color. The theorem
was first proposed by Francis Guthrie in 1852 and remained unsolved until 1976.

Graph coloring is particularly useful in problems where there are limited resources
which are shared by various entities. For example register allocation. In most program-
ming languages you allocate many variables and expect them to behave all in the same
way. The resources used to store the values of these variables are registers and RAM. The
registers are the fast option and RAM is the slow option of the two. In the usual setup of
computers there are not a lot of registers, so it can be the case that when there are a lot
variables not each variables can get its own registers.

That is where compilers and register allocation comes in. Some variables are not
used at the same time in the program and can use in the same registers for a faster execu-
tion of the program. The compiler uses a graph where each vertex represents a variable
and there is an edge between two vertices, when the two variables must be used at the
same time. Then the colors represent the registers,

or RAM if not enough registers are available, and by graph coloring the compiler
decides which variable gets which registers or RAM.

Besides register allocation, graph coloring is used in various scheduling jobs, pat-
tern matching and sudoku solving.
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2.3 The Chromatic Polynomial

Consider the number of different k-colorings of a given graph G as a function of k, and
denote it by chr(G, k).

Theorem 2.1 chr(G, k) is a polynomial in k.

Proof. For any coloring of G the nonempty color classes constitute a partition of V (G)
where each part is a vertex set. We may count those colorings that give a certain partition
and add them up for all such partitions to find the total number of colorings. Since V (G)
is a finite set, it has a finite number of partitions, so it is sufficient to show that the number
of colorings for a single partition is a polynomial in k.

Fix a partition with p parts, each of them being a stable set. By assigning a different
color to each part, we get all the colorings belonging to the partition. We may pick the first
color in k possible ways, the second in k−1 ways, etc. so there are k(k−1) . . . (k−p+1)
colorings, which is obviously a polynomial. Note that this also works when k < p. �

Corollary 2.2 chr(G, k) is of degree n = |V (G)|.

Proof. There is no partition with more than n parts and only a single partition with
exactly n parts, the one where each part consists of a different vertex. For this partition,
the number of colorings is a polynomial of degree n while for all other partitions it has a
degree smaller than n. Since the number of the polynomials is finite, as mentioned in the
previous proof, the sum of such polynomials is a polynomial of degree n. �

Having established this fact, we may call chr(G, k) the chromatic polynomial ofG.
The fact the function chr(G, k) is a polynomial gives us a few useful properties.

For instance, we are no longer bound to positive integer values for k. Any q ∈ C can
be substituted for k. Then chr(G, q) of course doesn’t give the number of possible q-
colorings anymore, but the result can still give us valuable information about chr(G, k)
and G itself. We’ll see some of these results later on. Another advantage is that we can
examine the polynomial’s coefficients and roots and connect them to graph properties and
invariants.

2.4 Deletion-contraction property

This property is one of the most important properties in graph-coloring theory, since it’s
used in proving many theorems and answering questions on graph-theory. One such proof
concerns finding the chromatic polynomial for any given graph G.

The ”dumb” approach would be to go through all k-colorings of G and count the
valid ones. Then use Lagrange-interpolation to find the polynomial. As can be expected
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from a ”dumb” approach this is quite labor intensive and even NP-complete. It shouldn’t
come as a surprise that we want do a little better than this brute force method. Sadly we
can’t do a lot better, since deciding upon 3-colorability is NP-complete.

The idea is to do a sort of induction on the vertices and the edges. Select two ver-
tices i and j from V (G) with no edge between them. We can now distinguish two different
classes of colorings of G:

1. Colorings where i and j are colored with different colors.

2. Colorings where i and j are colored with the same color.

The first class corresponds to all the colorings of G+ ij. This is true, since the extra edge
ij ensures that i and j are colored differently. The second class corresponds with all the
colorings ofGwhere the vertices i and j are merged. This means that i and j merge into 1
vertex which is connected to all vertices in G which at least one of i and j was connected
to. Because the two vertices where merged into 1 vertex, they must also have had the
same color. This is merging of vertices is called the contraction of i, j and denoted by
G/ij.

We now have found a sum which equals all the colorings of G which can be ex-
pressed as follows:

chr(G, k) = chr(G+ ij, k) + chr(G/ij, k)

The first term gains an edge and the second term loses a vertex and can lose some
edges. So we want to change the formula, so that in both terms the edges plus the vertices
are decreasing. For this, substitute H into G + ij and bring the term with contraction to
the other side:

chr(H, k) = chr(H\ij, k)− chr(H/ij, k).

Note that in the current form we have a relation between these chromatic polyno-
mials evaluated at some positive integer k. However, since two degree n polynomials
agreeing on n+ 1 points are identical, the same expression also holds for the polynomial
itself. We’ll omit this kind of reasoning in the future.

Since bothH\ij andH/ij have fewer edges thanH , we may apply this observation
to facilitate induction or recursion for statements about the chromatic polynomial. As
stated in the beginning, this method will prove quite powerful to be used several times, so
we’ll refer to it as the deletion-contraction argument.

For example, it gives us an alternative proof for chr(G, k)’s polynomicity. Perform
induction by the number of edges and vertices. For an edgeless graph all the kn colorings
are permissible and thus the claim is true. Otherwise chr(G, k) can be written as the
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difference of two terms which by induction are polynomials. Therefore chr(G, k) is also
a polynomial.

When we use the deletion-contraction argument in an algorithm for finding the
chromatic number, we can use the expression for finding the runtime for the worst case
scenario. In the first term on the right rand side the number of edges reduces by 1 and
the number of vertices stays the same when compared to the left hand side. In the second
term the number of edges reduces by at least 1 and the number of vertices reduces by 1.
The worst case scenario for the runtime is when in the second term the number of edges
reduces by 1. So the expression changes to recursion formula:

av+e ≥ av+e−1 + av+e−2

with v = |V (G)| and e = |E(G)|
We can substitute the solution ωv+e for av+e. The recursion than reduces to ω2 = ω + 1,
which is the same formula as the one that is used for the Fibonacci sequence. This is a
quadratic equation with solution ω1,2 =

1±
√
5

2
. So av+e = A∗ (1+

√
5

2
)v+e+B ∗ (1−

√
5

2
)v+e.

Note that 1−
√
5

2
< 1 < 1+

√
5

2
so thatO(A∗(1+

√
5

2
)v+e+B∗(1−

√
5

2
)v+e) = O((1+

√
5

2
)v+e) ≈

O(1.6180v+e).

2.5 Chromatic Polynomials for specific graph families

Even though we can’t calculate the chromatic polynomial for any graph in polynomial
time, we can however find the polynomials for some specific types of graphs. We will
discuss a few of those types and prove that the chromatic polynomial we give is correct.

We start off easy with the Null graph.

Claim 2.3 The chromatic polynomial of the Null graph on n vertices is

chr(Nn, k) = kn

Proof. Let k ∈ N be arbitrary. Then each of the n vertices can be colored with any of
the k available colors in all colorings, since there are no edges. Thus chr(Nn, k) = kn. �

Next we have the complete graph.

Claim 2.4 The chromatic polynomial of the complete graph on n vertices is

chr(Kn, k) = k(k − 1)(k − 2) · · · (k − n+ 1)

Proof. Let k ∈ N be arbitrary. For the first vertex we have k colors to choose from. For
the second vertex we can choose any color except for the color chosen for the first vertex,
because all vertices are connected. For the third vertex we cannot choose the colors from
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the first and the second vertex, since they are connected. Following this pattern we color
all vertices, where we eventually have k− (n−1) = k−n+1 colors left to choose from.
So when we count all the colorings we get the choices for the first vertex times the second
times . . . times the nth vertex. This results in k(k−1)(k−2) · · · (k−n+1) = chr(Kn, k).

�

Similar claims can be proven for trees, cycles and wheels. These results can be
found in [1].

2.5.1 Example of Composite graph families

Royle [4] studies another interesting graph family and gives the corresponding chromatic
polynomial. We will recreate his work here.

LetA andB be two graphs each with a distinguished 4-cycle, a1a2a3a4 and b1b2b3b4
respectively. Then we construct a graphG, which is the graph obtained by gluing together
A and B at their aforementioned 4-cycles. Thus we identify ai with bi for each 1 ≤ i ≤
4. Then, for each colouring of G we get a corresponding coloring of A and B, where
a1a2a3a4 and b1b2b3b4 are colored in the same way.
To construct the entire chromatic polynomial of G out of information from A and B is a
bit more difficult. For this we are first going to look at the proper colorings of A. These
proper colorings can be divided in 4 different types based on the different ways the 4-
cycle a1a2a3a4 can be colored. The proper colorings of A are than of course the sum of
the proper colorings of those 4 types. The types are:

1. σ(a1) = σ(a3) and σ(a2) = σ(a4)

2. σ(a1) = σ(a3) and σ(a2) 6= σ(a4)

3. σ(a1) 6= σ(a3) and σ(a2) = σ(a4)

4. σ(a1) 6= σ(a3) and σ(a2) 6= σ(a4)

For each type the number of colorings is equal to the chromatic polynomial of a
certain auxiliary graph. This graph is created by taking A and identifying the vertices in
a1a2a3a4 who have the same color and adding an edge between the vertices who have a
different color. So for example for type 2, we would identify a1 and a3 and add an edge
between a2 and a4. Name the 4 chromatic polynomials chr1(A, k), chr2(A, k), chr3(A, k)
and chr4(A, k). As stated before the sum of these polynomials equals chr(A, k).

We now have dissected the chromatic polynomial of A in 4 parts, which we can do
with B in the same way. Our goal is now to join these parts in such a way that the result
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will be the chromatic polynomial of G. For this it will be convenient to write these 4 parts
in a different way, such that we can do matrix multiplication with them. That is why we
define the partitioned chromatic polynomial P (A, k) in the following way:

P (A, k) =


chr1(A, k)
chr2(A, k)
chr3(A, k)
chr4(A, k)


P (A, k) is a vector in Z[k]4. Note that P (A, k) is also dependent on which 4-cycle you
choose if there are more present in A.

Claim 2.5 Let A and B be two graphs with distinguished 4-cycles and corresponding
partitioned chromatic polynomials P (A, k) and P (B, k). Then the chromatic polynomial
of the graph G obtained by gluing together A and B is the sole entry of the 1× 1 matrix
P (A, k)TDP (B, k) where

D =


1
〈k〉2 0 0 0

0 1
〈k〉3 0 0

0 0 1
〈k〉3 0

0 0 0 1
〈k〉4


where 〈k〉i denotes the i-th falling factorial k(k − 1) · · · (k − i+ 1).

Proof. Note that the sole entry of P (A, k)TDP (B, k) equals:

chr1(A, k)chr1(B, k)

〈k〉2
+
chr2(A, k)chr2(B, k)

〈k〉3
+
chr3(A, k)chr3(B, k)

〈k〉3
+
chr4(A, k)chr4(B, k)

〈k〉4
.

For any positive integer k, the product chri(A, k)chri(B, k) is equal to the number of pairs
(σ, ρ), where σ is a proper coloring of chri(A, k) and ρ is a proper coloring of chri(B, k).
For our graph G only the pairs (σ, ρ) which use the same ordered sets of colors make a
proper coloring. Otherwise σ and ρ would color a1a2a3a4 differently. For any coloring
σ which uses s colors on a1a2a3a4 only 1 in 〈k〉s colorings ρ uses the same ordered sets
of colors. Since all σ of the same type use the same number of colors on a1a2a3a4, we
can just divide the product chri(A, k)chri(B, k) by 〈k〉s, with the appropriate s, to get the
number of pairs (σ, ρ) from which we can make a coloring of G. Since every coloring on
G induces a coloring on A and B, the aforementioned colorings are all colorings on G of
that type. When we sum the results for all i we get the claim. �
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3 Bounding complex roots

3.1 Introduction

Sokal [2] has proved that there is a bound for the absolute value of the complex roots of
the chromatic polynomial. Fernández and Procacci improved this bound and Dong and
Koh did this as well. In this section we will prove a slightly improved version of this
bound. We will do this in the same way Tamás Hubai [1] did.

3.2 Motivation

Before we start to prove our bound, we will give some motivation why such bounds are
interesting. When the roots are nonnegative integers, they describe the noncolorability of
the associated graph with a certain number of colors. A bound for these roots is easily
found. If the graph has a degree of D, then the graph can be colored with D + 1 colors.
Note that this is a bound and not the actual chromatic number of the graph.

Theorem 3.1 (Sokal) There exists a universal constant c such that for all simple graphs
with maximum degree ≤ D the roots of the chromatic polynomial lie in the disc |q| ≤
cD. Also, if the second-largest degree is ≤ D, all complex roots have |q| ≤ cD + 1.
Furthermore, c ≤ 7.963907.

In 1912 Birkhoff introduced the chromatic polynomial. His reason to introduce this
structure was to find an analytic proof of the 4-color problem by investigating the real and
complex roots of the chromatic polynomial. Up to this date, this proof has not been found,
but many other interesting properties of these roots have. The roots of a polynomial define
the polynomial uniquely up to multiplicative constant.

3.3 Preliminaries

We are going to apply the ideas of linear relaxation on this problem. For this, we need to
change a discrete structure of graphs into a continuous structure. We’ve chosen the edges
for this. Instead of that an edge is or isn’t there, each edge now is there and has a weight
between 0 and 1 associated with it. You could say that when an edge has weight 0 it is
completely not there, with a weight of 1 it is completely there and in between those values
it is partially there. To work with this model, we first have to extend the definition of the
chromatic polynomial and some related concepts to weighted graphs.
Let G = (V,E) be a simple graph with edge weights 0 ≤ we ≤ 1 for every edge e.
It would be helpful if there was an edge between every pair of points. We can easily
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realize this by making the graph complete and attach weight 0 to every edge added in this
process.
Now we can redefine the chromatic polynomial as follows:
For a nonnegative integer q, define the chromatic polynomial as

chr(G, q) =
∑∏

(1− we)

Here the sum enumerates all possible q-colorings of G while the product iterates
over edges connecting vertices of the same color.
We can prove that we indeed get a polynomial in a similar way as in the unweighted case.

In the picture below we can see an example of a triangle graph with weighted edges.
For q colors there are q3 different colorings of which there are q(q − 1)(q − 2) proper.
3q(q − 1) are with 2 vertices with the same color and q are with all vertices with the
same color. The proper colorings each contribute 1 to the sum so in total contribute
q(q − 1)(q − 2). The colorings with all vertices colored the same contribute each (1 −
w1)(1−w2)(1−w3) so in total q(1−w1)(1−w2)(1−w3). Of the last group a third of the
colorings contributes (1−w1), a third (1−w2) and a third (1−w3), which brings the total
contribution to q(q−1)(3−w1−w2−w3). Then q(q−1)(q−2)+q(q−1)(3−w1−w2−w3)+
q(1−w1)(1−w2)(1−w3) = q3−(w1+w2+w3)q

2+(w1w2+w1w3+w2w3−w1w2w3)q
is the total sum. So we can clearly see that when w1, w2 and w3 are all equal to 1 the
polynomial equals the polynomial for the nonweighted version of this graph.

w1

w2 w3

v1

v2

v3

The degree of a vertex v is modified to mean the sum of weights on all edges
incident to v. Edge deletion G\e is handled by zeroing the corresponding weight. Edge
contraction with weighted edges is a bit more complicated. Suppose we want to do an
edge contraction G/e with e = uv and let’s call the contracted point ũ. Then the new
edge fromw to ũwill have a weight ofw1⊕w2 := w1+w2−w1w2 = (w1−1)(w2−1)−1,
where w1 is the weight of uw and w2 is the weight of vw. This is defined like this in such
a way that the product (1−w1)(1−w2) does not change in it’s new form (1−w1⊕w2).
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And thus each part, which corresponded with u, v andw all having the same color, doesn’t
change in the chromatic polynomial. The usual reduction changes to:

chr(G, q) = chr(G\e, q)− we ∗ chr(G/e, q).

The extra we is there, since not all the contribution where u and v are the same color needs
to be subtracted from chr(G\e, q). Only for the part that the edge e was there: it’s weight
we. When we equals 1, the equation reduces to the simple deletion-contraction equation.

The chromatic polynomial of the triangle graph can also be determined using the
deletion-contraction equation. Via multiple application of this equation we will get a sum
of chromatic polynomials of graphs with all edges 0 times some constants. The chromatic
polynomial of graphs with all edges 0 is according to claim 3.1 equal to qv, where v is the
number of vertices. For this particular graph the result is:

q3 − w2q
2 − w1q

2 + w1w2q − w3 + w3 ∗ w2 ⊕ w1q

Oddly this result looks unsymmetrical and not equal to our earlier result, but when we
replace the ⊕ with it’s definition we do indeed find the same result.

q3 − (w1 + w2 + w3)q
2 + (w1w2 + w1w3 + w2w3 − w1w2w3)q

In what follows the variable always be q, so to make our formulas a bit more read-
able we’ll write [G] := chr(G, q), so the formula above now reads

[G] = [G\e]− we ∗ [G/e].

Changing the weight of a single edge will be marked as G[e : we].
During the proof, we want to assume that the set of vertices does not change. Thus for
the proof edge contraction can not be used, so let’s define contraction with compensation
as the contraction of an edge followed by the addition of a new isolated vertex, using the
notion of G ↗ e. We may think of it as moving all edges from a given vertex to another
one. Obviously [G↗ e] = q ∗ [G/e], so the reduction can be written as

(1) [G] = [G\e]− we

q
∗ [G↗ e].

3.4 Proving the theorem

Lemma 3.2 Let 0 ≤ s, t ≤ 1 and 0 ≤ x < 1. Recall the definition s⊕ t = s+ t− st.
Then

log(1− sx)− log(1− (s⊕ t)x) ≤ −t log(1− x)
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Proof. We are going to prove the lemma with the use of convexity of the left hand side
and linearity of the right hand side, while considered as functions of t. If the inequality
then holds when t = 0 and t = 1 the inequality holds for 0 ≤ t ≤ 1. Thus consider both
sides of the inequality as a function of t. Then for t = 0 the left hand side equals:

log(1− sx)− log(1− (s⊕ 0)x) = log(1− sx)− log(1− (s)x) = 0

The right hand side gives the following:

−0 log(1− x) = 0

So there is equality when t = 0.
For t = 1:

log(1−sx)−log(1−(s⊕1)x) = log(1−sx)−log(1−x) < − log(1−x) = −1∗log(1−x)

Since 1− sx < 1 within the range of the allowed s and x. So log(1− sx) < 0.
So the inequality holds when t = 1.
Now we only need to prove that the left-hand side is convex. We know that log t is concave
on its entire domain and thus log(a+ bt) is also concave for any real a and b. Substituting
a = 1− sx and b = sx− x yields that log(1− (s⊕ t)x) is concave too. This proves the
proposition because log(1− sx) is constant. �

Theorem 3.3 Let G be a simple weighted graph as defined above with an edge e = ij
selected. Suppose that all vertices, possible except one of i or j, have a degree of at most
D. We call this the degree criterion.
Suppose q is restricted in the following way:

(2) |q| ≥ (1 +
1

2D
)2D(2D + 1)

Let 0 ≤ w1, w2 ≤ 1 be some weights. Then for any q ∈ C which satisfies 2 we claim:

1. ∣∣∣∣log [G↗ e]

[G\e]

∣∣∣∣ ≤ 2D log(1 +
1

2D
)

2. ∣∣∣∣log [G[e : w1]]

[G[e : w1 ⊕ w2]]

∣∣∣∣ ≤ w2 log(1 +
1

2D
)

3. [G] 6= 0

where log is the principal branch of the complex logarithm function.
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Proof. The Theorem consists of three parts: a, b and c. So naturally we are going to
prove these parts separately. However, these parts are intricately connected with each
other. The picture below was added for a little more insight in those connections. Apply
induction based on the number of nonzero weighted edges, including the edge e if w1 > 0
or w2 > 0. If all weights are zero, the claims are trivial.

a

b

c

G = Nn G = Nn + w1

· · ·

· · ·

· · ·

G = Nn + w1 + w2

a. We morph the graph G\e to G ↗ e by a set of successive edge deletions and
additions. Possibly swapping i and j, we may assure that the degree of j is at most D.
For each edge jk, reset its original weight wjk to zero and add it to the edge ik so that its
weight becomes w′ik = wik ⊕ wjk. Intermediate graphs have fewer nonzero edges than
G, and the degree criterion also holds for them, so we can apply part b. Since in our
induction prove we already have proven b. for graphs G′ with fewer nonzero edges than
G. Then we obtain that each step results in a difference of no more than w ∗jk log(1+ 1

2D
)

in the logarithm of the chromatic polynomial. Adding up yields that the total difference
is at most 2D log(1 + 1

2D
).

b. Letwe denote the current weight of the edge e and consider the partial logarithmic
derivative of [G] with respect to we, expanding its absolute value using the reduction
formula (1): ∣∣∣∣ ∂∂we

log[G]

∣∣∣∣ =
∣∣∣∣∣ ∂
∂we

[G]

[G]

∣∣∣∣∣ (1)=
∣∣∣∣∣

∂
∂we

([G\e]− we

q
∗ [G↗ e])

[G\e]− we

q
∗ [G↗ e]

∣∣∣∣∣ =∣∣∣∣∣
1
q
∗ [G↗ e]

[G\e]− we

q
∗ [G↗ e]

∣∣∣∣∣ =
∣∣∣∣ K

1 + weK

∣∣∣∣
where

K =
−[G↗ e]

q ∗ [G\e]
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Note that here implicitly part c. is used, otherwise we couldn’t divide by [G].
From part a. we have ∣∣∣∣ [G↗ e]

[G\e]

∣∣∣∣ = eRe(log [G↗e]
[G\e] ) ≤ e|log

[G↗e]
[G\e] | ≤

≤ e2D log(1+ 1
2D

) =

(
1 +

1

2D

)2D

and therefore

|K| ≤
(1 + 1

2D
)2D

|q|
≤ 1

2D + 1

according to the degree criterion for q. Note that |K| < 1 and therefore |weK| < 1,
which we’ll need shortly. Now we may bound the multiplicative change in the chromatic
polynomial:∣∣∣∣log [G[e : w1]]

[G[e : w1 ⊕ w2]]

∣∣∣∣ = ∣∣∣∣∫ w1⊕w2

w1

∂

∂we

log[G] dwe

∣∣∣∣ ≤ ∫ w1⊕w2

w1

∣∣∣∣ ∂∂we

log[G]

∣∣∣∣ dwe ≤

≤
∫ w1⊕w2

w1

|K|
1− we|K|

= log(1− w1|K|)− log(1− (w1 ⊕ w2)|K|) ≤

≤ −w2 log(1− |K|) ≤ −w2 log(1−
1

2D + 1
) = w2 log(1 +

1

2D
)

c. The claim is trivial for the empty graph. For an arbitrary graph, we may subse-
quently change each edge weight of the empty graph to the desired value using b, causing
only a bounded multiplicative change to [G] in each step. It follows that the result cannot
be zero either. �

Theorem 3.4 If D denotes the second-largest degree in G, then all roots of the chromatic
polynomial lie within the disc |q| < (2D + 1)e.

Proof. Suppose the contrary. A root that violates the claim satisfies

|q| ≥ (2D + 1)e > (2D + 1)(1 +
1

2D
)2D

so we may apply the previous theorem, resulting in a contradiction. �

Remark 3.5 We proved an asymptotic factor of 2e ≈ 5.436564, which, despite the slightly
larger additive constant, gives a stronger result than Sokal’s for any positive integer D.
This is also an improvement compared to the articles mentioned in the introduction 3.1,
and as to our knowledge, is the sharpest bound known at the moment.
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