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Abstract

Massive graph-structured data collections are omnipresent in modern data man-
agement scenarios such as social networks, linked open data, and chemical com-
pound databases. Regular path queries for graph databases are eminently useful.
However, these queries are difficult to optimize to evaluate efficiently.

We have embarked on a project we call Telepath to design and engineer a path-
index based graph database engine. Recent previous work on path indexing
showed results which yield, on average, orders of magnitude faster query pro-
cessing times in comparison with Neo4j, a popular open-source native graph
database.

Our work presents an end-to-end solution to evaluate a regular path query effi-
ciently. The core of our end-to-end solution is the dynamic programming based
query planner. The query planner chooses a physical plan in a bottom-up fash-
ion by using cost estimates. Chosen physical plans for smaller subproblems are
used to construct the physical plan for the global problem. Cost estimates are
provided by using cardinality estimates for intermediate results. The cardinal-
ity estimates are produced through relation statistics maintained over the graph
data. Switching to the end of the life-of-a-query, a path index is used to retrieve
(intermediate) query results.

The main contributions can be summed up into the following four main areas:
relation statistics based cardinality estimation where we provide a novel imple-
mentation for an existing concept, dynamic programming based query planning
where we provide a novel implementation for an existing concept, query eval-
uation using a disk-based path index where we use an existing implementation
of a path index. However, we provide our own concept and implementation
for end-to-end query evaluation while leveraging a path index. We designed,
engineered, and tested the proposed approach.

Using one synthetic and one real-world dataset, we provide an empirical evalu-
ation of the cardinality estimation, query planning, and query evaluation phases
with a path index available for paths of length one and two. Our relation stat-
istics based cardinality estimator generates estimates with a mean error of 0.56
on a scale from zero to one. This enables the dynamic programming based
query planner to always choose a near optimal physical plan, as shown by a
mean error of 0.02 during our experiments. Ultimately, we achieve a 9x mean
speedup for query evaluation times compared to Neo4j, a current state of the
art graph database engine.

We see that Telepath performs particularly well for smaller result sets. We
achieve a mean speedup of 29x for queries which evaluate to small result sets
of 0 − 100k tuples. We see that the evaluation into larger result sets, and thus
more intermediate results, is not able to leverage the disk-based path index in
the same order of performance gain.

Our Telepath prototype illustrates the performance gains that can be obtained
in comparison to a current state of the art graph database engine, and it acts as
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a foundation for further research in the area of path-index based graph database
engines due to its modular and generic design.

The source code of Telepath has been made publicly available to contribute to
the open-source community.
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Chapter 1

Introduction

Massive graph-structured data collections are omnipresent in modern data man-
agement scenarios such as social networks, linked open data, and chemical com-
pound databases.

There is a need for natural and expressive ways to query efficiently over these
massive graphs.

1.1 Motivation

A fundamental paradigm in graph query languages is the so-called regular path
query (RPQ). A regular path query specifies a regular expression1 over the
labels of the edges in a graph. The regular expression forms a language to
which the sequence of edge labels along a path have to adhere. The query
answer of a regular path query consists of the paths such that the word formed
by the sequence of its edge labels is in the language recognized by the regular
expression.

The selection and manipulation of paths constitute the core of querying graph
datasets. However, the feasibility of a path-centric approach to indexing large
graphs is an open problem [1, 21]. To date, one study has been performed on
the benefits of path indexing for processing graph queries in industry-strength
graph databases in [23].

The study of [23] on path indexing shows that use of the index yields, on average,
orders of magnitude faster query processing times compared with Neo4j2, a
popular open-source native graph database which offers features such as being
fully transactional and supporting a declarative graph query language, Cypher.
However, the work by [23] did not study the full query processing process, i.e.,
from query processing to query plan generation. Their work focused on studying
the underlying path index, rather than providing and studying a full query
processing framework. A comprehensive query processing framework leveraging
a path index is presented in this thesis.

1A sequence of characters that define a search pattern.
2Neo4j documentation can be found at https://neo4j.com/docs/.
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CHAPTER 1. INTRODUCTION

1.2 Goal

We have set out to design, engineer and test a modular path-index based graph
database engine with support for evaluation of regular path queries. We name
the approach that we develop Telepath .

Telepath follows up on path indexing techniques as proposed in [23] by incorpor-
ating such a path index in the full lifecycle of a query. The lifecycle of a query
includes query parsing, query planning, and query evaluation among others.

Furthermore, it will be engineered in a generic and modular fashion which en-
ables other researchers to use Telepath as a framework and foundation for the
engineering and testing of their graph database extensions.

1.3 Contributions

The main contributions of Telepath can be summed up into the following four
main areas: relation statistics based cardinality estimation, dynamic program-
ming based query planning, query evaluation using a disk-based k-path index,
and design, engineering, and testing of the proposed approach. The following
enumeration expands on the contributions into these areas.

1. Relation statistics based cardinality estimation.

• Novel implementation of the relation statistics based cardinality es-
timation ideas as described in [29].

• Accurate approach for estimating intermediate and resulting query
answer sets for path queries.

2. Dynamic programming based query planning.

• Novel implementation of the dynamic programming based query plan-
ner ideas as described in [18].

• Candidate physical plans are generated in a bottom-up fashion, prun-
ing suboptimal physical plans by limiting the search space, while still
choosing a near optimal physical plan for evaluation.

• We show that our dynamic programming based query planner al-
gorithm chooses a physical plan in time polynomial in the size of
the given regular path query, while the space of physical plans grows
exponentially by the size of the given regular path query.

• The disk-based k-path index is honored and generically incorporated
in the cost model, enabling later modifications on the cost model.

3. Query evaluation while leveraging a disk-based k-path index.

• We use an existing implementation of a k-path index as described in
[23].

• We provide our own concept and implementation of end-to-end query
evaluation while leveraging a disk-based k-path index.

2 Telepath: A path-index based graph database engine
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• Query evaluation timings appear to be significantly faster compared
to a current state of the art graph database engine.

4. Prototype engineering.

• The implementation has been done with a modular and generic ap-
proach to suit extensions and modifications by other researchers.

• We followed code quality standards which enforce readable, durable
and maintainable source code.

• Implemented features have been unit tested which ensures a correctly
working prototype when applying extensions and modifications.

• The source code of Telepath has been made publicly available to
contribute to the open-source community. The repository is hosted
on GitHub3 at https://github.com/giedomak/Telepath.

3GitHub is a web-based version control repository hosting service.
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Chapter 2

Preliminaries

2.1 Graphs

We adopt a basic model of finite, edge-labeled, directed graphs G = 〈N ,E,L〉,
where: N is a finite set of nodes, L is a finite set of edge labels, and E ⊆
N × L × N is a set of labeled directed edges. As an example, a graph Gex over
the vocabulary L = { associatedWith, enrolledAt, friendOf, parentOf } is
shown in Figure 2.1.

Figure 2.1: A graph Gex over vocabulary L = { associatedWith, enrolledAt,
friendOf, parentOf }.

For each (s, l , t) ∈ E, we say s has an outgoing edge to t having label l , and t has
an incoming edge from s having label l .

Telepath: A path-index based graph database engine 5
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2.2 Paths

For each edge (s, l , t) ∈ E, we say there is a path of length one from s to t having
label l and there is a path of length one from t to s having label l−1.

Let k be a natural number. If k = 0, we say there is a k-path from s to s, for
every s ∈ N . If k > 0, for every s, t ∈ N , we say there exists a k-path, i.e., a path
of length k, from s to t if there exist n0, . . . ,nk ∈ N with edge labels l1, . . . , lk ∈ L
such that n0 = s, nk = t , and, for 0 < i ≤ k there is a path of length one from
ni−1 to ni having label li or having label l−1i .

2.3 Path queries

Path queries are specified by a regular expression over the sequence of edge labels
along a path. Such queries, we call regular path queries (RPQ) [2, 4]. The query
answer of a regular path query is the projection of the source node and target
node of every path in the graph such that the sequence of edge labels along the
path forms a word in the language recognized by the regular expression.

The atomic elements which build a regular path query, are edge labels, binary
operators, and unary operators. Parenthesis are used to indicate a particular
order of evaluation.

Definition 2.1. The query answer of a regular path query containing exactly
one and only one edge label, l , will consist of all node pairs (s, t) such that there
is a path of length one from s to t having edge label l .

Definition 2.2. Given edge label l ∈ RPQ, we define !l to denote the inverse
edge label of l . The query answer of !l will consist of all node pairs (s, t) such
that (t , s) appears in the answer of l .

Definition 2.3. Given expressions e, f ∈ RPQ, we define the CONCATENATION
binary operator as e / f . The query answer of e / f consists of every node pair
(s, t) ∈ N × N , such that there exists x ∈ N , where (s,x) is in the answer of e,
and (x , t) is in the answer of f .

Definition 2.4. Given expressions e, f ∈ RPQ, we define the UNION binary oper-
ator as e | f . The query answer of e | f consists of every node pair (s, t) ∈ N ×N ,
such that (s, t) is in the answer of e, or (s, t) is in the answer of f . The semantics
of evaluating e | f ∈ RPQ behave the same as evaluating e ∪ f .

Definition 2.5. Given expression e ∈ RPQ, we define the KLEENE STAR unary
operator1 as e∗. The query answer of e∗ consists of every node pair (s, t) ∈ N ×N ,
such that (s, t) is in the answer of ϵ | e | (e/e) | (e/e/e) | . . . , where ϵ is the empty
word.

1Kleene star and Kleene plus reference: http://www.oxfordreference.com/view/10.1093/oi/
authority.20110803100039649
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Definition 2.6. Given expression e ∈ RPQ, we define the KLEENE PLUS unary
operator as e+ ∈ RPQ. The query answer of e+ consists of every node pair
(s, t) ∈ N × N , such that (s, t) is in the answer of e | (e/e) | (e/e/e) | . . . .

See Appendix A for the complete definition of the regular path query grammar.

Definition 2.7. Let |r | denote the size of regular path query r . Depending on
the operator, we define |r | recursively as shown in Table 2.1.

Edge label
Binary operators Unary operators

r1/r2 r1 |r2 r ∗1 r+1
|r | 1 |r1 | + |r2 | |r1 | + |r2 | |r1 | + 1 |r1 | + 1

Table 2.1: Recursive definition of the size of an arbitrary expression r ∈ RPQ.

As an example, the following regular path query selects all node pairs (s, t) such
that person s is enrolled to an association which is associated with university t :

enrolledAt / associatedWith

Listing 2.1: Example simple regular path query.

This example regular path query over graphGex as shown in Figure 2.1 evaluates
to the result set { (Tess, TU/e), (Giedo, TU/e) }.

As a second example, the following regular path query selects all node pairs (s, t)
such that university s has an association which has an enrolled person of which
person t is either a friend of the enrolled person or the parent of the enrolled
person:

!associatedWith / !enrolledAt / ( friendOf | !parentOf )

Listing 2.2: Example complex regular path query.

This example regular path query over graphGex as shown in Figure 2.1 evaluates
to the result set { (TU/e, Tess), (TU/e, Giedo), (TU/e, Ruud), (TU/e, As) }.

2.4 k-path index

The definition of a k-path is stated in Section 2.2. The use of an index over
k-paths can increase the performance of path queries. Leveraging such a k-path
index during the full lifecycle of a query is one of the main topics of this thesis.

A k-path index holds information based on features of a graph in order to identify
and describe all paths of the graph. The ordered set of edge labels along a path
is used as a pattern to store and retrieve the node pairs which are connected by
such a path. Using this edge label pattern, the k-path index retrieves the query
answer by using its index instead of traversing the graph.

Telepath: A path-index based graph database engine 7





Chapter 3

Related work

3.1 Query optimization

A query can be executed in many different ways by the underlying database
engine. The strategy which is used by the database during query evaluation is
encoded in a physical plan. The costs of such plans, that is, the amount of time
that they need to run, can vary by orders of magnitude. This motivates the
problem of choosing the physical plan with the lowest possible cost.

Query optimization is a large research area in the database field which attempts
to find answers to the problem of choosing an effective physical plan. The area
of this problem has been surveyed extensively, for example in [12, 27], of which
some findings are presented in the following paragraphs.

Query optimization can be abstracted into a rewriting and a planning stage.
See Figure 3.1 for a graphical overview of the query optimization architecture.

Figure 3.1: Query optimization architecture as described in [12].

The rewriting stage rewrites a query into equivalent queries intended to be more
efficient. For example by flattening out nested queries. The rewriting stage does
not take the actual database engine, and therefore, the actual query cost, into
account. The rewriting stage only relies on static characteristics of the query to
create a set of candidate physical plans.

The planning stage is the most crucial stage for any query optimizer. Query
planning explores the space of physical plans. It compares these plans based on
estimates of their cost, which are derived by the cost model and the cardinality
estimator modules and selects the physical plan with the overall lowest cost to
be used to generate the answer to the original query.

Telepath: A path-index based graph database engine 9
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Several novel search strategies have been proposed to employ the planning stage
to explore the search space of possible physical plans. Such algorithms include
simulated annealing, iterative improvement, and two-phase optimization [13].
However, the most important strategy is based on dynamic programming. Dy-
namic programming constructs physical plans by iterating on the number of
relations joined so far, while pruning physical plans known to be suboptimal.
For queries with less than ten joins, dynamic programming has proven to be
very effective [12].

3.2 Cardinality estimation

As mentioned in Section 3.1, the essence of query optimization is choosing an
effective physical plan to be evaluated by the database engine. Cardinality
estimation of intermediate and resulting relations is a major component of query
optimization since the cost of physical plans can vary by orders of magnitude
depending on the cardinalities of these intermediate and resulting relations.
Therefore, this motivates the problem of estimating the cardinalities of these
relations accurately and efficiently.

Cardinality estimation is an established research topic within the database com-
munity. Extensive surveys on the subject of cardinality estimation are found
in [17] and [3] for example. The authors of these papers show that there are
three primary methods to efficiently estimate cardinalities: relation statistics,
histograms, and sampling. Where estimations based on relation statistics are
viewed as the simplest method, however, most commercial database manage-
ment systems base their estimates on histograms.

3.2.1 Histograms

In a histogram of an attribute a of a relation R, the domain of values of a is
partitioned into buckets. Within each bucket, a uniform distribution is assumed.
For any bucket b in a histogram, if a value vi ∈ b, then the cardinality fi of vi is
approximated by

∑
vj ∈b fj/|b |. Such histograms assume a uniform distribution

over the attribute domain within each bucket and are therefore not very effective
in real-world scenarios [22].

There are various other histogram types proposed by researchers which provide
better estimations by easing the uniform distribution assumption. For example,
in equi-width histograms [15, 20], regardless of the cardinality of each attribute
value in the data, the number of consecutive attribute values associated with
each bucket is the same. Another class of histograms, equi-depth [15], provides
a lower worst-case and a lower average error for some selection queries.

3.2.2 Relation statistics

As described in Section 3.2, cardinality estimation based on relation statistics is
one of the three primary methods to estimate cardinalities of intermediate and

10 Telepath: A path-index based graph database engine
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resulting relations. In the case of a graph database, statistics over the relations
of a given graph describe aspects such as the number of nodes, the number of
edge labels, the distribution of edge labels, and the correlation between edge
labels and paths.

For example, a statistics store which contains for each edge label in the alphabet
the number of distinct node pairs which are connected by all paths of length
one having the given edge label.

3.3 Path query evaluation

The evaluation of path queries using indices has been studied in the context of
many kinds of databases, tree and relational databases for example in [5, 7, 19,
28]. Papers such as [8] and [26] have benchmarked different database systems.
This section presents some of these findings.

The authors of [26] performed a comparison of the Neo4j graph database against
the Oracle relational database using the Green-Marl domain specific language
[11]. They compared the performance of Dijkstra’s shortest path algorithm
in a graph database environment with a relational database environment. To
model the graph dataset in the relational database, they built an index based
on a relation table with columns for the source node, the destination node,
and weight. The results of this experiment show that the relational database
with an optimized SQL query always performs equally or better than the native
graph database Neo4j. The authors concede that in certain query types, Neo4j
outperforms the relational solution. Those solutions tend to be ones with a
large number of joins caused by a query which evaluates to a long path. In these
cases, the number of joins needed cripples the relational database.

A more comprehensive comparison of query evaluations of different databases,
and therefore different indexing structures, is presented in [8]. These experi-
ments are conducted on a synthetic dataset with queries which are typically
found in the real world. The dataset is the Lehigh University Benchmark, a
well-known RDF1 benchmark containing universities, departments, professors,
students, and courses. In their experiment, they compared relational databases
with the Neo4j and Sparksee graph databases. The results show that even for
typical pattern matching operations such as triangle patterns, even unoptim-
ized evaluations in the relational databases perform better than an equivalent
evaluation with either of the graph databases in terms of query evaluation time.

The authors of [24] investigated the effectiveness of path indexing for accel-
erating query processing in graph database systems, using Neo4j to compare
their findings. They present a novel path index design which supports efficient
ordered access to paths in a graph dataset, which is fully persistent and de-
signed for external memory storage and retrieval. Their results show that their
proposed disk-based k-path index yields query execution times from 2x up to
8000x faster than Neo4j.

1Resource Description Framework, https://www.w3.org/RDF/.
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Chapter 4

The design and engineering
of Telepath

This chapter describes the design choices and engineering highlights encountered
while creating Telepath, our path-index based graph database engine.

4.1 Architecture

While designing the architecture of Telepath, one specific goal has to be re-
garded. The architecture should enable other researchers to use Telepath as a
building block for their graph database extensions. In other words, Telepath’s
architecture is as generic and modular as possible.

Figure 4.1 shows a schematic overview of the architecture of Telepath. This
overview shows the dependencies and connections between modules, as well as
a brief description of the responsibilities for each module. Keep in mind that
each module can be easily extended with new functionality, or replaced by a
new module.

A small description of each module from the schematic overview in Figure 4.1
is stated below.

• Parser: Parse the regular path query into a logical plan, our internal
representation of a regular path query.

• Query planner: Choose an effective physical plan by using heuristics
and cost-based enumeration.

• Evaluation engine: Evaluate the chosen physical plan to produce a
query answer by evaluating each physical operator in the chosen physical
plan.

• Cost model: Estimate the cost of a physical plan by using cost functions
for each physical operator.

• Cardinality estimation: Estimate the cardinality of intermediate and
resulting query answers for use in the cost functions by using relation
statistics of the k-path index.

• PathDB: The k-path index which is used to produce query answers for
path queries.

• Physical library: Collection of the physical operators which hold in-
formation regarding their cost function and their evaluation algorithm.

Telepath: A path-index based graph database engine 13
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• Memory manager: Disk-based memory buffer for materialising inter-
mediate and resulting query answers.

• Plan optimization strategies: Rule-based optimization of logical plans
using heuristics.

• Data models: Collection of data models used throughout all modules,
such as a model for nodes and edges.

4.1.1 Engineering

The directory structure of any engineering project maintains the overview of
the separation of modules. Since Telepath is designed in a modular and generic
fashion, the directory structure mirrors the modular project setup. Appendix
C shows the directory structure of Telepath.

Another crucial part of creating a generic and modular prototype is the use of
interfaces for each module. Interfaces abstract away the public function calls
which are allowed by any interacting class. Any class which implements an
interface must provide an implementation for all the public functions defined
by the interface. Essentially, we define the possible ways of communication and
integration with each module in its interface. Different module implementations,
which adhere the contract, can be interchanged.

14 Telepath: A path-index based graph database engine
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Figure 4.1: Schematic overview of the Telepath architecture.
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4.2 Life of a Query

The essence of the life of a query within Telepath is summarized in the steps as
shown in the enumeration below. Each step shows a schematic illustration of
the result produced in that step. The goal of this section is to give a general
understanding of the life of a query within Telepath. References to sections with
in-depth details are attached to each step.

4.2.1 Query input

A regular path query is given as input to Telepath. The regular path query
language is currently the only query language which is supported by Telepath.
However, any query language can be easily added, by nature of the generic and
modular design.

The following regular path query will be used as an example throughout this
section.

a/(b/c)

Listing 4.1: Example expression qex ∈ RPQ

Where a, b and c are edge labels, and / represents the CONCATENATION logical
operator. The definition of this query language can be found in Section 2.3.

4.2.2 Parse the input

A given regular path query is parsed into the internal representation of such an
expression, and we name it a logical plan. Logical plans are represented by a
tree data structure. See the following Listing for a schematic example.

CONCATENATION
/ \

a CONCATENATION
/ \

b c

Listing 4.2: Schematic logical plan for qex

To interpret regular path queries, Telepath uses the ANTLR1 tool, which stands for
“ANother Tool for Language Recognition”. ANTLR is a powerful parser generator
for reading, processing, executing, or translating structured text or binary files.
It is widely used to build languages, tools, and frameworks. From a given
grammar, ANTLR generates a parser that can build and walk parse trees.

The basic definition of a regular path query can be found in Section 2.3. From
this basic definition, we created a grammar which is attached in Appendix

1ANTLR: http://www.antlr.org/.
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Regular path query:

a/(b|(c/d))/e

Logical plan:

CONCATENATION
/ \

CONCATENATION e
/ \

a UNION
/ \

b CONCATENATION
/ \

c d

Listing 4.3: Schematic visualization of regular path query processing into
a logical plan.

A. Using this grammar together with ANTLR, we can parse regular path queries
consisting out of edge labels, unary operators, binary operators, and parenthesis.
Listing 4.3 shows an extended example of how query input is processed into a
logical plan.

4.2.3 Physical plan selection

The query planner generates a set of candidate physical plans and chooses the
one of least estimated cost in a bottom-up fashion. See the following Listing
for a schematic example of the chosen physical plan which evaluates expression
qex . This example assumes the availability of a large enough k value for the
disk-based k-path index.

INDEX_LOOKUP
/ | \

a b c

Listing 4.4: Schematic physical plan for qex

See Section 4.3 for more details on query planning.

4.2.4 Evaluate the physical plan

The physical plan, as chosen by the query planner, is evaluated in a bottom-up
fashion. All intermediate results are materialized through the memory manager,
to control any disk-based action.

The physical plan as shown in Listing 4.4 leverages an available disk-based k-
path index. The design of the disk-based k-path index used by Telepath is called
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PathDB2, a disk-based k-path index developed by the authors of [23]. See the
following Listing for a schematic example of evaluating qex using PathDB.

kPathIndex.search(
physicalPlan.indexLookupId () // Represents: a/b/c

)

Listing 4.5: Schematic physical plan evaluation for qex

4.3 Query planning

For each logical plan, many corresponding physical plans exist. A physical
plan assigns concrete evaluation algorithms to be used for each logical operator
specified in a logical plan. The cost of a given physical plan is estimated based
on a cost model. This model is carefully tuned based on the concrete evaluation
algorithm, execution hardware and cardinalities of participating relations. See
Section 4.3.5 for more details on the cost model.

As described in Section 3.1, for queries with less than ten joins, dynamic pro-
gramming has proven to be very effective. The authors of [18] propose their
derivation on the bottom-up approach of dynamic programming and call their
algorithm DPsize. Our design of the query planner is based on this algorithm.
The query planner of Telepath chooses the physical plan with the lowest estim-
ated cost in a bottom-up fashion when given a logical plan. Chapter 5 contains
an in-depth explanation of our dynamic programming based query planner. In
essence, we construct a candidate physical plan of size n, by combining two
lowest-cost physical plans of size k and n − k.

Illustrative examples of the query planning phase are shown in the following
subsections, while all design details are stated in Chapter 5. We will show in
Section 5.7 and Section 5.8 that we chose the dynamic programming approach
since it enables to create an algorithms that is able to choose a physical plan in
polynomial time while the space of physical plans grows exponential by the size
of the path query.

4.3.1 Flatten the logical plan into a multi-children tree

Logical plans are flattened to prepare them for the subtree generator. Flattened
logical plans provide much fewer edge cases which have to be traversed to gen-
erate partial subtrees. See Listing 4.6 for an illustrative example of logical plan
flattening.

4.3.2 Generate subtrees of a given size

Since the physical plan with the lowest estimated cost of size n is constructed by
joining two physical plans of size k and n−k, a mechanism to retrieve all subtrees

2PathDB: A data store for graph paths, http://www.pathdb.com/.
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Given logical plan:

CONCATENATION
/ \

a CONCATENATION
/ \

b c

Flattened logical plan:

CONCATENATION
/ | \

a b c

Listing 4.6: Illustrative example of logical plan flattening.

of a given size has to be provided. These subtrees can either be full subtrees
or partial subtrees. Partial subtrees are generated recursively by either using a
sliding window which moves over the children or by using all permutations of
the children of a given logical plan. This choice is dependent on the operator
being ordered or unordered.

The following Listing shows the partial and full subtrees generated by using a
sliding window recursively over the children of the given logical plan.

Given logical plan:

CONCATENATION
/ | | | \

a UNION e f g
/ | \

b c d

Subtrees of size 2:

UNION UNION UNION CONCATENATION CONCATENATION
/ \ / \ / \ / \ / \

b c c d b d e f f g

Subtrees of size 3:

UNION CONCATENATION
/ | \ / | \

b c d e f g

Listing 4.7: Illustrative example of the generation of subtrees of size 2, and
an example of the generation of subtrees of size 3. Both full and partial
subtrees are generated in these examples.
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4.3.3 Check containment of subtrees

The subtrees of size k and n − k will be checked for containment in the logical
plan when joined by any applicable logical operator.

When two subtrees are jointly contained in the logical plan when joined by an
operator, the query planner has to choose the physical plan with the lowest
estimated cost for this newly created subtree.

For example, full subtrees subtree1 and subtree2 are contained in the given
logical plan through the UNION operator in the following example.

Given logical plan:

UNION
/ \

CONCATENATION CONCATENATION
/ \ / \

a b c d

Containment of subtree1 and subtree2 in the given logical plan through
the UNION operator? TRUE

CONCATENATION CONCATENATION
/ \ / \

a b c d

Listing 4.8: Illustrative example of subtree containment checking for full
subtrees.

In the next example, the partial subtrees subtree1 and subtree2 are jointly
contained in the given logical plan when joined by the CONCATENATION operator,
only when the common parent does not have a middle child splitting both partial
subtrees.

Given logical plan:

CONCATENATION
/ | | | \

a b c d e

Given subtree1 and subtree2:

CONCATENATION CONCATENATION
/ \ / \

b c d e

Containment of subtree1 and subtree2 in the given logical plan through
the CONCATENATION operator? TRUE

--------

Given subtree1 and subtree2:

CONCATENATION CONCATENATION
/ \ / \

a b d e
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Containment of subtree1 and subtree2 in the given logical plan through
the CONCATENATION operator? FALSE

Listing 4.9: Illustrative example of subtree containment checking for
partial subtrees.

4.3.4 Enumerate physical operators

As an example, when two subtrees joined by the CONCATENATION logical operator
are contained in the logical plan, we enumerate the logical operator by which
both subtrees are joined, i.e., CONCATENATION, into applicable physical operators
supported by Telepath, e.g., HASH-JOIN, NESTED-LOOP-JOIN, INDEX-LOOKUP. The
physical plan with the lowest estimated cost for both subtrees is already chosen
since we choose the physical plan with the lowest estimated cost in a bottom-up
fashion. See the following Listing for an example of the enumeration of two
subtrees which are joined by the CONCATENATION logical operator.

Known chosen physical plans with the lowest estimated cost for
subtree1 and subtree2:

INDEX_LOOKUP INDEX_LOOKUP
/ \ / \

a b c d

Enumerated physical plans:

INDEX_LOOKUP HASH_JOIN
/ | | \ / \

a b c d INDEX_LOOKUP INDEX_LOOKUP
/ \ / \

a b c d

NESTED_LOOP_JOIN
/ \

INDEX_LOOKUP INDEX_LOOKUP
/ \ / \

a b c d

Listing 4.10: Schematic illustration for physical operator enumeration
when joining two physical plans. This example shows physical operator
enumeration for the CONCATENATION operator.

See Section 5.6 for further details on physical operator enumeration.

4.3.5 Costing physical plans

The query planner has to choose the physical plan with the lowest cost from
the set of physical plans generated by the physical operator enumerator. Each
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available physical operator in Telepath has a simple näıve cost function associ-
ated with it. A cost function uses the estimated cardinalities of the relations on
which the physical operator operates.

As an example, the cost of the hash join physical operator is 2 ∗ (M +N ), where
M is the estimated cardinality of the first relation, and N is the estimated
cardinality of the second relation. Using cardinality estimation and the cost
functions from the physical operators, the physical plan with the least amount
of estimated cost is chosen for evaluation.

See Section 5.6 for further details on cardinality estimation and cost estimation.

4.4 Status of engineering

This section describes the current status of engineering Telepath. Since the main
goal of this thesis is to deliver an end-to-end solution to evaluate a regular path
query efficiently, each module is firstly engineered with a basic implementation
before an improved implementation is considered. This section describes the
status of each module.

• Parser: The parser has been fully implemented and is able to parse all
regular path queries including edge labels, inverse edge labels, unary op-
erators and binary operators as described in Section 2.3 into a logical
plan.

• Query planner: The query planner is able to generate a physical plan
for all logical plans the parser module is able to produce excluding logical
plans which contain a unary operator. The dynamic programming based
algorithm of the query planner is able to process logical plans containing
unary operators, but the physical implementation, cardinality estimation,
and cost function are not yet implemented for the unary operators.

• Evaluation engine: The evaluation engine is fully implemented for all
the physical operators supported by our physical library.

• Cost model: Currently we implemented a näıve cost model which only
accounts for cardinality estimates, disregarding any additional IO costs or
implementation specific optimizations.

• Cardinality estimation: We implemented two cardinality estimators, a
näıve one and a relation statistics based one. The näıve cardinality estim-
ator produces rough estimates for the union and the concatenation binary
operators. The relation statistics based cardinality estimator produces
effective estimates for path queries which only contain the concatenation
binary operator.

• PathDB: A recent rebuild of the library containing our k-path index
implemented the index as a disk-based index. This recent development
might contain performance flaws since it has not yet been given a dedicated
performance study.
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• Physical library: The physical library currently contains physical op-
erators for the concatenation binary operator (e.g., hash join and nested
loop join), the union binary operator (e.g., stream concatenation) and an
index lookup. Each physical operator has a cost function associated with
it which contributes to the cost model.

• Memory manager: The current implementation is able to serialize to
disk and deserialize from disk to control allocated and used memory needed
for producing intermediate and resulting query answers.

• Plan optimization strategies: Logical plans are currently not optim-
ized by using heuristics.

• Data models: Data models for graph related data structures are fully
implemented. For example, the path data model contains logic on how it
can be serialized, which is used for reading and writing to disk.
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Chapter 5

Dynamic programming based
query planner

As described in Section 3.1, for queries with less than ten joins, dynamic pro-
gramming has proven to be very effective. We have seen the basic design of the
Telepath query planner in Section 4.2, and later in 4.3. This chapter provides
in-depth details and an analytical analysis of our query planner.

5.1 Introduction

Finding an effective join order in the field of relational database systems remains
one significant and complex problem any cost-based query optimizer has to
solve. In [22], the authors propose a dynamic programming algorithm to find an
effective join order for a given conjunctive query. More precisely, they propose
to generate plans in the order of increasing size. The general idea of their
algorithm can be used to derive an algorithm which explores the space of bushy
trees. Bushy trees do not restrict that either the left or the right child is always
a leaf for every subtree in the tree.

The authors of [18] propose their derivation on the bottom-up approach and call
their algorithm DPsize. This algorithm still forms the core of state of the art
commercial query optimizers like the one of DB2 [6] and still is in the context
of distributed database management systems the base for further research on
join ordering [16]. Figure 5.1 shows the DPsize algorithm in pseudocode.

We developed our derivation of DPsize which chooses the physical plan with
the lowest estimated cost in a bottom-up fashion for a given logical plan. In
essence, we construct an effective physical plan of size n, by combining two
effective physical plans of size k and n − k.

As we will show in Section 5.7 and Section 5.8, we chose the dynamic pro-
gramming approach since such algorithms are able to choose a physical plan in
polynomial time while the space of physical plans grows exponential.

Our dynamic programming based query planning algorithm as implemented in
Telepath, called TelPlan, is shown in Algorithm 1 in pseudocode.
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Algorithm 1: TelPlan: Dynamic programming based query planning,
leveraging a disk-based k-path index.

Input : A logical plan representing regular path query L with size n.
Output: A physical plan with the lowest estimated cost equivalent to L.
/* Initialize all subplans of L with size 1 with an index lookup as its

best physical plan. */

1 for all S ∈ L : |S | = 1 do
2 BestPlan({S}) ← IndexLookup(S)
3 end

// size of plan, starting with 2.

4 for all 2 ≤ size ≤ n ascending do
// size of left subplan

5 for all 1 ≤ s1 < size do
// size of right subplan

6 s2 ← (size − s1)
7 for all S1 ∈ L : |S1 | = s1 do
8 for all S2 ∈ L : |S2 | = s2 do

// check for containment in L for all binary operators.

// we start by checking for CONCATENATION (/).

9 if (S1/S2) ∈ L then
// enumerate applicable physical operators.

10 physicalPlans ← enumerateOperators(BestPlan(S1),
BestPlan(S2), CONCATENATION)

// cost each physical plan using the cost model.

11 currentPlan ← physicalPlans.sortBy(cost).first
// save as best plan if the cost is lower.

12 if cost(currentPlan) < cost(BestPlan({S1/S2})) then
13 BestPlan({S1/S2}) = currentPlan
14 end

15 end
16 if (S1 |S2) ∈ L then

// Analogous to (S1/S2) ∈ L.
17 end

18 end

19 end

20 end
// check for containment in L for all unary operators.

21 for all S ∈ L : |S | = size do
22 if S∗ ∈ L then

// Analogous to (S1/S2) ∈ L.
23 end
24 if S+ ∈ L then

// Analogous to (S1/S2) ∈ L.
25 end

26 end

27 end
28 return BestPlan({L})
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Figure 5.1: Dynamic programming algorithm DPsize as described in [18].

5.2 Subproblems

As can be seen in Algorithm 1, five essential subproblems emerge for a given
logical plan representing regular path query L. We state these subproblems
below.

P1 Given a size s, find all subexpressions in L of size s.

P2 Given two expressions S1, S2 ∈ L, check if S1 ⊗ S2 ∈ L for every binary
operator ⊗ we support.

P3 Given expression S ∈ L, check if S� ∈ L for every unary operator � we
support.

P4 Given two expressions S1, S2 ∈ L, and a binary operator ⊗ for which S1 ⊗
S2 ∈ L holds, join their chosen physical plan by all applicable physical
operators for binary operator ⊗.

P5 Given a collection of physical plans, choose the physical plan with the
least amount of cost.

The following sections describe the design and engineering aspects for these
subproblems.
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5.3 P1: Subexpressions of a given size

Since the physical plan with the lowest estimated cost of size n is constructed
by joining two physical plans with each having the lowest estimated cost of
size k and n − k, a mechanism to retrieve all subtrees of a given size has to be
provided. These subtrees can either be full subtrees or partial subtrees. Partial
subtrees are generated recursively by using a sliding window which moves over
the children of a given logical plan.

The Algorithm for partial and full subtree generation by using a sliding window
recursively over the children of a given logical plan is shown in Algorithm 2.

Algorithm 2: SubtreesOfSize: Get all subtrees of a given size.

Input : (S,n), where S is the logical plan, n is the target size.
Output: A collection of subtrees from S of size n.
// Break recursion if we are size n.

1 if S .size = n then
2 return S
3 end
4 LogicalPlans subtrees

// Iterate over each child.

5 for child ∈ S .children do
6 accumulatedSize ← child .size

/* If the size of this child is smaller than n, we’ll try to

concatenate with our brothers and sisters. We’ll traverse

increasingly linearly. */

7 if accumulatedSize < n then
/* Trying to find a subList of our children which together have

size n. */

8 for child .index < i < S .children.size do
9 accumulatedSize ← accumulatedSize + S .children[i].size

/* If we’ve jumped over size n, we’ll just try again with the

next starting child. */

10 if accumulatedSize > n then
11 break
12 end

/* We’ve found a subList which has our beloved size n. */

13 if accumulatedSize = n then
14 clone ← S
15 clone .children = clone .children.subList(child .index , i)
16 subtrees .add(clone)

17 end

18 end

19 else
/* So while searching for a subList, our starting child already

exceeded size n. Try to find recursively some matches in that

subtree. */

20 subtrees .add(SubtreesO f Size(child,n))

21 end

22 end
23 return subtrees
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5.4 P2, P3: Check containment of expression

The Algorithm for containment checking of two subtrees in a given logical plan
is shown in Algorithm 3.

Algorithm 3: ContainmentCheck: Check if two given subtrees are con-
tained in a given logical plan through a given operator.

Input : (S, s1, s2,operator ), where S is the root logical plan, s1 and s2 are the
two subtrees which should be jointly contained through operator .

Output: A boolean value indicating containment.
1 LogicalPlans subtrees

/* If we are dealing with a subtree that is rooted with operator, we only

have to consider its children since we have flattened logical plans. */

2 for subtree ∈ [s1, s2] do
3 if subtree .operator = operator then
4 subtrees .add(subtree .children)
5 else
6 subtrees .add(subtree)
7 end

8 end
/* Check for each subtree which is operator, if our subtrees list is

directly contained in its children and its indices are next to each

other. */

9 for tree ∈ S .treewalk() do
10 if tree .operator = operator then
11 if containsSublistO f Children(tree .children, subtreess) then
12 return true
13 end

14 end

15 end
16 return false

5.5 P4: Physical operator enumeration

When two subtrees are jointly contained in the logical plan, we enumerate the
logical operator by which both subtrees are joined using applicable physical
operators supported by Telepath. Since Telepath is built in a generic and mod-
ular way, physical operators can be easily added as extensions. Currently, we
support the physical operators stated below.

• Hash join

The hash join algorithm first builds a hash table on the join key of the first
relation, it then scans the second relation and probes the hash table to
look for matches on the join key. When this is the case, the concatenation
of both elements is added to the result set.

The time complexity of the hash join algorithm as implemented in Telepath
is 2∗(M+N ), where M and N are the cardinalities of the relations on which
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the operator performs.

• Nested loop join

The nested loop join algorithm scans the first relation, for each element it
scans, it scans the second relation to look for matches. When a match is
found, the concatenation of both elements is added to the result set.

The time complexity of the nested loop join algorithm as implemented in
Telepath is M ∗N , where M and N are the cardinalities of the relations on
which the operator performs.

• Index lookup

Since Telepath can leverage a disk-based k-path index, this physical oper-
ator is included in the physical library.

• Union

The current implementation of the UNION operator in Telepath makes use of
the Stream1 package. This package supports distinct stream concatenation
which is used to merge two streams of results while keeping state to ensure
distinct elements in the result set.

Table 5.1 shows the mapping from a logical operator to its applicable physical
operators. The physical operator enumerator uses this mapping to generate a
collection of physical plans of which the one with the lowest estimated cost will
be chosen for evalution.

Logical operator Physical operator

Concatenation Hash join

Concatenation Nested loop join

Concatenation Index lookup

Union Distinct stream concatenation

Table 5.1: Mapping from logical operator to physical operators, for use in the
physical operator enumerator.

Line 10 of TelPlan as seen in Algorithm 1 describes the phase where physical
operator enumeration is performed. We can expand this phase of the algorithm
with more details as shown in Algorithm 4.

In Algorithm 4 we denote two important elements, operatorMappinд, and joinPlans.
The operatorMappinд is derived from Table 5.1, where each logical operator is
mapped into one or multiple physical operators. Regarding joinPlans, see Sec-
tion 4.3.4 for a schematic illustration of this operation.

1The Stream package summary can be found at https://docs.oracle.com/javase/8/docs/api/
java/util/stream/package-summary.html.
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Algorithm 4: EnumeratePhysicalPlans: Apply operator mapping in
order to produce physical plans.

Input : (S1, S2,operator ), where S1 and S2 are logical plans representing
subexpressions of the global query, and operator denotes the logical
operator which is being mapped into physical operators.

Output: A collection of physical plans.
1 PhysicalPlans plans

// Retrieve the local optimal physical plans for S1 and S2.
2 P1 ← BestPlan(S1)
3 P2 ← BestPlan(S2)

// Iterate over each mapping, and produce a physical plan.

4 for rule ∈ operatorMappinд(operator ) do
5 plans ← joinPlans(P1, P2, rule)
6 end
7 return plans

5.6 P5: Cost estimation

The query planner has to choose the physical plan with the lowest amount of
cost for every physical plan generated by the physical operator enumerator. This
physical plan with the lowest estimated cost for each subproblem will be memo-
ized as a local solution, contributing to the global physical plan. To efficiently
estimate the cost of a physical plan, cardinality estimation of intermediate res-
ults contributes significantly to an accurate cost estimate.

Line 11 of TelPlan as seen in Algorithm 1 describes the phase where physical
plans are costed using a näıve cost model. We can expand this phase of the
algorithm with more details as shown in Algorithm 5. This Algorithm estimates
a cost for all physical plans it receives as input and returns the physical plan
with the least amount of cost.

Algorithm 5: TelCost: Cost a collection of physical plans.

Input : Plans, a collection of physical plans.
Output: The physical plan with the least amount of cost.

1 BestPlan bp
/* Memoize the cardinalities and the cost for each physical plan

recursively. */

2 for p ∈ Plans do
3 p1 ← p. f irstRelation
4 p2 ← p.secondRelation
5 p.cardinality ← estimateCardinalityRecursively(p1,p2,p.operator )
6 p.cost ← estimateCostRecursively(p1,p2,p.operator )

// Memoize the physical plan with the least amount of cost.

7 if p.cost < bp.cost then
8 bp ← p
9 end

10 end
11 return bp
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5.6.1 Cardinality estimation

Regarding cardinality estimation, we have chosen to incorporate a relation stat-
istics based cardinality estimator in Telepath. This design decision was made
since estimations based on relation statistics are viewed as the most straight-
forward method. Note that Telepath can be easily extended with modules for
histogram or sampling based cardinality estimation.

The author of [29] describes a method to efficiently estimate cardinalities of
path queries which might have a length greater than two. They achieve this by
combining the statistics maintained over all paths of length one, and of length
two. They name this collection of statistics the SYNOPSIS, where they refer to
the statistics for all paths of length 1 as SYN1, and to those of all paths of length
2 as SYN2.

Figure 5.2: Schematic illustration of a join set as presented in [29].

Most database engines which maintain relation statistics assume uniformity,
independence, and inclusion. Uniformity holds when all nodes in a join set,
as shown in within the dotted line in Figure 5.2, have the same number of
tuples associated with them in both the left and right relation. Independence
holds when predicates on attributes are independent. Inclusion holds when the
domain of join keys overlap in a way such that all keys from the smaller domain
have matches in the larger domain. The SYNOPSIS-based cardinality estimation
is able to lose the inclusion assumption.

Figure 5.3: Schematic overview of the relation statistics maintained by the
SYNOPSIS as presented in [29].

A schematic illustration on how the SYNOPSIS is constructed can be seen in
Figure 5.3. SYN1 holds the following statistics for each edge label l : the number
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of nodes which have an outgoing edge labeled with l , the number of nodes which
have an incoming edge labeled with l , the number of paths of length one having
its edge labeled with l , and the number of distinct node pairs connected through
paths of length one having its edge labeled with l .

SYN2 is constructed similarly as SYN1, but holding extra statistics regarding the
middle node along a path of length two. Instead of collecting statistics for each
edge label, SYN2 collects statistics for each pair of edge labels, l1, l2, for which
their concatenation, l1/l2, is contained in the given graph. In addition to SYN1,
SYN2 also collects the following statistics:

• middle: the number of nodes which have an incoming edge labeled with l1
and an outgoing edge labeled with l2.

• one: the number of edges which are labeled with l1 and originate from one
of the nodes which have an outgoing path labeled with l1/l2 and go to one
of the nodes in middle.

• two: the number of edges which are labeled with l2 and originate from one
of the nodes in middle and go to one of the nodes which have an incoming
path labeled with l1/l2.

Let Tr/l1 denote the query answer of the regular path query r/l1, where r is an
arbitrary regular path query, and l1 is an edge label. By using SYN1 and SYN2,
we can estimate the cardinality of Tr/l1/l2 , where l2 is also an edge label. We
can estimate this cardinality using the formula as seen in Figure 5.4.

|Tr/l1/l2 | = |Tr/l1 | ·
l1/l2.#two

l1.in

Figure 5.4: Formula to estimate the cardinality of path queries as seen in [29].

In the formula as stated in Figure 5.4, l1.in is extracted from SYN1 which denotes
the number of nodes which have an incoming edge labeled with l1. l1/l2.#two is
extracted from SYN2 which denotes the number of edges which are labeled with
l2 and originate from one of the nodes in l1/l2.middle and go to one of the nodes
which have an incoming path labeled with l1/l2.

5.6.2 Cost model

Each available physical operator in Telepath has a simple näıve cost function
associated with it. The collection of cost functions is named the cost model. Our
cost model is näıve since it only accounts for cardinality estimates, disregarding
any additional IO costs or implementation specific optimizations.

A cost function uses the estimated cardinalities of the relations on which the
physical operator operates. As an example, the cost of the hash join physical
operator is 2∗ (M +N ), where M is the estimated cardinality of the first relation,
and N is the estimated cardinality of the second relation.

The cost of a physical plan is recursively calculated by utilizing a post-order
tree traversal. If we take Listing 5.1 for example, the cost estimation of physical
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plan Pex is calculated by adding the estimated cost of the subtree rooted at [2],
the estimated cost of the subtree rooted at [3], and applying the cost function
2 ∗ (M + N ) to the subtree rooted at [1]. Note that the cost function uses the
cardinality estimates of the subtree rooted at [2] and the subtree rooted at [3].

Both the cardinality estimates and the cost estimates are memoized for each
subtree which is rooted by a physical operator. The cardinality estimates are
calculated in the same way as the cost estimate, i.e., by utilizing a post-order
tree traversal.

Physical plan:

[1]HASH -JOIN
/ \

[2]HASH -JOIN [3] INDEX_LOOKUP
/ \ |

[4] INDEX_LOOKUP [5] INDEX_LOOKUP e
/ \ / \

a b c d

Listing 5.1: Example physical plan Pex where each subtree which is rooted
by an operator is numbered.

5.7 Physical plan selection

The global problem that TelPlan has to solve is to find an effective physical
plan for a given logical plan. There exist many ways to split this problem into
subproblems, since the regular path query represented by the logical plan can
be constructed from its subexpressions in many ways.

In the pseudocode of TelPlan, we see that all possible splits of the problem
into subproblems are considered. I.e., all possible splits of L into s1 and s2 are
considered by iterating over all sizes |s1 | and |s2 | such that |s1 | + |s2 | = |L|. From
this, we can conclude that by considering all local solutions for splits of L into
s1 and s2, we find the global solution for L, in general.

The running time of TelPlan can be derived by analyzing the algorithm and
its subroutines. Routine TelCost selects the physical plan with the lowest es-
timated cost in O(|P |) time, where |P | is the number of physical plans given to
it. Every operation in TelCost takes at most O(1) time due to the bottom-up
aproach which ensures that the cardinality estimates and the estimated cost of
the subproblems of each physical plan are memoized. Set |P | is generated by the
EnumeratePhysicalPlans routine which takes O(1) time since there are at most
three operatorMappings to consider. Hence, TelCost runs in O(1) time.

To analyze the total running time of TelPlan, we look at how many times loops
are executed. The loop on lines [1−3] is executed |L| times for all subexpressions
in L of size 1. The operation in the loop on lines [1−3] takes at most O(1) time,
hence the loop on lines [1 − 3] runs in O(|L|) time. We then consider the loop
on lines [4− 27]. It contains two inner loops, [5− 20] and 21 − 26. As described
in Section 4.4, the current implementation of TelPlan does not include unary
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operators, so we restrict our analysis to loop [5−20], which processes the binary
operators.

Loop [7 − 19] executes for every pair of subexpressions S1, S2 such that |S1 | +
|S2 | = size. The two cases in loop [7 − 19] combine these subexpressions by
concatenation or union. Checking if the condition for these two cases holds takes
O(|L|) time. For a subexpression of size size, these combinations can consist at
most of size − 1 splits into S1 and S2. Generating all subexpression of a given
size takes O(|L|) time. Since checking the condition takes O(|L|) time and each
operation for the pair of subexpressions takes O(1) time, as shown above, loop
[7 − 19] takes O(|L|2) time.

There are at most |L| − size + 1 subexpressions of length size in L for which loop
[4 − 27] executes. Therefore, loop [4 − 27] runs in:

|L |∑
size=2

(|L| − size + 1)(size − 1) ·O(|L|2) =
|L|3 − 3

6
·O(|L|2) = O(|L|5) (5.1)

Since loop [1 − 3] runs in O(|L|) time and loop [4 − 27] runs in O(|L|5) time, we
have shown that TelPlan runs in O(|L|5) time. This is polynomial in the size of
the given regular path query L.

5.8 Size of the physical plan space

This section will analyze the size of the physical plan space for path queries
which are constructed only out of either edge labels or the CONCATENATION binary
operator.

For the following analysis, we will consider regular path query expression r ,
which denotes a path query of length n.

r = l1/l2/.../ln

To analyze the size of the search space for given expression r , we want to know
how many physical plans can evaluate expression r . Each one of the concat-
enations in r can be represented as the concatenation of two subexpressions
r1 and r2. As we have seen in Section 5.5, joining two physical plans by the
CONCATENATION operator will result in 3 physical plans, when we assume a large
enough k value for the disk-based k-path index. Given split r1/r2, we obtain the
following formula to indicate the number of physical plans S.

Sr1/r2 = 3 · (Sr1 · Sr2 )

From the formula as stated above, we obtain a recurrence formula for the number
of physical plans, Sn , where n is the length of a path query.
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S0 = 0
S1 = 1

Sn = 3 ·
n−1∑
k=1

Sk · Sn−k for n ≥ 2
(5.2)

From the recurrence formula as stated above, we compute the first values of
Sn using the base case which is defined by S1 = 1. As shown in Table 5.2, the
number of physical plans grows quickly with the length of a given path query.

n Sn

1 1

2 3

3 18

4 135

5 1,134

6 10,206

7 96,228

8 938,223

9 9,382,230

10 95,698,746

Table 5.2: Size of the physical plan space for path queries.

The recurrence formula from Equation 5.2 relates to the Catalan numbers [10],
for which we can use a generating function to obtain a closed form of the recur-
rence in 5.2 and derive the asymptotic complexity.

We start with the recursively defined equation for n ≥ 2

Sn = 3 ·
n−1∑
k=1

Sk · Sn−k

Multiply both sides with xn

Sn · x
n = 3 · xn ·

n−1∑
k=1

Sk · Sn−k

Since S0 = 0, we can increase the range of our sum to [0,n] and apply a sum to
both sides of the equation

∞∑
n=2

Sn · x
n = 3 ·

∞∑
n=2

xn · (
n∑

k=0

Sk · Sn−k )

We define h(x) to be
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h(x) =
∞∑
n=0

hn · x
n

Then we can say

h(x) = x + (h(x))2

And we find the following solutions for h(x)

h(x) =
1 ±
√

1 − 12x

6

Since S0 = 0, we find the solution for Sn where n ≥ 1 to be

Sn = −
1

6
(−12)n

( 1
2

n

)
If we take the limit of n →∞, we see that Sn grows asymptotically as

Sn ∼
12n

n3/2
√
π

Which gives us an upper bound of

Sn = O(c
n) (5.3)

for some constant c.

We have shown that Sn grows exponentially by the length of the path query.

Telepath: A path-index based graph database engine 37





Chapter 6

Experiments and benchmark-
ing

6.1 Experiment goals

This section describes a set of experiments which investigate the value and
performance of the main contributions of the implementation of Telepath. These
main contributions can be summed up to the dynamic programming approach
to query planning, the cardinality estimation using relation statistics used for
costing physical plans, and the performance gain of query evaluation by using
path indices. We define three questions of which we wish to examine and analyze
the answers using experiments:

G1 How accurate is the relation statistics based cardinality estimator regard-
ing path queries?

G2 How effective is the dynamic programming based query planner in choos-
ing physical plans?

G3 How does the running time of query evaluation in Telepath, leveraging a
disk-based k-path index, compare to the current state of the art graph
database engines?

To answer the above questions conclusively, we have designed the experiments
which are stated below. These experiments are run on two different datasets
since it may be the case that certain properties of these datasets and their
varying sizes expose differences in effectiveness.

Exp1 We run the relation statistics based cardinality estimator for queries on
a variety of datasets. We compare the size of the result set with the
estimated cardinality for each query. Results are also grouped by the
length of the paths to which the queries evaluate.

Exp2 We have designed an experiment where the whole space of physical plans is
explored to accumulate their number of intermediate results. The number
of intermediate results is used to analyze how often the dynamic program-
ming based query planner chooses the optimal physical plan, and when
this is not the case, how significant the error is compared to the optimal
physical plan.

Exp3 We compare query execution time using our underlying disk-based k-path
index with the graph database engine Neo4j on the queries for the LUBM
and the Advogato datasets. We analyze the execution time with Telepath
having a 1-path index available, and a 2-path index available.
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The results of the formulated experiments can be found in Section 6.3, while
the setup of the experiments, including the environment and the datasets, can
be found in Section 6.2.

6.2 Experiment setup

All experiments were performed on a 2.0 GHz i7 processor with 8 GB of main
memory and a solid-state drive, running OS X 10.12. Experiments were run
on the Lehigh University Benchmark (LUBM) dataset [9], a well-known and
widely used synthetic dataset, and the Advogato network dataset [14], a real-
world dataset.

We examine path queries which are constructed only out of either edge labels or
the CONCATENATION binary operator. We have chosen to restrict our experiments
to queries containing the CONCATENATION operator, since our relation statistics
based cardinality estimation module is focussed on such queries. As described in
Section 1.2, the goal of this project has been to develop an end-to-end solution
for query processing. Since the focus during this project has been to develop
minimum implementations for each module in the full lifecycle of a query, our
cardinality estimation module is currently only focussing on queries containing
the CONCATENATION operator.

6.2.1 LUBM dataset

The LUBM synthetic dataset is produced by a data generator and can be of
arbitrary size. Graphs generated by the LUBM data generator model a univer-
sity scenario, e.g., nodes represent universities, departments, students, teachers,
and courses.

For our experiments, we generated a graph with ten universities, containing
approximately 636 thousand unique edges, and 207 thousand unique nodes. We
followed the data preparation steps as taken in [8] and [23] as close as possible.
Our dataset was not enriched with inferred facts derived from ontology rules.
For example, nodes of type “Associate Professor” do not also get the more
general label “Professor”. LUBM is provided with 14 different queries whose
answer contains paths up to a length of 3. Here, we focus on the queries provided
by LUBM whose answer contains paths of length 3, extended by self-formulated
queries whose answer contains paths of length 4 and 5. See Listing 6.1 for the
regular path queries we formulated to run against the LUBM dataset.

// ----- length = 3 -----

Q1: undergraduateDegreeFrom / !subOrganizationOf / !memberOf

Q2: advisor / teacherOf / !takesCourse

Q3: !headOf / worksFor / !subOrganizationOf

Q4: !headOf / worksFor / subOrganizationOf
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// ----- length = 4 -----

Q5: advisor / teacherOf / !takesCourse / advisor

Q6: undergraduateDegreeFrom / !subOrganizationOf / !memberOf / advisor

Q7: !worksFor / teacherOf / !takesCourse / advisor

// ----- length = 5 -----

Q8: !teacherOf / undergraduateDegreeFrom / !subOrganizationOf / !
memberOf / advisor

Q9: advisor / teacherOf / !takesCourse / advisor / teacherOf

Listing 6.1: Regular path queries intended for the LUBM dataset.

6.2.2 Advogato dataset

The Advogato dataset [14] is a trust network from the Advogato online com-
munity discussion board for developers of free software. Advogato uses a trust
metric to determine a single global trust value for each user. This value is
computed by the rating users give to each other. These ratings can be three
possible values: apprentice, journeyer, and master. Advogato uses this trust to
allow users to access certain administrative controls for the message board.

The graph constructed from this dataset contains nodes which represent the
users, and edges which represent the ratings given between users. It contains
approximately 56 thousand unique edges, and seven thousand unique nodes.
The Advogato dataset does not have specified queries. Therefore we formulate
queries whose answer contains paths of length three or more, which compares to
the LUBM queries. See Listing 6.2 for the regular path queries we formulated
to run against the Advogato dataset.

// ----- length = 3 -----

Q1: apprentice / apprentice / apprentice

Q2: journeyer / journeyer / journeyer

Q3: master / master / master

Q4: apprentice / journeyer / master

// ----- length = 4 -----

Q5: apprentice / apprentice / apprentice / !journeyer

Q6: apprentice / journeyer / !apprentice / master

Q7: master / apprentice / !master / journeyer

// ----- length = 5 -----
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Q8: apprentice / apprentice / apprentice / apprentice / apprentice

Q9: apprentice / journeyer / !master / !apprentice / master

Listing 6.2: Regular path queries intended for the Advogato dataset.

6.2.3 Dataset size

The total number of nodes and edges in both the LUBM and the Advogato
dataset, followed by the size of the result set for each query we formulated for
the dataset is shown in Table 6.1.

LUBM Advogato

Number of nodes 207,456 7,419

Number of edges 636,468 56,461

Q1 2,954,166 458,007

Q2 1,586,587 6,776,541

Q3 2,827 2,627,106

Q4 189 1,008,665

Q5 540,310 3,356,127

Q6 1,165,204 5,932,724

Q7 93,545 6,505,013

Q8 672,697 26,573,816

Q9 1,610,932 59,397,710

Table 6.1: Number of nodes and edges in both the LUBM and the Advogato
dataset, followed by the size of the result set for each query.

The number of indexed entries and the storage space taken for both the k = 1
and the k = 2 disk-based index is shown in Table 6.2.

k-path index
LUBM Advogato

Entries Storage Entries Storage

k = 1 1,272,936 0.14 GB 112,922 0.01 GB

k = 2 17,503,776 2.32 GB 6,959,386 0.94 GB

Total 18,776,712 2.46 GB 7,072,308 0.95 GB

Table 6.2: The number of indexed paths and the storage space taken for both
the k = 1 and the k = 2 index.

42 Telepath: A path-index based graph database engine



CHAPTER 6. EXPERIMENTS AND BENCHMARKING

6.3 Experiment results

6.3.1 Exp1: Cardinality estimation evaluation

As described in Section 6.1, the goal of this experiment is to answer question
G1: “How accurate is the relation statistics based cardinality estimator regarding
path queries?”.

To answer this question, we run the relation statistics based cardinality estim-
ator on the queries for the LUBM and the Advogato datasets. We compare the
size of the result set with the estimated cardinality for each query using the
formula as stated in Figure 6.1.

error (r ) =


0, if estimate(r ) = cardinality(r )
estimate(r ) − cardinality(r )

max(estimate(r ), cardinality(r ))
, else

Figure 6.1: Formula to measure the quality of a cardinality estimation within
the balanced range [−1, 1] as seen in [25].

The formula as stated in Figure 6.1 returns an error rate in the range [−1, 1]
which indicates the quality of a cardinality estimation. In this formula r is a
given regular path query expression, estimate(r ) is the cardinality estimation for
expression r , cardinality(r ) indicates the cardinality of expression r . We use the
absolute value, i.e., |error (r )|, when investigating combinations of error rates.

The result of this experiment for the LUBM dataset is shown in Table 6.3, and
the result of this experiment for the Advogato dataset is shown in Table 6.4.

LUBM Result set Telepath estimation Error

Q1 2,954,166 185,101 -0.94

Q2 1,586,587 1,571,320 -0.01

Q3 2,827 2,827 0

Q4 189 189 0

Q5 540,310 619,510 +0.13

Q6 1,165,204 72,978 -0.94

Q7 93,545 108,303 +0.14

Q8 672,697 50,360 -0.93

Q9 1,610,932 1,851,899 +0.13

Mean error 0.36

Table 6.3: Cardinality estimation experiment on the LUBM dataset showing the
size of each query result set compared to the relation statistics based cardinality
estimation.

The results of this experiment on the LUBM dataset and the Advogato dataset
are combined and grouped by the length of the paths to which the queries
evaluate. These combined and grouped results are shown in Table 6.5.
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Advogato Result set Telepath estimation Error

Q1 458,007 160,271 -0.65

Q2 6,776,541 2,345,440 -0.65

Q3 2,627,106 1,132,356 -0.57

Q4 1,008,665 427,662 -0.58

Q5 3,356,127 565,589 -0.83

Q6 5,932,724 741,623 -0.87

Q7 6,505,013 1,233,673 -0.81

Q8 26,573,816 971,176 -0.96

Q9 59,397,710 3,482,992 -0.94

Mean error 0.76

Table 6.4: Cardinality estimation experiment on the Advogato dataset show-
ing the size of each query result set compared to the relation statistics based
cardinality estimation.

Path length Error

3 0.43

4 0.62

5 0.74

Mean error 0.56

Table 6.5: Combined error of the relation statistics based cardinality estimation
experiment for both datasets, grouped by the length of the paths to which the
queries evaluate.

6.3.2 Exp2: Query planning evaluation

As described in Section 6.1, the goal of this experiment is to answer question
G2: “How effective is the dynamic programming based query planner in choosing
physical plans?”.

We have designed an experiment where the whole space of physical plans is
explored exhaustively. For each physical plan, we accumulate the number of
intermediate results when evaluating the physical plan. We compare the number
of intermediate results of the chosen physical plan with that of all other physical
plans. This approach was taken, as opposed to analyzing query evaluation time
for example, because the number of intermediate results is independent of non-
determinism in the runtime environment during query evaluation.

We use the procedure from Figure 6.2 to compare the chosen physical plan with
the whole space of physical plans.

The result of this experiment for the LUBM dataset is shown in Table 6.6, and
the result of this experiment for the Advogato dataset is shown in Table 6.6.

The results of this experiment on the LUBM dataset and the Advogato dataset
are combined and grouped by the length of the paths to which the queries
evaluate. These combined and grouped results are shown in Table 6.8.
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ir (plan) = sum of the number of results for each physical operator in plan

best =min(ir (plani ), . . . , ir (plann))

worst =max(ir (plani ), . . . , ir (plann))

error (plan) =
ir (plan) − best

worst − best

Figure 6.2: Schematic illustration of how we compare the number of intermedi-
ate results of the chosen physical plan, plan, with the whole space of physical
plans, [plan1, . . . ,plann].

LUBM Min plan Max plan Telepath plan Error

Q1 3,059,339 3,187,176 3,059,339 0

Q2 1,900,541 2,195,712 1,900,541 0

Q3 6,032 115,142 6,032 0

Q4 3,394 17,080 3,394 0

Q5 750,958 2,775,277 787,127 0.02

Q6 1,210,066 4,391,635 1,210,066 0

Q7 207,562 984,212 207,562 0

Q8 738,677 5,623,456 738,677 0

Q9 2,120,823 4,406,681 2,120,823 0

Mean error 0

Table 6.6: Query planning experiment on the LUBM dataset showing the min-
imum and maximum number of intermediate results for the space of physical
plans and how it compares to the chosen physical plan.

6.3.3 Exp3: Query execution evaluation

As described in Section 6.1, the goal of this experiment is to answer question
G3: “How does the running time of query evaluation in Telepath, leveraging a
disk-based k-path index, compare to the current state of the art graph database
engines?”.

We compare query execution time to retrieve the last result using our underly-
ing disk-based k-path index with the open-source graph database engine Neo4j.
Neo4j offers full transactional support, availability and scalability through distri-
bution, and a declarative query language. We collect the query evaluation result
via the Java API, that comes with the Neo4j distribution, by sending queries in
its query language Cypher1. See Appendix B for the full list of Cypher queries
for both the LUBM and the Advogato dataset. The experiment is conducted
using the latest version of Neo4j available at the time, version 3.2.6.

Regarding the statistical analysis of this experiment, we obtain the timings of
20 runs for each query. We excluded 10% of the data from each end of the range
for the set of results for each query, eliminating outliers due to non-determinism

1Cypher query language: https://neo4j.com/developer/cypher-query-language/.
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Advogato Min plan Max plan Telepath plan Error

Q1 533,667 554,771 533,667 0

Q2 7,194,334 7,239,498 7,194,334 0

Q3 2,856,420 2,892,442 2,856,420 0

Q4 1,129,051 1,272,471 1,129,051 0

Q5 3,491,934 3,945,468 3,491,934 0

Q6 6,188,839 7,148,011 6,188,839 0

Q7 6,909,075 7,457,625 7,112,333 0.37

Q8 27,172,591 30,616,206 27,172,591 0

Q9 60,478,560 74,729,410 60,478,560 0

Mean error 0.04

Table 6.7: Query planning experiment on the Advogato dataset showing the
minimum and maximum number of intermediate results for the space of physical
plans and how it compares to the chosen physical plan.

Path length Error

3 0

4 0.07

5 0

Mean error 0.02

Table 6.8: Combined error of the query planning experiment for both datasets,
grouped by the length of the paths to which the queries evaluate.

in the runtime environment. We report here the mean of the remaining values.

Queries are evaluated in Telepath while benefitting a disk-based k-path index
where k = 1, and where k = 2. Since all queries evaluate to paths of length 3 or
more, query optimization including query planning and cardinality estimation
will influence the query execution evaluation.

The results of this experiment on the LUBM dataset and the Advogato dataset
are combined and grouped by the length of the paths to which the queries
evaluate. These combined and grouped results are shown in Table 6.11.

The results of this experiment grouped by the size of the query result set can
be found in Table 6.12, Figure 6.3, and Figure 6.4.
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LUBM Neo4j
k = 1 k = 2

Telepath Speedup Telepath Speedup

Q1 2,122 1,645 1x 1,603 1x

Q2 2,262 1,370 2x 1,119 2x

Q3 370 21 18x 8 46x

Q4 346 13 27x 10 35x

Q5 4,603 863 5x 549 8x

Q6 7,186 819 9x 733 10x

Q7 1,061 502 2x 150 7x

Q8 4,563 592 8x 406 11x

Q9 5,019 1,763 3x 1,440 3x

Mean speedup 8x 14x

Table 6.9: Query evaluation experiment on the LUBM dataset showing the
timings (ms) to retrieve the last query answer in Neo4j and Telepath with k-path
indices available for k = 1, and for k = 2.

Figure 6.3: Speedup of query evaluation in Telepath compared to Neo4j for the
LUBM dataset plotted against the size of the query result set.

Figure 6.4: Speedup of query evaluation in Telepath compared to Neo4j for the
Advogato dataset plotted against the size of the query result set.
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Advogato Neo4j
k = 1 k = 2

Telepath Speedup Telepath Speedup

Q1 877 331 3x 311 3x

Q2 11,049 3,683 3x 3,904 3x

Q3 3,217 1,564 2x 1,498 2x

Q4 1,235 615 2x 634 2x

Q5 4,920 1,884 3x 1,820 3x

Q6 6,929 3,326 2x 3,282 2x

Q7 7,205 3,932 2x 3,793 2x

Q8 60,525 14,747 4x 14,801 4x

Q9 92,895 32,707 3x 32,715 3x

Mean speedup 3x 3x

Table 6.10: Query evaluation experiment on the Advogato dataset showing the
timings (ms) to retrieve the last query answer in Neo4j and Telepath with k-path
indices available for k = 1, and for k = 2.

Path length
LUBM speedup Advogato speedup Combined speedup

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

3 12x 21x 3x 3x 7x 12x

4 5x 8x 2x 2x 4x 6x

5 6x 7x 4x 4x 5x 5x

Mean speedup 8x 14x 3x 3x 6x 9x

Table 6.11: Combined speedup of query evaluation in Telepath compared to
Neo4j for both datasets, grouped by the length of the paths to which the queries
evaluate.

Result set
LUBM speedup Advogato speedup Combined speedup

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

0 - 100k 16x 29x - - 16x 29x

100k - 1m 7x 10x 3x 3x 5x 7x

1m - 10m 4x 4x 2x 2x 3x 3x

10m - 100m - - 4x 4x 4x 4x

Mean speedup 8x 14x 3x 3x 6x 9x

Table 6.12: Combined speedup of query evaluation in Telepath compared to
Neo4j for both datasets, grouped by the size of the query result set.
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6.4 Discussion

We see from the results of our experiments how the quality of cardinality estim-
ates propagate to query execution times. Our relation statistics based cardinal-
ity estimator performs especially well on the LUBM dataset with only a mean
error of 0.36. This enables the dynamic programming based query planner to
always choose a near optimal physical plan, as seen by a mean error of 0 for
the LUBM dataset. Ultimately, we achieve a 14x speedup for query execution
times compared to Neo4j, a current state of the art graph database engine.

In contrast, cardinality estimation quality for the Advogato dataset results in a
relatively worse mean error of 0.76. While worse than with the LUBM dataset,
such cardinality estimates still enable the query planner to achieve a mean error
of 0.04 in choosing the optimal physical plan. However, compared to Neo4j, we
achieve a 3x speedup regarding query execution time.

If we group the query evaluation times by the size of the result set, compared to
Neo4j we see that Telepath performs particularly well for smaller result sets, and
performs decreasingly well if the result set grows. We achieve a mean speedup
of 29x for queries which evaluate to the smaller result sets of size 0 − 100k.
We see that the evaluation into larger result sets, and thus more intermediate
results, is not able to leverage the disk-based k-path index in the same order of
performance gain.

Our k-path index is based on the work of PathDB from [23]. Their study showed
that their k-path index achieved at least a 2x speedup in query execution time,
and in the best cases, a 8000x speedup. In contrast, Telepath provides at least
a 2x speedup and at most a 46x speedup. This difference could be explained by
a number of facts, e.g., Telepath ran their experiments on Neo4j version 3.2.6
while PathDB ran their experiments on version 2.3.0-M01, Telepath does not
have an implementation for the merge-join physical operator while PathDB does,
Telepath did their experiments while having a k-path index available for k values
up to 2, while PathDB did their experiments for k values up to 3, and Telepath
evaluated queries during their experiments which have a length between [3 − 5]
while PathDB evaluated queries during their experiments which have a length
between [1 − 3].

However, with a combined mean error of 0.02 for the query planning experi-
ment, we see that our dynamic programming based query planner always chooses
a near optimal physical plan. We have shown that our dynamic programming
based query planner algorithm chooses a physical plan in time polynomial in the
size of the given regular path query (Equation 5.1), while the space of physical
plans grows exponentially by the size of the given regular path query (Equation
5.3).
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Conclusions

Massive graph-structured data collections are omnipresent in modern data man-
agement scenarios such as social networks, linked open data, and chemical com-
pound databases. Regular path queries for graph databases are eminently useful.
However, these queries are difficult to optimize to evaluate efficiently.

The goal of this project has been to design, engineer and test a modular path-
index based graph database engine with support for evaluation of regular path
queries.

The main contributions can be summed up into the following four main areas:
relation statistics based cardinality estimation where we provide a novel imple-
mentation to an existing concept from [29], dynamic programming based query
planning where we provide a novel implementation to an existing concept from
[18], end-to-end query evaluation using a disk-based path index where we use an
existing implementation of a path index from [23]. However, we provide our own
concept and implementation for end-to-end query evaluation while leveraging a
path index. We designed, engineered, and tested the proposed approach.

Our work presents an end-to-end solution to evaluate a regular path query effi-
ciently. The core of our end-to-end solution is the dynamic programming based
query planner. The query planner chooses a physical plan in a bottom-up fash-
ion by using cost estimates. Chosen physical plans for smaller subproblems are
used to construct the physical plan for the global problem. Cost estimates are
provided by using cardinality estimates for intermediate results. The cardinal-
ity estimates are produced through relation statistics maintained over the graph
data. Switching to the end of the life-of-a-query, the path index, as engineered
by [23], is used as an external library to retrieve (intermediate) query results.
Intermediate results are mainly joined by our implementation of the hash join
algorithm. This paragraph stated the main aspects of the mechanics of how
Telepath efficiently produces query results for regular path queries.

Using one synthetic and one real-world dataset, we provide an empirical evalu-
ation of the cardinality estimation, query planning, and query evaluation phases
with a path index available for paths of length two. We see from the results of
our experiments how the quality of cardinality estimates propagate towards the
quality of query evaluation times. Our relation statistics based cardinality es-
timator generates estimates with a mean error of 0.56 on a scale from zero to
one. This enables the dynamic programming based query planner to always
choose a near optimal physical plan, as seen by a mean error of 0.02. Ulti-
mately, we achieve a 9x mean speedup for query evaluation times compared to
Neo4j, a current state of the art graph database engine.

If we group the query execution times by the size of the result set, compared to
Neo4j we see that Telepath performs particularly well for smaller result sets, and
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performs decreasingly well if the result set grows. We achieve a mean speedup of
29x for queries which evaluate to smaller result sets of 0 − 100k tuples. We see
that the evaluation into larger result sets, and thus more intermediate results, is
not able to leverage the disk-based path index in the same order of performance
gain.

However, with a combined mean error of 0.02 for the query planning exper-
iment, we show that our dynamic programming based query planner always
chooses a near optimal physical plan. We have shown that our dynamic pro-
gramming based query planner algorithm chooses a physical plan in time poly-
nomial in the size of the given regular path query (Equation 5.1), while the
space of physical plans grows exponentially by the size of the given regular path
query (Equation 5.3).

Regarding the engineering of Telepath, the implementation has been done in
a modular and generic way to suit extensions and modifications by other re-
searchers. We followed code quality standards which enforce readable, durable
and maintainable source code. Furthermore, the implemented features have
been unit tested which ensures a correctly working prototype when applying
extensions and modifications.

Our Telepath prototype illustrates the performance gains that can be obtained
in comparison to a current state of the art graph database engine, and it acts as
a foundation for further research in the area of path-index based graph database
engines due to its modular and generic design.

The source code has been made publicly available to contribute to the open-
source community. The repository can be found on GitHub at https://github.
com/giedomak/Telepath.

7.1 Future work

There are several natural directions for future study.

First, this work presented experiments which were performed on two diverse
datasets, which establishes the performance benefits of our path-index based
graph database engine. Future work can verify and establish the performance
benefits by including more datasets.

Second, since the goal of this project has been to design and engineer an end-to-
end solution, multiple components would benefit greatly when given dedicated
research and engineering resources. Some “quick wins” include extending the
physical library with the merge-join algorithm for concatenations, histogram-
based cardinality estimation, heuristics based logical plan optimizations, and
disk-based memory management improvements.

Third, unary operators currently don’t have an end-to-end working solution
within Telepath as stated in Section 4.4. Although, the regular path query
grammar is compatible with the Kleene star and the Kleene plus operator, as
in the design of the dynamic programming based query planner.
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Finally, one last idea worth mentioning is on the topic of handling heuristics for
the union operator in logical plans. There might exist a scenario where a logical
plan with its union operator pulled-up produces an effective physical plan. Also,
vice versa for logical plans with its union operator pushed-down. One idea is to
send both logical plans through the dynamic based query planner to produce a
cost estimation for both of these logical plans.
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Appendix A

Regular path query grammar

The following Listing defines the grammar for regular path queries as used by
Telepath. The grammar is intended to be used by ANTLR1 to parse user input.

/*
* Regular path query (RPQ) grammar for ANTLR4.
*
* @author Giedo Mak
* @author Nikolay Yakovets
*/

grammar RPQ;

/**
* Parser rules
* Each parser rule gets one of the following names: unaryExpression ,

binaryExpression , leaf or parenthesis
*/

query
: query unaryOperator # unaryExpression
| query binaryOperator query # binaryExpression
| LABEL # leaf
| '(' query ')' # parenthesis
;

unaryOperator
: ( KLEENE_STAR | PLUS ) ;

binaryOperator
: ( CONCATENATION | UNION ) ;

// Lexer rules

LABEL
: ('!')? (CHARS+) ;

KLEENE_STAR
: '*' ;

PLUS
: '+' ;

CONCATENATION
: '/' ;

UNION
: '|' ;

CHARS

1ANTLR: http://www.antlr.org/.
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: 'A'..'Z'
| 'a'..'z'
| '0'
| [1-9]
| '\u00C0'..'\u00D6'
| '\u00D8'..'\u00F6'
| '\u00F8'..'\u02FF'
| '\u0370'..'\u037D'
| '\u037F'..'\u1FFF'
| '\u200C'..'\u200D'
| '\u2070'..'\u218F'
| '\u2C00'..'\u2FEF'
| '\u3001'..'\uD7FF'
| '\uF900'..'\uFDCF'
| '\uFDF0'..'\uFFFD'
;

WHITESPACE
: ( '\t' | ' ' | '\r' | '\n'| '\u000C' )+ -> skip ;
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Benchmark queries

This Appendix contains the formulated queries for both the LUBM and the
Advogato dataset. Each set of regular path queries is also available as a set of
Cypher queries.

B.1 LUBM dataset queries

B.1.1 Regular path queries

// ----- length = 3 -----

Q1: undergraduateDegreeFrom / !subOrganizationOf / !memberOf

Q2: advisor / teacherOf / !takesCourse

Q3: !headOf / worksFor / !subOrganizationOf

Q4: !headOf / worksFor / subOrganizationOf

// ----- length = 4 -----

Q5: advisor / teacherOf / !takesCourse / advisor

Q6: undergraduateDegreeFrom / !subOrganizationOf / !memberOf / advisor

Q7: !worksFor / teacherOf / !takesCourse / advisor

// ----- length = 5 -----

Q8: !teacherOf / undergraduateDegreeFrom / !subOrganizationOf / !
memberOf / advisor

Q9: advisor / teacherOf / !takesCourse / advisor / teacherOf

Listing B.1: Regular path queries intended for the LUBM dataset.

B.1.2 Cypher queries

// ----- length = 3 -----

Q1: MATCH (a) -[: undergraduateDegreeFrom ]->(b) <-[: subOrganizationOf ]-(c
) <-[:memberOf]-(d) RETURN COUNT(a)
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Q2: MATCH (a) -[:advisor]->(b) -[:teacherOf]->(c) <-[:takesCourse ]-(d)
RETURN COUNT(a)

Q3: MATCH (a) <-[:headOf]-(b) -[:worksFor]->(c) <-[: subOrganizationOf ]-(d
) RETURN COUNT(a)

Q4: MATCH (a) <-[:headOf]-(b) -[:worksFor]->(c) -[: subOrganizationOf ]->(d
) RETURN COUNT(a)

// ----- length = 4 -----

Q5: MATCH (a) -[:advisor]->(b) -[:teacherOf]->(c) <-[:takesCourse ]-(d) -[:
advisor]->(e) RETURN COUNT(a)

Q6: MATCH (a) -[: undergraduateDegreeFrom ]->(b) <-[: subOrganizationOf ]-(c
) <-[:memberOf]-(d) -[:advisor]->(e) RETURN COUNT(a)

Q7: MATCH (a) <-[:worksFor]-(b) -[:teacherOf]->(c) <-[:takesCourse ]-(d)
-[:advisor]->(e) RETURN COUNT(a)

// ----- length = 5 -----

Q8: MATCH (a) <-[:teacherOf]-(b) -[: undergraduateDegreeFrom ]->(c) <-[:
subOrganizationOf ]-(d) <-[:memberOf]-(e) -[:advisor]->(f) RETURN
COUNT(a)

Q9: MATCH (a) -[:advisor]->(b) -[:teacherOf]->(c) <-[:takesCourse ]-(d) -[:
advisor]->(e) -[:teacherOf]->(f) RETURN COUNT(a)

Listing B.2: Cypher queries intended for the LUBM dataset.

B.2 Advogato dataset queries

B.2.1 Regular path queries

// ----- length = 3 -----

Q1: apprentice / apprentice / apprentice

Q2: journeyer / journeyer / journeyer

Q3: master / master / master

Q4: apprentice / journeyer / master

// ----- length = 4 -----

Q5: apprentice / apprentice / apprentice / !journeyer

Q6: apprentice / journeyer / !apprentice / master

Q7: master / apprentice / !master / journeyer

// ----- length = 5 -----

Q8: apprentice / apprentice / apprentice / apprentice / apprentice
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Q9: apprentice / journeyer / !master / !apprentice / master

Listing B.3: Regular path queries intended for the Advogato dataset.

B.2.2 Cypher queries

// ----- length = 3 -----

Q1: MATCH (a) -[: apprentice]->(b) -[:apprentice]->(c) -[: apprentice]->(d)
RETURN COUNT(a)

Q2: MATCH (a) -[:journeyer]->(b) -[:journeyer]->(c) -[:journeyer]->(d)
RETURN COUNT(a)

Q3: MATCH (a) -[:master]->(b) -[:master]->(c) -[:master]->(d) RETURN
COUNT(a)

Q4: MATCH (a) -[: apprentice]->(b) -[:journeyer]->(c) -[:master]->(d)
RETURN COUNT(a)

// ----- length = 4 -----

Q5: MATCH (a) -[: apprentice]->(b) -[:apprentice]->(c) -[: apprentice]->(d)
<-[:journeyer]-(e) RETURN COUNT(a)

Q6: MATCH (a) -[: apprentice]->(b) -[:journeyer]->(c) <-[:apprentice ]-(d)
-[:master]->(e) RETURN COUNT(a)

Q7: MATCH (a) -[:master]->(b) -[:apprentice]->(c) <-[:master]-(d) -[:
journeyer]->(e) RETURN COUNT(a)

// ----- length = 5 -----

Q8: MATCH (a) -[: apprentice]->(b) -[:apprentice]->(c) -[: apprentice]->(d)
-[: apprentice]->(e) -[: apprentice]->(f) RETURN COUNT(a)

Q9: MATCH (a) -[: apprentice]->(b) -[:journeyer]->(c) <-[:master]-(d) <-[:
apprentice ]-(e) -[:master]->(f) RETURN COUNT(a)

Listing B.4: Cypher queries intended for the Advogato dataset.
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Engineering Telepath

C.1 Directory structure

.
`-- src

|-- main
| |-- java
| | `-- com
| | `-- github
| | `-- giedomak
| | `-- telepath
| | |-- cardinalityestimation
| | | `-- synopsis
| | |-- costmodel
| | |-- datamodels
| | | |-- graph
| | | |-- integrations
| | | |-- plans
| | | | `-- utilities
| | | `-- stores
| | |-- evaluationengine
| | |-- kpathindex
| | | `-- utilities
| | |-- memorymanager
| | | `-- spliterator
| | |-- physicaloperators
| | |-- planner
| | | `-- enumerator
| | |-- staticparser
| | | `-- rpq
| | `-- utilities
| `-- resources
| `-- antlr4
| |-- rpq
| | `-- examples
| `-- sparql
| `-- examples
`-- test

|-- java
| `-- com
| `-- github
| `-- giedomak
| `-- telepath
| |-- cardinalityestimation
| | `-- synopsis
| |-- datamodels
| | `-- plans
| | `-- utilities
| |-- evaluationengine
| |-- integrationtests
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| |-- kpathindex
| | `-- utilities
| |-- memorymanager
| |-- physicaloperators
| |-- planner
| | `-- enumerator
| |-- staticparser
| `-- utilities
`-- resources

`-- mockito -extensions

Listing C.1: Directory structure of Telepath

C.2 Interface example

As an example, the following Listing shows the interface for physical oper-
ators. This interface defines that any implementation of a physical operator
must implement the physicalPlan property, and provide implementations for
the evaluate() and cost() functions.

/**
* Interface for physical operators.
*
* @property physicalPlan The physical plan holds information

regarding the relations on which to operate.
*/

interface PhysicalOperator {

val physicalPlan: PhysicalPlan

/**
* Evaluates the physical operator and produces a PathStream.
*
* @return PathStream with the results of the evaluation.
*/

fun evaluate (): PathStream

/**
* Calculates the cost of the physical operation.
*
* @return The cost of the physical operation.
*/

fun cost(): Long
}

Listing C.2: Interface for physical operators

Telepath: A path-index based graph database engine 65



APPENDIX C. ENGINEERING TELEPATH

C.3 Documentation

The source code is well documented using Javadoc1 style comments in the
source code. The generated HTML of the source code documentation is pub-
licly available at https://giedomak.github.io/Telepath/telepath/, hosted by
GitHub pages2.

The repository also contains four elaborative documents, e.g., a readme, a con-
tributing guide, the internal behavior of the query planner guide, and a guide
on how to add an extra physical operator. These elaborative documents can be
found in the repository hosted by GitHub, and in the following four subsections.

C.3.1 Repository readme

See Figure C.1 for the readme of the Telepath repository. This guide can also
be found at https://github.com/giedomak/Telepath.

C.3.2 Repository contributing guide

See Figure C.4 for the contributing guide of the Telepath repository. This guide
can also be found at https://github.com/giedomak/Telepath/blob/master/CONTRIBUTING.
md.

C.3.3 Query planner guide

See Figure C.6 for the guide on the internal behavior of the query planner
of Telepath. This guide can also be found at https://github.com/giedomak/
Telepath/tree/master/src/main/java/com/github/giedomak/telepath/planner.

C.3.4 Guide on adding an extra physical operator

See Figure C.11 for the guide on how to add an extra physical operator to Tele-
path. This guide can also be found at https://github.com/giedomak/Telepath/
tree/master/src/main/java/com/github/giedomak/telepath/physicaloperators.

1Javadoc is a tool for generating API documentation in HTML format from comments in
source code.

2GitHub pages: https://pages.github.com/.
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TelepathDB

buildbuild passingpassing

codacycodacy AA

code	climatecode	climate 4.04.0

codebeatcodebeat AA

codecovcodecov 78%78%

Massive graph-structured data collections are ubiquitous in contemporary data management
scenarios such as social networks, linked open data, and chemical compound databases.

The selection and manipulation of paths forms the core of querying graph datasets. Path
indexing techniques can speed up this core functionality of querying graph datasets.

We propose a path-index based graph database engine.

Documentation

The documentation can be found here and a schematic overview of the architecture can be
found here.

Life
of
a
Query

This section describes the essence of the life of a query within TelepathDB. Each heading
contains links to its docs, test and source. In most cases, the test will give a clear insight into
what each specific module produces.

1. Query
input

The user gives a regular path query as input. For example:

a/(b/c)

Where 	a	, 	b	 and 	c	 are edge labels, and 	/	 is interpreted as the concatenation logical
operator.

Figure C.1: The readme of the Telepath repository page 1.
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2. Parse
the
input (docs) (test) (source)

The query input is parsed into our internal representation of a logical plan. Our internal
representation uses a tree datastructure:

						CONCATENATION
								/						\
							a			CONCATENATION
														/			\
													b					c

3. Generate
the
cheapest
physical
plan (docs) (test) (source)

Our planner uses the 	DPsize	 algorithm as inspiration, which calculates the cheapest
physical plan in a bottom-up fashion.

Since this phase is one of the main contributions, an in-depth explanation can be found
here.

						INDEX_LOOKUP
								/		|		\
							a			b			c

4. Evaluate
the
physical
plan

The physical plan is evaluated in a bottom-up fashion. All intermediate results are
materialized through our MemoryManager (docs) (test) (source).

Using PathDB to gather the paths satisfying our query:

								kPathIndex.search(
																PathPrefix(
																								physicalPlan.pathIdOfChildren()
																)
								)

5. Visualize
results

At the time of writing, results will be shown to the user through a command-line interface.

Figure C.2: The readme of the Telepath repository page 2.
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TelepathDB:	>>>>>	Results:
TelepathDB:	Path(pathId=9,	nodes=[Node(id=10),	Node(id=12),	Node(id=14)])
TelepathDB:	Path(pathId=9,	nodes=[Node(id=10),	Node(id=12),	Node(id=8772)])
TelepathDB:	Number	of	results:	2,	after	5	ms
TelepathDB:	----------------------------

Want
to
contribute?

The contributing guide
is a good place to start. If you have questions, feel free to ask.

Authors

">

Giedo Mak Max Sumrall Nikolay Yakovets George Fletcher

Figure C.3: The readme of the Telepath repository page 3.
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Contributing
First off, thank you for considering contributing to TelepathDB. It's people like you that make
TelepathDB such a great system.

1.
Where
do
I
go
from
here?

If you've noticed a bug or have a question, search the issue tracker to see if someone else in
the community has already created a ticket. If not, go ahead and make one!

2.
Fork
&
create
a
branch

If this is something you think you can fix, then fork TelepathDB and create a branch with a
descriptive name.

A good branch name would be (where issue #325 is the ticket you're working on):

git	checkout	-b	325-add-japanese-translations

3.
Get
the
test
suite
running

Make sure you're using Java 	1.8	 and you have installed at least version 	3.5	 of Maven.

Now you should be able to run the entire test suite using:

mvn	clean	test

4.
Implement
your
fix
or
feature

At this point, you're ready to make your changes! Feel free to ask for help; everyone is a
beginner at first .

Available getting started guides:

Figure C.4: The contributing guide of the Telepath repository page 1.
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Implementing a new physical operator

5.
Make
a
Pull
Request

At this point, you should switch back to your master branch and make sure it's
up to date with Active Admin's master branch:

git	remote	add	upstream	git@github.com:giedomak/TelepathDB.git
git	checkout	master
git	pull	upstream	master

Then update your feature branch from your local copy of master, and push it!

git	checkout	325-add-japanese-translations
git	rebase	master
git	push	--set-upstream	origin	325-add-japanese-translations

Finally, go to GitHub and make a Pull Request :D

Travis CI will run the test suite and other integrations like codeclimate will analyse the code
quality. 
We care about quality, so your PR won't be merged until the tests pass and the quality of the
PR is good enough.

Figure C.5: The contributing guide of the Telepath repository page 2.
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Planner
This document describes how the planner calculates the cheapest physical plan for a given
logical plan.

1.
Flatten
into
multi-children
tree
(docs)
(test)
(source)

Logical plans are flattened to prepare them for the subtree generator.

Given:

										CONCATENATION
														/				\
													a				CONCATENATION
																					/				\
																				b						c

Output:

									CONCATENATION
												/		|		\
											a			b			c

2.
Generate
subtrees
of
a
given
size
(docs)
(test)
(source)

Let's say we are trying to calculate the cheapest physical plan for a plan with size 	2	. Then we
are generating all subtrees of size 	1	, and check if we can combine them. These smaller
subtrees have its cheapest physical plan already calculated, so we'll want to re-use those.

Given:

													CONCATENATION
												/		|					|		|		\
											a		UNION		e		f			g
														/	|	\

Figure C.6: The query planner guide page 1.
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													b		c		d

Subtrees of size 	2	:

									UNION			UNION				CONCATENATION				CONCATENATION
										/	\					/	\									/			\												/			\
									b			c			c			d							e					f										f					g

3.
Check
containment
of
subtrees
(docs)
(test)
(source)

When two subtrees are contained in the logical plan through any operator, we calculate the
cheapest physical plan for the combination of those two subtrees concatenated by the
operator.

Given this logical plan:

																	UNION
																	/			\
					CONCATENATION			CONCATENATION
									/			\										/					\
								a					b								c							d

Given 	subtree1	 and 	subtree2	:

					CONCATENATION											CONCATENATION
									/				\																		/				\
								a						b																c						d

	subtree1	 and 	subtree2	 are contained in the logical plan through the 	UNION	 operator.

Second
example:

Given this logical plan:

													CONCATENATION
													/		|		|		|		\
												a			b		c		d			e

Figure C.7: The query planner guide page 2.
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Given 	subtree1	 and 	subtree2	:

								CONCATENATION														CONCATENATION
											/				\																					/				\
										b						c																			d						e

	subtree1	 and 	subtree2	 are contained in the logical plan through the 	CONCATENATION	 operator.

4.
Enumerate
operators
(docs)
(test)
(source)

When two subtrees are contained through an operator in the logical plan, we'll calculate the
cheapest physical plan for their combination. Remember we already know the cheapest
physical plans for both subtrees.

As an example, let's say we've got two subtrees contained through the 	CONCATENATION	
operator. We enumerate the logical operator into hash-join, nested-loop-join and index-
lookup.

Given these two trees and the CONCATENATION operator with a k-value greater than or equal
to 	4	:

										INDEX_LOOKUP							INDEX_LOOKUP
												/					\												/					\
											a						b											c						d

Expected:

							INDEX_LOOKUP														HASH_JOIN																NESTED_LOOP_JOIN
								/	|		|		\																		/				\																					/							\
							a		b		c			d							INDEX_LOOKUP	INDEX_LOOKUP				INDEX_LOOKUP	INDEX_LOOKUP
																											/					\						/				\										/					\						/				\
																										a						b					c					d									a						b					c					d

5.
Cardinality
estimation
(docs)
(test)
(source)

When we are dealing with intermediate results, we need the estimated cardinality of these

Figure C.8: The query planner guide page 3.
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intermediate results to calculate the cost.

If we are dealing with only concatenations, we can use our SynopsisCardinalityEstimation.
This cardinality estimator will track graph statistics into a synopsis. It will hold information on
all concatenations up to 	k	=	2	.

Using this synopsis we can estimate the cardinality of paths where 	k	=	3	, by using the
synopsis for 	k	=	1	 and 	k	=	2	.

//	See	if	we	got	one	of	these	after	flattening:
//
//													HASH_JOIN
//													/							\
//					INDEX_LOOKUP		INDEX_LOOKUP
//							/		|		\								/			\
//						a			b			c						d					e						<---	EDGES
if	(clone.operator	in	PhysicalOperator.JOIN_OPERATORS	&&	clone.height()	==	2)	{

				val	edges:	List<Edge>	=	clone.children.flatMap	{	it.children.map	{	it.leaf!!	}	}

				//	We	can	get	|	T	r/l1	|	from	our	Synopsis.
				var	cardinality	=	synopsis.pairs(Pair(edges[0],	edges[1])).toFloat()

				//	|	T	r/l1/l2	|	=	|	T	r/l1	|	*	(	l1/l2.two	/	l1.in	)
				for	(index	in	2	until	edges.size)	{

								val	l1	=	edges[index	-	1]
								val	l2	=	edges[index]

								cardinality	*=	synopsis.two(Pair(l1,	l2))	/	synopsis.`in`(l1).toFloat()

				}

				//	Return	the	result
				return	cardinality.toLong()
}

6.
Costing
physical
plans

Each physical operator has a cost associated to it which depends on the cardinality of the sets
it operates on.

For example, the cost of hash-join is 	2	*	(M	+	N)	. Where 	M	 is the cardinality of set 1, and 	N	
is the cardinality of set 2.

/**

Figure C.9: The query planner guide page 4.
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	*	Cost	of	Hash-join.
	*/
override	fun	cost():	Long	{

				//	The	cost	to	produce	results,	i.e.	2	*	(M	+	N)
				val	myCost	=	2	*	(firstChild.cardinality	+	lastChild.cardinality)

				//	Our	input	sets	might	be	intermediate	results,	so	take	their	cost	into	account.
				val	cost1	=	firstChild.cost()
				val	cost2	=	lastChild.cost()

				//	Overflow	check
				if	(myCost	==	Long.MAX_VALUE	||	cost1	==	Long.MAX_VALUE	||	cost2	==	Long.MAX_VALUE)	return

				return	myCost	+	cost1	+	cost2
}

7.
Save
the
cheapest
physical
plan

Once each enumerated physical plan has been costed, we save the cheapest physical plan.
Since we work in a bottom-up fashion, after all iterations, we will have calculated the cheapest
physical plan for the given logical plan.

Figure C.10: The query planner guide page 5.
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Adding
a
new
physical
operator

To add a new physical operator, we need a couple of things:

Implement the PhysicalOperator interface.
Enumeration from the logical operator into our new physical operator.
Cardinality estimation of the result set from our new physical operator.
Cost of the evaluation of our new physical operator.
Evaluation of our new physical operator.

PhysicalOperator
implementation
(docs)
(source)

The companion object from the PhysicalOperator class is responsible for the mapping from
physical operator constants to the actual implementation. Implement those here.

The actual implementation is described in the Costing an Evaluation section.

Code snippet of the symbolic mapping:

companion	object	{

				//	------	CONSTANTS	------

				const	val	LEAF	=	0

				const	val	INDEX_LOOKUP	=	1

				const	val	HASH_JOIN	=	2
				const	val	NESTED_LOOP_JOIN	=	3

				const	val	UNION	=	4

				//	------	COLLECTIONS	-------

				val	JOIN_OPERATORS	=	listOf(HASH_JOIN,	NESTED_LOOP_JOIN)

				//	------	FUNCTIONS	-------

				/**
					*	Convert	the	operators	constants	to	an	actual	[PhysicalOperator]	instance.
					*
					*	@param	physicalPlan	which	holds	the	operator	constant.
					*	@return	The	PhysicalOperator	instance	which	has	knowledge	of	the	physical	plan.
					*/
				fun	getPhysicalOperator(physicalPlan:	PhysicalPlan):	PhysicalOperator?	{

								return	when	(physicalPlan.operator)	{

Figure C.11: The guide on adding an extra physical operator to Telepath page
1.
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												LEAF	->	null

												INDEX_LOOKUP	->	IndexLookup(physicalPlan)

												HASH_JOIN	->	HashJoin(physicalPlan)
												NESTED_LOOP_JOIN	->	NestedLoopJoin(physicalPlan)

												UNION	->	Union(physicalPlan)

												else	->	TODO("Gotta	catch	em	all")
								}
				}
}

Enumerate
operator
(docs)
(test)
(source)

This example combines two physical plans by enumerating over the applicable physical
operators for the 	CONCATENATION	 logical operator:

										INDEX_LOOKUP							INDEX_LOOKUP
												/					\												/					\
											a						b											c						d

Expected:

							INDEX_LOOKUP														HASH_JOIN																NESTED_LOOP_JOIN
								/	|		|		\																		/				\																					/							\
							a		b		c			d							INDEX_LOOKUP	INDEX_LOOKUP				INDEX_LOOKUP	INDEX_LOOKUP
																											/					\						/				\										/					\						/				\
																										a						b					c					d									a						b					c					d

The code snippet making this possible:

private	fun	enumerateConcatenation(tree1:	PhysicalPlan,	tree2:	PhysicalPlan):	Sequence<PhysicalPlan>	{

				val	physicalPlans	=	mutableListOf<PhysicalPlan>()

				//	Check	if	an	INDEX_LOOKUP	is	applicable.
				val	plan	=	tree1.merge(tree2,	PhysicalOperator.INDEX_LOOKUP).flatten()

				//	If	the	height	of	this	tree	is	1	(max	number	of	edges	to	any	leaf),	AND	the	number	of	children
				//	is	smaller	or	equal	to	the	k-value	of	our	index,	we	can	do	an	INDEX_LOOKUP!
				if	(plan.height()	==	1	&&	plan.children.size	<=	plan.query.telepathDB.kPathIndex.k)	{

Figure C.12: The guide on adding an extra physical operator to Telepath page
2.
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								physicalPlans.add(plan)
				}

				//	Don't	forget	to	enumerate	all	the	JOIN_OPERATORS
				PhysicalOperator.JOIN_OPERATORS.forEach	{
								physicalPlans.add(tree1.merge(tree2,	it))
				}

				return	physicalPlans.asSequence()
}

Cardinality
estimation
(docs)
(test)
(source)

As you can see in the current implementation, cardinality estimates for 	JOIN_OPERATORS	 will just
take the max cardinality of its two datasets. The 	UNION	 physical operator will get you the sum
of the cardinalities of its children.

Code snippet:

/**
	*	Returns	the	cardinality	of	a	given	physicalPlan.
	*
	*	This	method	will	recursively	calculate	the	cardinality	for	its	children	in	order	to	get	the	cardinality
	*	for	the	root.
	*
	*	@param	physicalPlan	The	root	of	the	tree	for	which	we	want	to	get	the	cardinality.
	*	@return	The	cardinality	of	the	given	physicalPlan.
	*/
override	fun	getCardinality(physicalPlan:	PhysicalPlan):	Long	{

				return	when	(physicalPlan.operator)	{

								PhysicalOperator.INDEX_LOOKUP	->	getCardinality(physicalPlan.pathIdOfChildren())

								in	PhysicalOperator.JOIN_OPERATORS	->	{
												val	d1	=	getCardinality(physicalPlan.children.first())
												val	d2	=	getCardinality(physicalPlan.children.last())
												Math.max(d1,	d2)
								}

								PhysicalOperator.UNION	->	{
												getCardinality(physicalPlan.children.first())	+	getCardinality(physicalPlan.children.last())
								}

								else	->	TODO("You	forgot	one!")
				}
}

Figure C.13: The guide on adding an extra physical operator to Telepath page
3.
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APPENDIX C. ENGINEERING TELEPATH

Costing
&
Evaluation

Costing and Evaluation are both delegated to the PhysicalOperator implementation to maintain
a more object-oriented approach.

See the hash-join implementation as a reference. (docs) (test) (source)

Code snippet of the hash-join implementation:

/**
	*	Hash-join	physical	operator.
	*
	*	@property	physicalPlan	The	physical	plan	holds	information	regarding	the	sets	on	which	to	operate	on.
	*	@property	firstChild	The	first	set	of	data	to	operate	on,	which	is	a	[PhysicalOperator]	itself.
	*	@property	lastChild	The	last	set	of	data	to	operate	on,	which	is	a	[PhysicalOperator]	itself.
	*/
class	HashJoin(override	val	physicalPlan:	PhysicalPlan)	:	PhysicalOperator	{

				/**
					*	Evaluate	the	hash-join.
					*
					*	@return	A	stream	with	the	concatenated	paths.
					*/
				override	fun	evaluate():	PathStream	{
								return	OpenHashJoin(
																firstChild.evaluate(),
																lastChild.evaluate(),
																physicalPlan.query.telepathDB
								).evaluate()
				}

				/**
					*	Cost	of	Hash-join.
					*/
				override	fun	cost():	Long	{

								//	The	cost	to	produce	results,	i.e.	2	*	(M	+	N)
								val	myCost	=	2	*	(firstChild.cardinality()	+	lastChild.cardinality())

								//	Our	input	sets	might	be	intermediate	results,	so	take	their	cost	into	account.
								val	intermediateResultsCost	=	firstChild.cost()	+	lastChild.cost()

								return	myCost	+	intermediateResultsCost
				}
}

Figure C.14: The guide on adding an extra physical operator to Telepath page
4.
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