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Abstract

The analysis of emotions in humans is a field that has been studied for centuries.
Through the last decade, multiple approaches towards automatic emotion recognition
have been developed to tackle the task of making this analysis autonomous. More
specifically, facial expressions in the form of Action Units have been considered until
now the most efficient way to recognize emotions. In recent years, applying machine
learning for this task has shown outstanding improvements in the accuracy of the
solutions. Through this technique, the features can now be automatically learned from
the training data, instead of relying on expert domain knowledge and hand-crafted
rules. In this thesis, I present Syna and DeepSyna, two models capable of classifying
emotional expressions by using both spatial and temporal features. The experimental
results demonstrate the effectiveness of Syna in constrained environments, while there
is still room for improvement in both constrained and in-the-wild settings. DeepSyna,
while addressing this problem, on the other hand suffers from data scarcity and
irrelevant transfer learning, which can be solved by future work.
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Sammanfattning

Mänsklig känsloigenkänning har studerats i århundraden. Det senaste årtiondet har
mängder av tillvägagångssätt för automatiska processer studerats, för att möjliggöra
autonomi; mer specifikt så har ansiktsuttryck i form av Action Units ansetts vara
mest effektiva. Maskininlärning har dock nyligen visat att enorma framsteg är möjliga
vad gäller bra lösningar på problemen. Så kallade features kan nu automatiskt läras
in från träningsdata, även utan expertkunskap och heuristik. Jag presenterar här
Syna och DeepSyna, två modeller för ändamålet som använder både spatiala och
temporala features. Experiment demonstrerar Synas effektivitet i vissa begränsade
omgivningar, medan mycket lämnas att önska vad gäller generella sådana. DeepSyna
löser detta men lider samtidigt av databristproblem och onödig så kallad transfer
learning, vilket här lämnas till framtida arbete.

Nyckelord
Känsloigenkänning, spatio-temporal maskininlärning
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1 Chapter 1

Introduction

Emotions are an incredible tool in the nature of humans and other organisms. As a
mechanism developed through evolution, emotions have played a crucial role in the
survival of species. Whether it is fear or laughter, they have different purposes that
benefit the organisms on their environment.

Not long ago, emotions were a complete black box to science. There was not much
understanding on why humans experienced feelings, and what were their purpose.
Their nature was first attributed to divinity, as a tool that extended the consciousness
with the sole purpose of honoring and glorifying the Creator.

Today, scientists have developed several theories on how emotions are generated.
What first were hypotheses based on external observation in the field of psychology,
have later been verified by the study of the brain in neuroscience. If one feels pain,
this is due to an environmental change that negatively affects its self-being. In the
same manner that organisms developed companionship as a means to increase their
chances of survival, emotions mentally prepare an organism to face the changes in
the environment that affect it. There is even a relation between these two, and
this can be seen through several examples. If someone relative to you dies, you
feel pain because that decreases the chances of your survival, since there is one less
person to take care of you. If you are in a situation that hazards your survival, the
levels of adrenaline increase in order to prepare you for what Cannon [14] called the
fight-or-flight response.

As the brain complexity increases, so does the complexity of the individual’s behavior.
This also involves the aspect of emotions. Human emotions are way more sophisticated
than the ones that can be seen in other species, mainly thanks to the development of
the Amygdala [15]. Given this high complexity, scientists focused in studying simpler
forms. As the neuroscientist Jaak Panksepp once said in one of his talks, "If we
understand the emotions of other animals, then maybe we will be able to understand
our own emotions" [16].

When focusing on humans, there are two main branches of study: the ones that
focus on what can be externally seen (physical appearance, social behavior), and
the ones that focus on what cannot be externally seen (neuroscience, analysis of



1 Introduction

the brain). Neuroscience has played a huge role in understanding the causes and
effects of emotions, while the physical appearance focuses solely on a subset of such
effects.

1.1 Background

As with many other tasks, humans perform emotion recognition flawlessly. Our brains
are fine-tuned machines over millions of years of evolution to perform this function
without consciously realizing the process that it involves.

As my personal belief, even though there is a theoretical background on human
actions, they do not realize this underlying theory. They just behave in freedom of
act, with an internal inertia to apply most laws unconsciously. In contrast to this,
machines follow specific instructions, applying theory as they receive it. A computer
just understands assembly, and does not realize the final purpose of its actions. A
computer simply understands that it is adding two numbers, or that it must change
the Program Counter to the address FFFF:0000. It is a duty for us humans to use
those provided instructions to synthesize a program that carries out the desired
result.

The previous analogy might seem unrelated to this thesis, but it is not. In classical
Artificial Intelligence (AI), building an intelligent system involves domain knowledge
in the specific problem that needs to be solved. The programmer (or someone
else in other levels of the hierarchy) needs deep knowledge in the problem in order
to define a solution, and translate this solution into an algorithm. This defines a
bottleneck in the pipeline, both in performance and cost. Performance because the
developed algorithm will go as far as the field expertise is available. Cost because
improving over state-of-the-art established rules requires deep research and field
expertise.

This thesis requires some notions on how emotion recognition is performed in the
field of psychology. This technique is primarily based in analyzing facial expressions,
which are one of the effects of emotions in human beings.

1.1.1 Swedish Institute of Computer Science

The Swedish Institute of Computer Science (SICS) is a leading research institute
for applied information and communication technology in Sweden. SICS is non-
profit and carries out advanced research in strategic areas of computer science, in
close collaboration with Swedish and international industry and academia. The
research creates cutting-edge technology, invigorating companies beyond their own
R&D.
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1.2 Problem

The thesis was carried out at the Decisions, Networks and Analytics Laboratory, where
I was provided with the necessary environment and equipment.

1.1.2 Department of Psychology Stockholm University

Aside of the main work at SICS, I had a few meetings to discuss and monitor
my research at the department of psychology of Stockholm University. Given the
orientation of my thesis towards Computer Science and Engineering rather than
psychology, these interactions were at the beginning.

1.2 Problem

The problem tackled in this thesis involves creating an AI that is capable of sim-
ulating this unconscious process humans employ to recognize emotions. In par-
ticular, using Machine Learning to make this AI learn Emotion Recognition by
itself.

Apart from solving the main problem, this thesis tries to tackle it in a different way
from what can be seen in state-of-the-art. The main contribution is adding temporal
units to current single-frame state-of-the-art methods, so an extra dimension of the
data can be learned. For instance, when a person is smiling, the facial expression
of the individual does not instantly go from neutral to smiling. This temporal
information can improve recognizing emotions by analyzing the changes of the face
through time.

1.3 Purpose

This area of research is growing in interest every day, with multiple competitions
being held [12, 17–20] and a variety of products being released to market [1, 21–
24]. The relevance of correct emotion recognition extends to a variety of applica-
tions.

First of all, there is User Experience and Marketing Research. Companies spend
large amounts of money in Customer Relationship Management (CRM) [25], with
special focus on detecting how users react to small changes in their products, or in
the release of completely new ones. This process could be potentially automated by
the implementation of an agent that automatically infers the level of satisfaction of
the customers based on their emotion.

Second, there is Social Robotics. Computers have always been a tool that make
our life easier, but there is always the barrier of interaction with the machine.

3
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Human-Computer Interaction is a branch of Computer Science that focuses on this
intent. With the latest improvements in AI, many of the graphical interfaces can
be substituted by direct actions of the computers, based on explicit orders or user
behavior. It is in the latter where automatic emotion recognition comes into play,
with the ability of a robot to execute certain actions when, for instance, the person
is feeling down.

Figure 1.1: Pepper, a robot capable of reading human emotions and react to them [1].

Third, there is security. One example of such is crowd monitoring in certain areas,
such as airports. When a subject shows indications of fear, this might be because of
a potentially harmful action to be taken. Detecting this behavior could potentially
prevent acts such as terrorism or drug trafficking, while at the same time drop the
costs of security by automating the whole process with intelligent computer vision
through cameras.

Fourth and finally, there is Adaptive Technology. If it is games or educational services,
analyzing the frustration of the users can give insights to adapt the content to their
engagement.

1.4 Goals

The main goal of this project is to determine whether Syna, which uses the com-
bination of machine learning methods for spatial and temporal features, has the
potential to compete with other state-of-the-art when performing emotion recogni-
tion.

To fulfill this goal, I will design and implement two new approaches to the problem.
The code for these will be openly available on GitHub, so that anyone can replicate
the results.

There are different datasets to test the given solutions. These datasets are also used
as part of the solution for the learning aspect of the algorithm. Nevertheless, to test
the algorithm, I am only allowed to use samples that have not been included in the

4



1.5 Benefits, Ethics and Sustainability

training process. The main metric to measure the performance is the accuracy when
predicting the category of the expressed emotion.

1.5 Benefits, Ethics and Sustainability

As most research projects done with test subjects, there are the issues of anonymity
and privacy. The test subjects used to train the model can be identified, given they
appear in the video feed. In addition to this, some other consequences may arise
if the technology is not used ethically. For instance, if used in public areas, the
emotion analysis of subjects invade to certain degree the privacy of the individuals.
In addition to this, the algorithmic bias inherent from the data may falsely identify
emotions on individuals when used in certain applications, such as surveillance in
airports. An innocent person can be falsely accused due to a false positive. These
ethical challenges lead to the same problem that was once described back in 1984 by
Orwell as Surveillance Society [26].

When it comes to benefits, Syna shares the same benefits that can be found in emotion
recognition software. These primarily enable users of the technology to understand
the emotional state of other individuals, for a variety of purposes which would not be
possible without an automated solution that gathers data ubiquitously. An extensive
survey on the benefits of such applications can be found at [27].

1.6 Methodology

I want to explore new alternatives to the task of emotion recognition in video feed.
For doing so, I propose two different new approaches that take into account the time
dimension for the classification. Since certain datasets have already shown close
to 100% accuracy, I will also target those in which the accuracies are lower. The
datasets used can be arranged by difficulty of prediction: easy (CK+) and hard
(AFEW).

The two new approaches of this thesis both explore the usage of Recurrent Neural
Networks (RNNs), which are a class of artificial neural networks where connections
between units form a directed cycle, which allows for temporal behavior. In particular,
I use what is known as Long Short-Term Memory (LSTM) networks, which solve
some of the issues inherent from using RNNs. This will be explained in detail in
Section 5.2.

Even though both approaches use LSTMs, this is applied close to the last layers of
the network. The initial layers, which are closer to the input data, differ a lot with
respect to the type of features to be learned by the algorithms.

5
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The first approach uses a Constrained Local Neural Fields (CLNF) model [28], which
efficiently extracts Facial Landmarks in unseen lighting conditions and in the wild.
The second approach uses face frontalization for decreasing the variance in the frames
and 3D Convolutional Networks (C3D) for extracting both spatial and temporal
features. These will be explained in detail in Section 3.

To formally describe the research methods, the ‘portal’ provided by Hakansson [29]
is used. This guideline addresses the need for applying methods before the actual
research, along with the reasons for doing so. The main methods chosen for this
project are:

• Quantitative and qualitative research methods: The quantitative method is
used as this thesis involves comparing the accuracy to other methods as a
measurement of effectiveness.

• Philosophical assumption: The interpretivist approach is taken given the social
origin of emotion recognition. The basic emotions are categories defined from
the study of human psychology, and therefore constitute a social abstraction of
reality.

• Research approach: The deductive approach is best suited for this research
given the premise of testing whether the accuracy of Syna and DeepSyna are
comparable to state-of-the-art.

• Research strategies / designs: This thesis involves experimental research as
main strategy, but it is limited by the amount of data available. Statistics such
as accuracy are the determining metric used for testing the hypothesis.

• Data collection methods: Experiments are the main source of information for
this research. This data is collected and labeled by experienced researchers in
the field.

1.7 Delimitations

The research explores only datasets containing video-feed with labels corresponding
to emotions. There are various means to test the new approaches, but the chosen
one is the performance in terms of prediction accuracy.

The amount of labeled data available for Emotion Recognition is limited when
compared with other Computer Vision tasks. This is not just a limitation on the
number of datasets, but also on the number of samples they contain. There is even
more scarcity when the content needs to be video-feed given the necessity of the
temporal dimension. In total, I was granted access to two different datasets, which
will be described in Chapter 6.

6



1.8 Outline

Some of the Neural Networks used in this thesis are hard to train. In fact, one of
these (C3D) would take about 3 weeks to train in a high-end computer. Even with
more computing resources, the limited size of my datasets would end-up making
my model overfit the training data. Therefore, I am forced to use a technique that
allows me to use networks trained on other tasks. This technique will be explained
in Section 3.2.3.

1.8 Outline

The rest of the content in this thesis has the following structure:

Chapter 2 explains the historical and theoretical background of the methods used
for emotion recognition. This ranges from the origins of the field in Psychol-
ogy and Neuroscience, to the computer algorithms that automate the classifica-
tion.

Chapter 3 contains the methods used for extracting facial features. This includes a
description of two main approaches: one that relies on domain knowledge, using a
pipeline that is typical for automatic facial expression recognition; and one that does
not require any prior knowledge, relying on automatic feature construction from raw
video data.

Chapter 4 describes the methodology for capturing temporal information from
the facial features extracted in the previous step. It is based on a habitual ar-
chitecture used in the field of ML that has been shown to be best suited for this
task.

Chapter 5 describes the work of the thesis in detail. The architecture of the
models, what the data looks like and how it is processed, and how the models
are trained.

Chapter 6 defines the conducted experiments for determining the effectiveness of the
approach. Further tests are conducted to compare Syna with other state-of-the-art
methods and established baselines.

Chapter 7 describes the results of the thesis. The main metric to measure the
performance is the accuracy when determining the category of the expressed emo-
tion.

Chapter 8 includes a discussion over the content of this thesis. This is done in a
critical way, providing a peripheral view on the shortcomings and what could have
been improved.

Finally, chapter 9 provides the conclusions of the thesis. It describes the con-
tributions of the thesis to research and development, together with the future
work.
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2 Chapter 2

Towards Emotional
Intelligence: History and
Theory

This chapter summarizes the theoretic background and history that makes automatic
emotion recognition possible. The overall work connects the multiple disciplines
of Neuroscience (Emotions), Psychology (Facial Expressions), Computer Science
(Artificial Intelligence), and Data Science (Machine Learning).

2.1 The Science of Emotions

2.1.1 What is an Emotion

When hearing the word emotion, most people tend to think of happiness, love, hate,
or fear. Those are the strong emotions that are experienced through life, consciously
classifying them as good or bad. This is because our brain is designed to look for
threats and rewards. When one of these is detected, the feeling part of the brain
alerts us by the release of chemical messages. At the end, emotions are interpreted
as the effects of these chemical messages.

For instance, in the case of a threat, our brain releases the stress hormones adrenaline
and cortisol, which prepares us for a fight-or-flight response [14]. On the other
hand, when perceiving a reward, our brain releases dopamine, oxytocin, or serotonin,
which are the chemicals that make us feel good and motivated to continue such
behavior.

In these instances of emotion, the feeling part of the brain reacts way before the
thinking part does. Sometimes, the reactions of the feeling brain are so strong that
dominates our behavior, preventing us from using the thinking part. This can prevent
us from thinking rationally, in such a manner that emotions somehow hijack our
brain.



2 Towards Emotional Intelligence: History and Theory

Even though most of our emotional responses happen unconsciously, there are
methods in which our thinking can control those emotions. Just thinking of something
threatening, like presenting in front of a large crowd, can trigger a negative emotional
response. It is in such cases where one can control the emotion by conscious thinking,
which in this case could be reducing the importance of the audience, or strong
confidence that the delivered presentation will be good. There is an entire research
field addressing this methodology, shaped by Herbert Benson’s Relaxation Response
[30].

2.1.2 Components of Emotions

"An emotion is a complex psychological state that involves three distinct components:
a subjective experience, a physiological response, and a behavioral or expressive
response" [31].

Subjective Experience While experts accept the universality of the basic emotions,
the experience of these emotions in individuals is highly subjective. Even though there
are broad labels for certain emotions such as anger or happiness, the manifestation
of these in individuals can vary a lot. While anger might mean mild annoyance for
someone, it can be a blinding rage for somebody else. Plus, one usually does not
experience single emotions, but mixed. An easy example can be starting a new job,
in which case one can feel both excited and nervous, in different levels depending on
the individual.

Physiological Response Emotions can cause strong physiological reactions. Anxi-
ety can cause sweaty palms, racing heartbeat, or even stomach lurch. Early studies
attributed these reactions to the sympathetic nervous system, a section of the au-
tonomic nervous system which controls blood flow and digestion. Nevertheless,
recent research targets the brain’s role in emotions, especially the amygdala. This
almond-shaped structure has been shown to be linked to motivational states such
as hunger or thirst, as well as memory and emotion. Researchers have shown that
under threat, the amygdala becomes activated, and that damages to this structure
can impair fear response.

Behavioral or Expressive Response The main component taken into account
for this thesis is the actual expression of the emotion. Humans have the ability
of interpreting emotional expressions in the people around them, something that
psychologists refer to as emotional intelligence. Many of these expressions are
considered universal (e.g. a smile indicating happiness), while cultural roles tend to
provide variety in the expressions (e.g. people from Japan have been discovered to
mask displays of certain emotions [32]).
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2.2 The Science of Facial Expressions

2.1.3 Classifying Emotions

Taking into account the three components, describing human emotion can be done
with two different approaches.

The Categorical Description of Affect intends to classify emotions into a determined
set of classes. Everyone has heard the words happy or sad, as they have been used
at least from the 19th century. From 1972, this approach was heavily influenced by
the work of Paul Ekman [33–36], who believed that humans universally express a set
of six basic emotions: happiness, sadness, fear, anger, disgust and surprise. In 1999,
he expanded this list to include embarrassment, excitement, contempt, shame, pride,
satisfaction, and amusement [37, p. 301–320].

The Dimensional Description of Affect places a particular emotion into a space with a
limited set of dimensions [38, 39]. There are certain variations when determining what
the dimensions are, but all include valence (how pleasant or unpleasant the emotion
is), arousal or activation (how likely is the person to take action under this emotional
state) and control (the sense of control over the emotion). Combining different sets of
values in these dimensions can generate more complex emotions.

Out of these two approaches, the Categorical Description of Affect is the one explored
in affective computing, given its simplicity and universality claim. The richness of the
space in the Dimensional Description is more difficult to automate since it is hard to
map expressive responses to certain values of these dimensions.

2.2 The Science of Facial Expressions

Facial expressions study the variations of an individual’s appearance due to facial
movements under the skin. A facial movement, in turn, is the movement of one
or more facial muscles. The mapping between facial movements and facial muscles
is many-to-many, which means that one facial movement may involve more than
one facial muscle, and one facial muscle can be involved in more than one facial
movement. If this last statement seems confusing, think of it in the following way.
For certain facial movements, two or more facial muscles need to be contracted. On
the other hand, one of those same facial muscles may be contracted in different facial
movements.

There is a long history of philosophers and researchers trying to conceive the origin
and purpose of facial expressions, within branches such as Creationism, Neuroscience
or Psychology.

Facial expressions were first studied in the context of physiognomy and creationism,
in which they tried to link a person’s character by their looks, especially the face
[40]. Leonardo Da Vinci was one of the first to refute such claims, stating that they
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2 Towards Emotional Intelligence: History and Theory

were without scientific support [41]. Forward in the 19th century, Sir Charles Bell,
influenced by Creationism, investigated their role in the sensory and motor control
[42]. He attributed their purpose to solely human communication, endowed by the
Creator. Later on, the french neurologist Duchenne studied the body’s neuromuscular
system and how facial expressions are produced by electrically stimulating facial
muscles [43] (See Figure 2.1).

Figure 2.1: Experiments conducted by Duchenne de Boulogne in the 19th century. Adapted from
Cambridge University Library.

When studying their origin, facial expressions were first attributed to God [44],
and later to evolution. In the 19th century, Charles Darwin stated that Facial
Expressions were evolved behaviors for expressing emotion [45]. Darwin’s claims
were later supported by the research of Adam Anderson [46].

Up until now, there is an ongoing debate on what is the true purpose of facial
expressions, and how they increased the chances of survival in the species that used
them. On the one hand, there is the role in social communication, specifically in the
context of signaling systems. This theory states that the role of facial expressions
is a form of nonverbal communication [47], that expressions can communicate
everything from pleasure or displeasure to surprise or boredom. On the other hand,
sensory regulation considers them as functional adaptations of more direct benefit
to the expresser [46, 48]. When experiencing surprise, humans widely open their
eyes, not to communicate such expression, but to enhance their field of vision. In
the same way, constricting the nose in disgust reduces the inhalation of harmful
substances.

2.2.1 Parametrization of Facial Expressions: Facial Action
Coding System (FACS) and Action Units (AUs)

When recognizing facial expressions, the first task involves defining a coding scheme
for such facial expressions. There are two main classes of coding schemes. Descriptive
coding schemes focus on what the face can do based on surface properties, while
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2.3 Conveying Emotions from Facial Expressions

judgmental coding schemes describe facial expressions in terms of the latent emotions
that generate them.

The most well known example of descriptive coding is the Facial Action Coding
System (FACS) [49] developed by Ekman and Friesen, which was later improved in
FACS 2002 [50]. The purpose of this scheme is to represent all facial expressions as
a combination of facial muscles. Facial expressions are coded in action units (AUs),
which represent the contraction of one or more facial muscles (see Figure 2.2). FACS
also provides the rules for visual detection of AUs and their temporal segments,
which are the ordinal intensity of the AU (onset, apex, offset) from when the facial
expression emerges until it fades. A complete description of FACS can be found in
[51]. Having this set of rules, a human can analyze a shown facial expression and
subdivide it into specific AUs and their temporal segments. A great survey in the
history, trends and approaches for Facial Expression Recognition can be found at
[52].

Figure 2.2: Examples of some action units extracted from CK+ database [2].

2.3 Conveying Emotions from Facial Expressions

The question is: what differentiates facial expressions from emotions? In the one
hand, facial expressions involve the variations in an individual’s face based on different
muscles. As mentioned earlier, an emotion is a complex psychological state that
involves three distinct components: a subjective experience, a physiological response,
and a behavioral or expressive response. As a result, facial expressions are considered
an expressive response of emotions. This relation between facial expressions and
emotions heavily relies in the Universality Hypothesis. This hypothesis assumes
that certain facial expressions are signals of six basic emotional states (happiness,
sadness, anger, fear, surprise and disgust) that are recognized by people everywhere,
regardless of culture or language. The truth of this hypothesis has remained one of
the longest standing debates in the biological and social sciences. One example of

13



2 Towards Emotional Intelligence: History and Theory

such is the disclaim made by Jack et al. [53] which is supported by the result of a
survey targeting different cultural groups. Despite these claims, implementations of
these methods have shown decent level of generalization and accuracy, which is the
reason a generalized solution to recognizing emotions is possible. One of the main
contributions to this relation between facial expressions and emotions was developed
by Ekman and Friesen, called Emotion FACS (EMFACS) [54], which scores facial
actions relevant for the six basic universal emotions. This can be considered an
hybrid of descriptive and judgmental coding schemes.

2.4 Emotion Recognition through Machine Learning

The previous sections showed how psychology describes an approach to perform
Emotion Recognition. Nevertheless, from the perspective of a human, this task
may seem feasible after some training, but it is laborious when it comes to its
formalization. There is a big gap between the visual features that can be captured
through a camera (in the format of pixels) and the required processed attributes
that are used in Emotion Recognition (Landmarks and AUs).

To overcome this problem, in the past the algorithms used visual hand-crafted
features, such as Dense SIFT or Histogram of Oriented Gradients (HOG). More
recently, Deep Learning enables to automatically infer a hierarchy representation of
this visual information. One of the main methods for doing so is what is known as
Convolutional Neural Networks (CNNs), a subclass of Neural Networks inspired by
the study of the visual cortex in the brain [55]. The visual information would be
encoded into a hierarchy through the layers, with the first layers encoding low-level
features such as edges, while later layers can build high-level features such as eyes or
mouth.

In the same manner solutions for the task of image classification have to handle
a wide variety of objects within each category, an emotion classifier has to handle
how different the face of each person can be. There are some instances of CNNs for
emotion recognition that have shown competitive results. Burkert et al. [56] achieves
high accuracies in the datasets of Extended Cohn-Kanade (CK+) and MMI Facial
Expression Database (99.6% and 98.63%, respectively). It is worth mentioning that
this solution relies on individual images. It can be used in these video datasets since
the emotions are shown from neutral (first frame) to the highest peak of the emotion
(last frame). They simply pick the first frame as a neutral emotion and the last
frames as the labeled emotion.

The learning process of the emotions can be tackled from two different perspectives.
On the one hand, an approach could be to train the network to detect those
characteristics that are known to be related to emotional states, mainly the FACS
[49] system. On the other hand, one could ignore all the domain knowledge about
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Emotion Recognition, and let the machine learn the most suitable features that
determine an emotion. Either approach can be equally valid, since recent research has
shown strong correlation between both methods. Khorrami et al. [3] experimented
on whether deep neural networks learn Facial Action Units when doing Expression
Recognition, and the results in Figure 2.3 show that CNNs trained to do emotion
recognition model high-level features that strongly correspond to Facial Action
Units.

Figure 2.3: Sample of the learned features by a CNN when performing emotion recognition. From
left to right, maximally activating images of fear, disgust, sadness, happiness, and
surprise. For instance, note how in the case of surprise, there is a strong activation
when subjects have their mouths open, which corresponds to AU 27. Adapted from [3,
p. 25].
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3 Chapter 3

Facial Feature Extraction

This chapter provides an explanation of the techniques and building blocks that
will be used for developing a system that automatically infers facial features of
an individual from visual footage. There are two main approaches for this task.
On the one hand, there is Automatic Facial Expression Recognition, which relies
on prior knowledge, adopting concepts from the study of Human Psychology and
Neuroscience. On the other hand, there are 3D Convolutional Neural Networks,
which are a subclass of CNNs applied to analyzing visual imagery while also capturing
the motion information encoded in multiple adjacent frames.

3.1 Automatic Facial Expression Recognition

There are three main steps when tackling the problem of Automatic Facial Expression
Recognition:

1. Face localization in the image

2. Feature extraction from the face

3. Classification/Regression from facial features

For each of these steps, a state-of-the-art technique is applied. King [57, 58] is the
author of the face detector that can be found in the dlib library. Baltrus̆aitis et al.
proposed Constrained Local Neural Fields (CLNF) for robust facial landmark detec-
tion in the wild [7], and also Cross-dataset learning and person-specific normalisation
for automatic Action Unit detection [59].

3.1.1 Constrained Local Model

CLNF uses what is known as Constrained Local Model (CLM) framework, so it
is briefly explained in this section. CLM was coined by Cristinacce and Cootes
[5], and it is a class of methods for modelling deformable objects that posses a
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distinct set of features (see Figure 3.1). This can be applied to a setting in which
there is a face (deformable object) and one wants to detect the facial landmarks
(features).

Figure 3.1: Given a detected object on the image (left), a set of features locations are predicted
(middle) and a "response image" R(x) is generated for each location (right) [4].

It all starts by providing an estimate on where the location of the features are within
the image. In the case of the face, a template of the landmarks seen from a frontal
view over the area from a face detector is the first estimate. This is adjusted through
multiple iterations until convergence (see Figure 3.2). The overall workflow can be
subdivided in three main components: a point distribution model, patch experts and
a fitting approach.

Figure 3.2: CLM Search Algorithm [5, p. 5].

Point Distribution Model

The point distribution model (PDM) represents the mean geometry of a shape through
a set points, which are inferred after performing training from a set of labeled shapes.
In our particular case, it models the location of facial landmarks in the image using
a non-rigid shape and rigid global transformation parameters1.

1In geometric terms, rigid parameters belong to the types of transformations that do not change
the shape of an object, while nonrigid parameters do.

18



3.1 Automatic Facial Expression Recognition

The location of the ith landmark is represented as xi = [xi, yi, zi]T and controlled
through the parameters of the PDM:

xi = s ·R2D · (x̄i + Φiq) + t (3.1)

where x̄i is the mean value of the ith landmark, Φi is a 3×m principal component ma-
trix, q is an m dimensional vector of parameters controlling the non-rigid shape. The
rigid shape parameters can be defined using 6 scalars: a scaling term s, a translation
t = [tx, ty]T , and an orientation w = [wx,wy, wz]T . Rotation parameters w control
the rotation matrix R2D (the first two rows of the 3×3 rotation matrix R). Thus, the
shape parameters can be described by the vector p = [s, t, w, q].

Patch Experts

Patch experts evaluate the probability of a landmark being aligned at certain pixel
location. There is one patch expert per landmark, and the response of the ith patch
expert πxi

at the location xi in the image I is defined by:

πxi
= Ci(xi; I),

where Ci is the regressor for the ith landmark, and its output can be modelled using
values from 0 (no alignment) to 1 (perfect alignment).

There have been multiple methods proposed as patch experts, but the most popular
for a long time has been a linear Support Vector Regressor (SVR) in combination
with a logistic regressor [60, 61]. An example of its response maps can be seen in
Figure 3.3.

Figure 3.3: Logistic regressor response maps of three patch experts: (A) face outline, (B) nose ridge
and (C) part of chin. The red cross represents the ground truth position. Adapted from
[6, p. 1].
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Fitting Approach

The fitting approach is used to estimate the optimal rigid and non-rigid parameters
p∗ that fit the underlying image best:

p∗ = argmin
p

[R(p) +
n∑
i=1

Di(xi; I)],

where R is a penalization term for overly complex models or unlikely shapes and Di

is the measurement of misalignment of the ith landmark. After an initial estimate p0
is provided, an update parameter ∆p it’s required for approaching optimal solution
p∗:

p∗ = argmin
∆p

[R(p0 + ∆p) +
n∑
i=1

Di(xi; I)]

There is a variety of fitting strategies applied to CLMs, but a popular technique is
the Regularised Landmark Mean Shift (RLMS) [60]. It uses the least squares method
to fit the following function2:

p∗ = argmin
∆p

(||p0 + ∆p||2∧−1 + ||J∆p0 − v||2), (3.2)

where J is the Jacobian of the landmark locations respect to the parameter vector
p; ∧−1 is the prior matrix of the parameter p, in such a manner that the non-rigid
parameters follow the Gaussian distribution N (q|0,∧) and the rigid parameters
follow a uniform distribution; and v = [v1, ..., vn]T is the mean-shift vector over the
patch responses using a Gaussian Kernel Density Estimator:

vi =
∑
yi∈Ψi

πyi
N (xci |yi, ρI)∑

zi∈Ψi
πzi

(xci |zi, ρI) − x
c
i

Finally, the update rule is derived using Tikhonov regularised Gauss-Newton method
and it is computed iteratively until convergence3:

∆p = −(JTJ + r∧−1)−1(r ∧−1 p− JTv)
2|| · ||W refers to a weighted l2 norm.
3r is the regularisation term.
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3.1.2 Constrained Local Neural Field

The Constrained Local Neural Field (CLNF) model is an instance of the CLM
framework that includes a novel Local Neural Field (LNF) patch expert and a novel
Non-uniform RLMS fitting technique. CLNF outperforms other state-of-the-art
techniques when estimating landmarks in unseen lighting conditions and in the wild
settings. The content of this section significantly relies in the theory that can be
found in Baltrus̆aitis’ PhD thesis [62].

Figure 3.4: Overview of the CLNF model (showing only three patch experts) [7, p. 1].

Local Neural Field patch expert

One of the issues of CLM models is that the prevailing patch experts bottleneck the
performance of the landmark detection in complex settings. It is primarily because
linear SVRs or logistic regressors fail to learn non-linear relationships between pixel
values and response maps. For instance, they are capable of real-time tracking but
perform very poorly on illumination-invariant landmark detection. Furthermore,
the alternative more complex methods (such as RBF kernel SVRs) are too slow
(under one frame-per-second), which limits their usage and training time on big
datasets.

To solve these issues, Baltrus̆aitis et al. introduced the Local Neural Field (LNF)
patch expert, which combines the non-linearity of Conditional Neural Fields [63]

21
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with the flexibility and continuous output from Continuous Conditional Random
Fields [64]. LNF captures two types of spatial relationships: similarity (pixels nearby
should have similar alignment probabilities) and sparcity (only one peak in the whole
area of a patch expert). This can be seen in Figure 3.5 when comparing the two
variants of LNF to SVR.

Figure 3.5: Sample of the response maps from four patch experts using different response techniques.
Notice the noisiness of the SVR patch expert when compared to LNF. Also, adding edge
features leads to a smother response [7, p. 2].

The model training consists of a set of observations X = {x1, x2, ...xn} and a set of
ground truth landmark locations y = {y1, y2, ...yn}, where xi ∈ Rm represents the
vector of pixel intensities in a patch expert region (e.g. m = 121 for an 11 × 11
support region), and yi ∈ R is a scalar prediction at location i. The process will now
be explained through its components.

First, the LNF model is an undirected graph that models a conditional probability
distribution with the following probability density:

P (y|X) = exp(Ψ)∫∞
−∞ exp(Ψ)dy (3.3)

where
∫∞
−∞ exp(Ψ) is a normalization function for the probability distribution, making

it sum to 1. Second, the kernel of the model is defined as follows:

Ψ =
∑
i

K1∑
k=1

αkfk(yi, X, θk) +
∑
i,j

K2∑
k=1

βkgk(yi, yj) +
∑
i,j

K3∑
k=1

γkgk(yi, yj) (3.4)

where α = {α1, α2, ..., αK1}, θ = {θ1, θ2, ..., θK1}, β = {β1, β2, ..., βK2}, γ = {γ1, γ2, ...
, γK3} are the learned parameters. There are three individual kernels within the kernel
function: vertex features fk, edge features gk and edge features lk.
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fk(yi, X, θk) = −(yi − h(θk, xi))2 (3.5)

h(θ, x) = 1
1 + exp(−θTx) (3.6)

gk(yi, yj) = −1
2S

(gk)
i,j (yi − yj)2 (3.7)

lk(yi, yj) = −1
2S

(lk)
i,j (yi + yj)2 (3.8)

Vertex features fk represent a 1-layer CNN that maps the input xi to output yi, and
θk is the weight vector for a particular neuron k.

Edge features gk represent the similarities between observations yi and yj, enforcing
smoothness on connected landmarks through the neighborhood measure S(gk). In
particular, S(g1) returns 1 when two nodes i and j are horizontal/vertical neighbors
in a grid, and 0 otherwise. S(g2) returns 1 when two nodes i and j are diagonal
neighbors in a grid, and 0 otherwise.

Edge features lk represent sparsity constraints. For instance, it penalizes the model
when both yi and yj are high, but it’s not penalized when both are zero. This
has the unwanted consequence of slightly penalizing yi for just being high, but
the penalization is way bigger when both are high. The neighborhood measure
S(lk) allows to define regions where sparsity is enforced, in such a manner that the
neighborhood region S(l) returns 1 when two landmarks i and j are between 4 and
6 edges apart in a grid layout, and 0 otherwise. These bounds have been shown
empirically to work best.

Finally, the parameters {α, β, γ, θ} are estimated such that they maximize the
conditional log-likelihood of LNF on the training sequences:

L(α, β, γ, θ) =
M∑
q=1

logP (y(q)|x(q)) (3.9)

(ᾱ, β̄, γ̄, θ̄) = argmax
α,β,γ,θ

(L(α, β, γ, θ)) (3.10)

It is worth mentioning that the probability density function (Equation 3.3) is
converted into a multivariate Gaussian form because it helps with the derivation
of the partial derivatives of Equation 3.9. For the sake of brevity, the reader is
referred to [62, Chapter 6, Section 1.2] for the full explanation on this conver-
sion.
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Non-uniform Regularised Landmark Mean Shift

One of the problems inherent from the fitting performed in CLMs is that each
patch expert is equally trusted. This is specially problematic when the output of
certain response maps are noisy, such as the SVR response maps in Figure 3.5.
To tackle this issue, CLNF uses a simple modification to CLM’s objective func-
tion:

argmin
∆p

(||p0 + ∆p||2∧−1 + ||J∆p0 − v||2W ), (3.11)

where W is the diagonal weight matrix representing the trust on each patch expert.
Notice that when comparing to RLMS in Equation 3.2, this formula is exactly the
same when W is an identity matrix. Then Tikhonov Regularization is applied to the
update rule:

∆p = −(JTWJ + r∧−1)−1(r ∧−1 p− JTWv) (3.12)

Finally, to construct W the correlation coefficients are calculated using holdout
validation separately for each view and scale.

3.1.3 Head Pose Estimation

The estimated facial landmarks can be used to estimate the head pose. This
is done by using a 3D representation of these and projecting them to the im-
age using orthographic camera projection, solving a Perspective-n-Point problem
[65].

Figure 3.6: Visualization of landmarks and head pose estimation.
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3.1.4 Action Unit Recognition

As it was described in Chapter 2, AUs can be recognized from facial landmarks.
Nevertheless, recent work has shown better performance when landmarks only assist
in face alignment while texture features are used for AU detection. Baltrus̆aitis et al.
[59] published a real-time AU intensity estimation and occurrence detection system
based on Histogram of Oriented Gradients. By using CLNF for landmark estimation,
it has been shown to outperform the Facial Expression Recognition and Analysis
challenge (FERA) 2015 [17] baselines. An overview of the system can be seen in
Figure 3.7, and is briefly explained below.

Figure 3.7: Overview of the AU detection or intensity estimation pipeline.

In order to analyze the texture of the face, this needs to be mapped into a common
reference frame to avoid useless variance inherent from position and rotation with
respect to the camera. This can be done by applying a similarity transform from
the currently detected landmarks to a representation of frontal landmarks in a
neutral expression. This was done by applying the Procrustes superimposition that
minimized the mean square error between aligned pixels, using only a subset of
landmarks that are the most stable ones across all facial expressions (these are
the ones located at the nose, under the eyes and by the sides of the face). Finally,
masking is applied to remove non-facial information using convex hull surrounding the
aligned landmarks. The result is a 112× 112 pixel image with 45 pixel interpupilary
distance.

To extract appearance features the author applies Histogram of Oriented Gradients,
using blocks of 2× 2 cells of 8× 8 pixels, resulting in 12× 12 blocks of 31 dimensional
histograms. At the end, there is a 4464 dimensional vector describing the face. Princi-
pal Component Analysis (PCA) is applied to reduce the dimensionality down to 1379
dimensions after using a wide variety of facial expression datasets: CK+ [11], DISFA
[66], AVEC 2011 [19], FERA 2011 [18], and FERA 2015 [17]).

In addition to appearance features, a set of geometry-based features from CLNF are
extracted. In specific, the non-rigid shape parameters q (representing the top 23
dimensions, responsible for 95% variance in the training landmark data) and landmark
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locations from Equation 3.1. As a result, there are an additional 23 + 3× 68 = 227
dimensions.

Since neutral expressions vary between individuals, it is sometimes mistaken with
showing certain emotion. For instance, some people are more smiley or more
frowny even though their faces are at rest [67]. For this reason, the descriptors are
normalized per sample, by subtracting the median value of the face of the person in
the video.

Finally, Support Vector Machines (SVM) is used for AU occurrence detection and
Support Vector Regression (SVR) is used for AU intensity estimation. The kernels
used are linear, since complex kernels do not improve performance while significantly
slowing down the training process.

3.2 Automatic Feature Construction

The previous section explained a technique which targets the modeling of an emo-
tion classifier based features developed from the study of emotions in the field of
psychology. This section will explore an alternative that does not use any domain
knowledge for constructing these models. It will focus on explaining 3D Convolutional
Neural Networks (3D CNNs), and for brevity it is required that the reader already
understands the notion of standard CNNs despite a brief introduction being provided
below.

3.2.1 3D Convolutional Neural Networks

In the last couple years, CNNs have become the de facto technique for a wide
range of Computer Vision tasks. This is due to their large performance margin
they exhibit with respect to other methods and their capacity for constructing a
hierarchical representation of visual footage. Early layers in the network learn to
identify small components such as edges, while layers close to the output can identify
entire objects. This learned representation can be demonstrated through a process
of deconvolution [68], which allows to visualize which features are learned on each
layer of the network.

The main limitation of CNNs is that they only consider spatial information at
individual frame level. Tasks in Computer Vision that involve video feed do not
adapt so well when using CNNs, since they do not take into account implicit motion
data. It is for this reason that Ji et al. introduced 3D CNNs for human activity
recognition [69], which captures motion information encoded in multiple adjacent
frames.
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Figure 3.8: 2D and 3D convolution operations. (a) Applying 2D convolution on an image results in
an image. (b) Applying 2D convolution on a video volume (multiple frames as multiple
channels) also results in an image. (c) Applying 3D convolution on a video volume
results in another volume, preserving temporal information of the input signal [8].

The core difference between 2D and 3D CNNs relies on how convolution and
pooling are performed. In addition to CNNs exploiting spatial neighborhood be-
tween pixels, 3D CNNs utilize temporal neighborhood among frames (see Fig-
ure 3.8). More formally, the resulting pixel from a 2D convolutions can be described
as:4

yij =
m−1∑
a=0

n−1∑
b=0

wabx(i+a)(j+b) (3.13)

where wij is the value at the position (i,j) from a kernel of size m× n, and xij is the
pixel at position ij in the input image. In contrast, the formula of 3D convolutions
is:

yijk =
m−1∑
a=0

n−1∑
b=0

p−1∑
c=0

wabcx(i+a)(j+b)(k+c) (3.14)

where wijk is the value at the position (i,j,k) from a kernel of size m× n× p, and
xijk is the pixel at position ij in the frame k in the input video. The same concept
is applicable when comparing 2D and 3D pooling.

3.2.2 C3D

One of the tasks in which 3D CNNs have been proven very successful is in classification
of videos. In particular, Tran et al. [8] proved the effectiveness of their C3D architec-
ture by outperforming all previous state-of-the-art methods in 4 different benchmarks.
They were also the first ones to empirically prove that 3D CNNs were more suitable
for spatio-temporal feature learning compared to CNNs.

The architecture of the network can be seen in Figure 3.9. It consists of 3× 3× 3
convolution kernels, 8 convolution layers, 5 pooling layers, followed by two fully
connected layers, and a softmax output layer. The training was done on the Sports-1M
[70] dataset.

4In CNNs, a non-linearity such as tanh is also present
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Figure 3.9: C3D network architecture. All convolution kernels are 3×3×3, while all pooling kernels
are 2× 2× 2 except for pool1, which is 1× 2× 2. The stride in all dimensions is 1 [8].

3.2.3 Transfer Learning for Emotion Recognition

The C3D architecture is used for the variant of Syna which is based on Automatic
Feature Construction. Unfortunately, given the depth of the architecture and the
limited amount of emotion data available in video format, it is unrealistic to try
training the network from scratch. One could argue that reducing the depth of the
network can help reducing the needed data, but even by doing so the data is still
too limited. C3D was trained over a million videos, while in the case of emotions
there are only sequences of hundreds taking into account all the datasets used in
this thesis.

To solve this issue, the usage of transfer learning [71] is explored. The pre-trained
C3D model on the Sports-1M dataset is used, removing the last fully connected
layers in charge of the classification. Therefore, the 4096 intermediate output features
are passed to the temporal classification step in the pipeline. During training, the
gradients of classification are not back-propagated to C3D, again because of data
scarcity. Thus, the training process will focus on learning how to handle C3D output
features to predict emotions.
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4 Chapter 4

Temporal Classification

The previous chapter explained the methodology for extracting facial features, which
corresponds to the first stage of the pipeline implemented on this thesis. CLNF
relies on domain knowledge and is limited to spatial information, while C3D is a
general method for capturing spatial and short-term temporal information from
image sequences. Without regard to which of these techniques is used, the last steps
of the pipeline remain the same. In particular, they capture the temporal information
present in the sequence of features provided by CLNF and C3D, and infer a final
emotion category for the entire sequence. It is in this domain where a particular
class of Machine Learning techniques is useful for dealing with sequence information,
capturing both short and long-term relationships in the data.

4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of Neural Networks specialized in
sequential processing. While in Feed-Forward Neural Networks the inputs and
outputs are fixed in size and independent among samples, RNNs’ inputs and outputs
can be of arbitrary size and depend on previous observations. In other words, the
training/inference step t depends also on step t − 1, and subsequently on every
previous step (see Figure 4.1). This enables RNNs to capture temporal correlations
in the form of using the weights as a mechanism for persistence.

Figure 4.1: The unfolding in time from a recurrent neural network during forward computation [9].
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One of the main issues that emerged when using RNNs is what is know as the
vanishing gradient problem [72]. In Feed-Forward Neural Networks, the effects of
this phenomenon increase as the number of hidden layers in the model increase. In
RNNs, this becomes even more problematic given the backpropagation through time
(BPTT), which makes each layer backpropagate within itself and thus making the
gradient vanish at a greater pace. In other words, in Feed-Forward Neural Networks,
the gradient is propagated back to the input of the model, while in RNNs the gradient
is backpropagated both within the same neuron to previous timesteps, and also
to the previous layers. This limited the usage of RNNs until better architectures
supporting BPTT were developed. Britz et al. [73] provide a detailed explanation of
both RNNs and the vanishing gradient problem.

4.2 Long Short-Term Memory

To solve the gradient short-comings of RNNs, Hochreiter et al. introduced a new
method titled Long Short-Term Memory [74]. While in RNNs the repeating module
has a very basic structure (usually just a tanh layer), LSTMs posses a more complex
structure.

Figure 4.2 depicts an overview of the repeating structure in LSTMs. From the
perspective of the data interacting in this unit, Ct is the cell state acting as memory,
ht represents the output of the module and Xt represents the input. There are four
main computational steps within the module, which will be described from left to
right.

Figure 4.2: The repeating module in LSTMs, where blue circles represent input/outputs of the
module at timestep t, yellow rectangles represent neural network layers and pink circles
represent pointwise operations [10].

The first component in the LSTM is the "forget gate" and determines the information
that is desired to be thrown away from the cell state, and it’s modelled according
to:
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4.3 Capturing Temporal Features in Emotions

ft = σ(Wf · [ht1 , xt] + bf ) (4.1)

where Wf represents the learned weight parameter, ht1 is the previous output, xt is
the new input and bf is the learned bias parameter.

The second component decides what new information needs to be added to the cell
state. This is further subdivided into two main parts: the "input gate" decides the
values to be updated (using a sigmoid to determine from 0 to 1 how much each value
should be updated), while the tanh layer creates a vector of new candidate values C̃t.
Combining these two with a pointwise multiplication allows us to create a cell state
update. This whole process can be formalized as:

it = σ(Wi · [ht1 , xt] + bi) (4.2)

C̃t = tanh(WC · [ht1 , xt] + bC) (4.3)

The first and second components are applied to the cell state Ct1 in order to
generate the new cell state Ct. First, it is multiplied by ft forgetting what is
considered unnecessary, and then the new candidate values scaled according to how
much each state value should be updated are added. The resulting new cell state
is:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.4)

Finally, the output of the unit is computed. This output represents a filtered
version of the cell state, and the applied filter becomes another parameter to be
learned:

ot = σ(Wo · [ht1 , xt] + bo) (4.5)

ht = ot ∗ tanh(Ct) (4.6)

4.3 Capturing Temporal Features in Emotions

For the task of determining the emotion shown in a video, one could think that
the straightforward approach could be to just calculate the average emotion among
frames. This wouldn’t work in most cases, since the shown emotion usually lasts
for a very short period of time in comparison with the neutral expression. This
makes habitual image-based methods such as CNN inapplicable directly to the task
at hand.
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4 Temporal Classification

The application of capturing temporal information in the task of emotion recogni-
tion is two-folded. First, it can hypothetically enable constructing a model which
automatically reports a single prediction for the entire sequence of images. Second,
it can use the implicit temporal information that is present in the video sequence.
One can easily hypothesize on how this implicit information can be useful for a
learning algorithm. Emotions do not appear and disappear instantaneously, they
emerge and fall through a short period of time. This motion can help identify key
emotions further from still images. For instance, the evolution of the face from a
neutral expression to being happy has a very specific pattern (see Figure 4.3). Also,
some emotional expressions appear more spontaneously than others, such as the case
of a surprise.

Figure 4.3: Temporal pattern embedded in the expression of happiness [11].

Therefore, LSTMs are used for capturing this temporal dependencies present in
evolution of emotions through time. The input facial features depends on the
technique used for facial feature extraction, which at the same time varies the
suited hyperparameters of the LSTM. Hypothetically, the LSTM will enhance the
classification when the evolution of the input facial features corresponds strongly with
the learned evolution of certain emotion. It is also important to notice that LSTMs
have the capacity of providing real-time predictions (after each frame), which also
enables the system to perform live prediction. Last, a fully-connected layer together
with a softmax layer provide probabilities for the estimated emotions. A diagram of
the proposed temporal classifier can be seen in Figure 4.4.

Softmax Function

Facial 
Features

LSTM Dense Layer

Emotion

Figure 4.4: Diagram of the proposed temporal classifier. An LSTM layer captures the temporal
information, while the fully-connected layer and softmax function provide the emotion
estimates.
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5 Chapter 5

Spatio-Temporal Emotion
Recognition

This chapter explains the two new approaches used in this thesis. Chapters 3, 4
described that the system is divided in two main parts: a facial feature extractor and a
temporal classifier. Figure 5.1 depicts the main diagram of the architecture. The two
new approaches share the same face detector [58] and temporal classifier described in
Section 4.3, but differ in how facial features are extracted. It is important to notice
that sharing architecture components does not imply that these share the same
hyperparameters. In other words, the system architectures are the same, but the
hyperparameters used in the learning stages are different, according to the different
extracted features of these models.

Video

Facial Feature Extraction Temporal ClassificationFace Detection

Emotion

Figure 5.1: The main components of all the variants of Syna. First, the faces are detected from the
frames of the input video. Second, the facial features are extracted from the detected
face. Third, the facial features are classified through time, and an estimate for the
emotion in the entire video is provided.

There is previous work on emotion recognition capturing temporal information. Jung
et al. [75] proposed a combination of two deep neural networks: a deep temporal
appearance network and a deep temporal geometry network. The former is based on
3D CNNs applied to cropped faces for detecting facial movements, while the later is
a DNN that tracks the trajectories of facial landmarks. More similar to the approach
employed in this work, Fan et al. [76] proposed an hybrid network with two main
parts. The first one captures visual feed through two pipelines, one using CNN-RNN
and the other 3D CNN. The second is in charge of capturing audio features using
an SVM. The prediction from the three models is later used to build an hybrid



5 Spatio-Temporal Emotion Recognition

classifier which predicts the emotion. Unlike the previous work, Syna and DeepSyna
are composed of a single pipeline model.

5.1 Syna

Video

CLNF Facial Landmarks

Softmax Function

Emotion

LSTMDense Layer

Face Detection

Intermediate Features

Figure 5.2: System diagram of Syna. The detected faces in each frame are fed to CLNF, from
which the facial landmarks are extracted. Then, these landmarks are used for capturing
intermediate features: either normalized landmarks, AU occurrences or AU intensities.
These intermediate features are later feed into the temporal classifier.

The first variant of the system uses the methods described in Section 3.1 for au-
tomatic facial expression recognition. To avoid confusion, this particular variant
will be referred to as Syna from here on. The cropped face is feed into CLNF
which outputs the landmark estimates. These landmarks are further processed
into intermediate features, which can be normalized landmarks, AU occurrences or
AU intensities. These intermediate features are finally feed into the LSTM and a
final 1-fully-connected layer with a softmax function that provides the final emotion
classification. All three intermediate feature alternatives are explored, as described
below.
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5.1 Syna

Normalized facial landmarks as intermediate features The straightforward fea-
ture to be used are the facial landmarks produced by CLNF (see Figure 5.3). These
landmarks are provided in camera coordinates, which introduces a lot of useless
variance in the data, depending on where the person is located with respect to
the camera lens. To tackle this issue, one can convert the camera coordinates into
local coordinates with respect to the head pose. This can be done by using the
facial landmarks to estimate the head pose as described in Section 3.1.3, and then
converting the landmarks to local coordinates. Figure 5.3 illustrates a diagram of
this process.

Normalized 
Landmarks

Facial Landmarks Landmark Normalization

Head Pose Estimation

Figure 5.3: Facial Feature Extraction system diagram based on facial landmarks intermediate as
features.

Action Units’ Occurrence as intermediate features The second alternative is to
use the AU occurrences metric as intermediate feature (see Figure 5.4). It follows the
method described in Section 3.1.4, using an SVM as classifier.

Facial Landmarks Action Unit Recognition SVM

Action Unit 
Occurrence

Figure 5.4: Facial Feature Extraction system diagram based on AU occurrences as intermediate
features.
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5 Spatio-Temporal Emotion Recognition

Action Units’ Intensity as intermediate features The third and last intermediate
feature under test is the intensity of AUs (see Figure 5.5). Again, it follows the
method explained in Section 3.1.4, but in this case an SVR is applied to retrieve
intensities instead of occurrences.

Facial Landmarks Action Unit Recognition SVR

Action Unit 
Intensity

Figure 5.5: Facial Feature Extraction system diagram based on AU intensities as intermediate
features.

Normalization of the data prior to applying the learning algorithm is often essential
to improve the overall training performance. This improvement affects both training
convergence and accuracy [77]. For this reason, Gaussian Normalization is applied
so the intermediate features (landmarks, AU occurrences and AU intensities) range
from −1 to 1 with unit standard deviation. Finally, these intermediate features are
feed to the temporal classifier explained in Section 4.3.

5.2 DeepSyna

The second variant of the system, referred to as DeepSyna, uses the methods described
in Section 3.2 for automatic feature construction. In specific, it uses the pre-trained
C3D model. A diagram of this system can be seen in Figure 5.6. The detected face is
frontalized using the method described in [78]. Next, the pixel values are normalized
to the range [−1, 1] with unit standard deviation and the frames are pre-processed
for C3D input. This pre-processing involves zero padding the sequences so they fit
the 16-frame architecture, subtracting the mean cube and center-cropping the image
to 112× 112 format. Next, 3D convolutions are applied as explained in Section 3.2.2,
and the 4096 intermediate features are feed to the LSTM. Finally, as in Syna the
output of the LSTM is feed to a 1-fully-connected layer with a softmax function as
output for the emotion prediction.
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5.2 DeepSyna

Video

Face Frontalization Gaussian Normalization

C3D Preprocessing3D ConvolutionLSTM

Dense Layer Softmax Function

Emotion

Face Detection

Figure 5.6: System diagram of DeepSyna.
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6 Chapter 6

Experiments

6.1 Emotion Datasets

For the experiments of this thesis, the data used for training the systems need a set
of prerequisites. The features in the data need to be 4-dimensional (3 dimensions
from RGB images and the fourth being time). The labels must model the Categorical
Model of Affect [36] representing the 7 basic emotions (happiness, sadness, fear,
anger, contempt, disgust and surprise) plus a neutral expression, with a single label
per video.

According to what was described in Chapter 3, some modules of the pipeline are
pre-trained using other datasets. For the fairness of these experiments, I certify that
no other emotion-labeled datasets have been used apart from the ones described
in this section. In total, two different datasets were gathered and are described
below.

6.1.1 Extended Cohn-Kanade Dataset

The Extended Cohn-Kanade Dataset (CK+) [11] is used as first step to determine
whether the hypothesized system is feasible for the task of emotion recognition. This
is a dataset that is setup in a strongly constrained environment, with the subject
facing the camera and emotions being shown from neutral (first frame) to the highest
peak of the emotion (last frame). There is a total of 327 videos1 and the data is
divided into 1-6 sequences from 123 subjects (university students) having the age
range 18-30 and most of them being females.

1In reality, there are 593 videos, but only 327 are labelled with emotions.
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Figure 6.1: Samples extracted from CK+ database [11].

6.1.2 Acted Facial Expressions in the Wild database 6.0

The Acted Facial Expressions in the Wild database (AFEW) 6.0 is the dataset
involved in the EmotiW [12] challenge. It contains audio and video short clips
labeled using a semi-automatic approach defined in [79]. As its name indicates,
the feed represents an in-the-wild setting, with extreme head-pose and lighting
conditions.

The huge variance introduced in this dataset makes most models easily overfit.
When exploring winning solutions of previous years [76, 80], they all use additional
datasets for pre-training the models. Within this thesis, AFEW is used to deter-
mine how feasible are Syna and DeepSyna in an environment of extreme visual
difficulty.

Figure 6.2: Samples extracted from AFEW database [12].
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6.2 Training

Table 6.1: Attributes of AFEW database [79].
Attribute Description

Length of sequences 300-5400 ms
No. of sequences 957
No. of annotators 1

Expression classes Angry, Disgust, Fear, Happy,
Neutral, Sad and Surprise

Total No. of expressions 1259 (some seq. have multiple subjects)
Video format AVI

6.2 Training

The model validation technique used in this thesis is Stratified K-fold Cross-validation
for CK+ and train/test split in AFEW. Stratified K-fold in particular overcomes
the differences in size of data depending on the displayed emotion. The used loss-
function is the categorical cross entropy with an Adam optimizer [81] for learning
parameters.

In reference to hyperparameter settings, Bayesian Global Optimization [82] is used
as a mean to automate the entire tunning process. The hyperparameters required in
the models are the number of hidden LSTM units, learning rate, learning rate decay
and number of training iterations. In the following section, this process is described
in detail.

Automatic Hyperparameter Tuning: Bayesian Global Optimization

There is particular interest in automatic approaches that can optimize the hyper-
parameters to the problem at hand. A good choice for achieving this is Bayesian
optimization [83], which has been shown to outperform other state-of-the-art tech-
niques [84].

In recent years, Jasper et al. [82] explain how to practically apply Bayesian Opti-
mization methods for performing hyper-parameter tuning. This technique has been
shown to be highly effective in different areas of machine learning. The results show
significant speed-up with respect to other methods, and surpassed the state of the
art in data sets such as CIFAR-10.

Optimization techniques tend to have the final goal of minimizing a given function
f(x), but what makes Bayesian optimization different is the fact that it constructs
a probabilistic model of f(x) while taking into account the uncertainty. The opti-
mization usually works by assuming an unknown function sampled from a Gaussian
process and maintains a posterior distribution of this function as observations are
made.
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A Gaussian process (GP) is a prior distribution of functions in the form f : X → R.
A GP is defined by the property that any finite set of N points {xn ∈ X}Nn=1 induces
a multivariate Gaussian distribution on RN . These models assume that similar
inputs give similar outputs. For completeness, Ramussen and Williams [85] provide
an explanation in more detail about GPs.

In the case of hyper-parameter optimization, the hyper-parameters are chosen such
that the improvement with respect to the best setting seen so far is big. The
process can be formalized in a set of steps, and understood easier with a single
hyper-parameter (See Figure 6.3).

Figure 6.3: Illustration of the Bayesian optimization procedure over three iterations. The plots show
the mean and confidence intervals estimated with a probabilistic model of the objective
function. Although the objective function is shown, in practice, it is unknown. The
plots also show the acquisition functions in the lower shaded plots. The acquisition is
high where the model predicts a high objective (exploitation) and where the prediction
uncertainty is high (exploration). Note that the area on the far left remains unsampled,
as while it has high uncertainty, it is correctly predicted to offer little improvement over
the highest observation [13].

First, an objective function and an acquisition function are defined. The objective
function f : X → R will react to the hyper-parameter setting and it is consid-
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6.2 Training

ered to be Gaussian distributed. The acquisition function a : X → R+ determines
the strategy to maximize the probability of improving over the best current value.
Expected Improvement (EI) has been shown to be better-behaved than other met-
rics.

aEI(x ; {xn, yn}, θ) = σ(x ; {xn, yn}, θ) (γ(x) Φ(γ(x)) +N (γ(x) ; 0, 1)) (6.1)

Second, a set of points are sampled from the objective function and an update is
applied to fit the GP. As it can be seen in Figure 6.3, the variance of the GP decreases
around the known points, acting as the uncertainty measurement. On the other
hand, the EI decreases in those points.

Third, the point with the highest EI is selected. The objective function is applied
and the GP is updated, repeating the process with certain convergence tolerance and
then returning the best solution. There has been recent research on how to determine
this convergence rate [86], and in general different settings in negative factors of 10
(10−n) plus a given evaluation timeout results most practical.
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7 Chapter 7

Results

This chapter shows the results of Syna and DeepSyna on the two datasets. In
Sections 7.1 and 7.2, the reader can find detailed results for the training and prediction
processes on both datasets. All the results shown here can be reproduced by using
the code available at Syna’s official Github repository [87].

7.1 Extended Cohn-Kanade Dataset

Table 7.1 describes the results of applying Bayesian Global Optimization to the
model’s hyperparameter space. These hyperparemeter settings are used to describe
the results achieved on each system.

Table 7.1: Results of applying Bayesian Global Optimization to the hyperparameters’ space using
the CK+ dataset with 1-layer LSTM.

System / Best hyperparemeters LSTM units learning rate decay epochs
Syna (normalized landmarks) 40 0.0005 0 100
Syna (AU occurrence) 40 0.0005 0 100
Syna (AU intensity) 40 0.0005 0 100
DeepSyna 200 0.0005 0.0001 60

Table 7.2 shows the comparison of Syna and DeepSyna with other techniques,
primarily a baseline and other state-of-the-art methods. It is worth mentioning
that there are other techniques that achieve a higher level of accuracy but they
rely on still images, exploiting the fact that the highest peak of an emotion in CK+
is in the last frame. Thus, these techniques are considered off-topic and are not
mentioned.

The first version of the system errs from the fact that landmarks are not the most
suited features to perform emotion recognition, and the system shows an overall
accuracy of 79%.
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Table 7.2: The comparisons on video face based emotion dataset CK+.

Method 10-fold cross-validation accuracy (%)
3D SIFT [88] 81.4
3DCNN [89] 85.9
3D HOG [90] 91.4

3DCNN-DAP [89] 92.4
STRNN [91] 95.4
DeepSyna 51.1

Syna (normalized landmarks) 79
Syna (AU occurrence) 87.5
Syna (AU intensity) 91.3

When it comes to AU occurrence, the model shows a test loss (and confidence interval)
of 0.62 (+/- 0.30), and test accuracy (and confidence interval) of 87.49% (+/- 5.7
%). These values show that the emotions are well modelled and there is low variance
in the classification performance. Figure 7.1 depicts the loss and accuracy curves
when training over the number of epochs. It can be seen that both train loss and
accuracy reach optimal half-way through the epochs, while the test loss tends to
overfit after the 15th epoch. Nevertheless, the accuracy stays more or less stable
with a noticeable amount of variance. This can be attributed to the use of Dropout
as regularization technique, which works significantly better when compared to other
techniques (e.g. Holdout). Syna using AU intensity estimates is the best model for
the CK+ dataset. It achieves an overall accuracy of 91.3%. The learning statistics
are very similar to the ones shown when using AU occurrence.

Table 7.3: Statistics on the performance of AU occurrence model tested on the CK+ dataset.
precision recall f1-score support

Angry 0.79 0.69 0.74 45
Contempt 0.75 0.83 0.79 18
Disgust 0.82 0.86 0.84 59
Fear 0.87 0.80 0.83 25
Happy 0.93 0.99 0.96 69
Sad 0.81 0.75 0.78 28
Surprise 0.95 0.96 0.96 83
Average/Total 0.87 0.87 0.87 327

Finally, DeepSyna shows the lowest accuracy1 (51.1%), which is still impressive if
one takes into account the depth of the model, the fact that it is pre-trained in a

1It is worth mentioning that my machine exhausted from memory swapping during Bayesian
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7.1 Extended Cohn-Kanade Dataset

Figure 7.1: Loss (left) and accuracy (right) graphs over consequent epochs for the AU occurrence
model tested on the CK+ dataset.

Figure 7.2: Confusion Matrix for the AU occurrence model tested on the CK+ dataset.

Optimization. Due to the fact that the whole process was halted midway through and took
two days of computation, I decided to simply go with the best result after 15 iterations, which
provides the shown accuracy. There is a possibility to obtain a better accuracy if the whole
process is re-executed in a better machine.
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complete different task, and the small amount of emotion-labeled data present in
CK+.

7.2 Acted Facial Expressions in the Wild database

When it comes to emotion recognition in the wild environments, neither Syna nor
DeepSyna achieve results comparable with state-of-the-art. One of Syna variants does
compete with the baselines of the dataset, while DeepSyna fails to handle the high
variance of the datasets given that it is exclusively trained on AFEW. Table 7.4 shows
the results of applying Bayesian Global Optimization to the model’s hyperparameter
space. Using these hyperparemeters, the following paragraphs describe the results of
each system in detail.

Table 7.4: Results of applying Bayesian Global Optimization to the hyperparameters’ space using
the AFEW dataset with 1-layer LSTM.

System / Best hyperparemeters LSTM units learning rate decay epochs
Syna (normalized landmarks) 71 0.003 9e-05 14
Syna (AU occurrence) 100 0.001 8e-5 100
Syna (AU intensity) 100 0.001 5e-5 100
DeepSyna 74 0.0026 0.0001 89

It is worth mentioning that in the case of AFEW dataset, there is the added feature
of sound. This was not explored in this thesis, which makes the comparison with
other techniques a little bit trickier. The current state-of-the-art for AFEW is Fan
et al. [76], with an accuracy of 59.02%. The model is pre-trained using large image
datasets such as FER2013[92] and also using audio features. All baselines shown in
Table 7.5 share the usage of only video feed.

Table 7.5: The comparisons on video face based emotion dataset AFEW.

Method Validation accuracy(%)
MoPs [93] (video only, AFEW 3.0) 27.5
MoPs [93] (video only, AFEW 4.0) 33.2

LBP-TOP [94] (video only, AFEW 5.0) 36.1
LBP-TOP [12] (video only, AFEW 5.0) 38.8

DeepSyna 16.7
Syna (normalized landmarks) 21.1

Syna (AU occurrence) 26.6
Syna (AU intensity) 27.8
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7.2 Acted Facial Expressions in the Wild database

As it happened with the CK+ dataset, landmarks are not optimal for emotion
recognition. The accuracy of the model provides with just a 21.1%. Using the AU
occurrence, the model tends to overfit the data really fast, with a test loss (and
confidence interval) of 2.09 (+/- 1.20) and accuracy (and confidence interval) of
26.6% (+/- 44.20%). The high variance reflects how the learned features fail to
model the shown emotion, given the high variance induced by the poor lighting
condition and extreme pose variations. Figure 7.4 shows the confusion matrix, where
it can be seen that the model tends to generalize the label of contempt (notice the
vertical line in the predicted label-axis), and it performs best for the emotions of
contempt and happiness. The AU intensity model is once again the best model, with
an accuracy of 27.8%. As it happened with AU occurrence, it over-generalizes the
contempt emotion, and shares very similar statistics in training.

Figure 7.3: Loss (left) and accuracy (right) graphs over consequent epochs for the AU occurrence
model tested on the AFEW dataset.

Table 7.6: Statistics on the performance of AU occurrence model tested on the AFEW dataset.
precision recall f1-score support

Angry 0.28 0.27 0.28 63
Contempt 0.21 0.62 0.32 64
Disgust 0.11 0.03 0.04 40
Fear 0.18 0.04 0.07 46
Happy 0.43 0.59 0.50 63
Sad 0.23 0.08 0.12 61
Surprise 0.00 0.00 0.00 46
Average/Total 0.22 0.27 0.21 383

The high variance in the feed prevents DeepSyna from properly learning any emotions.
In addition to the shortcomings of learning the spatio-temporal features, the face
frontalizer has to also cope with in-the-wild cases, which results in very poor data
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7 Results

Figure 7.4: Confusion Matrix for the AU occurrence model tested on the AFEW dataset.

for intermediate features. It generalizes the contempt emotion even more, giving it
as prediction about 95% of the time. Overall, the accuracy of DeepSyna is 16.7%,
which makes it too close to just random guessing (12.5%) and not comparable with
the baselines. This will be further discussed in Chapter 8.
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8 Chapter 8

Discussion

8.1 Are Syna and DeepSyna worth exploring in
further research?

When I began my thesis, the main goal was to develop a system that could compete
with state-of-the-art techniques in a variety of settings. The idea behind the im-
plementation of Syna was to transform a state-of-the-art technique for single-frame
facial expression analysis (CLNF) into state-of-the-art solution for video emotion
recognition. In the case of DeepSyna, the premise was to use transfer learning from
C3D, which already showed good transferability properties for other tasks [76, 95, 96].
Unfortunately, both approaches failed to beat current state-of-the-art techniques in
terms of accuracy.

Given the results of this thesis, DeepSyna seems like a very poor solution for the task
at hand. The data used for training C3D (sports) is too different for transferability
to the target domain (emotions). It was a mistake to directly use the trained
model without fine-tuning, as it has been done in the current state-of-the-art from
EmotiW 2016 [76]. A reduction in the number of layers of the 3D CNN model,
data-augmentation by image-rotation, and propagation of the gradients learned by
training on emotion recognition to the C3D network seem like solutions for improving
the performance.

Syna is still likely to increase in performance if its modules do so. Currently, there
are better techniques that improve face detection [97], landmark estimation [98] and
temporal dependencies [99]. The incorporation of these methods into Syna will most
likely improve the performance, but the dependency on AU recognition is still present.
Overall, the results of Syna on CK+ show that there is a high correlation between
emotions and AUs. Nevertheless, this step is no better than end-to-end training
on emotion recognition unless the AU prediction is 100% accurate and AU-emotion
correlation is total. It is important to notice that the AU recognition technique relies
on Histogram of Oriented Gradients, which might be considered obsolete in favor of
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CNNs in a wide variety of computer vision tasks (even more in variable pose and
light conditions, as it happens in the AFEW dataset).

8.2 Lack of Research Premises

The goal of trying to compete with state-of-the-art with a new approach is too
simplistic for a master thesis. There is no clear explanation of why I used the
methods that I used, or what is the contribution to research of my thesis. An
instance of such is the rationale of DeepSyna, which is testing whether transferring a
system which has been successful in other tasks can be also successful in emotion
recognition. In specific, using C3D without fine-tuning makes no sense, since the
dataset it is trained on (Sports-1M) lacks facial footage. Instead, an alternative
could have been to use a pre-trained model on similar data, such as VGG-Face [100].
The main reason for not doing so is because the alternative of VGG + LSTM has
already been explored in emotion recognition [76].

8.3 Unbalanced Level of Detail

The reader might question about the reason of the unbalanced level of detail among
certain sections. On the one hand, I tried to provide a lot of detail on sections that
are not mainstream in the field of ML. This means that I put a lot more effort in
the detailed explanation of topics such as the study of emotions, CLM and CLNF as
particular techniques. On the other hand, I skipped theoretical explanations of widely
known topics in ML. These include DNNs, CNNs and RNNs, among others. For
completeness, in most cases the reader is provided with sources for further content
in case of necessity.

8.4 Doubtful Experiments

In the results of my thesis, I use CK+ as parts of my experiments. The reality
is that CLNF is already trained on that dataset, so it might be interpreted as
cheating. The difference lies in the learned labels. In the case of CLNF, CK+
is used for AU occurrence detection and intensity estimation, while Syna uses it
for emotion recognition. To some extent, this is a case of transfer learning, in
which I use the learned features from one task for a different, but related, problem.
Nevertheless, the fact that the input features (videos) are the same, I can argue that
the results of Syna might be inconclusive. This could be prevented by using the
train-test split end-to-end, also by training CLNF together with the later stages in
the pipeline.
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8.5 Poor performance

8.5 Poor performance

Both CLNF and C3D performed decently in the task of facial feature extraction
with the CK+ datasets. Nevertheless, the same cannot be said about the AFEW
dataset. After achieving the accuracy that can be seen in Chapter 7, I extracted
the intermediate features to take a look at what could have gone wrong. There
are way too many instances in which CLNF fails to capture the facial landmarks
that are required for further facial processing in the pipeline (see Figure 8.1). This
wrong behavior includes cases in which the face is not even detected, the landmarks
for the chin are mistaken by the landmarks of the mouth, and over-frontalizing the
landmarks. Additionally, the face frontalization algorithm suffers from the same
issue, given that the frontalization algorithm also relies in landmark estimation (see
Figure 8.2).

Figure 8.1: Instance of wrong landmark estimation from CLNF in AFEW dataset.

Figure 8.2: Instance of incorrect behavior for the face frontalization in AFEW dataset.
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9 Chapter 9

Conclusion

In this thesis, I presented Syna and DeepSyna, two new approaches for the task of
emotion recognition in video feed by learning both spatial and temporal features.
The two approaches share the same architecture design, with two main components:
a facial feature extractor and a temporal classifier. In Syna, the feature extraction
is based on facial expression recognition through CLNF. In DeepSyna, the features
merge both spatial and short-term temporal information encoded within adjacent
frames, capturing facial motion features. These features are later fed to a temporal
classifier that provides a classification for the entire video. The results achieved are
close but non-competitive with state-of-the-art techniques in the CK+ dataset, and
fall behind the baselines in the AFEW dataset. The most relevant contribution to
research is the transformation of other state-of-the-art techniques into techniques
applicable to random sequence lengths. The shortcomings of the models can be
overcome by either pre-training the network with datasets related to other similar
tasks or by augmenting the data feed to the learning algorithms.

9.1 Contributions

There are several contributions as outcome of this thesis. First, there is the explored
two new approaches in research of spatio-temporal features for emotion recognition
provided in this thesis. Second, the models along with the entire well-documented
codebase have been made available online as Open Source [87]. Third, also as Open
Source software I provide several Python toolkits for emotion datasets (CK+, BP4D-
Spontaneous and AFEW), which makes handling and managing these datasets much
easier. Fourth and last, I made small contributions to OpenFace and the adaptation
of the face frontalization in Python used in DeepSyna.
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9.2 Results

Even though the results of this thesis do not outperform state-of-the-art, there has
been a huge evolution through the months. When I began my thesis, Syna was
providing an accuracy of 45% in CK+. Through finding ways to make the data
more usable, I managed to elevate those results to a 79%. Later, by doing tricks
(video format used, data cleaning, various normalization trials, only using successful
outputs from CLNF, applying Bayesian optimization, and training mini-batches,
among others) I achieved the performance shown in the thesis. The same process
applies to the usage of C3D, going from a 15% up to a 51%. All this evolution has
been where I spent most of my time implementing the thesis, since ML was not my
specialty when I started, but it became so at the end.

The fact that C3D performs so poorly is because of the limited amount of video
footage that is present emotion recognition datasets. In the case of CLNF, it is
pre-trained using a large number of datasets, most of these being composed by
single images. Unlike CLNF, C3D by construction needs video feeds, and a large
quantity given the depth in the architecture. To further prove this point, the reader
can be referred to certain papers in which the authors show the performance of
their models when no pre-training is performed. One of these papers is Fan et al.’s
[76], which happens to be, at the time of writing this thesis, state-of-the-art for the
AFEW dataset. In the paper, the authors mention that without pre-training on
facial expression datasets, their model cannot even reach a 20% validation accuracy.
The lack of data as the cause for low accuracies has already been explained and
shown through training graphs in Chapter 7.

9.3 Future Work

9.3.1 CE-CLM for landmark estimation

When I began my thesis in February of 2017, CLNF was state-of-the-art for landmark
tracking in constrained environments. By May of 2017, Zadeh et al. published
Convolutional Experts Constrained Local Model (CE-CLM) [98], which brings the
advantages of neural networks to CLMs. CE-CLM outperforms competitive state-of-
the-art baselines (including CLNF) for facial landmark detection by a large margin.
Given the timing with this thesis, I kept using CLNF.

It takes a decent amount of domain knowledge on the specific problem at hand to
understand the underlying theory of CLNFs. In my particular case, it took me about
two weeks of literature review. I am a supporter of the simplicity principle, which
can be described as "the simplest explanation for some phenomenon is more likely
to be accurate than more complicated explanations". In the case of CE-CLM, its
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9.3 Future Work

understanding only requires a small subset of the theory employed in CLMs and
regression-based approaches, in which landmark detection is directly performed on
appearance without the need for a shape model.

9.3.2 Pipeline integration

At the time of writing this thesis, the pipeline of the system based on CLNF for
feature extraction is segmented in two separated processes. The implementation of
CLNF is written in C++, while the temporal classifier is written in Python. This
segmentation does not allow for the system to perform classification in real-time (e.g.
through a webcam), which would be a really useful feature. Therefore, an appealing
improvement would be an integration of both components into the same process
pipeline.

9.3.3 More Data

When exploring the results of both variants of the system, I argued that the low
performance in the case of the general approach was due to the depth of the network
and the low quantities of data available for training. In total, I found 5 datasets that
possessed emotion labels with video features, and only got access to two of these.
If more data is made available, I expect that the performance of the system will
increase, as it has been argued in Chapter 7.

Unexplored dataset: BP4D-Spontaneous BP4D-Spontaneous [101] is a less con-
strained alternative for facial expression analysis. It is originally proposed as a source
for 3D video feed of spontaneous facial expressions for exploring 3D spatiotemporal
features. Luckily, these videos have labels corresponding to emotions, which makes
it a valuable asset to test how well the temporal information is captured in a model.
This is especially challenging, since the 41 subjects are are recorded for a prolonged
amount of time (roughly between one or two minutes). This makes the classification
process difficult, since the emotions emerge and fall in various sections of the videos,
and in some cases, unrelated facial expressions appear.

Because it is not the main purpose, there is no baseline on this dataset regarding the
classification accuracy of the shown emotion. This dataset can be used as a mean
to determine how feasible are Syna and DeepSyna in an environment of extreme
temporal difficulty.
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9.3.4 Data Augmentation

One of the approaches that has been argued to improve the accuracy, especially
from DeepSyna, is to augment the available data. A straight-forward solution
could be to apply random transformation to the visual footage (e.g. image rota-
tion).

9.3.5 Model Pre-training

A different approach to solve the problem of data-scarcity is to pre-train the models
in similar tasks. In addition to the emotion-labelled datasets, there are a variety
of other datasets used for Facial Expression Recognition. These datasets can be
included into the pipeline to pre-train the model to recognize a task that is inherently
similar to emotion recognition, which might become a significant improvement for
Deep Syna. In the particular case of Syna, pre-training over single-frame emotion
datasets such as FERA 2015 [17] is also possible.

9.3.6 Emotional State Visualization

Because of time constraints and preference to other more important tasks, a vi-
sualization and webcam live prediction are missing in Syna. Using the headpose
estimation calculated with the landmarks, one can create a visualization that pins
an emotional state to the face of the user, something in the lines of Figure 9.1.
This work is already on development and will be delivered in the next release of
Syna.

Figure 9.1: Visualization for emotional states in Syna.
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