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Chapter 1

Introduction

Factoring large numbers is believed to be hard on classical computers. At
least there is no known (classical) polynomial time algorithm to factor inte-
gers at present. However in 1994 Shor had already formulated a quantum
polynomial time algorithm to factor integers efficiently on a quantum com-
puter [1]. In 2001 Shor’s algorithm has been implemented on a quantum
computer using 10 qubits to factor the number 15 [2]. By transforming the
factorization problem into an optimization problem, a group of Chinese re-
searchers was able to factor 143 using only four qubits [3]. This method
does not use Shor’s algorithm and does not require prior knowledge of the
answer. In fact it turns out they did not only factor 143, but a whole class of
numbers which 143 belongs to. Hence, as of today the largest natural num-
ber factored on a quantum computer is 56153 [4]. Moreover the researchers
in [4] point out that with the same technique and using 6 qubits the number
291311 can be factored on a quantum computer. Also 175 could be fac-
tored, using only 3 qubits and making it the first number to be factored on
a quantum computer consisting of 3 prime factors. It is interesting to note
that factoring numbers on a quantum computer via the discrete optimiza-
tion algorithm is easiest for numbers consisting of two primes factors, such
as used in RSA, because it will involve at most 3 qubit interactions [4]. On
the contrary, classical algorithms find these numbers the most difficult to
factor [4]. It has been difficult to scale up quantum computing, but we can
conclude quantum computing is advancing. As soon as it can be applied on
a large scale, current cryptosystems can be broken efficiently. It is clear the
ability to factor large integers will break RSA but it should be noted Shor’s
algorithm [1] can also solve the discrete logarithm problem efficiently and



hence can be used to break elliptic curve cryptography.

Post-quantum cryptography focuses on cryptographic algorithms that will
be resistant to attacks by quantum computers. An interesting candidate
appears to be lattice-based cryptography. Some lattice-based cryptosystems
come with security proofs which show that an attacker who can break the
cryptosystem will also be able to solve problems on lattices that are known
to be hard for quantum computers. The importance of a security proof
becomes apparent when considering for example the GGH signature scheme
[5] which was completely broken by Nguyen and Regev [6].

However, these schemes based on strong security assumptions often come
with practical issues such as large key size, large signatures or long compu-
tation times. In order to improve upon the practical applicability of these
schemes, this work will explore the Rényi divergence as an alternative to the
statistical distance in order to obtain tighter security proofs. In doing so,
we will be able to achieve smaller parameters for the desired security level.
We will demonstrate this by applying the technique to Lyubashevsky’s [7]
signature scheme.

After going over the notation in chapter 2, we will discuss the background
regarding signatures and lattices in chapter 3. This will lead us towards the
SIS problem, which is crucial in the security assumption of Lyubashevsky’s
[7] signature scheme. In chapter 4 we will explore the Rényi divergence in
order to develop a deeper mathematical understanding. We will provide
simplified proofs for the case of discrete distributions as opposed to the
general discussion in [8]. This chapter will culminate in the probability
preservation property which explains why the Rényi divergence can be used
to replace the statistical distance.

In chapter 5 we will first examine a signature scheme employing rejection
sampling to acquaint ourselves with the topic. In section 5.2 we consider
Lyubashevsky’s [7] signature scheme which employs the discrete Gaussian
distribution in order to obtain better practical results than in the first sec-
tion. Next we suggest parameters that offer the desired security based on our
tightened security proof and compare these with the original parameters. In
section 5.4 we follow Lyubashevsky’s idea to violate one of the requirements
in the security proof and provide an alternative proof to significantly reduce
the signature size. Observing the signature size in section 5.4 gets close to
the maximum transmission unit, we will focus on reducing our signature size
even further in the last section. At the cost of increasing computation time,
we will obtain a signature size below the maximum transmission unit.



Finally in chapter 6 we draw attention to BLISS [9], a signature scheme
based on Lyubashevsky’s [7] signature scheme. It offers significant per-
formance improvements compared to the original scheme by replacing the
sampling distribution with the bimodal Gaussian distribution.






Chapter 2

Notation

In this chapter we will define the notation used throughout the work in order
to avoid ambiguity.

We recall for any p > 1, the [,-norm of a vector x € R" is given by

n 1/p
lzllp = <Z Ixi\p> :
=1

This work will use the following special cases, where we employ the conven-
tion p = 2 when p is omitted.

The [1-norm (taxicab norm)

n
llls =) |l
=1

the lo-norm (Euclidean norm)

[|z[| = [[z]]2 =

and the loo-norm (max norm)

. n
ol oo = lim lall, = it .



We will use log exclusively to denote the natural logarithm. The binary
logarithm will always be denoted by logs.

As is standard, (a,b) will be used to denote the inner product of the vectors
a and b.

For any two sets A and B, we will write A C B to denote A is a subset of
B. To denote A is a proper subset of B we would write A C B.

Let f: X — R be a function. The support of f, denoted supp(f), is the set
of points in X where f is non-zero:

supp(f) = {z € X | f(z) # 0}.

We will define R>g = {z € R | z > 0} as shorthand notation for the set of
non-negative real numbers.

Lastly, we would like to recall the notations of asymptotic complexity.
Let f(n),g(n) be two positive real valued functions.

e f = O(g) if there exist constants ¢,k € R>g such that for all n > k,
f(n) <c-g(n).

o f=o0(g)if lim, , f(n)/g(n) = 0.

o [ = Q(g) if there exist constants ¢,k € R>g such that for all n > k,
f(n) = c-g(n).

o f=uw(g) iflim, 0 g(n)/f(n)=0.
e f=0(g)if f=0(g) and f = Q(g).



Chapter 3

Preliminaries

In this chapter we will first recall the definition of a digital signature scheme,
define the types of adversaries and discuss in what sense a digital signature
scheme can be broken. We introduce lattices in section 3.2 and in the sub-
sequent section we discuss lattice problems. In particular we focus on the
hardness of the SIS problem as this problem is the crucial underlying security
assumption in Lyubashevsky’s [7] signature scheme.

3.1 Digital signatures

Definition 3.1. [10] A digital signature scheme consists of three (proba-
bilistic) polynomial time algorithms (G, X, V).

1. Key generation algorithm G. G is a probabilistic algorithm with ran-
dom tape w. On input 2¥, where k is the security parameter, the
algorithm G produces a pair (K, K) of matching public and secret
keys.

2. Signing algorithm . Given a message p and a matching keypair
(Kp, Ks), ¥ produces a valid signature . ¥ may be probabilistic with
random tape w.

3. Verification algorithm V. Given a signature o, a message pu and a
public key K, V tests whether o is a valid signature on p with respect
to K.



We distinguish two kinds of attacks on a digital signature scheme: key-only
and message attacks. In the former the adversary only has access to the
signer’s public key. In the latter case the adversary also has access to a
list of message and signature pairs. We consider four subcases of message
attacks, depending on how the adversary can choose the list of message and
signature pairs.

Definition 3.2. [10] We distinguish four different cases of message attacks.

1. Plain known-message attack. In this case the adversary has access to a
list of message and signature pairs, but he cannot choose the messages.

2. Generic chosen-message attack. In this case the adversary can choose
a list of messages for which he wants to obtain valid signatures before
he attempts to break the digital signature scheme. However, he must
choose the list of messages before accessing the public key of the signer.
So the adversary uses the same attack against everyone.

3. Directed chosen-message attack. The adversary can choose a list of
messages for which he wants to obtain valid signatures before he at-
tempts to break the digital signature scheme. However, he now has
access to the signer’s public key before chosing the list of messages.
Therefore this attack is specifically directed at the signer’s public key.

4. Adaptively chosen-message attack. Here the adversary has access to
the signer’s public key and he can use the signer as an oracle. He does
not have to specify his list of messages beforehand: he can query a
message and adapt his next query based on the result.

Clearly, of these attacks, the adaptively chosen-message attack is the most
powerful attack the adversary can undertake. One might wonder why the
signer would cooperate as an oracle to the adversary, but in general the signer
should be able to sign arbitrary documents without fear of compromising
his security. Therefore we will allow the adversary an adaptively chosen-
message attack in order to break the digital signature scheme.

Definition 3.3. [10] A digital signature scheme can be broken in the fol-
lowing sense.

1. A total break. The adversary obtains the signer’s secret key.

2. Universal forgery. The adversary constructs an efficient algorithm
which is able to sign any message.



3. Selective forgery. The adversary is able to produce a valid signature
for a particular message, chosen before he attempts the forgery.

4. Ezxistential forgery. The adversary is able to produce a valid pair of
message and signature. The message may be random or nonsense.

Definition 3.4. Negligibility. A non-negative function f : N — R is called
negligible if for every v € N there exists a kg € N such that for all & > ky,
F(k) < 17k,

We will be most conservative and call a digital signature scheme (strongly)
secure if an adversary using an adaptively chosen-message attack is unable
to produce an existential forgery. The difference between Definition 3.5 and
Definition 3.6 lies in a subtle change in the notion of what constitutes a new
signature.

Definition 3.5. [7] A digital signature scheme (G,3,V) is secure if for
every probabilistic polynomial time algorithm A, after seeing the public key
and {(p1,01), ..., (g, 0q)} for any g messages p; of its choosing where ¢ is
polynomial in the security parameter k, the probability that A produces a
valid pair (u, o) such that p # p; Vi € {1,..,q}, is negligibly small in k.

Definition 3.6. A digital signature scheme (G, %,V) is strongly secure if
for every probabilistic polynomial time algorithm A, after seeing the public
key and {(u1,01), ..., (11g, 0¢)} for any ¢ messages p; of its choosing where ¢
is polynomial in the security parameter k, the probability that A produces
a valid pair (p, o) # (ui,04) Vi € {1, ..,q}, is negligibly small in k.

3.2 Lattices

Definition 3.7. A full rank lattice L C R™ is a set of integer linear combi-
nations of n linearly independent vectors by, ..., b, € R™:

E(bl, ,bn) = {Z zib; | z; € Z} .
=1

The set {b1,...,b,} is called a basis for the lattice and we can represent it
by the matrix B = [by, ..., b,] € R™™™ where each basis vector is a column.
Then we can write

L(B)={Bz | z€Z"}.



We will implicitly assume all lattices are of full rank.

Definition 3.8. Two lattice bases B, B’ € R" " are called equivalent if
they generate the same lattice, i.e L(B) = L(B’).

We will prove the following lemma that relates two equivalent lattice bases.

Lemma 3.9. Two lattice bases B, B’ € R"™™ are equivalent if and only if
there exists a unimodular matriz U € R™™ such that B’ = BU.

Proof. Suppose there exists a unimodular matrix U € R"*" such that B’ =
BU. By definition of unimodularity, U~! exists and U~z € Z" <= 2z €
Z"™. Then

LBY={BY | /e€z"y={BUY | 2 €Z2"}) ={BUU 'z | U 'z €2"}
={Bz | U '2e€2"}={Bz | 2€Z"} = L(B).

Now suppose the above relation £(B’) = £(B) holds. Since B, B are bases,
it follows there exists a unique invertible U € R™*™ such that B’ = BU.
But we have U~z € Z" += 2z € Z", so U is unimodular by definition. [J

Definition 3.10. We define the distance between two lattice points x,y € L
as

dist(z,y) = ||z — /|-

Definition 3.11. The minimum distance of a lattice £, denoted A1 (L), is
the minimum distance between any two distinct lattice points:

A1 (L) = min{dist(z,y) |  #y € L}.

Lemma 3.12. The minimum distance A\1(L) of a lattice L is equal to the
length of the shortest nonzero lattice vector.

A (L) = min{][z]| | z € L\{0}},

Proof. Let vi,v2 € L(B) be any two distinct lattice vectors such that
M (L(B)) = dist(v1, v2). Then, their difference is also in the lattice:

V] — U9 = Bz; — Bzg = B(21 — 22) S ﬁ(B)
Thus, v; —v9 is a nonzero lattice with length equal to the minimum distance.

A (L(B)) = dist(v1, v2) = dist(vy — v2,0) = ||vg — v

10



By definition, for any nonzero lattice vector v, we have:
M(£(B)) < dist(v,0) = [Jo]].
Therefore, |[v; —va]| is the shortest length of any nonzero lattice vector. [J

The minimum distance can be generalized to the i-th successive minimum.

Definition 3.13. [11] The i-th successive minimum A;(£) is the smallest
radius r such that the closed ball B(r) = {x € R™ | ||z|| < r} contains i
linearly independent lattice points:

Ai(£) = min{r € RY, | dim(span(£ N B(r))) > i}.

Definition 3.14. The minimum distance of a lattice £ measured in the [
norm is denoted by A°(L):

AP (L) = minf[|z —yllo | 2 # y € L}.

Definition 3.15. The determinant of a lattice is the absolute value of the
determinant of the basis matrix

det(L£(B)) = | det(B)|.
This value is also called the volume of the lattice and it is inversely related to

the density of lattice points. The definition is well defined as the determinant
of a lattice does not depend on the choice of basis.

Lemma 3.16. Let B, B’ € R™" be two equivalent lattice bases. Then
det(L(B)) = det(L(B")).
Proof. By Lemma 3.9 we have B’ = BU for some unimodular matrix U.
det(L(BU)) = |det(BU)| = |det(B)| - | det(U)| = | det(B)| = det(L(B)).

O
Definition 3.17. [12] The dual lattice of £, denoted L£*, is defined to be

Lr={zxeR"|VyeL (r,y €Z}.

We will prove the following lemma to efficiently compute a basis for the dual
of a lattice L.

11



Lemma 3.18. Let L(B) be a full rank lattice, then its dual L*(B) is given
by L((B~HT).

Proof. B is a full rank matrix, so (B~1)T exists and is a full rank matrix.
Take x € L((B™1)T) and y € L(B).

(x,y) = <(B_1)TZ]_,BZ'2> = ((B_I)Tzl)TBzg = leB_lBZQ = szQ € 7Z.

Thus £((B~HT) c £*(B).
Now take z € £L*(B) and y € £L(B). By definition

(x,y) = (¥,Bz) =2 "Bz =20 BTz c Z Vzg € Z7,

where we can take the transpose in the last equality because z” Bz is a
scalar. Therefore BTz € Z™. Then we can write = (BT) 72 = (B~ )Tz
for some z; € Z". Thus £*(B) c L((B~HT).

Hence we can conclude £((B~1)T) = L£*(B). O
Corollary 3.19. For any lattice L we have det(L*) =1/ det(L).

Definition 3.20. [13] A g-ary lattice L is a lattice satisfying ¢Z™ C L C Z™
for some integer q.

Remark. Any integer lattice £ C Z™ is a g-ary lattice for some ¢, for example
q = det(L), because det(L) - e; € L for every unit vector e; with 1 < i < m.

However for our cryptographic purposes we will consider ¢-ary lattices with
q < det(£). In particular we define for a given matrix A € Zy*™, for some
integers n, m, ¢, two m-dimensional g-ary lattices,

Ay(A) = {y € Z™ | y = ATz mod ¢ for some z € Z"}
Ay (A)={y € Z™| Ay = 0mod gq}.

The first g-ary lattice is generated by the rows of A. The second contains
all vectors that are orthogonal modulo ¢ to the rows of A. For the reader
more familiar with linear codes there is a comparison to be made as this
corresponds one-to-one with linear codes in Z;". The first lattice corresponds
to the code with generator matrix A and the second corresponds to the code
with parity check matrix A.

To show that these two sets are indeed lattices, we will construct a basis for
them. For our applications we will generate A uniformly at random with

12



m > 2n and assume ¢ is prime. Then it holds with high probability that A
contains n linearly independent columns over Z, [13]. Without loss of gener-
ality we rearrange A such that the first n columns are linearly independent
and we write A = (A; | Ag) for A; € Zy*" and Ag € Zg*™"",

Now consider a vector y € A,(A). We can write y = ATz = (AT 2, AT )T =
(2, AT (AT 1T = (¢, (A7 P A)T2")T for 2/ = ATz, Thus the lattice basis
of Ag(A) is given by

(i ano-)
(Al_lAZ)T qu—n ’

Next consider a vector y € AqL(A)7 we can write y = (y1,y2)7. Then Ay =
Aiy1 + Asyo = 0 mod q. Therefore y; = —Al_lAgyg mod gq. We obtain y =
(—A7 Asyz, y2)” mod q. Thus the lattice basis of AqL(A) is given by

ql, —A7'A,
0 Im—n )’
These lattices are dual to each other up to normalization as from the defi-

nition it follows Az (A) = q- Ag(A)* and Ag(A) = q- A (A)*. We can easily
verify this with our bases.

AT T .
‘ I, 0 o I, 0 _(aln —A7 Az
T\\arta” ) ) TN\ AT AT L) N0 L )

_ T
(fan —ATANTY (b taptanT o, 0
q 0 Inon U0 Lo ) T\ATAYT )

Definition 3.21. A lattice L is cyclic if for all x = (x4, ..., 21, xn)T eL
we have that (z,,71,...,2n_1)7 € L.

Definition 3.22. [12] The Gaussian function on R™ centered at ¢ with pa-
rameter s > 0 is defined by:

Va € R", pl, o(2) = exp(—7||z — [[*/5?).

When the subscript ¢ is omitted, the function is taken to be centered around
0. We denote for a subset S C R", p§ .(S) = > cg 05 ..(2).

For completeness we include the definition of the smoothing parameter for a
lattice. The smoothing parameter will be used in Theorem 3.29 to describe
a reduction between lattice problems.

13



Definition 3.23. [12] For any lattice £ and € € R,e > 0, the smoothing
parameter ne(L) is the smallest s € R, s > 0 such that p’l/s(ﬁ*\{()}) <e.

Lemma 3.24. For any w(y/logn) function, there is a negligible €(n) for
which ne(L) < w(y/logn) /A (L¥).

Proof. Lemma 2.6 in [12]. O

Remark. If £ is the integer lattice Z", we have A{°(L*) = 1, and obtain

Ne(L) < w(+/logn).

3.3 Lattice problems

Definition 3.25. [14] Short Integer Solution problem denoted SIS(m,n,q, §).
Let n € Z be the primary security parameter, g,m € 7Z such that ¢ =
poly(n), m = poly(n) and g € R, > 0. Given a uniformly random matrix
A € Zy*™, the goal is to find a nonzero integer vector z € Z™\{0}, such
that Az = 0 mod ¢ and ||z|| < 5.

Remark. The SIS problem is to find a short non-zero vector in the lattice

AL(A).

B needs to be large enough such that a solution exists. Note that 5 > ¢
makes the problem trivial: (¢,0,...,0) € Z™ would be a solution.

Lemma 3.26. Let m > nlogg, n,qg > 1 and B > \/m. Then there exists a

solution to the SIS(m,n, q,%ﬁ problem.
Proof. Let z € {0,1}™. There are
2m > 2% = enlosd — ¢,
such vectors. Then, by the pigeonhole principle, there must exist 2 vectors

21 # 23 such that Az; = Azy mod ¢q. Then 21 — 29 # 0 satisfies A(z; — 22) =
0 mod ¢ and ||z1 — 22| < v/m < B. O

Lemma 3.27. Let m > n > 1 and let ¢* € N be minimal with ¢* > q%. Let
B > /mq*. Then there exists a solution to the SIS(m,n,q,3) problem.

Proof. Let z € {0,1,...,q*}"™. There are



such vectors. Then, by the pigeonhole principle, there must exist 2 vectors
21 # z9 such that Az; = Azo mod q. Then z1 — 29 # 0 satisfies A(z1 — 2z2) =
0 mod g and ||z1 — zo|| < v/mg* < B. O

Definition 3.28. [14] Approzimate Shortest Independent Vectors Problem
(SIVP,). Let L(B) be a full rank n-dimensional lattice. For v = y(n) €
R, the SIVP, problem is to find n linearly independent lattice vectors

b1, ...,by, € L(B) such that ||b;|| <~ - N(L(B)) for all i € {1,...,n}.

Theorem 3.29. Let n and m = poly(n) be integers, let B > oo > 1 be
reals, let Z = {z € Z™ | ||zl]la < BA||2]lc < Boo} and let ¢ > B -0
for some constant & > 0. For some v = max{1, 808/q} - O(Bv/n), there
is an efficient reduction from SIVP,.,,, on n-dimensional lattices to solving
SIS(m,n,q,B) over Z with non-negligible advantage. Here wy, = w(y/logn)
1s the smoothing parameter of the integer lattice Z.

Proof. See Theorem 3.8 in [14]. O

Remark. The l, bound on the SIS solutions can be removed by setting S, =
B. Then ||z]|ec < ||2]] € B = S automatically holds. We note that the
approximating factor v becomes larger if 8., becomes larger. Micciancio and
Peikert [14] note this may indicate that restricting the I norm in addition to
the lo norm makes the problem qualitatively harder. Furthermore 5, < (5 is
natural in the usual formulations of collision-resistant hash functions based

on SIS.

Ajtai has shown that worst case SIS problems reduce to the average case [15].
So solving SIS(m,n,q, B) on the average with non-negligible probability is
at least as hard as approximating SIVP in the worst case on n-dimensional
lattices to within factors v - wy, with v and w, as in Theorem 3.29.

Khot showed that SIVP ;) is NP-hard [16]. So for any constant approx-
imation factor SIVP remains hard. However, we have based the hardness
of the SIS problem on the hardness of SIVPO(HM). The assumption is that
it is hard to approximate the Shortest Independent Vector Problem (SIVP)

within polynomial approximation factors [17]. However, it has been shown
that SIVPO(H) is no longer NP-hard.

Theorem 3.30. SIVPO 1s not NP-hard unless P=NP.

(n)

Proof. See [18]. O

15
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Chapter 4
Rényi Divergence

The Rényi divergence was introduced by Rényi [19] as a measure of in-
formation that generalizes the Kullback-Leibler divergence, which will be
defined later in this chapter. A recent review of the Rényi divergence and
Kullback-Leibler divergence is given in [8].

The Rényi divergence can be used as an alternative to the statistical distance
as a measure of closeness of distributions. At the end of the chapter we prove
the probability preservation property which shows how the Rényi divergence
can be used in security proofs of cryptographic protocols. Let P, Q be two
probability distributions. If an event A occurs with a specific probability
under P, then the Rényi divergence gives us a lower bound of this probability
under Q.

The authors of [20] have applied the Rényi divergence to security proofs in
lattice-based cryptography. However, they redefine the Rényi divergence as
the exponential of the classical definition [8]. In this work we will stick with
the classical definition.

The Rényi divergence depends on a parameter that is called its order. We
will first differentiate between simple orders and extended orders, as the
definition of the Rényi divergence is dependent on this distinction.

Definition 4.1. [8] An a € R is a simple order if a > 0 and a # 1. We call
0, 1 and oo extended orders.

In particular we will see later that the Rényi divergence of order 1 equals
the Kullback-Leibler divergence.

17



We are now able to define the Rényi divergence for simple orders.

Definition 4.2. [8] Let P, @ be two discrete probability distributions such
that supp(P) C supp(Q), with probability mass functions p(z), g(x) respec-

tively. For any simple order a, the Rényi divergence of order a is defined
by

Ra(Pl|Q) = log Ep

a—1

where Ep denotes the expectation with respect to probability measure P.
This definition naturally generalizes to continuous distributions.

Definition 4.3. Let P, @ be two probability distributions such that supp(P) C
supp(Q), with probability density functions p(x), g(x) respectively. For any
simple order a, the Rényi divergence of order a is defined by

Ra(PIIQ) = — logEp [(28((;)—1] ) aillog/ <§(g>a_1dP(w)-

However, we will only consider discrete distributions for our lattice purposes.
The main purpose of this chapter is to provide conceptually easier proofs for
the discrete case than the proofs found in the literature [8] for the general
case.

Lemma 4.4. Let P,Q be two discrete probability distributions such that
supp(P) C supp(Q). For any simple order a, the Rényi divergence of order
a 1s equal to

RQ(PHQ):aillog S pla)a@) .

z€supp(P)

18



Proof. The proof follows directly from the definition of the expected value.

1

:afl

:aillog S ) (p("”;yl

z€supp(P)

_ 1 log E p(x)

a—1
zesupp(P)

Ra(P[|Q)

logEp [(p(X)/Q(X))ail]

=g Y p(e) (@)

z€supp(P)

O]

Definition 4.5. [8] Let (92, F) be a measurable space. Let P,Q be two
discrete probability measures on (€2, F) such that supp(P) C supp(Q). For
any sub-c-algebra G C F, we denote by Pg, Qg the restriction of P,Q
respectively to G.

By considering a coarser o-algebra we are essentially summing observations
together. This should not increase the divergence of P with respect to Q,
which is formalized in the following theorem.

Theorem 4.6. (Data processing inequality) Let (2, F) be a measurable
space. Let P,Q be two discrete probability measures such that supp(P) C
supp(Q). For any simple order a and any sub-o-algebra G C F

Ro(P||Q) > Ru(PgllQg)-

Proof. See [8]. O

Theorem 4.7. Let (2, F) be a measurable space. Let P,Q be two discrete
probability measures such that supp(P) C supp(Q). For a partition P C F,
let Pypy and Q)o(py denote the restrictions of P and Q to the o-algebra
generated by P.

For any simple order a
Rq(Pl|Q) = Sup Ra(Plop)l|Qo(p))

where the supremum is taken over all finite partitions P C F.
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Proof. By Theorem 4.6 we already have
R.(P||Q) > sup Ro(Pop)|Qio(p))-

Therefore we will now prove the reverse inequality. Let Q = {{x1}, {z2},...}
be the partition of supp(P) into singletons. Q is countable because P is
discrete. Let P, = {{z1}, ..., {wn—1},U;>,{2:}} of size n. Then

1
a—1

log 3 P(A)°Q(A)

AePy,
. 1
> lim

n—1
> lim ——log > P({w:})"Q({z:})'
i=1

= Ra(Po(9)l1Qp(@) = Ra(PlIQ)

Jlim R (Pop,)l|Qop,)) = lim

where we have used

P(| Hzih Utz =20 (@ >1),

Jim P @ () =0 (0<a<1).

Hence
R.(P|1Q) < Sup Ro(P o) ||Qo(p))-
]

We will now provide defintions for the Rényi divergence of extended orders.
The Rényi divergence of order 0 is defined as the limit of order a approaching
0 from above.

Definition 4.8. [8] For any P, Q) two discrete probability distributions such
that supp(P) C supp(Q),

Ro(Pl|Q) = lim Ra(P||Q).

The Rényi divergence of order 1 is defined as the limit of order a approaching
1 from below.
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Definition 4.9. [8] For any P, Q two discrete probability distributions such
that supp(P) C supp(@),

R(PllQ) = lim Ro(P|Q),

The Rényi divergence of order oo is defined as the limit of order a going to
00.

Definition 4.10. [8] For any P, two discrete probability distributions
such that supp(P) C supp(Q),

Roo(P|Q) = lim Ra(P[|Q).

These limits exist because for a € [0, 00] the Rényi divergence R,(P||Q) is
increasing in a, as we will prove in the following theorem.

Theorem 4.11. For any two discrete probability distributions P,(Q) such
that supp(P) C supp(Q), the function f :[0,00] — [0,00], a — R4(P||Q) is
imncreasing.

a—1

Proof. Let a < b be simple orders. For z > 0 the function z +— 2T is
concave if ¢ > 1 and convex if a < 1. In both cases we have by Jensen’s
inequality

Ra(PlIQ) = - log Ep

because in the convex case for a < 1, we also have a%l < 0, which reverses
the inequality again.
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The result for the extended orders follows from the simple orders.

Ry(P||Q) = inf Ra(P||Q).
Ry (Pl|Q) = sup Ro(P[|Q) < inf Rq(P||Q).
0<a<1 a>1

Roo(P]|Q) = sup Ra(P||Q).
a>1
]

We will now prove two lemmas we will use to prove results about the Rényi
divergence of extended orders and the continuity of the Rényi divergence in
its order a. Lemma 4.12 concerns orders between 0 and 1, while Lemma
4.13 provides the same result for orders greater than 1.

Lemma 4.12. For any sequence (ay)3>, with a, € (0,1) that converges to

a € 10,1]

lim Z p(x)*q(x)' " = Z lim p(z)*q(z)' .

n—oo n—oo
z€supp(P) x€supp(P)

Proof. For all z and for all a,, € (0,1)

0 < p(a)™q(@)' " < max{p(z)" p(e)'~"", g(x)" q(x)' "}
= max{p(x), q(x)}
< p(x) + q(x).

Hence,

0< > pl)mq(z) "< Y (o) +q(2) <2

z€supp(P) z€supp(P)

Thus the result follows from Lebesgue’s dominated convergence theorem.
O

Lemma 4.13. Let A = {a | 1 < a < o0 and R,(P||Q) < oc}. For any
sequence (an)o>y with a, € A that converges to a € AU {1}

im Y p@) @)= Y lim p(a)g(a)

n—00 n—00
z€supp(P) z€supp(P)
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Proof. There exists a real number b > a such that b € A and a, < b for
sufficiently large n. (If a, < a for all n, we can pick b = a and otherwise
we can pick b = a; such that a;1; < a; for all j > 0.) By convexity of
p(x)*q(x)'=% in a, we have for a, < b

pl)q(@)! =" < (1= Tp() q(@)' + TLp(a)a(@)' " < g(a) + pla)g(@) "
We know
> al@) <1,
z€supp(P)
> p@)la@) " < oo,
zesupp(P)

because b > 1 and Ry(P||Q) < oo.

Thus the result follows from Lebesgue’s dominated convergence theorem.
O

We are now ready to evaluate the limits in the definitions of the Rényi

divergence of extended orders.

Theorem 4.14. For any two discrete probability distributions P,(Q) such
that supp(P) C supp(Q), the Rényi divergence of order 0 is equal to

Ro(PlQ) = —log > q(x).

z€supp(P)

Proof. We have

1
a—1

log Y pla)qla)

R 1 . 1
o(PlQ) lim R (PllQ) lin
x€supp(P)

S : a 1-a
og lim > pla)q(x)
zesupp(P)

—_1 : a 1—a
og Y limp(z)'q()
z€supp(P)

=—log > Lgpw=o4(x)

zesupp(P)

=—log > qlx),

z€supp(P)
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where we have used Lemma 4.12 to interchange the sum and limit. The last
equality follows because we are summing over the support of P. O

Definition 4.15. For any P, Q) two discrete probability distributions such
that supp(P) C supp(Q), the Kullback-Leibler divergence is defined by
KLPIQ) = Y pla)log )

z€supp(P) q(m)

Theorem 4.16. For any two discrete probability distributions P,(Q) such
that supp(P) C supp(Q), the Rényi divergence of order 1 is equal to the
Kullback-Leibler divergence.

Proof. By definition

_1; I 1 a l1—a
F(PIQ) =ty Ru(PIQ) =l hon 3 plea(e)'™
TESUpp

By Lemma 4.12 we can interchange the sum and the limit

1i a l-a _ 3 a l—a _ = U.

fim log > p(x)q(x) log > lim p(x)"q(x) log > p(x)=0
zesupp(P) z€supp(P) z€supp(P)

Obviously a — 1 tends to 0 for a going to 1, so by I’'Hopital’s rule it follows

dia Zx€supp(P) p(x)aq(x)lfa . Zx€supp(P) p(m.)aq(g;)lfa log(%)

a I—a lim a l1-a
ergupp(P) p(fL‘) Q(l‘) aTl Zxésupp(P) p(l‘) q(x)

Ry(P)/Q) = lim

Again by Lemma 4.12 we have

lim Y p(@)q(x)' 0= D limpa)qx) = > pla) =1

afl zesupp(P) z€supp(P) atl z€supp(P)
So
: a —a &
BPIQ) =t 3 ploraa)1os (4)
atl q(x)
z€supp(P)
. p(x) pz)\*
= lim Z log <> q(x) - ( .
2 (@)

It is the sum of exponential functions in a, which are convex and increasing.
Hence the sum is also convex and increasing in a. Therefore its derivative is
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increasing in a and positive, respectively. Then we obtain by the monotone
convergence theorem

lim Y p(x)*q(z)' " log (p(x)>= > limp(z)*q(x)'*log <p($)

afl z€supp(P) q(CC) z€supp(P) afl Q(x)
X
)
z€supp(P) q

Plugging in the results we obtain

mrlQ) = X aaiog ().

zesupp(P) q(x)

O]

Theorem 4.17. Let P, Q) be two discrete probability distributions such that
supp(P) C supp(Q). If Ri(P||Q) = oo or there exists a real number b > 1
such that Ry(P||Q) is finite, then the Rényi divergence of order 1 is equal to

Ri(PllQ) = lim Ro(P||Q).

Proof. If R1(P||Q) = oo, then Ry(P||Q) > Ri1(P||Q) = oo for all b > 1 by
Theorem 4.11. So assume there exists a b such that Ry(P||Q) is finite. Then

iy 3 bl o (49) < mu(Pl@) <.
x€supp(P)

So we can apply the monotone convergence theorem again analogous to the
proof above to obtain

im = v)5e @
lin R (PI|Q) m@%@)f’( )log <q<x>) '

O]

We will now evaluate the limit in the definition of the Rényi divergence of
infinite order. We will first prove the result in the case that probability
distribution P has finite support. In the proof we will subsequently reduce
the general case to the finite case in order to prove the claim.
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Theorem 4.18. For any two discrete probability distributions P,Q such
that supp(P) C supp(Q), the Rényi divergence of order oo is equal to

z
R+ (P||Q) =log sup M
ze€supp(P) Q(x)

Proof. First assume P has finite support. Then max,csupp(p) % exists and

is equal to the supremum. Denote 200 = maX,csupp(p) % and let a > 1.
We have

1 1
a—1 a—1

S o (M) mn| T e (M)

Zoo
z€supp(P) z€supp(P)

By definition of z

pa)/a@) _ |

Zoo

Vz € supp(P)

—

with equality at least once. Let y € supp(P) such that 2o, = ’q)((—z.

=

Note

py) = p(y) (W’)/‘J(y))a_ls S ) (W>1

z z
o z€supp(P) >

1
a—1

S (p(x)/q(a:))“ .

Z
zesupp(P) &

Then

) < | Y p<x><p‘”))a_l < 2o

z€supp(P) q(m)

By the squeeze theorem it follows




So

. (x) a—1 a—1
Roo(PlQ) = Jim log | > pla) (55
e | z€supp(P) <q .%')) ]
i a—l_ﬁ
S

_acEsupp(P)

=logzy =log max —=.
zesupp(P) q(T

Now we will reduce the general case to the finite case. Recall a > 1,
Roo(P[Q) = lim Ry(PI|Q)
= liTm sup Ry (Pop)||Q)o(p)) (by Theorem 4.7)
atoo p
= Silp s%p Ra(Pop)||Q|o(p)) (by Theorem 4.11)

= sup sup Ra(Po(p)||Qo(r))
P a<oo

= sup log ma P(A)
~U RS QA

P(A)

(finite case)

=log sup ,
ACsupp(P) Q(A)

where P ranges over all finite partitions of supp(P).
It is obvious that

PA) )
ACsupp(P) (A) N zesupp(P) Q(x)7

because for every = € supp(P), {z} C supp(P). Next, let us show equality
holds.

P(A) =) py) =) 2) ()

yed yeA
U L — u M) A
: yze;“xessupg(lg) (q(x)) ) xEsSupIp)(P) <Q(ZL‘) Q).



So for all A,

i

p(x)

A) < sup —F—=
(A) N z€supp(P) Q(SU) ‘

O

That is

sup Mg sup M

ACsupp(P) (A) zesupp(P) q(:C)
Thus it follows,

sup w: sup M

ACsupp(P) Q(A) z€supp(P) Q(x)

Then we obtain

P(A)
R (P||Q) =log sup ———==1log sup —=.
( || ) ACsupp(P) Q(A) z€supp(P) q($)

O

Theorem 4.19. Let P, be two discrete probability distributions such that
supp(P) C supp(Q). The Rényi divergence R,(P||Q) is continuous in a on
{a €]0,1]} U{a € [0,00] | Ro(P||Q) < o0}.

Proof. Continuity at a simple order follows from Lemma 4.12 and 4.13. By
definition it is continuous on the extended orders 0 and oo and by Theorem
4.16 and 4.17 also at the extended order 1. O

Theorem 4.20. Let P, be two discrete probability distributions such that
supp(P) C supp(Q). For any order a € [0, 0]

Ra(P||Q) = 0.

Fora >0, Ry(P||Q) =0 < P =Q. Fora=0, R, (P||Q) =0 —=
supp(P) = supp(Q).

Proof. First consider a = 0.

Ro(Pl|Q) =—1log > qlz)>0.

xesupp(P)

where the inequality follows from Zx€supp( P) q(x) < 1. The inequality holds
with equality if and only if supp(Q) C supp(P), thus supp(Q) = supp(P).
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Now suppose «a is a simple order. By Jensen’s inequality

Ra(P||Q) = ﬂogEP (%)“‘1
- L, [(12) ]
> s < H)D
_—logEP{ x}
= —log Z q(z) = 0.
wesupp(P)

The second inequality holds with equality if and only if supp(Q) C supp(P).

The first inequality holds with equality if and only if qE g is constant on the

support of P. Together this is equivalent to P = Q.

By noting that R, (P||Q) = supy., Rp(P||Q) the result extends to orders
a € {1,00}.

O]

Theorem 4.21. (Data processing inequality) Let P, Q) be two discrete prob-
ability distributions such that supp(P) C supp(Q). For any order a € [0, 0]
and any partition P C supp(P),

R.(P||Q) > Ra(Ppl|Qpp)-

Proof. By Theorem 4.6 it holds for simple orders. Let a, — a be any
sequence of simple orders that converges to a from above if ¢ = 0 and from
below if a € 1,00. Then

Ru(PIIQ) = lim Ro,(P)Q) = lim Ry, (PpllQp) = Ra(BiplIQpp).

O]

Lemma 4.22. (Probability preservation property) Let P,Q be two discrete
probability distributions such that supp(P) C supp(Q). Let E C supp(Q) be
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an arbitrary event. Then we have for a € (1,00),

P(E)a1
exp(Ra(Pl1Q))”

Proof. Holder’s inequality states for s,¢ € (1,00) with 1/s+1/t = 1 we have

S lf@)g(a)]| < (Z !f(w)ls> (Z g(xw) .
zel z€E r€E

Take f(x) = % and g(z) = q(m)% for + =1— 1 Then
q(z)?

Q(E) >

@ |

:
ZEp<w>s( qf(’g)) (Zq<x>> .

zel zelR

Substitute s = a,

P(E) < (Zpu)aq(x)l-a) Qe

zel
Rearranging gives
P(E)7

Q(E) = .
(Xserp(z)eg(z)t=a) e

Using

epB(PIQ) = [ X pla) ()~ 2<ZP($)aq($)l_a)a-’

z€supp(P) z€E
we get the result
P(E)aT
QE)> ———————.
)2 o RaPIQ)
O

The probability preservation property in the case of Rényi divergence of
order oo follows by a straightforward argument. We provide the proof for
completeness.
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Lemma 4.23. (Probability preservation property) Let P,Q be two discrete
probability distributions such that supp(P) C supp(Q). Let E C supp(Q) be
an arbitrary event. Then we have

P(E)
B2 o RePlIQ))
Proof.
PE)=Y pa)=Y " ) g(a)
zeE zeFE q x)
P oy = (sup P9 5™ o) = (sup P&
= ; (ilelg q(m)) i) = (mg q(x)) ;q( ) (mg q($)> E)

It immediately follows

P(E)
~ exp(Ro(P||Q))
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Chapter 5

Digital Signature Scheme

Our main reference this chapter is Lyubashevsky’s paper [7]. Let us first in
general outline the signature scheme we will discuss in this chapter. Let ¢
be a prime number and k, m,n, x are parameters of the scheme. The secret
key S € ZZ’”’“ is a matrix with small coefficients and the public key consists
of a pair of matrices (A,T'), where A € Zy*™ is chosen uniformly at random
and T = ASmod q. H:{0,1}* = {z € {~1,0,1}* | ||z||; < &} is a hash

function.

Given a message pu, the signing algorithm 3 generates a vector y € Z™
according to some distribution D. Next, 3 computes ¢ = H(Ay mod ¢, u)
and z = Sc+y € Z™. Note the last computation is not performed modulo g.
S, c and y will be lifted to the integers in the range [—%, q;21] and then z
is computed. The result (z,c) will be output as the signature with a certain
probability, such that its distribution will be independent of S. Let us
first focus on what this probability should be, we will cover the verification

algorithm later.

Let Z denote the distribution of z = Sc+y with probability density function
g. Here S is the secret key, c is the output of H and y is chosen according
to distribution D. The goal is to find a distribution D and a distribution
X, independent of S, with probability density function f, such that Vx €
supp(f), f(x) < Mg(x) for a small constant M.

Then if we sample z from Z and output z as signature with probability
f(2)/(Mg(z)), the resulting distribution is exactly X. We obtain this result
from the well known Rejection Sampling Theorem. We provide a proof for
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completeness.

Theorem 5.1. Rejection Sampling Theorem. Let X be a random variable
distributed according to cumulative distribution function F' and let Y be a
random wvariable distributed according to cumulative distribution function
G. Suppose the probability density functions f, g exist for X, Y | respectively.
Let M € R be such that Yz € supp(f), f(z) < Mg(z). Then generating
a sample Y according to G and accepting with probability f(Y)/(Mg(Y))
results exactly in a sample X distributed according to F'.

Proof. We will first prove the probability of outputting a sample. Let U
denote a standard uniform random variable. Then the probability that the
sample Y is accepted is given by

PlY is accepted) = P U < U0~ | |0 < 7000 v]

Mg(Y) Mg(Y)
fY) > fly)
:E[ Y)] N Mg(y)g(y)dt

M/f

Next, let us show the sample Y has the desired distribution. We must show
that Y conditioned on being accepted is distributed according to cumulative
distribution function F'.

P[Y is accepted | Y < y] - P[Y <]
PY is accepted]

PlY <y |Y is accepted] =

PY <
=P[Y is accepted | Y < y] - [1/]\_411]
_ P[Y is accepted NY <y] P[Y <y
PlY <] 1/M

-P[Y is accepted NY < y]

/ P[Y is accepted | Y = t]g(t)dt

e[
/fdt F(y).
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This completes the proof. O

Remark. The discrete case of the Rejection Sampling Theorem is analogous
to the continuous case when we replace the probability density function by
the probability mass function. In the proof we can replace the integrals by
sums.

Lemma 5.2. The rejection sampling described in Theorem 5.1 requires an
expected number of M samples from 'Y in order to output a sample from X.

Proof. The rejection sampling outputs a sample from X with probability
1/M. Thus the number of samples required from Y follows a geometric
distribution with probability 1/M, which has mean M. O

5.1 Uniform distribution

In this section we will first explore the option where the vector y is sampled
according to a uniform distribution to familiarize ourselves with the signa-
ture scheme. In the next section we will sample the vector y from a Gaussian
distribution in order to obtain better (practical) performance results.

We pick A € Zy*™ uniformly at random, pick S € {=D,...,0,...,b}mxk
uniformly at random for some small b € N and set "= AS mod q. We have
ce{x e {-1,0,1}* | ||z|]} < k}. Then we set R = \/m - (kb)2 = kby/m
so that VS € {—b,...,0,...,b}™** and Vc € {x € {-1,0,1}* | ||z|]1 < K} we
have ||S¢|| < R.

Choose y uniformly from an m-dimensional discrete ball {z € Z™ | ||z|| <
r + R} of radius r + R, where r is some real number and R is an upper
bound on the length of Sc as defined above.

We compute ¢ = H(Ay mod ¢, u) for a hash function H and z = Sc + y.
For X we choose the uniform distribution over an m-dimensional discrete
ball {z € Z™ | ||z|| < r} of radius r. We will output (z,c) as the signature
if ze{xeZ™|||z|| <r}.

We set

{zez™ ||z <7+ R}|

|
M =
Hz e Zm [ |z]| <7}

Then by the rejection sampling theorem (Theorem 5.1), z conditioned on
being output, is exactly distributed as X.
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We want to ensure M is small so we can sign a message efficiently. We
approximate M by ratio of the volume of two (continuous) balls.

g S () (o)

r

r/R

If r/R > m, we have:

1\ 1\™
M~(1+—) <(1+—) <e
(ei7m) =(+m) =

Therefore we have to pick r > mR = O(m!'?®) to ensure M is small.

A verifier accepts a signature o = (z,¢) on a message p if ¢ = H(Az —
Tcmod ¢, ) and ||z]] < 7.

Lemma 5.3. A valid signature (z,c) is accepted by the verifier.

Proof. We have z € B(r), so ||z|| < r and

H(Az —Tcmod ¢, ) = H(A(Sc +y) — ASc mod g, i)
= H(Aymod q,u) = ¢

O]

Lemma 5.4. A valid signature (z, c) is zero-knowledge in the random oracle
model.

Proof. Because of the rejection sampling step, the signature z is distributed
as X, which is independent of the secret key. So to simulate a signature,
generate a sample z from X and a uniformly random ¢ and output (z,c).
To make the signature valid, program the oracle H as follows: if H(Az —
Tcmod ¢, ) already has a value assigned not equal to ¢, start over; else
program H such that ¢ = H(Az — T'c mod ¢, ). O

We will now prove a lemma that we use in the security proof to replace a
column of secret key S.

Lemma 5.5. Let I € Z. For any A € Zy™™ with m > [ - 1(%1(02% +n-
log g

Tog(2b-1) and s € {=b,...,0,...,b}"™ chosen uniformly random, there exists
with probability at least 1 — 27" an s’ € {~b,...,0,...,b}™, s’ # s such that
As = As'.
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Proof. The range of the corresponding matrix transformation of A has size

q", so there can be at most ¢" elements s € {—b,...,0,...,b}™ that do not

collide. Thus the probability of picking such an element is at most

qn en log g

= <€

nlogg—nlogg—llog2 _ e—llog? — 2—1'
(2b + 1)m emlog(2b+1) —

O]

Theorem 5.6. Suppose there exists a probabilistic polynomial time forger
F in the random oracle model who makes at most s sign queries to the
signer X and at most h hash queries to the random oracle and succeeds in
producing a forgery with probability €. Moreover, assume the image of the
random oracle H is large such that H is pre-image and collision resistant.
Then there exists an algorithm of the same time complexity that can solve
the SgS(m, n,q,3) problem for 5 = 2r 4+ 2bky/m = O(n1'5) with probability
Proof. Let A be the matrix in the SIS instance and run the forger F on
public key (A,T) for T = AS with S € {-b,...,0,...,b}™ ¥ uniformly at
random for some small b € N. Let t = s + h and pick rq, ..., uniformly
random from {z € {~1,0,1}* | ||z||1 < &}, i.e. the image of the random
oracle H which we will denote by Im(H). Whenever F queries H or F
requests a signature and X queries H, the response of H will be the first r;
that has not yet been used. If the query has been made before, H will reply
with the same r;. So in particular H keeps a list of queries and outputs.
Note we simulate > to generate a signature as described in the proof of
Lemma 5.4.

F will output, with probability €, a message p and its signature (z,¢) such
that ||z|| < rand ¢ = H(Az—Tcmod ¢, u). If F or ¥ has not queried H on
(Az —Tcmod ¢, u), F cannot know H(Az —T'c mod ¢, 1) and could at best
obtain ¢ = H(Az —T'c mod ¢, 1) with probability 1/|Im(H)|. Therefore the
probability that F outputs a forgery (z,c) with ¢ being one of the r;’s is at
least € — 1/|Im(H)|. Let j be such that ¢ = r;.

Now r; was a response to a random oracle query made by F or it was
programmed during signing by 3.

Suppose ¢ = H(AZ' — Tcmod ¢, u') was programmed during the signing
of a message p' by X. If F produces a valid forgery for the message pu,
we have H(Az' — Temod q, /) = H(Az — Temod q, ). So if Az —Te #
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Az—Tcmod qor p/ # p, then F has found a second preimage of the random
oracle H, which is negligible given our assumption on H. Therefore we can
assume Az’ —Tc= Az —Tcemod q and p/ = . Then Az’ — Az = 0 mod ¢,
thus A(z' — 2) = 0 mod q. We know 2’ # z, because ¢/ = p and F output a
forgery. Therefore 2’ — 2z # 0 and ||2' — z|| < ||Z/]| + |]z]| < r +r = 2.

Suppose ¢ = r; was set as a response to a random oracle query made by F.
We store the signature (z,c¢), rewind F to after the selection of message u
and regenerate random elements 77, .., 7; uniformly random from the range
of the random oracle H. By the General Forking Lemma [21] we obtain that
the probability that F forges again on r; with 7} # r; is at least

€ — m 62
(e 1/t (R ) ~

Thus we obtain a signature (2/,c') with ¢’ = r’ on the message u with the
above probability. Az — Tc = Ay = Az’ — T'¢ mod ¢, so we obtain:

A(z—2+5(d —c)) =0mod q.
Nzl |Z']] <7, Se,S¢! < bry/m, so ||z — 2"+ S( = ¢)|| < 2r + 2bky/m.

It remains to be shown z — 2z’ + S(¢ — ¢) # 0. We know ¢ # ¢/, so let i be
a position such that ¢; # ¢,. By Lemma 5.5 it follows that with probability
1 — 27" we can replace column S; of S by another vector S! with AS = AS’,
where S is the matrix S with replaced column i. If z—2'4+5(¢/’—¢) = 0, then
z—2 +58(d —¢) #0. By Lemma 5.4 F cannot know whether we are using
secret key S or S’. Both are equally likely, so we get z — 2’ + S(¢/ —¢) # 0
with probability at least % O

5.2 Gaussian distribution

In the previous section we saw the signature vectors z have length 0(7@1'5).
In this section we obtain signature vectors z with length oy/m = O(m)
by replacing the uniform distribution with the discrete Gaussian distribu-
tion.

Definition 5.7. [7] The Gaussian distribution on R" centered at v € R”
with standard deviation o € R+g is defined by:

L\ (Sl
Ve € R" pi =|—— _ .
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When the subscript v is omitted, the function is taken to be centered around
0.

Definition 5.8. [7] For any mean v € Z", parameter ¢ € R>g, we define
the discrete Gaussian distribution over Z™ as:

Po.o(T) Pv.o(T)
Vo € Z", DI (z) = L0 : .
' pg,a(Zn) ZmGZ" pg,o‘(‘r)

Note that pjy ,(Z") = p;(Z") for all v € Z". Thus the normalization factor is
the same for all v. Moreover note that o is a parameter close to the standard
deviation of the distribution, but not equal [22].

Remark. Some authors define the discrete Gaussian distribution over Z™
with the Gaussian function pf . defined in definition 3.22. This is equivalent

for s = o/ 2.

Recall we choose A € Zy*™ uniformly at random, choose S € {-b, ..., 0, ..., pymxk
uniformly at random for some small b € N, set T = AS mod ¢ and the image
of the hash function Im(H) = {z € {~1,0,1}* | ||z||1 < k}.

Choose y from the discrete Gaussian distribution D]' over Z™ centered
around 0 for some parameter o, compute ¢ = H(Ay mod ¢, ) and com-
pute z = Sc+ y. We will output (z,c¢) as the signature with probability

min (%, 1) where v = Sc and M has yet be determined to match

criteria outlined in the following theorem (Theorem 5.9).

A signature will be accepted if ||z|| < 204/m and ¢ = H(Az — T'c mod
G, 1)-

This signature scheme with rejection sampling that is not perfect is similar
to Lyubashevsky’s scheme [7], but instead we will use the Rényi divergence
in the security proof. We will show later that this Rényi divergence analysis
leads to better parameters for the signature scheme.

Theorem 5.9. Let X be a discrete random vartable on Z™ with probability
mass function f. Let h specify the uniform probability mass function on an
arbitrary countable set V. Let g, be a family of probability mass functions
on Z™ indexed with v € V. Let M,e € R be such that for all v, Pr[f(X) >
Mg, (X)] < c.

Then the output distribution of the following algorithm Sy :

1. Sample v according to h.
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2. Sample z according to g,.

3. With probability min (f(z)/(Mgy(2)),1) output (z,v). Else return to
step 1.

is within & Rényi divergence of order a € [0, 00] with respect to the output
distribution of algorithm Sa:

1. Sample v according to h.
2. Sample z according to f.
3. Output (z,v).

Moreover, the probability that S1 terminates during the current iteration is
at least (1 —¢€)/M.

Proof. Let E, = {z € Z™ | f(2) < Mg,(z)} be the set of points on which
f is dominated by Mg,. We will write ESJ = Z™\FE, for the complement
of E, in Z™. If z € E,, then min (f(z)/(Mgy(2)),1) = f(2)/(Mg,(z)) and
if z € ES, then min (f(2)/(Mg,(2)),1) = 1. We now determine upper and
lower bounds on the probability that S; terminates in the current iteration.
We denote this event by 7.

veV zelb, M M
f(z)
7—] Zh Z gv(z)Mg (2) Z gv( )
veV 2EEy 0%
z z 1
ST R ) RS
veV 2EEy 2€E¢

In order to compute the Rényi divergence, we must first know for all z € Z™,
v € V what the probability is of S} and Sy outputting (z,v). In the case
of Sy this probability is h(v)f(z). In the case of S we are required to
do some more work. The probability that S; outputs a sample (z,v) in
iteration ¢ conditioned on not having output a sample in iteration 1,...,2—1
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is h(v)gy(z) min(f(z)/(Mgy(z)),1). It is thus clear that the probability of
outputting a sample in the current iteration does not depend on the iteration
number, nor on the previous iterations. Therefore we can define Ng, as
the probability that S; does not output a sample (z,v) during the current
iteration and compute (Ng, )¢ as the probability that S has failed to produce
output after ¢ iterations. Then by the law of total probability we obtain

= 3 . h(v)gy(2) min /(z)
B[S, outputs <z,v>1—i§(<Nsl> h(0)g0(2) <Mgv(z),1>>.

Now to compute the Rényi divergence of order co we use Theorem 4.18 to
get

5220 ((Ns,)i(0)g0(2) min( 55, 1))

Roo(81]|S2) = log sup

(z,v) h(v)f(2)
gu(2) min( 555, 1) - 3222 (N, )
= log sup
(20) f(z)
1 gol2) min( 57 25.1)
=1lo sup
& 1 - Ng, (z,v) f(Z
Let us analyze the supremum.
gv(2) min(]\fg(j()z) , 1)
sup
(z,v) f(Z)
gv(2) min(]\/[fg(f()z), 1) gv(2) min(]\/[f;j()z), 1)
= max sup , sup
(2,v),2€E, f(Z (z,v),2¢Ey f(Z)
f(z
= max sup 791,(,2) Mg(”()z) sup 9:(2)
(2,v),2€E, f(Z) ,(z,v),z€EU f(Z)
1 go(2)
=max | —, sup
(M (2,0),2¢E, f(Z) )
_1
=3
So
Rao(S1]|S2) = o !



ROO(Sl | |SQ) = log

;<lo 1+L < €
M(I_Ng,) = 8 1-¢)=1-¢

By Theorem 4.11 the result follows for the Rényi divergence of all orders
a € [0, 00]. O

Remark. Multiple runs of the algorithms are independent, so running n
times would give

Roo(ST[53) = log [(M)n] =n - Roo(S1]|S2).

Compared to [7] it should be noted that in addition to performing a Rényi
divergence analysis we have also chosen to iterate algorithm &7 until it pro-
duces output as opposed to letting S» output a sample with probability
1/M. This in turn will make the security analysis easier, as we do not have
to consider a distinguisher based on whether a sample was output or not,
and produce better results.

We will use the following lemmas from [7] to bound probabilities regarding
events of a random variable distributed according to the discrete Gaussian
distribution.

Lemma 5.10. Let Z be a random variable distributed according to the dis-
crete Gaussian distribution D, over Z. Then for any j > 0,

_ 2 _ 2
P[|Z| > jo] < 2e 5 = 27esn Tl

Proof. See Lemma 4.4 in full version of [7]. O

Lemma 5.11. Let Z be a random variable distributed according to the dis-
crete Gaussian distribution D7 over Z™. Then for any j > 0,

P[||Z]| > jov/m] < jme® T,
Proof. See Lemma 4.4 in full version of [7]. O
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Corollary 5.12. Let Z be a random wvariable distributed according to the
discrete Gaussian distribution D' over Z™. Then,

P[||Z|| > 20y/m] < 27™.

Proof. Apply Lemma 5.11 and simplify j = 2. O

Lemma 5.13. Let Z be a random variable distributed according to the dis-
crete Gaussian distribution D' over Z"™. Then for any vector v € R™ and
any o,r >0,

2

P[[(Z,v)| > r] < 2¢ 2PIP?
Proof. See Lemma 4.3 in full version of [7]. 0

We are now ready to show the existence of a constant M € R as in Theorem
5.9 where &7 and Se sample according to discrete Gaussian distributions.
Hence we prove a bound on the Rényi divergence of S; from Sy by applying
Theorem 5.9.

Theorem 5.14. Let X be a discrete Gaussian distributed random vari-
able centered around 0 for some standard deviation parameter o = aR
with probability density function D' for a, R > 0. Let h specify the uni-
form probability distribution on Im(H), S € {—b,...,0,...,b}™ % and R =
max.cim(a) ||Scl|. Let Dy, be a family of probability density functions of the
discrete Gaussian distribution for parameter o indexed with mean v € {Sc €
Z™ | ceIm(H)}. Then for all e > 0 there exists a constant M € R such that
for allve{SceZ™|celm(H)} we have Pr[Dg(X) > M D}, (X)] <e.

Then the output distribution of the following algorithm Sy :
1. Sample ¢ according to h.
2. Setv = Sec.
3. Sample z according to Dy,

4. With probability min (D, (z)/(M D, +(2)),1) output (2,c) and program
H(Az — Tcmod q, ) = c. Else return to step 1.

is within Rényi divergence 1= with respect to the output distribution of Sa:
1. Sample ¢ according to h.

2. Sample z according to D"
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3. Output (z,c) and program H(Az — Tcmod ¢, u) =
Moreover, the probability that S1 terminates during the current iteration is

at least (1 —¢)/M.

Proof. Let o be such that 0 = aR. We have

pri) ) o0 ()
Dy,(2)  pla(2)  exp <M)

202

exp (121
o <—<||zu2+|2\1;|2\2—2<z’v>>)

e (1) e (157,

By Lemma 5.13 apphed with r = jo||v|| we have with probability less than

€=2 7 = 2210g2+ that |(z,v)| > jol|v||. Therefore with probability at
least 1 — ¢,

Dy (2) 1ElS —(z,v) [l0l[? jollv|
DELU(Z) = exp < 5,2 ) ¢XP 2 < exp 5,2 | €XP p .

Recall 0 = aR > a||v||, so

< (HU\P) exp < '||;)||>
s (i) > (351
o (Jenll) i)

So one can pick M = exp (% + ﬁ)

| /\

Apply Theorem 5.9 with f = D" and g, = Dy, to complete the proof. [

Lemma 5.15. A walid signature (z,c) is accepted by the verifier with over-
whelming probability.
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Proof. By the probability preservation property (Lemma 4.23) and Corol-
lary 5.12 we know

P[||2]| > 20v/m] < (1 r < ) o
which is negligible, and it always holds

H(Az —Tcmod q, ) = H(A(Sc + y) — ASc mod ¢, p)
= H(Ay mod ¢, u) = c.
O

Lemma 5.16. Let g > 2m and m > 2n. Suppose there exists a probabilistic
polynomial time forger F in the random oracle model who makes at most s
sign queries to the signer % and at most h hash queries to the random oracle
and succeeds in producing a forgery with probability 7. Then F succeeds in
producing a forgery with probability at least T — s(s + h)27"! when ¥ is
replaced by 81 from Theorem 5.14.
Proof. Recall the signer X::

1. Sample y according to D"

2. Set ¢ = H(Ay mod q, p).

3. Set z = Sc+y.

4. With probability min (D, (2)/(M D, »(z)), 1) output (z,c). Else return
to step 1.

The “simulator” &; from Theorem 5.14 is equivalent to:
1. Sample y according to D"
2. Sample ¢ according to h.
3. Set z = Sc+y.
4

. With probability min (D, (2)/(MD,,(z)),1) output (z,¢) and Pro-
gram H(Az — Tcmod ¢, u) = c. Else return to step 1.

We note that in the random oracle model the only difference between the
actual signing algorithm > and “simulator” &7 is that in &7 it is not checked
whether the value for H(Ay mod ¢, u) = H(Az — Tcmod ¢, u) was already
set.
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Since F makes at most s sign queries and h hash queries, at most (s + h)
values of (Ay,u) will be set. Lemma 5.3 in [7] shows that for a random
sample y from D"

PlAy =t] <2771

for any t € Z;. Then the probability of a collision each time is at most
(s + h)27"*1. So the probability of a collision after s queries is at most
s(s+ h)27ntL, O

Remark. Note n will be set > 384. Thus this probability is small enough for
our purposes.

Recall from Theorem 5.14 we have M = exp(% + ﬁ) and € = 2exp(%j2).

We would like to pick o small because o determines the signature size. More-
over, we would like M to be small for efficiency, because M is the expected
number of times we need to generate a sample to produce a signature. So
in order for M to be small, we can pick a = j. In section 5.5 we will explore
the option to pick a small.

Lyubashevsky [7] requires ¢ < 27190 because he bounds the statistical dis-
tance between S; and Sy by s - €, where s is the number of signatures the
forger can query. Therefore he must pick j = 12 and consequently o = 12R.
Using the Rényi divergence, we will show that j = 9 and thus ¢ = 9R
suffices for up to 2°¢ signature queries.

Lemma 5.17. Let 81, S2 be as in Theorem 5.14. Suppose there exists
a probabilistic polynomial time forger F in the random oracle model who
makes at most s < 2°% sign queries to the signer using S with € = W
and at most h hash queries to the random oracle and succeeds in producing
a forgery with probability . Then F succeeds in producing a forgery with

probability 27 /3 when Sy is replaced by Sa.

Proof. Let E5 be the collection of sets of s signatures for which an attacker
outputs a valid signature. We write S; to denote the distribution of s signa-
tures sampled independently from S;. Then by the probability preservation
property (Lemma 4.23)

S5(Es) = Si(Es)/ exp(Roo(S7]|53)) = S7(Es)/ exp(s - Roo(51]]52)),

where the equality follows per the remark in Theorem 5.9. By Theorem 5.14

exp(s - Roo(S1]|S2)) < exp (s : 1€> < exp(0.4) < 1.5,
€
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using € = and s < 2%, O

2
exp(81/2)

Theorem 5.18. Suppose there exists a probabilistic polynomial time forger
F in the random oracle model who makes at most s sign queries to the
simulator So and at most h hash queries to the random oracle and succeeds
in producing a forgery with probability 7. Moreover, assume the image of the
random oracle H is large such that H is pre-image and collision resistant.
Then there exists an algorithm of the same time complexity that can solve
the SIS(m,n,q, ) problem for B = (40 + 2bk)y/m = O(n) with probability
2

~
~

2(5T+h) ’

Proof. Let A be the matrix in the SIS instance and run the forger F on
public key (A,T) for T = AS with S € {-b,...,0,...,b}™ ¥ uniformly at
random for some small b € N. Let t = s + h and pick rq, ..., uniformly
random from Im(H). Whenever F queries H or F requests a signature and
Sy programs H, the response of H will be the first r; that has not yet been
used. If the query has been made before, H will reply with the same r;. So
in particular H keeps a list of queries and outputs.

F will output, with probability 7, a message p and its signature (z, ¢) such
that ||z|| < 20v/m and ¢ = H(Az —Tcmod ¢, ). If F or Sz has not queried
H on (Az—Tcmod ¢, i), F cannot know H(Az—Tc mod ¢, ) and could at
best obtain ¢ = H(Az—Tc mod g, 1) with probability 1/|Im(H)|. Therefore
the probability that F outputs a forgery (z,c) with ¢ being one of the r;’s
is at least 7 — 1/|Im(H)|. Let j be such that ¢ = r;.

Now r; was a response to a random oracle query made by F or it was
programmed during signing by Ss.

Suppose ¢ = H(AZ' — Tcmod ¢, p') was programmed during the signing
of a message i/ by Sy. If F produces a valid forgery for the message p,
we have H(Az' — Tcmod q,p') = H(Az — Temod g, ). So if Az —Te #
Az—Tcmod qor p/ # p, then F has found a second preimage of the random
oracle H, which is negligible given our assumption on H. Therefore we can
assume Az’ —Tc= Az — Tcmod q and p/ = . Then Az’ — Az = 0 mod ¢,
thus A(2' — z) = 0 mod gq. We know 2’ # z, because ¢/ = p and F output a
forgery. Therefore 2’ —z # 0 and ||z’ — z|| < ||Z/|| +||2]| < 20v/m+20y/m =
do+/m.

Suppose ¢ = r; was set as a response to a random oracle query made by F.
We store the signature (z,c), rewind F to after the selection of message u
and regenerate random elements r}, .., 7y uniformly random from the range
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of the random oracle H. By the General Forking Lemma [21] we obtain that
the probability that F forges again on r; with 7} # r; is at least

2

T Y/Im{H)| 1/]Im(H)|> ~T

(7= 1/ () (T

Thus we obtain a signature (2/,c') with ¢’ = r’ on the message u with the
above probability. Az — Tc = Ay = Az’ —T¢ mod q, so we obtain:

A(z—2 +5( —¢)) =0mod g.

211 11211 < 20v/m, ||Sell, [|S¢]| < bry/m, so ||z = 2"+ S(¢ = ¢)]| < (40 +
2bk)y/m.

It remains to be shown z — 2’ + S(¢’ — ¢) # 0. We know ¢ # ¢/, so let i be
a position such that ¢; # ¢;. By Lemma 5.5 it follows that with probability
1 — 27! we can replace column S; of S by another vector S} with AS = AS’,
where S’ is the matrix S with replaced column i. If z — 2’ + S(¢ — ¢) =0,
then z — 2/ 4+ S’(¢/ — ¢) # 0. Because Sy does not use the secret to generate
signatures, F cannot know whether we are “using” secret key S or S’. Both
are equally likely, so we get z — 2’ + S(¢’ — ¢) # 0 with probability at least
3. O

We wish to be able to replace a column of S with overwhelming probability,
so we set [ = 100 in Lemma 5.5.

Corollary 5.19. Let m > max(2n, (100 + nlog, q)/logy(2b + 1)) and ¢ >
2m. Suppose there exists a probabilistic polynomial time forger F in the
random oracle model who makes at most s < 255 sign queries to the signer ¥
and at most h hash queries to the random oracle and succeeds in producing
a forgery with probability 7. Then there exists an algorithm of the same
time complexity that can solve the S1S(m,n,q, ) problem for = (40 +
2bk)y/m = O(n) with probability ~ g(%fh)'

Proof. Apply Lemma 5.16, Lemma 5.17 and Theorem 5.18 in sequence. [

5.3 Parameter selection

Setting the parameters is difficult for lattice-based cryptography as it is
unclear how the running time of reduction algorithms depends on the di-
mension of the lattice. In order to do so we rely on the experiments made
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by Gama and Nguyen [23]. They observed that the shortest length of a
vector that can be found for m-dimensional lattices with the best known al-
gorithms is about det(£)'/¢™. The parameter § depends on the algorithm
used.

Even though their experiments were performed on a different distribution of
lattices, Micciancio and Regev [13] observed the same behaviour in their ex-
periments on random g¢-ary lattices, with the exception that the trivial vector
of length ¢ can always be found. Therefore the shortest length vector of the
SIS problem that can be found is about min(g, det(AqL(A))l/mém).

We have m > 2n and ¢ prime, so with high probability the matrix A has n
linearly independent columns over Z,. We have seen in section 3.2 that the
lattice basis of AqL (A) is given by

<qIn —A11A2>

0 Im—n ’

The determinant of this upper triangular matrix is then given by the prod-
uct of the diagonal entries, so we easily obtain det(A;(A)) = ¢". Therefore
the shortest length of a vector of the SIS problem that can be found be-
comes min(g, ¢™/™6™). Next Micciancio and Regev reason that increasing
m cannot make the problem harder, as we can always delete some columns
from A, effectively setting some coordinates of y to 0. For large m the high
dimension prevents lattice reduction algorithms to find short vectors, in such

cases it is thus better to delete some columns of A in order to reduce the
dimension. Micciancio and Regev show the optimal m = /nlog ¢/ logd and

obtain min(g, 22V™1082419829) for the length of the shortest vector that can
be found.

They note that slower algorithms can provide § ~ 1.012 or even § ~ 1.011.
However when the dimension of the lattice becomes several hundreds, it
becomes unavoidable to use faster algorithms and § becomes about 1.013.
In any case it seems to be impossible to reach values lower than 1.01 with
our current understanding of lattice reductions [13].

We will use this analysis to estimate the shortest vector that can be found for
the SIS problem and then set the parameters of the signature scheme such
that we can extract a shorter vector for the SIS problem from the forger. To
determine the security level, Lyubashevsky [7] sets § = 1.007 and that offers
a large margin to the current 1.013. It is difficult to predict what J can
be achieved in the future, but fortunately for signature schemes long term
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security is less important than it is for encryption schemes. In any case we
will use the same § in order to make a fair comparison.

We will take a look at the parameters of the signature scheme of Lyuba-
shevsky based on the hardness of the SIS(m,n,q, 5) problem and compare
this to what we can achieve based on this same hardness assumption. This
concerns columns 1, 2 and 3 of figure 2 in [7], which we replicate in Table
5.1.

I I 11 TIT*
n 512 512 512 512
q 227 225 233 233
b 1 1 31 31
k 80 512 512 512
~ log
m~ 64 + n% 8786 8139 3253 2891
kst 20 (F) > 2100 28 14 14 14
o~12-b-kym 31495 15157 300926 280024
sig size (bits) 163000 142300 73000 62678
~m - logy(120)
sk size (bits) 20 22.5 23 23
~m-k-logy(2b+1) 2 2 2 2
pk size (bits) 920 922.5 923 923
~n-k-logy(q)
shortest ||v|]|
1262 1 14144 14144
- (q, ? m) 625688 6810608 709 709
forger ||v]|
< (4o + 2bx) /i 11813633 5471934 67816002 60271983
ratio 0.94 0.80 0.96 0.85

Table 5.1: Signature Scheme Parameters. The parameters are based on
the hardness of SIS(m,n,q, ) with 8 = (40 + 2bk)y/m. The security level
is for 6 = 1.007. Columns I-III correspond to Fig. 2 in [7].

Note the m in column I and II perfectly follow the formula, but the m in
column III seems to be set arbitrarily larger than necessary for the assump-
tions. We have appended column IIT* with the same parameters n,q,b, k
and m = 64 + 512 - 33/1ogy(63) = 2891. This m is still much larger than
the optimal m = /512 33/log,(1.007) = 1296 for the lattice reduction
algorithms according to Micciancio and Regev [13].
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The secret key is an m x k matrix with entries bounded by b, so it will require
m - k - [logy(2b + 1)] bits. The part of the public key that is individual for
each user (T) is an n x k matrix, so it will require n - k - [logy(q)] bits. The
size of the signature is dominated by z, as c is just a low weight bit string.
The vector z is distributed according to D" and by Lemma 5.10 we know
that each entry of z has length at most 120 with probability 1 —2719, Thus
z can be represented by m - [logy(120)] bits.

We now determine some improved parameters, based on our security proof
using the Rényi divergence instead of the statistical distance.

The reduction of o going from 12R to 9R barely has a direct influence
on the signature length in bits, each vector entry would be at most 1 bit
shorter. However, because we can reduce o by 25%, the forger will also
have to find a vector z with length that is 25% smaller. This makes the
problem significantly harder. We note the signature size depends mainly on
m, therefore we aim to lower the dimension. The smaller vector z required
allows us to maintain the same hardness while lowering the dimension. We
want to be able to extract a vector from the forger that is smaller than we can
expect to obtain from a lattice reduction algorithm with § = 1.007.

We observe we can gain the most from our reduction of ¢ from 12R to 9R
when o is large, in other words, when b is large. In particular a larger
b means that the shortest vector we can extract from the forger becomes
larger. For security we still require that this extracted vector is smaller
than the shortest vector that can be found for the SIS problem directly.
Therefore we also set ¢ much higher to increase the length of the shortest
vector that can be found for the SIS problem per the analysis in [13]. Then
in table 5.2 we see in column VI we can halve the secret and public key size
while maintaining the same signature length as in column III*. Alterna-
tively, in column VII we decrease the signature length by about 9,000 bits
or approximately 15%.

5.4 SIS decision problem

We have seen that the signature size is approximately m - logy(120) and
hence it is most affected by the parameter m. Moreover the chosen values of
m are well above the optimal value for m as shown by Micciancio and Regev
[13] and thus do not make the problem any harder. Therefore it appears
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VI VII
n 384 384
q 940 950
b 18 181
k 320 320
m =~ (100 + nlogy q)/logy (2b+ 1) 2969 2270
kst 29 (F) > 2100 15 15
o~9-b-Kkym 132408 1164194
sig size (bits) ~ m - logy(120) 61161 53 881
sk size (bits) ~ m - k - logy(2b + 1) 222 222:5
pk size (bits) = n -k -logy(q) 222 2225
shortest [|v]| &~ min(q, 22V"1082710829) | 30575950 233834913
forger ||v|| ~ (40 + 2bK)/m 28888104 222128510
ratio 0.94 0.95

Table 5.2: Signature Scheme Parameters. The parameters are based on
the hardness of SIS(m,n,q, ) with 5 = (40 + 2bk)y/m. The security level
is for § = 1.007.

this higher value of m is redundant in some sense. Indeed, Lyubashevsky
[7] shows we can use m = 2n.

If we still were to satisfy the equation in Lemma 5.5 with [ = 100, we would
need to pick a very large b. This would make the problem a lot easier,
since larger vectors will now suffice for the forger to break the signature
scheme. Therefore we will no longer require the equation in Lemma 5.5 to
hold. Hence we cannot be sure there exists a second secret key S” # S that
satifies AS’ = T. In fact, with extremely high probability there will only
be one S for which AS = T' [7]. However, Theorem 5.14 and Lemma 5.16
still hold. So the real signer is still indistinguishable from the simulator
Sa.

Then, for a given A, we can use an S with small coefficients bounded by b
in the actual signature, but an S’ with large coefficients bounded by &’ for
the simulator such that there exists an S” # S’ with AS’ = AS”. If the
distribution of the public key (A, AS) is computationally indistinguishable
from the distribution of (A, AS’), the forger will not be able to tell he is
given an invalid key pair. Since So never uses the secret key to generate
signatures, the forger will not behave any differently in that case.

The security of the signature scheme is now based on the hardness of both
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the original SIS(m,n,q,) problem with 8 = (40 + 2V/k)y/m and the
distinguishing problem. In order to formalize the hardness of the distin-
guishing problem we will define the SI1S(m,n,q,b) distribution and the
SIS(m,n,q,b) decision problem.

Definition 5.20. [7] Choose a uniformly random matrix A € Z*™ and a

vector s € {—b,...,0,...,b}"™. Then the pair (A, As) is generated from the
SIS(m,n,q,b) distribution.

Definition 5.21. [7] Short Integer Solution decision problem denoted by
SIS(m,n,q,b). Given a pair (A,t), decide with non-negligible advantage
whether it is generated from the SIS(m,n,q,b) distribution or generated
uniformly at random from Zg*™ x Z.

The hardness of the distinguishing problem is based on the hardness of the
SIS(m,n,q,b) decision problem and the SIS(m,n,q,b") decision problem.
Certainly if one cannot even distinguish either from the uniformly random
distribution, then one also cannot tell them apart. See Lemma 6.1 in [7] for
a formal treatment.

In fact, the hardness of the distinguishing problem is solely based on the
hardness of the SIS(m,n, ¢, b) decision problem as this problem reduces to
the SIS(m,n, q,b") decision problem for appropriately chosen t'. It is quite
intuitive the problem becomes harder when b increases as the SIS(m,n,q,b)
distribution will be statistically close to the uniformly random distribution
for very large b.

Lemma 5.22. [7] For any 6 € N such that gcd(20 + 1,q) = 1, there is a
polynomial time reduction from the SIS(m,n,q,b) decision problem to the
SIS(m,n,q, (20 + 1)b+ 0) decision problem

Proof. Given (A,t), generate a uniformly random vector r € {—0,...,0,...,0}™
and output (A, (20 + 1)t + Ar). Since ged(26 + 1,q) = 1, the uniform dis-
tribution will be mapped to itself. If (A,t) came from the SIS(m,n,q,b)
distribution, then (260 + 1)t + Ar = A((20 + 1)s + r). Vector s was cho-
sen uniformly random from {—b,...,0,...,b}™, so (20 4+ 1)s + r is uniformly
random in {—(20 +1)b—4,...,0,..., (20 + 1)b + 60}". Thus the transforma-
tion maps the SIS(m,n,q,b) distribution to the SIS(m,n,q, (20 + 1)b + 6)
distribution and the uniform distribution over Z"*™ x Z" to itself. O

Moreover, the SIS(m,n, q,b) decision problem reduces to the SIS(m,n, q, )
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problem and we end up with only our original computational hardness as-
sumption, for different parameters.

Lemma 5.23. If m = 2n and 4b8 < q, then there is a polynomial time re-
duction from the SIS(m,n,q,b) decision problem to the SIS(m,n,q, ) prob-
lem.

Proof. Lemma 3.7 in [7]. O

Corollary 5.24. Let m = 2n, m > (100 + nlog, q)/log, (20’ + 1), ¢ > 2m,
q > 4b3 and b = (20 + 1)b + 0 for some 6 € N. Suppose there ezists a
probabilistic polynomial time forger F in the random oracle model who makes
at most s < 2°6 sign queries to the signer ¥ and at most h hash queries to
the random oracle and succeeds in producing a forgery with probability §.
Then there exists an algorithm of the same time complexity that can solve

the SIS(m,n,q, ) problem for B = (40 + 2V'k)/m = O(n) with probability
~ 262
™~ 9(s+h)"

Proof. The proof is the same as Corollary 5.19 with b replaced by b'. O

Earlier we remarked our analysis has a bigger impact for larger bounds b. For
the setting in this section picking bound b = 1 is optimal, hence we notice
our Rényi divergence analysis now has a lesser impact on the signature size.
Moreover, since b, £ and m are fixed, the only possibility to change the
signature size is by adjusting the dimension n. As we can extract slightly
shorter vectors from the forger, we are able to lower the dimension n a bit
further while maintaining security. This allows us a decrease in the signature
length by about 2,000 bits or approximately 12%. In table 5.3 we compare
column IV from Figure 2 in [7] versus these suggested parameters in column
VIIL.

5.5 Beating the MTU

The internet protocol (IP) provides for transmitting blocks of data called
packets from sources to destinations. The maximum sized package that can
be transmitted through the network is called the maximum transmission
unit (MTU) [24]. Almost all IP over ethernet implementations use Ethernet
v2 and the MTU for Ethernet v2 is 1500 bytes [25]. Therefore it would be
especially interesting if we can further reduce our signature size from 14400
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v VIII IX

512 464 452
q 924 925 922
b 1 1 1
b 2206 3124 1108
k 512 448 448
m=2n 1024 928 904
K s.t. 2F. (,’:) > 2100 14 14 14
osp ~12-b-Kky/m 5376 - -
O'RDQQ-I)-KZ\/% - 3839 -
O'RD%1.96'b-I{\/m - - 825
M 2.7 2.7 112.4
sig size (bits) ~ m - logy(120) 16 500 14377 11999
sk size (bits) & m - k- logy(20 + 1) 219:5 219:3 2193
pk size (bits) =~ n -k -logs(q) 2225 222:3 2221
shortest ||v]| &~ min(g, 22V"1082910820) | 4955056 3198889 1053914
forger ||v|| = (40 + 2V'k)\/m 2664704 3132380 1031958
ratio 0.54 0.98 0.98

Table 5.3: Signature Scheme Parameters. The parameters are based on
the hardness of SIS(m,n, q, 8) with § = (40 + 2V'k)y/m. The security level
is for 6 = 1.007. Column IV corresponds to Fig. 2 in [7].

bits (1800 bytes) to 12000 bits (1500 bytes) in order to avoid negative effects
such as fragmentation of packets.

The approach we follow will be well suited in cases where the signer is
willing to perform some extra work in order to generate smaller signatures.
An example could be a signature on software that is distributed to a large
number of users or an X.509 certificate .

Recall from Theorem 5.14 we had M = exp(2 + ﬁ), where M is the
expected number of repetitions in the rejection sampling. In order for M
to be small, we picked a = 9. This resulted in ¢ = aR = 9R. We will
now relax the requirement on M to be small and select o = 1.96. Therefore
we will obtain a smaller ¢ = 1.96R at the cost of a larger M = 112.4.
This allows us to dive below the 12000 bits limit, while maintaining the
same level of security. See column IX in table 5.3 for a detailed parameter

description.
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In this chapter we have seen a significant improvement in the signature sizes
for the desired security level compared to the original signature scheme in [7],
further advancing towards practical applicability of lattice-based signature
schemes without compromising on the security assumptions.
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Chapter 6

BLISS

In this chapter we discuss an alternative approach to improve Lyubashevsky’s
[7] signature scheme due to Ducas, Durmus, Lepoint and Lyubashevsky [9].
By using samples from a bimodal Gaussian distribution they are able to
reduce the standard deviation parameter of the resulting signatures even
further. The lattice-based digital signature scheme they construct is named
BLISS (Bimodal Lattice Signature Scheme).

6.1 Signature generation

Recall in Lyubashevsky’s original scheme [7] a potential signature z was
generated by sampling y from the discrete Gaussian distribution D]" over
Z™ centered around 0 for some parameter o, computing ¢ = H(Ay mod ¢, u)
and this resulted in z = Sc+ y. Therefore z is effectively sampled from the
discrete Gaussian distribution Dy, over Z™ centered around v = Sc for
some parameter 0. Now the authors of BLISS [9] suggested to compute a
potential signature as z = (—1)*Sc+y, where a is chosen uniformly random
from {0, 1}. Hence z is now effectively sampled according to the probability

distribution function %DZ}:‘U + %DTMU, where v = Sec.

A benefit from using the bimodal Gaussian distribution is the fact that the
authors are able to produce exactly the desired distribution with rejection
sampling instead of a distribution close to this desired distribution. If we
denote the target distribution by f and the bimodal Gaussian distribution by
g, there will now exist an M such that f(x) < M - g(z) for all x, as opposed
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to the case in the original scheme where g was the Gaussian distribution and
f(z) < M - g(x) held for all values but a fraction with probability measure
€.

The main performance gain stems from the fact that the bimodal Gaussian
distribution fits the target distribution much better. Keeping M constant,
the bimodal Gaussian distribution is able to cover the target distribution
completely for a much smaller value of the standard deviation parameter.
This will already become clear in the one-dimensional example as seen in
figures 6.1 and 6.2.

To perform the rejection sampling in Lyubashevksky’s original scheme we
required Dy*(z) < M - D;l';(2) for all but a negligible fraction of z measured
according to D'. Recall we have computed

DRy _ (1
S e a— —_—
D (z) — P laT2a2)

v,0

where we used 0 = aR > «a||v||. So we have M = exp(% + 353). Lyuba-

shevsky required j = 12 and we required 5 = 9. In both cases we picked
a = j in order to obtain M = exp(1). This resulted in 0 = 12R and 0 = 9R,
respectively.

Let us now compute

Dg'(2) _ P (2)

D (2) 4+ 5D™, () Ao (2) 4+ 507 4 (2)
exp (—HzH?)
202
_ _ 2 _ 2
%exp< [ESST] ) N %exp< [EEST] )

—ll=|?
exp 262

Sexp () exp () (exp (282) + exp (=57
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Figure 6.1: Example of Lyubashevsky’s original scheme with source distri-
bution (thick, blue) and target distribution (dashed, red)
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Figure 6.2: Example of BLISS with source distribution (thick, blue) and
target distribution (dashed, red)
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Therefore we can conclude
D7 (2) <Hv|!2> < 1 )
<ex <exp|=—5],
1Dy, (2) + 307, ,(2) — P\ 207 ) = P 2a2

where we again use 0 = aR > «al|v||.

We now have M = exp (#) and we are free to choose a. In order to give a

fair comparison we will choose « such that M = exp(1), i.e. o = % This

implies o = %R, in other words we can choose a much smaller standard

deviation parameter compared to 12R or even 9R, which in turn leads to
smaller signatures.

The parameter a can be easily increased to favour speed or decreased to
favour signature size. In section 5.5 we set @ = 1.96 in order to obtain
signatures sizes below the MTU limit. For BLISS we would in fact be
increasing a to 1.96 and hence can expect a speed up compared to the
default M = exp(1). Indeed for oo = 1.96 the expected number of repetitions
M = 1.14 is less than 2.72 and a huge performance increase compared to
M = 112.4 in section 5.5.

Alternatively we could decrease o even further and set « = 0.5 in order
to obtain even smaller signature sizes. With ¢ = 0.5R we would have
M = 7.39, which is still reasonable.

6.2 Signature verification

While the approach in section 6.1 clearly generates shorter signatures and
is faster, it does break the verification procedure. Therefore it is not as
obvious that this technique leads to an improved signature scheme. The
verification algorithm checks whether ¢ = H(Az — Tc¢ mod g, p1). This will
only hold if Ay = Az—Tc¢ mod g, hence if Ay = A((—1)*Sc+ y)—Tc mod q.
Rearranging these terms gives (—1)%Tc = T'c¢ mod ¢. This equation has to
hold for a € {0,1}, so we require —T'¢ = T¢c mod q. However, this never
happens for T" # 0 and ¢ > 2 prime.

The authors of BLISS [9] propose to work modulo 2¢ and to set T' = ¢l,,,
where I,, is the n x n identity matrix, so in particular they set k = n. In
this case it will hold —7T'¢ = T'c mod 2q.

However it is no longer obvious how to perform the key generation such
that we obtain AS = ¢I,,. The authors of BLISS [9] propose the following
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to generate the public and secret keys. First they pick a uniformly random
matrix A’ € ng(m_n) and 8" € {-n,...,0,...,b}"™ X" for some small
b € N. Compute A” = A’S" mod ¢q and set A = [2A4"|2A” + ¢I] as public
key. The secret key is S = [S'| — I]7 and consists of small entries. Then by
construction we have AS = ¢l,, mod 2q.

Of course the security proof will also need to be adapted, but it is still very
similar to the original security proof in [7]. The dimensions m and n are
picked such that the distribution of [A’|A” mod ¢] is uniformly random in
Zy*™. In the security proof we are given a random B = [A'|A"] € Zy*™
and the authors [9] show that, using a successful forger, we can find a short
vector v such that Bv = 0 mod ¢, i.e. solve the SIS problem, which we will
describe in more detail in a moment. There are however some more technical
requirements to ensure the proof works. In particular it is required that for
a valid signature z we have ||z||oc < ¢/4, in addition to the requirement
l|z]| < 204/m. The authors of BLISS note that this condition on the /-
norm is usually verified whenever the condition on the lo-norm is and that
it does not restrict them in the manner in which they choose the parameters
for the signature scheme [9]. Moreover, as we will see later in the proof, it
is now required that ¢ # ¢’ implies ¢ # ¢ mod 2, because in the signature
scheme we have modulus 2¢ while in the security proof we would like to
reduce to the SIS problem with modulus ¢ prime. Therefore the challenge
vector ¢ can no longer be chosen ¢ € {z € {-1,0,1}* | [|z|| < &}, but
we must choose ¢ € {z € {0,1}* | ||z||1 < x}. In particular this means x
must be set higher to maintain the same level of entropy for the challenge
vector. This in turn results in a larger bound R = kby/m on the maximum
length of Sc. We have already seen that R plays an important role for
both efficiency and signature size as the parameter 0 = aR. To keep the
signature size the same for a larger R we must lower «, which decreases
efficiency. Alternatively we can keep o the same but then the signature size
will increase. In any case, let us first give a more detailed description of the
security proof before tackling this newly arisen issue.

From B = [A'|A"] € Z7*™ we create the public key A = [24"[24" + qI,,]
and give it to the forger. Although we do not know a secret key S such
that AS = ¢l,, mod 2¢q, we can still provide a signature for any message u
requested by the forger by picking (z,¢) from the correct distribution and
programming the random oracle accordingly as is done in Theorem 5.18.
When the forger provides a successful forgery, we can again use the forking
lemma to obtain two equations Az = Tc mod 2q and Az’ = T'¢ mod 2¢q. In
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this case we have Az = gc mod 2¢ and Az = ¢c’ mod 2q. Now we obtain
A(z—2") = q(c— ) mod 2¢g. So in particular A(z —2") = 0 mod ¢ and since
¢ # ¢ mod 2 we have ¢(c — ') # 0 mod 2q. Thus z # 2’ mod 2¢q. Moreover,
||z = 2'||cc < ¢/2, which implies z # 2z’ mod q. Now A(z — 2') = 0 mod ¢
in turn implies 2B(z — 2’) = 0 mod ¢ and since 2 is invertible modulo ¢, we
have found a v = z — 2’ # 0 mod ¢ such that Bv = 0 mod ¢, which solves
the SIS problem. We would like to refer the reader back to chapter 5 for a
formal treatment of the security proof or alternatively to [9] for the security
proof in the BLISS setting.

Returning to the issue of the larger bound R in BLISS [9] compared to [7],
we draw attention to the work of Ducas [26] which focuses on reducing R.
Without changing any other parameters in the scheme, i.e. keeping o con-
stant, a reduction in R would mean an increase in . This directly translates
into a speedup of the signature generation as the number of repetitions is
given by M = exp(ﬁ). In fact, Ducas is able to reduce R by replacing the
bound on |[|S¢|| given in [9] by the bound on ||S¢/||, for appropriately chosen

c.

Ducas accomplishes this result by choosing a different representation of the
binary challenges c. We have noted the challenge vector ¢ must be chosen
using coefficients in {0,1} rather than {—1,0,1}. However, this does not
restrict us to using the canonical binary representation ¢’ € Z¥ of ¢ € Z§. In
particular, one may negate individual coordinates of ¢’ in order to obtain a
smaller ||S¢/|| [26]. Ducas proposes an algorithm that efficiently computes
an appropriate ¢’ with ¢/ = ¢ mod 2 such that ||S¢|| becomes smaller. This
improvement on BLISS is called BLISS-B.

It should be noted that the signature will remain (z,¢). So the sign choices
made in ¢/, which carry information about the secret key S, are only used to
compute v = Sc’. By the rejection sampling step v is perfectly hidden.

Only the signature generation algorithm of BLISS-B is changed compared
to BLISS and we will briefly show that the verification algorithm indeed still
works. We still check the bounds on the length of z as before. Recall it must
also be verified that ¢ = H(Az + gc mod 2¢, i1). In this new setting we have
z=y+ (—1)5¢ with ¢ = ¢ mod 2 and we still have ¢ = H(Ay mod 2q, y1).
Then

Az+qe= Ay + (=1)*Sc) + qc = Ay + (—=1)*ASc + qc
= Ay + (—1)%c + qc mod 2q.
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Clearly
Ay + (—=1)%c + qc = Ay mod g,

and since we have ¢ = ¢ mod 2,
Ay + (=1)%c + qc = Ay mod 2.

Therefore we can conclude by the Chinese remainder theorem that
Ay + (=1)%qc + gc = Ay mod 2g,

and thus verification holds. Since both BLISS and BLISS-B have the same
verification algorithm, a signature generated by BLISS-B will also be valid
for BLISS and vice versa.

We can conclude that BLISS, even without the improvements made in
BLISS-B, is faster and generates shorter signatures than our results in chap-
ter 5 based on Lyubashevsky’s original scheme [7]. However it should be
noted that the security analysis for both schemes is done based on the work
of [23] for random lattices. While this applies to Lyubashevsky’s original
scheme, the lattices used in BLISS are not perfectly random as there exist
unusually short vectors in these lattices by construction. As of writing it
is unclear whether one can exploit this structure and how hard it is to find
those short vectors. With the further advancement in lattice cryptanalysis
an attack may be found in the future.
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