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Abstract

The term stress scenario is a trending topic since the crisis in 2008. Also in the pension system,
this term occurs more and more often. In this thesis stress scenarios, such as low interest rate or low
inflation are constructed within a mathematical framework. This mathematical framework takes three
risk factors into account, namely the return on investments, the inflation and the nominal interest rate.
The framework consists of two parts, one part captures the dependency between the risk factors and
the other part consists of the forecast models for each risk factor. The forecast of the first risk factor
is studied by means of an autoregressive model, whereas the forecast of the latter two risk factors is
studied by means of a short rate model. In this thesis both the Vasicek and the Black Karasinski short
rate model are discussed in more detail and their performance based on historical data is compared.
For the inflation and nominal interest rate also representative yield curve shocks are analysed based
on historical data.

Besides the constructing of a mathematical framework to derive stress scenarios, this thesis also
gives results on the impact of different stress scenarios on pension fund portfolios. This impact is
measured with the funding ratio, which is the ratio of total asset value and liabilities. The stress
scenarios can be applied to different pension fund portfolios and different asset allocations. In our
example, where a specific pension fund portfolio and general asset allocation is chosen, the stress
scenarios indicate the weak spot of the pension fund allocation. Also, the influence of the representative
yield curve shocks to the funding ratio is analysed.



Management summary

Company and asset and liability management team

Aon Hewitt is part of the worldwide company Aon plc, which is a leading global professional services
firm providing a broad range of risk, retirement and health solutions. They empower results for
clients by using proprietary data and analytics to deliver insights that reduce volatility and improve
performance [1]. Aon Hewitt is specialized in the pension system and provides services in the range
from administrative work to consulting.

The problem treated in this thesis is relevant for the asset and liability management (ALM) team.
This team regulates the total assets to meet current and future liabilities. For the total assets one can
think of investing in global equity, real estate, stocks, government bonds, etc., whereas the liabilities
denote the pension of the pensioners. The ratio of the assets and liabilities is called the funding ratio
and the ALM team models this funding ratio over time. Also, it studies the influence of different asset
allocations, e.g. 10 percent in real estate, 50 percent in global equity and 40 percent in government
bonds, to the funding ratio.

Problem description

In the crisis of 2008 the average funding ratio of Dutch pension funds dropped significantly. A drop
in the funding ratio is not wanted, since this means that the pension fund is not able the pay the
liabilities, which is the pension of pensioners. As a consequence, the ALM team wants to model the
influence of the different economic crashes on the funding ratio. These economic crashes are modeled
using the so called stress scenarios and the main research question therefore becomes: What are feasible
stress scenarios for pension portfolios and what is their impact on pension fund portfolios in practice?
In our stress scenarios three risk factors are taken into account, namely the return on investments, the
inflation rate and the nominal interest rate. The construction of the stress scenarios is further divided
into two steps. The first step concerns the dependency between the risk factors and the second step
the forecasts of the risk factors.

Model description

Our analysis relies on historical daily data from the Bloomberg program for the three aforementioned
risk factors. First let us focus on the first subquestion, i.e. the dependency between the risk factors.
This dependency is captured with the t-copula function, which captures more general dependency
structures than simple linear dependency structures.

The second subquestion, i.e. the forecast of the risk factors, is studied per risk factor. Note that
the forecast of the inflation is studied by forecasting the nominal interest rate and the real interest
rate, since the inflation is the difference between those interest rates. For the forecast of the returns
on investment an autoregressive model of order 1 is used which is given by

Xt = ψXt−1 + εt
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where Xt denotes the distribution of the returns on the investment at time t, ψ is a real valued
parameter that denotes the autocorrelation and εt captures white noise at time t. For the forecast of
the real interest rate the two factor Vasicek short rate model is used, which is given by{

drreal,t = α1 (mt − rreal,t) dt+ σ1dW1,t

dmt = α2 (µ′ −mt) dt+ σ2dW2,t,

where rreal,t denotes the real short rate at time t, α1, α2, σ1, σ2 and µ′ are real valued parameters and
W1,t and W2,t are two correlated Wiener processes at time t. Observe that here the real short rate is
modeled, but with this short rate the real interest rate can be derived. For the forecast of the nominal
interest rate the one factor Black Karasinski model is used, which is given by

d ln(rnom,t) = α3 (ln(θ)− ln(rnom,t) dt+ σ3dW3,t,

where rnom,t denotes the nominal short rate at time t, α3, θ and σ3 are real valued parameters and
W3,t is a Wiener process at time t. Note that these parameters are not equal to the parameters of
the two factor Vasicek model, since both short rate models are calibrated to the corresponding data.
Again, with the nominal short rate the nominal interest rate can be derived.

Results

With both the dependency and the forecasts of the risk factors, stress scenarios with a certain belief
can be constructed. As an example of the practical application of these stress scenarios the impact
on the funding ratio of the following beliefs, which is the inputs of the model in terms of quantiles for
at least one risk factor and at most three risk factors, is studied. Note that with the beliefs one could
choose a specific economic crash together with the severity of that crash.

i) Low returns on global equity. Here the return on the global equity is assumed to be −30 percent
for the first year. This corresponds to the quantile (5%) of the return distribution for the global
equity and the prediction of the real interest rate follows the quantile (50%).

ii) Low inflation/Deflation. For the low inflation or deflation the quantile (20%) of the prediction of
nominal interest rate and the quantile (80%) of the real interest rate is used.

iii) Low nominal interest rates. Here the quantile (10%) for the prediction of the nominal interest
rate is observed together with the quantile (50%) of the real interest rate.

Figure 1: The impact of the stress scenarios on the funding ratio with a general asset allocation

From Figure 1 it can be seen that the low returns have the most negative effect on the funding
ratio with this asset allocation.
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Chapter 1

Introduction

“Since the global financial crisis and recession of 2007-2009, criticism of the economics profession has
intensified. The failure of all but a few professional economists to forecast the episode - the aftereffects
of which still linger - has led many to question whether the economics profession contributes anything
significant to society.” - Robert J. Shiller, Sterling professor of Economics at Yale university who
received the Nobel Prize in Economics in 2013.

In the financial crisis of 2008 financial companies suffered a tremendous loss. One of the reasons
for this tremendous loss was the failure to forecast the crisis. Forecasting a future crisis may be
impossible, but being prepared for a crisis lessens the impact. To this purpose, stress testing, which
analyses the ability of a financial company to deal with an economic crisis, is of importance. With
stress testing the financial company hopes to get insight in the robustness to certain economic crashes.
Observe that the stress testing of financial companies to the crisis of 2008, thus using this crisis as the
stress scenario, is not sufficient because every crisis is different. Therefore, deriving stress scenarios is
an important task within most financial companies and the exact mathematical definition of a stress
scenario differs in each financial sector, i.e. banks, investment firms etc.

This thesis is written in collaboration with the asset and liability management team from Aon
Hewitt. Aon Hewitt is part of the worldwide company Aon plc, which is a leading global professional
services firm providing a broad range of risk, retirement and health solutions. They empower results for
clients by using proprietary data and analytics to deliver insights that reduce volatility and improve
performance [1]. Aon Hewitt specialize in the pension system and provides services ranging from
administrative work to consulting.

For the motivation on why stress scenarios, for companies in the pension system, are of such
importance, let us first illustrate the size of the pension fund system in the Netherlands compared to
other countries. Beforehand, it is noteworthy that in every country the pension system is regulated
differently. However, they all have the same common goal, namely to provide a basic income after
retirement.

If we have a closer look on the size of the pension fund systems from the countries that are in the
Organisation for Economic Co-operation and Development (OECD), already a difference between the
countries is observed. Figure 1.1 shows the total assets value relative to the gross domestic product
(GDP) of these countries. It can be seen that the Netherlands has one of the highest ratio of total asset
value relative to the GDP, see [21] for a more detailed breakdown of the total asset value. Figure 1.1
also shows that for some countries the value of the total assets is more than 100 percent relative to the
GDP. This gives a good illustration of the size of the pension fund system in the different countries.
In [34] the value of all assets invested is estimated to be around 37 trillion for the 35 countries that
are in the OECD, which means that pension funds own almost 70 percent of assets worldwide. In
the Netherlands the total assets value is around 1.27 trillion Eur per 31-12-2016 according to the
Dutch Central Bank (DNB). Investing this amount of money also comes with great responsibility. A
pension fund company should therefore consider the outcome of the investments for different future
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CHAPTER 1. INTRODUCTION

scenarios. In these future scenarios also stress scenarios are of importance, since these scenarios give
more insight on what happens in a financial market crisis. Note that the mathematical definition of
a stress scenario is not yet provided, but this is discussed in the next sections.

Figure 1.1: Total asset value of the countries in the Organisation for Economic Co-operation and
Development relative to the gross domestic product per 31-12-2016, source [34]

For most people the pension system is a complex system and they only have a vague understanding
of it. Since our focus is on the Dutch pension fund system, this system is described in more detail.

1.1 The Dutch pension fund system

The general framework of the Dutch pension fund system consists of three pillars, therefore this
pension system is also referred to as the three pillar structure.

The first pillar is a state sponsored pay as you go (PAYG) pension which is called the old pension
act (AOW), which was formulated in 1957. The PAYG means that the working population pays for
the current pensioners. With this AOW the Dutch government ensures that all inhabitants get a basic
income after retirement. Currently, the retirement age is 67 in the Netherlands. However, it was 65
and per 01-01-2018 the retirement age will increase to 68. This increase is mostly due to the increasing
life expectancy. The basic income of the AOW is related to the minimum wage. For every year living
in the Netherlands 2 percent of the right to AOW is built up and consequently after 50 years one has
the full right to AOW. For more information on the AOW we refer to [36] and [23]. The latter gives an
extensive study on alternatives for this first pillar and therefore mentions the benefits and distortions
of this pillar.

The second pillar consists of occupational pensions. This pension is organized by the employer and
is an extension to the first pillar in terms of income after retirement. The aim of this pillar is to have
a pension equal to 75 percent of average salary. Note, that this aim was adapted from 70 percent of
final salary to 75 percent of average salary in 2015 (”art 18a Wet LB Ouderdomspensioen”) [38]. In
the Netherlands, approximately 95 percent of employees participate in such a pension plan. Further,
in [15] the authors study the risk based supervision of the Dutch pension system and the main focus is
on this second pillar since it is the largest one in terms of number of participants. In the Netherlands
it is obliged to regulate the pension of employees outside the company. This could be via a direct
insurance by a life insurer or a pension fund.

The last pillar is more vaguely defined than the first and second pillar. In [10] the authors explicitly
state that there is no unique definition. One possible definition is that this pillar covers the remaining
pension plans and another possibility is that it covers the provision made on individual additional
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1.2. ASSET AND LIABILITY MANAGEMENT

pension provisions, such as life annuities, lump sum insurances, etc. Furthermore, individuals can
supplement their retirement benefits, e.g. by saving or reducing debts.

There are two types of funded pension schemes, the defined benefit (DB) and defined contribution
(DC) scheme. First, let us discuss the defined benefit. In this pension scheme the benefit is derived
based on either the final pay or the career average. The aim is to have an income after retirement
of approximately 75 percent of average pay. In this scheme the benefits after retirement are fixed,
hence the term defined benefit. In the Netherlands currently 94 percent of participants are enrolled
in this type of pension scheme in the industry wide pension funds. Note that this number has been
constant over the last few years. However, in the insured plans there is a strong trend from DB to
DC due to the decreasing interest rate. The percentage DC plans has increased from 35 percent in
2005 to almost 60 percent in 2015. In the DC scheme the contribution is fixed instead of the benefits.
In [40] the authors study investment strategies for the DC plan since the benefits are dependent on
the investment returns. This paper states that many countries prefer DC over DB, which seems in
contradiction with the numbers in the Netherlands.

In this thesis the focus is on the second pillar and in particular on the pension of employees that
is regulated via a pension fund, since this is the money that is regulated by a pension fund company.
This regulation is done by the asset and liability management team of such a company.

1.2 Asset and liability management

Asset and liability management (ALM) is managing or regulating the total assets to meet the current
and future liabilities. In Figure 1.2 this structure is visually illustrated. The regulation consists of the
precise asset allocation. An example of this allocation is: invest 10 percent in real estate, 50 percent
in stocks and the remaining 40 percent in government bonds. This allocation is further optimized
every month what implies that this allocation is a dynamic decision problem under uncertainty. This
uncertainty comes from the interest rate, inflation and return on investments, which all are unknown
quantities in the future. Another uncertainty comes from the participant’s data. Participants could
influence both the asset or liability side of the balance. For the asset side one example could be a
participant who is hired. In this situation the participant of interest should pay pension to the pension
fund of the new company that hired this participant and increases therefore the asset side.

Figure 1.2: A visual illustration of the asset and liability management structure

The most common measure for the health of a pension fund is the funding ratio, which is the ratio
of total asset value and liabilities. After the global financial crisis of 2008, the Dutch pension funds
average funding ratio dropped drastically, see Figure 1.3.

Before 2007 the pension system was regulated in the Netherlands with the “Actuariele Principes
Pensioenfondsen” (APP). In January 2007 a new pension agreement was introduced which was called
“Financieel Toetsingskader” (FTK). The purpose of this new agreement was to combine the existing
agreements. After the crisis of 2008 the FTK proved to be insufficient. Therefore, the FTK was
changed into to the new FTK (nFTK) in January 2015. Another consequence of the crisis in 2008 was
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CHAPTER 1. INTRODUCTION

Figure 1.3: Dutch pension funds average funding ratio from 2007 to 2016 last updated on 31-1-2017,
source [21]

that ALM models developed further and stochastic programming became of bigger importance, see
[24] and [28] and the references therein. The main focus of these papers is on capturing the stochastic
characteristics of these models in the best possible way. Most of these models heavily rely on the 95
percent confidence intervals or quantiles of the underlying distribution, an example for this underlying
distribution can be the interest rate.

The increase of interest in ALM models also led to an increase of interest in stress scenarios. Here,
stress scenarios can have different definitions. One definition is that stress scenarios define all the
scenarios that lead to a specific threshold on the funding ratio, e.g. a funding ratio lower than 90
percent. Another definition is a certain quantile of the forecast. For this scenario one can think of
the belief of low interest rate which corresponds in mathematical terms to the quantile (5%) of the
predictions. This last definition is used throughout this thesis. As a consequence of this definition,
observe that stress scenarios come with a certain probability. If a specific stress scenario leads to a
severe outcome, thus a significant decrease in the funding ratio, the ALM team could decide to hedge
against this risk involved by adapting the asset allocation. However this hedging also comes with a
cost, therefore another important task of the ALM team is to determine if a stress scenario should be
taken into account.

1.3 Problem description

On the one hand side it is illustrated that in the pension fund system the companies decide over a
lot of money, which is mostly regulated by the ALM team. On the other hand, see Figure 1.3, it can
be seen that not taking into account a stress scenario can have really severe effects on the funding
ratio and thus the money of the participants. These two arguments are the basis of the main research
question:

What are feasible stress scenarios for pension portfolios and what is their impact on pension fund
portfolios in practice?

In this thesis the emphasis is on the first part of this question. The aim is to construct a model that
can produce stress scenarios with a forecast of 5 years and a certain plausibility measure. The main
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1.3. PROBLEM DESCRIPTION

challenge in stress scenarios is that they should be both plausible and consider extreme outcomes.
Intuitively, it is clear that the most severe scenarios are less likely to happen. In the second part of the
main research question, i.e. the impact on pension fund portfolios, the effect of the stress scenarios
on the funding ratio is observed. For the ALM team this is of importance since it helps answering
the question whether or not the team should take this stress scenario into account. Also, it gives
more insight on what stress scenario influences the funding ratio the most. Here the importance of a
realistic model is critical. If the ALM team decides to take this specific stress scenario into account,
by means of hedging against this risk, but in practice the plausibility of this stress scenario is not
correct or it is not able the capture the behavior of the economic market well, then the ALM team is
basically wasting money by hedging against an unrealistic risk.

In our stress scenarios three risk factors that have a significant influence on the funding ratio of
the pension portfolio are taken into account. The three risk factors are:

i) Return on investments

ii) Inflation rate

iii) Nominal interest rate

Here, the inflation rate denotes the general increase in services and goods in an economy and the
nominal interest rate is the percentage charged to a borrower to use the cash of a lender. The first
risk factor, which is a class of different categories such as global equity, bonds, etc., affects the asset
side of the ALM balance. A return is a measure for the change in value of a category. Moreover, daily
returns give the change between two consecutive days. The second and third risk factor affect the
liability side. These risk factors are related by

Inflation rate = Nominal interest rate− Real interest rate. (1.1)

Thus in words, this means that the nominal interest rate is the interest rate before the inflation rate
is taken into account, while the real interest is the interest rate while the inflation rate is taken into
account. To avoid confusion on which interest rate is meant, in most cases the terms nominal and real
interest rate are used. From a mathematical point of view, the real and nominal interest rates can be
seen as stochastic processes over time.

Observe that not all the stochastic factors that influence the funding ratio of a pension fund
portfolio are taken into account. The possible change of participant’s data of a pension fund is not
considered in our stress scenario. The first part of the main research question, thus the construction
of the stress scenarios, is further divided into two sub questions:

i) What is the dependency between the risk factors?

ii) What is the forecast of each risk factor?

These two sub questions form the structure of this thesis, which is stated in more detail in Section
1.5.

Although, the plausibility of our stress scenarios is of importance, here already the stress scenarios,
that are used to study the impact on the funding ratio, are stated. These stress scenarios correspond
economic scenario where there is a crash of one risk factor.

i) Low returns on global equity

ii) Low inflation

iii) Low nominal interest rates

In the previous section it is already mentioned that after the crisis of 2008 there was an increase
of interest in stress scenarios. However, most of this thesis is devoted to the derivation of stress
scenarios, this suggests that the models known in the literature do not completely fit with our problem
description. In the next section a literature overview is given and the difference between the literature
models and our problem is explicitly stated.

Department of Mathematics and Computer Science 10



CHAPTER 1. INTRODUCTION

1.4 Literature overview

In the literature there is an ongoing discussion regarding the distribution of risk factors in times of
stress scenarios and whether or not this distribution is the same as in normal times. Throughout
this thesis, and in the studied models from literature, the assumption is that the distribution of risk
factors is the same as in normal times. Furthermore, the models in the literature are divided into
two categories. The direct stress scenarios in which the models give as an output stress scenarios
considering all the risk factors and the indirect stress scenarios in which the models do not give a
stress scenario as output. Another distinction of the above mentioned scenarios is that the direct
stress scenarios take into account all the risk factors, whereas the indirect stress scenarios only take
into account one risk factor.

First three direct stress scenario selection methods are described, for a more detailed description we
refer to Appendix A or the corresponding paper. Note that in these three methods the definition of a
stress scenario differs from the definition given in the previous section, in every method, the definition
is explicitly stated. In the literature the focus is more on selecting stress scenarios, whereas our model
strives to construct stress scenarios. However, the different selecting methods give an overview what is
known and will help to illustrate the difference and similarities of our model compared to the models
stated here.

1.4.1 Direct stress scenarios

First stress scenario

The first stress scenario selecting method studied in [27], describes a reverse stress testing approach
to select stress scenarios by empirical likelihood. This approach is not specifically derived for pension
fund portfolios, however it can be applied to a pension setting. The definition of a stress scenario used
here, after applying this selection method to a pension system, is a scenario that leads to a specific
threshold in the funding ratio. It is assumed that the joint distribution of the risk factors and the
funding ratio is known, and that it is elliptical distributed. For the distribution of the risk factors it
is assumed that they follow either an exponential regularly varying (ERV) distribution or a regularly
varying (RV) distribution. The random vector X has an elliptical distribution if the characteristic
function satisfies

φX−µ(t) = φ(t′Σt),

where µ is the location parameter and Σ a matrix. Furthermore, the random vector X is in the class
RV(ν) if it holds that

lim
`→∞

P (X ≥ `x)

P (X ≥ `)
= x−ν , (1.2)

and X is in the class ERV(α, ν) if exp (Xα) is in the class RV(ν). The normal distribution and
the Student’s t-distribution are two examples of distributions that are both elliptical and regularly
varying. In the paper the authors state that market data, i.e. the risk factors, are often approximated
well by the Student’s t-distribution. Under this assumptions the most likely loss scenario is explicitly
derived.

Second stress scenario

The second stress scenario selecting method, studied in [35], uses a forward stress testing approach.
Here a closed set of all scenarios is considered and the aim is to select the scenario that gives the
lowest funding ratio, the so called least solvent likely event. The assumption is that the funding ratio
can be derived by a simplistic model which captures the mutual dependency of the risk factors, i.e.
g(z) = µ+Az where g(z) is the funding ratio, A the matrix that captures the dependency and z a
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specific scenario. Under both assumptions an explicit expression for this least solvent likely event is
given. When one of more of the assumptions is violated the computation of the stress scenario can be
complicated but it can still be derived with numerical optimization.

Both stress scenario selection models have restrictions on the distribution of the risk factors and the
funding ratio. However, in practice the funding ratio of each scenario, under a specific allocation, can
be derived with a complicated deterministic model. In our setting this model can be used, which means
that both stress scenario selection methods can be applied but with the assumption and drawback of
using a simplistic model for deriving the funding ratio. Furthermore, in these models from literature
the aspect of time is not taken into account and remember that our aim is to construct stress scenarios
with a forecast of 5 years.

Third stress scenario

In [31] the aspect of time is taken into account. Here the Mahalanobis distance is introduced as a
measure for the probability of the stress scenarios. Let the forecast scenario path of the risk factors
Z be a random vector with an elliptical distribution with mean µ = E [Z] and covariance matrix
A = Cov (Z), then the Mahalanobis distance of a realization of Z is given by

Maha(z) :=
√

(µ− z)TA−1(µ− z).

The selection of the worst case scenario is based on the total loss in terms of funding ratio over time,
of all the scenarios that have a Mahalanobis distance less or equal than τ . In the case of multivariate
normally distributed risk factors a specific expression for this worst case scenario is given. If the risk
factors are not multivariate normally distributed, the authors sketch a Monte Carlo algorithm that
is able to solve the selection problem. Although, in this paper no explicit assumptions on the loss
function are made, it assumes that the loss function is known.

Discussion

In the literature, and these three papers in specific, (explicit) assumptions on the model to derive
the funding ratio are made. In a pension fund portfolio also the asset allocation is of importance,
whereas each different asset allocation gives a different funding ratio. If a simplistic model is assumed
to derive the funding ratio, e.g. g(z) = µ +Az, this asset allocation is not taken into account. As
a consequence, the selection methods in the literature cannot derive what the effect is of possible
hedging against certain stress scenarios. Note, that extending the models in the literature to account
for the asset allocation is possible but gathering the data, to determine the distribution for the funding
ratio, per allocation can be difficult. Also, it is beneficial for us to use the model Aon Hewitt uses to
calculate the funding ratio since this is already known.

Our approach, to tackle the problem of constructing stress scenarios, consists of two steps. The
dependency between the risk factors is studied, see Chapter 3, together with the forecast of the three
risk factors, Chapters 4, 5 and 6. Note that with both the real and nominal interest rate and the
relation given in (1.1), the forecast of the inflation can be derived. When forecasting these interest
rates, also stress testing procedures can be applied to the corresponding yield curve. These stress
testing procedures, also called (representative) yield curve shocks, are indirect stress scenarios since
only one risk factor is influenced and explicit stress scenarios are not given as an output. Before
proceeding to the yield curve shock models let us explain what a yield curve is. Both the terms real
and nominal interest rate on a time point do not correspond to one specific value, but have values for
each maturity. All these values of the maturity together, on a specific time point, are called the yield
curve. Note that the yield curve thus corresponds to the real or nominal interest rate.

1.4.2 Indirect stress scenarios

In the literature there are many papers on the study of yield curve shocks, e.g. [8], [2], [16], [20]
and [30]. In [2] the authors give an overview of the most common methods used in practice with
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an extensive explanation of all the methods. Here the methods to derive the yield curve shocks that
are of interest to us are briefly stated. If both the real and nominal yield curve can be used in the
methodology no explicit distinction is mentioned.

In the historical method, the historical behavior of the yield curves is used to derive yield curves
shocks. For each maturity the fitted distribution of the changes of the real and the nominal interest
rate over time is derived. Once this distribution is known, a certain quantile shock for each maturity
can be applied to the last day yield curve. Note that for this method it is not necessary to fit the
distribution. The empirical distribution could also be used to compute a certain quantile. In this way
no error is made when fitting the distribution.

One of the simplest methods to generate yield curve shock is the standardized method. In this
method a parallel shift is applied to the yield curve. In [2] the authors propose a downward shift of
200 basis points, i.e. two percent. For banks it is obligatory to measure the impact on the economic
value of equity of these yield curve shocks.

A similar method as the standardized method is the standardized factor method. In “Regeling
Pensioenwet en Wet verplichte beroepspensioenregeling” [18], interest rate factors for the calculation
of the private equity are given. For each maturity a decrease and increase percentage is given. Note
that in contrast to the standardized model, here the shift does not have to be parallel. Moreover, the
shift for the real and the nominal yield curve are different.

The principal component analysis (PCA) is based on the assumption that the yield curve can be
described by a number of principal components. In our case, which is consistent with most of the
literature, e.g. [7] and [29], these three most important components are the level, slope and curvature
of the yield curve. For each maturity the factor loadings indicate the importance of the principal
components. Moreover, with the factor loadings and the values of the principal components one can
describe the yield curve on a specific time point. Note that the factor loading is constant over time
while the values of the principal components change. To obtain the yield curve shock, a certain
quantile of the changes in the value of the principal components is applied to the last day principal
component values.

Observe that, in contrast to the direct stress scenarios, the indirect stress scenarios can be applied
in our framework when deriving stress scenarios that satisfy the problem description. In the next
section the overview of the thesis given where it can be found in which chapter these indirect stress
scenarios are applied to historical data.

1.5 Overview of the thesis

The historical data for all the three risk factors, mentioned in Section 1.3, is introduced in Chapter 2.
Note that also the subcategories within a risk factor are explicitly stated in this chapter. Using the
historical data, the fitted distribution of the daily returns of these subcategories is studied, together
with the dependency structure of the subcategories within the first risk factor.

After a preliminary statistical analysis of the data, the first part of the main research question
given in the problem description, i.e. Section 1.3, is answered in two steps. Note that every chapter
is devoted to a step or sub step. This helps the reader to understand the structure of this thesis, but
as a consequence some chapters are lengthier than others.

Dependency structure step) The focus of the first step is on answering the first sub question stated
in the problem description. Here the daily return data analysed in Chapter 2 are essential
for capturing the dependency between the risk factors and the dependency of the different
categories within the risk factors. This dependency is captured by means of a copula function.
Such functions capture dependency structures permitting bigger flexibility than a simple linear
correlation.
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Marginal forecasting step) In the second step the second sub question is studied, i.e. the forecast
models of each risk factor. More concretely, Chapter 4 studies the forecast of the return on
investments risk factor. In this chapter an autoregressive model is used to forecast the daily
returns of each subcategory. The parameters for the autoregressive model are estimated based
on the data analysed in Chapter 2. For the forecast of the second risk factor, i.e. the inflation
rate, observe that with Equation (1.1) forecasting this risk factor is equivalent to forecasting the
real and the nominal interest rate. The forecast of the real interest rate at various maturities
(i.e., the real interest rate yield curve) is studied in Chapter 5. In this chapter, a model based on
stochastic differential equation (SDE), namely the Vasicek short rate model, see Section 5.1, is
introduced and the performance measure, based on historical data, is derived. When comparing
the performance measure different methods are used to calibrate the model to the data. Once the
real interest rate yield curve is modelled using the Vasicek model, we apply the representative
yield curve shocks, given in Section 1.4.2, to the historical data of the real interest rate. In
Chapter 6 the forecast of the nominal interest rate is studied, again by means of a SDE short
rate model. However, for the forecast of the nominal interest rate both the Vasicek and the
Black Karasinski are considered. In this chapter the underlying assumptions in each model are
discussed and the performance measure of both short rate models based on historical data are
compared. Moreover, in line with Chapter 5, the representative yield curve shocks are analysed
based on historical data.

With both the dependency and the marginal forecast models for each risk factor one can derive
the forecast corresponding to the stress scenarios of their belief. After these two steps, the first
part of the main research question given in the problem description, i.e. Section 1.3, is therefore
answered. In Chapter 7 an example of the stress scenarios mentioned at the end of Section 1.3 is
given and these stress scenarios are further studied. In particular, the impact of the stress scenarios
on the funding ratio of a specific pension fund portfolio under a general allocation of the assets is
studied. In this chapter the difference between the short rate models of Chapter 6, i.e. the Vasicek
and Black Karasinski model, based on the funding ratio is studied. Moreover, also the stress scenarios
corresponding to the representative yield curve shocks are compared.
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Chapter 2

Data analysis

In this chapter the historical daily data obtained from Bloomberg is introduced for all the risk factors
mentioned in Section 1.3. In particular, the distribution of the historical returns is studied, which is
essential for capturing the dependency between and within the risk factors in Chapter 3. Moreover, the
autocorrelation of the subcategories of the first risk factor, i.e. the returns on investment, is analyzed.
Also, the hypothesis that large negative of positive returns are more correlated to the next day returns
than mediocre returns is tested. A good understanding of the autocorrelation is of importance for the
forecast of this risk factor performed in Chapter 4.

2.1 Descriptive statistics

The historical data that is used in this thesis is obtained from the Bloomberg model is introduced
according to the three risk factors mentioned in Chapter 1. For the returns on the assets side we
study benchmark investment indexes, which are commonly used by pension funds. One example is
the global equity market, which is represented by the MSCI World. The MSCI World is one of the
biggest indexes in global equity. Note that it is not possible to trade in this index, one can only
approximate trading in this index by an Exchange Traded Fund (ETF), a so called index tracker. The
aim of this thesis is not to model the whole economic market, only the indexes where a pension fund
is mostly investing in are of interest to us. All these indexes are further discussed in Table 2.1.

All the data for these benchmark indexes comes from the Bloomberg program, sampled at daily
basis, excluding non-trading days, from 31-12-2000 to 31-12-2016. In total this adds up to 4175
observations. The value is the closing value of that index on the specific day. However, not all
indexes have 4175 observations due to specific holidays or the fact that some indexes are founded after
2001. Removing all the dates where an observation is missing from one or more indexes leads to 3553
remaining observations. Linear regression could be used to estimate the value of the missing data,
but since we do not want to make the assumption that the data follows linear behavior between three
consecutive points the 3553 observations available are used.

Assumption 1 Historical data from 31-12-2000 to 31-12-2016 represents the behavior of the economic
market well, especially in an economic crisis.

In the data the economic crises in 2008 and 2011 are captured. However, these crises are different and
less severe than the crisis of 1937. An argument that supports only looking at the financial market
from 2001 onwards is that the financial market changed for instance due to the introduction of the
Internet. Another argument is that one learns from every financial crisis which suggests that the crisis
in 1937 is not that relevant in the contemporary economic market. One could also think of arguments
against the decision of taking historical data from 2001 onward, since in stress scenarios only the tails
of the return distribution are of importance. To get an understanding of the tail behavior, one needs
sufficient data and only looking at data from 2001 onward could be insufficient.
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Table 2.1: Return seeking asset indexes with a brief description

Index Description

MSDEWIN MSCI Daily Total Return Net World in EUR
MSDEEEMN MSCI Emerging Markets Equity in EUR
M1WOMVOL MSCI World Minimum Volatility
LET7TREU Barclays 7-10 Year Euro Government Bond
LS06TREU Barclays Bellwether Swap (EU): 10 years
LS08TREU Barclays Bellwether Swap (EU): 30 years
LEC7TREU Barclays EuroAgg Corporate 7-10 Year Total Return
LF98TRUU Barclays US Corporate High Yield Total Return
BCOMTR Bloomberg Commodity Index Total Return
JPEIDIVR J.P. Morgan Emerging Market Bond Index (Diversified)
G4F0 French 7-10 Year Government bond
LECRTREU Barclays Euro Aggregate Credit Total Return
G250NLEU GPR 250 Index (Property Shares) Netherlands Euro Total
REIT Dow Jones Equity Real Estate Investment Trust Total Return

(Direct Real Estate US)
HFRXGLE Hedge Fund Research HFRX Global Euro
BXIIBEU3 Barclays Benchmark 3months EUR Cash

With the index values of a specific index, the daily return at time t is derived by,

ri,t = 100× log

(
pi,t
pi,t−1

)
,

where pi,t denotes the value of the i-th index at time t.

Table 2.2: Summary statistics of the returns per index

Index Mean SD Kurtosis Skewness Min Max

MSDEWIN 0.01 1.04 5.27 -0.16 -6.95 8.50
MSDEEEMN 0.03 1.22 5.86 -0.28 -8.48 10.08
M1WOMVOL 0.02 0.83 5.49 -0.17 -5.03 6.97
LET7TREU 0.02 0.29 4.39 0.02 -1.62 2.62
LS06TREU 0.03 0.38 8.68 0.09 -3.34 3.86
LS08TREU 0.04 0.88 8.41 0.04 -8.63 7.98
LEC7TREU 0.02 0.28 2.68 -0.58 -1.83 1.43
LF98TRUU 0.03 0.67 5.15 -0.35 -6.64 4.09
BCOMTR 0.00 1.04 1.42 -0.18 -5.16 5.39
JPEIDIVR 0.03 0.65 2.77 -0.21 -4.58 3.63
G4F0 0.02 0.30 2.86 -0.22 -2.12 1.81
LECRTREU 0.02 0.17 1.91 -0.50 -0.81 0.81
G250NLEU 0.03 1.26 4.94 -0.34 -7.31 7.39
REIT 0.04 1.94 17.40 -0.22 -20.85 16.93
HFRXGLE 0.00 0.24 9.57 -1.28 -2.11 2.04
BXIIBEU3 0.01 0.01 6.35 2.07 -0.03 0.10

Table 2.2 gives a simplistic overview of the returns for each index. From this table it can be
concluded that some indexes have higher standard deviation than others and it seems that all the
indexes have a mean approximately equal to zero. Also, it can be seen that the kurtosis and skewness
differ from respectively 0 and 3, which is an indication that the returns are not normally distributed.
Figure 2.1 shows the value and the cumulative density function of the daily returns for a specific index,
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namely the MSDEWIN Index. There are three densities fitted on the returns, the normal distribution,
Student’s t-distribution and the skewed Student’s t-distribution. The probability density function of
the skewed Student’s t-distribution is given by

fST (x;µ, σ, λ, q) =
Γ(1

2 + q)

νσ
√
πq · Γ(q)

(
|x−µ+m|2

q(νσ)2(λsign(x−µ+m)+1)2
+ 1
) 1

2
+q
,

with

m =
2νσλ

√
q · Γ

(
q − 1

2

)
√
π · Γ

(
q + 1

2

) , ν =
1√

q (3λ2 + 1)
(

1
2q−2

)
− 4λ2

π

(
Γ(q− 1

2)
Γ(q)

)2
.

Remark 1 The skewed Student’s t-distribution is an extension to the Student’s t-distribution, i.e.
fST (x;µ = 0, σ = 1, λ = 0, q) is the probability density function of the Student’s t-distribution with
2q degrees of freedom. Moreover, the skewed Student’s t-distribution also satisfies condition (1.2) in
Section 1.4 and therefore is in the class of regularly varying distributions. However, in contrast to the
Student’s t-distribution is the skewed Student’s t-distribution not an elliptical distribution.

Figure 2.1: The value (left) and cumulative return distribution (right) of the MSDEWIN Index

In Figure 2.1 the characteristic fluctuation of the stock market is clearly visible. Also, one could
observe the crisis in 2008, less clear is the crisis in 2011 but this crisis did especially affect the nominal
interest rate. From the cumulative distribution function we can conclude that there are values less
than −5 and greater than 5 but with very low probability, to be precise there are 12 observations
outside the interval [−5, 5], from which 6 on the lower side and 6 on the upper side of this interval.
Furthermore, from Figure 2.1 it seems that the skewed Student’s t-distribution is the best fit out of
these three distributions.

In Table 2.3 further investigation to the tail behavior of the historical data with respect to the
three distributions is done. The probability below a certain return for the historical data and fitted
distributions is stated and in parentheses the number of observations is given, whereas for the distri-
bution this is the probability times the total number of observations. Note that in the table the focus
is on the lower side of the returns of the MSDEWIN index, which are the returns that have a severe
effect on the funding ratio of a pension portfolio.
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Table 2.3: Probability and number of observations below a certain return percentage for the MS-
DEWIN index

Return (%) History Normal Student’s t Skewed Student’s t

-1 0.120 (511) 0.165 (701) 0.194 (821) 0.118 (501)
-2 0.032 (136) 0.027 (113) 0.067 (284) 0.032 (135)
-3 0.010 (43) 0.002 (8) 0.027 (113) 0.012 (49)
-4 0.003 (14) 0.000 (0) 0.013 (53) 0.005 (22)
-5 0.0014 (6) 0.0000 (0) 0.0067 (28) 0.0027 (11)
-6 0.0009 (4) 0.0000 (0) 0.0039 (17) 0.0016 (7)
-7 0 (0) 0.0000 (0) 0.0025 (10) 0.0010 (4)

Table 2.3 shows that the tails of the return distribution for this specific index are thicker than the
tails of a normal distribution. Furthermore, if we calculate the p-value from the Kolmogorov-Smirnov
(KS) test we get 0.0001 for the normal distribution, 0.0000 for the Student’s t-distribution and 0.91565
for the skewed Student’s t-distribution. We refer to Appendix B.2 for a more detailed discussion of this
KS test and the p-value of the skewed Student’s t-distribution for the other indexes. Throughout this
thesis the KS is used since it is a nonparametric test. Note that here the p-value for the normal and
Student’s t-distribution is not included, since these p-values are smaller than 0.01 for all the indexes.
Furthermore, note that in [27] the authors assumed Student’s t-distributed returns, which does not
give the best fit for the return distributions. Also, the analysis in this paper is not valid for skewed
Student’s t-distributed returns since it assumes an elliptical distribution.

Assumption 2 The daily returns of the first risk factor (returns on investment) are skewed Student’s
t-distributed.

For the inflation rate the inflation-linked bond with zero coupons is taken as a representative. A
zero coupon bond is a debt service where no interest is paid but its full value at maturity. The index
abbreviation of this bond in the Bloomberg program is EUSWI and historical daily data is available
from 2004 up to and including 2016 excluding non-trading days. The Bloomberg program has data
from this ticker with maturities 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40 and 50. However,
for the dependency between risk factors only the inflation rates with a maturity of 5 or 15 years are
considered.

For the derivation of the change in the inflation rate the same expression as for the returns of the
benchmark indexes is used, namely

riym,t = 100× log

(
iym,t
iym,t−1

)
, (2.1)

where iym,t denotes the inflation rate with a maturity of ym years at time t. Note that a straightforward
interpretation of the change iym,t is missing. Whereas for the index values of the investment assets
only positive values are observed, for the inflation rate the historical data also contain negative values.
Moreover, in the case of switching sign over time, thus going from Iym,t = −0.1 to Iym,t+1 = 0.1 or
vice versa, the expression given in (2.1) cannot give an outcome in the real numbers.

For further information on the value and cumulative distribution of the inflation rate with a
maturity of 15 years the interest reader is refer to Figure B.1.

When performing the KS test on the inflation rate with maturity 15, where the null hypothesis
assumes the Student’s t-distribution, it gives a p-value of 0.01062. Note that with this p-value we
reject the assumption that the observations i15,t are skewed Student’s t-distributed. However, this
distribution fits better when compared to the normal distribution and the Student’s t-distribution.
The p-value of both these distribution is < 0.001. For the maturity of 5 years the same conclusions
hold.
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Assumption 3 The daily returns of the second risk factor (inflation rate) are skewed Student’s t-
distributed.

The European Swap rate, which has the index abbreviation EUSA, is used as a representative of
the nominal interest rate. Historical data is available from 2002 up to and including 2016, since 2002
was the start of the EUR currency. For this ticker the Bloomberg program contains data with the
same maturities as for the inflation rate. In comply with the inflation rate, for the nominal interest
rate only the maturities of 5 or 15 years are used when capturing the dependency between the risk
factors. Also, the same expression for a change in the nominal interest rate is used, i.e. Equation
(2.1).

For further information on the value and cumulative distribution of the nominal interest rate with
a maturity of 15 years the interest reader is refer to Figure B.2.

When performing the KS test, with the null hypothesis assuming the skewed Student’s t-distribution,
on the nominal interest rate with a maturity of 15 years the p-value of this test is 0.9389. This p-value
does not reject the null hypothesis, which suggests that the underlying distribution of the returns
is skewed Student’s t-distributed. This conclusion also holds for the nominal interest rate with a
maturity of 5 years.

Assumption 4 The daily returns on the third risk factor (nominal interest rate) are skewed Student’s
t-distributed.

Remark 2 From the daily index value also weekly and monthly returns of the risk factors can be
derived. On these weekly or monthly returns one can again perform the KS test from which it follows
that the returns of the two risk factors returns on investment and nominal interest rate are still skewed
Student’s t-distributed but with other parameters. Although the objective is to stress scenarios with a
time period of 5 years, using daily gives us more information about the dependency.

2.2 Autocorrelation of the returns on investment

In this section the autocorrelation function (ACF) of the returns for each index is observed, see Figure
2.2 for the ACF of the MSDEWIN index.

Figure 2.2: The autocorrelation function for the historical returns of the MSDEWIN index
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Although, the autocorrelation coefficient of lag 1 is significant, namely ρ = 0.08, it is extremely
low. The phenomena of low correlation of stock prices is extensively studied in the literature, see [5]
for an overview of all the relevant literature. Most of the papers mentioned in this review paper study
the predictability conditioned on large prior changes.

In [6] the authors study low autocorrelation in short term stock returns, where short term means
lag 1. The idea of this paper is to divide the returns over multiple bands based on the value. The
assumption is that large returns have higher autocorrelation than small returns. For testing the
correlation we use the Spearman’s rank correlation coefficient ρ which is non parametric. The null
and alternative hypotheses of this test are given by,

H0 : ρX,Y = 0 (2.2)

H1 : ρX,Y 6= 0,

where X represents the returns in the specific band and Y the next day’s returns with respect to X.

Table 2.4: Statistics for correlation for the historical returns of the MSDEWIN Index when dividing
the returns into bands

Band Observations Autocorrelation p-value

returns ≤ −2.56 50 -0.08 0.557
−2.56 < returns ≤ −1.97 44 -0.037 0.811
−1.97 < returns ≤ −1.37 111 -0.186 0.051
−1.37 < returns ≤ −0.78 235 0.069 0.290
−0.78 < returns ≤ −0.18 670 -0.040 0.300
−0.18 < returns ≤ 0.41 997 0.016 0.617
0.41 < returns ≤ 1.01 634 0.141 0.000
1.01 < returns ≤ 1.60 192 -0.027 0.715
1.60 < returns ≤ 2.20 64 -0.139 0.274
returns > 2.20 54 0.089 0.521

From Table 2.4 it can be seen that only the band 0.41 < returns ≤ 1.01 is rejecting the null
hypothesis stated in (2.2). Note that this outcome thus does not comply with the results stated in [6].
One difference is the number of returns, in the paper the authors study the daily returns of 30 stocks
traded from 1987 to 2007, which results in approximate 150.000 data points. Another difference is the
data. In the paper daily returns of certain stocks are observed while in our case benchmark indexes
are observed, for example of the benchmark for the global equity.

Remark 3 In this analysis the bands are chosen in such a way that we have approximately 50 ob-
servations in the lower and upper band. One discussion point can be the number of observations in
these boundary bands, therefore the same analysis is performed for the case of 100 observations in the
lower and upper band. The conclusion made from Table 2.4 does not change when analyzing more
observations in a band.

2.3 Summary of the data analysis

In this chapter the marginal distributions of the historical returns are studied. Based on the KS test,
the skewed Student’s t-distribution describes these returns the best, when compared to the normal and
Student’s t-distribution. For the underlying fitted distribution of the first and third risk factor, i.e.
the returns on investment and the nominal interest rate, the KS test gave a significant p-value, but for
the second risk factor, i.e. the inflation rate, this was not the case. Furthermore, the autocorrelation
of the first risk factor is studied. It is observed that there is a low autocorrelation for each index
within this risk factor. One solution to this low autocorrelation, studied in the literature, is to divide
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the historical returns into bands, with the assumption that large positive and negative returns are
more correlated to the next day return. However, this remark was not validated based on the data at
hand.
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Chapter 3

Dependency between risk factors

The aim of this chapter is to derive a framework that generates daily returns with the same charac-
teristic as historical returns, but without any forecasting assumption. Observe that in Chapter 2 we
performed the data analysis on the historical data obtained from Bloomberg and it is showed that the
skewed Student’s t-distribution fits the return distributions of all the categories within the three risk
factors the best. This return distribution is essential for capturing the dependency. As our analysis
illustrates, the underlying dependency between and within the risk factors is not linear, and for this
reason we have investigated more general dependency structures captured by copula functions, instead
of simple linear dependency structures captured by the correlation coefficient.

3.1 Capturing dependency

After introducing the historical data and studying the marginal distribution of the returns in Chapter
2, the focus is on capturing the dependency between risk factors and the dependency within a risk
factor.

First, let us visually show the dependency between the MSDEWIN and BCOMTR index. This is
achieved by plotting the corresponding scatter plot of these two indexes, cf. Figure 3.1. From Figure
3.1 it seems that the two benchmark indexes are not linear dependent. Therefore, the correlation
coefficient, which is defined as

ρX,Y :=
Cov(X,Y )√

Var(X)Var(Y )
,

where Cov(X,Y ) denotes the covariance between the two random variables X and Y , is not an
appropriate measure for the dependency. The reason for this is that one limitation of the correlation
coefficient is that it can only capture linear dependency, see [11] for an extensive discussion on all the
limitations. As an improvement to this dependency measure, copulas, which can capture more than
only linearly dependency, are introduced.

Before proceeding let us first give the definition of a copula function.

Definition 1 Let C be a function from [0, 1]2 → [0, 1] such that C(u, 0) = C(0, v) = 0, C(u, 1) = u
and C(1, v) = v. Further, for every u1, u2, v1, v2 in [0, 1] with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0,

then the function C is called a copula function.

Further, Sklar’s Theorem given in [33, Theorem 2.3.3] states that for any distribution F there
exists a copula C such that

F (x, y) = C (F1(x), F2(y)) ,
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Figure 3.1: Historical data of the returns that show the dependency between the MSDEWIN and
BCOMTR index

which is unique for continuous distributions F1 and F2.

For a more visual understanding on the different copula functions and the importance of an im-
provement of the standard correlation coefficient the interested reader is referred to the Section B.3
and Figure B.3.

In our model the goal is to find a copula that can capture the dependency between the risk factors
and the dependency within each risk factor. This means that the copula describes a joint distribution
of dimension equal to the total number of all the indexes. For visual presentation the analysis is
showed for the dependency between the MSDEWIN and MSDEEEMN index, which then is extended
to the desired copula with a higher number of dimensions.

For the historical data of our example the log-likelihood of different copulas, such as the indepen-
dence copula, Gaussian copula, Student’s t-copula, Clayton copula and Gumbel copula are compared.
According to the log-likelihood based on historical data, the Student’s t-copula gives the best fit.

Assumption 5 The dependency between and within the risk factor is captured with the Student’s
t-copula function.

Definition 2 Let ν denote the degrees of freedom and P the correlation matrix with elements ρ then
the Student’s t-copula of dimension d is given by

Ctν,P (u) =

∫ t−1
ν (u1)

−∞
. . .

∫ t−1
ν (ud)

−∞

Γ(ν+d
2 )

Γ(ν2 )
√

(πν)d|P |

(
1 +

x′P−1x

ν

)− ν+d
2

dx,

where t−1
ν denotes the quantile function of the Student’s t-distribution, x′ the transposed random vector

of x and P−1 the inverse of matrix P .

With the Student’s t-copula and the fitted skewed Student’s t-distribution the historical data can
be replicated. Figure 3.2 shows the historical returns together with the simulated returns according
to the Student’s t-copula. In Figure 3.2 it can be seen that both the dependency and the marginal
distributions of the historical data are captured well. For these specific indexes historical returns can
therefore be replicated. The method to replicate the historical returns is further extended to all the
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risk factors. However, the copula that captures the dependency between risk factors cannot visually
be represented. Therefore, in the next section, remarkable or interesting dependency between risk
factors or within risk factors is highlighted.

Figure 3.2: Observed (blue) and simulated via the Student’s t-copula (red) returns of MSDEWIN
against MSDEEEMN

3.2 Highlighted dependency between risk factors

In this section we highlight and discuss some remarkable observations, regarding the copula used to
describe the dependency between or within the risk factors.

When looking at the dependency measure, ρ, of the Student’s t-copula we observe that this measure
between the EUSA15 and the EUSWI15 is ρ = 0.025. This indicates that the daily change in the
inflation rate and the nominal interest rate is not highly dependent. For further research one could
investigate the dependency between those risk factors in more detail and even use another definition
for the change, e.g. the absolute difference.

The other observation is that the EUSWI is not highly dependent to all other indexes mentioned
in Table 2.1. All the dependency measures are lower than ρ = 0.3. For the EUSA it holds that it is
highly dependent on some indexes mentioned in the table. The dependency measure between EUSA
and the 10 or 30 years Barclays Bellwether Swap are respectively ρ = −0.83 and ρ = −0.86.

Another dependency that deserves some more discussion is the dependency between the HFRXGLE
index and the MSDEWIN or MSDEEEMN index. In words, this is the correlation between hedge funds
and the global- or emerging market equity. One would expect that investing in hedge funds should
be more beneficial in a stress scenario compared to a normal scenario. However, we observe that
the correlation is respectively, ρ = 0.66 and ρ = 0.55. This means that a drop in the global equity
also results in a drop in the hedge funds however the dependency is not as strong as for example the
dependency between global- and emerging markets equity.

3.3 Discussion

A possible drawback of this model is the low dependency between the inflation and the other risk
factors. This can be due to the specific measure that is used to derive the change in inflation rate,
see (2.1) or a characteristic of the historical data. Note that, with the dependency of the risk factors,
the dependency is studied on a specific time point and not over time. However, in stress scenarios one
should give a forecast of the risk factors. An option is to forecast one risk factor and use the copula
to derive the forecast of the other risk factors. As a consequence of the low dependency between the
inflation and the other risk factors, forecast models for all the risk factors are studied, see Chapters
4, 5 and 6. This approach comes with both advantages and disadvantages. One advantage is that the
stress scenarios vary less than in the case where one risk factor is assumed to be known. However a
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disadvantage is that the whole model depends more on the forecasting models. Noteworthy is that in
both options a forecast model of at least one risk factors is used.
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Chapter 4

Forecasting the returns on investments

In this chapter the forecasting of the returns on investments is studied, by means of an autoregressive
model. This model is already heavily studied in the context of finance, e.g. [39] where the author
studies this model to forecast the returns of the Dow Jones and in [13] the forecast of the US, UK and
Japanese stock index futures markets is studied.

The autoregressive model of order p, denoted by AR(p), is defined as,

Xt =

p∑
i=1

ψiXt−i + εt,

where Xt is in our case the distribution of the returns at time t, ψ is a parameter of the model and
εt captures white noise and thus is standard normal distributed at time t. The order p of the model
corresponds to the number of previous historical returns that have a significant effect on the return of
interest.

Assumption 6 The AR(p) model assumes a non-moving average.

The assumption of a non-moving average is checked visually when looking at the returns over time
and is consistent with the identical assumptions of the distribution in Chapter 2.

Remark 4 For the forecast of the returns on investments also the ARMA(p,q) model is studied. This
model does not assume a non-moving average. Both the AR(p) and ARMA(p,q) are compared based
on the AIC and BIC. From this study it turned out that the AR(p) model gave the best fit.

In Section 2.2, see Figure 2.2, it is observed that only the first order is significant for all the
categories within the returns on investment risk factor. However, it is also observed that the autocor-
relation parameter is low and dividing the returns into bands does not increase this autocorrelation
coefficient. To conclude, this means that the AR(1) model seems to be the best model to forecast the
first risk factor, i.e., returns on investment.

Figure 4.1 depicts the historical value together with the forecast of 10 sample paths. From the
sample paths that forecast the value of the MSDEWIN index, see Figure 4.1, the conclusion can
be drawn that there is a large deviation between the paths. Another drawback of our model is not
considering the volatility clustering of the returns. In Figure 4.2 it can be seen that in times of a
crisis, e.g. in 2008, the returns have a higher volatility than normal and that therefore this volatility
is clustered over time.
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Figure 4.1: The historical index value together with the forecast of this index value of the MSDEWIN
index

Figure 4.2: The historical returns (black) together with the forecast of these returns (red) of the
MSDEWIN index

Figure 4.2 shows that the returns in our forecast have neither the characteristics of a real crises or
low volatile returns.

4.1 Discussion

To forecast the returns on investments the AR model is used. One drawback when applying this model
to our data is the low autocorrelation. A low autocorrelation means high deviation in the forecasts.
One solution to this low correlation, studied in the literature, is to divide the historical returns into
bands, with the assumption that large positive and negative returns are more correlated to the next day
return. However, for our data this assumption was not valid, see Chapter 2. To conclude, forecasting
the returns on investment is a difficult problem and with the ACF no strong correlation between
subsequent returns is found. Especially when giving a forecast for the risk factors over a period of 5

27 Department of Mathematics and Computer Science



4.1. DISCUSSION

years by daily returns, this means high deviation between different forecasts. Although this seems a
major drawback of the model, concluding that there is a lot of room for improvement is not entirely
correct. One could argue that forecasting the returns is difficult since there is too much randomness
involved. Moreover, when a mathematical model can capture this randomness and gives an accurate
forecast of the returns, one could argue that the inventor of this model is able to make infinite profit.

From this chapter it is clear that forecasting the returns on investments is difficult, but our model
can still rely on the forecast of the other risk factors, i.e. the real interest rate and the nominal interest
rate. These forecasts are studied in the next Chapters.
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Chapter 5

Forecasting the real interest rate

To model the future real interest rate a so called short rate model is used. Short rate models are
heavily studied in the literature, see e.g. [12] and [32]. One of the most important properties of short
rate models is the mean-reversion. There is still an ongoing discussion on which method one should
use to model the real interest rates. Models that are often used are Merton’s, Cox-Ingersoll-Ross and
Vasicek model. In this chapter the real interest rate is modeled by the Vasicek model. This decision
is based on both literature, e.g. see [25] and the references therein and the expertise of Aon Hewitt.

Assumption 7 The Vasicek short rate model is the best model for the real interest rate.

Furthermore, different calibration methods are given to obtain the parameters of the model and the
performance of this model with respect to historical data is studied.

5.1 Vasicek model

Within the class of the Vasicek model one could decide between the one factor and the two factor
model. An ongoing discussion in the field of mathematics is the trade off between simple and simplified
models to complex and realistic models, e.g. [19]. For this reason both the one factor and two factor
Vasicek models are introduced and compared.

The one factor Vasicek model is given by the stochastic differential equation

dRreal,t = α1 (θ −Rreal,t) dt+ σ1dW1,t,

where α1, θ and σ are real valued parameters, W1,t denotes a Wiener process at time t and Rreal,t

denotes the real short rate at time t. The parameter θ corresponds to the long term interest rate,
α1 denotes the speed of convergence to this long term real interest rate, where a value closer to 0
corresponds to a slower convergence and a value closer to 1 to a faster convergence, and σ1 is a
measure for the volatility (i.e., a measure for the fluctuation of the real short rate over time) in the
model.

The solution to this stochastic differential equation is given by

Rreal,t = Rreal,se
−α1(t−s) + θ

(
1− e−α1(t−s)

)
+ σ1

∫ t

s
e−α1(t−v)dW1,v.

Conditionally on the filtration at time s, denoted with Fs, the short real interest rate is normally
distributed with mean

E[Rreal,t|Fs] = rreal,se
−α1(t−s) + θ

(
1− e−α1(t−s)

)
, (5.1)

and variance

Var (Rreal,t|Fs) =
σ2

1

2α1

(
1− e−2α1(t−s)

)
. (5.2)
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The conditional mean and variance are of importance for the performance measure that is derived in
Section 5.5 and are showed in the visualization of the one factor short Vasicek model.

With the solution for the short real interest rate one can calculate the zero-coupon bond price with
maturity T , where T is in years, with the formula

b(0, T ) = E[e−
∫ T
0 Rreal,vdv]. (5.3)

For the one factor Vasicek model the zero-coupon bond price is given by

b(0, T ) = ea1(0,T )−rreal,0·a2(0,T ), (5.4)

where,

a1(0, T ) = (θ − σ2
1

2α2
1

)(T + a2(0, T ))− σ2
1

4α1
(a2(0, T ))2 ,

a2(0, T ) =
1− e−α1T

α1
.

Further, if we assume that there are no-arbitrage opportunities (i.e., it is assumed that one cannot
make profit without facing a certain risk) the yield curve at maturity T of the real interest rate that
corresponds to this one factor Vasicek model is given by

yT =
− ln(b(0, T ))

T
. (5.5)

This expression is in Section 5.2 used to calibrate the corresponding model to the historical data.

The stochastic differential equation that describes the two factor Vasicek model is given by

dRreal,t = α1 (Mt −Rreal,t) dt+ σ1dW1,t

dMt = α2

(
µ′ −Mt

)
dt+ σ2dW2,t, (5.6)

with α1, α2, σ1, σ2 and µ′ real valued parameters and W1,t and W2,t denote two correlated Wiener
processes at time t, with correlation coefficient ρ. The solution to Equation (5.6) is given by

Rreal,t = Rreal,se
−α1(t−s) + α1Ms

e−α2(t−s) − e−α1(t−s)

α1 − α2

+ µ′

(
1− e−α1(t−s) − α1

e−α2(t−s) − e−α1(t−s)

α1 − α2

)

+ α1σ2

∫ t

s

e−α2(t−v) − e−α1(t−v)

α1 − α2
dW2,v

+ σ1

∫ t

s
e−α1(t−v)dW1,v.

Again, the real short rate is, conditionally on the filtration Fs, normally distributed. The mean is
given by

E[Rreal,t|Fs] = rreal,se
−α1(t−s) + α1ms

e−α2(t−s) − e−α1(t−s)

α1 − α2

+ µ′

(
1− e−α1(t−s) − α1

e−α2(t−s) − e−α1(t−s)

α1 − α2

)
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and variance

Var (Rreal,t|Fs) =
α1σ

2
2

2(α1 − α2)2

(
1− e−2α1(t−s)

)
+

α2
1σ

2
2

(α1 − α2)2

1

2α2

(
1− e−2α2(t−s)

)
+

σ2
1

2α1

(
1− e−2α1(t−s)

)
+

2α1σ1σ2ρ

(α1 − α2)(α1 + α2)

(
1− e−(α1+α2)(t−s)

)
− σ1σ2ρ

(α1 − α2)

(
1− e−2α1(t−s)

)
− 2α2

1σ
2
2

(α1 − α2)2(α1 + α2)

(
1− e−(α1+α2)(t−s)

)
. (5.7)

The bond price of this two factor Vasicek model is given by

b(0, T ) = exp

{
rreal,0

α1

(
e−α1T − 1

)
+

α1m0

α1 − α2

(
e−α2T − 1

α2
− e−α1T − 1

α1

)
+ µ′

(
−T − e−α1T − 1

α1
− α1

α1 − α2

(
e−α2T − 1

α2
− e−α1T − 1

α1

))
+

1

2

(
σ2α1

α1 − α2

)2
(

1

α2
2

(
T − 1− e−α2T

α2
−
(
1− e−α2T

)2
2α2

))

+
1

2

(
σ2α1

α1 − α2

)2
(

1

α2
1

(
T − 1− e−α1T

α1
−
(
1− e−α1T

)2
2α1

))

+

(
σ2α1

α1 − α2

)2
(

1

α1α2

(
T − 1− e−α1T

α1
+

1− e−(α1+α2)T

α1 + α2

))

+
1

2

(
σ1

α1

)2
(
T − 1− e−α1T

α1
−
(
1− e−α1T

)2
2α1

)}
, (5.8)

and the yield can then be derived with the expression given in (5.3).

Remark 5 In the one factor and the two factor Vasicek model the underlying process is assumed to be
a Brownian motion. For further research one could extend the stochastic differential equations to also
consider a jump component, which can be modeled by a Lévy process, see [9] for an extensive study
on these stochastic differential equations. In the case of the one factor model this extended stochastic
differential equation becomes

dRreal,t = α1 (θ −Rreal,t) dt+ σ1dW1,t +Rreal,tdZ1,t,

where dZ1,t denotes a Lévy process. It is still possible to derive a solution of this stochastic differential
equation and therefore derive the yield.

5.2 Yield curve calibration

There are different methods to calibrate our models to historical data. The two methods that are
most commonly used in the literature and practice are a calibration method that is based on the
last day and a calibration method that is based on more than one day which also uses time-varying
characteristics of the underlying model.
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5.2.1 Method 1: Last day optimization

The first method is an optimization problem that depends only on the last day of the historical data.
With the expressions given in (5.4) and (5.8) we have derived explicit expressions for the bond price
and thus the yield. The expression for the yield curve can be used to estimate the parameters by
ordinary least squared error. Note, that in this method the parameters are calibrated to the yield
curve of only one day, which is in most of the cases the last day of data available.

Remark 6 Initially, the yield curve consists of real interest rates with a certain maturity correspond-
ing to the EUSWI and EUSA data from Bloomberg. The DNB published an article in which it is stated
that for interpolation of the yield curve pension funds should use the method proposed by the DNB,
for more details we refer to [22]. With this method one could interpolate the yield curve and derive
the interest rate with an arbitrary maturity.

Figure 5.1 shows the yield curve of 31-12-2016 together with the one and two factor Vasicek yield
curve calibrated according to Method 1.

Figure 5.1: Yield curve of the one factor and two factor Vasicek model for the real interest rate
calibrated according to Method 1

Figure 5.1 depicts that both the one factor and two factor Vasicek model can be calibrated well
to this yield curve. However, this is not the case for all yield curve shapes, see Appendix B.4 for the
different yield curve shapes with the calibrated yield curves. Since, the yield curve corresponding to
the two factor model has more parameters than the one factor model and the observation that the
yield curve of the one factor model is embedded in the two factor model, the two factor model should
always describe the yield curve better.

Assumption 8 Method 1 can calibrate to the yield curve well and thus the errors are white noise,
i.e. standard normal distributed.

In Figure 5.2 the density of the standardized error, that is made when calibrating the one and two
factor Vasicek model according to Method 1, is shown for maturity 15. Note that standardizing in this
case means dividing the error by the standard deviation, which can be done since it is visually checked
that the deviation is constant over time. Moreover, with the KS test the null hypothesis that the
errors are from a skewed Student’s t-distribution is not rejected. The figure shows that for maturity
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Figure 5.2: Residuals for the one factor (left) and two factor (right) Vasicek model, maturity 15 years
and calibrated according to Method 1

15 years the yield is underestimated however, this is not the case for all the maturities. To conclude,
Assumption 8 is violated but there is not a straightforward extension of this model.

Remark 7 The error of the yield curve calibration is skewed Student’s t-distributed and therefore the
yield calibration can be written as

yt = f(Xt) + et,

where Xt is the entire yield curve, yt the historical observed yield curve and et the error at time t.
However, it is not clear how this error influences the outcome of our model. The aim of our model is
to give a prediction of the real interest rate over a time period of 5 years. For future research one can
study the effect of this error term on the outcome of our model.

The sensitivity to the last day can be a disadvantage of this calibration method. If one observes a
shock in the yield curve over time but on the next day this shock already canceled out, this calibration
method would give very different results.

Remark 8 An extension to Method 1 could be to optimize the parameters using more than one day of
historical data. The underlying assumption that one makes in this extension is that the parameters do
not change over the time period that is evaluated. Especially for the parameter rreal,0, this assumption
is restrictive since it is known that the short real interest rate differs over time.

5.2.2 Method 2: Log-likelihood approach

The second method, which is studied in [26] and [4], uses a log-likelihood approach. In this method
the real interest rate for a certain maturity is assumed to be exact. With this assumption the short
rate can be derived once we know the parameters of the model. Another key observation is that
conditioned on the short rate at time s we know the probability density function of the short rate
at time t, namely a normal distribution with mean and variance given for the one factor model in
respectively (5.1) and (5.2). If the conditional probability density is denoted by frt+s(rt+s|rs), the
log-likelihood can be written as

logQ =

D∑
t=1

log
(
frt+s(rt+s|rs)

)
, (5.9)
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where D denotes the number of days taken into account. This log-likelihood only looks at the real
interest rate on a specific maturity. To account for this fact also the log-likelihood of other maturities
is considered.

Assumption 9 The real interest rates with these other maturities are not exactly observed but with
an error, which is identical independent normally distributed with mean zero.

The log-likelihood of this part can be written as

logP = −D
2

log(2π)− D

2
log(detΣ)− 1

2

D∑
t=1

(ŷt − yt)′Σ−1(ŷt − yt), (5.10)

where Σ is the covariance matrix, yt is the observed yield and ŷt is the estimated yield.
To estimate the parameters of the model one should maximize the total log-likelihood which is

given by

logL = α logQ + (1− α) logP,

where the α weighs the different log-likelihoods given by Equations (5.9) and (5.10). In words, the
parameter α gives a weight of the importance of the exact yield curve on a certain maturity to the
approximate yield curve on other maturities.

Assumption 10 The parameters, except the short real rate rreal,0, do not change over the time period
of interest.

Note that this assumption, in contrary to Remark 8, does not assume that the short real rate is
constant over time. Now, consider the setting where the real interest rate with maturity 5 is exact
and the interest rate with maturities 1, 2, 10, 15 and 40 are approximately correct. Furthermore
Table 5.1 shows the evaluation of the total log-likelihood, for D = 5 and D = 10 consecutive days.
As a performance measure the Akaike information criterion (AIC) [3] and the Bayesian information
criterion (BIC) [37] are used, respectively given by

AIC = 2k − 2 log (L) ,

and

BIC = log (D) k − 2 log (L) ,

where k denotes the number of parameters. Note that here the aim is to have the lowest AIC of BIC.

Table 5.1: Performance of Method 2 for D = 5 (left) and D = 10 (right) when considering the one
factor Vasicek model on the real interest rate

α logL AICL BICL

0.1 135.685 6.18 3.05
0.3 99.669 6.8 3.67
0.5 91.257 6.97 3.85
0.7 63.304 7.7 4.58
0.9 45.334 8.37 5.25

α logL AICL BICL

0.1 296.326 4.62 7.04
0.3 195.973 5.44 7.86
0.5 152.362 5.95 8.37
0.7 136.654 6.17 8.59
0.9 86.679 7.08 9.5

Table 5.1 shows that in both cases, D = 5 and D = 10, α = 0.1 gives the highest log-likelihood.
Note that taking α equal to zero is not possible for this method. Furthermore, in this table it can be
found that the log-likelihood increases when the parameterD is increased. As a consequence the AIC in
the case D = 10 is lower than for the case D = 5. However, since the BIC penalizes for the value of this
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parameter we observe that the BIC is lower for the case D = 5. In Appendix C.1 Table C.1 the same
execution is done for the two factor Vasicek model. Note that for this model the underlying process
of the m(t), in Equation (5.6), is unknown which introduces extra uncertainty. When comparing the
one factor and two factor Vasicek model we can conclude that the one factor models gives higher
log-likelihood and therefore also a lower AIC and BIC. A drawback to this performance is that only
last day data is considered.

For the case α = 0.1 both methods are compared according to the root mean squared deviation
(RMSD), which takes into account more historical yield curves. The RMSD for maturity ym is given
by

RMSD(ym) =

√∑T
t=1(ŷt,m − yt,m)2

D
,

where yt,m denotes the yield at time t with maturity m and ŷt,m the estimated yield.
In Table 5.2 we compare the one factor with the two factor Vasicek model and the two methods

to calibrate the yield curve explained in this section. In the case of Method 2 the weight parameter is
α = 0.1.

Table 5.2: RMSD comparison for the one and two factor Vasicek model with different calibration
methods based on the last 50 observations and α = 0.1 for Method 2

One factor Two factor

Method 1 Method 2 Method 1 Method 2

Maturity D = 5 D = 10 D = 5 D = 10

RMSD(1) 0.0006 0.0019 0.0019 0.0004 0.0038 0.0054
RMSD(5) 0.0005 0 0 0.0006 0.0011 0.0011
RMSD(10) 0.0002 0.0017 0.0018 0.0006 0.0030 0.0056
RMSD(15) 0.0006 0.0031 0.0033 0.0012 0.0055 0.0115
RMSD(40) 0.0002 0.0055 0.0062 0.0009 0.0195 0.0383

In Table 5.2 one can observe that Method 1 has in the most cases the lowest RMSD for both the
one factor and two factor Vasicek model. However, this indicates not directly that this method has
a better performance when forecasting the short real interest rate. The robustness to the yield curve
can be an advantage and in Section 5.5 further analysis on the performance of the model regarding
these methods is studied. When comparing the cases D = 5 and D = 10 of Method 2, we can conclude
that the case D = 5 gives a lower RMSD for both the one and two factor Vasicek model. Note that
this is consistent with the conclusion made from Table 5.1.

Assumption 11 Method 2 can calibrate to the yield curve well and thus the errors are white noise,
i.e. standard normal distributed.

Again, the errors made when calibrating this method to the yield curve are analysed. In line with
Method 1, the errors are skewed Student’s t-distributed and therefore violate Assumption 11.

Another method to fit the yield curve is with polynomials or splines. Splines are mostly used to
interpolate curves, but can also be used to fit curves. In Figure 5.3 a historical yield curve is shown
together with polynomials of different degrees of freedom (df), fitted to this yield curve. It is known
that increasing the degrees of freedom will improve the fitting which is also observed in the figure.
Note that the yield curve for which the one factor and two factor had difficulty calibrating is chosen
for this analysis.

For the one factor and two factor yield curve the calibration methods are compared based on the
RMSD. In Table 5.3 the RMSD of the polynomial fitting are stated for different maturities and degrees
of freedom.
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Figure 5.3: Yield curve polynomial fitting for different degrees of freedom

Table 5.3: RMSD comparison for the polynomial fitting for different degrees of freedom based on the
last 50 observations

df = 2 df = 4 df = 6

RMSD(1) 0.0028 0.0006 0.0002
RMSD(5) 0.0008 0.0002 0.0001
RMSD(10) 0.0015 0.0005 0.0001
RMSD(15) 0.0025 0.0005 0.0001
RMSD(40) 0.0010 0.0002 0

When comparing Table 5.3 with Table 5.2 it can be seen that the error made when taking df = 4
is approximately of the same order as the error made when calibrating according to the yield curve
of the one factor Vasicek model. However, in Table 5.3 one can clearly see that the error made for
df = 6 is smaller than the error made when calibrating according to the two factor model.

Note that with the one factor and two factor Vasicek model already a forecast model for the real
short interest rate is assumed, whereas the polynomial fitting only can give the real short interest on
a specific time from the historical yield curve. Despite of this difference, the estimation for the real
short interest rate can be compared. For the polynomial fitting the short rate is equal to rreal,0=0.025
for df = 2 and increases almost linearly to rreal,0=0.028 for df = 10. Comparing these values to the
values of the one factor rreal,0=0.025 and the two factor rreal,0=0.041 model it can be observed that
in the case of the two factor model this real short rate is much higher.

5.3 Representative real yield curve shocks

In Section 1.4 the indirect stress scenarios are already introduced. In this section these different yield
curve shock methods are applied to the historical data for the real interest rate, with the exception of
the standardized method since this method only shifts the yield curve by two percent.

For the historical method certain quantiles of the empirical distribution of the changes in the real
interest rate are applied to the last day yield curve. In this way no error is made when fitting the
distribution.

Figure 5.4 shows different quantile increases of the returns applied to the yield curve of 31-12-2016.
One major drawback of this yield curve shock method is indicated by the yield curve shock on the
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Figure 5.4: Yield curve shock according the historical method (left) and the standardized factor
method (right) on the real interest rate yield curve

real interest rate. In the quantile (99%) the yield curve has fluctuations which are not observed in
practice. This figure also shows the standardized factor method. One remarkable observation is that
in [18] an increase or decrease in percentage is stated. However, when the yield curve is negative the
decrease in percentage becomes an increase in yield and vice versa. When the whole yield lies below
or above zero, this is not a problem since one can still take the increase or decrease that leads to a
decrease in the yield, see Figure 5.4. When comparing both methods the conclusion can be made that
the standardized factor method considers a significant change and keeps the continuity property.

Another possible yield curve shock method is the principal component analysis (PCA). Remember
that this method is based on the assumption that the yield curve can be described by three principal
components, which correspond to the level, slope and curvature.

In Figure 5.5 the loadings of these three components are shown for each maturity. For the real
interest rate the first three principal components explain respectively 60, 20 and 8 percent of the
variation in the yield, which means that these three components together explain 88 percent of the
variation in the yield. With the factor loadings of each maturity and the values of the principal
components one can describe the yield curve on a specific time point. Note that the factor loading
is constant over time while the values of the principal components change. A certain quantile of
the changes in the value of the principal components is applied to the principal component values of
31-12-2016.

Figure 5.5: The factor loadings (left) and the yield curve shock (right) on the real yield curve corre-
sponding to the PCA method

Note that for all these yield curve shocks methods only calibration method 1 described in Section
5.2 can be used to calibrate the model to these yield curves. This is due to the fact that all these
shocks methods give one new yield curve as output.
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5.4 Visualization Vasicek model

After getting the parameters via one of the two calibration methods described in Section 5.2, applied
on the real yield curve or the yield curve shocks, the solution to the stochastic differential equation
via the Euler discretization method can be simulated. For this simulation the step size and number
of simulated paths are of huge importance and are therefore studied at the end of this section.

Figure 5.6: Two sample paths and the 95 percent prediction intervals of the one factor Vasicek model
with parameters calibrated to the yield curve with method 1

Figure 5.6 shows two sample paths for the real interest rate for a period of 55 years together with
the expected value and the 95 percent prediction bounds. These prediction intervals do not imply
that a certain path happens with 95 percent but that the real interest rate on a certain time point in
the future is predicted to fall between these bounds 95 percent of the times. Observe, that the Vasicek
model allows the real rate to become negative.

With n real short rate paths we can derive an estimation for the real interest rate with a specific
maturity ym

r̂ymreal =
− log

(
1
n

∑n
i=1 exp

(
−
∑su

j=0 r̃real,j,idt
))

ym
,

where su = ym
dt , r̂ denotes the estimated value for the real interest rate with maturity ym, r̃real,t,i the

short rate at time t for path i and dt the step interval chosen in the simulation.

Furthermore, the real interest rate with a specific maturity from a specific path i is given by

r̃ymreal,yt,i
=
− log

(
exp

(
−
∑su

j=sl
r̃real,j,idt

))
ym

, (5.11)

where sl = yt
dt and su = yt+ym

dt .

In the case of using the Euler discretization method it follows that the predicted real interest rate
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with maturity ym in yt years from now is normally distributed with mean

r̄ymreal,yt
=

1

n

n∑
i=1

r̃ymreal,yt,i

= −

∑su
j=sl

(∑j−1
i=sl

(
j−2
i−1

)
(−α1dt)i (θ − rreal,0)

)
dt

ym

−

∑su
j=sl

(∑j−2
i=sl

(
j−2
i

)
(−α1dt)iθ

)
dt

ym
, (5.12)

and variance

s2,ym
real,yt

=
1

n

n∑
i=1

(
r̃ymreal,yt,i

− r̄ymreal,yt

)2

=

(∑su
j=sl

(∑j−2
i=sl

(
j−1
i

)
(−α1dt)i−1β

√
dt
)

dt
)2

y2
m

+

(∑su
j=sl

(
(−α1dt)j−3β

√
dtdt

)
dt
)2

y2
m

.

For the two factor Vasicek model one can still derive an explicit expression of the bond price and
thus the yield curve. Again the same two methods can be used for the calibration of the yield curve.
In Figure 5.7 the visualization of the two factor model is given when calibrated to the last day yield
curve, thus Method 1.

Figure 5.7: Two Sample paths and the 95 percent prediction intervals of the two factor Vasicek model
with parameters calibrated to the yield curve with method 1

Note that although the paths in Figure 5.7 show a similar behavior as in Figure 5.6, there is a
significant difference between the two figures. For the two factor model the volatility of the short rate
is smaller than the variance, see Equations (5.2) and (5.7), of the short rate in the one factor model.
This shows that although the yield curves were quite similar, see Figure 5.1, the outcome of the two
models are different.

In Appendix C.3 the visualization of the one factor and two factor Vasicek model when calibrating
to Method 2 are given. From both Figures C.1 and C.2 it can be seen that especially in the beginning
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of the forecast the behavior differs. The prediction interval is larger in the case of the one factor model
than in the case of the two factor model.

5.4.1 Yield curve via simulation

In this section the influence of the step size (dt) and number of simulations (nsim) when simulating
the real short rate using the Euler discretization is studied. Since it is known that the yield curve
of the simulations should converge to the analytic yield curve, the number of simulations gives a
measure for the speed of convergence. The convergence is defined as the number of simulations for
which the simulated yield curve, with a specific maturity, is for 10 consecutive observations within a
bandwidth of 2.5 percent of the analytic yield. The minimal threshold for this number of simulations
is 4000. Note that in (5.12) the number of intermediate steps within one year is of importance, since
the corresponding sum approximates the integral from (5.3).

Figure 5.8: Yield curve convergence for the base case

Figure 5.8 shows the simulated yield and the real yield together with the bandwidth. Table 5.4
gives the number of simulations per setting. Note, that the minimal number of simulations is 4000,
but in some cases it is clearly visible that the yield curve did already converge before this number,
which is indicated with a star.

Table 5.4: Number of simulations per setting for T = 1 and dt = 0.025

Parameter value nsim value nsim value nsim value nsim

rreal,0 0 12250 0.01 5000 0.02 3000*
α1 0.1 4500 0.2 5000 0.4 4250 0.8 4000
θ 0.1 5000 0.2 5000 0.4 5000 0.8 2000*
σ1 0.05 2000* 0.1 5000 0.2 15000

From Table 5.4 and Tables C.2 and C.3 in Appendix C.2 we conclude that there are certain rules
of thumb for the number of simulations. Increasing the parameter β leads to a significant increase in
the number of simulations. This also holds for the parameter k with the exception of the lowest value
of k. Here an 1/x relation to the number of simulations seems appropriate. Also the influence of the
time is observable when comparing the three tables. When the maturity is increased also the number
of simulations until convergence increases.
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5.5 Performance Vasicek model

In the previous sections we indirectly assumed that the Vasicek short rate model, models the reality
well. In this section the performance of both the one factor and two factor model under both calibration
methods is studied. The quantification of the performance is based on the prediction of rymreal,yt

.

Furthermore, let qymreal,yt
(α) denote the quantile (α%) of the prediction of the real interest rate when

deriving the real interest rate per short rate path, i.e. qymreal,yt
(α) = r̄ymreal,yt

± zαs
2,ym
real,yt

with zα the
quantile (α%) of the standard normal distribution.

Table 5.5 shows the performance of the Vasicek model when forecasting the real interest rate with
maturity 1. This maturity fluctuates the most and is therefore the most difficult interest rate to
predict. Bound50 represents the number of observations that lie between q0.25 and q0.75. With the
same reasoning Bound95 denotes the number of observations that lie between q0.025 and q0.975.

Table 5.5: Performance one factor Vasicek model

Method 1 Method 2 (T = 5)

Observations Bound95 Bound50 Bound95 Bound50

r1
real,1 2389 2218 2014 2385 2366

r1
real,2 1632 1447 1262 1630 1608

r1
real,3 1476 1343 1056 1472 1433

r1
real,4 1323 1193 880 1317 1252

r1
real,5 1171 1036 739 1166 1113

In Table 5.5 one can observe that Method 2 performs better than Method 1. However, this is also
due to the higher volatility in the short rate when calibrating according to Method 2. In Appendix
C.3 both the one factor and two factor Vasicek model is visualized under calibration Method 2, see
respectively Figures C.1 and C.2. When calibrating to Method 2 it can be observed that the real short
rate has a larger prediction interval. As a consequence also the prediction interval for the forecast of
the real interest rate is larger. Since our performance measure does not penalize for this deviation it
is clear that this measure suggests that calibration Method 2 performs the best.

Table 5.6: Performance two factor Vasicek model

Method 1 Method 2 (T = 5)

Observations Bound95 Bound50 Bound95 Bound50

r1
real,1 2389 1894 1357 2222 1480

r1
real,2 1632 1222 736 1419 822

r1
real,3 1476 1013 523 1286 678

r1
real,4 1323 843 356 1171 717

r1
real,5 1171 691 178 1040 679

When comparing the performance of the one factor Vasicek model, Table 5.5, to the performance
of the two factor Vasicek model, Table 5.6, we observe remarkable differences. The two factor Vasicek
model performs worse than the one factor Vasicek model according to the performance measure we
used. One explanation of this remarkable result can be the fact when calibrating according the Method
1, the statistical program R that is used experiences difficulty in minimizing the least squared errors.
Based on historical data, the value of the least squared error of the one factor Vasicek model is in
almost 30 percent of the cases lower than the value of the two factor Vasicek. Another possibility is
that the one factor Vasicek model gives a better prediction. This result has been oftentimes observed
in the literature in the context of revenue management as a result of overfitting the data before
performing optimization, see [19] and the references therein. Furthermore, in [19] the authors note
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that simple models can produce more accurate results than complected models. This might exactly
explain why the simpler (one factor model) can be more accurate than the rather more complicated
model (two factor model).

5.5.1 Sensitivity analysis Vasicek model

After the performance of the Vasicek model also the sensitivity of the one factor model is studied.
The sensitivity analysis measures the influence of the parameters to the outcome of the model. Here,
the parameters are decreased or increased by 5 percent and then again the performance is studied.

Table 5.7: Sensitivity performance one factor Vasicek model for parameter rreal,0 when calibrating
according to Method 1

Index Number -5% 5%
Bound95 Bound50 Bound95 Bound50

r1
real,1 2391 2217 2028 2216 2013

r1
real,2 1634 1447 1263 1450 1261

r1
real,3 1476 1338 1058 1342 1064

r1
real,4 1323 1191 879 1200 882

r1
real,5 1171 1031 728 1039 739

If we compare Table 5.7 to Table 5.5, the conclusion can be made that changing the estimate of
the parameter rreal,0 does not significantly change the outcome of the performance measure. However
this can be due to the characteristic of the model. If the mean reversion parameter k is close to 1, the
initial short rate rreal,0 is not important since the short rate will converge to the long term interest
rate θ. In Appendix C.4 the sensitivity analysis is given for the other parameters α1, θ and σ1. When
comparing Tables C.4, C.5 and C.6 it can be seen that the parameter σ1 influences the performance
the most. This is to be expected since this parameter influences the width of the prediction interval.

5.6 Conclusions

In this chapter the one and two factor Vasicek short rate model are studied together with two different
yield curve calibration methods. All these models and calibration methods are compared via historical
data. From this analysis, the conclusion can be made that the yield curve calibration that takes into
account more days gives a better performance. Also from this performance measure, it is observed that
the one factor predicts the future real interest rate correctly with a higher probability. Noteworthy is
that a better performance does not immediately suggest that one should use the corresponding model
or calibration method. A disadvantage of the one factor model when calibrating according to Method
2 is for example that the historical real interest rate, even in the case of the prediction interval with a
width of 50 percent, lies in almost all the cases within this interval. This is due to the large deviation
of the predicted real interest rate.

Another drawback of the Vasicek short rate model is that the direct outcome, the real short rate,
cannot be compared to historical data since this term is a fictive term from which there is no data. In
our performance measure the forecast of the real interest rate, which follows from the real short rate,
is compared to historical data. However, one could also come up with other performance measures,
which include the deviation of this real interest rate prediction.

Since the forecast of the inflation is described by both the real interest rate and the nominal interest
rate, in the next chapter the forecast of the nominal interest rate is studied.
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Forecasting the nominal interest rate

Again, in line with Chapter 5 a short rate model is used to forecast the nominal interest rates. Before
2014 the belief was that the nominal interest rate could not be negative. Under this assumption the
Black Karasinski, sometimes referred to as the exponential Vasicek model, is often used since this
model cannot output negative short rates and thus negative interest rates, see e.g. [12] and [32].
However, in the last two years this assumption of non-negative nominal interest rates is violated for
the short term, i.e. maturities under 5 year, interest rate. Therefore, it could be the case that the
Vasicek model predicts the nominal interest rate better. In this chapter the Black Karasinski model
is introduced and compared to the Vasicek model based on historical performance.

6.1 Black Karasinski model

Within the class of the Black Karasinski model one could decide between the one factor and the two
factor model. Both models are described and the difference is studied. The one factor Black Karasinski
model is given by

d ln(Rnom,t = α3 (ln(θ)− ln(Rnom,t)) dt+ σ3dW3,t,

where α3, θ and σ3 are real valued parameters, W3,t denotes a Wiener process at time t and Rnom,t

denotes the nominal short rate at time t. In this model,in contrast to the one factor Vasicek short
rate model, the parameters do not have an intuitive interpretation. The solution to this stochastic
differential equation is given by

Rnom,t = exp
{

ln(Rnom,s)e
−α3(t−s) + θ

(
1− e−α3(t−s)

)
+σ3

∫ t

s
e−α3(t−v)dW3,v

}
. (6.1)

In the solution (6.1), the characteristic of non-negative nominal short rates can be observed since
there is the exponential function. Conditionally on the filtration Fs the nominal short rate is lognormal
distributed with mean

E[Rnom,t|Fs] = exp
{

ln(rnom,s)e
−α3(t−s) + θ

(
1− e−α3(t−s)

)
+
σ2

3

4α3

(
1− e−2α3(t−s)

)}
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and variance

Var (Rnom,t|Fs) = exp
{

2 ln(rnom,s)e
−α3(t−s) + 2θ

(
1− e−α3(t−s)

)
+
σ2

3

2α3

(
1− e−2α3(t−s)

)}
·
(

exp

{
σ2

3

2α3

(
1− e−2α3(t−s)

)}
− 1

)
.

For the Black Karasinski model the relation in Equation (5.3) still holds. In contrast to the Vasicek
model where an explicit expression for the bond price could be obtained, in the Black Karasinski
model there is no explicit expression for the bond price. This would mean that the Black Karasinski
model cannot be calibrated to the yield curve. As an alternative, the bond price is computed via an
approximation given in [17]. Here the approximation is stated, but for further proofs the interested
reader is referred to the paper.

b(0, T ) =
1√
2π

∫ ∞
−∞

exp

{
−
∫ T

0
r̄T,tg0,T (t)h0,T (z, t)dt

}
e−

1
2
z2dz, (6.2)

with

r̄T,t = re
−α3t

nom,0exp

{∫ t

0
e−α3(t−s)α3 log (θ) dt

}
,

g0,T (t) = exp

{
σ2

3

2

(
1

2α3

(
1− e−2α3t

)
− λ0(T )f0,T (t)2

)}
and

h0,T (z, t) = exp
{
σ3

√
λ0(T )f0,T (t)z

}
,

f0,T (t) =

√
2

T + α3λ0(T )
sin (ω(T )t) and λ0(T ) =

1

α2
3 + ω(T )2

,

where ω(T ) is the solution of the equation given by

ω · cotangent (ω · T ) = −α3.

Note that again once the bond price is derived, the yield can be calculate via Equation (5.5). The
two factor Black Karasinski model is given by

d ln(Rnom,t) = α3 (ln(mt)− ln(Rnom,t)) dt+ σ3dW3,t

d ln(mt) = α4

(
µ′ − ln(mt)

)
dt+ σ4dW4,t,

where α3, α4, σ3, σ4 and µ′ are real valued parameters and W3,t and W4,t denote two correlated Wiener
processes at time t. After calculation the solution to this stochastic differential equation is obtained

Rnom,t = exp

{
ln(Rnom,s)e

−α3(t−s) + α3 ln(Ms)
e−α4(t−s) − e−α3(t−s)

α3 − α4

+ µ′

(
1− e−α3(t−s) − α4

e−α4(t−s) − e−α3(t−s)

α3 − α4

)

+ α3σ4

∫ t

s

e−α4(t−v) − e−α3(t−v)

α3 − α4
dW4,v

+σ3

∫ t

s
e−α3(t−v)dW3,v

}
,
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with expectation

E [Rnom,t| Fs] = exp

{
ln(rnom,s)e

−α3(t−s) + α3 ln(ms)
e−α4(t−s) − e−α3(t−s)

α3 − α4

+ µ′

(
1− e−α3(t−s) − α3

e−α4(t−s) − e−α3(t−s)

α3 − α4

)

+

(
α3σ4

α3 − α4

)2( 1

4α4

(
1− e−2α4(t−s)

)
+

1

4α3

(
1− e−2α3(t−s)

))
+
σ2

3

4α3

(
1− e−2α3(t−s)

)}
.

For the bond price of the two factor model an approximation by the same reasoning as for the one
factor Black Karasinski model is derived. However, when analyzing the error made by this approxima-
tion we observed that this expression is numerically unstable. As a consequence, the performance of
the two factor method cannot be studied and is therefore not used to forecast the nominal interest rate.
For further research one could improve the approximation that is given and compare the performance
of the one factor and two factor model.

Note that for the yield calibration the same methods as in Section 5.2 can be used. However,
using the approximation for the nominal yield curve has as a consequence that the second calibration
method, i.e. the log-likelihood approach, is time consuming. Deriving the parameters for the Black
Karasinski model according to this method takes more than 5 hours which means that even when
simulating in parallel the simulati for the performance exceeds the time for this thesis. Since the
performance of this calibration method is not performed it is left as an open research problem.

Figure 6.1 shows the yield curve according to the approximation and the simulated yield curve,
i.e. (5.12) applied to the nominal interest rate. It can be seen that the approximation given by (6.2) is
representing the actual yield curve well for the case of rnom,0 = 0.014, α1 = 0.3, θ = 0.03 and σ1 = 0.3,
which are the parameters when calibrating the yield curve to 31-12-2016. However, it was already
mentioned that this accurate approximation comes with the cost of time.

Figure 6.1: Approximation and the simulation value of the nominal yield curve according to the Black
Karasinski model, where for the simulation 5000 paths are simulated with 250 days in one year
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6.2 Representative nominal yield curve shocks

In Section 5.3 the yield curve shocks are applied to the real yield curve. In this section the same
methods are applied to the nominal yield curve.

Figure 6.2: Yield curve shock according the historical method (left) and the standardize factor method
(right) on the nominal yield curve

Figure 6.2 shows the historical yield curve shock method, which applies a certain quantile of the
historical changes to the nominal yield curve of 31-12-2016. In this figure it can be seen that the
change in the yield curve according to the historical method is almost negligible for all quantiles.

For the standardized factor method a remarkable shock can be observed. In Section 5.3 it was
already mentioned that in this shock method whenever the yield curve is negative the decrease becomes
an increase in the yield curve and vice versa. However, for the nominal interest rate it can be observed
that the short term is negative and the long term positive. With this yield curve shock method one
does not get a new yield curve that lies completely above or below the yield curve of the data.

The loadings of the three components (level, slope and curvature) are shown for each maturity
are shown in Figure 6.3. For the nominal interest rate the first three principal components explain
respectively 85, 10 and 2 percent of the variation in the nominal yield curve, which means that the
three components together explain 97 percent of the variation. When comparing this to the PCA of
the real interest rate, the conclusion can be made that the first three components capture the behavior
of the nominal yield curve better.

Figure 6.3: The factor loadings (left) and the yield curve shock (right) on the nominal yield curve
corresponding to the PCA method

With the factor loadings of each maturity and the values of the principal components one can
describe the yield curve on a specific time point. Note, that the factor loading is constant over time
while the values of the principal components change. A certain quantile of the changes in the value of
the principal components is applied to the principal component values of 31-12-2016, see Figure 6.3
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that depicts different quantiles changes.

Remark 9 The yield curve according to the quantile (1%) of the PCA, seems similar to the yield
curve of the standardized factor method. Although not stated in [18], it could be the case that this
method uses underlying properties of the PCA method to determine the standardized factors.

6.3 Visualization Black Karasinski model

With the approximation of the yield curve we can again calibrate the yield curve of this model to
the yield curve of 31-12-2016 or the yield curves generated by the yield curve shocks. Note, that in
practice it can be seen that nominal interest rate with maturities lower than five years are negative.
However, the Black Karasinski model cannot model negative interest rates. To tackle this problem a
shift to the yield curve is applied. For the visualization in Figure 6.4 a constant shift of 0.02 is used.
This means that the indirect assumption is that the nominal interest cannot go below 2 percent.

Figure 6.4: Sample paths and the quantiles (5%, 95%) of the one factor Black Karasinski model with
parameters calibrated to the yield curve

Figure 6.4 shows samples paths according to the one factor Black Karasinski model calibrated
according to method 1. An already mentioned drawback of this model is that it cannot have negative
nominal interest rates, but from the figure and the simulation it can be observed that the 5 percent
and even the quantile (1%) is not close to −0.02.

Remark 10 Although it is hard to see directly from the approximation, for the yield curve in the
one factor Black Karasinski model, it can be derived from simulation that changing the value of the
parameter rnom(0) does not only change the starting point of the yield curve. For the solution of the
one factor Black Karasinski model, see (6.1), changing the parameter rnom(0) only influences the level
of the paths. Note that this is not consistent which means that shifting the yield curve can have a
negative effect on the performance of this model. A major drawback is that this error that is possibly
made, cannot be explicitly derived. Both the error and the negative short term nominal interest rates
could be an argument to change to the Vasicek model.

Figure 6.5 shows two paths of the short nominal interest rate when using the two factor Vasicek
with calibration Method 1. When comparing Figures 6.4 and 6.5, it can be seen that the two factor
Vasicek model generates nominal short rates which are completely below zero, whereas in the one
factor Black Karasinski model the long term forecast is for most of the paths above zero.
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Figure 6.5: Sample paths and the 5 and 95 percent prediction intervals of the two factor Vasicek model
with parameters calibrated to the nominal yield curve with method 1

6.4 Performance Black Karasinski model

Since it is not entirely clear which model we should consider to forecast the nominal interest rate, the
performance of both the Black Karasinski and the Vasicek model are compared. This can also give a
first indication whether shifting the nominal yield curve, in the case of the Black Karasinski model,
has a negative effect on the performance. For this performance test the same procedure as in Section
5.5 is used.

Table 6.1: Performance one factor Vasicek model on nominal interest rate

Method 1 Method 2 (D = 5)

Observations Bound95 Bound50 Bound95 Bound50

r1
nom,1 2389 2203 2044 2386 2288

r1
nom,2 1632 1426 1217 1629 1535

r1
nom,3 1476 1426 931 1472 1337

r1
nom,4 1323 1181 564 1315 1063

r1
nom,5 1171 993 144 1164 790

In Table 6.1 it can be seen that again, for the one factor Vasicek model, the calibration method 2
can predict the nominal interest rate in most of the cases well. When comparing the forecast of the
real interest rate, i.e. Table 5.5, with the nominal interest rate, i.e. Table 6.1, it can be observed that
in general the one factor Vasicek model can predict the nominal interest rate better. There is not an
immediate explanation for this, but it can be due to the fact that the real interest rate has slightly
more fluctuation.

In Table 6.2 the performance of the one factor Black Karasinski model on the nominal interest rate
is given. It can be seen that the performance is poor in comparison to the performance of the Vasicek
model. To get a better understanding of this poor performance the prediction of the real interest with
maturity 1 in 4 years is studied in more detail. Figure 6.6 shows the forecast and the observed value of
this nominal interest rate. From this figure the conclusion can be made that the forecast based on the
Black Karasinski model is systematically overestimating the actual nominal interest rate according to
the historical data. Here the assumption of non-negative nominal interest rate can play a major role
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Table 6.2: Performance one factor Black Karasinski model on nominal interest rate

Method 1

Observations Bound95 Bound50

r1
nom.1 2388 1070 589
r1

nom,2 1631 494 207

r1
nom,3 1473 303 162

r1
nom,4 1320 115 74

r1
nom,5 1168 93 0

in this overestimating, since with this assumption the quantile (5%) lies higher. Another argument is
that within the yield curve, which implicitly gives the expected future behavior of the nominal interest
rate, this assumption was also embedded what then carried through to our models.

Figure 6.6: 4 Year forecast together with the 95 percent prediction interval of the nominal interest
rate with maturity 1 based on the Black Karasinski model with calibration Method 1

Remark 11 In Figure 6.6 the crisis of 2008 can be observed. It can be seen that both the expected
forecast and the prediction intervals of this forecast fluctuate more in this time period.

6.5 Conclusions

In this chapter the Black Karasinski model is introduced to forecast the nominal interest rate. Al-
though it belongs to the same short rate model class as the Vasicek model, the analytical expressions
for this model are more difficult and sometimes it is not even possible to derive such explicit expression,
e.g. an expression for the yield curve. The approximation for the yield curve that is used approxi-
mates the yield curve almost perfectly, but when calibrating this model to the yield curve according
to Method 2 this method is so time consuming that it was not possible to perform the performance
on historical data.

From the comparison between the Vasicek and the Black Karasinski model the conclusion can be
made that the Vasicek models can predict the nominal interest rate more accurately in most of the
cases. Again, the prediction according the calibration Method 2 gives more deviation in the yield
and as a consequence this model almost predicts the nominal interest rate perfectly, which can be a
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disadvantage of this calibration method. One aspect that is studied in the next chapter is the impact
on the funding ratio of a general pension fund portfolio when using the Vasicek or the Black Karasinski
model to forecast the nominal interest rate.
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Chapter 7

Stress scenarios in practice

In the previous chapters the dependency and the forecast of each risk factor are studied. All together
this forms a framework from which stress scenarios can be derived. The plausibility of the stress
scenarios are measured according to the quantiles. In the problem description, cf. Section 1.3, already
a brief outline of the different scenarios is given. In this chapter the scenarios are further described in
more detail and the impact of the stress scenarios on the pension fund portfolio in terms of funding
ratio is studied. Also, the influence of a yield curve shock on the funding ratio and the difference
between modeling the nominal interest rate with the Vasicek or Black Karasinski model is studied.

7.1 Derivation of stress scenarios

In our stress scenario framework different quantiles of the prediction of the risk factors can be derived.
In this framework one of the inputs is a belief in terms of quantiles for at least one risk factor and
at most all the three risk factors. Note that with the input of a belief of one risk factor, e.g. the
nominal interest rate follows the quantile (5%), the stress scenarios have larger confidence intervals
than with two or even three risk factors as an input. For the practical application of the impact on the
funding ratio, the beliefs of two risk factors are taken into account and the following stress scenarios
are studied.

i) Low returns on global equity. Here the return on the global equity is assumed to be -30 percent
for the first year. This corresponds to the quantile (5%) of the return distribution for the global
equity and the prediction of the real interest rate follows the quantile (50%).

ii) Low inflation. For the low inflation or deflation the quantile (20%) of the prediction of nominal
interest rate and the quantile (80%) of the real interest rate is used.

iii) Low nominal interest rates. Here the quantile (10%) for the prediction of the nominal interest
rate is observed together with the quantile (50%) of the real interest rate.

When deriving the funding ratio of a pension fund portfolio one needs to give an asset allocation
of this portfolio. The asset allocation that is used in the remaining of this section is shown in Figure
7.1.

7.2 Funding ratio in stress scenarios

When studying the impact of the stress scenarios on the funding ratio also the base case is included,
which has the belief that the real and nominal interest rate both follow the quantile (50%) of our
forecasts. In the case of the representative yield curve shocks this base case helps us to better under-
stand the impact of such a yield curve shock on the funding ratio. Observe that the yield curve shock
method is applied to both real and nominal interest rate simultaneously. One could also study the
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Figure 7.1: General allocation pension fund

impact on the funding ratio when coupling the yield curve shocks, e.g. when the historical method is
applied to the real interest rate and the PCA method is applied to the nominal interest rate. However,
this is not studied here.

Figure 7.2 shows the funding ratio when applying the different yield curve shocks. It can be seen
that the parallel shift of 2 percent gives the lowest initial funding ratio. The base case without applying
any yield curve shocks gives the highest initial funding ratio. Note that for both the standardize factor
and the PCA method this was beforehand not clear since the nominal short term interest rate increases
in these methods. From this figure it can be concluded that besides the parallel shift the other two
methods give reasonable yield curve shocks. Moreover, the base case scenario for these methods gives
a slightly increasing forecast of the funding ratio over time.

Also it can be seen that at year 4 an increase in funding ratio is observed, this is due to a pension
reduction rule from the nFTK. The pension rule states that every pension fund that is for 5 consecutive
years below the funding ratio of 105 percent needs to decrease the pension of the pensioners, thus
decreasing the liability side, in such a way that the funding ratio increases to 105 percent.

After studying the representative yield curve shocks, the impact of the stress scenarios when
calibrated to the two different methods is studied. Figure 7.3 depicts the funding ratio over time
of the base case when deriving stress scenarios according to Method 1 (last day optimization) and
Method 2 (log-likelihood approach). Again, in both of these methods the forecast of the nominal
interest rate is done by both the Vasicek and the Black Karasinski model.

Figure 7.3 depicts the funding ratio over time for the base case when calibrating the Vasicek model
according to the different methods and forecasting the nominal interest rate with both the Vasicek
and Black Karasinski model. When comparing the calibration methods it can be observed that for
method 1 a steep increase in the first year is observed but this flattens already after the first year.
This can be due to the specific yield curve structure of the last day, since this behavior is not observed
in the cases when calibrating according to method 2. When comparing the Vasicek and the Black
Karasinski model to forecast the nominal interest rate not a consistent behavior can be seen. It is
remarkable that the base case where the forecast nominal interest rate is done by the Vasicek model
and the calibration according to method 1 and the complete opposite case the same tail behavior can
be observed, namely a decreasing funding ratio.

Now, since both the impact of the representative yield curve shocks and the different calibration
methods on the funding ratio of a general pension fund portfolio are studied, let us proceed to study
the funding ratio of the stress scenarios mentioned in Section 7.1. For these stress scenarios the two
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Figure 7.2: Impact of the yield curve shocks on the funding ratio, where VS denotes that the Va-
sicek model is used for the forecast of the nominal interest rate and BK the Black Karasinski model,
PAD=standardized method, VEV=standardized factor method and PCA=principal component anal-
ysis

Figure 7.3: Stress scenarios comparison between using the Vasicek and the Black Karasinski model
for the nominal interest rate and calibrating the Vasicek model according to the different calibration
methods

factor Vasicek model is used to forecast the real interest rate and the one factor Black Karasinski
model is used to forecast the nominal interest rate, both calibrated to the yield curve according the
method 1. This does not imply that this setting is the best overall setting. These stress scenarios are
also compared to the standard scenarios Aon Hewitt used to calculate the funding ratio. Not all these
scenarios are given, only the quantiles (5%, 10%, 25%, 50%, 75%, 90%, 95%) are shown.

53 Department of Mathematics and Computer Science



7.2. FUNDING RATIO IN STRESS SCENARIOS

Figure 7.4: Stress scenarios in practice where the real interest rate is modelled with the Vasicek model
and the nominal interest with the Black Karasinski model

Figure 7.4 shows the stress scenarios over time. In this figure it can be seen that the low returns
on investment have the worst outcome regarding the funding ratio. Moreover, it can be observed
that this stress scenario for the inflation does not have a severe impact on the funding ratio. When
comparing our stress scenarios with the already known scenarios from Aon Hewitt, it can be seen that
our base case scenario lies almost perfectly on the median and that the other stress scenario lie below
the median. Note that here certain quantiles are taken for the stress scenario, see Section 7.1, but one
can adjust the severity of the stress scenarios by taking a lower quantile.
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Chapter 8

Conclusions and discussion

In this thesis we constructed a framework that derives stress scenarios for pension fund portfolios and
studied the impact of these stress scenarios on the funding ratio. In our approach historical daily data,
for different categories within a risk factor, from 2002 onward is obtained from Bloomberg to study the
distribution of the returns. This distribution is essential for capturing the dependency between and
within the risk factors. With both the distribution of the returns and the dependency, the predicted
daily returns share the same characteristics as the historical returns. Here, no forecast assumptions
were made. The most crucial assumption is that in times of a crisis the distribution of the returns of
the risk factors is the same as in normal times. To avoid making this assumption one possibility is to
only look at historical data from a crisis. However, in this case one should define a crisis and in this
thesis it was shown, in Chapter 3, that not all risk factors were affected in the same manner by a crisis.
For the distribution of the returns the skewed Student’s t-distribution was used. This assumption was
based on the Kolmogorov Smirnov test. However, for the daily returns of the inflation this test gave
an insignificant p-value. Observe, that it is not immediately clear what the consequences are to the
stress scenarios when taking another distribution for the returns. However, our two step approach and
the corresponding models should still be valid, but maybe with another copula function. To capture
the dependency, under the skewed Student’s t-distribution assumption of the returns, the t-copula was
used, which gave the highest log-likelihood out of several copula functions.

For the forecast of the first risk factor, i.e. the returns on investment, the autoregressive model
with lag 1 was used, see Chapter 4. Although this lag was significant for all categories within this
risk factor, the autocorrelation was low, i.e. approximately 0.1. As a consequence, there is a high
deviation when simulating different forecasts. Therefore, also the forecast of the other two risk factors
was studied.

The forecast of the second risk factor, i.e. inflation, was derived from the forecast of the real and
nominal interest rate. For the forecast of the real interest rate the one and two factor Vasicek short
rate model were studied. When calibrating both models to the historical yield curves it was observed
that the two factor model gave in most of the cases a better fit. When comparing the performance,
i.e. comparing the prediction of the model to the historical data, of both models it was observed that
the one factor predicted the real interest rate better. However, this was due to the larger deviation in
this prediction.

For the forecast of the nominal interest rate the Black Karasinski short rate model was studied. In
this model an analytic expression for the yield curve is impossible to derive, therefore an approximation
was used. Furthermore, the assumption was that this interest rate is non-negative which is also a
property of the Black Karasinski model. However, for the last two years negative short term nominal
interest rate were observed. Therefore, also the performance of the Vasicek model was studied. When
comparing the performance of both models it was observed that the Vasicek model predicted the
nominal interest rate better. However, in this model the deviation of the prediction was larger which
also resulted in highly unlikely predictions.

To conclude, with both the dependency and the forecast stress scenarios with a certain belief can
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be derived. As an example the stress scenarios corresponding to the beliefs stated in Section 7.1 were
derived, and the impact on the funding ratio was studied. It was observed that the low returns on
the investments had the most severe impact. However, one could have different beliefs, which result
in different stress scenarios and thus a different impact on funding ratio.

When comparing our model to the direct stress scenario models from the literature, i.e. Section
1.4, a few differences can be observed. In our framework the funding ratio corresponding to the stress
scenario is not explicitly given but can be derived, see Chapter 7. This means that for a specific
scenario the impact of different asset allocations can be studied, which was not possible in the models
from literature.

One of the most important advantages of our model is that only stress scenarios, without an
explicit funding ratio, are derived. This means that the impact on the funding ratio for different
asset allocations can be studied. For Aon Hewitt this is of importance since now both the different
allocations as well as the impact of different stress scenario on the funding ratio of a pension fund
portfolio can be studied. Another advantage is that as an input one can give their own beliefs on the
risk factors, which come with certain plausibility. A disadvantage of our framework is that the stress
scenarios are highly dependent on the forecast models that are used. Due to the complexity of both
our stress scenario derivation model and the model Aon Hewitt uses to calculate the funding ratio
corresponding to these stress scenarios, it is not immediately clear what the influence on the funding
ratio is when violating one or more assumption stated throughout this thesis.

8.1 Further research

For further research different aspects of our framework, that could improve the stress scenarios, can
be studied. The first aspect is the distribution of the returns of the second risk factor, i.e. the
inflation. Here, the Skewed Student’s t-distribution was used, but the Kolmogorov Smirnov test gave
an insignificant p-value. For further research the fit of other distribution can be investigated. Note
that the definition of the returns, i.e. (2.1), influences this distribution, which means that taking a
different definition, e.g. absolute difference, could also improve the p-value.

Another aspect that could be improved is the forecast of the first risk factor, i.e. the return on
investment. In our model this forecast is done by means of an autoregressive model. Due to the low
autocorrelation in this model, there is high deviation between the forecasts. In future research one
could study other time series models, which give better forecasts with lower deviation. However, it
can also be the case that this risk factor is difficult to predict and that this is the autoregressive model
is best forecast model.

When comparing the yield curve calibration of the one factor and two factor Vasicek model it was
observed that the two factor model gave in almost all the cases the best fit. However, observe that
the one factor model is embedded in the two factor model. Therefore, it should be the case that this
two factor model gives always the best fit, which does not imply that this model also gives the better
prediction. In future research one could improve the optimization of the ordinary least squares, so
that the two factor model always calibrates better to the yield curve than the one factor model. Note
that this can also influence the performance of the two factor model.

In our current framework stress scenario without the confidence intervals are given. When deriving
the stress scenarios of interest to us multiple times, it was observed that the deviation of the risk factors
within the stress scenarios was not large. However, the influence of the difference to the funding ratio
is not studied. For further research one could extend our model to give multiple stress scenarios with
the same belief, from which the funding ratio could then be derived. With the funding ratio of all
these stress scenarios the confidence interval on the funding ratio can be derived.
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8.2 Recommendation to Aon Hewitt

The recommendations for Aon Hewitt are divided into two parts. First let us conclude the study of
the derivation of our stress scenarios. It was shown that the one factor Vasicek model could predict
the real interest rate with greater probability due to the higher deviation than the two factor Vasicek
model. The advantage of the two factor Vasicek on the other hand was that it could describe the yield
curve in most of the cases better.

For the forecast of the nominal interest rate the properties of the Black Karasinski model were
discussed. Especially the non-negative assumption raised the question if this model gives still the
best prediction, since nowadays negative short term nominal interest rates are observed. From our
performance study it became clear that the Black Karasinski overestimated the historical interest
rate and as a consequence the Vasicek model could predict this interest rate in more cases better.
One recommendation for improving the methods used at Aon Hewitt to determine the forecast of the
nominal interest rate in the scenarios is to further investigate the difference and performance of both
models.

For the recommendation of the impact of the stress scenarios on the funding ratio, note that it is
not possible to make one clear statement, since every stress scenario has a different impact on different
pension fund portfolios. However, one could view this whole thesis as a recommendation. With our
framework it is possible to identify the stress scenarios that have a weak or severe impact on the
funding ratio. Knowing this one could decide to change the asset allocation, looking at the correlation
in Table B.2, and make the pension fund portfolio more robust against this stress scenario. In this
case the stress scenarios give a recommendation for the allocation of a pension portfolio.
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Appendix A

Detailed overview literature

In this appendix the direct stress scenario selection method stated in Section 1.4.1 are further ex-
plained. Note that in contrary to the corresponding paper, here the models are explicitly applied to
a pension fund setting. Also the stress scenarios that are used at Aon Hewitt in the UK are given.

A.1 Stress scenario selected by empirical likelihood

Here the stress scenario selection studied in [27] is applied to a pension setting. The goal of this stress
scenario is to quantify the likelihood of the scenarios that lead to a specific threshold. This is called
reverse stress testing. From a pension viewpoint this could be the funding ratio that falls beneath the
funding deficit or shortfall. i.e. a funding ratio below 105 percent.

First let us introduce the same setting as in the paper. Let Z be a random d-dimensional vector
with probability density f on Rd. Here Z represents the market factors influencing a pension portfolio,
for example interest and inflation rate. Further, let (Z, FR) be the joint distribution of the market
factors and the pension funding ratio. Note that here the funding ratio can be deterministic function
of the market factors. Denote the conditional density of the market factors given the funding ratio
falling beneath fr by f(z|FR < fr). The goal is to find the most likely loss scenario, z∗(fr), that
lead to this threshold,

z∗(fr) = arg max
z∈Rd

f(z|FR < fr).

The first step to achieve this goal is to estimate the conditional mean E[Z|FR < fr]. Observe
that this is equivalent to estimating the unconditional mean of Z when only taking into account the
observations where FR < fr. Note that here the number of observations is of high importance when
estimating this unconditional mean. It is known that these observations come from a distribution
so simply taking the sample mean as an estimate would introduce an error. The authors use the
empirical likelihood (EL) method studied in [35] to overcome this problem. The optimization problem
boils down to,

max
w1,w2,...,wn

n∑
i=1

log(wi) subject to
n∑
i=1

wi = 1,
n∑
i=1

wizi = x,

where the candidate value x is given by,

R(x) = max

{
n∏
i=1

nwi :
n∑
i=1

wizi = x,
n∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, ..., n

}
.

With the set R(x), one can derive z̄(fr) which equals the x that maximizes this set. Observe, that
this method does not rely on the underlying distribution and therefore is non parametric. Another
option is to fit the joint distribution (Z, FR) and then derive the conditional mean analytically. The
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downside of this method is that one needs to fit the joint distribution and there is not a straightforward
method in general for this.

The second step is to perform a scaling correction for E[Z|FR < fr] to obtain z∗(fr). In [27,
Proposition 1] this scaling correction is given for different cases. The proposition is stated here for
completeness of this method.

Proposition 1 Suppose the distribution of Y = (Z, FR) is elliptical, i.e. Y = µ+AX with µ a vector
and A a matrix, with X either ERV(α, ν), for some α, ν > 0, or RV(ν), with ν > 1. Let z∗(fr) ∈ Rd
be the most likely loss scenario and let z̄(fr) ∈ Rd denote the conditional mean E[Z|FR < fr]. Then
there exists a positive scalar sequence kfr such that

z∗(fr) = kfrz̄(fr), and kfr → k as fr →∞,

where

• k = 1 for all ERV(α, ν) distributions;

• k = (ν − 1)/ν for all RV(ν) distributions, ν > 1.

Note that here RV(ν) refers to regularly varying and ERV(α, ν) to exponential regularly varying.
The random variable X is in the class RV(ν) if it holds that

lim
`→∞

P (X ≥ `x)

P (X ≥ `)
= x−ν ,

and X is in the class ERV(α, ν) if exp (Xα) is in the class RV(ν).
As a result of this model one gets the most likely loss scenario. However, this still does not give any

information about the actual probability of this event happening. A first implication of the plausibility
of this specific scenario could be one divided by the total number of observations. However, a drawback
is that here all the scenarios are assumed to be equally likely to happen. With this in mind we could
use this ratio as a lower bound and the ratio of the observations that satisfy FR < fr to the total
number of observations can function as an upper bound. Note that these bounds can differ in each
case and the length of the set that satisfy FR < fr is strongly dependent on the threshold fr.

Another disadvantage is the coverage studied in Table 1 in the paper of this model when using the
multivariate t distribution. Especially with small sample sizes, the coverage is low, which is exactly
the situation of interest.

Although, this model uses a non parametric method to estimate the unconditional mean, it does
assume the distribution to find the most likely loss scenario. This assumption restricts the method to
only be valid for the RV(ν) and ERV(α, ν) distribution. According to the authors from this paper,
the Student t-distribution with ν degrees of freedom often approximates the market data well, where
5 < ν < 7. The Student t-distribution belongs to the family of regularly varying distribution and
thus if the market data is indeed approximated well with this distribution, the restriction is not a
disadvantage of the model.
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A.2 Multivariate stress scenarios

This stress scenario is based on [31], where a stochastic risk model is considered, i.e. FR = g(Z),
where Z denotes the random vector of the market risk factors. The goal of this paper is to find the
least solvent likely event (LSLE), which is defined as

zLSLE = arg min {g(z) : z ∈ S} ,

where S is the closed set of all scenarios. This is called forward stress testing. The assumption of
a closed set of stress scenarios seems quite restrictive, but one can simply generate this set with an
arbitrary number of realizations of Z or use historical data to construct this set. As an intermediate
step let the half-space Hy,µ, for any y ∈ Rd and vector µ, be given by,

Hy,µ =
{
z ∈ Rd : g(z) ≤ µ′y

}
.

Now, the probability that Z lies in the half-space Hy,µ equals,

PZ (Hy,µ) = P
(
g(Z) ≤ µ′y

)
.

With this probability we can define the scenario set as,

Qα =
⋂
{Hy,µ : PZ (Hy,µ) ≥ α} .

In [31] the relation to depth sets is explained, and it is proved that the the set Qα and the depth
set Dα are equal if Z has a continuous probability density. Let the depth of the realization, z, of Z
be given by,

depth(z) = inf
µ:µ6=0

PZ(Hz,µ),

then it follows that the depth set is

Dα =
{
z ∈ Rd : depth(z) ≥ 1− α

}
=
⋂
{Hy,µ : PZ(Hy,µ > α)} .

For an additive function qα(µ) the value for z that maximizes g(z) on the set Qα is equal to zLSLE
and it holds that g(zLSLE) = qα(µ).

Under some mild conditions we can find an explicit expression for the LSLE. Let for example
g(z) = µ′z and Z ∼ Ed(µ,Σ, ψ), then it follows that

zLSLE = arg max
{
µ′z : (z − µ)′Σ−1(z − µ) ≤ k2

α

}
,

where k2
α corresponds to the α quantile of the distribution Z. This optimization problem can be solved

with the Kuhn-Tucker approach, which gives

zLSLE = µ+
Σµ√
µ′Σ−1µ

kα.

In this example we assumed that the risk factors only have a linear relation impact on the model
outcome. However, in reality it is known that all risk factors are mutual dependent. The most
simplistic model that captures this behavior is g(z) = µ+Az.

Using the half-space Hy,µ this method gives a quantitative measure for the plausibility. However,
when the assumptions of linear impacts and elliptical distribution of the risk factors is not made, the
computation of the zLSLE can be complicated. In this case numerical optimization can be a good
alternative.
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A.3 Multi-period stress testing

A major point of discussion is the plausibility of the stress scenarios. In [14] the Mahalanobis distance
is introduced as a measure to compare different scenarios on plausibility. Let the future scenario path
of the risk factors Z be a random vector with an elliptical distribution with mean µ = E [Z] and
covariance matrix A = Cov (Z), then the Mahalanobis distance is given by,

Maha(z) :=
√

(µ− z)TA−1(µ− z).

The general objective of this paper is to find the worst case scenario that has Mahalanobis distance
less or equal than τ . The set of these possible worst case scenarios is given by

Ellα := {z ∈ Z : Maha(z) ≤ τ} .

To find the worst case scenario one needs to have a measure that indicates the severity of this
scenario. In this paper the authors use the maximum loss over a finite horizon which equals

MaxLossS(L) := max
z∈S

E

[
t+m∑
s=t+1

∑
i

Li,t (ui, z) |It, z

]
,

where Li,t is the loss function. Note that this loss function can differ depending on the setting that is
studied.

Next, there are two methods described in [14] to obtain the worst case scenario, denoted by z̄.
The first method uses a Monte Carlo algorithm to solve the optimization problem given by,

z̄ := MaxLossEllτ (L) = max
z∈Ellτ

E

[
t+m∑
s=t+1

∑
i

Li,t (ui, z) |It, z

]
.

In the second method a linear approximation for the loss function is used to calculate the worst
case scenario analytically, from which follows that

z̄ = µ− τ√
lTAl

Al.

However, the second method is only valid when the risk factor is multivariate normal distributed, i.e.
Z ∼ N(µ,A).

A major drawback to this paper is that it requires the distribution of the future scenario path of
the risk factors as input. In reality this is often not a known distribution. Also, the performance of
stress scenarios is strongly dependent on the performance of these future scenario path distribution.
If this distribution does not represent the future of the risk factors, the stress scenarios are useless.

An advantage is that the Mahalanobis distance is used to quantify the plausibility of the scenarios
that are considered. Furthermore, in this method not only one time moment is considered but a finite
horizon.
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Appendix B

Descriptive statistics of the data

B.1 Distribution inflation and nominal interest rate

Figure B.1: The index value (left) and cumulative density (right) of the EUSWI15

Figure B.2: The index value (left) and cumulative distribution (right) of the EUSA15
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B.2 Kolmogorov-Smirnov test

To measure the goodness of fit of the skewed Student’s t-distribution we performed the Kolmogorov-
Smirnov (KS) test and used a bootstrapping algorithm. Observe that both methods do not test the
same hypothesis. When using the KS test the null hypothesis is H0 : Fdata = FST . Note that we test
that the data comes from a specific distribution. The test statistic, Dn, for this test equals

Dn = sup
x
|Fdata(x)− FST (x)|.

The p-value is calculated via the Kolmogorov distribution

1− α = P(K <
√
nDn) = 1− 2

∞∑
k=1

(−1)k−1e−2k2nD2
n .

In the bootstrap algorithm we do not test that the data is from a specific distribution but account
for the fact that the parameters have some uncertainty. In this bootstrap algorithm we use 1000
simulations.

Table B.1: Statistics for skewed Student’s t-distribution

Kolmogorov-Smirnov Bootstrap
Index Test statistic p-value p-value

MSDEWIN 0.0086 0.91565 0.311
MSDEEEMN 0.0062 0.99685 0.852
M1WOMVOL 0.0079 0.95548 0.429
LET7TREU 0.0073 0.95536 0.676
LS06TREU 0.0112 0.74681 0.094
LS08TREU 0.0105 0.81666 0.109
LEC7TREU 0.0134 0.45829 0.014
LF98TRUU 0.0113 0.68436 0.049
BCOMTR 0.0108 0.73433 0.076
JPEIDIVR 0.0173 0.18421 0
G4F0 0.0141 0.38016 0.003
LECRTREU 0.0103 0.78606 0.139
G250NLEU 0.0185 0.11429 0.009
REIT 0.0089 0.9 0.230
BXIIBEU3 - -

B.3 Copula descriptives

In Table B.2 the correlation parameter corresponding to the t-copula function is given for each risk
factor.
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B.4. DIFFERENT YIELD CURVE SHAPES

Figure B.3: Different forms of dependency captured with copulas all with the same correlation coeffi-
cient ρ = 0.8 and marginals which are standard normal distributed

B.4 Different yield curve shapes

Figure B.4: Yield curve of the one factor and two factor Vasicek model for the real interest rate
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Figure B.5: Yield curve of the one factor and two factor Vasicek model for the real interest rate

Figure B.6: Yield curve of the one factor and two factor Vasicek model for the real interest rate
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Appendix C

Performance of the short rate models

C.1 Yield curve performance

Table C.1: Performance yield curve calibration on two factor model with Method 2 for D = 5 (left)
and D = 10 (right)

α logL AICL BICL

0.1 97.262 12.85 8.55
0.3 83.753 13.14 8.85
0.5 70.285 13.49 9.2
0.7 56.039 13.95 9.65
0.9 44.053 14.43 10.13

α logL AICL BICL

0.1 195.138 11.45 14.78
0.3 183.383 11.58 14.91
0.5 129.911 12.27 15.59
0.7 108.153 12.63 15.96
0.9 84.571 13.12 16.45

C.2 Yield curve convergence

Table C.2: Number of simulations per setting for T = 5 and dt = 0.025

Parameter value nsim value nsim value nsim value nsim
base case

rreal,0 0 4500 0.1 7500 0.2 4500
α1 0.1 7000 0.2 7500 0.4 5250 0.8 2000
θ 0.1 4000 0.2 7500 0.4 3000* 0.8 2000*
σ1 0.05 3000* 0.1 7500 0.2 >25000

Table C.3: Number of simulations per setting for T = 10 and dt = 0.025

Parameter value nsim value nsim value nsim value nsim
base case

rreal,0 0 2000* 0.1 4000 0.2 11000
α1 0.1 >25000 0.2 4000 0.4 1000* 0.8 1000*
θ 0.1 9000 0.2 4000 0.4 1000* 0.8 500*
σ1 0.05 1000* 0.1 4000 0.2 20000
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C.3 Visualization Vasicek model

Figure C.1: Sample paths and the 95 percent prediction intervals of the one factor Vasicek model with
parameters calibrated to the yield curve with method 2

Figure C.2: Sample paths and the 95 percent prediction intervals of the two factor Vasicek model with
parameters calibrated to the yield curve with method 2
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C.4 Sensitivity analysis

Table C.4: Sensitivity performance one factor Vasicek model for parameter k when calibrating accord-
ing to Method 1

Index Number -5% 5%
Bound95 Bound50 Bound95 Bound50

r1
real,1 2391 2218 2019 2215 2019

r1
real,2 1634 1452 1267 1448 1261

r1
real,3 1476 1346 1068 1340 1052

r1
real,4 1323 1194 894 1193 861

r1
real,5 1171 1038 743 1032 707

Table C.5: Sensitivity performance one factor Vasicek model for parameter θ when calibrating accord-
ing to Method 1

Index Number -5% 5%
Bound95 Bound50 Bound95 Bound50

r1
real,1 2391 2218 2024 2217 2022

r1
real,2 1634 1448 1261 1447 1262

r1
real,3 1476 1343 1068 1340 1058

r1
real,4 1323 1196 892 1189 863

r1
real,5 1171 1036 749 1031 719

Table C.6: Sensitivity performance one factor Vasicek model for parameter σ when calibrating ac-
cording to Method 1

Index Number -5% 5%
Bound95 Bound50 Bound95 Bound50

r1
real(1) 2391 2210 2007 2223 2039
r1

real(2) 1634 1439 1252 1458 1270
r1

real(3) 1476 1334 1042 1354 1078
r1

real(4) 1323 1186 860 1204 905
r1

real(5) 1171 1023 701 1045 760
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