
 Eindhoven University of Technology

MASTER

Parallelise the NTT, you must
optimisations for the post-quantum key-exchange scheme NewHope-Simple for 64-BIT
processors and a quick excursion to the LWR problem

Weenink, T.J.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5378a8df-2d90-4829-9475-afad93e6c957

Parallelise the NTT, you must

Optimisations for the post-quantum key-exchange scheme
NewHope-Simple for 64-bit processors and a quick excursion

to the LWR problem

Tim Weenink

Industrial and Applied Mathematics
Coding Theory and Cryptology

Technische Universiteit Eindhoven

Supervisors

Benne de Weger (Technische Universiteit Eindhoven)
Peter Schwabe (Radboud Universiteit Nijmegen)

Antonio de la Piedra (Compumatica Secure Networks)

Second reader

Jesper Nederlof (Technische Universiteit Eindhoven)

August 4, 2017

mailto:t.j.weenink@student.tue.nl
https://www.tue.nl/studeren/tue-graduate-school/masteropleidingen/industrial-and-applied-mathematics/
https://www.win.tue.nl/cc/
https://www.tue.nl/

“Als ik zou willen dat je het begreep, had ik het
wel beter uitgelegd.”

— Johan Cruijff

Acknowledgements
First of all, I would like to thank Benne, Peter, and Antonio for providing
me with the excellent assistance during the entire period in which I have
carried out my master project. Thanks to Jesper for being the second reader.
Also, I’d like to thank Compumatice secure networks1 for giving me
the opportunity to be part of their company and for allowing me to use all
the material that was needed for this master project. Furthermore, I’d like
to thank everyone who has supported me during my study. Thanks to my
family and my friends. In particular, I’d like to thank the sweetest and most
beautiful girl in the world, Maartje.

1https://www.compumatica.com/

https://www.compumatica.com/
https://www.compumatica.com/

iv CONTENTS

Contents
1 Introduction 1

2 Preliminaries 3
2.1 Post-quantum cryptography 3

2.1.1 Quantum computers 3
2.1.2 Shor’s algorithm . 4

2.2 Lattices . 6
2.2.1 Ideal lattices . 8
2.2.2 Lattice problems . 8

2.2.2.1 Shortest vector problem (SVP) 9
2.2.2.2 Closest Vector Problem (CVP) 9
2.2.2.3 Hardness of the lattice problems 10

2.3 Ring-LWE . 11
2.3.1 The learning with errors problem 11
2.3.2 Learning With Errors over a Ring (RLWE) 13

2.4 NewHope . 15
2.4.1 The binomial distribution 16
2.4.2 FIPS202 . 17
2.4.3 Security of the NH(S) protocol 18

2.4.3.1 Man-in-the-middle-attacks 18
2.4.3.1.1 Passive attacks 18
2.4.3.1.2 Active attacks 18

2.4.3.2 Malicious server or client 19
2.4.3.2.1 Malicious Alice (server) 19
2.4.3.2.2 Malicious Bob (client) 19

2.4.4 Failure probability . 19
2.5 NewHope-Simple . 21

2.5.1 Failure probability . 22

3 The MIPS64 processor 24
3.1 MIPS64 architecture . 24
3.2 Instruction set . 25
3.3 Pipeline structure . 26
3.4 Measuring the number of cycles 26
3.5 Methodology . 27

4 Optimising NHS 28
4.1 Related work . 28
4.2 Reduction functions . 29

CONTENTS v

4.2.1 Montgomery reduction 29
4.2.1.1 Algorithm . 29
4.2.1.2 Implementation 30

4.2.2 Barrett reduction . 31
4.2.2.1 Algorithm . 32
4.2.2.2 Implementation 32

4.3 Number theoretic transform (NTT) 34
4.3.1 Fourier transforms . 34
4.3.2 Optimisation strategies 36

4.3.2.1 The naive way 38
4.3.2.2 The parallel method 38
4.3.2.3 Pendulum . 39
4.3.2.4 Blockwise method 40
4.3.2.5 Removing the dummy 40
4.3.2.6 From theory to practice 41
4.3.2.7 Reduction functions for 64-bit input 42

4.4 Other assembly optimisations 44
4.4.1 Unrolling the loops . 44
4.4.2 Binary multiplication 44
4.4.3 Compilation . 45

5 Adapting NHS to the LWR problem 46
5.1 The LWR problem . 46

5.1.1 Putting on the ring . 47
5.2 RLWR in practice . 48
5.3 Implementation . 49
5.4 Failure probability . 49
5.5 Security analysis . 52
5.6 Update August 4, 2017 . 53

6 Results 55
6.1 NTT optimisation in MIPS64 assembly 55

6.1.1 Analysis of the NTT layers 55
6.1.2 Performance of the proposes NTT optimisations 58
6.1.3 Impact of the NTT optimisations across the NHS pro-

tocol . 58
6.2 RLWR simulation . 61
6.3 Update August 4, 2017 . 64

7 Discussion 68
7.1 Update (August 4, 2017) . 68

vi CONTENTS

8 Future work 69

9 Conclusion 70

Appendices 77
A NHS 64-bit optimisation (in C) 77
B NHS optimisation in (MIPS64 assembly) 88
C NHS simulation based on RLWR (in Mathematica) 117

List of Figures
1 Part of a lattice in the 2-dimensional plane. 6
2 A basis of the lattice from Figure 1. 7
3 Fundamental parallelepiped of the lattice from Figure 1. . . . 7
4 Peikert’s KEM scheme based on RLWE. For the actual details,

we refer to [51]. 15
5 The original NH protocol [1]. Here ◦ denotes pointwise multi-

plication and every variable with a hat lives in the NTT domain. 16
6 The NHS protocol [2]. Here ◦ denotes pointwise multiplication

and every variable with a hat lives in the NTT domain. 21
7 A simplification of the NHS protocol. 22
8 Example of the pipeline structure in MIPS64. Every row rep-

resents an instruction, every column represents a clock cycle.
IF is fetching an instruction from memory, ID is decoding the
instruction and reading the registers, EX is executing the oper-
ation or calculating the address, MM is accessing an operand
in data memory, and WB is writing the results back into a
register. 27

9 Calculation of the FFT for a polynomial with 32 coefficients. . 37
10 The Gentleman-Sande butterfly of the coefficients ci and cj. . 38
11 A register of 64 bits containing 4 coefficients of 16 bits each. . 38
12 An example of the (theoretical) parallel method applied on

the first 8 coefficients of c. Each arrow denotes a butterfly
operation. 39

13 The way the coefficients are stored in 1 register. The 0-blocks
consist of 16 zeros and are reserved for the overflow bits of the
coefficients c0 and c1. 41

14 In the upper half we find 1-dimensional vectors, on a range
that is divided into p intervals of length q/p. These vectors
are mapped to their interval, which can be seen in the lower
half. 47

15 A simplified version of the modified NHS protocol, based on
the RLWR problem instead of the RLWE problem. Encoding
and decoding is done similarly to NHSEncode and NHSDecode,
but with bp/2c instead of bq/2c. 50

16 Modification of the RLWR version in Section 5.3. Encoding ν
is done using function NHSEncode from NHS [2]. 54

17 The results of the simulation using p = 20. 62
18 The results of the simulation using p = 16. 62
19 The results of the simulation using p = 12. 63

viii LIST OF FIGURES

20 The results of the simulation using p = 8. 63
21 Illustration of the distribution of the coefficients of εs for each

interval length. The corresponding variables µ, σ, min, and
max can be found in Table 12. 65

22 The distribution of the coefficients of εs, with mean µ = −3.81,
the standard deviation σ = 2, 517.64, min = −11, 154, and
max = 12, 092. 66

List of Tables
1 The available registers in the MIPS64 architecture. 25
2 Example: binary multiplication of 5 (101) and 12 (1100). . . . 45
3 The number of cycles needed to perform a layer per code. . . . 57
4 The reduction in cycles using the optimised assembly code

compared to every C implementation. 58
5 The number of cycles that are needed to perform the entire

protocol, only one party, or only one function, using 4 different
flags. 59

6 Number of cycles needed to perform (a part of) the NHS pro-
tocol, using ntt.c. 59

7 Number of cycles needed to perform (a part of) the NHS pro-
tocol, using ntt parallel.c. 59

8 Number of cycles needed to perform (a part of) the NHS pro-
tocol, using the MIPS64 assembly optimisation. 60

9 Measurements of the entire NHS protocol. 60
10 Number of mismatches of ν and ν ′ for different choices of p,

using N = 500. 61
11 Number of mismatches ν and ν ′ for different choices of p, using

N = 1, 000. 61
12 The variables that correspond to the distributions shown in

Figure 21. 66

List of abbreviations (LOA)

ALU Arithmetic Logic Unit
AVX Advanced Vector Extensions
BCNS Bos Costello Naehrig Stebila
BKZ Block Korkin-Zolotarev
CISC Complex Instruction Set Computer
CPI Cycles Per Instruction
CVP Closest Vector Problem
DFT Discrete Fourier Transform
DSP Digital Signal Processing
FFT Fast Fourier Transform
FIPS Federal Information Processing Standard
GCD Greatest Common Divisor
ISA Instruction Set Architecture
KEM Key Encapsulation Mechanism
LWE Learning With Errors
LWR Learning With Rounding
MIPS Microprocessor with Interlocked Pipeline Stages
NH NewHope
NHS NewHope-Simple
NIST National Institute of Standards and Technology
NTT Number Theoretic Transform
RISC Reduced Instruction Set Computer
RLWE Ring-Learning With Errors
RLWR Ring-Learning With Rounding
SHA Secure Hash Algorithm
SIMD Single Instruction Multiple Data
SVP Shortest Vector Problem

Introduction 1

1 Introduction
Ever since the time of the ancient Greeks, people have been using cryp-
tography in an attempt to communicate in a secure way [10]. Because of
the increasing resistance against these security measures, the cryptographic
methods have been developed in an increasingly advanced way. The arrival
of the computer has given the opportunity to make the encryption and de-
cryption protocols even more advanced, resulting in systems that are used
nowadays to provide secure communication protocols, such as RSA [11], a
protocol that relies on the hardness of factoring large numbers. In 1994 the
American mathematician Peter Shor published an algorithm that is able to
factor a large number into its prime factors in polynomial time, using a quan-
tum computer [12]. For a long time, people have thought that it would be
impossible to actually manufacture such a quantum computer, of which its
tremendous computing power comes from its ability to perform multiple op-
erations in parallel. Over the last few years, however, the quantum computer
has made a spectacular rise [13], threatening all classic secure communication
protocols. This is the reason that the field of post-quantum cryptography
has gained a lot of attention lately [14].

In this master thesis we study the post-quantum key exchange mechanism
NewHope-Simple (NHS) [2], show a way to speed up one of the proto-
col’s main functions on 64-bit processors with a factor of almost 25% (and
almost 40% on the MIPS64 architecture), and eventually propose a slight
modification to the NHS protocol using the learning with rounding (LWR)
assumption.

In Chapter 2 we will introduce the definitions that are necessary to under-
stand the protocol and the underlying problems. We first describe the idea
behind a quantum computer, together with Shor’s algorithm. Afterwards,
we introduce the concept of lattices and the corresponding problems that are
supposedly difficult to solve, even with a quantum computer. Finally, we will
describe the NewHope (NH) protocol and the NHS protocol. In Chapter 3
we describe the processor that we have worked with during the course of
this project. In Chapter 4 we discuss the strategies that have been used in
order to optimise the protocol on our processor (and for 64-bit processors in
general). Chapter 5 describes the LWR problem, the way it can be imple-
mented in NHS instead of learning with errors (LWE), and the new failure
probability and security analysis that it involves. The comparison between
the original method and the optimised method can be found in Chapter 6.
The discussion, proposals for future work related to this research, and the

2 Introduction

conclusion can be found in chapters 7, 8, and 9 respectively.

Preliminaries 3

2 Preliminaries
In this chapter, we will make the reader familiar with the theorems and defi-
nitions that are needed to understand the problem and the goal of this thesis.
In Section 2.1, we will introduce post-quantum cryptography by looking at
quantum computers and Shor’s algorithm. In Section 2.2 one can find back-
ground information on the lattices, the corresponding problems and their
supposed hardness for quantum computers. Section 2.3 first explains the
learning with errors problem and then extends this problem to the Ring-
LWE (RLWE) variant. Finally, in Section 2.4 we introduce the post-quantum
ephemeral key exchange protocol NH and its simplified version, NHS.

2.1 Post-quantum cryptography
In order to understand the idea of post-quantum cryptography, we will have
to introduce the concept of quantum computers and their threat to the ex-
isting classical crypto.

2.1.1 Quantum computers

Today’s computers are based on classical physics. Their memories consist of
bits, the contraction of binary and digit, which has only 2 possible states:
either 0 or 1. In most computing devices, such a bit is represented by an elec-
trical voltage or current pulse. In 1982 the physicist Richard Feynman came
up with the idea of using the effects of quantum mechanics in a computer, the
so-called quantum computer, instead of using the classical mechanics [16].It
makes use of qubits, short for quantum bits, which have a very remarkable
property. Besides of the existence in the states 0 and 1, it can also be in a
superposition of both of these classical states. Say we have a physical system
that can be in N different, mutually exclusive states. Following a notation
designed especially for quantum states by Paul Dirac, the Dirac notation, we
call these states |1〉 , |2〉 , . . . , |N〉. A quantum state |φ〉 is a superposition of
these classical states:

|φ〉 = α1 |1〉+ α2 |2〉+ · · ·+ αN |N〉 , (1)

where αi is called the amplitude of |i〉 in |φ〉. A system in quantum state |φ〉
is in state |i〉 with (probability) amplitude αi, from which it follows that it is
simultaneously in all classical states [17]. For example, a single qubit can be
in a superposition of the 2 classical states 0 and 1. Likewise, a pair of qubits
can be in any superposition of 4 classical states. If we continue this line of
reasoning, we find that n qubits can be in all corresponding 2n classical states

4 Preliminaries

simultaneously, whereas a classical computer can only be in 1 of these states
at the same time. Combining this with other quantum-mechanical effects,
such as interference and entanglement, we can build circuits with which we
can compute multiple states in parallel [17].

2.1.2 Shor’s algorithm

In 1994, the American mathematician Peter Shor published an algorithm
for quantum computers that is able to find a factor of a composite number
N that runs in a time polynomial in the input length logN [12]. Shor’s
algorithm goes as follows: For an odd composite input number N that has to
be factor(is)ed, choose a random number x < N , such that they are coprime
(otherwise we would have found a factor of N already). Next, compute xi
(mod N) for i = 2 (because 0 and 1 are trivial) until we find some r such xr
(mod N) = 1 = x0 (mod N). This r is called the period. On page 29 of [17]
it is shown that with probability ≥ 1/2, r is even and xr/2 + 1 and xr/2 − 1
are not multiples of N . If that is indeed the case, we find

xr = 1 (mod N) (2)
(xr/2)2 = 1 (mod N) (3)

(xr/2 + 1)(xr/2 − 1) = 0 (mod N) (4)
(xr/2 + 1)(xr/2 − 1) = kN for some k. (5)

Note that both terms are positive, so the k we find is positive as well. Also,
because neither of the terms is not a multiple of N , both will share a non-
trivial factor with N . In order to find this, simply compute the GCD of both
terms with N . Should this have no useful factor as result, just pick another
value for x and repeat until the factors have been found.

Now this might still seem as a computationally expensive algorithm at first
sight. However, Shor found that finding the period r can be done efficiently
with a quantum computer. In order to do so, he makes use of the quan-
tum Fourier transform which runs extremely fast on a quantum computer.
Another trick Shor uses is to apply repeated squaring in order to calculate
modular exponentiation [17].

Using his algorithm, Shor showed that the supposedly hard problem of fac-
toring large numbers is not as complex as it is for the classical computer, of
which the latter formed the security basis of many well-known and widely
used cryptosytems such as RSA. Combining this with the rise of the quantum
computer, it it easy to understand that there is a huge need for new kinds of

Preliminaries 5

cryptosystems that resistant to quantum computer attacks. Of course, it can
never be fully resistant to such a quantum computer attack, but it should be
as hard for a quantum computer as it is for a classical computer. One kind
of these so-called post-quantum cryptography systems is based on lattices.
More information on this can be found in the next section.

6 Preliminaries

2.2 Lattices
An n-dimensional lattice L is a discrete additive subgroup of Rn. In order
for L to be an additive subgroup of Rn, it must contain the identity element
0 ∈ Rn, and ∀x, y ∈ L it must hold that their sum x + y ∈ L as well.
Combining these two requirements, it follows that −x ∈ L as well.
Furthermore, discreteness means that for every lattice point x ∈ L, one can
construct an open ball B with radius ε > 0 around x, denoted as B(x, ε),
such that B(x, ε) ∩ L = {x}. In other words, x is the only lattice point in
a certain region around it. A simple example of a lattice can be found in
Figure 1. The following definitions follow Peikert’s notation.[19]

Figure 1: Part of a lattice in the 2-dimensional plane.

Definition 2.1. Lattice basis.
A basis B = {b1, . . . , bn} ⊂ Rn of a lattice L is a set of linearly independent
vectors whose integer linear combinations generate the lattice

L = L(B) :=
{ n∑
i=1

zibi : zi ∈ Z
}
. (6)

Note that such a basis is not unique, which forms the essential property
of lattice-based cryptography. An example of a lattice basis is depicted in
Figure 2.

Definition 2.2. Fundamental parallelepiped.
A lattice is some kind of structure of the fundamental parallelepiped of its ba-
sis, that keeps repeating in all n dimensions. The fundamental parallelepiped

Preliminaries 7

Figure 2: A basis of the lattice from Figure 1.

is defined as the parallelepiped that is spanned by the basis vectors, i.e.

P(B) := B[0, 1)n =
{ n∑
i=1

cibi : ci ∈ [0, 1)n
}
. (7)

Constructing this area in 2 dimensions can be done by adding the tail
of vector b1 to the head of vector b2 and vice versa. This is illustrated in
Figure 3.

Figure 3: Fundamental parallelepiped of the lattice from Figure 1.

Note that this fundamental parallelepiped can also be constructed as the
set of points that lie at most “half a vector” away from the origin, i.e.

P(B) := B[−1
2 ,

1
2)n =

{ n∑
i=1

cibi : ci ∈ [−1
2 ,

1
2)n

}
. (8)

8 Preliminaries

This is only a (−1
2 ,−

1
2)-translation of the previous definition. The volume

of a lattice L is det(L) = det|B| = vol(P(B)) for basis B.

Definition 2.3. Minimum distance of a lattice.
There is a vector v ∈ L that has minimal length. (Note that this vector is
not unique). Then the minimum distance of a lattice L is defined as follows.
The minimum distance of a lattice L is

λ1(L) := min
v∈L\v

||v|| = min
x,y∈L,x 6=y

||x− y||, (9)

where ||x|| denotes the length of the vector x, calculated as the Euclidean
distance.

Minkowski showed that for any lattice L, we have that λ1(L) ≤
√
ndet(L)1/n.

For the proof, we refer to Peikert’s lecture notes [19].

2.2.1 Ideal lattices

Both the NH protocol and the NHS protocol, that has been researched during
this project, are based on the hardness of ideal lattice problems [1, 2]. The
definition, given by Lyubashevsky et al. is as follows [15].

Definition 2.4. Ideal lattice.
Let f ∈ Z[x] be a monic polynomial of degree n. Consider the quotient ring
Z[x]/〈f〉. An ideal lattice is an integer lattice L(B) ⊆ Zn such that B = {g
(mod f) : g ∈ I} for some ideal I ⊆ Z[x]/〈f〉.

When f is a monic, irreducible integer polynomial of degree n, every ideal
I of the ring Z[x]/〈f〉 is isomorphic to a full-rank lattice in Zn. This lemma
is also used in the proofs on the hardness.

Ideal lattices can also used in fully homomorphic encryption schemes. In
2009, Craig Gentry proposed the first solution of constructing such a scheme,
based on ideal lattices [40].

2.2.2 Lattice problems

One of the questions that arise from the definitions of lattices is if there is a
way to compute the minimum distance of a certain lattice or, even something
that seems even more interesting, can we find a vector that actually has this
minimum distance? This is known as the shortest vector problem (SVP). In
the description of these problems, we use the notation from [20].

Preliminaries 9

2.2.2.1 Shortest vector problem (SVP)
The SVP has 2 main variants: the search version and the decision version.

Definition 2.5. Shortest vector problem (search version).
Given a lattice basis B, find a vector v ∈ L (not equal to the all-zero vector)
that suffices ||v|| = λ1(L(B)).

This search version can also be extended to the approximate search ver-
sion, which aims at finding a vector that has length γλ1(L(B)) for some
constant γ.

Definition 2.6. Shortest vector problem (decision version).
Given a lattice basisB and some positive d ∈ R, determine whether λ1(L(B)) ≤
d or λ1(L(B)) > d.

The decision version is also known as GapSVP. Note that this function
can also be extended to the approximate version, by simply adding the norm
with a constant γ.

2.2.2.2 Closest Vector Problem (CVP)
The closest vector problem (CVP) is quite similar to the SVP we saw in the
previous paragraph [55].

Definition 2.7. Closest vector problem (search version).
Given a non-zero vector v and a lattice basis B, find the lattice point z
∈ L(B) that is closest to v. That is, try to find the lattice point z that has
distance

dist(v,L(B)) = min
z∈L(B)

dist(v, z) (10)

from v.

The decision version of CVP, known as GapCVP, is not about finding the
actual closest lattice point.

Definition 2.8. Closest vector problem (decision version).
Given a non-zero vector v and a lattice basis B, determine whether or not
there is a lattice point whithin a certain given distance d from v.

Both version can also be approximated with a constant α, scaling the
original problem with α.

10 Preliminaries

2.2.2.3 Hardness of the lattice problems Problems would not be
problems if they were easy to solve. In this section, we will show the difficulty
of the previously mentioned lattice problems, together with some algorithms
that can break these problems down.

The first conjecture of the hardness of a lattice problems dates from 1981,
when Van Emde Boas proposed the conjecture that GapSVP belongs to the
NP-hard problems [41]. In the same paper, he proved that the GapCVP be-
longs to the NP-hard problems. Almost 2 decades later Ajtai proved that Van
Emde Boas’ conjecture for the GapSVP holds for randomised reductions [42].
The approximation version of GapSVP, GapSVPα, is not NP-hard, however.
Lenstra et al. introduced their famous LLL-algorithm, that, given a basis B
with n-dimensional integer coordinates for a lattice L, returns a short, nearly
orthogonal lattice basis in time O(d5n log3 b′), where d is the number of basis
vectors and b′ is the length of the vector with the largest Euclidean distance
to the origin [43]. This means that it is possible to approximate GapSVPα in
polynomial time within a factor α = O((2√

3)n), which is enormous for the pa-
rameters chosen in the NH(S) protocol. The idea behind the LLL-algorithm
is to take the basis closest to the Gram-Schmidt vectors, improve the Gram-
Schmidt vectors by changing their order. In 2001 Micciancio proved that
the GapSVPα stays NP-hard for α ≤

√
2 [44]. Goldreich et al. showed that

any algorithm that can efficiently approximate GapCVPα can also efficiently
approximate GapSVPα [45]. The other direction is not known. Micciancio
and Feige also showed that GapCVPα stays NP-hard for α <

√
5
3 [46].

Another famous lattice basis reduction algorithms is the block Korkin-Zolotarev
(BKZ) algorithm, which basically reduces a lattice basis using an SVP oracle
in a smaller dimension b [47, 1]. The authors of NH prove in Section 6.1 of
their paper that this algorithm cannot solve the underlying lattice problems.

Preliminaries 11

2.3 Ring-LWE
In this section we introduce the LWE problem, a famous lattice problem.
Later, we will also discuss the LWE problem over a polynomial ring, which
is known as the RLWE problem.

2.3.1 The learning with errors problem

The LWE problem was introduced by Oded Regev in 2005 [3]. It is a problem
in machine learning, the area of computer science closely related to artificial
intelligence, that is gaining much popularity lately. In his paper, Regev also
gives a quantum proof that solving the LWE problem also implies an effi-
cient algorithm to solve GapSVPα for α = n

√
n. Put differently, if one can

efficiently solve LWE for Znq on the average, then one can quantum-efficiently
find short vectors in every n-dimensional lattice [3, 48].

Just like in the other lattice problems, the LWE problem can be split into
multiple variants. The search version of the problem is as follows.

Definition 2.9. LWE (search version).
Given a function f : Znq → Zq that maps an n-dimensional vector x to a
1-dimensional vector y: f(x) = y. This function f is defined as taking the
inner product of x with some fixed vector s ∈ Znq and then adding a certain
noise e, generated by a specific probability distribution, to it. You are given
a number of samples of these pairs (x, y) ∈ (Znq ,Zq). Deduce the vector s
from these samples.

An example of the search version, given by Regev in [21] is

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod 17) (11)
13s1 + 14s2 + 14s3 + 2s4 ≈ 16 (mod 17) (12)
6s1 + 10s2 + 13s3 + 1s4 ≈ 3 (mod 17) (13)

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod 17) (14)
9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod 17) (15)
3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod 17) (16)

... (17)
6s1 + 7s2 + 16s3 + 2s4 ≈ 3 (mod 17). (18)

This system of equations would have been easy to solve with Gaussian if
the equations would have been exact. Instead, because of the (small) error

12 Preliminaries

that has been added to every equation, solving the system of equations be-
comes a lot harder. Note that the solution to this problem is s = (0, 13, 9, 11).

Besides, there is also a decision variant of the LWE problem:

Definition 2.10. LWE (decision version).
Given a number of samples, distinguish the ones that have been generated
by f from uniformly random samples.

Regev showed that the search version and the decision version are equiv-
alent when q is bounded by some polynomial in n [3].

Going from search to decision is the most obvious reduction. Suppose we
are given some kind of algorithm that can solve the search version of the
problem. Now our challenge is to find out whether a range of pairs (xi, yi)
are either input-output pairs of a certain function f , or uniformly randomly
generated pairs. Feed the samples to the algorithm we use for the search
version. If the output is a vector a for which all sample pairs hold, we know
that they do not come from a uniformly random distribution. In case the
samples are random, the algorithm will not be able to give an output vector
a, so we can conclude that they are random.

Using the decision variant to retrieve the result of the search version goes
a bit slower, but is still fairly easy to understand. Starting with the first
coordinate, we would like to see what influence on y adding some constant r
to the first coordinate of xi would have. Say the input vector xi represents
x1, . . . , xn for a certain i. Then

(x; y) = (x1, . . . , xn;
n∑
j=1

xjsj + e). (19)

Adding (r, 0, . . . , 0) to the input vector x would result in

(x̃; ỹ) = (x1 + r, x2 . . . , xn; (x1 + r)s1 +
n∑
j>1

xjsj + e) (20)

= (x1 + r, x2 . . . , xn; y + rs1). (21)

So we can make a guess k for s1 and send the request (x1+r, x2 . . . , xn; y+rk)
to the decision algorithm. If the algorithm tells us that the input pair indeed
matches a function f , we have found the first coefficient of our vector s and
we can repeat this trick for the next coefficient of s. In case our guess k was
incorrect, the decision algorithm will tell us that it comes from a uniformly

Preliminaries 13

random distribution and we have to try another value of k [21].

The LWE problem is not quite useful in practice, since the key size is rel-
atively very large. Because the secret vector needs to be multiplied with
an entire matrix before adding the noise, we basically need n coefficients of
this public matrix to get randomness for 1 position in the multiplied vector.
This can be solved quite easily, by taking the negacyclic convolution of the
public vector and the secret vector. This replaces the public matrix by a
public vector, but because of the negacyclic convolution, all the coefficients
are interconnected and thus the randomness is preserved. This is known as
the Ring-LWE problem and is described in the following subsection.

2.3.2 Learning With Errors over a Ring (RLWE)

The follow-up of LWE is specialised to polynomial rings over finite fields
and is called Learning With Errors over a Ring or Ring-Learning With Er-
rors (RLWE). Again, let Z be the ring of rational integers and let R =
Z[X]/(Φm(X)) be the ring of integers of the mth cyclotomic number field.
That is, Φm(X) ∈ Z[X] is the mth cyclotomic polynomial.

Definition 2.11. Cyclotomic polynomial.
The nth cyclotomic polynomial is the unique irreducible polynomial with
integer coefficients, which is a divisor of xn− 1 and is not a divisor of xk − 1
for any k < n. The roots of the cyclotomic polynomial are all nth primitive
roots of unity e2πik/n, where GCD(k, n) = 1 and k < n:

Φn(x) =
∏

1≤k≤n

gcd(k,n)=1

(
x− e2πik/n

)
(22)

In case n is a power of 2, the cyclotomic polynomial will simply consist
of the roots that correspond to the odd terms, since those are the only k’s
that are coprime to n:

Φn(x) =
∏

1≤k≤nodd

(
x− e2πik/n

)
(23)

=
(
x− e2πi1/n

) (
x− e2πi3/n

)
. . .
(
x− e2πi(n−1)/n

)
(24)

and since every pair of “mirrored” terms, i.e. the terms corresponding to
root i and root i+ n/2, cancel each other out, the result of this product will
be xn/2 + 1.

In our case, m is a power of 2, so Φm(X) = Xn + 1, where n is a power

14 Preliminaries

of 2 and m = 2n. We define Rq as R/qR ∼= Zq[X]/(Xn + 1), where Zq
represents the integers modulo q. Summarising, we see that we work with
polynomials in X modulo Xn+1 where every coefficient is reduced modulo q.

Lyubashevsky et al. showed in [15] that the solution to this problem can
be reduced to the supposedly NP-hard SVP in a lattice. Combining the lat-
ter with worst-case problems on ideal lattices being hard for polynomial-time
quantum algorithms forms the security of post-quantum cryptography based
on RLWE.

Preliminaries 15

2.4 NewHope
The protocol that we have investigated during this project is NHS, a sim-
plification of NH. These are post-quantum key-exchange schemes that are
based on older key-exchange schemes. We start in 2012, when Ding et al.
proposed a key encapsulation mechanism (KEM) that is based on the LWE
problem [49]. Later, Peikert later proposed a simpler scheme, that also had
better security claims than the scheme by Ding et al. [50]. This is based on
the classical reduction from certain variants of the shortest vector problem
to corresponding versions of the LWE problem, whereas first only a quan-
tum reduction was known. In [51], Peikert proposed a passively secure KEM
based on the RLWE problem. It makes use of a reconciliation mechanism in
order to make sure that Alice and Bob agree on the same key, which ensures
that no explicitly chosen key needs to be transmitted. The protocol can be
found in Figure 4.

Alice Bob

Generate a← Rq
Generate s, e← χ Generate s′, e′, e′′ ← χ

(Priv. key) s (Priv. key) t

(Pub. key) b = as+ e a, b (Pub. key) u = as′ + e′

v = bs′ + e′′

v̄ ← dbl(v)

Decaps(s, (u, v′)) u, v′ v′ = 〈v̄〉2

µ← rec(2us, v′) µ← bv̄e2

Figure 4: Peikert’s KEM scheme based on RLWE. For the actual details, we
refer to [51].

Bos et al. proposed the Bos Costello Naehrig Stebila (BCNS) protocol, based
on Peikert’s scheme, that ensures 128 bits of post-quantum security [22]. In
their protocol they choose to use lattices of dimension n = 1, 024, with
q = 232 − 1. Also, they sample their errors from a discrete Gaussian distri-
bution with parameter σ = 8

2π ≈ 3.2. The probability that Alice and Bob do
not agree on the same key after reconciliation is 2−131,072, which is extremely
small. One could say that this is maybe a bit too extreme.

16 Preliminaries

Instead, the authors of NH(S) have decided to settle for less. In their proto-
col, they choose to use a centered binomial distribution, which is a lot easier
to take samples from [1, 2]. Also, they transform the polynomials (using
the NTT) in order to speed up the multiplication [1, 2]. Every run of the
protocol, the seed a has to be refreshed to make sure that there can be no
backdoors or all-for-the-price-of-one-attacks. Also, the error reconciliation
is a slightly different from Peikert’s method. Compared to BCNS, the num-
ber of cycles needed to perform 1 run of the protocol is a factor 8 or 9 smaller.

The NH scheme, as described in the original NH paper (in [1]) can be found
in Figure 5.

Alice Bob

Generate seed ← {0, . . . , 255}32

â← Parse(SHAKE-128(seed))
Generate s, e← ψn16 Generate s′, e′, e′′ ← ψn16

(Priv. key) ŝ← NTT(s)
(Pub. key) b← â ◦ ŝ+ NTT(e)

ma = encodeA(seed,b̂) ma (b̂, seed)← decodeA(ma)

â← Parse(SHAKE-128(seed))
(Priv. key) t̂← NTT(s′)
(Pub. key) û = â ◦ t̂+ NTT(e′)
v ← NTT−1(b̂ ◦ t̂) + e′′

r ← HelpRec(v)

(û, r)← decodeB(mb) mb mb = encodeB(û, r)

v′ ← NTT−1(û ◦ ŝ)
ν ← Rec(v′, r) ν ← Rec(v, r)
µ← SHA3-256(ν) µ← SHA3-256(ν)

Figure 5: The original NH protocol [1]. Here ◦ denotes pointwise multiplica-
tion and every variable with a hat lives in the NTT domain.

2.4.1 The binomial distribution

One of the simplifications, and hence we can say improvements, with respect
to the BCNS protocol ([22]) is the change of distribution of the LWE secret

Preliminaries 17

and error from discrete Gaussians by the centered binomial distribution ψk,
k = 16. Not only is this distribution easier to implement, it is also protected
against timing attacks [1]. One may sample from ψk by computing

k∑
i=0

bi− b′i,
where bi, b′i ∈ {0, 1} are uniform independent bits. This means that every bit
follows a Bernoulli distribution (with probability P(bi = 1) = P(bi = 0) =
½). Suppose X is the sum of bi and Y is the sum of −b′i, i = 1, . . . , k, such
that

X + Y =
k∑
i=0

bi − b′i. (25)

Then X = b1 + · · · + bk is binomially distributed with parameters k (= 16)
and p (=½), with mean kp (= 8) and

var(X) = var(
k∑
i=0

bi)
bi i.i.d.=

k∑
i=0

var(bi) = kp(1− p) = k

4 . (26)

We know that Y = −b′1 − · · · − b′k = −(b′1 + · · · + b′k), which is binomially
distributed with mean −kp (= −8) and var(Y) = k

4 , following the same
reasoning as above. Since X and Y are independent, we see that the mean
µX+Y and the variance σ2

X+Y of their sum are simply given by µX + µY = 0
and σ2

X + σ2
Y = k

2 respectively.

The way the bits bi and b′i are generated in the code is as follows. First
of all, a random string t of length n with elements of 32 bits is generated us-
ing ChaCha20, a stream cipher by Bernstein [23]. Next, this string is shifted
j to the right, j = 0, . . . , 7, and bit 1, 3, 5 and 7 are added to string d, which
has length 32. Then a is given by the addition of the first and second byte of
d and b is given by the addition of the third and fourth byte. So a represents
the sequence of bi and b represents the sequence of b′i.

2.4.2 FIPS202

Another type of function that is often performed is the hash function from
the Keccak family [52]. This is a family of hash functions, meaning that
both the input as the output can vary in length. This family belongs to the
Federal Information Processing Standards (FIPS) of the National Institute
of Standards and Technology (NIST) by the American government [53]. The
Keccak family includes both SHA3-256 and SHAKE-128, which are used in
the NH(S) protocols.

18 Preliminaries

2.4.3 Security of the NH(S) protocol

NH is a passively secure scheme. That means that the information that is sent
from Alice to Bob can be intercepted eavesdropper Eve, without revealing
any information that is useful to Eve. Eve can execute a passive attack by
trying to retrieve information about the secrets from only the intercepted
information. An active attack would also allow Eve to modify the messages
that are sent from Alice to Bob and vice versa.

2.4.3.1 Man-in-the-middle-attacks

2.4.3.1.1 Passive attacks
Suppose that there is an eavesdropper, Eve, who intercepts the communi-
cation between Alice and Bob. This means that in the original protocol as
proposed in NHS she finds the values

ma = encodeA(seed,b̂), (27)

and
mb = encodeB(û, c̄). (28)

Assume that Eve also knows the functions decodeA, decodeB, Parse,
SHAKE-128, NTT, NTT−1, NHSEncode, NHSDecode, SHA3-256, NHSCompress
and NHSDecompress [1]. Using these functions, Eve can obtain the values
of seed, â, b̂, û, c̄, c′. But due to the closest vector problem, finding the pri-
vate keys s and s′ from the known variables is extremely hard. Note that it is
not possible either to obtain the shared secret ν just by eavesdropping. The
only place where ν is communicated is in c̄. But since s and t are unknown
to Eve, retrieving ν comes down to solving the closest vector problem.

2.4.3.1.2 Active attacks
Instead of acting as a passive eavesdropper, Eve can also try to manipulate
the variables that are sent between Alice and Bob. The most obvious way to
manipulate the communicated variables is by sending a seed that consists of
only zeroes, with the idea that Bob’s private key will only be the error vector
e′. However, Bob first uses SHAKE-128(seed) to obtain the basis â. This
means that Eve has to know the input vector such that its corresponding
output vector using SHAKE-128 is all zero, which is extremely unlikely (if
possible at all).

What’s more, Eve can try to send the same seed multiple times in order
to get a linear system of equations ui = ati + e′i. Note that this will not

Preliminaries 19

work when both ti and e′i are changed every round. When ti is the same in
every round, let’s say t, Eve can get a system ui = at+ e′i. Keeping in mind
that the ei are binomially distributed, and when i is large enough, the total
picture of all ui will be centered around at. Since Eve knows a, this means
she can also retrieve t. Note, however, that the amount of iterations i needed
to get to this result will trigger an alarm on Bob’s side.

Eve can also try to steal the shared secret ν by changing some variables.
ν is only sent from Bob to Alice, and it’s hidden in the variable c̄. Eve can
try to modify c̄ by modifying the variable b̂ that Alice sends to Bob. Still, c̄
makes use of t, e′′ and ν, which are all generated by Bob and thus unknown
to Eve. The only malicious act Eve can perform is alter c̄ such that Alice
and Bob will disagree on the shared secret ν.

2.4.3.2 Malicious server or client

2.4.3.2.1 Malicious Alice (server)
Alice knows that Bob uses b̂ in order to compute c, so that would be the
only entrance to t. When she would set b̄ as all ones, Bob’s c will look like
t+e′′k. Alice can use this when she knows e′′k, meaning that she can run the
protocol incorrectly first, followed by a successful protocol run. Note that t,
e′′ and k should be the same for both runs in order for Alice to steal t.

2.4.3.2.2 Malicious Bob (client)
Bob only receives information from Alice, so his only entrance to Alice’s
private key is running multiple protocol runs. Alice changes the seed every
time. Depending on whether or not Alice picks new values for s and e every
time, he can run the protocol a number of times to create a linear system of
equations and retrieve s.

2.4.4 Failure probability

The failure probability of the protocol is described in appendix D in [1]. It
focuses on the size of the errors that can occur in the computation of v′, i.e.
the size of et−e′s+e′′. Because all these variables s, t, e, e′, e′′ come from the
binomial distribution ψ16, centered around 0, it is said to be σ-subgaussian,
where σ =

√
8 [1]. Together with Lemma D.2, Lemma D.3 shows that

even after the multiplication of all polynomials, with high probability the
elements are small enough. Combining everything, Corollary D.4 concludes
that, except with probability at most 2−61, the error is at most 9,210, which

20 Preliminaries

is smaller than b3q/4c − 2. In Lemma C.3 it is shown that if this error is
smaller than (1 − 1/2r) · q − 2, the reconciliation mechanism will give the
same output for both v and v′. In NH, the r is chosen to be equal to 2 and
q = 12, 289, meaning that the error can be at most

(1− 1/22) · 12, 289− 2 = 3q/4− 2, (29)

which works for the distribution ψ16.

Preliminaries 21

2.5 NewHope-Simple
The simplified scheme, as described in NHS ([2]) can be found in Figure 6.
The main difference with NH is that the reconciliation is left out. Instead of

Alice Bob

Generate seed ← {0, . . . , 255}32

â← Parse(SHAKE-128(seed))
Generate s, e← ψn16 Generate s′, e′, e′′ ← ψn16

(Priv. key) ŝ← NTT(s)
(Pub. key) b← â ◦ ŝ+ NTT(e)

ma = encodeA(seed,b̂) ma (b̂, seed)← decodeA(ma)

â← Parse(SHAKE-128(seed))
(Priv. key) t̂← NTT(s′)
(Pub. key) û = â ◦ t̂+ NTT(e′)
ν ← {0, 1}256

ν ′ ← SHA3-256(ν)
k ← NHSEncode(ν ′)
c← NTT−1(b̂ ◦ t̂) + e′′ + k

r ← HelpRec(v)
c̄← NHSCompress(c)

(û, c̄)← decodeB(mb) mb mb = encodeB(û, c̄)

c′ ← NHSDecompress(c̄)
k′ = c′ −NTT−1(û ◦ ŝ)
ν ′ ← NHSDecode(k′)
µ← SHA3-256(ν ′) µ← SHA3-256(ν ′)

Figure 6: The NHS protocol [2]. Here ◦ denotes pointwise multiplication and
every variable with a hat lives in the NTT domain.

retrieving the shared secret from the high bits of v, by removing the noise
terms et− e′s+ e′′, and applying the reconciliation function to agree on ex-
actly the same key, we now generate a shared secret ν, encode 0 to 0 and 1
to bq/2c, repeat the resulting string of integers 4 times, and add it to our
message c. Alice computes k′, and if this is done correctly, this will be an
array of integers that are either around 0, which correspond to a 0 in the
shared secret, or around bq/2c, decoding to a 1. Note that we say around,
because there can be (small) differences in the computation. We can find

22 Preliminaries

the element i in the decoded bitstring ν ′ by adding the values at positions i,
256 + i, 512 + i and 768 + i in k′. If the sum is bigger than q, we put an 1
at position i in ν ′. Otherwise, this translates to a 0.

A simplified version of this protocol, i.e. a version where we only focus
on the core parts of the protocol, can be found in Figure 7.

Alice (server) Bob (client)

Generate a ∈ Znq , s, e← ψn16 Generate t, e′, e′′ ← ψn16

(Priv. key) s (Priv. key) t
(Pub. key) b = as+ e

b, a

(Pub. key) u = at+ e′

Generate ν ∈ {0, 1}256

k = Encode(ν)
c = bt+ e′′ + k

u, c

k′ = c− us
= bt+ e′′ + k − (at+ e′)s
= ast+ et+ e′′ + k − ats− e′s
= k + et+ e′′ − e′s
≈ k

Figure 7: A simplification of the NHS protocol.

2.5.1 Failure probability

The difference in failure probability compared to the NH protocol is entirely
dependent on the functions NHSCompress and NHSDecompress. In order to
decrease the message size, each coordinate of c, which needs blog2 qc+1 = 14
bits, is compressed to an integer in [0, 7], needing blog2 7c+ 1 = 3 bits. The
compression of an input value x ∈ [0, q−1] works as follows. First, x is divided
by q, such that x ∈ [0, 1). Now, we multiply with 8, such that the output is
in [0, 8). After this, the value is rounded to the nearest integer. This implies

Preliminaries 23

that values exactly in the middle, i.e. values j + 1
2 , j = 0, . . . , 7, are rounded

up. This implies that the values in [0, 0.5) are rounded to 0 and the values in
[7.5, 8) are rounded to 8. In order to make NHSCompress uniform, we apply
(mod 8) at the end, to map 8 to 0. Essentially, we divide the range [0, q− 1]
into 8 intervals and simply tell in which of these interval the input coordinate
lies. The decompression function tries to translate the intervals back to the
original value by a multiplication with q/p. Note that this translates back
to the centre of the intervals. This implies that the size of the compression
error is at most half the size of an interval, so d1

2 ·
q
8e = d q16e. Combined with

Corollary D.4 [1], we see that the maximum error is, except with probability
at most 2−61, equal to 9, 210 + 4 · dq/16e = 9, 210 + 4 · 769 = 12, 286, which
is smaller than q.

In this chapter, we have described how the NHS protocol works, including
all background information that is necessary. Furthermore, we have shown
why it is passively secure and why it only fails with probability 2−61. In
Chapter 3, we will introduce the reader to the processor that has been used
in this thesis to run, and optimise, the NHS protocol on. The properties
of the processor are described and in Chapter 4 we describe optimisation
techniques, based on these properties.

24 The MIPS64 processor

3 The MIPS64 processor
In this chapter we describe the processor that has been used during the course
of this thesis. In Section 3.1 we give a short introduction to the processor’s
architecture. The concept of instructions is explained in Section 3.2. The
way the instructions are handled on the processor is dealt with in Section 3.3.
In Section 3.4 we explain how we can measure the number of cycles that are
needed to perform a script. Our methodology is described in Section 3.5.

3.1 MIPS64 architecture
The processor that has been used during the course of this research is a
MIPS64 Release 2 processor [5]. MIPS is a reduced instruction set computer
(RISC) instruction set architecture (ISA) that has a set of attributes which
gives the possibility of reducing the cycles per instruction (CPI) compared
to a complex instruction set computer (CISC) [6]. A number of these in-
structions are described in Section 3.2. There are also several extensions to
the ISA, such as the MIPS digital signal processing (DSP) [56], which will
provide better arithmetic, and single instruction, multiple data (SIMD) [57],
which can perform arithmetic operations more easily in parallel. In the re-
lease version that we have used during this project, these extensions were not
available. However, we propose a SIMD approach in one part of NHS (the
NTT) in Section 4.3.2.2.

During the 80’s and 90’s, MIPS processors have been used in personal, work-
station and server computers by many companies. Also, MIPS is used in
video game consoles, such as the Nintendo 64 and a range of Sony’s PlaySta-
tions, and in the Tesla Model S [58].

MIPS64 makes use of 32 different registers, each of which is specified accord-
ing to its intended purpose. The table with all available registers, together
with their name and function, can be found in Table 1 and in [8].

Each of these registers contains 64 bits, which can contain one or multi-
ple variables. For example, it can contain one doubleword of 64 bits, 2 words
of 32 bits each, 4 halfwords of 16 bits each, or 8 bytes of 8 bits each. These
bitstrings can be stored in (and loaded from) memory. However, these load
and store instructions turn out to be cycle-consuming, which is what we have
to keep in mind when we try to optimise (parts of) the protocol. In order to
reduce the amount of cycles, we want to use as many registers as possible to
do arithmetic operations with. Note that some of the registers, such as $at,

The MIPS64 processor 25

Name Number Usage
$zero $0 Always 0
$at $1 Reserved for assembler
$v0 - $v1 $2 - $3 Stores results
$a0 - $a3 $4 - $7 Stores arguments
$t0 - $t7 $8 - $15 Temporaries, not saved
$s0 - $s7 $16 - $23 Contents saved for use later
$t8 - $t9 $24 - $25 More temporaries, not saved
$k0 - $k1 $26 - $27 Reserved by operating system
$gp $28 Global pointer
$sp $29 Stack pointer
$fp $30 Frame pointer
$ra $31 Return address

Table 1: The available registers in the MIPS64 architecture.

$k0, and $k1, are reserved for specific purposes and can thus not be used in
order to deal with calculations with variables. Furthermore, registers $zero
and $sp cannot be modified, which leaves us with 27 registers to work with.

3.2 Instruction set
We would like to write code that can run on the MIPS64 processor. There-
fore, we need to introduce the MIPS64 assembly language. This is a very
low-level programming language, meaning that it is close to the machine
language. For example, we can only apply operations on the registers that
have been described in Table 1, instead of declaring variables and using them
for computations such as in higher-level languages like C, Python, and Java.
Furthermore, the number of instructions that we can use is quite limited.
The entire instruction set for MIPS64 can be found in [7]. Each of these
instructions is applied on at least 1 register. We can divide the instructions
that are needed in this thesis into 5 categories:

First of all, we have the loads and stores. These instructions can load or
store a byte/halfword/word/doubleword from or to a specific address in the
memory. For example, the instruction lh $t8, 0($a0) loads the first half-
word starting at position 0 of the input argument $a0’s address into register
$t8. The offset, in this case equal to 0, denotes with how many bytes the
address has to be shifted to the right in order to find the starting address.

26 The MIPS64 processor

The second category covers all the ALU instructions. This includes a range
of instructions, from loading immediates into variables with li to instruction
on 2 registers, such as addition, subtraction, AND, OR, and XOR. For ex-
ample, the instruction xor $t2, $t0, $t1 computes the XOR of the words
in $t0 and $t1, and stores the result in $t2. Note that some of these ALU
instructions can also handle operations on doublewords. These instructions
start with D, followed by the instruction name of the 32-bit equivalent. An
example of this would be the instruction DADD, the addition of 2 doublewords.

Another category of which we use the instructions contains shiftings. Using
SLL $t9, 16 for example, we shift the bits in register $t9 with 16 positions
to the left. Note that this changes the register $t9 permanently. Shifting
an entire address can be done by adding the offset to the start of the address.

Multiplications and divisions have their own category. There is a clear dis-
tinction between multiplying or dividing signed integers and unsigned inte-
gers. In case we would like to use the latter, we simply add a U at the end
of the MULT or DIV instruction.

The last category contains jumps and branches, which are necessary in loop
environments. For example, the instruction BLTZ check whether or not the
counter of a loop is less than or equal to zero. If not, we can decrement the
counter with 1 and jump back to the start of the loop. Otherwise, if the final
iteration is performed, it simply continues with the remainder of the code.

3.3 Pipeline structure
The MIPS64 processor is designed to be efficient. One of the methods that
improve this efficiency is the pipeline structure that it uses in order to deal
with multiple operations at a time. Instead of waiting for an instruction to
finish in order to start with the new one, it is also possible to start the second
instruction while the first one is still running. An example of this idea, where
4 words are being loaded, is depicted in Figure 8 [24].

3.4 Measuring the number of cycles
First of all, note that, due to technical issues, all the code has been simulated
instead of actually run on the processor. We assume that the simulator
returns the same output as the actual processor would give. In order to
measure how fast our code runs, we measure the number of cycles that need
to be performed on the processor. It turns out that we can simply read out

The MIPS64 processor 27

Figure 8: Example of the pipeline structure in MIPS64. Every row represents
an instruction, every column represents a clock cycle. IF is fetching an
instruction from memory, ID is decoding the instruction and reading the
registers, EX is executing the operation or calculating the address, MM is
accessing an operand in data memory, and WB is writing the results back
into a register.

the Count register, of which the update frequency can also be provided as
an input argument. This can be done by using the RDHWR instruction. Using
this instruction, we are able to read the cycle counter of the processors as
used in [9].

3.5 Methodology
The performance figures were obtained by cross-compiling for MIPS64 re-
vision 2 architecture, using gcc version 4.7.0 compiler on a Debian Linux
system for 64-bits with kernel 4.9.0. Afterwards, run the object code in our
simulator in order to extract the required number of cycles and verify its
functionality.

In Chapter 4 we will discuss strategies on how to use the MIPS64 processor,
desribed in this chapter, in an optimal way in order to speed up the NHS
protocol. In particular, we show how we can exploit the fact that our regis-
ters contain 64 bits to parallelise one of the methods that is used 6 times in
the protocol.

28 Optimising NHS

4 Optimising NHS
In this chapter, we start in Section 4.1 by looking at related work to see
whether there are optimisation strategies that we can copy for our own im-
plementation. We then explain the techniques that are used in order to speed
up the NHS protocol on the MIPS64 processor. In Section 4.2 we explain the
reduction functions that have already been implemented in NHS, and show
how they can be optimised for MIPS64. In Section 4.3, we describe the NTT
and the corresponding optimisation strategies: the function we have opti-
mised, not only in MIPS64 assembly, but also a general C implementation
for 64-bit processors.

4.1 Related work
In the original NH paper ([1]), Section 7.3 is devoted to the optimised AVX2
implementation. This AVX2 is supported since Intel’s Haswell generation
and is capable of operating on 8 single-precision or 4 double-precision 256-
bit vectors of integers of various sizes [26]. Güneysu et al. used the properties
of the AVX2 in order to get a fast implementation (using only 4,480 cycles)
for a dimension-512 NTT on the Intel Sandy Bridge processor [27]. In total,
they managed to reduce the number of cycles needed to perform the NTT
from 55,360 to 8,448 [1]. They also showed to speed up the noise sampling
and the error recovery functions, which have been replaced in NHS.

The authors of NH also claim that, for certain parameter choices, their pro-
tocol can be implemented efficiently on small embedded processors. In [28],
it is shown that this is correct, and an implementation on the ARM Cortex-
M [29] family of 32-bit microcontrollers is presented. On the Cortex-M4[30],
the NTT is sped up with almost a factor of 2: it takes 87,223 cycles to run
the dimension-1024 NTT compared to 71,090 cycles on the dimension-512
NTT [28]. This number is achieved by merging multiple layers (at most 3
per ‘chunk’), reducing the amount of loads and stores being called. This will
be explained later in this chapter as well.

Optimising NHS 29

4.2 Reduction functions

NHS makes use of two famous reduction algorithms in order to speed up the
computation. These are the Montgomery reduction and the Barrett reduc-
tion, which are used very often in NHS, making it interesting to optimise.
These functions are described in the subsections below.

4.2.1 Montgomery reduction

The Montgomery reduction is a technique that has been invented by Peter
Montgomery in 1985 [25]. It is used when a sequence of modular multiplica-
tions is computed, i.e. c = ab (mod m), where m is fixed but a and b can be
different every multiplication. The Montgomery reduction puts the numbers
in a special form, the Montgomery form, allowing the multiplications to be
more efficient than the ordinary methods. The algorithm is described in sub-
section 4.2.1.1. Afterwards, the C implementation and the MIPS64 assembly
optimisation are described in subsection 4.2.1.2.

4.2.1.1 Algorithm
First, use the extended Euclidean algorithm in order to determine r−1 and
m′ such that

rr−1 −mm′ = 1. (30)

Next, convert the input arguments to Montgomery form:

ā = ar (mod m) (31)
b̄ = br (mod m). (32)

Now, we would like to retrieve u = abr (mod m). The easiest, and therefore
also a quite expensive way to do this is to calculate u = āb̄r−1 (mod m). The
main reason why this is expensive is because of the need to calculate modulo
m. Another way of calculating u, which may not seem very intuitive, but
which can be much more efficient, is as follows:

t = āb̄ (33)
u = (t+ (tm′ (mod r))m/r (34)

30 Optimising NHS

If the latter is bigger than or equal to m, return u −m. Otherwise, simply
return u. This equation is derived in the following way:

t = āb̄ (35)
u = tr−1 (mod m) (36)

= trr−1/r (mod m) (37)
= t(1 +mm′)/r (mod m) (because rr−1 −mm′ = 1) (38)
= (t+ tmm′)/r (mod m) (39)
= (t+ tmm′)/r + km (mod m) (for any integer k) (40)
= (t+ tmm′ + kmr)/r (mod m) (41)
= (t+ (tm′ + kr)m)/r (mod m) (42)
= (t+ (tm′ (mod r))m)/r (mod m) (43)

We can show that in the last line (t+ (tm′ (mod r))m)/r < 2m, from which
it is derived that the result is u−m or u. If this would not hold, we would
still have to reduce modulo m, which is the expensive step we wanted to
avoid. We immediately see that tm′ (mod r) < r. Furthermore, ā, b̄ < m, so
t < m2. Combining the results, we find

(t+ (tm′ (mod r))m)/r < (m2 + (rm))/r = m2/r +m. (44)

Since r > m, we see that this is indeed smaller than 2m. So instead of calcu-
lating modulo m, we have to calculate modulo r and divide by r. Although
the latter might seem more memory- and time consuming, we can show that
it is not by making use of the fact that r is a power of 2. Calcuting the
remainder of a number divided by r can simply be performed by taking the
last log2(r)+1 bits of the number. Also, dividing by r can be done efficiently
by shifting the number log2(r) bits to the right.

The last step consists of converting the result from Montgomery form to
normal form by calculating

ab = ur−1 (mod m). (45)

4.2.1.2 Implementation
The implementation of the Montgomery reduction in C can be found below.
Note that the input argument a is āb̄.

Optimising NHS 31

uint16_t montgomery_reduce(uint32_t a)
{

uint32_t u;
u = (a * qinv);
u &= ((1<<rlog)-1);
u *= PARAM_Q;
a = a + u;
return a >> 18;

}

First, it calculates tm′ and then it determines the remainder after division
by r by taking the last log2(r) + 1 bits with a logical and. After that, the
result is multiplied by m and it is added to the input argument. The bit shift
in the last line represents division by r.

In assembly, it is optimised in the following way:

montgomery_reduce_asm:
li $t0, 12287
mul $v1, $v0, $t0
ext $v1, $v1, 0, 18
li $t0, 12289
mul $v1, $v1, $t0
add $v1, $v1, $v0
ext $v0, $v1, 18, 14
jr $ra

Note that this is the implementation of the separate function. When the
Montgomery reduction is used inside the NTT, there is no need to load the
values 12, 287 and 12, 289 every time the loop is called. Instead, we can
load these constants outside of the loops, meaning that the load instructions
in the assembly code above can be omitted, reducing the amount of cycles
needed in order to perform the function on the MIPS64 processor by 2.

4.2.2 Barrett reduction

In 1986, Paul Barrett introduced an algorithm to compute c = a (mod n)
for a constant n [31]. The idea behind this algorithm is described in Subsec-
tion 4.2.2.1. The C implementation and the corresponding optimisation in
assembly can be found in subsection 4.2.2.2.

32 Optimising NHS

4.2.2.1 Algorithm
The easiest, most obvious way of computing c = a (mod n) would be to
subtract n from a a couple of times and stop whenever the result is smaller
than n. This is equivalent to calculating c = a−kn, where k = b a

n
c. Because

division can be expensive, and the same n is used every time, Barrett in-
vented a way of approximating n’s inverse, 1

n
, which makes use of the binary

structure:
1
n

= 2i/n
n(2i

n
)

= 2i/n
2i = m

2i , (46)

for a certain i. We’d like to use an integer value for m, which means that 2i

n

has to be rounded. Because it is not allowed to subtract more than 1
n

times
an from a, the obvious solution is to choose m = b2i

n
c. (Note that the value

of i has to be at least dlog2(n)e in order to be useful. In the case of NHS,
i = 16 is used.) In NHS, the constant value n = 12, 289 is used. Together
with i = 16, we find that the value of m is b 216

12289c = 5. So the Barrett
reduction needs some precomputation, which is actually quite trivial to do,
in order to reduce the calculation cost.

4.2.2.2 Implementation
The implementation in C is as follows:

uint16_t barrett_reduce(uint16_t a)
{

uint32_t u;
u = (uint32_t) a;
u = u * 5;
u = u >> 16;
u = u * 12289;
a = a - u;
return a;

}

Precomputation of the constants yields m = 5 and i = 16. The operation
u = u >> 16 means shifting the bitstring u with 16 positions to the right,
which is the same as dividing u by 216. In assembly it is implemented as:

barrett_reduce_asm:
li $v1, 5
mul $v0, $a0, $v1
srl $v0, $v0, 0x10
li $v1, 12289

Optimising NHS 33

mul $v0, $v0, $v1
sub $v0, $a0, $v0
jr $ra

Similar to the implementation of the Montgomery reduction, we can load the
constants outside the loop. This would save 2 cycles every time the Barrett
reduction is called.

34 Optimising NHS

4.3 Number theoretic transform (NTT)
One of the building blocks of NH(S) is the NTT, as can be seen in tables 3
and 5. As we see in Figure 6 the NTT is called 6 times in the entire NH(S)
protocol, with 2 regular NTT calls and 1 inverse NTT on either side. Be-
cause it is used so often, a significant optimisation of the NTT would directly
imply a significant optimisation for the entire protocol.

In this section, we will first give a brief introduction to Fourier transforms,
which provide a fast way of polynomial multiplication. Later, we will explain
the NTT and its structure. Keeping this structure in mind, we will describe
optimisation strategies that exploit it.

4.3.1 Fourier transforms

In order to understand other methods of polynomial transformation, we need
to introduce the concept of (primitive) roots of unity. (These definitions are
taken from [34]).

Definition 4.1. Root of unity.
A number ω is an nth root of unity if ωn = 1, ω ∈ C.

Definition 4.2. Primitive root of unity.
A number ωn is a primitive nth root of unity if it is a root of unity and if, in
addition, n is the smallest integer of k = 1, . . . , n for which ωkn = 1.

As mentioned in [32], there are exactly n complex nth roots of unity, which
are given by formula (47):

ωkn = e2πik/n for k = 0, 1, . . . , n− 1. (47)

Using Euler’s formula, this can be rewritten as

ωkn = cos(2πk/n) + i sin(2πk/n) for k = 0, 1, . . . , n− 1. (48)

For example, the complex 4th roots of unity are repesctively 1, i, −1, and
−i, which are exactly the intersections of the unit circle with the axes of the
complex plane C.

Regular multiplication, also known as schoolbook multiplication, of two n−1-
degree polynomials needs O(n2) operations. This number can be reduced to
O(n log n) by working with the Fourier transforms of the polynomials. Let
us first introduce the definition of the Fourier transform.

Optimising NHS 35

Definition 4.3. Fourier transform.
The Fourier transform of a function x(t) is given by

X(ω) =
∫ ∞
−∞

x(t)e−iωtdt. (49)

The corresponding inverse Fourier transform is given by

x(t) = 1
2π

∫ ∞
−∞

X(ω)eiωtdω. (50)

Here x(t) represents a function in time and X(ω) stands for a function of
frequency. The Fourier transform has the nice property that multiplying 2
transformed polynomials and taking the inverse Fourier transform of their
product gives the correct result. This is known as the convolution theorem.
Expressed as a formula, the convolution of X(ω) and Y (ω) is

X ∗ Y =
∫ ∞
−∞

Y (ω′)X(ω − ω′)dω′. (51)

The proof of the convolution theorem can be found in [38].

Since we work with integer polynomials, it makes more sense to introduce
the discrete Fourier transform (DFT).

Definition 4.4. Discrete Fourier transform (DFT).

yk = f(ωkn) =
n−1∑
j=0

xjω
jk
n , (52)

for k = 0, 1, . . . , n− 1, where ωn is the nth root of unity.

This formula is similar to the one in equation (50). In essence, the x is a
sum of the functions on smaller intervals. The inverse of the DFT is defined
as

xj = 1
n

n−1∑
k=0

ykω
−jk
n , (53)

where k ∈ [0, n − 1]. The DFT gets interesting when the number of input
coefficients is a power of 2, because it allows us to construct a binary tree on
which we can apply a divide-and-conquer method.

The fast Fourier transform (FFT) splits the coefficients into 2 blocks of equal
size every layer, and performs a so-called butterfly operation on a pair of co-
efficients, each coming from a different block. An example of the FFT of a

36 Optimising NHS

polynomial with 32 coefficients is given in Figure 9. Note that the output
is bit-reversed. For example, the second row has input coefficient x1, which
has binary representation 000012, and output coefficient X16, which has bi-
nary representation 100002, the mirrored version of x1. Each connection of 2
coefficients is called a butterfly, because of its shape. In NHS, the Gentleman-
Sande butterfly is used. This type of butterfly is depicted in Figure 10. Now
these butterflies are still performed using a complex root of unity ωn. Instead
of working with the complex numbers, we can also determine the transforms
over a finite field F = Zp. This type of transformation is known as the num-
ber theoretic transform (NTT). From Fermat’s little theorem, we know that
for prime p and any integer a:

ap ≡ a (mod p), (54)

and from this it follows that

ap−1 ≡ 1 (mod p). (55)

There exists a primitive root r, such that the results of calculating ri (mod p)
form a permutation of the elements 0, . . . , p − 1 for i = 0, . . . , p − 1. We
would like to have ωn = 1 (mod p), where n is the length of the resulting
polynomial. For this, we need a prime for which the relation p−1 = kn holds
for some k, so p = kn + 1. Next, we find the primitive root r and calculate
ω as rk (mod p). This works, because

ωn = rk∗n = rp−1 = 1 (mod p). (56)

Because r is the primitive root mod p, it is clear that for a power n′ < n the
result of ωn′ will not be equivalent to 1 (mod p).

4.3.2 Optimisation strategies

In the following paragraph we will describe different strategies that can be
applied in order to calculate the number theoretic transform of a certain poly-
nomial of degree 1,023, i.e. a polynomial with 1,024 coefficients. We first
describe the way the NTT is implemented in the reference C implementation
of NHS. Afterwards, we will describe methods that are supposed to reduce
the amount of cycles needed to perform the NTT. Some of these methods
only work in theory. In order to make them work in practice as well, we have
to introduce some slight modifications. This is explained at the end of this
subsection.

Optimising NHS 37

Figure 9: Calculation of the FFT for a polynomial with 32 coefficients.

38 Optimising NHS

Figure 10: The Gentleman-Sande butterfly of the coefficients ci and cj.

For the moment we assume that we can use all 32 registers for the calcu-
lation, loading and storing of the coefficients and the intermediate values.
Each register contains 64 bits, which means that we can store 4 coefficients
per register. Our main goal is to reduce the amount of load and store
instructions, since they are by far the most costly operations. That does not
mean that we are not willing to take other optimisations into account.

4.3.2.1 The naive way
The most obvious and therefore also the most costly way to compute the NTT
is to work from top to bottom, from left to right. Since every computation is
done using 2 coefficients, 1 register (or actually even half of it) would suffice
to perform the entire transformation. Note that this would, however, use
1,024 loads and 1,024 stores per layer, so 10,240 loads and 10,240 stores for
the entire NTT. Note that this only concerns the loading and storing of the
coefficients. In practice, we would also need to load the constants, such as
the ωs, in order to calculate the NTT correctly.

4.3.2.2 The parallel method
Instead of only using half a register, as desribed in Section 4.3.2.1, we could,
in theory, also make use of all the registers. That is, we could load 4 coeffi-
cients in every of the 32 registers, so using 128 coefficients at a time, perform
the butterfly operations in parallel and store all 128 coefficients again. For
example, we can store the first 4 coefficients of c in a register. This is de-
picted in Figure 11. In the ideal case, we can perform one butterfly operation

Figure 11: A register of 64 bits containing 4 coefficients of 16 bits each.

for 4 pairs of coefficients simultaneously by performing the operation on 2

Optimising NHS 39

entire registers. Afterwards, we could retrieve the individual coefficients by
applying bit masks that only select the halfword that we want. For example,
c1 can be found by applying the mask 0x0000FFFF00000000 to the register
in Figure 11. This technique, based on using basic instructions to perform
SIMD operations, was proposed in [54]. This would mean there is only need
for 2 multiplications to determine 8 new coefficients, which is only a quarter
of the number of operations that would be needed in the most naive way.
Parallelisms like this can also significantly reduce the number of cycles. Note,
however, that the amount of loads and stores is still the same as in the most
naive way. An example of the parallelised version is depicted in Figure 12.

Figure 12: An example of the (theoretical) parallel method applied on the
first 8 coefficients of c. Each arrow denotes a butterfly operation.

4.3.2.3 Pendulum
A slight improvement to the parallel method can be made by not working
from top to bottom in every layer but by alternating the direction in which
the operations are performed. Let us illustrate this as follows. Suppose we
start at the top. Then we perform the butterfly operations pairwise to the
coefficients in the current block that contains 128 of those. After that, we
proceed to the 2nd block from the top and continue. Eventually, the 8th,
and thus last, block has been handled and the results of the corresponding
butterfly operations are still in the registers. Then we move to the next layer
and start from the bottom, meaning that we can proceed with the numbers
that are still in the registers, and so saving the costs of the stores and loads
of these coefficients. Similarly, jumping from the 2nd to 3rd layer can be
done without storing and loading the upmost block, and so on. Using this
method, you can save 9 · 128 = 1, 152 loads and 1,152 stores when applied to
the parallel method.

40 Optimising NHS

4.3.2.4 Blockwise method
A more sophisticated variant consists of finishing an entire sequence of but-
terfly operations in a block of (adjacent) coefficients before proceeding to
the next block. Because of the bit reversal that is done before entering the
actual loop, all coefficients are correctly aligned for the butterfly operations.
In the first layer, for example, all butterfly operations are done between two
adjacent coefficients. Also, every butterfly needs a different ω, so there is a
clear distinction between the 512 butterflies.

In the next layer, the distance gets doubled, and every ω is used twice in
a row. In other words, every ω corresponds to a block of 4 coefficients and
2 butterflies. This means we now have to perform deal with 256 blocks of 4
coefficients. Continuing like this, we find that in layer 7 there are 8 blocks
of 128 coefficients, which is exactly how many coefficients we can theoreti-
cally handle at once. From layer 8 onwards, the groups in which butterfly
operations take place outgrows the 128-coefficient blocks. This can be solved
by performing the last 3 layers naively. Otherwise, we can rearrange the
coefficients and apply the blockwise method again. A depiction of the com-
putations in one such block can be found in Figure 9.

For the first 7 layers we can split the coefficients into 8 blocks of 128 and work
block by block. Starting with the upper block (with coefficients a0 . . . a127)
in the first layer, we can calculate the results of the butterfly operations and
overwrite the original values. We then move one layer to the right, using the
same registers with the newly calculated values (meaning we can simply skip
the load and store part) to perform the butterfly operations on. This process
can be repeated up to and including layer 7, where the results have to be
stored and we can move to the second block (with coefficients a128, . . . , a255)
of the first layer. Once we have done this for all 8 blocks, we finish the al-
gorithm by performing the last 3 layers. This method uses 8 · 128 = 1, 024
loads and 1, 024 stores for the first 7 layers and then (using the naive mode)
3 ·8 ·128 = 3, 072 loads and 3, 072 stores in the last 3 layers, or 8 ·128 = 1, 024
loads and 1, 024 stores by rearranging and applying the blockwise method.
This results in 1, 024 + 3, 072 = 4, 096 loads and 4, 096 stores for the former
and 2 · 1, 024 = 2, 048 loads and 2, 048 stores in the latter. Note that we can
also apply the pendulum method, saving even more loads and stores.

4.3.2.5 Removing the dummy
In the original butterfly computation, the old coefficients have to be replaced
by the new values. In order to do so, a new dummy value is introduced, such

Optimising NHS 41

that the old values are not overwritten until the end of the butterfly. Say
that we want to apply a butterfly on the coefficients a and b, then we get

c = a (57)
a = a+ b (58)
b = ω(c− b). (59)

Rewriting these expressions, we find out there is actually no need to introduce
such a dummy variable:

ã = a+ b (60)
b̃ = ω(a− b) = ω((a+ b)− 2b) = ω(ã− 2b), (61)

where ã and b̃ can simply overwrite the original a and b. The only difference
with the previous solution is that we have to use an extra instruction (the
computation now involves −2b instead of −b). This can be done by either
multiplying b by the immediate 2 first and then subtracting it, or simply
subtracting b twice. On the other hand, we only need 1 extra register in
total for the entire NTT.

4.3.2.6 From theory to practice
As we have already seen in Table 1, we cannot make use of all 32 registers
in practice. In fact, we can only use 27 registers. Since we also need to
use quite a lot of them for other aspects than the coefficients, it turns out
that we have to use 11 registers for other purposes, leaving 16 registers for
the coefficients. Also, because of the overflow bits that are needed for the
addition and the multiplication in the butterfly, in practice we can only store
2 coefficients in 1 register. The way they are stored, is depicted in Figure 13.
This means the new amount of layers we can merge, i.e. process at the

Figure 13: The way the coefficients are stored in 1 register. The 0-blocks
consist of 16 zeros and are reserved for the overflow bits of the coefficients c0
and c1.

same time without having to store in between, has to be calculated again.
Instead of 128 coefficients, we can “only” deal with 2 · 16 = 32 coefficients
at a time. That means we can merge at most log2 32 = 5 layers. In our

42 Optimising NHS

MIPS64 assembly optimisation, we choose for merging at most 4 layers. The
reason behind this is the following. First of all, the conversion of 16-bit
input coefficients to 64-bit coefficients in the first layer has to be handled
separately. Afterwards, we could theoretically merge 5 layers. However,
after the 5th layer, the blocks of coefficients have to be chosen differently
than simply choosing a block of adjacent coefficients. From the 6th layer
onwards, one coefficient block is formed by choosing every 32nd coefficient
(and its direct neighbour). Using this method, we can merge the 6th, 7th, 8th,
and 9th layer. Similar to the first layer, the last layer is handled separately
in order to convert the output to 16-bit integers again.

4.3.2.7 Reduction functions for 64-bit input
When we switch from 1 coefficient per register to 2 coefficients, we also have
to modify some other functions in order to receive the correct output. For
example, inside the loop of the NTT there are several calls to the Barrett
reduction and the Montgomery reduction, which are originally not designed
to deal with 64-bit integers. For example, in the Barrett reduction there is
a line in which a shift to the right with 16 bits takes place. Using 32-bit in-
tegers, this implies deleting the 16 least significant bits, shifting the 16 most
significant bits to the places where the least significant bits used to be, and
filling up the 16 significant bits with all zeroes. The latter would not work
in case the operation would take place on a 64-bit integer containing 2 coef-
ficients: shifting the leftmost coefficient would move its 16 least significant
bits to the 16 most significant bits of the rightmost coefficient. This can be
solved easily, by applying a mask to the coefficients before performing the
bit shift. This masking makes sure that the 16 least significant bits of both
coefficients are set equal to 16 zeroes. The C code is given below.

uint64_t barrett_reduce64(uint64_t a)
{

uint64_t u;
u = a;
u = u * 5;
u = u & 0xFFFF0000FFFF0000;
u = u >> 16;
u = u * 12289;
a = a - u;
return a;

}

The modified assembly code can be found in the Appendix B.

Optimising NHS 43

Being able to guarantee the functioning of the Montgomery reduction for
64-bit integers is slightly trickier. Intuitively, we can expand the original
function with a mask on 2 places in the code. The C code of this naive idea
is given below.

uint64_t montgomery_reduce64_naive(uint64_t a)
{

uint64_t u;
u = (a * qinv);
u = u & 0x0003FFFF0003FFFF;
u *= PARAM_Q;
a = a + u;
a = a & 0xFFFC0000FFFC0000;
return a >> 18;

}

Experimenting with this function, one finds out that it still contains a flaw
causing a small mistake in the coefficient in the higher bit. After investigating
the intermediate steps, we find out that the multiplication of a and q−1 in the
first line does not return the desired result. Multiplying the coefficient in the
lower bits with q−1 results in an integer of which the representation also needs
some of the higher bits, i.e. some of the bits that are actually intended for the
other coefficient. This so-called overflow can be dealt with by handling the
coefficients separately and adding them later, at a point where they cannot
influence each other. In order to do so, we need to introduce at least one
new variable, u1. For the sake of readability, we choose to also use u2.

uint64_t montgomery_reduce64(uint64_t a)
{

uint64_t u, u1, u2;
u1 = a & 0xFFFFFFFF00000000;
u1 *= qinv;
u2 = a & 0x00000000FFFFFFFF;
u2 *= qinv;
u1 &= 0x0003FFFF00000000;
u2 &= 0x000000000003FFFF;
u = u1 + u2;
u *= PARAM_Q;
a += u;
a &= 0xFFFC0000FFFC0000;
return a >> 18;

}

44 Optimising NHS

4.4 Other assembly optimisations
Not only are we interested in the particular functions of the NTT. We can
also optimise the assembly code (slightly) by looking at general optimisation
tricks.

4.4.1 Unrolling the loops

One of those is unrolling the loops. Usually we would define the body of a
loop, a counter that is incremented at the end of the loop, and a line in which
it is checked whether the loop should be run again. Jumping to the start of
the loop takes a lot of cycles. These cycles can be removed by unrolling the
loop. That is, manually increment the counter (if necessary) and duplicate
the body of the loop as many times as the loop has to be performed. This
has the disadvantage that the code will get really long. In assembly, this is
solved by making use of macros. We can define macros that contain code.
When we want to use this code, we only have to state the name of the macro
(and the input parameters). The compiler automatically copies the macro
body on the places where the macro is called. In MIPS, a macro looks like

.macro EXAMPLE
BODY

.endm

Each time EXAMPLE is called in the code, the compiler replaces it with BODY.

4.4.2 Binary multiplication

Another optimisation trick is related to multiplications and can already be
found in the reduction functions. The standard way of multiplications as
performed by the compiler is by using shifts and additions. This is very
similar to the schoolbook method of multiplying 2 numbers in the decimal
system. The 2 numbers, say abc and def are put underneath each other.
Then, starting with the least significant digit, fabc is calculated and put
underneath def , such that the last digit is aligned with the f . Next, we shift
one to the left, calculate eabc and align the last digit with the e. Finally, we
compute dabc and align the rightmost digit with the d. We then proceed by
computing the sum of the calculated partial products per column, carrying
over the tens whenever the partial sum would exceed 9 and writing the re-
mainder of the partial sum (mod 10). In the binary world, this works the
same way. In fact, it is even easier because the partial products are only

Optimising NHS 45

1 0 1
1 1 0 0 ×
1 1 0 0

0 0 0 0
1 1 0 0 +
1 1 1 1 0 0

Table 2: Example: binary multiplication of 5 (101) and 12 (1100).

formed by multiplications with 1 or 0. The way this is done, is simply by
shifting bits. For example: we would like to multiply 5 (101 in binary) and
12 (1100 in binary). First we do 1 times 1100, then shift left and write 0
times 1100, then shift left and write 1 times 1100. We apply a binary and
and we find 111100, which is indeed 60. This multiplication is illustrated in
Table 2.

4.4.3 Compilation

Also worth mentioning is the way the files are compiled. In order to com-
pare the C code and the MIPS64 assembly code properly, we make sure that
we put the function in C in a separate file, with all the subfunctions and
variables that it needs, and then compile using a certain flag. Then, we link
the corresponding object file to a different C file (main.c) where we make
a call to the function defined in the object file to do the actual measuring.
We can also measure the assembly file, which has a .s extension, in a similar
manner. The only difference is that it does not need to be compiled first [37].

In this chapter, we have seen the optimisation strategies that have been
applied in order to reduce the amount of cycles of NHS, and the NTT in par-
ticular. The results can be found in Chapter 6. In the next chapter, we will
make a small excursion to another computational problem on which we can
base lattice-based cryptographic procols: the LWR problem. This is closely
related to the LWE problem.

46 Adapting NHS to the LWR problem

5 Adapting NHS to the LWR problem
In 2011 Banerjee et al. introduced a new lattice problem, that is closely
related to the LWE problem: the LWR problem [4]. In this chapter, we will
first explain the LWR problem. In Subsection 5.1.1 we describe how we can
go from LWR to Ring-LWR. In Section 5.3 we describe the implementation
of NHS scheme that is based on the RLWR problem. After that, we describe
the failure probability of the “new scheme” in Section 5.4. In Section 5.5 we
describe the possible passive attacks on the NHS scheme based on RLWR.

5.1 The LWR problem
The search version of the LWR problem is as follows.

Definition 5.1. LWR (search version).
Let the function fs : Znq → Zp be given by

fs(x) = b〈x, s〉ep = b(p/q) · 〈x, s〉e, (62)

where s ∈ Znq is the secret key, 〈x, s〉 is the inner product of x and s mod q,
and b·e denotes rounding to the closest integer. Given independent samples
of the form (x, fs(x)), find the secret key s.

Essentially, instead of adding the noise to the result of the multiplication
of the public matrix and the private vector in the LWE problem, every coeffi-
cient of the vector is mapped to its corresponding interval. A 1-dimensional
example of 2 points being mapped is given in Figure 14. As Banerjee et
al. mentioned in their paper, when both p and q, with p < q, are taken as
powers of 2, the rounding can be done by dropping the last log2(q/p) bits.
Translating this interval number back to the original value is, similarly to
the LWE problem, extremely hard for a good choice of p, because the inverse
function maps the values in Zp back to the centre of the intervals in Zq.
The difference between that centre and the original input is similar to the
addition of the noise in LWE, which depends on the parameter size of the
probability distribution. Actually, in the LWR problem this “noise” comes
from a uniformly random distribution, which is theoretically and practically
even better than the LWE distribution. Theoretically because the failure
probability should be a lot easier to compute, and practically because there
is no need to sample the additional errors anymore. This saves a lot of ran-
domness of the computer or device where the protocol is implemented.

Adapting NHS to the LWR problem 47

Figure 14: In the upper half we find 1-dimensional vectors, on a range that
is divided into p intervals of length q/p. These vectors are mapped to their
interval, which can be seen in the lower half.

There is also a decision version of the LWR problem.

Definition 5.2. LWR (decision version).
Given independent samples of pairs in (Znq ,Zp), distinguish pairs (x, fs(x))
from uniformly randomly generated pairs.

5.1.1 Putting on the ring

The difference between regular LWR and LWR over a ring (RLWR) is anal-
ogous to the difference between LWE and Ring-LWE. Instead of sending an
entire n×n matrix A, where each column is denoted by ai, for i = 0, . . . , n−1,
we simply use a single polynomial in the Ring-LWR problem, in which we rep-
resent the coefficients as a vector a. Working with the polynomial rings will
have a major impact on the reduction of the message size and the correspond-
ing speed. In the protocol, going from LWR to RLWR can be accomplished
by changing the matrix A by a single vector a.

48 Adapting NHS to the LWR problem

5.2 RLWR in practice
In this section, we give some explanation on the simplified NHS scheme based
on RLWR, which is depicted in Figure 15. Note when we say vector, we mean
the coefficient vector of a polynomial, and with vector multiplication we mean
taking the negacyclic convolution of 2 polynomials.

Alice first generates her secret secret vector s ← ψ16. She also generates
a public vector a ∈ Znq . She computes the multiplication of these vectors,
which will be uniformly spread in Znq . She then splits this range of possible
values for each coefficient into p equal parts, which will all contain approx-
imately q/p elements. Mapping these values from Znq to Znp can be done by
multiplying with p/q and rounding the outcome to the closest integer.

There is, however, a possibility that the original value is positioned in the
highest halve interval [q − 1 − (q/2p), q − 1), of which the rounding would
result in p. That’s the reason why she takes the output modulo p as her final
result b = basep ∈ Znp . This will ensure that the b is uniformly random in the
interval [0, p− 1]. Alice sends her public key vector b together with the seed
a to Bob, who, on his turn, generates a private vector t← ψ16 and calculates
his public key u ∈ Znp as batep. He then determines the shared secret ν,
encodes it as k and includes the result in the calculation of c = bbtep + k.
Bob sends u and c to Alice, who wants to recover the shared secret ν. She
can do this by making use of the fact that her public key is used in order to
encrypt it. She subtracts busep from c. In terms of formulae, this looks as
follows:

k′ = c− busep (63)
= bbtep + k − busep (64)
= bbaseptep − bbatepsep + k (65)
= bastep − batsep + k (66)
≈ k. (67)

Note that the operation b·ep is not associative. Because of the rounding
errors that can occur, we can not simply subtract bbatepsep from bbaseptep
to retrieve k exactly. Using the functions NHSEncode and NHSDecode, Alice
and Bob can still (with high probability) agree on the same ν.

Adapting NHS to the LWR problem 49

5.3 Implementation
Due to time restrictions, we have only made a simulation of the simplified
NHS protocol based on the RLWR problem in Mathematica. This simulation
LWRsimple.nb can be found in Appendix C. In order to make a good com-
parison to the original NHS protocol in terms of failure probability, we have
chosen to use the same parameters n and q, and also the same probability
distributions for the parameters.

Because initially the values did not meet our expectation, which we derive
from the equations described in Section 5.4, we have decided to make another
file debug.nb. In this file, the first function keeps simulating the protocol
in Figure 15 and it stops whenever ν and ν ′ do not match entirely. After-
wards, there is a small function that outputs the position where the bit(s)
is/are flipped, and it outputs all the variables with that index. The last, and
maybe the most important function computes the same as the first function,
without adding the shared secret. This way, we can see how big the difference
between bbaseptep and bbatepsep can become, and how it is spread.

All the results of the files from the simulation can be found in Chapter 6.

5.4 Failure probability
As mentioned before, the difference between (R)LWE and (R)LWR is that
the error in the former comes from a centered binomial distribution, whereas
the error in the latter follows a discrete uniform distribution. This means
that the error in the LWR variant can have values from {0, . . . p−1}, all with
equal probability 1

p
.

In order to see how big the difference between bbaseptep and bbatepsep is,
we have to find our what values the rounding errors can take. In order to do
so, we would like to express the function bxep in a formula:

bxep = bx(p/q)e mod p. (68)

As described in [1], for an x ∈ R the rounding function bxe is defined as
bx + 1

2c ∈ Z. This implies that the rounded value can be translated back
to the original by adding a term ε ∈ (−1

2 ,
1
2]. Using this, we see that the

difference between the “real” value and the rounded value is

x(p/q)− bxep = ε+ lp, (69)

50 Adapting NHS to the LWR problem

where ε still comes from (−1
2 ,

1
2], and lp comes from taking the result modulo

p. Since bx(p/q)e can be at most p, it follows that l equals 0 or 1. l = 1 will
only occur whenever x(p/q) ≥ p− 1

2 , which happens with probability p
2q . We

can rewrite the expression in (69) as

bxep = x(p/q)− ε− lp, (70)

which we can use in the part of the protocol in Figure 15 where Alice com-
putes the shared secret. This will give us a method to calculate the failure
probability. Because Alice has to round the product of values which may have
already been rounded, it is useful to indicate which error term comes from
which rounding. This can be found in the simplified protocol in Figure 15.
Following the notation from Figure 15, we can express all the rounded values

Alice Bob

Generate a ∈ Znq , s← ψn16 Generate t← ψn16

(Priv. key) s (Priv. key) t
(Pub. key) b = basep (Pub. key) u = batep
(Rounding terms: ε, l) (Rounding terms: ε′, l′)

a, b

Generate ν ∈ {0, 1}256

k = Encode(ν)
c = bbtep + k

(Rounding terms: ε′′, l′′)

u, c

k′ = c− busep
(Rounding terms: ε′′′, l′′′)
= bbtep + k − busep
= bbaseptep + k − bbatepsep
≈ k
ν ′ = Decode(k′)

Figure 15: A simplified version of the modified NHS protocol, based on the
RLWR problem instead of the RLWE problem. Encoding and decoding is
done similarly to NHSEncode and NHSDecode, but with bp/2c instead of bq/2c.

in terms of real values and the corresponding rounding errors. The result

Adapting NHS to the LWR problem 51

can be found in Equation (74).

bbtep − busep = bbaseptep − bbatepsep (71)

= bt
p

q
− ε′′ − l′′p− usp

q
+ ε′′′ + l′′′p (72)

= (asp
q
− ε− lp)tp

q
− ε′′ − l′′p− (atp

q
− ε′ − l′p)sp

q
+ ε′′′ + l′′′p (73)

= (−ε− lp)tp
q
− ε′′ − l′′p− (−ε′ − l′p)sp

q
+ ε′′′ + l′′′p. (74)

Suppose that we use pointwise multiplication of the polynomials. Then we
see in Equation (73) that astp2

q2 cancels out with −astp2

q2 , which is why we
have no product of polynomials left in (74).

Combining this last equation with the upper bounds of the variables, we
find an upper bound for the total difference as stated in Equation (71). In
order to do so, we have to calculate the maximum values that s and t can
take, with the corresponding probabilities. Looking at the distributions, we
find that s and t can be at most 16 in absolute value (each with probability
2 · 2−32). Since we take the difference modulo p, we get rid of l′′p and l′′′p in
Equation (74). Also, we know that |ε| ≤ 1/2. Using this, we conclude that
Equation (74) is bounded by

1 + (p/q)(t/2 + s/2) + (p2/q)(t+ s), (75)

and since t and s are samples from the same distribution, we can rewrite this
as

1 + (p/q)t+ (p2/q) · 2t. (76)
In order to decode the message correctly, this error must be smaller than p/4
(on average). This yield the following equation.

1 + (p/q)t+ (p2/q) · 2t < p/4 (77)
tp+ 2tp2

p/4− 1 < q. (78)

From this, it follows that p < 92.

From the simulation in Appendix C, described in Section 5.3, it follows that
the negacyclic convolution of the polynomials obviously has its impact on
the calculations. Since this is beyond the scope of this thesis, the theoretical
background where this negacyclic convolution is taken into account is not
included.

52 Adapting NHS to the LWR problem

5.5 Security analysis
Suppose that eavesdropper Eve intercepts the values a, b, u, and c. Suppose
that she also knows the system parameters p and q. The question is if Eve
can find any information about the secret vectors s and t, or about the shared
secret ν.

We start with analysing b. Since b is defined as basep, Eve can multiply
b with q/p to map the coefficients to the centre of the original intervals in Znq
again. Since the original values of as are spread uniformly over this interval,
this problem is similar to the RLWE problem. Because of this translation
from RLWR to RLWE, we can use the same security analysis as the one that
has been used for the RLWE problem. If this interval in the RLWR version
should have length 32, just like in the RLWE variant, we should choose p
as 12, 289/32 ≈ 384. Note however that the error in the RLWE problem
comes from a binomial distribution that is centered around 0, meaning that
noise will probably be small. In more than half of the cases, the error will
be at maximum distance 3 from 0, and in more than 90% of the cases the
maximum error will be at distance 5 from 0. Choosing intervals of length 10
means that the p has to be around 1, 229. Essentially, we can say that the
smaller we choose our p, the bigger the intervals become, the more possibil-
ities there are for values where the multiplication as comes from, and thus
the more difficult it is to find the actual as.

Adapting NHS to the LWR problem 53

5.6 Update August 4, 2017
The previously proposed scheme can be modified such that is resembles the
old scheme better. Instead of working with the rounded values, it makes more
sense to decompress the values first after receiving them. This decompression
is done by multiplication with (q/p) and rounding to the nearest integer. We
will illustrate this idea with a small example. Suppose that Alice computes
her public key b by taking the product of a and s and applying the rounding
function: b = basep ∈ Znp . She sends it to Bob, who decompresses it to
b̃ ∈ Znq . The difference between b̃ and as, an “earlier form” of b, is denoted
by ε. Since the decompression maps every value back to the centre of the
intervals, the error ε will be at most half such an interval. If we choose
p = 384, the intervals would have length 32, which is the same as the error
interval length in the RLWE version. The real difference between RLWE and
RLWR is that the error in the former follows a binomial distribution, centered
around 0, whereas the error in the latter is spread uniformly randomly over
the interval.

54 Adapting NHS to the LWR problem

Alice Bob

Generate a ∈ Znq , s← ψn16 Generate t← ψn16

(Priv. key) s (Priv. key) t
(Pub. key) b = basep (Pub. key) u = batep

a, b

b̃ = (q/p) · b
(= as+ ε)
Generate ν ∈ {0, 1}256

k = Encode(ν)
c = bb̃t+ kep

u, c

ũ = (q/p) · u
(= at+ ε′)
c̃ = (q/p) · c
(= b̃t+ k + ε′′)
k′ = c̃− ũs
= b̃t+ k + ε′′ − (at+ ε′)s
= (as+ ε)t+ k + ε′′ − (at+ ε′)s
= ast+ εt+ k + ε′′ − ats− ε′s
= εt+ k + ε′′ − ε′s
≈ k
ν ′ = Decode(k′)

Figure 16: Modification of the RLWR version in Section 5.3. Encoding ν is
done using function NHSEncode from NHS [2].

Results 55

6 Results
In this chapter, we first describe the results from the MIPS64 assembly op-
timisation of the NTT compared to the original outcome. Afterwards, we
will state the results of the simulation based on the RLWR problem. Every
.c-file can be found in Appendix A.

6.1 NTT optimisation in MIPS64 assembly
In this section we present the performance of our code and compare it to
other versions. An overview of the measurements of each NTT layer corre-
sponding to every version of the code can be found in Table 3. The concept
of layers in the NTT is explained in Section 4.3. The MIPS64 assembly code
can be found in Appendix B and the 64-bit optimisations in C can be found
in Appendix A. Before we state the results, we make a small remark on the
way the results have been measured and compared.

In ntt.c in Appendix A, we give the original NH source code of the NTT
function. Afterwards, still in Appendix A, we give our own general 64-bit op-
timisation of the NTT in ntt parallel.c. In Appendix B, we give our own
optimisations of the NTT, designed for MIPS64. These are spread over 4 .s-
files: pnttlevel0.s, pnttlevel1t4.s, pnttlevel5t8.s, and pnttlevel9.s.
In Appendix C, we state the Mathematica scripts that correspond to the
RLWR implementation. In LWRsimple.nb, we give a simulation of the RLWR
variant of the NHS protocol. In debug.nb, we give the script that can be
run in order to find the magnitude of the errors and differences, such that
we can say something about the failure probability.

6.1.1 Analysis of the NTT layers

Note that Table 3 has been created using a version of layer 9 in assembly
that outputs doublewords of shape 0|ci|0|ci+1, just as in Figure 12, instead
of an array of halfwords ci, as in Figure 11. Not converting the output to
16-bit integers will only have a minor influence on the eventual result. In
order to retrieve the number of cycles, we have built a test file test.c in
which we define 3 input arrays: b, which corresponds to the coefficient vec-
tor of the C code; a, a copy of b with 2 · 1, 024 zeros concatenated at the
end; and omegas montgomery, which defines the ωs and thus is not changed.
The reason for adding the zeros in a is that the assembly code of layer 0
first stores the results after performing the butterflies “behind” the first 1024

56 Results

coefficients, such that no input value is changed.

Each time, the output of the assembly version is compared to the output
of the C implementation, to verify that all values correspond. Furthermore,
in Table 3 we count the cycles needed to run every single layer. Because the
C code is compiled in a seperate file, with flag (-O0) or (-O3), we cannot
measure a seperate layer (apart from layer 0). In order to determine the
amount of cycles needed for one specific layer, say layer i, we simply count
the cycles needed for layer 0 up to i and subtract the cycles that correspond
to layer 0 up to i−1. We apply a similar method for measuring the assembly
implementation for layers that belong to a block of multiple layers.

The code in ntt.c is the original code, as found in the NHS implemen-
tation. The code ntt parallel.c, described in Paragraph 4.3.2.2, is the
parallelised modification of ntt.c, being able to perform the butterfly oper-
ations on doublewords, each containing 2 coefficients instead of 1.

In Table 3 the performance of every NTT implementation is stated. Note
that in ntt parallel.c we run layer 0 in a non-parallel way. Afterwards, we
convert our output to the correct format, i.e. put 16 bits of zero in between
every coefficient. This makes sure that we have the correct doublewords that
we can work with using the therefor designed functions. At the end of the
loop, we have to remove the zeros again, such that the output is again an
array of halfwords. These two conversions are included, together with the
cycles needed to perform layer 0, between the brackets in layer 0.

La
ye

r
nu

m
be

r
A

ss
em

bl
y

op
ti

m
is

at
io

n
nt

t.
c

(-
O

0)
nt

t.
c

(-
O

3)
nt

t
pa

ra
ll

el
.c

(-
O

0)
nt

t
pa

ra
ll

el
.c

(-
O

3)
0

11
,3

61
51

,7
61

11
,7

90
51

,7
61

(7
9,

93
5)

11
,7

90
(1

6,
83

1)
1

8,
36

6
69

,1
64

17
,9

37
39

,1
98

10
,7

63
2

5,
53

6
51

,7
90

12
,0

97
28

,4
66

10
,0

00
3

7,
07

2
69

,2
66

17
,9

85
39

,2
58

12
,3

18
4

5,
53

6
51

,9
94

12
,2

62
28

,5
86

10
,0

26
1

-
4

26
,5

10
24

2,
21

4
60

,2
81

13
5,

50
8

43
,1

07
5

8,
08

2
69

,6
74

18
,1

50
39

,4
98

12
,3

75
6

5,
37

6
52

,8
10

12
,9

34
29

,0
66

10
,1

15
7

6,
91

2
71

,3
06

18
,8

13
40

,4
58

12
,6

23
8

5,
37

6
56

,0
74

15
,6

22
30

,9
86

10
,4

40
5

-
8

25
,7

46
24

9,
86

4
65

,5
19

14
0,

00
8

45
,5

53
9

8,
01

5
77

,8
34

17
,4

14
44

,2
98

11
,5

29
To

ta
l

71
,6

32
62

1,
67

3
15

5,
00

4
39

9,
74

9
11

7,
02

0

Ta
bl

e
3:

T
he

nu
m

be
r

of
cy

cl
es

ne
ed

ed
to

pe
rfo

rm
a

la
ye

r
pe

r
co

de
.

58 Results

6.1.2 Performance of the proposes NTT optimisations

As expected, the assembly implementation outperforms ntt.c easily. How-
ever, it also uses a lot fewer cycles than the parallelised C implementation,
even with the somewhat agressive (-O3) flag. The reduction in the amount
of cycles, expressed as a percentage, can be found in Table 4. The assembly

ntt.c (-O0) ntt.c (-O3) ntt parallel.c (-O0) ntt parallel.c (-O3)
-88.5% -53.8% -82.1% -38.8%

Table 4: The reduction in cycles using the optimised assembly code compared
to every C implementation.

code is optimised for MIPS64, and not for other processors that with 64-bit
registers. However, ntt parallel.c is designed for any 64-bit processor.
Using the compilation of this C implementation with the −O3 flag, we see
that it takes 24.5% fewer cycles than the original ntt.c. Since the maximum
size of a variable type in C is 64 bits, we can not parallelise the coefficients
further. One could argue that it might also be possible to deal with 3 co-
efficients simultaneously, but this would only allow each coefficient to have
b64

3 c = 21 bits. Taking into account that the coefficients themselves are 16
bits long, this leaves us with 5 “overflow bits” per coefficient. Regarding the
fact that we have to multiply the input coefficients with q−1 = 12, 287 in the
Montgomery reduction, which is too large to fit into 5 bits. This implies that
there is no further parallelisation possible.

The lower amount of cycles in every even layer is due to the fact that the
Barrett reduction is only performed in the odd layers, and not in the even
ones.

6.1.3 Impact of the NTT optimisations across the NHS protocol

In order to see the impact that our optimisation has on the entire NHS
protocol, we first state how much each function contributes to the protocol.
This can be found in Table 5. We see that the FIPS202 functions also form
a big part of the protocol.

Results 59

-O0 -O1 -O2 -O3
SHA3-256 19,671 7,572 9,945 5,519
Parse(SHAKE-128(a)) 258,958 110,266 142,687 105,541
multiplication 112,669 37,920 37,920 37,159
addition 60,445 21,533 21,533 21,541
encodeA 110,388 34,542 34,544 26,431

Table 5: The number of cycles that are needed to perform the entire protocol,
only one party, or only one function, using 4 different flags.

We also include the number of cycles needed to run the entire protocol,
as well as the cycles needed for both parties separately. The results from
these measurements using the original C code are stored in Table 6.

-O0 -O1 -O2 -O3
NHS 8,575,978 2,977,592 2,877,620 2,559,095
Alice 1 2,901,161 1,011,736 986,295 871,441
Bob 4,539,638 1,568,441 1,516,147 1,345,723
Alice 2 1,227,007 397,503 375,210 342,235

Table 6: Number of cycles needed to perform (a part of) the NHS protocol,
using ntt.c.

In these measurements, we have not used an optimised function yet. The
results of the same measurements, using the parallelised C implementation
can be found in Table 7.

-O0 -O1 -O2 -O3
NHS 7,250,245 2,504,951 2,438,252 2,080,828
Alice 1 2,459,247 848,271 839,816 711,952
Bob 3,877,229 1,323,527 1,296,148 1,106,249
Alice 2 913,730 315,765 301,977 262,523

Table 7: Number of cycles needed to perform (a part of) the NHS protocol,
using ntt parallel.c.

As we can see, the number of cycles is already much lower than in Table 6.
In Figure 5 in Section 2.4 it can be seen where the NTT function is called.
Alice calls the NTT twice in the first part of the protocol. Bob then calls the
function three times: twice as the normal NTT and once as the inverse NTT,
which is esentially the NTT with different values for ω. In the final step, Al-
ice also calls the inverse NTT function. The reduction of the cycles for the

60 Results

NTT on these 6 places is what explains the reduction in the cycles in Table 7.

Last but not least, we state the results of the measurements of the MIPS64
assembly optimisation in Table 8.

-O0 -O1 -O2 -O3
NHS 5,518,370 2,301,878 2,362,229 2,043,825
Alice 1 1,881,845 786,494 814,433 699,600
Bob 3,011,603 1,230,227 1,258,353 1,087,820
Alice 2 625,059 284,880 289,303 256,327

Table 8: Number of cycles needed to perform (a part of) the NHS protocol,
using the MIPS64 assembly optimisation.

Again, these results are improvements compared to Table 6, but also com-
pared to Table 7. The latter can be explained by the fact that we have
designed the MIPS64 assembly optimisation especially for the MIPS64 ar-
chitecture, and so we have been able to really exploit every of its properties.

In Table 9 we give an overview of the number of cycles needed to perform
the entire NHS protocol for all the implementations for 4 different flags.

-O0 -O1 -O2 -O3
NHS with ntt.c 8,575,978 2,977,592 2,877,620 2,559,095
NHS with ntt parallel.c 7,250,245 2,504,951 2,438,252 2,080,828
NHS with MIPS64 assembly* 5,518,370 2,301,878 2,362,229 2,043,825

Table 9: Measurements of the entire NHS protocol.

Moreover, we depict the performance first using the original ntt.c, then
with ntt parallel.c instead of ntt.c, and finally with the MIPS64 assem-
bly implementation*. Each result is the average of 100 measurements. *Since
this code is already optimised, there is no reason to do it again. We can com-
pile the rest of the C files, such as FIPS202 (which contains the Keccak hash
functions SHA3-256 and SHAKE-128[52], described in Subsection 2.4.2) and
ChaCha20 (used in the generation of the centered binomial samples as de-
scribed in Subsection 2.4.1), that are used in NHS with the flags though, in
order to get a fair comparison.

Results 61

6.2 RLWR simulation
In the initial simulation of the NHS protocol based on the RLWR problem,
which can be found in LWRsimple.c in Appendix C, we run the protocol N
times, with parameters n = 1, 024 and q = 12, 289. In Table 10 we state the
amount of times that the bitstrings ν and ν ′ contain at least one mismatched
bit. Note that the number of flipped bits, if it is bigger than 0, does not
matter, since the outputs ν and ν ′ are hashed to get to the shared key. We
denote the number of mismatches of ν and ν ′ by “# errors”.

p # errors
8 0

16 2
32 98
64 499

Table 10: Number of mismatches of ν and ν ′ for different choices of p, using
N = 500.

The results of the simulation when the number of runs of the protocol is
incremented to 1, 000, are written in Table 11.

p # errors
8 0

16 3

Table 11: Number of mismatches ν and ν ′ for different choices of p, using
N = 1, 000.

Using the file debug.nb in Appendix C, we can simulate a part of the
version of the NHS protocol based on the RLWR problem. We simply leave
out the addition of the shared secret, such that we can simulate the dif-
ference between bbaseptep and bbatepsep. Again, we use n = 1, 024 and
q = 12, 289. The number of times that the protocol is run is 1000 every time.
We experiment with different values of p. For each value of p, we plot the
difference bbaseptep−bbatepsep, denoted by c−v, and the absolute difference
|bbaseptep − bbatepsep|, denoted by |c− v|.

In Figure 17 we see the results of the simulation using p = 20.

These results contain a lot of values that are larger than or equal to p/4 = 20.
We try again with a smaller value of p, namely p = 16. The corresponding

62 Results

(a) The differences c− v. (b) The differences |c− v|.

Figure 17: The results of the simulation using p = 20.

results can be found in Table 18.

Still, the errors can become too large. In Table 19, we state the results

(a) The differences c− v. (b) The differences |c− v|.

Figure 18: The results of the simulation using p = 16.

for p = 12.

Still there are cases where the errors get larger than p/4. Therefore, we
simulate using p = 8 and give the results in Table 20.

Results 63

(a) The differences c− v. (b) The differences |c− v|.

Figure 19: The results of the simulation using p = 12.

(a) The differences c− v. (b) The differences |c− v|.

Figure 20: The results of the simulation using p = 8.

64 Results

6.3 Update August 4, 2017
In debugUpdate.nb, in Appendix C, we have adapted debug.nb to the latest
version of the protocol, described in Section 5.6. We print how the coeffi-
cients of εs are distributed in order to compare it to error terms in NHS. In
debugUpdate.nb we construct 2 polynomials with n = 100, 000 coefficients.
The coefficients from polynomial ε are distributed uniformly random over
the interval [−bq/2pc, bq/2pc], and s ← ψn16. We calculate the negacyclic
convolution of the polynomials and print a histogram of the coefficients. In
order to see the impact that the interval length has on the distribution of
the coefficients, we use different values of it in every run. The interval length
is calculated as bq/pc. Each of the plots given below looks like a Gaussian
distribution. That’s why, for every plot, we state the mean µ and the stan-
dard deviation σ, together with the smallest coefficient “min” and the largest
coefficient “max”. In Figure 21, we show the histograms of the coefficients
for 7 choices of interval length.

Results 65

-30 000 -20 000 -10 000 0 10 000 20 000 30 000

500

1000

1500

2000

2500

(a) Interval length 32.
-15 000 -10 000 -5000 0 5000 10 000 15 000

500

1000

1500

2000

(b) Interval length 16.

-10 000 -5000 0 5000 10 000 15 000

500

1000

1500

2000

2500

(c) Interval length 12.
-10 000 -5000 0 5000 10 000

500

1000

1500

2000

2500

3000

(d) Interval length 10.

-5000 0 5000 10 000

500

1000

1500

2000

2500

3000

3500

(e) Interval length 8.
-5000 0 5000

500

1000

1500

2000

2500

(f) Interval length 6.

-4000 -2000 0 2000 4000

500

1000

1500

2000

2500

3000

3500

(g) Interval length 4.

Figure 21: Illustration of the distribution of the coefficients of εs for each
interval length. The corresponding variables µ, σ, min, and max can be
found in Table 12.

66 Results

In Table 12 we state the variables that correspond to the distributions in
Figure 21. In order to compare the new protocol to NHS, based on RLWE,

Interval length 32 16 12 10 8 6 4
µ -18.96 30.93 -6.79 -6.81 3.48 3.23 -0.01
σ 8,502.09 4,381.07 3,366.12 2,819.44 2,329.68 1,794.01 1,263.42
min -36,261 -17,687 -13,115 -13,523 -9,965 -7,648 -5,610
max 35,259 18,727 14,413 11,566 10,118 7,711 5,394

Table 12: The variables that correspond to the distributions shown in Fig-
ure 21.

we also make a simulation in which both polynomials s and ε come from the
distribution ψn16. We use n = 100, 000, calculate the negacyclic convolution
of s and ε, and show in Figure 22 how the coefficients are distributed. Also,
we state the corresponding variables. If we compare this to the results of the

-5000 0 5000 10 000

500

1000

1500

2000

2500

3000

3500

Figure 22: The distribution of the coefficients of εs, with mean µ = −3.81,
the standard deviation σ = 2, 517.64, min = −11, 154, and max = 12, 092.

simulation in debugUpdate.nb, stated in Table 12, we see that the RLWE
variant behaves comparably to the RLWR variant with interval lengths 10
and 8. Assuming that all the distributions are approximately Gaussian, or
sub-gaussian, choosing an interval length of 8 or smaller in the RLWR variant
will give smaller errors than the RLWE variant. Afterwards, we can follow
the same reasoning as Appendix D from NH [1] to get the same failure prob-
ability as in NH(S), or an even smaller one.

Contrary to choosing a large interval, the choice of a small interval has the
disadvantage that the messages are relatively large. Suppose we want to work
with intervals of length 8, then p consists of blog(12, 289/8)/ log(2)c+1 = 11
bits. One has to make a trade-off between failure probability and message

Results 67

size. Furthermore, the RLWR protocol makes use of divisions by q and p.
Our current choice of q is very unfortunate. Division by q = 12, 289 is a very
costly operation in practice. If q and p are chosen as powers of 2, however,
the division can simply be done by shifting the bitstring of q with log(p)
positions to the right.

68 Discussion

7 Discussion
Looking at Table 3 in Chapter 6 it can be concluded that the MIPS64 as-
sembly optimisation of the NTT needs less than half the amount of cycles of
the reference implementation ntt.c, compiled with the (-O3) flag. This is
also in the order of magnitude that we had expected. Because we are able
to deal with twice the number of coefficients at the same time in 9 out of
10 layers, it makes sense that we only need approximately half the amount
of cycles. Since we cannot store more than 2 coefficients in a register, this
MIPS64 assembly optimisation should also be close to optimal. Maybe there
are tricks to reduce the amount of cycles even more, e.g. by putting mul-
tiple constants into 1 register and applying a bitmask every time they are
called, but this will only give a relatively small improvement. Something that
can be worth looking at is shifting the output string in the last layer to the
first positions, which will automatically come at the cost of more instructions.

Regarding the RLWR problem it follows from the simulation that the ne-
gacyclic convolutions of the polynomials have an impact on the calculations.
This needs more time to be investigated theoretically. From the simulation,
it seems that p = 8 is a safe value to pick, but it would be nice to justify
this.

7.1 Update (August 4, 2017)
From the simulation it follows that picking p large enough in the RLWR
variant of the protocol, we can get the same (or an even lower) failure prob-
ability as the one in NH(S). However, this is only based on the simulations
and the assumptions that the distributions are (approximately) Gaussian.
Theoretically, it would be better if we could also justify this by working out
the joint probability distributions. However, this turned out to be beyond
the scope of this project.

Future work 69

8 Future work
Due to the limited time that I have been able to work on this project, I have
had to make certain subjects to investigate. There are still some topics left
that could be interesting to look at. One of these topics is the optimisation of
another important and frequently used mechanism in the NewHope-Simple
protocol: the SHA3 function.

Also, it can be interesting to not only look at the simulation of the RLWR
problem, but also the implementation in C, in a similar way as the source
code of NHS. In order to do so, we first would have to do research at the
choice of q and p. As mentioned in the discussion, these should both be
powers of 2 to make the divisions and multiplications not too expensive.

Another topic that would be more interesting in terms of theory (and even-
tually maybe also in practice) is an NHS-like protocol that is based on a
joint version of the RLWE and RLWR problem. This is supposedly even
harder than the RLWE and RLWR problem, but it also probably also more
cycle-consuming.

70 Conclusion

9 Conclusion
The aim of this thesis is to optimise the post-quantum key-exchange scheme
NHS. We have done this both practically and theoretically. Practically by
optimising one of the building blocks of the NHS scheme, the NTT, for 64-bit
processors in general and the MIPS64 architecture in particular. The practi-
cal improvements have been done by modifying the NHS protocol, such that
the underlying lattice problem is the RLWR problem instead of the RLWE
problem.

The MIPS64 assembly optimisation of the NTT is provably faster than the
original reference code, so we would strongly recommend to use this optimi-
sation on MIPS64 processors. In the entire protocol, it will save more than
20% of the cycles compared to the original implementation compiled with
(-O3). Also, if one has access to a 64-bit processor that does not have the
MIPS architecture, we recommend using the parallelised version of the NTT
in C, which saves more than 18.5% of the cycles on the protocol compared
to the original reference code.

Theoretically, the RLWR variant of the NHS protocol is also recommended,
because of the fact that it requires fewer random bits from the device where
it is run. Also, the RLWR turns out to be very similar to (and maybe
even better than) RLWE. From a practical point of view it is would also
be recommended, since the messages that have to be sent are automatically
compressed, because of the rounding function. However, compression size
also has its impact on the failure probability. The trade-off between size and
failure probability is up to the implementer. All in all, it is an interesting
alternative for the RLWE version of NH(S).

REFERENCES 71

References
[1] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.

Post-quantum key exchange – a new hope. In Proceedings of the 25th
USENIX Security Symposium. USENIX Association, 2016. Retrieved
from http://eprint.iacr.org/2015/1092.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
NewHope without reconciliation. IACR Cryptology ePrint Archive
report 2016/1157. Retrieved from https://eprint.iacr.org/2016/
1157.

[3] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Proc. 37th ACM Symp. on Theory of Computing
(STOC), pages 84–93, 2005.

[4] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom
Functions and Lattices. IACR Cryptology ePrint Archive report
2011/401. Retrieved from https://eprint.iacr.org/2011/401.pdf.

[5] Imagination Technologies LTD. and/or its Affiliated Group Compa-
nies. MIPS®Architecture For Programmers Volume I-A: Introduction to
the MIPS64®Architecture. Retrieved from http://cdn2.imgtec.com/
documentation/MD00083-2B-MIPS64INT-AFP-06.01.pdf.

[6] Department of Computer Science, Northern Illinois University. RISC -
Reduced Instruction Set Computer. Retrieved from http://faculty.
cs.niu.edu/˜berezin/463/lec/05/.

[7] Imagination Technologies LTD. and/or its Affiliated Group
Companies. MIPS®Architecture For Programmers Vol-
ume II-A: The MIPS64®Instruction Set Reference Man-
ual. Revision 6.05, June 3, 2016. Retrieved from https:
//imagination-technologies-cloudfront-assets.s3.amazonaws.
com/documentation/MIPS_Architecture_MIPS64_InstructionSet_
%20AFP_P_MD00087_06.05.pdf.

[8] Sukumar Ghosh. MIPS registers. Retrieved from http://homepage.
divms.uiowa.edu/˜ghosh/1-28-10.pdf.

[9] MIPS Technologies Inc. Using the MIPS32®34K®Core Perfor-
mance Counters. Revision 01.01, August 22, 2011. Retrieved from
http://cdn.imgtec.com/mips-documentation/login-required/
using_the_mips32_34k_core_performance_counters.pdf.

http://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2011/401.pdf
http://cdn2.imgtec.com/documentation/MD00083-2B-MIPS64INT-AFP-06.01.pdf
http://cdn2.imgtec.com/documentation/MD00083-2B-MIPS64INT-AFP-06.01.pdf
http://faculty.cs.niu.edu/~berezin/463/lec/05/
http://faculty.cs.niu.edu/~berezin/463/lec/05/
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS64_InstructionSet_%20AFP_P_MD00087_06.05.pdf
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS64_InstructionSet_%20AFP_P_MD00087_06.05.pdf
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS64_InstructionSet_%20AFP_P_MD00087_06.05.pdf
https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/documentation/MIPS_Architecture_MIPS64_InstructionSet_%20AFP_P_MD00087_06.05.pdf
http://homepage.divms.uiowa.edu/~ghosh/1-28-10.pdf
http://homepage.divms.uiowa.edu/~ghosh/1-28-10.pdf
http://cdn.imgtec.com/mips-documentation/login-required/using_the_mips32_34k_core_performance_counters.pdf
http://cdn.imgtec.com/mips-documentation/login-required/using_the_mips32_34k_core_performance_counters.pdf

72 REFERENCES

[10] Fred Cohen. A Short History of Cryptography. Retrieved from http:
//all.net/edu/curr/ip/Chap2-1.html.

[11] R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Dig-
ital Signatures and Public-Key Cryptosystems. Retrieved from http:
//people.csail.mit.edu/rivest/Rsapaper.pdf.

[12] Peter Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. Retrieved from https:
//arxiv.org/pdf/quant-ph/9508027.pdf.

[13] Davide Castelvecchi. Quantum computers ready to leap out of the lab
in 2017. In Nature 541. Retrieved from http://www.nature.com/news/
quantum-computers-ready-to-leap-out-of-the-lab-in-2017-1.
21239.

[14] Bernstein et. al. Post-Quantum Cryptography. Retrieved from
https://www.researchgate.net/profile/Nicolas_Sendrier/
publication/226115302_Code-Based_Cryptography/links/
540d62d50cf2df04e7549388/Code-Based-Cryptography.pdf.

[15] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices
and Learning with Errors Over Rings. IACR Cryptology ePrint Archive
report 2012/230. https://eprint.iacr.org/2012/230.pdf.

[16] David Deutsch. Quantum computation. A comprehensive and inspir-
ing guide to quantum computing. In Physics World, 1/6/92. Retrieved
from https://www.doc.ic.ac.uk/˜nd/surprise_97/journal/vol4/
spb3/#1.1%20Quantum%20computer%20basics.

[17] Ronald de Wolf. Quantum Computing: Lecture Notes. Retrieved from
http://homepages.cwi.nl/˜rdewolf/qcnotes.pdf.

[18] Philipp Jakubeit. NewHope for ARM: An Efficient Implementation of
the Post-Quantum Ephemeral Key Exchange NewHope for the ARMv6-
M Architecture. Retrieved from www.ru.nl/publish/pages/769526/
philipp_jakubeit.pdf.

[19] Chris Peikert. A Brief History of Lattices in Cryptography. Retrieved
from https://web.eecs.umich.edu/˜cpeikert/lic13/lec01.pdf.

[20] Chris Peikert. SVP, Gram-Schmidt, LLL. Retrieved from https://web.
eecs.umich.edu/˜cpeikert/lic13/lec02.pdf.

http://all.net/edu/curr/ip/Chap2-1.html
http://all.net/edu/curr/ip/Chap2-1.html
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://arxiv.org/pdf/quant-ph/9508027.pdf
https://arxiv.org/pdf/quant-ph/9508027.pdf
http://www.nature.com/news/quantum-computers-ready-to-leap-out-of-the-lab-in-2017-1.21239
http://www.nature.com/news/quantum-computers-ready-to-leap-out-of-the-lab-in-2017-1.21239
http://www.nature.com/news/quantum-computers-ready-to-leap-out-of-the-lab-in-2017-1.21239
https://www.researchgate.net/profile/Nicolas_Sendrier/publication/226115302_Code-Based_Cryptography/links/540d62d50cf2df04e7549388/Code-Based-Cryptography.pdf
https://www.researchgate.net/profile/Nicolas_Sendrier/publication/226115302_Code-Based_Cryptography/links/540d62d50cf2df04e7549388/Code-Based-Cryptography.pdf
https://www.researchgate.net/profile/Nicolas_Sendrier/publication/226115302_Code-Based_Cryptography/links/540d62d50cf2df04e7549388/Code-Based-Cryptography.pdf
https://eprint.iacr.org/2012/230.pdf
https://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/spb3/#1.1%20Quantum%20computer%20basics
https://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/spb3/#1.1%20Quantum%20computer%20basics
http://homepages.cwi.nl/~rdewolf/qcnotes.pdf
www.ru.nl/publish/pages/769526/philipp_jakubeit.pdf
www.ru.nl/publish/pages/769526/philipp_jakubeit.pdf
https://web.eecs.umich.edu/~cpeikert/lic13/lec01.pdf
https://web.eecs.umich.edu/~cpeikert/lic13/lec02.pdf
https://web.eecs.umich.edu/~cpeikert/lic13/lec02.pdf

REFERENCES 73

[21] Oded Regev. The Learning with Errors Problem. Retrieved from http:
//www.cims.nyu.edu/˜regev/papers/lwesurvey.pdf.

[22] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.
Post-quantum key exchange for the TLS protocol from the ring learning
with errors problem. Retrieved from https://eprint.iacr.org/2014/
599.pdf.

[23] Daniel Bernstein. ChaCha, a variant of Salsa20. Retrieved from https:
//cr.yp.to/chacha/chacha-20080128.pdf.

[24] M.S. Schmalz. Organization of Computer Systems: Pipelining. Re-
trieved from https://www.cise.ufl.edu/˜mssz/CompOrg/CDA-pipe.
html.

[25] Peter Montgomery. Modular Multiplication Without Trial Division.
In Mathematics of Computation, Vol. 44 No. 170. (Apr., 1985), pp.
519-521. Retrieved from https://cseweb.ucsd.edu/classes/fa06/
cse246/montgomery.pdf.

[26] Mark Buxton. Haswell New Instruction Descriptions Now Available! Re-
trieved from https://software.intel.com/en-us/blogs/2011/06/
13/haswell-new-instruction-descriptions-now-available.

[27] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter
Schwabe. Software Speed Records for Lattice-Based Signatures. In
Post-Quantum Cryptography (2013), P. Gaborit, Ed., vol. 7932 of
LNCS, Springer, pp. 67–82. Retrieved from https://cryptojedi.org/
papers/lattisigns-20130328.pdf.

[28] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. A new hope on
ARM Cortex-M. Retrieved from https://cryptojedi.org/papers/
newhopearm-20160803.pdf.

[29] Arm. Cortex-M Series Family. Retrieved from http://www.arm.com/
products/processors/cortex-m.

[30] Arm. Cortex-M4. Retrieved from https://developer.arm.com/
products/processors/cortex-m/cortex-m4.

[31] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. In Proc.
CRYPTO’86, pages 311–323, 1986.

http://www.cims.nyu.edu/~regev/papers/lwesurvey.pdf
http://www.cims.nyu.edu/~regev/papers/lwesurvey.pdf
https://eprint.iacr.org/2014/599.pdf
https://eprint.iacr.org/2014/599.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://www.cise.ufl.edu/~mssz/CompOrg/CDA-pipe.html
https://www.cise.ufl.edu/~mssz/CompOrg/CDA-pipe.html
https://cseweb.ucsd.edu/classes/fa06/cse246/montgomery.pdf
https://cseweb.ucsd.edu/classes/fa06/cse246/montgomery.pdf
https://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available
https://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available
https://cryptojedi.org/papers/lattisigns-20130328.pdf
https://cryptojedi.org/papers/lattisigns-20130328.pdf
https://cryptojedi.org/papers/newhopearm-20160803.pdf
https://cryptojedi.org/papers/newhopearm-20160803.pdf
http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-m
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://developer.arm.com/products/processors/cortex-m/cortex-m4

74 REFERENCES

[32] David Maier. Polynomials and the Fast Fourier Transform (FFT) [Pow-
erPoint slides]. Retrieved from http://web.cecs.pdx.edu/˜maier/
cs584/Lectures/lect07b-11-MG.pdf.

[33] Richard Crandall and Carl Pomerance. Prime numbers - a com-
putational perspective. http://thales.doa.fmph.uniba.sk/macaj/
skola/teoriapoli/primes.pdf.

[34] Eric W. Weisstein. Primitive Root of Unity. In MathWorld–
A Wolfram Web Resource. http://mathworld.wolfram.com/
PrimitiveRootofUnity.html.

[35] Tim Weenink. Transformations and their applications in cryptology.
This paper is the result of the course Capita Selecta (Research Topic
1) of the Technical University of Eindhoven. (2017) Send an e-mail if
you’d like to see the document.

[36] James Cooley and John Tukey. An algorithm for the machine calculation
of complex Fourier series. In Math. Comput. 19: 297–301. (1965).

[37] GCC. Using the GNU Compiler Collection (GCC): Optimize
Options. Retrieved from https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html.

[38] Bracewell, R. Convolution Theorem. In The Fourier Transform and Its
Applications, 3rd ed. New York: McGraw-Hill, pp. 108-112, 1999.

[39] Eleanor Chu and Alan George. Inside the FFT black box. Serial and Par-
allel Fast Fourier Transform Algorithms. In Computational mathematical
series. Retrieved from http://dsp-book.narod.ru/FFTBB/0270_PDF_
C04.pdf.

[40] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices.
In the 41st ACM Symposium on Theory of Computing (STOC),
2009. Retrieved from https://www.cs.cmu.edu/˜odonnell/hits09/
gentry-homomorphic-encryption.pdf.

[41] Peter van Emde Boas. Another NP-complete problem and the complex-
ity of computing short vectors in a lattice. In Technical Report 8104.
University of Amsterdam, Department of Mathematics, Netherlands,
(1981).

http://web.cecs.pdx.edu/~maier/cs584/Lectures/lect07b-11-MG.pdf
http://web.cecs.pdx.edu/~maier/cs584/Lectures/lect07b-11-MG.pdf
http://thales.doa.fmph.uniba.sk/macaj/skola/teoriapoli/primes.pdf
http://thales.doa.fmph.uniba.sk/macaj/skola/teoriapoli/primes.pdf
http://mathworld.wolfram.com/PrimitiveRootofUnity.html
http://mathworld.wolfram.com/PrimitiveRootofUnity.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://dsp-book.narod.ru/FFTBB/0270_PDF_C04.pdf
http://dsp-book.narod.ru/FFTBB/0270_PDF_C04.pdf
https://www.cs.cmu.edu/~odonnell/hits09/gentry-homomorphic-encryption.pdf
https://www.cs.cmu.edu/~odonnell/hits09/gentry-homomorphic-encryption.pdf

REFERENCES 75

[42] Miklós Ajtai. The shortest vector problem in L2 is NP-
hard for randomized reductions. In Proceedings of the thir-
tieth annual ACM symposium on Theory of computing. Dal-
las, Texas, United States: ACM. pp. 10–19. Retrieved from
http://www.csie.nuk.edu.tw/˜cychen/Lattices/Generating%
20Hard%20Instances%20of%20Lattice%20Problems.pdf.

[43] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polyno-
mials with rational coefficients. In Mathematische Annalen. 261 (4):
515–534.

[44] Daniele Micciancio. The shortest vector in a lattice is hard to approx-
imate to within some constant. In SIAM Journal on Computing 30.6
(2001), pp. 2008–2035. Retrieved from https://cseweb.ucsd.edu/
˜daniele/papers/SVP.pdf.

[45] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating
shortest lattice vectors is not harder than approximating closest lattice
vectors. In Information Processing Letters 71.2 (1999), pp. 55–61. Re-
trieved from https://cseweb.ucsd.edu/˜daniele/papers/GMSS.pdf.

[46] U. Feige and D. Micciancio. The inapproximability of lattice and coding
problems with preprocessing. In Journal of Computer and System Sci-
ences 69.1 (2004), pp. 45–67. Retrieved from https://cseweb.ucsd.
edu/˜daniele/papers/GapCVPP.pdf.

[47] Guillaume Hanrot and Damien Stehlé. Worst-Case Hermite-Korkine-
Zolotarev Reduced Lattice Bases. In [Research Report] RR-6422, IN-
RIA. 2008, pp.25. Retrieved from https://core.ac.uk/download/
pdf/52327979.pdf.

[48] Phong Nguyen. Worst-case to Average-case Reductions For Lat-
tice Problems. [Powerpoint slides]. Retrieved from http://www.
lorentzcenter.nl/lc/web/2016/834/presentations/Nguyen.

[49] Jintai Ding, Xiang Xie, Xiaodong Lin. A Simple Provably Secure Key
Exchange Scheme Based on the Learning with Errors Problem. In IACR
Cryptology ePrint Archive 2012.1 (2012), p. 688. Retrieved from https:
//eprint.iacr.org/2012/688.pdf.

[50] Chris Peikert. Public-key cryptosystems from the worst-case short-
est vector problem. In Proceedings of the forty-first annual ACM
symposium on Theory of computing. 2009, pp. 333–342. Retrieved

http://www.csie.nuk.edu.tw/~cychen/Lattices/Generating%20Hard%20Instances%20of%20Lattice%20Problems.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/Generating%20Hard%20Instances%20of%20Lattice%20Problems.pdf
https://cseweb.ucsd.edu/~daniele/papers/SVP.pdf
https://cseweb.ucsd.edu/~daniele/papers/SVP.pdf
https://cseweb.ucsd.edu/~daniele/papers/GMSS.pdf
https://cseweb.ucsd.edu/~daniele/papers/GapCVPP.pdf
https://cseweb.ucsd.edu/~daniele/papers/GapCVPP.pdf
https://core.ac.uk/download/pdf/52327979.pdf
https://core.ac.uk/download/pdf/52327979.pdf
http://www.lorentzcenter.nl/lc/web/2016/834/presentations/Nguyen
http://www.lorentzcenter.nl/lc/web/2016/834/presentations/Nguyen
https://eprint.iacr.org/2012/688.pdf
https://eprint.iacr.org/2012/688.pdf

76 REFERENCES

from http://drops.dagstuhl.de/opus/volltexte/2009/1892/pdf/
08491.PeikertChris.Paper.1892.pdf.

[51] Chris Peikert. Lattice cryptography for the Internet. In Post-Quantum
Cryptography. 2014, pp. 197–219. Retrieved from https://web.eecs.
umich.edu/˜cpeikert/pubs/suite.pdf.

[52] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
The Keccak sponge function family. Retrieved from http://keccak.
noekeon.org/.

[53] Computer Security Division and Computer Security Resource Cen-
ter. FIPS PUBLICATIONS. Retrieved from http://csrc.nist.gov/
publications/PubsFIPS.html.

[54] Eli Biham. A Fast New DES Implementation in Software. Re-
trieved from http://www.cs.technion.ac.il/users/wwwb/cgi-bin/
tr-get.cgi/1997/CS/CS0891.pdf.

[55] Daniele Micciancio. Closest Vector Problem. In Encyclopedia of Cryp-
tography and Security, pp 212-214.

[56] Imagination Technologies. MIPS DSP. Retrieved from https://www.
imgtec.com/mips/architectures/dsp/.

[57] Imagination Technologies. MIPS SIMD. Retrieved from https://www.
imgtec.com/mips/architectures/simd/.

[58] Alex Voica. Five most iconic devices to use MIPS
CPUs. Retrieved from https://www.imgtec.com/blog/
five-most-iconic-devices-to-use-mips-cpus/.

http://drops.dagstuhl.de/opus/volltexte/2009/1892/pdf/08491.PeikertChris.Paper.1892.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/1892/pdf/08491.PeikertChris.Paper.1892.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
https://www.imgtec.com/mips/architectures/dsp/
https://www.imgtec.com/mips/architectures/dsp/
https://www.imgtec.com/mips/architectures/simd/
https://www.imgtec.com/mips/architectures/simd/
https://www.imgtec.com/blog/five-most-iconic-devices-to-use-mips-cpus/
https://www.imgtec.com/blog/five-most-iconic-devices-to-use-mips-cpus/

Appendices
A NHS 64-bit optimisation (in C)
First we describe the original file ntt.c as it is found in the reference [2].
#include "inttypes.h"
#include "ntt.h"
#include "params.h"
#include "reduce.h"

static uint16_t bitrev_table[PARAM_N] = {
0,512,256,768,128,640,384,896,64,576,320,832,192,704,448,960,32,544,
288,800,160,672,416,928,96,608,352,864,224,736,480,992,
16,528,272,784,144,656,400,912,80,592,336,848,208,720,464,976,48,560,
304,816,176,688,432,944,112,624,368,880,240,752,496,1008,
8,520,264,776,136,648,392,904,72,584,328,840,200,712,456,968,40,552,
296,808,168,680,424,936,104,616,360,872,232,744,488,1000,
24,536,280,792,152,664,408,920,88,600,344,856,216,728,472,984,56,568,
312,824,184,696,440,952,120,632,376,888,248,760,504,1016,
4,516,260,772,132,644,388,900,68,580,324,836,196,708,452,964,36,548,
292,804,164,676,420,932,100,612,356,868,228,740,484,996,
20,532,276,788,148,660,404,916,84,596,340,852,212,724,468,980,52,564,
308,820,180,692,436,948,116,628,372,884,244,756,500,1012,
12,524,268,780,140,652,396,908,76,588,332,844,204,716,460,972,44,556,
300,812,172,684,428,940,108,620,364,876,236,748,492,1004,
28,540,284,796,156,668,412,924,92,604,348,860,220,732,476,988,60,572,
316,828,188,700,444,956,124,636,380,892,252,764,508,1020,
2,514,258,770,130,642,386,898,66,578,322,834,194,706,450,962,34,546,
290,802,162,674,418,930,98,610,354,866,226,738,482,994,
18,530,274,786,146,658,402,914,82,594,338,850,210,722,466,978,50,562,
306,818,178,690,434,946,114,626,370,882,242,754,498,1010,
10,522,266,778,138,650,394,906,74,586,330,842,202,714,458,970,42,554,
298,810,170,682,426,938,106,618,362,874,234,746,490,1002,
26,538,282,794,154,666,410,922,90,602,346,858,218,730,474,986,58,570,
314,826,186,698,442,954,122,634,378,890,250,762,506,1018,
6,518,262,774,134,646,390,902,70,582,326,838,198,710,454,966,38,550,
294,806,166,678,422,934,102,614,358,870,230,742,486,998,
22,534,278,790,150,662,406,918,86,598,342,854,214,726,470,982,54,566,
310,822,182,694,438,950,118,630,374,886,246,758,502,1014,
14,526,270,782,142,654,398,910,78,590,334,846,206,718,462,974,46,558,
302,814,174,686,430,942,110,622,366,878,238,750,494,1006,

78 REFERENCES

30,542,286,798,158,670,414,926,94,606,350,862,222,734,478,990,62,574,
318,830,190,702,446,958,126,638,382,894,254,766,510,1022,
1,513,257,769,129,641,385,897,65,577,321,833,193,705,449,961,33,545,
289,801,161,673,417,929,97,609,353,865,225,737,481,993,
17,529,273,785,145,657,401,913,81,593,337,849,209,721,465,977,49,561,
305,817,177,689,433,945,113,625,369,881,241,753,497,1009,
9,521,265,777,137,649,393,905,73,585,329,841,201,713,457,969,41,553,
297,809,169,681,425,937,105,617,361,873,233,745,489,1001,
25,537,281,793,153,665,409,921,89,601,345,857,217,729,473,985,57,569,
313,825,185,697,441,953,121,633,377,889,249,761,505,1017,
5,517,261,773,133,645,389,901,69,581,325,837,197,709,453,965,37,549,
293,805,165,677,421,933,101,613,357,869,229,741,485,997,
21,533,277,789,149,661,405,917,85,597,341,853,213,725,469,981,53,565,
309,821,181,693,437,949,117,629,373,885,245,757,501,1013,
13,525,269,781,141,653,397,909,77,589,333,845,205,717,461,973,45,557,
301,813,173,685,429,941,109,621,365,877,237,749,493,1005,
29,541,285,797,157,669,413,925,93,605,349,861,221,733,477,989,61,573,
317,829,189,701,445,957,125,637,381,893,253,765,509,1021,
3,515,259,771,131,643,387,899,67,579,323,835,195,707,451,963,35,547,
291,803,163,675,419,931,99,611,355,867,227,739,483,995,
19,531,275,787,147,659,403,915,83,595,339,851,211,723,467,979,51,563,
307,819,179,691,435,947,115,627,371,883,243,755,499,1011,
11,523,267,779,139,651,395,907,75,587,331,843,203,715,459,971,43,555,
299,811,171,683,427,939,107,619,363,875,235,747,491,1003,
27,539,283,795,155,667,411,923,91,603,347,859,219,731,475,987,59,571,
315,827,187,699,443,955,123,635,379,891,251,763,507,1019,
7,519,263,775,135,647,391,903,71,583,327,839,199,711,455,967,39,551,
295,807,167,679,423,935,103,615,359,871,231,743,487,999,
23,535,279,791,151,663,407,919,87,599,343,855,215,727,471,983,55,567,
311,823,183,695,439,951,119,631,375,887,247,759,503,1015,
15,527,271,783,143,655,399,911,79,591,335,847,207,719,463,975,47,559,
303,815,175,687,431,943,111,623,367,879,239,751,495,1007,
31,543,287,799,159,671,415,927,95,607,351,863,223,735,479,991,63,575,
319,831,191,703,447,959,127,639,383,895,255,767,511,1023

};

void bitrev_vector(uint16_t* poly)
{

unsigned int i,r;
uint16_t tmp;

REFERENCES 79

for(i = 0; i < PARAM_N; i++)
{

r = bitrev_table[i];
if (i < r)
{

tmp = poly[i];
poly[i] = poly[r];
poly[r] = tmp;

}
}

}

void mul_coefficients(uint16_t* poly, const uint16_t* factors)
{

unsigned int i;

for(i = 0; i < PARAM_N; i++)
poly[i] = montgomery_reduce((poly[i] * factors[i]));

}

/* GS_bo_to_no; omegas need to be in Montgomery domain */
void ntt(uint16_t * a, const uint16_t* omega)
{

int i, start, j, jTwiddle, distance;
uint16_t temp, W, temp0;

for(i=0;i<10;i+=2)
{

// Even level
distance = (1<<i);
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N-1;j+=2*distance)
{

W = omega[jTwiddle++];
temp = a[j];
a[j] = (temp + a[j + distance]); // Omit reduction (be lazy)

80 REFERENCES

a[j + distance] = montgomery_reduce((W * ((uint32_t)temp
+ 3*PARAM_Q - a[j + distance])));

}
}

// Odd level
distance <<= 1;
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N-1;j+=2*distance)
{

W = omega[jTwiddle++];
temp = a[j];
a[j] = barrett_reduce((temp + a[j + distance]));
a[j + distance] = montgomery_reduce((W * ((uint32_t)temp

+ 3*PARAM_Q - a[j + distance])));
}

}
}

}

REFERENCES 81

This function makes use of the Montgomery reduction and the Barrett
reduction function, which are defined in reduce.c.

#include "reduce.h"
#include "params.h"

/* Incomplete-reduction routines; for details on allowed input ranges
* and produced output ranges, see the description in the paper:
* https://cryptojedi.org/papers/#newhope */

static const uint32_t qinv = 12287; // -inverse_mod(p,2ˆ18)
static const uint32_t rlog = 18;

uint16_t montgomery_reduce(uint32_t a)
{

uint32_t u;

u = (a * qinv);
u &= ((1<<rlog)-1);
u *= PARAM_Q;
a = a + u;
return a >> 18;

}

uint16_t barrett_reduce(uint16_t a)
{

uint32_t u;

u = ((uint32_t) a * 5) >> 16;
u *= PARAM_Q;
a -= u;
return a;

}

82 REFERENCES

Our own optimisation, ntt parallel.c already includes the parellised
Montgomery reduction and Barrett reduction. Also, the loop is unrolled in
order to simplify the debugging.

#include <stdio.h>
#include "inttypes.h"

#include "cvmx.h"
#include "cvmx-spinlock.h"
#include "cvmx-fpa.h"
#include "cvmx-ilk.h"
#include "cvmx-pip.h"
#include "cvmx-ipd.h"
#include "cvmx-pko.h"
#include "cvmx-dfa.h"
#include "cvmx-pow.h"
#include "cvmx-gmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-coremask.h"
#include "cvmx-bootmem.h"
#include "cvmx-helper.h"
#include "cvmx-app-hotplug.h"
#include "cvmx-helper-cfg.h"
#include "cvmx-srio.h"
#include "cvmx-rng.h"

#define PARAM_Q 12289
#define PARAM_N 1024

#define RLOG 18
#define R_LOG_1 262143
#define QINV 12287

static const uint32_t qinv = 12287; // -inverse_mod(p,2ˆ18)
static const uint32_t rlog = 18;

uint16_t montgomery_reduce(uint32_t a)
{

uint32_t u;
u = (a * qinv);
u &= ((1<<rlog)-1);

REFERENCES 83

u *= PARAM_Q;
a = a + u;
return a >> 18;

}
uint64_t barrett_reduce64(uint64_t a)
{

uint64_t u;

u = a;
u = u * 5;
u = u & 0xFFFF0000FFFF0000;
u = u >> 16;
u = u * PARAM_Q;
a = a - u;
return a;

}

uint64_t montgomery_reduce64(uint64_t a)
{

uint64_t u,u1,u2;
u1 = a & 0xFFFFFFFF00000000;
u1 *= qinv;
u2 = a & 0x00000000FFFFFFFF;
u2 *= qinv;
u1 = u1 & 0x0003FFFF00000000;
u2 = u2 & 0x000000000003FFFF;
u = u1 + u2;
u = u * PARAM_Q;
a = a + u;
// a = a & 0xFFFC0000FFFC0000;
return a >> 18;

}

void ntt_parallel(uint16_t * a, uint16_t* omega)
{

int i, start, j, jTwiddle, distance;
uint16_t W;
uint64_t temp;
uint64_t aa[512];

84 REFERENCES

//Even level 0 (not parallel)
distance = (1<<0);
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N-1;j+=2*distance)
{

W = omega[jTwiddle++];
temp = a[j];
a[j] = (temp + a[j + distance]); // Omit reduction (be lazy)
a[j + distance] = montgomery_reduce((W * ((uint32_t)temp +

3*PARAM_Q - a[j + distance])));
}

}

//Translate from 16-bit integers to 64-bit integers.
for(i=0;i<PARAM_N/2;i++)

aa[i] = a[2*i+1] | (uint64_t)a[2*i]<<32;

//Odd level 1
distance = (1 << (1-1)); //Only half (2 coeff. in 1 register ==>

distance in table gets twice as small)
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = barrett_reduce64((temp + aa[j + distance]));
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Even level 2
distance = (1 << (2-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;

REFERENCES 85

for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = (temp + aa[j + distance]);
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Odd level 3
distance = (1 << (3-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = barrett_reduce64((temp + aa[j + distance]));
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Even level 4
distance = (1 << (4-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = (temp + aa[j + distance]);
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Odd level 5

86 REFERENCES

distance = (1 << (5-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = barrett_reduce64((temp + aa[j + distance]));
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Even level 6
distance = (1 << (6-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = (temp + aa[j + distance]);
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Odd level 7
distance = (1 << (7-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = barrett_reduce64((temp + aa[j + distance]));
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

REFERENCES 87

- aa[j + distance])));
}

}

//Even level 8
distance = (1 << (8-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = (temp + aa[j + distance]);
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Odd level 9
distance = (1 << (9-1));
for(start = 0; start < distance;start++)
{

jTwiddle = 0;
for(j=start;j<PARAM_N/2-distance;j+=2*distance)
{

W = omega[jTwiddle++];
temp = aa[j];
aa[j] = barrett_reduce64((temp + aa[j + distance]));
aa[j + distance] = montgomery_reduce64((W * (temp + 0x0000900300009003

- aa[j + distance])));
}

}

//Translate back to 16-bit integers
for(i=0;i<PARAM_N/2;i++)
{

a[2*i] = aa[i] >> 32;
a[2*i+1] = aa[i] & 0xffffffff;

}
}

B NHS optimisation in (MIPS64 assembly)
The MIPS64 assembly code is divided into 4 files. In pnttlevel0.s, we deal
with the first layer. In pnttlevel1t4.s, layer 1 up to and including 4 are
implemented. pnttlevel5t8.s contains layer 5, 6, 7, and 8. The last layer
is included in pnttlevel9.s.

We start with pnttlevel0.s.

.text

.globl pnttlevel0

.ent pnttlevel0

.macro MONTG_0 INPUT
li $v0, 12287 /* *QINV */
mul $gp, \INPUT, $v0
ext $gp, $gp, 0, 18
li $v0, 12289 /* *PARAM_Q */
mul $gp, $gp, $v0
addu $gp, $gp, \INPUT /* a + u */
ext \INPUT, $gp, 18, 14

.endm

.macro SUBROUTINE_0 COEFF1 COEFF2 OFFSETOM OFFSETA
lh $t8, \OFFSETOM($a1) #$t8 bevat nu omega
add $t9, \COEFF1, \COEFF2 #a[j] = a[j] + a[j + distance]
li $v0, 36867
add \COEFF1, \COEFF1, $v0 #temp += 3q
sub \COEFF1, \COEFF1, \COEFF2 #temp -= $t1
mul \COEFF1, \COEFF1, $t8 #temp *= W
MONTG_0 \COEFF1
dsll $t9, 32
dadd $t9, $t9, \COEFF1
sd $t9, \OFFSETA($a0)

.endm

.macro ROUTINE_0
SUBROUTINE_0 $t0, $t1, 0, 0
SUBROUTINE_0 $t2, $t3, 2, 8
SUBROUTINE_0 $t4, $t5, 4, 16
SUBROUTINE_0 $t6, $t7, 6, 24
SUBROUTINE_0 $s0, $s1, 8, 32

REFERENCES 89

SUBROUTINE_0 $s2, $s3, 10, 40
SUBROUTINE_0 $s4, $s5, 12, 48
SUBROUTINE_0 $s6, $s7, 14, 56

.endm

.macro ROUTINE_1
SUBROUTINE_0 $t0, $t1, 16, 64
SUBROUTINE_0 $t2, $t3, 18, 72
SUBROUTINE_0 $t4, $t5, 20, 80
SUBROUTINE_0 $t6, $t7, 22, 88
SUBROUTINE_0 $s0, $s1, 24, 96
SUBROUTINE_0 $s2, $s3, 26, 104
SUBROUTINE_0 $s4, $s5, 28, 112
SUBROUTINE_0 $s6, $s7, 30, 120

.endm

.macro LOAD_0
lh $t0, 0($a0)
lh $t1, 2($a0)
lh $t2, 4($a0)
lh $t3, 6($a0)
lh $t4, 8($a0)
lh $t5, 10($a0)
lh $t6, 12($a0)
lh $t7, 14($a0)
lh $s0, 16($a0)
lh $s1, 18($a0)
lh $s2, 20($a0)
lh $s3, 22($a0)
lh $s4, 24($a0)
lh $s5, 26($a0)
lh $s6, 28($a0)
lh $s7, 30($a0)

.endm

.macro LOADSTORE_NEW
ld $t0, 2048($a0)
sd $t0, 0($a0)
ld $t1, 2056($a0)
sd $t1, 8($a0)
ld $t2, 2064($a0)

90 REFERENCES

sd $t2, 16($a0)
ld $t3, 2072($a0)
sd $t3, 24($a0)
ld $t4, 2080($a0)
sd $t4, 32($a0)
ld $t5, 2088($a0)
sd $t5, 40($a0)
ld $t6, 2096($a0)
sd $t6, 48($a0)
ld $t7, 2104($a0)
sd $t7, 56($a0)

.endm

.macro LOAD_SP
addi $sp, $sp, -96
sd $s0, 0($sp)
sd $s1, 8($sp)
sd $s2, 16($sp)
sd $s3, 24($sp)
sd $s4, 32($sp)
sd $s5, 40($sp)
sd $s6, 48($sp)
sd $s7, 56($sp)
sd $gp, 64($sp)
sd $fp, 72($sp)
sd $ra, 80($sp)

.endm

.macro STORE_SP
ld $s0, 0($sp)
ld $s1, 8($sp)
ld $s2, 16($sp)
ld $s3, 24($sp)
ld $s4, 32($sp)
ld $s5, 40($sp)
ld $s6, 48($sp)
ld $s7, 56($sp)
ld $gp, 64($sp)
ld $fp, 72($sp)
ld $ra, 80($sp)
addi $sp, $sp, 88

REFERENCES 91

.endm

.macro TEST_OM
addi $a1, $a1, 16
lh $t0, 0($a1)
lh $t1, 2($a1)
lh $t2, 4($a1)
lh $t3, 6($a1)
lh $t4, 16($a1)
lh $t5, 18($a1)
lh $t6, 20($a1)
lh $t7, 22($a1)
sh $t0, 0($a0)
sh $t1, 2($a0)
sh $t2, 4($a0)
sh $t3, 6($a0)
sh $t4, 8($a0)
sh $t5, 10($a0)
sh $t6, 12($a0)
sh $t7, 14($a0)

.endm

.macro LOADSTORE_1
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64

.endm

92 REFERENCES

.macro LOADSTORE_2
LOADSTORE_1
LOADSTORE_1
LOADSTORE_1
LOADSTORE_1
LOADSTORE_1
LOADSTORE_1
LOADSTORE_1
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW
addi $a0, $a0, 64
LOADSTORE_NEW

.endm

pnttlevel0:
/* Init */

LOAD_SP

#initialise counter
li $ra, 0
sd $ra, 88($sp)

looptop:

#Shift $a0 with 32*i
ld $ra, 88($sp)
li $v1, 32
mul $v1, $v1, $ra
add $a0, $a0, $v1

REFERENCES 93

LOAD_0

#Shift, such that you don’t overwrite the previous results
addi $a0, $a0, 2048
add $a0, $a0, $v1

ROUTINE_0 #apply operations and store behind the 2048$(a0)
addi $a0, $a0, -2048
sub $a0, $a0, $v1
sub $a0, $a0, $v1

/* shift omegas */
addi $a1, $a1, 16 #shift omegas

#Increment loop
ld $ra, 88($sp)
addi $ra, 1 #loop counter += 1
sd $ra, 88($sp)
li $v1, 64

bnel $ra, $v1, looptop

#Afterwards: store values on right place
LOADSTORE_2

STORE_SP

jr $ra

.end pnttlevel0

94 REFERENCES

Next, we see that pnttlevel1t4.s contains:

.text

.globl pnttlevel1t4

.ent pnttlevel1t4

/* Registers:
$v0 : PARAM_Q|0000|QINV
$v1 : temp for loop counter and computations on PARAM_Q and QINV
$a0 : address(a)
$a1 : address(omega)
$a2 : 0x0000900300009003
$a3 : 0x0000FFFF0000FFFF ==> OR temp montgomery ($t9)
$t0 - $t7 : coefficients a (2 per register)
$s0 - $s7 : coefficients a (2 per register)
$t8 : omegas (4 per register)
$t9 : temp
$gp : temp (barrett and montgomery)
$fp : 0x00000000ffffffff
$ra : temp (loop counter pushed to stack)

*/

/* Uses $gp as temp space */
.macro BARRETT_REDUCE OUT IN

dsll $gp,\IN,2
daddu $gp,$gp,\IN
dsrl $gp, $gp, 16
and $gp, $gp, $a3
#dsrl $v1, $v0, 32
li $v0, 12289
dmul $gp, $gp, $v0 #put $v1 = 12289
dsub \OUT, \IN, $gp

.endm

/* Uses $t9, $gp, and $ra as temp space */
.macro MONTGOMERY_REDUCE INOUT

dsll $gp, $fp, 32
and $t9, \INOUT, $fp
and $gp, \INOUT, $gp
#andi $v1, $v0, 0xFFFF #put $v1 = 12287
li $v0, 12287

REFERENCES 95

dmul $t9, $t9, $v0
dmul $gp, $gp, $v0
dsrl $ra, $fp, 14
and $t9, $t9, $ra
dsll $ra, $ra, 32
and $gp, $gp, $ra
daddu $t9, $t9, $gp
#dsrl $v1, $v0, 32 #put $v1 = 12289
li $v0, 12289
dmul $t9, $t9, $v0
daddu \INOUT, \INOUT, $t9
dsrl \INOUT, \INOUT, 18

.endm

#WITH Barrett_reduction
.macro SUBROUTINE_B COEF1 COEF2 SH1 SH2 SH3

lh $t8, \SH1($a1) #load 1st omega

dadd $t9, \COEF1, \COEF2 #(temp + aa[j + distance])

dadd \COEF1, \COEF1, $a2 #temp += 3*PARAM_Q
dsub \COEF2, \COEF1, \COEF2 #-= aa[j + distance]
dmul \COEF2, \COEF2, $t8 #*= W

BARRETT_REDUCE \COEF1, $t9
#sd \COEF1, \SH2($a0) #Going back from temp value t9 to t0

MONTGOMERY_REDUCE \COEF2
#sd \COEF2, \SH3($a0)

.endm

#WITHOUT Barrett_reduction
.macro SUBROUTINE COEF1 COEF2 SH1 SH2 SH3

lh $t8, \SH1($a1) #load omega

dadd $t9, \COEF1, \COEF2 #(temp + aa[j + distance])

dadd \COEF1, \COEF1, $a2 #temp += 3*PARAM_Q
dsub \COEF2, \COEF1, \COEF2 #-= aa[j + distance]
dmul \COEF2, \COEF2, $t8 #*= W

96 REFERENCES

and \COEF1, $t9, $t9 #instead of using sd

#sd $t9, \SH2($a0) #Going back from temp value t9 to t0

MONTGOMERY_REDUCE \COEF2
#sd \COEF2, \SH3($a0)

.endm

.macro SUBROUTINE_0 COEF1 COEF2 SH1 SH2 SH3
lh $t8, \SH1($a1) #load omega

dadd $t9, \COEF1, \COEF2 #(temp + aa[j + distance])

li $v0, 36867
add \COEF1, \COEF1, $v0 #temp += 3*PARAM_Q
sub \COEF2, \COEF1, \COEF2 #-= aa[j + distance]
mul \COEF2, \COEF2, $t8 #*= W

MONTGOMERY_REDUCE \COEF2 #aanpassen naar ander formaat
dsll $t9, $t9, 32
dadd $t9, $t9, \COEF2
sd $t9, \SH2($a0) #Going back from temp value t9 to t0

.endm

.macro LAYER1
SUBROUTINE_B $t0, $t1, 0, 0, 8
SUBROUTINE_B $t2, $t3, 2, 16, 24
SUBROUTINE_B $t4, $t5, 4, 32, 40
SUBROUTINE_B $t6, $t7, 6, 48, 56
SUBROUTINE_B $s0, $s1, 8, 64, 72
SUBROUTINE_B $s2, $s3, 10, 80, 88
SUBROUTINE_B $s4, $s5, 12, 96, 104
SUBROUTINE_B $s6, $s7, 14, 112, 120

.endm

.macro LAYER2
SUBROUTINE $t0, $t2, 0, 0, 16
SUBROUTINE $t1, $t3, 0, 8, 24
SUBROUTINE $t4, $t6, 2, 32, 48
SUBROUTINE $t5, $t7, 2, 40, 56
SUBROUTINE $s0, $s2, 4, 64, 80

REFERENCES 97

SUBROUTINE $s1, $s3, 4, 72, 88
SUBROUTINE $s4, $s6, 6, 96, 112
SUBROUTINE $s5, $s7, 6, 104, 120

.endm

.macro LAYER3
SUBROUTINE_B $t0, $t4, 0, 0, 32
SUBROUTINE_B $t1, $t5, 0, 8, 40
SUBROUTINE_B $t2, $t6, 0, 16, 48
SUBROUTINE_B $t3, $t7, 0, 24, 56
SUBROUTINE_B $s0, $s4, 2, 64, 96
SUBROUTINE_B $s1, $s5, 2, 72, 104
SUBROUTINE_B $s2, $s6, 2, 80, 112
SUBROUTINE_B $s3, $s7, 2, 88, 120

.endm

.macro LAYER4
SUBROUTINE $t0, $s0, 0, 0, 64
SUBROUTINE $t1, $s1, 0, 8, 72
SUBROUTINE $t2, $s2, 0, 16, 80
SUBROUTINE $t3, $s3, 0, 24, 88
SUBROUTINE $t4, $s4, 0, 32, 96
SUBROUTINE $t5, $s5, 0, 40, 104
SUBROUTINE $t6, $s6, 0, 48, 112
SUBROUTINE $t7, $s7, 0, 56, 120

.endm

.macro LOAD
ld $t0, 0($a0)
ld $t1, 8($a0)
ld $t2, 16($a0)
ld $t3, 24($a0)
ld $t4, 32($a0)
ld $t5, 40($a0)
ld $t6, 48($a0)
ld $t7, 56($a0)
ld $s0, 64($a0)
ld $s1, 72($a0)
ld $s2, 80($a0)
ld $s3, 88($a0)
ld $s4, 96($a0)

98 REFERENCES

ld $s5, 104($a0)
ld $s6, 112($a0)
ld $s7, 120($a0)

.endm

pnttlevel1t4:
/* Init */

addi $sp, $sp, -96
sd $s0, 0($sp)
sd $s1, 8($sp)
sd $s2, 16($sp)
sd $s3, 24($sp)
sd $s4, 32($sp)
sd $s5, 40($sp)
sd $s6, 48($sp)
sd $s7, 56($sp)
sd $gp, 64($sp)
sd $fp, 72($sp)
sd $ra, 80($sp)

li $v0, 12289
dsll $v0, $v0, 32
daddi $v0, $v0, 12287 #$v0 now holds 0x300100002fff (=12289|0000|12287)

li $a2, 0x9003
dsll $ra, $a2, 32
dadd $a2, $a2, $ra # $a2 now holds 0x0000900300009003

li $a3, 0xFFFF
dsll $ra, $a3, 32
dadd $a3, $a3, $ra # $a3 now holds 0x0000FFFF0000FFFF

li $ra, 0 #initialise counter
sd $ra, 88($sp)

li $fp, -1
dsrl $fp, $fp, 32

looptop:

REFERENCES 99

LOAD

ld $ra, 88($sp)
li $v1, 16
mul $v1, $v1, $ra
add $a1, $a1, $v1 #Move to next omega
LAYER1
sub $a1, $a1, $v1 #Move the address back

ld $ra, 88($sp)
li $v1, 8
mul $v1, $v1, $ra
add $a1, $a1, $v1 #Move to next omega
LAYER2
sub $a1, $a1, $v1 #Move the address back

ld $ra, 88($sp)
li $v1, 4
mul $v1, $v1, $ra
add $a1, $a1, $v1 #Move to next omega
LAYER3
sub $a1, $a1, $v1 #Move the address back

ld $ra, 88($sp)
li $v1, 2
mul $v1, $v1, $ra
add $a1, $a1, $v1 #Move to next omega
LAYER4
sub $a1, $a1, $v1 #Move the address back

#STORE VARIABLES
sd $t0, 0($a0)
sd $t1, 8($a0)
sd $t2, 16($a0)
sd $t3, 24($a0)
sd $t4, 32($a0)
sd $t5, 40($a0)
sd $t6, 48($a0)
sd $t7, 56($a0)
sd $s0, 64($a0)
sd $s1, 72($a0)

100 REFERENCES

sd $s2, 80($a0)
sd $s3, 88($a0)
sd $s4, 96($a0)
sd $s5, 104($a0)
sd $s6, 112($a0)
sd $s7, 120($a0)

addi $a0, $a0, 128 #Move to next block of a’s
ld $ra, 88($sp)
addi $ra, 1 #loop counter += 1
sd $ra, 88($sp)
li $v1, 32

bnel $ra, $v1, looptop

ld $s0, 0($sp)
ld $s1, 8($sp)
ld $s2, 16($sp)
ld $s3, 24($sp)
ld $s4, 32($sp)
ld $s5, 40($sp)
ld $s6, 48($sp)
ld $s7, 56($sp)
ld $gp, 64($sp)
ld $fp, 72($sp)
ld $ra, 80($sp)
addi $sp, $sp, 88

jr $ra

.end pnttlevel1t4

REFERENCES 101

Afterwards, we perform pnttlevel5t8.s, which is defined as:

.text

.globl pnttlevel5t8

.ent pnttlevel5t8

/* Registers:
$v0 : PARAM_Q|0000|QINV
$v1 : temp for loop counter and computations on PARAM_Q and QINV
$a0 : address(a)
$a1 : address(omega)
$a2 : 0x0000900300009003
$a3 : 0x0000FFFF0000FFFF ==> OR temp montgomery ($t9)
$t0 - $t7 : coefficients a (2 per register)
$s0 - $s7 : coefficients a (2 per register)
$t8 : omegas (4 per register)
$t9 : temp
$gp : temp (barrett and montgomery)
$fp : 0x00000000ffffffff
$ra : temp (loop counter pushed to stack)

*/

/* Uses $gp as temp space */
.macro BARRETT_REDUCE OUT IN

dsll $gp,\IN,2
daddu $gp,$gp,\IN
dsrl $gp, $gp, 16
and $gp, $gp, $a3
#dsrl $v1, $v0, 32
li $v0, 12289
dmul $gp, $gp, $v0 #put $v1 = 12289
dsub \OUT, \IN, $gp

.endm

/* Uses $t9, $gp, and $ra as temp space */
.macro MONTGOMERY_REDUCE INOUT

dsll $gp, $fp, 32
and $t9, \INOUT, $fp
and $gp, \INOUT, $gp
#andi $v1, $v0, 0xFFFF #put $v1 = 12287
li $v0, 12287

102 REFERENCES

dmul $t9, $t9, $v0
dmul $gp, $gp, $v0
dsrl $ra, $fp, 14
and $t9, $t9, $ra
dsll $ra, $ra, 32
and $gp, $gp, $ra
daddu $t9, $t9, $gp
#dsrl $v1, $v0, 32 #put $v1 = 12289
li $v0, 12289
dmul $t9, $t9, $v0
daddu \INOUT, \INOUT, $t9
dsrl \INOUT, \INOUT, 18

.endm

#WITH Barrett_reduction
.macro SUBROUTINE_B COEF1 COEF2 SH1

lh $t8, \SH1($a1) #load 1st omega

dadd $t9, \COEF1, \COEF2 #(temp + aa[j + distance])

dadd \COEF1, \COEF1, $a2 #temp += 3*PARAM_Q
dsub \COEF2, \COEF1, \COEF2 #-= aa[j + distance]
dmul \COEF2, \COEF2, $t8 #*= W

BARRETT_REDUCE \COEF1, $t9

MONTGOMERY_REDUCE \COEF2
.endm

#WITHOUT Barrett_reduction
.macro SUBROUTINE COEF1 COEF2 SH1 SH2 SH3

lh $t8, \SH1($a1) #load omega

dadd $t9, \COEF1, \COEF2 #(temp + aa[j + distance])

dadd \COEF1, \COEF1, $a2 #temp += 3*PARAM_Q
dsub \COEF2, \COEF1, \COEF2 #-= aa[j + distance]
dmul \COEF2, \COEF2, $t8 #*= W

and \COEF1, $t9, $t9 #instead of using sd

REFERENCES 103

#sd $t9, \SH2($a0) #Going back from temp value t9 to t0

MONTGOMERY_REDUCE \COEF2
#sd \COEF2, \SH3($a0)

.endm

.macro LAYER5
SUBROUTINE_B $t0, $t1, 0
SUBROUTINE_B $t2, $t3, 2
SUBROUTINE_B $t4, $t5, 4
SUBROUTINE_B $t6, $t7, 6
SUBROUTINE_B $s0, $s1, 8
SUBROUTINE_B $s2, $s3, 10
SUBROUTINE_B $s4, $s5, 12
SUBROUTINE_B $s6, $s7, 14

.endm

.macro LAYER6
SUBROUTINE $t0, $t2, 0
SUBROUTINE $t1, $t3, 0
SUBROUTINE $t4, $t6, 2
SUBROUTINE $t5, $t7, 2
SUBROUTINE $s0, $s2, 4
SUBROUTINE $s1, $s3, 4
SUBROUTINE $s4, $s6, 6
SUBROUTINE $s5, $s7, 6

.endm

.macro LAYER7
SUBROUTINE_B $t0, $t4, 0
SUBROUTINE_B $t1, $t5, 0
SUBROUTINE_B $t2, $t6, 0
SUBROUTINE_B $t3, $t7, 0
SUBROUTINE_B $s0, $s4, 2
SUBROUTINE_B $s1, $s5, 2
SUBROUTINE_B $s2, $s6, 2
SUBROUTINE_B $s3, $s7, 2

.endm

.macro LAYER8
SUBROUTINE $t0, $s0, 0

104 REFERENCES

SUBROUTINE $t1, $s1, 0
SUBROUTINE $t2, $s2, 0
SUBROUTINE $t3, $s3, 0
SUBROUTINE $t4, $s4, 0
SUBROUTINE $t5, $s5, 0
SUBROUTINE $t6, $s6, 0
SUBROUTINE $t7, $s7, 0

.endm

.macro LOAD_SEC
ld $t0, 0($a0)
ld $t1, 128($a0)
ld $t2, 256($a0)
ld $t3, 384($a0)
ld $t4, 512($a0)
ld $t5, 640($a0)
ld $t6, 768($a0)
ld $t7, 896($a0)
ld $s0, 1024($a0)
ld $s1, 1152($a0)
ld $s2, 1280($a0)
ld $s3, 1408($a0)
ld $s4, 1536($a0)
ld $s5, 1664($a0)
ld $s6, 1792($a0)
ld $s7, 1920($a0)

.endm

.macro STORE_SEC
sd $t0, 0($a0)
sd $t1, 128($a0)
sd $t2, 256($a0)
sd $t3, 384($a0)
sd $t4, 512($a0)
sd $t5, 640($a0)
sd $t6, 768($a0)
sd $t7, 896($a0)
sd $s0, 1024($a0)
sd $s1, 1152($a0)
sd $s2, 1280($a0)
sd $s3, 1408($a0)

REFERENCES 105

sd $s4, 1536($a0)
sd $s5, 1664($a0)
sd $s6, 1792($a0)
sd $s7, 1920($a0)

.endm

.macro LAYER5_LOOP_FIR
LOAD_SEC
LAYER5
LAYER6
LAYER7
LAYER8
STORE_SEC
addi $a0, $a0, 8 #Move to next block of a’s

.endm

.macro LAYER5_LOOP_SEC
LOAD_SEC
LAYER5
addi $a1, $a1, -8
LAYER6
addi $a1, $a1, -4
LAYER7
addi $a1, $a1, -2
LAYER8
addi $a1, $a1, 14
STORE_SEC
addi $a0, $a0, 8 #Move to next block of a’s

.endm

.macro LAYER5_LOOP_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR

106 REFERENCES

LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR
LAYER5_LOOP_FIR

.endm

.macro LAYER5_LOOP_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC
LAYER5_LOOP_SEC

.endm

pnttlevel5t8:
/* Init */

addi $sp, $sp, -96
sd $s0, 0($sp)
sd $s1, 8($sp)
sd $s2, 16($sp)
sd $s3, 24($sp)
sd $s4, 32($sp)
sd $s5, 40($sp)
sd $s6, 48($sp)
sd $s7, 56($sp)
sd $gp, 64($sp)
sd $fp, 72($sp)

REFERENCES 107

sd $ra, 80($sp)

li $v0, 12289
dsll $v0, $v0, 32
daddi $v0, $v0, 12287 #$v0 now holds 0x300100002fff (=12289|0000|12287)

li $a2, 0x9003
dsll $ra, $a2, 32
dadd $a2, $a2, $ra # $a2 now holds 0x0000900300009003

li $a3, 0xFFFF
dsll $ra, $a3, 32
dadd $a3, $a3, $ra # $a3 now holds 0x0000FFFF0000FFFF

li $ra, 0 #initialise counter
sd $ra, 88($sp)

li $fp, -1
dsrl $fp, $fp, 32 #belangrijk: dit is NIET de counter

#LOOP:
LAYER5_LOOP_LOOP_FIR
addi $a0, $a0, 1920 #shift to lower half
addi $a1, $a1, 16 #shift omegas
LAYER5_LOOP_LOOP_SEC

ld $s0, 0($sp)
ld $s1, 8($sp)
ld $s2, 16($sp)
ld $s3, 24($sp)
ld $s4, 32($sp)
ld $s5, 40($sp)
ld $s6, 48($sp)
ld $s7, 56($sp)
ld $gp, 64($sp)
ld $fp, 72($sp)
ld $ra, 80($sp)
addi $sp, $sp, 88

jr $ra

108 REFERENCES

.end pnttlevel5t8

REFERENCES 109

The final layer, pnttlevel9.s contains:

.text

.globl pnttlevel9

.ent pnttlevel9

/* Registers:
$v0 : PARAM_Q|0000|QINV
$v1 : temp for loop counter and computations on PARAM_Q and QINV
$a0 : address(a)
$a1 : address(omega)
$a2 : 0x0000900300009003
$a3 : 0x0000FFFF0000FFFF ==> OF temp montgomery ($t9)
$t0 - $t7 : coefficients a (2 per register)
$s0 - $s7 : coefficients a (2 per register)
$t8 : omegas (4 per register)
$t9 : temp
$gp : temp (barrett and montgomery)
$fp : 0x00000000ffffffff
$ra : temp (loop counter pushed to stack)

*/

/* Uses $gp as temp space */
.macro BARRETT_REDUCE OUT IN

dsll $gp,\IN,2
daddu $gp,$gp,\IN
dsrl $gp, $gp, 16
and $gp, $gp, $a3
#dsrl $v1, $v0, 32
li $v0, 12289
dmul $gp, $gp, $v0 #put $v1 = 12289
dsub \OUT, \IN, $gp

.endm

/* Uses $t9, $gp, and $ra as temp space */
.macro MONTGOMERY_REDUCE INOUT

dsll $gp, $fp, 32
and $t9, \INOUT, $fp
and $gp, \INOUT, $gp
#andi $v1, $v0, 0xFFFF #put $v1 = 12287
li $v0, 12287

110 REFERENCES

dmul $t9, $t9, $v0
dmul $gp, $gp, $v0
dsrl $ra, $fp, 14
and $t9, $t9, $ra
dsll $ra, $ra, 32
and $gp, $gp, $ra
daddu $t9, $t9, $gp
#dsrl $v1, $v0, 32 #put $v1 = 12289
li $v0, 12289
dmul $t9, $t9, $v0
daddu \INOUT, \INOUT, $t9
dsrl \INOUT, \INOUT, 18

.endm

#WITH Barrett_reduction
.macro SUBROUTINE_B COEF1 COEF2 SH1

lh $t8, \SH1($a1) #load 1st omega

dadd $t9, \COEF1, \COEF2 #(temp + aa[j + distance])

dadd \COEF1, \COEF1, $a2 #temp += 3*PARAM_Q
dsub \COEF2, \COEF1, \COEF2 #-= aa[j + distance]
dmul \COEF2, \COEF2, $t8 #*= W

BARRETT_REDUCE \COEF1, $t9

MONTGOMERY_REDUCE \COEF2
.endm

#WITHOUT Barrett_reduction
.macro SUBROUTINE COEF1 COEF2 SH1 SH2 SH3

lh $t8, \SH1($a1) #load omega

dadd $t9, \COEF1, \COEF2 #(temp + aa[j + distance])

dadd \COEF1, \COEF1, $a2 #temp += 3*PARAM_Q
dsub \COEF2, \COEF1, \COEF2 #-= aa[j + distance]
dmul \COEF2, \COEF2, $t8 #*= W

and \COEF1, $t9, $t9 #instead of using sd

REFERENCES 111

#sd $t9, \SH2($a0) #Going back from temp value t9 to t0

MONTGOMERY_REDUCE \COEF2
#sd \COEF2, \SH3($a0)

.endm

.macro LAYER9
SUBROUTINE_B $t0, $t1, 0
SUBROUTINE_B $t2, $t3, 0
SUBROUTINE_B $t4, $t5, 0
SUBROUTINE_B $t6, $t7, 0
SUBROUTINE_B $s0, $s1, 0
SUBROUTINE_B $s2, $s3, 0
SUBROUTINE_B $s4, $s5, 0
SUBROUTINE_B $s6, $s7, 0

.endm

.macro LOAD_SEC
ld $t0, 0($a0)
ld $t1, 2048($a0)
ld $t2, 8($a0)
ld $t3, 2056($a0)
ld $t4, 16($a0)
ld $t5, 2064($a0)
ld $t6, 24($a0)
ld $t7, 2072($a0)
ld $s0, 32($a0)
ld $s1, 2080($a0)
ld $s2, 40($a0)
ld $s3, 2088($a0)
ld $s4, 48($a0)
ld $s5, 2096($a0)
ld $s6, 56($a0)
ld $s7, 2104($a0)

.endm

.macro STORE_SEC
sd $t0, 0($a0)
sd $t1, 2048($a0)
sd $t2, 8($a0)
sd $t3, 2056($a0)

112 REFERENCES

sd $t4, 16($a0)
sd $t5, 2064($a0)
sd $t6, 24($a0)
sd $t7, 2072($a0)
sd $s0, 32($a0)
sd $s1, 2080($a0)
sd $s2, 40($a0)
sd $s3, 2088($a0)
sd $s4, 48($a0)
sd $s5, 2096($a0)
sd $s6, 56($a0)
sd $s7, 2104($a0)

.endm

pnttlevel9:
/* Init */

addi $sp, $sp, -96
sd $s0, 0($sp)
sd $s1, 8($sp)
sd $s2, 16($sp)
sd $s3, 24($sp)
sd $s4, 32($sp)
sd $s5, 40($sp)
sd $s6, 48($sp)
sd $s7, 56($sp)
sd $gp, 64($sp)
sd $fp, 72($sp)
sd $ra, 80($sp)

li $v0, 12289
dsll $v0, $v0, 32
daddi $v0, $v0, 12287 #$v0 now holds 0x300100002fff (=12289|0000|12287)

li $a2, 0x9003
dsll $ra, $a2, 32
dadd $a2, $a2, $ra # $a2 now holds 0x0000900300009003

li $a3, 0xFFFF
dsll $ra, $a3, 32

REFERENCES 113

dadd $a3, $a3, $ra # $a3 now holds 0x0000FFFF0000FFFF

li $ra, 0 #initialise counter
sd $ra, 88($sp)

li $fp, -1
dsrl $fp, $fp, 32

/* Loop */

LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC

114 REFERENCES

addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s

REFERENCES 115

LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC

116 REFERENCES

LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s
LOAD_SEC
LAYER9
STORE_SEC
addi $a0, $a0, 64 #Move to next block of a’s

ld $s0, 0($sp)
ld $s1, 8($sp)
ld $s2, 16($sp)
ld $s3, 24($sp)
ld $s4, 32($sp)
ld $s5, 40($sp)
ld $s6, 48($sp)
ld $s7, 56($sp)
ld $gp, 64($sp)
ld $fp, 72($sp)
ld $ra, 80($sp)
addi $sp, $sp, 88

jr $ra

.end pnttlevel9

C NHS simulation based on RLWR (in Mathematica)
The simulation is denoted in LWRsimple.nb.

(*100 runs: \[PlusMinus]35 sec.*)
ClearAll["Global‘*"];
q = 12289;
p = 64;
n = 1024;
res = {};
ntests = 100;
For[j = 0, j < ntests, j++,
(*Alice*)
a = RandomInteger[q - 1, n];(*Generate n random samples*)
s = RandomVariate[BinomialDistribution[128, 0.5], n] -

64;(*Generate n binomial samples; was 32, 16*)
ax = xˆRange[0, n - 1].a;(*Represent as polynomial*)
sx = xˆRange[0, n - 1].s;(*Represent as polynomial*)
asx = Expand[ax*sx];(*Multiply polynomials*)
asxMod = PolynomialMod[asx, {xˆn + 1, q}]; (*Negacyclic convolution*)

asCoef =
CoefficientList[asxMod,
x];(*List of coefficients instead of polynomial*)

b1 = asCoef*(p/q);
b = Mod[Round[b1], p];
diffB = Abs[b1 - b];
(*Bob*)
t = RandomVariate[BinomialDistribution[128, 0.5], n] - 64;
tx = xˆRange[0, n - 1].t;(*Represent as polynomial*)
atx = Expand[ax*tx];(*Multiply polynomials*)
atxMod = PolynomialMod[atx, {xˆn + 1, q}]; (*Negacyclic convolution*)

atCoef = CoefficientList[atxMod, x];
u1 = atCoef*(p/q);
u = Mod[Round[u1], p];
diffU = Abs[u1 - u];
k = RandomChoice[{0, Floor[p/2]}, n/4];(*Already encoded*)
k4 = Join[k, k, k, k];(*Repeat on 4 places*)
bx = xˆRange[0, n - 1].b;(*Represent as polynomial*)

118 REFERENCES

btx = Expand[bx*tx];(*Multiply polynomials*)
btxMod = PolynomialMod[btx, {xˆn + 1, q}]; (*Negacyclic convolution*)

btCoef =
CoefficientList[btxMod,
x];(*List of coefficients instead of polynomial*)

c1 = btCoef*(p/q);
(*c2=Mod[Round[c1],p];*)
c2 = Round[c1];
diffC = Abs[c1 - c2];
c = Mod[c2 + k4, p];
(*Alice*)
ux = xˆRange[0, n - 1].u;(*Represent as polynomial*)
usx = Expand[ux*sx];(*Multiply polynomials*)
usxMod = PolynomialMod[usx, {xˆn + 1, q}]; (*Negacyclic convolution*)

usCoef =
CoefficientList[usxMod,
x];(*List of coefficients instead of polynomial*)

v1 = usCoef*(p/q);
v = Mod[Round[v1], p];
(*v=Round[v1];*)
diffV = Abs[v1 - v];
c - v;
(*kA =Mod[c-v+(p/4),p]-(p/4);*)
kA = Mod[c - v, p];
\[Nu] = {};
For[i = 1, i <= (n/4), i++,

If[Abs[kA[[i]] - Floor[(p/2)]] +
Abs[kA[[(n/4) + i]] - Floor[(p/2)]] +
Abs[kA[[2*(n/4) + i]] - Floor[(p/2)]] +
Abs[kA[[3*(n/4) + i]] - Floor[(p/2)]] < p, AppendTo[\[Nu],

1],
AppendTo[\[Nu], 0]]](*Retrieve \[Nu]’*)

AppendTo[res, Total[Abs[\[Nu] - (k/(p/2))]]];
]

If[Total[res] > 0, Histogram[res, p/2]
, Print["No errors."]]

REFERENCES 119

The debug.nb file looks as follows.

(*ClearAll["Global‘*"];
q=12289;
p=16;
n=1024;
res={};
ntests=0;
While[Total[res]==0,
(*Alice*)
a = RandomInteger[q-1,n];(*Generate n random samples*)
s = RandomVariate[BinomialDistribution[32,0.5],n]-16;(*Generate n
\
binomial samples; was 32, 16*)
ax=xˆRange[0,n-1].a;(*Represent as polynomial*)
sx=xˆRange[0,n-1].s;(*Represent as polynomial*)
asx=Expand[ax*sx];(*Multiply polynomials*)
asxMod=PolynomialMod[asx,{xˆn+1,q}]; (*Negacyclic convolution*)
asCoef = CoefficientList[asxMod,x];(*List of coefficients instead
of \
polynomial*)
b1=asCoef*(p/q);
b=Mod[Round[b1],p];
diffB=Abs[b1-b];
(*Bob*)
t= RandomVariate[BinomialDistribution[32,0.5],n]-16;
tx=xˆRange[0,n-1].t;(*Represent as polynomial*)
atx=Expand[ax*tx];(*Multiply polynomials*)
atxMod=PolynomialMod[atx,{xˆn+1,q}]; (*Negacyclic convolution*)
atCoef = CoefficientList[atxMod,x];
u1=atCoef*(p/q);
u=Mod[Round[u1],p];
diffU=Abs[u1-u];
k= RandomChoice[{0,Floor[p/2]},n/4];(*Already encoded*)
k4=Join[k,k,k,k];(*Repeat on 4 places*)
bx=xˆRange[0,n-1].b;(*Represent as polynomial*)
btx=Expand[bx*tx];(*Multiply polynomials*)
btxMod=PolynomialMod[btx,{xˆn+1,q}]; (*Negacyclic convolution*)
btCoef = CoefficientList[btxMod,x];(*List of coefficients instead
of \
polynomial*)

120 REFERENCES

c1=btCoef*(p/q);
(*c2=Mod[Round[c1],p];*)
c2=Round[c1];
diffC=Abs[c1-c2];
c=Mod[c2+k4,p];
(*Alice*)
ux=xˆRange[0,n-1].u;(*Represent as polynomial*)
usx=Expand[ux*sx];(*Multiply polynomials*)
usxMod=PolynomialMod[usx,{xˆn+1,q}]; (*Negacyclic convolution*)
usCoef = CoefficientList[usxMod,x];(*List of coefficients instead
of \
polynomial*)
v1=usCoef*(p/q);
v=Mod[Round[v1],p];
(*v=Round[v1];*)
diffV=Abs[v1-v];
c-v;
(*kA =Mod[c-v+(p/4),p]-(p/4);*)
kA =Mod[c-v,p];
\[Nu]={};
For[i=1,i<=(n/4),i++,If[Abs[kA[[i]]-Floor[(p/2)]]+Abs[kA[[(n/4)+i]]-\
Floor[(p/2)]]+Abs[kA[[2*(n/4)+i]]-Floor[(p/2)]]+Abs[kA[[3*(n/4)+i]]-\
Floor[(p/2)]]<p,AppendTo[\[Nu],1],AppendTo[\[Nu],0]]](*Retrieve \
\[Nu]’*)
AppendTo[res,Total[Abs[\[Nu]-(k/(p/2))]]];
ntests++;
]
Print["Number of runs before first error: ",ntests,"; Absolute \
difference k and k’:",Abs[\[Nu]-(k/(p/2))],"; Position(s) of non-zero
\
element(s): ",SparseArray[Abs[\[Nu]-(k/(p/2))]]["NonzeroPositions"]]*)

(*wr=286;
Print[(*"ax=",ax[[wr]],"; sx=",sx[[wr]],*)";asCoef=",asCoef[[wr]],";
\
b=",b [[wr]],"; diffB=",diffB[[wr]],(*"; tx=",tx[[wr]],*)"; \
atCoef=",atCoef[[wr]],"; u=",u[[wr]],"; diffU=",diffU[[wr]],"; \
k4=",k4[[wr]],(*"; bx=",bx[[wr]],*)"; btCoef=",btCoef[[wr]],"; \
c2=",c2[[wr]],"; diffC=",diffC[[wr]],"; c=",c[[wr]],(*"; \
ux=",ux[[wr]],*)"; usCoef=",usCoef[[wr]],"; v=",v[[wr]],"; \
diffV=",diffV[[wr]],"; c-v=",c[[wr]]-v[[wr]]]

REFERENCES 121

(*Print["k’[i]=",kA[[wr]],"; k’[i+n/4]=",kA[[(n/4)+wr]],"; \
k’[i+2n/4]=",kA[[2*(n/4)+wr]],"; k’[i+3n/4]=",kA[[3*(n/4)+wr]]]*)*)

ClearAll["Global‘*"];
q = 12289;
p = 4;
n = 1024;
hist = {};
histMod = {};
For[i = 0, i < 100, i++,
a = RandomInteger[q - 1, n];
s = RandomVariate[BinomialDistribution[32, 0.5], n] - 16;
t = RandomVariate[BinomialDistribution[32, 0.5], n] - 16;
(*s = RandomInteger[32,n]-16;
t = RandomInteger[32,n]-16;*)(*Will give uniformly random output*)
ax = xˆRange[0, n - 1].a;
sx = xˆRange[0, n - 1].s;
tx = xˆRange[0, n - 1].t;
asx = Expand[ax*sx];
asxMod = PolynomialMod[asx, {xˆn + 1, q}];
asCoef = CoefficientList[asxMod, x];
b1 = asCoef*(p/q);
b = Mod[Round[b1], p];(*b=as*)
bx = xˆRange[0, n - 1].b;
btx = Expand[bx*tx];
btxMod = PolynomialMod[btx, {xˆn + 1, q}];
btCoef = CoefficientList[btxMod, x];
c1 = btCoef*(p/q);
c = Mod[Round[c1], p];(*c=ast*)
atx = Expand[ax*tx];
atxMod = PolynomialMod[atx, {xˆn + 1, q}];
atCoef = CoefficientList[atxMod, x];
u1 = atCoef*(p/q);
u = Mod[Round[u1], p];(*u=at*)
ux = xˆRange[0, n - 1].u;
usx = Expand[ux*sx];
usxMod = PolynomialMod[usx, {xˆn + 1, q}];
usCoef = CoefficientList[usxMod, x];
v1 = usCoef*(p/q);
v = Mod[Round[v1], p];(*v=ats*)

122 REFERENCES

AppendTo[hist, c - v];
AppendTo[histMod, Abs[c - v]]]

(*Join[hist];*)
Histogram[hist]
Histogram[histMod]

REFERENCES 123

The debugUpdate.nb file looks as follows.

(*Check the distributions of \[Epsilon] and s*)
ClearAll["Global‘*"];
nCoefs = 100000;(*Number of coefficients*)
q = 12289;
p = 12289/4;(*Divide by interval length*)
intLength = Floor[q/p];
\[Epsilon] = RandomInteger[intLength, nCoefs] - Floor[(intLength/2)];
s = RandomVariate[BinomialDistribution[32, 0.5], nCoefs] - 16;
Histogram[\[Epsilon]];
Histogram[s];
Histogram[\[Epsilon]*s];
\[Epsilon]x = xˆRange[0, nCoefs - 1].\[Epsilon];
sx = xˆRange[0, nCoefs - 1].s;
\[Epsilon]sx = Expand[\[Epsilon]x*sx];
\[Epsilon]sxMod = PolynomialMod[\[Epsilon]sx, {xˆnCoefs + 1}];
\[Epsilon]sCoef = CoefficientList[\[Epsilon]sxMod, x];
min = Min[\[Epsilon]sCoef];
max = Max[\[Epsilon]sCoef];
\[Mu] = N[Mean[\[Epsilon]sCoef]];
\[Sigma] = N[StandardDeviation[\[Epsilon]sCoef]];
Histogram[\[Epsilon]sCoef]
Plot[PDF[NormalDistribution[\[Mu], \[Sigma]], x], {x, min, max}]
\[Mu]
\[Sigma]
min
max

	Introduction
	Preliminaries
	Post-quantum cryptography
	Quantum computers
	Shor's algorithm

	Lattices
	Ideal lattices
	Lattice problems
	Shortest vector problem (SVP)
	Closest Vector Problem (CVP)
	Hardness of the lattice problems

	Ring-LWE
	The learning with errors problem
	Learning With Errors over a Ring (RLWE)

	NewHope
	The binomial distribution
	FIPS202
	Security of the NH(S) protocol
	Man-in-the-middle-attacks
	Passive attacks
	Active attacks

	Malicious server or client
	Malicious Alice (server)
	Malicious Bob (client)

	Failure probability

	NewHope-Simple
	Failure probability

	The MIPS64 processor
	MIPS64 architecture
	Instruction set
	Pipeline structure
	Measuring the number of cycles
	Methodology

	Optimising NHS
	Related work
	Reduction functions
	Montgomery reduction
	Algorithm
	Implementation

	Barrett reduction
	Algorithm
	Implementation

	Number theoretic transform (NTT)
	Fourier transforms
	Optimisation strategies
	The naive way
	The parallel method
	Pendulum
	Blockwise method
	Removing the dummy
	From theory to practice
	Reduction functions for 64-bit input

	Other assembly optimisations
	Unrolling the loops
	Binary multiplication
	Compilation

	Adapting NHS to the LWR problem
	The LWR problem
	Putting on the ring

	RLWR in practice
	Implementation
	Failure probability
	Security analysis
	Update August 4, 2017

	Results
	NTT optimisation in MIPS64 assembly
	Analysis of the NTT layers
	Performance of the proposes NTT optimisations
	Impact of the NTT optimisations across the NHS protocol

	RLWR simulation
	Update August 4, 2017

	Discussion
	Update (August 4, 2017)

	Future work
	Conclusion
	Appendices
	NHS 64-bit optimisation (in C)
	NHS optimisation in (MIPS64 assembly)
	NHS simulation based on RLWR (in Mathematica)

