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Abstract

Various fields of practice face the problem of arranging rectangular items in larger rectangular
frames, thus different ways of automating that process have been found through the years. For
instance, while printing images on large scale materials, that arrangement determines how much
of the material is wasted while cutting out the separate prints.

During this project, an approach using an SMT solver is developed with three different vari-
ations. Along with the SMT methods, four others are implemented, namely: using a simple direct
algorithm, backtracking, genetic algorithm and particle swarm optimization.

Improvements on all methods are tested out and their best versions are compared on a set of
benchmarks. As the thesis is closely related to a printing company, it uses examples from practice
along with random test cases to determine the results and draw conclusions from them.

The end product of this project is an application that uses different sets of the discussed
methods, based on the input, to deliver the best frame coverage they find.
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Chapter 1

Introduction

This project addresses a problem posed by BigImpact, a large-scale printing company in Eind-
hoven. They own several machines that can print on materials, as wide as 5 meters. Even though
the printing machines use materials of fixed sizes, the company offers services for images of all
dimensions. This customer’s convenience leads to the question: how does one fit the different
images on the material so they can be printed together efficiently?

After a worker has figured out how to arrange the images and combine them in one big pdf
that is sent to the large-scale printer, the resulting print needs to be cut so the individual images
can be extracted. Throwing some of the material as waste in the process of cutting the images is
virtually unavoidable.

There are two aspects of the production that can be improved, namely reducing human la-
bour while ordering the images and minimizing the wasted material. A benefit that comes with
automating the process is eliminating human error, such as forgetting to print an image.

For a simple job, containing a few images, a human can spot the best order in a manner of
seconds. If the job contains 20+ images with various sizes it could take a minute for the worker to
find an order that provides a reasonable use of the material, which is still probably not optimal.

On the other hand, there are the machines. Every time a printer finishes a job it needs to
start another one as every idle minute in which the machine could have been working is undesired.
Because of this, a worker has limited time in which to prepare the next printing job.

The problem of fitting rectangles in a larger rectangle is known as two-dimensional bin packing
(according to Lodi et. al [1]), or more precisely rectangle packing, as no irregular shapes are
addressed in the project.

This is not a new problem and much work has been done in developing solutions for it, both
practical and theoretical. It has been studied extensively in the past because of its popularity in a
large number of real-world applications. Such applications include cutting sheets of any material
(wood, metal, glass, etc.) into smaller rectangles, placing ads in a newspaper, packing trucks or
cargo ships, and even at arranging images on certain websites.

Each area of practice comes with its own specifications, but the general idea is the same: Given
a set of N rectangular items j ∈ J = 1, ..., N , each of width Wj and height Hj , and an unlimited
number of rectangular bins of height H and width W [1]. Assuming that the items have a fixed
orientation, what is the minimal number of bins needed to allocate, without overlapping, all of
the items with their edges, parallel to those of the bins?

To fit the needs of BigImpact some aspects of that definition need to be changed:

• The items’ orientation can change, as items should be able to rotate by 90°.

• The height of the bin may be a variable, as some materials come in rolls instead of specified
sheets.

In the above description of the problem, the rectangles (images) are to be placed in bins. A
bin with the rectangles fitted in it will be called a nest further in the document. The bin itself

Rectangle packing in practice 1



CHAPTER 1. INTRODUCTION

will also be referred to as a frame . Therefore nesting describes the process of fitting items inside
a frame.

There are a number of approaches solving the general specification of the problem, found in
literature. Some of the most popular ones are Alternate Directions (AD) [1], Bottom-Left Fill
(BLF) [4], Improved Lowest Gap Fill (LGFi) [10], Touching Perimeter (TP) [11], Hybrid Next-Fit
(HNF) [8], Hybrid First-Fit (HFF) [5], Finite Best-Strip (FBS) [2], and Floor Ceiling (FC) [1].

They have proven themselves helpful over the years, but because of recent advances in com-
puter science, there might be new competitive approaches available. In particular, the use of
satisfiability modulo theories (SMT) is researched in this project. The SMT solver that will be
used is Microsoft’s Z3 [14]. It is an open-source tool that is constantly improving.

The literature also describes methods that use genetic algorithms with comparable results. A
similar approach will be implemented in this project aiming to improve the existing ones.

1.1 Problem categorizations

Often, not all given items can fit in a single frame so in order to not leave out any items, more
than one frames are used for a solution. So in general the problem question is:

How to order the given items in one or more frames with the least combined frame

areas as possible, where the frames have defined requirements?

Based on the company’s specifications, the problem itself can be split into two variations
depending on those requirements:

• Sheet problem: The width and height of the frame are given as input. (material is in the
form of a sheet)

• Roll problem: Only the width of the frame is given while the height is variable that must
not exceed a given maximum value. (if a roll of the material is used)

The main focus of the research is on the first variation. If a method can perform well solving
the classic (sheet) problem then it usually requires small modifications to be used with the second
variation. Later, in the descriptions of each method, there will be a section describing if and what
needs to be changed to make it work for a material with a variable length.

1.2 Project’s aim

The project, described in this paper, compares different methods for solving the rectangle pack-
ing problem that BigImpact is facing. The criteria to evaluate the methods is their ability to
consistently deliver results with good, close to optimal, coverage in limited time.

For our purposes the time limit is set to no more than 40 seconds spent on creating one nest.
As stated before, the printers should not wait for the creation of the next printable file. It should
be readily available on demand. Even though the average time to print a file is lot longer than 40
seconds, one needs to take into account that the worker’s job is not automated and nesting is just
one stage of the process.

It is preferred to deliver the printouts to the customers on time even if that means some wasted
material. The additional cost for that waste is less than the cost of delaying production.

The following is a list of the methods that have been implemented and compared during this
project.

• Floor Ceiling algorithm (FC)

• Basic SMT approach

2 Rectangle packing in practice
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• Best coverage SMT approach

• SMT Hybrid approach

• Backtracking algorithm

• Particle swarm optimization (PSO)

• Genetic Algorithm

1.3 Benchmarking

The nature of the problem is that the results depend greatly on the number of items and their
dimensions. There probably isn’t a single method that gives the best results for every input. As
such, a test set of 120 inputs has been selected from practice and to avoid creating a method that
works perfectly for specific inputs, a different set of 300 randomly generated cases are also used.
Each method runs on all test cases, produces results and the average of the resulting coverages
is used to determine which one works best. After that the results for individual cases can be
examined to find relations between inputs and method performance.

Coverage is used as criteria instead of ”number of bins” mainly because of the second variation
of the problem. When printing on a roll, the number of nests produced is not of great importance,
their combined length is. Or in other words, the overall coverage that has been achieved determines
the winner. When evaluating problems working on a sheet both the number of nests and the
coverage are equally relevant, thus the coverage is preferred as it serves both cases.

The definition of coverage is the ratio of the sum of all item areas to the sum of all nest areas.
Where a coverage equal to 1 means that the whole area of the nests is covered by items and there
is no waste. If the only half of the area is used and the other half is considered waste then the
coverage equals 0.5.

The implementation of all the methods is done in Python 3.5 and the tests are conducted on
a machine with the following specifications:

Lenovo ThinkPad W541

CPU: Intel Core i7 (4th Gen) 4710MQ / 2.50 GHz

RAM: 8 GB DDR3 1600 MHz

1.4 Paper’s structure

This thesis is divided into 11 chapters. Chapters two through eight present each implemented
method with a description on why it is chosen and how exactly it is implemented. Intermediate
results gathered from those methods are shown and discussed in chapter 9. While chapter 10
describes how these methods can be used in cooperation to produce even better results and what
these results are. And the paper ends with the conclusions made during the project (chapter 11).

1.5 About the methods

The final goal of each method is to fit all given items in as many as necessary number of nests and
achieving the highest coverage possible within a given period of time.

As stated before, the problem has two variations: nesting on a roll or on a sheet. The difference
of how these methods solve both variations is usually a minor change in the algorithm or the final
formatting of the nest. Each method contains a section explaining those differences, but in order
to make the explanations more clear the main focus is on just one of the variations. It is stated
at the start of each method’s chapter which one is being used.
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CHAPTER 1. INTRODUCTION

While in practice the rotation of items can be disabled in special cases, the methods are
explained with the idea that all items can be rotated. If the description does not define how
disabling rotation would affect the algorithm then the change is trivial.

4 Rectangle packing in practice



Chapter 2

First Fit and Floor Ceiling

The two algorithms are described in the same section as Floor Ceiling is an improvement on First
Fit, thus only FC is used in the later comparison of methods.

It is possible to construct all necessary nests for all items with these methods. The choice of
problem variation to describe these algorithms is irrelevant as both of them create levels which
are then used to form the necessary nests independently of the algorithms.

2.1 First Fit

FF is one of the oldest and simplest that solves the rectangle packing problem. It is also referred
to as Best-Fit Decreasing Height (BFDH) [13]. It’s aim was to provide a quick solution to a
complicated problem that had no automated solvers at the time. Provided an optimal solution is
not necessary, it is useful as the algorithm runs in a few milliseconds even for complicated problems
(ones with over 200 files).

This is an overview of how the algorithm works: First the items are sorted by height. The
highest item is placed in the bottom left corner of the frame. The second highest item is tested if
it fits to the right of the first one. If it doesn’t fit, the item is placed above the first, creating a
new level. Then the algorithm adds every next item (in non-increasing height) on the first level
where it fits. If no level can accommodate the item, a new level is created and it is placed at the
start of it.

Figure 2.1: A resulting nest from the First fit algorithm [13]
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Figure 2.1 shows how a nest will look like with the present 6 rectangles. The numbers in them
represent how the items are ordered by height, 1 being the highest and 6 the ’shortest’. If a simple
guillotine is used to cut the items out of the frame, then this is a valid solution but with the
improvement in cutting machines this is no longer the case.

It is obvious that item 5 can fit in the first level of the nest. Even though that would not
improve the overall coverage for this particular problem, if item 3 was not included item 5 would
still be placed on a second level. Thus came the improvement shown in the Floor Ceiling algorithm.

2.2 Floor Ceiling

The Floor Ceiling algorithm consists of two phases. The first is constructing the levels as described
in the First fit algorithm. The second is trying to place the last items at the ceilings of the existing
levels starting from right to left. An example can be seen in figure 2.2.

Figure 2.2: One resulting level from the Floor Ceiling algorithm [13]

As with every method, there are input instances that end up with a near optimal coverage. In
this case if most items don’t differ much in height, for example, if the highest item has a height
H and the shortest, a height 0.6*H, there won’t be any item that could fit on the ceiling of any
level. This often occurred in practice during the research on this project.

From the initial tests of the selected methods for the project it was determined that the FC
approach does not produce satisfactory results compared to the other methods which were still to
be improved.

2.3 Solving both problem variations

Both methods above provide solutions in terms of levels with certain height that need to be nested.
These levels can be arranged in different ways to form the nests for both instances of the problem,
Sheet and Roll. This process is explained in detail in section 5.2 where the other method deals
with strips rather than levels.

6 Rectangle packing in practice



Chapter 3

Basic SMT approach

If a problem can be fully described by mathematical formulas expressing constraint over some
variables, then it is possible to formulate it as a satisfiability problem which can be given to an
SMT solver. There are a number of STM solvers developed through the years, that even have
annual competitions [12] so they are constantly improving.

This section shows that using only SMT with a relatively simple description of the problem,
not all cases are solvable, while section 4 gives a more complex version that is able to solve all
cases but has other drawbacks.

The following explanation is given for the Sheet variation of the problem.

3.1 About SMT

The SMT solver takes as input a set of variables and formulas that describe a problem. The for-
mulas normally express constraints on the variables’ values, which can be either boolean, integer
or real. Different formulas can be constructed using the variables, conjunctions (AND), disjunc-
tions (OR), negations (NOT) and parentheses. The syntax of the tool also allows the use of linear
inequalities.

To show some of the tool’s capabilities, here is an example input that can be given:

integer x, integer y

satisfy: ((x ≥ 3) and (x + 2∗y ≤ 10) and ((y == 4) or (y == 2)))

If the formulas can be satisfied, the tool returns a set of values for the variables satisfying the
given conditions. The tool also reports if the formulas cannot be satisfied, letting the user know
that there is no possible solution to the stated problem.

In the above example, there are two variables, namely x and y, whose values must be determined
in such a way that the formula is true. If the SMT solver is given this exact problem it would
yield the following solution:

sat
x=3, y=2

Stating that the formula is satisfiable and that the values for x and y are 3 and 2, respectively.

3.2 Rectangle Packing in SMT

The following description considers the simplest form of the rectangle packing problem where
the question is: ”Can all given items fit in the frame without overlapping and what would their
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CHAPTER 3. BASIC SMT APPROACH

positions be if they did?”. Even though that question is more specific than the research question,
it has been useful throughout the project and is even used in the final application shown in chapter
10.

The benefit of the SMT solver in that situation is that it will give a solution if and only if one
exists and if it states that the set of formulas are unsatisfiable then a solution does not exist.

First let’s look at the simplest variation of the problem, where a set of items needs to be placed
in a frame with fixed dimensions (such as a sheet) and the question is whether it is possible to fit
them all without overlapping.

Each item is described by a set of variables. For the ith item the following are needed:

• its position, namely the x and y coordinates of its bottom left corner,
(xi and yi, both integers)

• its dimensions: width (wi, integer) and height (hi, integer)

The reason for the item’s dimensions being variables instead of constants is that rotation of
the items is taken into account. Due to limitations of the machines that cut the materials after
the printing is done, the allowed rotation is only 90°. In other words the width and height of the
item can swap values if it would result in a better coverage.

Even though rotation is considered, there are cases in which a material does not allow for
rotation, or an item’s orientation is strictly preferred, thus there needs to be a check if the item
can indeed be rotated.

These definitions are illustrated on figure 3.1.

Figure 3.1: Two items in a frame with the variables describing the system.

Here are the constraints that use these variables:

• Item’s dimensions are set. Let’s say that item i has width widthi and height heighti.
For each item i:
If the item can rotate :
((wi == widthi and hi == heighti) or (wi == heighti and hi == widthi))

else:
(wi == widthi and hi == heighti)

• The items need to be inside the boundaries of the frame.

For each item i:
((xi + wi ≤ frame width) and (xi ≥ 0) and (yi + hi ≤ frame width) and (yi ≥ 0))
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CHAPTER 3. BASIC SMT APPROACH

• The items must not overlap with each other. That constraint basically states that item i
needs to be either to the left, to the right, below or above item j.

For each distinct pair of items i and j:
(((xi + wi) ≤ xj) or (xi ≥ (xj + wj)) or ((yi + hi) ≤ yj) or (yi ≥ (yj + hj)))

If there is at least one possible way of positioning the items in the frame according to these
constraints then the solver will return the items’ positions as a result.

Because of the time constraint, this method works for problems that have less than around 25
input items. This number actually differs for each distinct set of items, but during the tests that
were conducted in this project the general case shows 25 as an acceptable threshold. If the items
are more than that the SMT solver still produces correct results, but the time it takes to deliver
them is unsatisfactory for the company’s purposes.

This method is also limited by the fact that it can create only one nest. A partial solution to
that issue is explained in the next chapter.

3.3 Solving both problem variations

Considering the Sheet problem, the above method gives a direct solution that can be used to
construct the nest. Because the SMT solver answers if the items fit or not, their positions may
seem randomly scattered in the sheet but that is still a valid solution on a sheet.

The nests for Roll problems have a maximum allowed height which can be used as a Sheet’s
height to make use of the above method but in order to optimize the height it should be lowered.
The goal is to minimize the height of the roll so that the waste is minimized too. In that case a
number of SMT calls can be used with different values for the frame’s height until the optimal
one is found. This can be achieved by doing a binary search over it, which is described in details
in section 4.1.
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Chapter 4

Best coverage SMT approach

As stated above, the Basic SMT approach is not enough to solve all instances of the problem. In
fact, one of the most frequent problems observed in practice is the one where not all given items
can fit in one specified frame.

There is a way to go around this restriction. Different combinations of items can be tested
with the above approach as some of them will yield a satisfiable result and the one giving the best
coverage will be chosen to be nested. And this process can continue until all items are used.

The issue here is that there is no way of knowing which combinations are good candidates
to test with and testing all combinations, whose quantity is exponential to the number of input
items, is not a viable approach as the time that would require is too high (also exponential).

A better solution is to encode the whole problem in SMT. Simply said, in that case, the solver
needs to decide which of the items to use to get the best coverage. This decision can be expressed
using additional variables and constraints.

The complete set of variables used to describe itemi in this case is:

• its position, namely the x and y coordinates of its bottom left corner,
(xi and yi, both integers)

• its dimensions: width (wi, integer) and height (hi, integer)

• if the item is present or not (pi, boolean)

• item’s area (ai, integer)

To be able to maximize the coverage the additional variable must be added that represents
the sum of the areas of all present items. Having a variable for each item’s area helps with the
constraint concerning this. As the areas are set to a specific number they do not slow down the
process additionally.

With the addition of the new variables, the list of constraints expands to:

• Item’s dimensions are set. Let’s say that item i has width widthi and height heighti.
For each item i:
If the item can rotate :
((wi == widthi and hi == heighti) or (wi == heighti and hi == widthi))

else:
(wi == widthi and hi == heighti)

• The item’s area is set. The area is calculated as areai = wi ∗ hi beforehand.

For each item i:
(ai == areai)
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• The sum of all present items must be higher than the minimum required area min fill area,
which is later used to make the optimization of the coverage.∑n−1

i=0 (ai ∗ pi) ≥ min fill area, where n is the number of input items and pi is considered 0
if False and 1 if True.

This summation cannot be directly expressed in the SMT syntax but there is a way around
it. Z3 allows the use of an If function that has three parameters in it. The code looks like
this:

Sum([If(pi, ai, 0) for i in (0..n−1)]) ≥ min fill area

The first parameter is the condition, that in this case is the presence boolean variable. If
this condition is True then the second parameter is used in the summation (Sum) and if it
is False, the third parameter is used. As a result, if an item is not present its area is taken
as 0.

• The items need to be inside the boundaries of the frame.

For each item i:
((xi ≤ frame width) and (xi ≥ 0) and (yi ≤ frame width) and (yi ≥ 0))

• If in a pair of items, both are present they must not overlap.

For each pair of items i and j:
((pi and pj) => ((xi + wi) ≤ xj) or (xi ≥ (xj + wj)) or ((yi + hi) ≤ yj) or (yi ≥ (yj +
hj)))

4.1 Optimizing the coverage

Optimization of a variable is not directly implemented in the SMT solver. Instead a binary search
is performed on the value of min fill area. Effectively the goal is to modify the coverage with
each iteration of the binary search until the best one is reached.

Let’s look at an example where the frame’s width is 50 and its height is 100, which gives it an
area of 5000.

The first value of min fill area is taken such that if the sum of the areas of all present images
is greater than it, the coverage is higher than 50%. For a 50% coverage on 5000 area, the images’
areas must sum to a total of 2500. This is the value that min fill area must have on the first step
of the binary search.

If a solution is found then the next step is to increase the desired coverage to 75% (50% +
25%), where as if there is no solution the desired coverage drops to 25% (50% - 25%) The same
calculation is made to determine the value of min fill area after the desired coverage is updated.

The amount with which the desired coverage changes each step is divided by two after each
step. As shown above, it is at 25% at the start. Dividing this in two means that the second step in
the search modifies the desired coverage with 12.5% and so on. A visual representation of this idea
is shown in figure 4.1. This process repeats a few times until the point where further modification
of min fill area is no longer beneficial.

After brief experimentation and consultation with the company’s manager it was decided that
a precision of more than 1% is unnecessary for this project, especially because in observed cases
the solutions found at each stage usually have a higher coverage then the desired one. This renders
every advancing tests redundant as it is highly likely that they will yield the exact same results,
if successful.

Having the limit at 1% precision leaves the binary search with just 7 stages. Each stage being
a call to the SMT solver with the only difference that the value of min fill area is updated with
respect of the desired coverage in the stage. If, however, the 7 stages finish executing before the
given timeout, the process can iterate more times for a guaranteed better precision.
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Figure 4.1: The progress of the desired coverage during the stages of the binary search. Green
lines mean that a solution is found, red ones mean it isn’t. The bold lines show the path taken to
reach the final 82.01% in this example.

4.2 Additional SMT constraints

It is possible to narrow down the search space by adding more constraints, some of which are
redundant.

4.2.1 Placing non-present items at a fixed position

Considering the presence variable, if an item is not present then there is no need for the solver
to decide what its position is. This is obvious to a person, but it has not yet been stated in a
form of a constraint. As the position itself does not matter, the non-present items can be placed
arbitrarily on the sheet as the non-overlap constraint does not apply to them.

For each item i:
((not pi) => (xi == 0 and yi == 0))

Tests have proven that this additional constraint slightly improves performance depending on
the particular set of input items.

4.2.2 Symmetry breaking

It often occurs that some items in the set have the same dimensions. While the SMT solver is doing
its work it does not take into account that if these items swapped positions it would not change the
outcome of the satisfiability check. This leads to the solver doing redundant tests which depending
on the input item set may decrease the performance significantly. These duplicate tests can be
avoided by adding a constraint that states: if two items have the same dimensions they can only
have one possible position in respect to each other. This is a popular performance improvement
method and it is called symmetry breaking [16].

Here is one way to implement it. If the width and height of itemi and itemj are the same it
is implied that if their x’s are equal then yj has to be greater than yi and if they aren’t then xj

has to be greater than xi

For every pair of items:
(wj == wi and hj == hi) => If(xj == xi) then (yj ≥ yi) else (xj > xi)
At first sight this seems overcomplicated but if anything is simplified or removed then some

test cases may be falsely removed from the search space. For example, if one simply states that
(xj > xi) then it removes the test where the x’s are equal. If it is (xj ≥ xi) then when the x’s are
equal the symmetry breaking is not working.
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Tests prove that adding this constraint decreases the solver’s performance not only in terms
of speed but also in produced coverage, even though the opposite was expected. One reason for
these unforeseen results may be the fact that this constraint is expressed in such a complicated
way compared to the other formulas.

4.2.3 Finding suboptimal solutions

There are constraints that would further reduce the search space, but may lead to losing optimality.
Such constraints may be beneficial to the method if the results still have satisfactory coverage and
the run time is low enough. In other words, if the running time versus coverage trade-off is good
enough, the addition is kept in the method.

Two such constraints are tested:

• Each item must have at least one side ’touching’ another item’s side.

• Each item must have one of its corners ’touching’ another item’s corner.

Both implementations of these constraints proved to only slow down the solver without im-
proving the coverage of the found results.

4.3 Creating all nests for the problem

The above explanation provides a method that returns just one nest, whereas the full solution
requires all items to be nested no matter in how many nests they must be placed.

This can still be done by just repeating the method enough times until all the items are
processed. After the first items are nested, they are removed from the input item set. This way
it is ensured that there will be no duplicate items in the resulting nests and a side benefit is that
each consecutive call of the method deals with fewer items thus producing a result faster.

An obvious disadvantage of this process is that all the nests are created without ”having the
big picture” in mind. As the creation of each nest is independent of the others, the last nest often
end up with a poor coverage that could be avoided if some items are swapped.

During the early stages of testing, this method gave unsatisfactory results which lead to a
further improvement in the use of the SMT solver, described in the next chapter.
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Chapter 5

SMT hybrid

The SMT only approach provides optimal solutions to the problem but it comes with a downside.
For a high number of input items the problem becomes too complex to expect a result in a
reasonable time. One of the goals of this project is to find a balance between speed and achieved
coverage, which lead to this method

The SMT hybrid approach is exploiting the fact that SMT gives results in fractions of a second
if the number of tested items is low. This allows several thousands of SMT calls to be made in less
than a minute. A few ways of doing that were tested and the most successful one is described in
this chapter. Even though it gives good results, it is clear that optimality is lost when it is being
used.

The method consists of two main stages. The first stage tries to find strips of tightly fit items
until every item is placed in a strip. A strip is defined as a sub-frame that has the width of the
frame but its height is lower then the frame’s. The height depends on the items tested in it.

The second stage aims to compress the resulting strips from the first stage. Depending on
whether the printing is done on a sheet or on a roll, this process differs greatly. The exact details
are given in a separate section for this method.

5.1 First stage

The process can be described with the pseudocode shown in Algorithm 1:

By using this algorithm, all the strips are created greedily, because the ones with a higher
coverage are found earlier. Finding optimal strips one by one does not necessarily mean that when
combined they give the optimal solution. This is the nature of all greedy approaches.

The backtracking algorithm, explained in the next chapter, faces the same issue, as seen in
figure 6.3. The sheets shown in that example would be found as strips by the SMT hybrid algorithm
thus it would fail to give the optimal solution in the same way.
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Algorithm 1 SMT hybrid algorithm(base required coverage, max items, step down percentage)

required coverage ← base required coverage
while required coverage ≥ 0 do

for all n = 1 to max items do
for all combination in combinations(all items, n) do

Calculate required height of the strip, as strip height by the following formula:

strip height =
the total area of all items in combination

original frame’s width × required coverage

Generate a testing strip frame with height equal to strip height and width equal to the
original frame’s width

Use the basic SMT approach (from chapter 3) to test if the items in combination can
fit on the created strip frame as if it was a sheet.
if The items fit then

Save the strip.
Remove combination items from all items.

end if
end for

end for
required coverage ← required coverage - step down percentage

end while
Combine saved strips into larger strips with better coverage.
return The final set of strips

After extensive tests with the three parameters in SMT hybrid algorithm, namely
base required coverage, max items and step down percentage, these are the values that give best
results:

base_required_coverage = 0.93

max_items = f(number of input items)

step_down_percentage = 0.07

If the base required coverage is taken too high then the chances of finding a strip with that coverage
are low and most tests end up being a waste of time. On the other hand, if it is set too low then
the tightly packed strips may be missed. This has been observed when there exists a possible strip
with a high coverage and at least one strip with lower coverage, both of them being above that
base required coverage, using roughly the same items, and the worse one is found first. This way
the strip with the high coverage is removed from the possible testing combinations as some of its
items are already in use.

By that explanation one can assume that there are too many conditions for this to happen
frequently, but in practice it occurs surprisingly often.

The reasoning behind the value of step down percentage is basically the same.
The only parameter whose value has a visible relationship with the input, more precisely with

the number of input items, is max items. The main reason for this is the fact that the total number
of tested combinations is solely dependant on the number of items.

If, for example, a problem instance has 50 items, the combinations of 2 items from them are
1225 in total, but the combinations of 6 items goes up to 15890700. It is unacceptable to spend
too much time on one set of combinations. The other issue is that the basic SMT approach’s
running time is positively correlated to the numbers ot input items. As a result, an increase in the
number of items of a problem instance there is an increase not only in the number of tests for each
set of combinations but also their running time, which overall increases the method’s execution
exponentially.

This leads to the max items parameter being a function of the number of input items instead
of it being static as the other two. The exact implementation of the function was designed after a
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series of experiments. Due to the time limit of 40 seconds for a nest, set at the start of the project,
the testing of a single set of combinations of max items items should not take more than roughly 5
seconds. This way the method would have enough time to explore different combinations of items.

The results could be expressed as states shown in table 5.1.

Number of input items max items
160+ 3
90-159 4
50-89 5
40-49 6
0-39 7

Table 5.1: The value of max items as a function of the number of input items

The actual code implementation of this method has several ways of breaking out of the
three loops to improve speed.

The method used to test if the items fit in the strip is the Basic SMT approach described in
chapter 3.

In a perfect situation, every combination of items should be tested if it can create a strip
with a high coverage. With item numbers high enough, this becomes impossible as the amount
of combinations multiplied by the time an SMT call takes results in unacceptable running times
of the method. This is solved by limiting how many combinations can be tested for each subset.
The exact limit on the combinations is a function of the number of input items.

To explain this method in details, let’s look at an example:
Assume the frame is a sheet and not all items can fit in it.
At the start of the algorithm the combinations of 2 items are tested one by one. A test consists

of preparing the strip’s size and checking if the items can fit in it. The size is determined by the
coverage percentage that is being tested (required coverage), which is high at the start and gets
lowered after all tests with that coverage have finished.

Example: the combined area of the two tested items is 93 and the width of the frame is 20. If
the currently tested coverage is 93% the area of the strip must be 100. This would give the stripe
a height of 5 (as 5*20=100).

If the items fit in the strip, it is saved and the fitted items are removed from the available
items (all items). After all combinations of 2 items are checked, the method proceeds to test
combinations of 3 items, and so on.

The maximum number of items in a tested strip depends on the initial amount of items, but
it is no higher than 7 because then the SMT call no longer takes a fraction of a second.

The required coverage starts at 93% and the above process is repeated while the it drops by
7% every time it is restarted.

This process is repeated as many times as needed until all items are placed in a strip, thus
ending the first stage.

5.2 Second stage for a Sheet problem

After all the strips are formed what is left is to place them in as little number of sheets as possible.
This problem is exactly a bin packing problem [9]. The heights of the strips are used as input
whereas the height of the sheet is the capacity of the bin, which turns it into a one dimensional
problem.

The way this is solved is not explained in detail in this paper partly because it is not in the
scope of the research and partly because there is already a Python library [7] that solves it.
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The library provides a few methods representing the most popular ways of solving the bin
packing problem. Instead of relying on just one, all of them are called and the best result is used
to create the sheets. Figure 5.1 shows how three strips that were chosen to fit in a frame create
one nest.

Figure 5.1: Strip packing, Stage 1, creation of one nest
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5.3 Second stage for a Roll problem

Since the length of the frame is variable when working with a roll there is no strict need to solve
a bin packing problem to decide which strips need to be combined to form the least number of
nests. Having each strip as its own nest results in the same overall material use as if the strips
were into larger nests.

The reason to actually group multiple strips into nests is that during production it is less
tedious to handle less printing jobs. A perfect scenario is to place all strips in one long nest, but
due to technical reasons there is a limit on the nest’s length.

The same process can be applied for the Roll problem as it is for the Sheet problem, using the
frame’s maximum allowed length as the bin’s capacity. The bin packing library is used to provides
the best way to distribute strips along different nests. The only difference comes when creating
the nest itself. As shown in figure 5.1, the length of the nest is determined by the place of the last
items in it instead of the frame’s specifications.
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Chapter 6

Backtracking algorithm

When talking about optimization problems the most intuitive approach for a human is to test all
possible options and see which one works best.

By testing every image on every available position it is guaranteed that all options are checked
and the best one can be selected as a result. Such an algorithm can be implemented using a
backtracking notion.

With an increase of the number of input items, the the time it would take to do that grows
exponentially, therefore some limits are introduced to guarantee an acceptable solution in limited
time. One increase in performance is gained by limiting this method to creating only one nest,
similarly to the Best Coverage SMT approach (chapter 4), where if not all items can fit in the nest,
a subset of them is chosen and placed in it instead. If the solution requires multiple nest, that
process is repeated that many times. An even greater increase in performance is gained by greatly
limiting available positions at which an item can be placed inside the sheet, which is described in
section 6.1.

Detailed description and justification of how the full solution, of creating all necessary nests,
works can be found in section 6.2.

The basic idea behind this method is that one of the items is placed in the bottom right corner
of the frame, then another one is placed next to it, and then another one until no more items
can be placed in the frame. When this state is reached the algorithm goes back one step and
changes the last placed item with another one and continues testing. This goes on until all items
are checked for the last position, then another step back is taken and the process is repeated.

Due to the high complexity of this method it is unrealistic to expect the software to go through
all combinations within the desired time, especially for higher number of input items. Thus the
optimal cases may not be reached in time.

One advantage of the method is that at any moment it could be stopped and the best found
result is available. Increasing the time this method is allowed to work increases the chances of
finding a better solution.

The main element of the method’s implementation is a recursive function:

func backtrack(item, fitted frame, pos)

It has three parameters, namely item, fitted frame and pos. The function tests if the item (item)
can be placed on position (pos) in a frame that may already contain some items (fitted frame)
placed there by previous calls of the function. The parameter pos defines a position with its
coordinates as (x, y). If the item does not overlap with the others in the fitted frame and stays
within the boundaries of the frame it is placed there and the function precedes with the recursion.

The initial call of the function tests if the first item can fit in an empty frame if placed in its
bottom left corner:

backtrack(<first item>, <empty frame>, <(0, 0)>)
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Two global variables need to be initialised before starting the recursion. They hold the nest
with the best coverage (best nest) and the value of that coverage (best coverage).

best coverage ← 0
best nest ← <empty frame>

The backtrack function can be described with the following pseudocode:

Algorithm 2 backtrack(item, fitted frame, pos)

Try to place item in fitted frame at position pos
if item fits then

Keep item at position pos, adding it to fitted frame
if fitted frame’s coverage > best coverage then

best nest ←fitted frame
best coverage ← fitted frame’s coverage

end if
for all Available positions in fitted frame as unused pos do

for all Other items as new item do
backtrack(new item, fitted frame, unused pos)

end for
end for

end if

Next paragraph gives details on what is considered an available position.

6.1 Limiting the available positions

Let’s define test point as a point in the frame (described by its (x, y) position) which is used to
place items in the frame such that a corner of the item has the same coordinates as the test point.

By observing some manually fitted nests it becomes obvious that most items are usually placed
with a corner ’touching’ another item’s corner. More precisely the item’s bottom left corner touches
either the bottom right or upper left corner of the other item. An example is shown on figure 6.1a.

Upon further investigation it became clear that this is not enough to find optimal solutions.
As seen in figure 6.2, the upper left item would not be placed in the nest as no test point exists
which would lead to the item being tested at that exact position.

In order to be able to cover problems, such as the one shown in figure 6.2 more test points
need to be added per item. After some tests it was found that if a new test point is placed on
the upper right corner of an item and the other items connects to it by their lower left corners
instead of right, that would widen the possible nests that the method can find. Example is shown
on figure 6.1b.

Although optimal solutions may still be missed, further increase in test points would only cause
a worse exponential blow up.
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Figure 6.1: Three items with their corresponding test points.

Figure 6.2: Examples of optimal solutions that can not be found by using 2 and 3 test points per
item. The circles show which test point was used for the item. Red circles show the lack of one.
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6.2 Creating all nests for the problem

In theory it is possible to build a backtracking algorithm that directly optimizes the overall cov-
erage. Instead of stopping when an item cannot fit the frame, a new frame needs to be created
and the recursion can continue as described. In practice though that proves to be too slow of a
process and the results ended up being unsatisfactory.

Creating just one nest is done in a more appropriate time. After having one nest, the items it
contains can be removed from the input of the problem and the same method can be run again
with the new reduced set of items. This repeats until there are no more items to be nested.

6.3 Sorting the images first

There are ways of pushing good tests near the start of the algorithm in such a way that in a
limited time a solution with an acceptable coverage is found even though it might not be optimal.

The simplest modification that helps with that is to sort the images by area before iterating
over them. This way the method will start placing the largest items first.

In many cases the algorithm is unable to backtrack to the first items it placed due to the time
limitation. This means that all the combinations that the algorithm would test have the biggest
few items in the frame, thus the resulting nest will have them too. Even though this can be
described as an inconvenience, it proved to be helpful after all.

Often not all items can be placed in one frame, but they all need to be placed somewhere
eventually. In practice it is visible that in most cases the intuitive way to fit the items is to
put the biggest one first and then find which other items can fit around it. Even if the best
possible coverage can be achieved by placing only small items while skipping the largest item, it
must eventually be placed in another nest. And if there are a few big items that were ignored
in previous nests due to better coverage achieved by small items, the last few nests may end up
having a low coverage. In extreme cases the smaller items could perfectly fit next to the larger
ones, decreasing the overall number of nests, decreasing the overall waste. Such a case can be seen
on figure 6.3.
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Figure 6.3: Example of overall improvement if large files are fitted in the first nests.

6.4 Randomizing image order

As mentioned earlier, due to time limitations the algorithm often does not reach a point where
different starting items are tested. Even though ordering the items by size does help, testing a
more diverse set of item arrangements gives a better chance at hitting an optimal or close to
optimal solution.

If the item order is randomized once and then the algorithm runs in the exact same way there
will be no improvement, as the starting items will not change again. This is fixed if the algorithm
runs multiple times, randomizing the order before each run.

As the time limit still needs to be taken into account, each new algorithm run has a lowered
timeout, the sum of all being equal to the complete timeout.

There is one inherent downside that comes with this method: using random values is unreliable.
As the chances of this algorithm to find an optimal solution get higher, so do the chances of hitting
only weak tests.

Testing the outcomes of this method are also unreliable. Results from benchmarking the
randomized order vary significantly.

This is not a desired effect in practice as the person using this may never know if another run
of the algorithm would provide a better solution. If multiple tests are done on the same problem
with this method, the overall time spent on it increases too, which is another undesired effect.

6.5 Grouping items with the same size

In practice it is often the case that each image needs to be printed a number of times. For our
problem each instance of the image is a different item that needs to be placed in a frame.

Here is an example: img1 needs to be printed 10 times, img2 and img3 - 5 times each. A total
of 20 items. Assuming that all three images have different dimensions then the 20 items can be
viewed as 3 multisets each having a frequency equal to the number of items it contains. If img2
and img3 both had the same dimensions, the multisets would go down to 2 in this case.
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How is this important for the backtracking algorithm? When iterating over all the items in the
backtrack function (2) there will be a great deal of redundancy for the above example. If however,
the iteration goes over the multisets instead of individual items, the number of executed tests
is greatly decreased.

Of course, if all items have completely different dimensions this gives no benefits but it also
has no disadvantages. Therefore this addition to the method is useful.

6.6 Differences if working on a roll

For this backtracking approach to work on problem instances that use rolled up material only one
modification needs to be made. The method is run as if solving a Sheet problem and after the
nests are created, the excess material at the end of each nest (if any) is trimmed. An example can
be seen in figure 5.1, where the nest on a roll is a trimmed down version of the one for a sheet.
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Genetic algorithm

As already stated, an optimal solution to the rectangle packing problem can not be given in a
timely manner, unless the problem instance consists of very few items, therefore approximate
solutions are looked into. Genetic algorithms are a popular option in situations like this. Due to
their random nature, genetic algorithms can never guarantee an optimal solution for a problem,
but they often find a good solution if one exists.

An attractive quality of such an approach is that at any given time the process can be stopped
and the best solution found so far is returned. As it is for the backtracking algorithm, the more
time the method has, the better solutions it can provide.

There are three main elements that need to be decided on when implementing a genetic al-
gorithm: the chromosome encoding, the fitness function and the way new generations are created.
The effectiveness of the implementation greatly depends on these choices. A change in any of the
three elements leads to different results, thus they need to be chosen in the most beneficial way
for the specific problem at hand.

7.1 Overview of genetic algorithms

Genetic algorithms are designed to mimic evolutionary processes like ’survival of the fittest’. It
is an iterative process in which each iteration represents a generation of individuals, each defined
by a chromosome. Every individual in that generation is evaluated to find the best ones, labelled
’fittest’, and they get to carry on their genes in the next iteration. The first generation consists
of randomly generated individuals but every succeeding generation is created based on the fittest
individuals from the previous one.

As in nature, each generation undergoes mutation to avoid the ’species’ stagnating in a local
extremum. If a mutation introduces a feature that improves the fitness of an individual it will
subsequently be transferred to next generations.

7.2 The developed genetic algorithm

To be able to apply this approach for the rectangle packing problem, the chromosome structure
must be chosen in such a way that it can be used to generate a nest. In the process of creating
the nest, its coverage can be calculated and used as the fitness of the chromosome, thus the fitness
function must be able to do that. The algorithm passed through several stages of development
before the final characteristics of the method were decided on. The following is the description
of the final version while the details on the decisions in the development process are given in the
sections after that.

The chromosome is a string of elements (genes) each of which consists of a number and a letter
t or f (as in true or false). The number in the gene represents a specific item from the inputs and
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the letter shows if the item is rotated or not, true (t) if it is or false (f) if it isn’t. The input items
are given a number, from 1 to n, n being the number of input items.

The string itself is an ordered list in which the numbers in each gene are unique. This is
uncommon for genetic algorithms as most popular methods of generating the new chromosomes of
each generation cannot be used and it is generally uncommon to have the requirement that genes
must have unique values.

The order of the items in the chromosome is important as it is later used in the fitness function
to create the nest. It is used to show the order of appearance of each item in the nest from left
to right and bottom to top. This can be seen in figure 7.1 where two different chromosomes are
shown plus the nests they would lead to.

An example of a chromosome, the first one from the figure 7.1, is [4t, 5t, 6f, 1f, 3f, 2f]. It has
6 genes whose numerical part is one of the numbers from 1 to 6 because the input items are 6 in
total. First in the list is ’4t’, this means that the item at the furthest bottom left corner of the
nest is item 4 and it is rotated by 90° because of the ’t’. The second item in the list is ’5t’. The
algorithm that places the items by their order is explained in detail in section 7.6, but the general
idea is that each next item is placed to the right of the previous ones or above it if there is no
available position to the right. In this example, the 5th item is placed to the right of the 4th and
it is also rotated as it has t in the gene. The third element in the order is item 6 and it is a gene
with f so the item is placed with its original, unswapped dimensions, to the right or above the
previous item. And the process continues for all genes in the chromosome in order.

Figure 7.1: Nests created by the 3tp ordered function with two different chromosomes.

By generating the nest, the fitness function can calculate the achieved coverage, which is used
to determine which chromosomes are the fittest.

Using the nature analogy, two fit individuals (chromosomes) that are used to create a new one
are referred to as parents and the new one is their child. The following is an in-depth description
of the process of child chromosomes creation:
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1. Two chromosomes are chosen at random from the fittest ones. In this example they are:

parent 1 (p1) : [1t, 2t, 3t, 4t, 5t]

parent 2 (p2) : [3t, 1t, 5t, 2t, 4t]

2. Two slicing points (or crossover points) are chosen at random. The genes between them will
be used from p1.

3. In this example they are between 1t/2t and between 3t/4t, shown by ’|’ below:

[1t | 2t, 3t | 4t, 5t]

4. The part from p1 that will be used keeping its order is:

[2t, 3t]

5. Remove those numbers from p2 as repetitions are not allowed

[XX, 1t, 5t, XX, 4t]

6. The genes that are left to be used from p2 are the following:

[1t, 5t, 4t]

7. Create an empty child chromosome of the same length as the parents and place the part of
p1 ([2t, 3t]) at a random position keeping the original order:

[__, __, 2t, 3t, __]

8. Fill in the blanks in the child with the genes kept from p2 ([1t, 5t, 4t]), again keeping the
order

[1t, 5t, , , 4t]

+

[__, __, 2t, 3t, __]

=

[1t, 5t, 2t, 3t, 4t] -> resulting child

The example above has ’t’ in all genes for ease of explanation and because this process does
not modify the rotation of objects. It only modifies the order of the genes. The orientation is only
changed by mutation.

Each individual in the newly created generation has a chance to mutate. The process is
explained fully in section 7.5, but the general idea is that when a chromosome mutates, one or
more of its genes changes. Either some genes swap positions or a gene changes its rotation value
(from t to f and vice versa).

That being said, the next sections are a description of how the decisions that lead to this final
look of the algorithm were made.
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7.3 Choice of chromosome encoding

The natural way of describing a chromosome is by a sequence, with its elements being binary,
integers or characters. How that sequence is interpreted afterwards depends on the fitness function
of choice.

During the literature study two main ideas for the chromosome encoding representations were
found: order of appearance [6] and splicing tree [15]. The order is a sequence of integers, each
integer referencing a different item while the splicing tree chromosome is given as a sequence of
characters that describe the tree itself. The second method has one drawback - there are optimal
nests that cannot be created using its chromosomes. A way of improving that was not found
during this project, thus no further work using the tree representation has been done.

On the other hand, the description by order of appearance, from left to right and bottom to
top, must be able to provide a way of finding optimal solutions to the problem. The issue is: how
to translate that sequence into an actual nest. There are papers that describe the use of one of
the pre-existing direct approaches, such as First-Fit or Floor-Ceiling. These approaches usually
sort the items before placing them in the nests but to be able to use them in the genetic algorithm
that sorting is skipped and the order described in the chromosome is used instead.

Therefore, a sequence giving the order of the items is used for the genetic algorithm imple-
mentation, with a slight modification : the genes not only carry the item number but also if the
item is rotated or not.

For example: a chromosome [3f, 1t, 2f] :
From left to right and bottom to top, the first seen item is item3, second is item1 and last is

item2. The letter after the number represents if the item has to be rotated: True (t) or False (f).
In this case, item3 is not rotated while item1 is.

The additional information about the rotation of the item is later used in the fitness function
described in section 7.6.

The size of the search-space created using that chromosome encoding grows exponentially with
the size of the input items. The exact size is shown in the following formula:

number of valid chromosomes = n! ∗ 2n, where n is the number of input items

7.4 Creating new generations

Each new generation consists of the ’offspring’ of the previous one’s fittest individuals, in the hope
that their beneficial traits will be passed on.

In most studied instances of problems that can be solved by genetic algorithms utilising a
sequence representation of the chromosome, the creation of the offspring is done by a simple
crossover function.

The simplest way of generating an offspring is to choose two parenting chromosomes then a
random point in them and coping everything before this point from the first parent and then
coping everything after the crossover point from the other parent. Here is an example:

Chromosome of Parent 1 [a, b, a, c, d, d, c]
Chromosome of Parent 2 [a, a, a, b, b, b, d]
Possible Child 1 [a, b, a, c, d ‖ b, d]
Possible Child 2 [a, b, a ‖ b, b, b, d]
Possible Child 3 [a ‖ a, a, b, b, b, d]

Table 7.1: Simple example of a crossover between two parents. The different children shown have
used a different crossover point, shown as the symbol ’‖’ in them.

Such a method is impossible to apply in the rectangle packing problem as the sequence chosen
represents the order of items, thus the elements of the chromosome need to be unique.
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A modification needs to be made in order to work with unique genes. The genes from the first
parent can still be kept in the same order and position but, to prevent repetition of genes, the ones
used from parent 1 need to be removed from parent 2. What remains can then be added to parent
1’s part and thus a child with all unique genes is created. Although only the first part directly
inherits the traits of a parent, the second part still preserves a certain order from the other parent.

Chromosome of Parent 1 [a, b, c, d, e]
Chromosome of Parent 2 [c, a, e, b, d]
Possible Child [a, b ‖ c, e, d]

Table 7.2: Simple example of a crossover for parents with unique elements in the chromosome.
The crossover point is shown as the symbol ’‖’ in the child.

As the beneficial trait in a parent may be represented by a cluster of items, it could be at any
position in the chromosome, not just at the start or end. To be able to extract such traits from a
parent two crossover points need to be selected and the part in between them can be used.

For example, in the chromosome [a, b, c, d, e] let’s say that only c and d work together nicely.
If only one crossover point is used, to be able to preserve that trait in next generations if this is
a parent 1 chromosome then all 4 starting genes need to be passed on to the child. Instead, two
points can be used to cut only the [c, d] part.

Chromosome of Parent 1 [a, b, c, d, e]
Chromosome of Parent 2 [c, a, e, b, d]
Possible Child [a‖ c, d‖ e, b]

Table 7.3: Simple example of a crossover for parents with unique elements in the chromosome
using two crossover points, shown as the symbol ’‖’ in the child.

Furthermore the position of the [c, d] part does not necessarily need to be at the same position
in the child as it was in the parent.

The different crossover methods explained in this section have been tested, proving that the
final chosen crossover function gives an improvement in performance over the rest. Detailed data
can be found in section 9.6

A summary of the final crossover function:
Two chromosomes are randomly selected as parent 1 and parent 2. Two random points are chosen
in parent 1 and the genes in between those points are placed consecutively at a random position
in the child. The selected genes from parent 1 are removed from parent 2 and what is left is then
used to fill the rest of the child’s chromosome, keeping the order of the genes of parent 2 the same.

An example can be seen in table 7.3.
An in-depth explanation can be found at the end of section 7.2.

7.5 Mutation of the new generation

When using the fittest individuals to create the succeeding generations there is the tendency that
the population will go in one direction and not change much after a number of iterations.

A popular way of avoiding such a stagnation is to introduce mutation of the offspring. Given
the chosen chromosome encoding there are limited possibilities of mutation. Here is a list of them:

1. Randomly chose a gene and change its rotation.

2. Switching the positions of two randomly chosen genes.

3. Switching the positions of two neighbouring genes, again at random.
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Even though mutation 2, switching two random genes, may result in switching two neighbouring
genes effectively making it the same as mutation 3, both mutations are necessary. The reason is
that both play a different role in evolution. Mutation 3 usually results in similar nests because it
swaps items close to each other thus providing a sort of ’fine tuning’. On the other hand, mutation
2 has a higher chance of greatly altering the nest’s appearance, thus its purpose is to help the
population escape a local extremum, if it is in one.

7.6 Choice of fitness function

A fitness function’s main role is to determine the fitness of a given chromosome and in this problem
the most suitable metric for that is the achieved coverage. In order to calculate that coverage the
chromosome needs to be ’translated’ into nests and while section 7.3 covers the chromosome’s
encoding, this section explain exactly how that ’translation’ is done.

The implementation of the Genetic Algorithm started with the use of FF and FC (chapter 2)
as fitness functions, witch is not a new concept. The goal was to improve that.

Test results showed that FC gives slightly better results than FF but it is more than 10 times
slower on average. The better coverage is expected as FC is an improvement over FF but the
decrease in speed is not. Further inspection of the two algorithms proved how little is needed to
slow the whole method.

FC basically runs FF first and then goes over all items, starting from the smallest, and it-
eratively checks if it would fit in any other level’s ceiling. Each test if an item fits on a level is
done by iterating over all the items in it and checking if there is any overlapping. This results in
a substantial increase of computation which is only visible if done a great number of times, as a
single call of both functions only takes a fraction of a second.

For example, if a genetic algorithm, for a problem with 150 items, is ran having 100 individuals
as its population and executing in 300 generations, the fitness function will be called (150*100*300)
4500000 times. Because of the time limitation a fitness function must be as quick as possible while
still being able to build nest that are close to optimal, if not optimal.

After advances while working on the backtracking algorithm one such function became avail-
able. It utilizes the ”test points” idea, described in section 6.1.

The pseudocode for that fitness function, called 3tp ordered can be found in Algorithm 3
below. An important aspect of it is that whenever a test point is used to test an item, it is being
removed from the whole list of test points, effectively using every test point only once during the
function. This is what makes this function so quick, there are no opportunities for prolonged loop
executions.

Figure 7.1 shows the nests that this function would create, given two different example chro-
mosomes with the same input items and frame size.
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Algorithm 3 3tp ordered(chromosome, images)

nest ← empty nest.
nests ← empty list
test points ← [(0, 0), ]
for all gene in chromosome do

image ← images[gene.number ]
if gene.rotated then

rotate image
end if
require new nest ← True
test points is sorted by (x, y)
for all tp in test points do

remove tp from test points
if image fits in nest at point tp then

place image in nest there
require new nest ← False
Add the 3 new test points created by placing image to test points

end if
end for
if require new nest then

append nest to nests
nest ← empty nest.
place image in nest at position (0, 0)
Add the 3 new test points created by placing image to test points

end if
end for
append nest to nests
calculate achieved coverage as nests coverage
return nests, nests coverage
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7.7 Choice of population size

Parallel to making decisions on the chromosome’s encoding and the fitness function, the size of
the population is experimented with. However, a test specifically designed to determine the most
appropriate size was done at a later stage of the method’s development. The exact results of that
test can be found in section 9.5.

An initial value of 30 was arbitrarily chosen for the first tests with the algorithm and it increased
to 100 after the tests.

7.8 Difference for sheet and roll problems

The fitness function (from Algorithm 3) regards roll problems as sheet ones, using the maximum
height of the roll, to be the height of the sheet. The difference comes at the end when the coverage
is calculated. Then if a roll problem is considered the excess length of the sheet nests is removed
to fit the actual problem.

A greater difference comes when deciding which individuals are the fittest:

• for a roll problem the population is sorted by the coverage each individual results in.

• for a sheet problem the sorting is done using the number of created nests as a primary key
and the coverage that would have been achieved if it was a roll problem, as a secondary key.

The reason why this is done for the sheet problem is that, even though the main goal of solving
it is to minimize the number of nests created, it does not provide a fine-grained distinction between
which individual is performing better. To get the sheet nests that were best fitted, they could be
considered as rolls just to get a number that represents a secondary criteria for the sorting.

7.9 Greedy creation of nests (one nest at a time)

Intuitively, if the approach takes the arrangement of all nests in mind it must give the best
solution to the problem, even if the individual nests may look suboptimal. And that approach
was presenting good results until one of the tests included more instances with large number of
input items. In that test the Floor Ceiling method was added just to prove how much better the
new GA approach is.

Even though on average GA performed best, the test showed a major flaw. At high number
of items Floor Ceiling gave better results with some cases having more than 10% more coverage
than any other method.

After examining the nests created by both methods for these cases, it was apparent that the
greedy approach used in Floor Ceiling worked well, while the nests created by GA were inefficient,
with low coverage.

On the other hand, GA gives close to optimal solutions for cases with smaller number of items,
so the problem must come from the increased complexity at high number of inputs. To combine
the advantages of both methods a greedy GA method is created.

The 3tp ordered algorithm (3) is edited to create only one nest instead of all of them, which
is a simplification to the function that even makes it faster. That way when a chromosome is
evaluated by it, the nest coverage that is returned is only based on the first nest that would
have been created. Which results in the Genetic Algorithm to return one nest with a very good
coverage, disregarding the files that are not included in it.

To create the second nest, the items used in the first are removed from the original input items
and the process is repeated, creating another well optimized nest. This is done until there are no
more images to be nested.

Solving the problem by such a greedy approach leads to issues such as the one described in figure
6.3, where creating the best nests first gives a worse result. That issue gets less and less relevant
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with the increase in nests created, because the bad coverage in the last nests is compensated by
the other better nests.

7.9.1 Fitting in the given time limit

The Genetic Algorithm can be given a maximum time it can run and if the algorithm is not finished
by the end of that time it just returns the best found solution so far. In the greedy approach using
GA this can not be directly used as it uses numerous calls of the Genetic Algorithm and if not all
of them are finished in time the final solution is incomplete, thus invalid. So it must be ensured
that each GA call is limited in such a way that the remaining calls still have some time to produce
good nests.

The method described in algorithm 4 has a pessimistic approach on predicting how many nests
will be created to make sure the time limit is met while all nests are created by the GA. If, however,
at the end of the time there are still un-nested items the process is finished by using Floor Ceiling
because of its fast execution.

The more important aspect of this algorithm is the dynamic prediction of the expected nests.
With each iteration, that number is recalculated by dividing the combined area of all items that
are left by the area that is expected to be covered by images in the next frames. As experiments
have shown that when creating multiple nests the coverages are usually similar, the calculation
can use the coverage of the last nest as prediction.

Often this leads to the starting nests receiving a higher time limit than the last ones but that
is not a problem as the last ones are working with few input items and generally require less time
to complete.

Assume that the function time left() used in the pseudocode below gives how much time is left
until the time limit is reached and the function GA one nest only(items, separate timeout) creates
one nest using GA and returns it.

Algorithm 4 Greedy GA(items)

last coverage = 80%
nests ← empty list
while items is not empty do

if time left() ≤ 0 then
break

end if
expected nests =

⌈
combined areas of items

frame’s area * last coverage

⌉
separate timeout = time left()/expected nests
nest = GA one nest only(items, separate timeout)
remove the newly nested items from items
add nest to nests
last coverage = nest ’s coverage

end while
if items is not empty then

complete nests using Floor Ceiling
end if
return nests

7.10 Disadvantage

Even though the Genetic Algorithm may provide satisfactory solutions to the problem quicker
then most methods, testing and gathering results for it is difficult. There are instances of the
problem for which this genetic algorithm implementation provides a coverage of 83% once and if
it is tested again, provide 91% coverage. That particular instance has 120 items in it and a person
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will never be able to achieve even 80% coverage in the 20 seconds it took this method. Still, a
fluctuation of this range is undesired as it lacks consistency, which is one of the initial goals of this
project.

To be able to evaluate the method against the other more consistent ones a number of tests are
performed, taking the average as the result. Even then, it is taken into account that the average
is still an estimation.
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Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique de-
veloped by Eberhart and Kennedy in 1995, inspired by social behaviour of bird flocking or fish
schooling.

Similarly to the Genetic Algorithm discussed above, the Particle Swarm Optimization is a
type of evolutionary algorithm. Therefore, it uses chromosomes that describe a possible solution
which is then constructed and evaluated by a fitness function. The difference lies in the way the
search-space is explored. While the Genetic Algorithm has a population that evolves with each
generation and the individuals in it represent a point in that search-space, in PSO the population
consists of particles that do not ’evolve’ but rather ’move’ in the search-space. Each particle’s
chromosome represents its location and by moving that location changes to a neighbouring one.

The success of PSO is best presented with a one or two dimensional search-space as any-
thing above two dimensions is difficult to display on screen or paper. Figure 8.1 shows a graph
representation of an example one dimensional search-space where the line shows its fitness.

Figure 8.1: One-dimensional search space that can be traversed using PSO.

The initialization of the method spreads particles randomly in the search-space. The iteration
after that aims to move them to a location with a better fitness. As this example is one dimensional,
a particle can only move in two directions, left or right, and the one that gives a better fitness
is chosen to be its next location. In a way, this makes the particles climb in search of a local
maximum and when they find one, they settle and report it.
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The particles are initially spread without knowing what fitness distribution looks like in the
search-space, otherwise that would defeat the purpose of searching, so there is a chance that no
particle is placed near the global optimum. For this example, in figure 8.1,if a particle is placed in
the range Ropt then it would start climbing that ’hill’ and the optimal solution for that problem
would be found. Otherwise, one of the other local maximums would be the result.

8.1 Adapting it to the rectangle packing problem

During the implementation of the Genetic Algorithm, the chromosome structure and the fitness
function proved to give close to optimal results for this problem. Even though that doesn’t
necessarily mean that they will give good results for PSO, they are still good candidates. And
because this method was studied less extensively during the project no better candidates were
found.

The more important aspect of PSO is deciding how to traverse the search-space. A particle
is generally allowed to move only to its neighbouring positions, but what defines that neighbour-
hood for this particular problem is open for interpretation. Of course, it heavily depends on the
chromosome encoding as it is used to determine the search-space itself.

A neighbouring location can be defined as a one that is one ’step’ away and in this case that
’step’ can be one change in the chromosome. The smallest changes are described in section 7.5
because they are used as mutations to the population.

Example:

Lets say a particle is at location [2t, 1t, 3t].

It’s neighbours would be all locations that result from all possible gene swaps and rotation
changes.

neighbours:

• [1t, 2t, 3t], [2t, 3t, 1t], [3t, 1t, 2t] from gene swaps

• [2f, 1t, 3t], [2t, 1f, 3t], [2t, 1t, 3f ] from rotation changes

They are all tested to see which one is the fittest and the particle moves can move there.
This process repeats with each iteration until all neighbours have a lower coverage or have been
previously visited, thus finding a local maximum and settling.

8.2 Particle Communication

Having the particles ’communicate’ with each other is a promising idea, but implementing it proved
that it has some limitations. There are two popular ways of creating that communication.

On one hand, the whole search-space can be mapped and each ’location’, described by a unique
chromosome, can have a boolean variable associated with it that states if a particle has passed
through it or not. That is infeasible because it would require an exponential amount of memory
to create that map.

On the other hand, a history can be kept that stores which ’locations’ in the search-space were
visited. This way the memory requirement is lowered, but it comes with its own disadvantages.
As a particle should not go where another has already been, to avoid redundancy, each test of a
particle’s neighbour has to first be looked up in the history to see if it is available. With time that
history can become so large that the process of looking up items from it becomes the bottle-neck
of the method.

The only way of removing that inconvenience is know at which point communication no longer
gives benefits and stop using it then. The particles may duplicate some of their paths but they
would be searching, instead of spending most of the time on the communication. Absence of that
history does lead to a lowered performance of PSO.
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8.3 Search-Space Disadvantage

The more particles are deployed in the search space, the more local maximums are found, the
higher the chances of finding one that is close to the optimum. Due to the nature of the problem
and, consequently, the chromosome structure, the search-space’s size is exponential. Using the
formula from 7.3, here are some examples:

• for 3 items the size is 48

• for 5 items the size is 3840

• for 10 items the size is 3715891200

• for 100 items the size is 1.18305 e188

The number of local maximums increases with the increase of the size too, so in order to
continue providing good results the algorithm needs to use more particles. As it can not use an
exponential number of particles, the results worsen with increase in size and that can be seen in
the overall results obtained in the final benchmarks seen in table 9.1.
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Results and Discussion

Due to the nature of the problem, after every change in a method, no matter how insignificant
it may seem, a benchmark test should be done to determine weather the change has lead to an
improvement in the given method. The inputs that are used at the start of the project are different
from the ones that are used in the final evaluation. The benchmark inputs developed through the
project had to be adjusted due to unaccounted variations of the problem. Furthermore, some
experiments target very specific test cases, thus a set of inputs different from the general one were
used.

• It must not be assumed that the test results from the different tables shown in this chapter
are based on the same inputs. This means that the results from two separate tables may not
be compared meaningfully unless otherwise specified in their description.

9.1 Final results, Benchmark from practice

A benchmark set of inputs is used in order to chose a method that generally has the best perform-
ance. That set consists of 120 different problems that had to be solved in the company and they
are chosen to represent the working conditions observed over the course of the project. The main
property that dictated the chosen inputs is the number of items they have:

• 42 cases (35% of all) with 2 to 10 items

• 20 cases (16.67% of all) with 11 to 20 items

• 14 cases (11.67% of all) with 21 to 30 items

• 10 cases (8.33% of all) with 31 to 45 items

• 6 cases (5% of all) with 46 to 70 items

• 28 cases (23.33% of all) with 71 to 280 items

To make the results more meaningful the following changes are made.
First, the distribution of the problems, depending on the number of input items they have, is

adjusted. In the original set of samples provided by the company, more than 75% of the problems
have less than 11 items. Even though this benchmark was intended to represent the reality in
practice, test showed that most methods produce good results with that little input items. If there
is hardly any difference in the methods for 75% of the test cases then the overall average would
have little meaning and the in depth examination of the tests would leave less samples that give
valuable information. This being said, the problems with less than 11 items are not useless as
there are occasional instances that get different solutions from different methods. So instead of
not including any of them in the final benchmark, their numbers were decreased to only amount
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to 35% of all tests. As a result, the numbers of test cases in the other categories are increased,
most noticeably in the last one, with the largest numbers of input items.

Second, even though originally about half of the inputs are done using sheets, rolls produce
more accurate results, thus all problems were treated as roll problems. The difference in results
between the two problems is mainly the granularity. For example, if two methods give 3 sheet
nests as results to a problem, considering them as equal, but if the same inputs were set on roll the
results can prove that one method gives a better solution than the other. That was also observed
in the initial tests with these 120 inputs as the sheet problems either gave big result differences or
none at all, which lead to that improvement in testing.

After the the final adjustments on the benchmark inputs, all relevant methods are run on them.
The results can be seen in table 9.1.

Tested Method Average Time (s) Average Coverage (%)
Genetic Algorithm (one nest at a time) 32.9657 84.9156
Genetic Algorithm (all nests at once) 53.3880 83.2479
SMT Hybrid (all nests at once) 83.0958 81.8224
Backtracking 95.1452 80.3591
SMT Hybrid (one nest at a time) 189.4323 76.5153
Floor Ceiling 0.0406 76.4821
Particle Swarm Optimization 179.3735 63.6756
Using the best of all methods - 86.1259
Final combination of methods 35.0357 86.0061

Table 9.1: Final results from all implemented methods. Based on the final benchmark tests of 120
problem instances from practice.

The method that presented best average coverage is the Genetic Algorithm (one nest at
a time), described in section 7.9. In other words, if only one method needs to be used to solve
the company’s nesting problems, that is the method of choice. Even the Average time it took is
lower than most.

During the process of development, the Genetic Algorithm generally started to show the best
results after the fitness function was changed appropriately and the crossover function was im-
proved.

Next is the Genetic Algorithm (all nests at once), described extensively in section 7,
which is the more pure form of the Genetic Algorithm as it considers all items while creating the
final solution. Due to the complexity of the problem at cases with high input numbers, it fails to
provide an overall better average coverage.

Following closely, is the SMT hybrid method (section 5), more precisely the version of it that
generates all tightly fit strips and then arranges them in nests. Its counterpart, one nest at a time,
is fourth in the list and uses twice the time in average. This fact indicates that considering the
problem as a whole gives an advantage while using SMT contrary to what the GA methods show.

On the other hand there is the greedy Backtracking algorithm (section 6) that also uses
the same idea of generating one nest at a time, because dealing with all nests simultaneously
is extremely slow and regularly produces worse results than what Floor Ceiling does. Thus the
second variation of the Backtracking algorithm is not even included in the final consideration.

The Floor Ceiling method (section 2) is an outdated method that used to be a standard
years ago and is used as a comparison to the others. The only advantage it still has over the rest
of the methods is that it can handle tens of problem cases in a second, making it, on average, a
1000 times faster than the Genetic Algorithm.

The Particle Swarm Optimization (section 8) showed promising signs at the start of the
research but even though it got improved over time it is unable to give satisfactory results in the
end. The fact that it shares most of the ideas with the Genetic Algorithm, namely the same fitness
function and chromosome structure, shows how important the evolution of the chromosomes really
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is. The strategy of traversing the search space using this method proved to be inefficient for this
type of problems.

Next in table 9.1 is the ”Using the best of all methods” which is a theoretical best case
scenario for these test cases, if all methods were run and the best result was chosen at the end.

Lastly, the result obtained by running the Final combination of methods, which is imple-
mented in the final application of this project (more details in chapter 10). As the name suggests,
it benefits from all viable methods to find a better solution than if using just one. The result
proves that to be an improvement, even though the theoretical best is not reached. The inability
to reach those results comes from the time constraint, because in the final combination all the
methods share the same time limit instead of each having it separately.

A summary of the observations on a finer scale can be seen in figure 9.1. This information
is crucial in the final decision on how to use the different methods in cooperation to provide the
best solutions. The frequencies in each group adds up to more than 100% because a number of
methods can find the same coverage on a test, which happens more frequently with smaller number
of items.

Figure 9.1: The frequency with which a method has found the best solution in the benchmark
from practice.

Detailed results for each test case can be seen in appendix A. By examining the results case
by case it can be seen that the Genetic Algorithm finds the best solutions 97 times, while both
SMT hybrid methods and the Backtracking algorithm find them around 52 times (52,54 and 51
more precisely).

There are 11 cases where the Backtracking algorithm provides the best solution, making it a
good candidate to be used in parallel with the leading method. However, it will not be used as
the improvement that is gained is at a great cost of time.

9.2 Improvement in the company

Near the end of this research, one of the workers was asked to complete some tasks two different
ways: using the software designed in this project and the way they used to work before it. Only
five tasks were recorded because it disturbed the work flow and the worker stated the results will
repeat themselves, with small variances.

The process, used before this project, was aided by a commercial software that helps order
the images as well. Its main disadvantage is that that software was created for general use. This
creates overhead due to the need of setting the options manually with the provided interface.
Additionally, each image is selected and added to the nest manually, thus further slowing the
process.
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After the images are picked and everything is set, the nest is arranged within a second, even
for cases with a higher image count. The only methods, found during this research, to accomplish
that are the direct approaches. However, they aim for a quick solution regardless if it close to
optimal.

To have a completely manual reference on the tested problems, solutions were found by just
using pen, paper and a calculator to verify that there is no overlapping. The process is slow and
cumbersome especially for cases with more than 8 items in them. It was similarly to the idea
of backtracking with smarter choices of combinations, which most of the time lead to the same
results found by this project’s software. Having a small number of items gives the opportunity to
check all possible arrangements, thus finding the best one easily, but slowly. With a higher item
count the best arrangement becomes easier to miss, as seen in the results, shown in table 9.2.

Commercial
Software

Proposed use
of GA and SMT

Completely
Manual

№ items time (s) coverage (%) time (s) coverage (%) time (s) coverage (%)
4 25 75.7 6 75.7 120 75.7
5 25 78.6 10 80.3 120 80.3
8 28 89.5 17 93.9 420 89.5
10 30 87.1 15 92.0 800 92.0
14 36 83.7 39 87.5 920 86.4
Average 28 82.94 17.4 85.7 492 84.78

Table 9.2: Time and coverage results comparing a previously used commercial software in BigIm-
pact, the currently used software designed during this project and solving the problem manually
without any software help

On average, using the newly developed software gives a coverage improvement of 2.76%, while
making the process faster for problems with a lower item count. Even though it is slower for some
inputs it is still acceptable by the company’s requirements.

Another noticeable improvement over the new system is that the new process is more automated
than it used to be that reduces the possibility of human errors.

9.3 Benchmark with random inputs only

Working with test cases observed in practice is proof that these methods are an improvement for
the specific company. To determine if these findings hold for general rectangle packing problems
a different set of tests is required. These tests are generated pseudo-randomly, in other words, all
random values have lower and upper limits.

The frame’s width is between 1000 and 4000, its height is between 1000 and 10000. Each item’s
width is between 20 and the frame’s width, while the height is between 20 and frame’s height. The
number of input item ranges from 2 to 200. Instances where one item takes up a whole frame are
not practical for the research, therefore, items’ dimensions are chosen at random with a Gaussian
distribution.

For the averages to be useful the number of tests must be large enough. In this case 300
problems were generated and later examined to determine what they would look like if only a part
of them is used. For the generated tests even using the first 100 test cases the same conclusions
can be made regarding the tested algorithms, which conceivably suggest that the 120 instances
from practice are sufficient.

Having so many different problems in this benchmark has one drawback, the time it takes to
run all algorithms. After having the results shown in table 9.1 some methods were removed from
these tests, so in the end only the first few methods are tested to determine if they show the
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same quality and Floor Ceiling is included because of its low time of execution and good baseline
opportunities.

Tested Method Average Time (s) Average Coverage (%)
Genetic Algorithm (one nest at a time) 89.85138 84.47314
Genetic Algorithm (all nests at once) 79.85138 77.01155
SMT Hybrid (all nests at once) 113.09587 65.52693
Backtracking 202.16912 71.34855
Floor Ceiling 0.03794 76.20065
Using the best of all methods - 85.03442
Final combination of methods 54.56384 84.87922

Table 9.3: Final results, based on benchmark tests of 300 random problem instances

9.4 Basic SMT compared to Genetic Algorithm

In order to test the efficiency of the Genetic Algorithm and its ability to find close to optimal
solutions it is compared with the Basic SMT method.

As stated before, the Basic SMT method finds close to optimal, if not optimal, solutions for
problems with sufficiently small number of input items. This number can go up to 30 but tests
demonstrate that after 10 items the chances of this method experiencing timeouts for some of the
calls to the SMT solver, increase gradually. Therefore, only test cases with up to 10 items are
used in the following test.

Similarly to the benchmark with random inputs only (section 9.3), to get more accurate results
an input set of 300 test cases is generated and the results, using both methods, are recorded. The
general statistics from the test can be seen in table 9.4, where a the difference in coverage is
calculated by subtracting GA coverage from SMT coverage.

From all 300 tests, in 57 cases SMT gives better coverage, while in the rest 243 cases they both
give the same result. The same test was done three times, to reduce the effects of the randomness
in the Genetic Algorithm, and the results were consistent each time with small variances. The
Basic SMT method provides better coverage on average and even though it is by less than half a
percent, this advantage was apparent in all three test runs.

It is important to note that the Basic SMT method not only outperforms GA for cases with
under 10 items in terms of average coverage, it also does it around 6 times faster.

As a result, when given an input of up to 10 items that have a combined area less than the
frame’s area, it is always beneficial to first try that method and if any of the SMT calls timed-
out, then use GA and return the best result of both. Even though in the majority of cases
such a timeout does not cause a decrease in coverage, it is a sign that it could have happened.
Furthermore the arrangement found by SMT can be added to the starting population of the GA
so that it accelerates the evolution in it.

The extreme differences where GA provides a much worse solution than the SMT can be used
to find issues with the fitness function that is responsible for arranging the items in the nest.
During the first run of this test such a defect was found in one instance and fixing it gave a global
improvement in efficiency of the Genetic Algorithm. On the other hand a large difference, like the
one seen in table 9.4, does not necessarily mean there is something wrong in the algorithm. This
exact case is shown in figure 9.2. An initial check shows that the SMT nest cannot be formed by
any chromosome in the Genetic algorithm, but if the nest is mirrored it becomes possible, thus
this relatively low coverage is caused by the algorithm missing the best arrangement. Further
evidence comes, after a few runs of GA over that problem instance because it eventually finds that
optimal nest.
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№ items
GA coverage

(%)
GA time

(s)
SMT coverage

(%)
SMT time

(s)
Difference in
coverage(%)

2 82.1014 0.0023 82.1014 0.0758 0
... ... ... ... ...
7 79.1595 6.4999 80.0157 0.1378 0.8562
7 86.2291 7.0046 86.2291 0.4017 0
7 88.5801 4.4595 88.5801 0.1475 0
... ... ... ... ...
9 81.4435 12.0537 88.3563 3.8024 6.9128
10 90.3779 16.2836 90.3779 4.4510 0
10 87.8439 17.7451 87.8439 2.4552 0
... ... ... ... ...

Averages: 78.6867 6.4261 79.0793 1.1049 average 0.3925
maximum 6.9128

Table 9.4: Statistics on the 300 test cases with a few examples included.

Figure 9.2: Nests created by Basic SMT (left) and Genetic Algorithm (right) for the case with
highest difference in coverage shown in table 9.4.

9.5 Population for GA

One aspect of the Genetic Algorithm that contributes to its efficiency is the size of the population.
Table 9.5 shows the results of a test in which the only variable is the population size. The Genetic
Algorithm was run over 80 cases from practice that was used as a benchmark at that moment,
but because the differences turned out to be comparable to the fluctuations of GA’s results, each
test was conducted 4 times and an average was used for the comparison. One obvious change is
the increase of time, with increase of population size, which is acceptable as long as it provides an
increase of resulting coverage.

Having a larger population with the same number of generations passed means that more
possible chromosomes are tested which gives a higher chance for a better solution. This is apparent
in the results too but at one point that benefit is not large enough to compensate for the increase
of run time.

Finally, the population size of 100 is chosen, because around that point the coverage starts to
increase with lower rates rapidly.

The rare cases when an input problem has less than 4 items, all possible chromosomes are less
than 100 which breaks the rule that all chromosomes in the population need to be unique. Having
n as the number of input items, the actual population size is based on formula 7.3 as follows:

population size = min(n! ∗ 2n, 100)
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Population Size Time (s) Coverage (%)
20 9.819 82.630
30 12.264 83.011
40 12.471 83.341
50 13.942 83.589
60 15.211 83.763
80 16.337 83.924
100 18.160 84.097
140 20.775 84.110
200 23.160 83.168

Table 9.5: Results from having different population size. Each result here is an average of 4 runs
on 80 cases from practice.

9.6 Crossover functions for GA

After the chromosome structure and the fitness function for the Genetic Algorithm (section 7)
were finalized, a series of tests were done to determine which crossover technique works best with
them.

The tests include two with different techniques and one without using crossover at all, relying
only on mutation for the evolution. These tests were done before the final benchmarking thus
used different input cases and the results differ from the one used in the final comparison.

All test results with the averages can be seen in table 9.6. Not using any crossover technique
yields the worst results, while having the crossover use two points for slicing the chromosome, gives
the best performance. This proves that the reasoning in section 7.4, that explains the different
ways of creating new generations, is correct.

Using two
crossover points

Test № Average Coverage (%) Time (s)
1 72.34697 86.04934
2 72.04435 85.57286
3 72.44652 85.52286
4 73.14536 32.63143
5 71.92474 85.9099
6 73.58826 33.34453
Average 72.5827 68.1718

Using one
crossover point

1 71.42859 91.57120
2 69.98009 142.22980
3 70.41646 141.9696
4 72.16561 90.41039
5 71.99898 90.44193
6 71.79684 90.40818
Average 71.29775 107.83857

No crossover technique

1 69.32332 28.16234
2 68.90096 81.73140
3 68.69671 81.26450
4 69.61067 27.94164
5 68.28536 81.00666
6 69.37543 27.77267
Average 69.03207 54.64655

Table 9.6: Comparison between different crossover techniques for the Genetic Algorithm. Each
test is done over 80 cases from practice and the averages are presented.
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Combining Methods

After obtaining the results for the separate methods, shown in the previous chapter, a few general
patterns are observed:

• For inputs with less than 15 items Basic SMT has the highest chance to find the best solution.

• For inputs with less than 50 items both variations of the Genetic Algorithm are the preferred
methods.

• For higher number of items it is the Genetic Algorithm (one nest at a time).

• If Basic SMT is unable to produce a nest then the images cannot fit in one frame and another
method must be used.

• Floor Ceiling is quick enough, that it can be used in every case before the other methods.

These ideas are implemented in the final application for the company and the exact way it is
done is shown as a flow chart in figure 10.1. One thing that is not shown directly in it is how the
time is shared among the methods. At the start of it the users, in this case the workers, specify
how much time they give the application to find a solution. Let’s call that time work time.

Previous tests show that Basic SMT executes fairly quickly, thus it is given only a part of the
work time. The exact amount of time it would need is heavily dependent on the type of inputs the
software is expecting to work with and how much time do workers usually allow it to work. Tests
show that the maximum time the Basic SMT executes for was 7.942 seconds while the time given
is most often 40 seconds, so allowing this method to work for 20% of work time must be enough.

Floor Ceiling executes for part of a second and is done first, or after the 20% of work time,
thus it does not need a time constraint.

If Genetic Algorithm (all nests at once) needs to be used, it is given half of the remaining
time. Depending on weather there has already been a Basic SMT execution that failed or not,
that time is either 40% or 50% of work time, respectively. Again, only a part of the time is used
as an execution of the Genetic Algorithm follows and it needs to execute too.

The time given to the last method is not calculated as a percentage of work time, but instead
a calculation, of what time is remaining, is used.

All these percentages above can be adjusted to find the best combination but testing showed
that using values that are even +/- 10% than those show less change in performance than the
variance caused by Genetic Algorithm’s randomness.

In the flow chart (figure 10.1) there are two parameters, namely smt threshold and GA threshold.
To fit the specific needs of the company they were chosen as 15 and 50, respectively. Different
conditions might require these parameters to change.
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Figure 10.1: Flowchart showing when the different methods are used for the final application.

The results of this method can be seen in table 9.3 and 9.1 where it is referred to as Final
combination of methods. Its performance is comparable to the what could theoretically be
achieved if all methods were run parallel and the best results were used. The reason why that
maximum isn’t reached is that only four of the methods are included in this final one.
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Chapter 11

Conclusions

The goal of the project is to find a method that gives the best coverage to the rectangle packing
problems in a limited time. To properly compare the effectiveness of different methods, they need
to be implemented and tested with the same problem instances.

In addition to some known approaches, a new one that makes use of an SMT solver is intro-
duced. It resulted in three different methods, of which one is being used in the final application.

Conclusions for each method are made separately:

• Floor Ceiling algorithm (FC) - An intuitive direct algorithm of arranging the items. Not
optimal but has the benefit of executing much quicker than any other tested method.

• Basic SMT approach - If it finds a solution it is either optimal or close to optimal but it
succeeds only with problems that result in a single nest solution and the input items are less
than 25.

• Best coverage SMT approach - A failed experiment. Even in its final form, this method is
too slow to provide satisfactory results.

• SMT Hybrid approach - It can solve all given problems with good achieved coverage. With
high number of input items its execution time becomes long but still within limits

• Backtracking algorithm - This method also gives good results but they quickly deteriorate
with an increase in the number of input items. It is an improvement over a direct greedy
approach.

• Genetic Algorithm (GA) - The method that gave best results if used solely. Benefiting from
a non-optimal but quick fitness function that allows for quicker testing of the population.

• Particle swarm optimization (PSO) - Another experiment that yielded unsatisfactory results,
especially to more complex input problems.

The results proved that depending on the input, different methods give the best results and in
order to build a general solver, a tool was designed to utilizes some of them. The methods that
are included in that tool are Basic SMT, FC and GA, while the others are absent either because
of their long execution time or because their results are unsatisfactory.

The research process during the thesis was going in parallel with the development of the tool
used in BigImpact [3] that integrated the researched methods. It proved to be useful after the
introduction of the SMT hybrid approach and continued to improved with the development of the
rest of the methods.
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A test, comparing this tool against the method previously used in the company, shows an
average increase in material coverage of 2.76%. In 2016, the company used 770 000 m2 of material
to print on, with an average cost of 2.5 euros per m2. Assuming the average coverage was 82.94%,
suggested from the test in section 9.2, the increase of coverage to 85.7% means that only 745 200
m2 would have been sufficient. That translates to saving 24 800 m2 of material which would cost
roughly 62 000 euros.

Future work

The implemented methods are not the only ones solving the problem, hence a different set of
methods may be better used in the final application.

There are also more options of using the SMT solver with other algorithms that could not be
included in this research. It is possible that a better one exists.

Even the method that yielded best results, the Genetic Algorithm, has unexplored varieties
that may lead to it having a better performance.
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Appendix A

method Maximum Genetic Algorithm SMT Hybrid Backtrack SMT Hybrid Floor Ceiling Particle Swarm basic SMT

№ items (all at once) (one at a time) Optimization

2 65.0964 65.0964 65.0964 65.0964 65.0964 65.0964 65.0964 65.0964

2 91.0916 91.0916 91.0916 91.0916 91.0916 91.0916 91.0916 91.0916

2 66.2977 66.2977 66.2977 66.2977 66.2977 66.2977 66.2977 66.2977

2 85.0108 85.0108 85.0108 85.0108 85.0108 85.0108 85.0108 85.0108

2 96.1660 96.1660 96.1660 96.1660 96.1660 96.1660 96.1660 96.1660

2 42.1654 42.1654 42.1654 42.1654 42.1654 42.1654 42.1654 42.1654

3 28.8921 28.8921 28.8921 28.8921 28.8921 28.8921 28.8921 28.8921

3 96.9738 96.9738 96.9738 96.9738 96.9738 96.9738 96.9738 96.9738

3 96.9738 96.9738 96.9738 96.9738 96.9738 96.9738 96.9738 96.9738

3 64.6860 64.6860 64.6860 43.3114 64.6860 64.6860 64.6860 64.6860

3 85.8668 85.8668 85.8668 85.8668 85.8668 85.8668 85.8668 85.8668

3 89.6433 89.6433 89.6433 89.6199 89.6433 89.6433 89.2352 89.6433

4 71.2219 71.2219 63.8332 70.9894 63.8332 63.8332 63.8332 71.2219

4 89.5327 89.5327 89.5327 89.5327 89.5327 89.5327 89.5327 89.5327

4 68.4423 68.4423 68.4423 48.2234 68.4423 48.2403 48.2403 68.4423

4 91.4161 91.4161 91.4161 91.3984 91.4161 76.5638 76.5638 91.4161

4 87.8009 87.8009 79.5711 87.7301 79.5711 78.2837 49.5836 87.8009

5 82.8878 82.8878 82.8878 82.7916 82.8878 70.5899 52.2066 82.8878

5 78.2914 78.2914 74.0044 59.8342 74.0044 60.5039 59.8342 78.2914

5 55.5965 55.5965 55.5965 44.1843 55.5965 44.2127 44.2127 55.5965

5 91.9244 91.9244 91.9244 91.9244 91.9244 52.1394 91.9244 91.9244

5 81.3088 81.3088 55.6902 80.3264 55.6902 55.6902 41.8959 81.3088

6 78.3586 78.3586 78.3586 78.3586 78.3586 78.3586 78.3586 78.3586

6 78.3586 78.3586 78.3586 78.3586 78.3586 78.3586 78.3586 78.3586

6 88.7644 88.7644 88.7644 88.7279 88.7644 88.7644 54.3730 88.7644

6 94.0513 94.0513 94.0513 94.0513 94.0513 94.0513 94.0513 94.0513

6 97.4500 97.4500 97.4500 97.4500 97.4500 97.4500 97.4500 97.4500

7 75.7556 75.7556 75.7556 75.7316 75.7556 75.7556 75.7556 75.7556

7 91.7624 90.3930 65.6470 90.3670 65.6470 70.9322 42.6563 91.7624

7 80.6468 80.6468 80.6468 60.1931 80.6468 58.2742 60.1931 80.6468

7 91.5291 91.5291 91.5291 63.0092 91.5291 68.1041 68.1041 91.5291

7 91.4272 91.4272 71.8271 87.2799 71.8271 84.6261 37.6181 90.6653

8 90.0853 90.0853 90.0853 89.6604 60.9231 90.0853 44.1021 90.0853

8 93.6649 93.6649 92.3169 81.8202 92.3169 79.2778 52.9641 93.0824

8 83.5305 83.5305 83.5305 83.5305 75.2711 75.2711 54.9501 0.0000

8 93.9270 93.9270 90.4970 88.5645 72.4970 65.5689 44.1570 93.9270

9 73.8859 73.8859 71.8373 73.8859 71.8373 73.8859 46.0292 0.0000

9 90.6799 90.3248 84.0316 79.3450 76.0316 71.9967 41.3314 90.6799

9 92.7501 92.7501 87.8877 80.5126 79.8877 82.0149 45.5270 91.4734

9 90.6388 90.6388 84.3639 77.1067 72.3639 69.0027 72.3639 90.6388

9 91.5699 91.5699 87.2216 79.1853 73.2216 77.1832 44.4063 91.5699

9 84.0772 84.0772 83.1283 84.0062 83.1283 83.1283 76.2352 0.0000

10 96.1056 96.1056 96.1056 78.4588 96.1056 77.2147 60.8827 96.1056

10 85.7339 85.7339 76.6377 72.9036 76.6377 76.6377 53.9888 85.7339

12 88.3738 88.3738 88.3738 88.3738 88.3738 88.3738 88.3738 88.3738

12 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502

12 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502

12 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502 93.0502

13 93.6644 93.6644 89.1310 83.8431 93.6644 79.1475 58.4997 0.0000

13 93.6644 93.6644 89.1310 83.8431 93.6644 79.1475 58.4997 0.0000

13 85.0360 85.0360 80.7032 85.0360 80.7032 64.5454 44.9302 0.0000

13 90.4082 90.4082 87.8341 84.1580 87.8341 77.3375 51.4406 84.5053

14 91.5558 90.2926 91.5558 90.2926 85.2358 85.2358 58.7048 0.0000

Table A.1: All the coverage data from the Benchmark on production problems. Part 1
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method Maximum Genetic Algorithm SMT Hybrid Backtrack SMT Hybrid Floor Ceiling Particle Swarm basic SMT

№ items (all at once) (one at a time) Optimization

14 76.8995 76.8995 71.0288 76.8995 73.1684 52.3509 50.5988 0.0000

14 91.7820 91.7820 89.3720 91.7820 89.3720 55.7675 48.1202 91.7820

15 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433

15 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433

15 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433 92.4433

18 90.8333 90.8333 90.8333 90.4611 66.8864 66.8864 60.6387 90.8333

18 92.2896 89.1870 92.2896 81.7083 92.2896 81.3683 47.4883 0.0000

18 79.1014 79.1014 79.1014 79.1014 65.4621 65.4621 61.2288 79.1014

18 93.4080 93.4080 90.3120 76.6915 76.6915 66.9108 33.1199 89.8211

20 92.4537 92.4537 92.4537 92.4537 92.4537 92.4537 92.4537 92.4537

20 53.9405 53.9405 53.9405 53.9405 53.9405 53.8462 53.9405 53.9405

21 84.9661 84.9661 77.7584 84.3571 70.1568 69.5104 46.8084 0.0000

25 93.7481 93.7481 86.7824 87.3886 86.2241 82.0996 72.0996 0.0000

25 91.4396 89.9215 88.6563 89.1455 91.4396 82.0609 48.0646 0.0000

25 66.0920 66.0920 66.0920 66.0920 66.0920 66.0920 66.0920 0.0000

25 64.9108 64.9108 64.9108 64.9108 64.9108 64.9108 43.2739 0.0000

26 77.5714 77.5714 77.5714 77.5714 77.5714 58.1786 38.7857 0.0000

29 76.4772 76.4772 74.9466 68.8749 74.9466 73.6765 52.2232 73.4996

29 86.1047 86.1047 84.4582 86.1047 81.0226 71.9929 49.4196 0.0000

30 90.9686 90.9686 84.9501 84.9501 62.1126 90.9686 63.6522 0.0000

30 90.9686 90.9686 90.9686 84.9501 62.1126 90.9686 63.6522 0.0000

30 55.2330 55.2330 55.2330 55.2330 55.2330 55.2330 55.2330 55.2330

30 86.5044 86.5044 84.7402 58.2934 74.7402 72.0588 58.2934 69.2035

31 95.7430 94.8345 89.5130 95.7430 89.4639 89.7097 60.5085 0.0000

32 83.4438 83.4438 81.0377 79.0377 76.0377 79.7930 76.0377 0.0000

32 89.0748 89.0748 85.5432 89.0748 66.7838 66.7838 60.3228 0.0000

33 93.4878 93.4878 70.4422 86.8401 70.4422 82.2242 67.3742 0.0000

33 82.5800 82.5800 82.5800 82.5800 82.5800 82.5800 82.5800 0.0000

34 93.0576 93.0576 90.8269 80.0174 81.9635 76.4920 67.0872 0.0000

35 43.7924 43.7924 43.7924 43.7924 43.7924 43.7924 43.7924 0.0000

36 89.7451 88.1200 89.7451 85.5534 89.7451 86.3693 66.9220 0.0000

40 87.7137 86.1659 84.8538 87.7137 80.9037 77.0378 48.6005 0.0000

46 76.4011 76.4011 73.7127 58.7127 62.5523 57.0420 50.9033 0.0000

49 74.6792 74.6792 72.4589 68.1651 65.2364 60.4909 51.4877 0.0000

55 96.8096 96.8096 77.8161 82.4058 76.6365 80.0567 71.4197 0.0000

61 94.4969 94.4969 89.1988 84.5551 87.1082 76.2871 50.8945 0.0000

62 83.6888 77.8377 75.8072 78.8641 58.9195 83.6888 58.9195 0.0000

65 63.1646 63.1646 63.1646 63.1646 63.1646 63.1646 42.1097 0.0000

76 98.5625 98.5625 79.2321 82.6407 78.3435 81.7614 72.1632 0.0000

81 79.7494 79.7494 79.7494 79.7494 79.7494 79.7494 39.8747 0.0000

82 95.8382 95.8382 81.6407 84.2453 67.6251 78.1493 54.4410 0.0000

87 78.2483 69.5540 68.1528 78.2483 62.5986 69.5540 52.1655 0.0000

90 90.6271 83.5009 87.4413 90.6271 89.2943 88.1542 61.0993 0.0000

95 93.8406 93.8406 88.5145 83.9707 70.8304 78.6370 56.8347 0.0000

97 95.6047 95.6047 88.2233 84.9249 60.7855 79.3457 74.2402 0.0000

99 77.3769 67.7048 75.7649 77.3769 77.3769 77.3769 54.1638 0.0000

101 89.3788 89.3788 88.7655 84.2213 68.0093 79.9929 58.3715 0.0000

101 76.3907 69.4461 74.2687 76.3907 76.3907 76.3907 50.9271 0.0000

107 89.7256 82.6301 89.6890 89.3691 87.7601 89.7256 61.8299 0.0000

107 89.5614 89.5614 86.0404 88.9010 74.3284 79.5645 59.1378 0.0000

115 91.1350 87.9508 86.8013 91.1350 76.6237 82.2062 59.5041 0.0000

118 96.9157 96.9157 90.5024 83.3588 60.5416 80.5558 74.3229 0.0000

123 91.2463 88.4717 86.8936 91.2463 77.7049 82.4247 61.3490 0.0000

124 89.7825 81.8204 89.1912 85.8769 86.2940 89.7825 63.7531 0.0000

131 91.3405 88.4594 88.1859 91.3405 78.2170 83.0856 61.7925 0.0000

139 91.4214 87.6665 90.8409 91.4214 81.1258 84.5970 63.5514 0.0000

142 95.5727 95.5727 93.8254 85.0892 60.3643 80.3437 74.1336 0.0000

145 85.7816 84.7508 83.8876 85.1671 75.8905 85.7816 63.2291 0.0000

151 89.7922 87.8902 87.2959 89.7922 77.8808 85.9014 63.0071 0.0000

158 89.2238 85.5205 88.4415 89.2238 84.5295 85.4093 63.9694 0.0000

166 90.8074 90.8074 86.0754 84.6172 62.4154 80.5807 74.1885 0.0000

186 86.7617 86.7617 83.1069 84.7641 64.8329 80.7837 74.6204 0.0000

206 89.7761 89.7761 85.8169 84.8752 66.0207 80.6277 75.6086 0.0000

226 85.3022 85.3022 81.8632 84.3409 64.6683 80.7900 75.1340 0.0000

246 85.3037 85.3037 81.0980 85.0961 60.0698 80.9260 76.1659 0.0000

266 85.3544 85.3544 82.7600 84.8895 69.7882 81.0415 75.4778 0.0000

278 85.4195 84.0920 82.7317 85.4195 69.2928 81.6499 74.8050 0.0000

averages: 85.0052839967 83.2479160697 81.8224628963 80.35910975 76.515309032 76.4821793948 63.6756329077 40.1929367481

Table A.2: All the coverage data from the Benchmark on production problems. Part 2
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