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Abstract

In this thesis, we aim to develop and apply machine learning techniques for fraud detection in bank
transactions. The business context of fraud detection in bank transactions has several challenges
(e.g. high dimensional and highly imbalanced data) and model requirements (e.g. low false positive
rate and good interpretability) that are not easy to solve and satisfy by simple machine learning
techniques. We formulate the research problem as a supervised binary classification problem and
our goal is to develop a binary classifier that can address the above challenges and satisfy the
requirements.

Our approach is a combination of several state-of-art techniques (e.g. down-sampling and cost
sensitive approach for highly imbalanced problem, L1-regularization for high dimensional problem,
and using PAUC instead of AUC as model evaluation metric for low false positive rate require-
ment) and a novel clustering-based ensemble of sparse linear classifiers. Our main contributions
of the clustering-based ensemble approach are the CCOvA (Class Crossing One-vs-All) classifier
training scheme and SC (Soft Combination) scheme for combining local classifiers based on the
instance’s distances to different cluster centers. Compared with the two common classifier training
schemes (i.e. One-vs-One and One-vs-All), the CCOvA scheme has higher predictive performance
when combined with the SC scheme. Furthermore, if the obtained clusters have meaningful inter-
pretations (e.g. each cluster corresponds to one sub-class), the clustering-based ensemble model
is also easy to interpret since the interpretations of the local classifiers can be linked to the ob-
tained clusters, and the SC scheme can be interpreted as giving different levels of trust to local
specialized classifiers based on distance information. The main limitation of such approach is its
high dependency on the clustering results.

We evaluate the above combined approach on a real transaction dataset provided by Rabobank.
The single L1-regularized linear SVM model (with a stable feature selection technique) achieves
PAUC100 performance of 3.75 × 10−5, and our clustering-based ensemble approach improves the
performance to 5.16 × 10−5 (by 40%) while keeping the final ensemble model relatively easy to
interpret. Besides, the clustering-based ensemble model also outperforms the simple Bagging
ensemble of linear classifiers. As a comparison, the state-of-art Random Forest achieves a slightly
higher performance of 5.22 × 10−5 on the same dataset. By choosing a suitable classification
threshold, our clustering-based ensemble model achieves FPR = 44 per 1 million and TPR = 0.55,
which can provide relatively accurate predictions while keeping the FPR substantially below the
workload limit defined by Rabobank.
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Chapter 1

Introduction

In this chapter, we briefly describe the background of fraud detection in banking industry, then
we summarize some challenges and model requirements related to the fraud detection problem.
We also summarize the approaches (chosen state-of-art approaches and our proposed approach)
that are used in this thesis and our obtained results. Finally, we show the outline of this thesis.

1.1 Background

With the advancement of e-commerce and internet banking, huge amount of online transactions
are happening every day (most are legal transactions but some are frauds), which makes automated
fraud detection techniques more and more important for financial industry. Currently many banks
and financial organizations are using rule-based systems for fraud detection, which heavily rely
on human effort to create sophisticated rules and investigate suspicious transactions when the
transactions violate some established rules and get alerts from the rule-based system. Thanks to
the recent rapid development in data mining and machine learning, many state-of-art algorithms
exhibit extraordinary performance and show great potentials to reduce or even replace human
effort in identifying suspicious transactions in the financial industry.

As one of the major banks in the Netherlands, Rabobank handles millions of transactions every
day and strives to identify suspicious transactions accurately and efficiently based on advanced
machine learning algorithms. For research purpose, Rabobank has aggregated large volumes of
anonymized transaction data, including confirmed abnormal transactions and normal transactions.
In this project, we develop and apply machine learning techniques to identify abnormal transac-
tions in the transaction dataset provided by Rabobank. As we discuss in Chapter 2, we formulate
the fraud detection problem as a supervised binary classification problem, i.e. we try to classify
whether a given transaction is abnormal or normal, but not considering the specific types of the
abnormal transactions.

1.2 Summary of Challenges and Model Requirements

Firstly, a common challenge of fraud detection problem in banking industry is the large volumes
of data (usually known as “Volume” of the five Vs in Big Data). Millions of transactions are
happening every day, and the transaction data usually has been aggregated over years, which
may cause problems in the phase of model training and testing due to limitations of time and
computing resources. Secondly, the ratio of abnormal and normal transactions is usually highly
imbalanced, since there are only dozens of transactions identified as abnormal every day while
millions of transactions happening each day. In such a highly imbalanced situation, the abnormal
transactions can be easily overwhelmed by the large amount of normal transactions and cause
some common machine learning algorithms to be ineffective. Furthermore, the transaction data
are high dimensional, i.e. each transaction contains thousands of features (variables) that may be

Fraud Detection in Bank Transactions 1



CHAPTER 1. INTRODUCTION

relevant to identifying suspicious transactions, these features are extracted from the rule-based
system or manually identified by the domain specialists. Although these features are considered
as relevant to some extents, most of them are weak signals and some of them are artifacts (false
predictors) that give no practical use in reality (e.g. some hidden features that are equivalent to the
timestamp), thus feature engineering techniques are required to filter out the artifacts. Thousands
of features can be considered as relatively high dimensional, hence require special treatments.
Lastly, as discussed by [6], another common challenge of supervised anomaly detection is that
it is usually difficult to obtain representative and fine-grained labels for the abnormal class, and
there can be multiple types of abnormal transactions that are very different to each other. In the
binary classification problem setting, the abnormal transactions only have a main class label, i.e.
abnormal, and the other transactions are simply regarded as normal if they have not been identified
as abnormal within a certain period of time (such as one month from the transaction timestamp).
The fact that sub-classes may exist in the two main classes may reduce the performance of some
classification algorithms such as linear classifiers, and we propose a novel clustering-based ensemble
approach to address this problem.

Besides facing the above challenges of the transaction data, there are also some requirements
for the fraud detection techniques, e.g. the employed fraud detection techniques should generate
less false alerts and have good interpretability. The requirements in the context of business problem
are described in Section 2.1 in more details.

1.3 Summary of Approaches and Results

Summary of approaches

Here we summarize some chosen state-of-art approaches and our novel approach that are used
to address the above challenges of the transaction data (i.e. large volumes, highly imbalanced,
high dimensional, and may contain sub-classes in each of the two main classes) and satisfy the
above realistic requirements of the model (i.e. producing less false alerts and easy to interpret).
The chosen state-of-art approaches (abbreviated as SOA) and our novel approach (abbreviated as
Novel) are shown in Table 1.1.

As we can see in the table, we use random sampling for model training and we use simple
machine learning models that have fast training and prediction speed to tackle the challenge of
large volumes of data.

To address the highly imbalanced problem, we use both down-sampling (Section 3.3.2) and
cost sensitive approach (Section 4.2.2).

To address the high dimensional problem, we use linear classifiers with L1 regularization (Sec-
tion 4.2.1) and a stable feature selection method based on sampling and averaging the feature
vector (Section 4.2.5).

To address the challenge of “sub-classes exist in each main class,” we propose a novel clustering-
based ensemble approach, i.e. we perform clustering within each class separately, train local sparse
linear classifiers using the CCOvA (Class Crossing One-vs-All) scheme, and combine the local clas-
sifiers by the SC (Soft Combination) scheme based on distance information to improve predictive
performance (Chapter 5).

To satisfy the model requirement of producing less false alerts, firstly we use cost sensitive
approach (Section 4.2.2), secondly we use PAUC as model evaluation metric (Section 3.3.3), and
lastly we choose appropriate classification thresholds (Section 3.3.5).

To satisfy the model requirement of good interpretability, we use the above novel approach
(clustering-based ensemble) with sparse linear classifiers as the base models so that each local
classifier uses only a small number of features. Furthermore, each local classifier trained by the
CCOvA scheme can be interpreted as specialized in identifying a certain obtained cluster. Hence,
if the obtained clusters have meaningful and practical interpretations (e.g. each cluster corresponds
to one sub-class of abnormal transactions), the final ensemble model is also easy to interpret since
the interpretation of the local classifiers can be linked to the obtained clusters, and the SC scheme

2 Fraud Detection in Bank Transactions



CHAPTER 1. INTRODUCTION

Table 1.1: Summary of chosen approaches corresponding to each challenge and model requirement
(“SOA” in Types means state-of-art approaches and “novel” means our proposed approach)

Challenges and
Requirements

Approaches Types

Large volumes of data

1. Random sampling for model training

2. Simple models (e.g. sparse linear classifiers) with
fast training and prediction speed

SOA

Highly imbalanced
1. Down-sampling the normal class

2. Cost sensitive approach
SOA

High dimensional

1. L1 regularization to train sparse linear models

2. Stable feature selections based on sampling and
averaging the feature vector

SOA

Sub-classes exist in
each main class

1. Perform clustering within each class separately

2. Train local sparse linear classifiers using the “Class
Crossing One-vs-All” scheme

3. Combine the local classifiers based on distance
information to improve classification performance

Novel

Less false alerts

1. Cost sensitive approach

2. PAUC as model evaluation metric

3. Choosing appropriate model thresholds

SOA

Easy to interpret

1. Sparse linear classifiers (small number of features)

2. Interpret the local classifiers as specialized in
identifying each of the obtained clusters (if the
obtained clusters have meaningful interpretations)

3. Interpret the “Soft Combination” as giving different
levels of trust to local specialized classifiers

1. SOA

2. Novel

3. Novel

can be simply interpreted as giving different levels of trust to the local specialized classifiers based
on distance information.

Summary of results

On a real transaction dataset provided by Rabobank, our experiment results show that the PAUC is
indeed more reasonable than the whole AUC as a model evaluation metric considering the realistic
requirement of low false positive rate. Furthermore, the experiments also show that a single L1-
regularized linear SVM model (with the stable feature selection) achieves PAUC100 performance of
3.75 × 10−5, and our clustering-based ensemble approach significantly improves the performance
to 5.16 × 10−5 (by 40%). Besides, the clustering-based ensemble model also outperforms the
simple Bagging ensemble of linear classifiers (with average rule). As a comparison, the state-of-
art Random Forest achieves a slightly higher performance 5.22 × 10−5 on the same dataset. By
choosing a suitable classification threshold, our clustering-based ensemble model achieves FPR =
44 per 1 million and TPR = 0.55, which can provide relatively accurate predictions while keeping
the FPR substantially below the workload limit defined by Rabobank. As for the interpretability,
we also show that the clustering-based ensemble model trained on this transaction dataset is still
relatively easy to interpret.

Besides, the experiments also show that the main limitation of the clustering-based ensemble
approach is that the predictive performance and interpretability of the final ensemble model highly
depend on the clustering results. Although we can overcome such limitation by trying different
clustering settings and evaluating the obtained clusters with several metrics, it still requires more
human effort and intervention than other off-the-shelf algorithms such as Random Forest.
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CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

This thesis is organized as follows:

• In Chapter 2 (Problem), firstly we introduce different aspects (e.g. conditions, objectives,
challenges and requirements) of fraud detection in the context of business problem, and we
show the conceptual workflow of fraud detection. Then we formulate our research problem
according to the business problem settings. Finally, we briefly review some state-of-art solu-
tions regarding the data challenges and model requirements, and we introduce our choices of
the state-of-art solutions and also our proposed novel approach to address different challenges
and requirements.

• In Chapter 3 (High Level Aspects of Our Approach for Fraud Detection), firstly we show the
workflow of the R&D steps (e.g. model training and testing). Then we describe some high
level aspects such as feature engineering techniques and model training settings that aim to
address different challenges and requirements.

• In Chapter 4 (State-of-art Classification Techniques), firstly we describe some state-of-art
ensemble methods (such as Random Forest as a Bagging method and XGBoost as a Boosting
method), and we show some specific techniques (such as down-sampling when growing each
tree) that can help address the above challenges and requirements. Then we introduce two
L1-regularized and cost sensitive linear classifiers (i.e. L1-SVM and L1-LR) that are used as
base classifiers in our following clustering-based ensemble approach.

• In Chapter 5 (Clustering-based Ensemble of Local Sparse Linear Classifiers), we propose
a novel clustering-based ensemble approach. Firstly, we introduce the intuitions and main
idea of such approach. Secondly, we break down this approach into different components and
explain each component in details. Finally, we show an example of such ensemble approach
and review related work to this clustering-based ensemble approach.

• In Chapter 6 (Experiment), firstly we show the experimental settings (e.g. dataset descrip-
tion). Then we show the experiment results of the state-of-art classification techniques and
our proposed clustering-based ensemble approach. Finally, we give conclusions on the ex-
periments.

• In Chapter 7 (Conclusion), we conclude our contributions in terms of academic and business
values. And we discuss the limitations and future work.
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Chapter 2

Problem

In this chapter, firstly we describe four different aspects (e.g. conditions, objectives, challenges
and requirements) of fraud detection in the context of business problem. Secondly, we show the
conceptual workflow of fraud detection in the business context. Then we show different possible
data mining problem formulations of fraud detection (e.g. supervised, semi-supervised, and un-
supervised approaches), and we formulate our research problem considering all the above four
aspects of the business problem. Finally, we briefly review state-of-art solutions regarding the
data challenges and model requirements, and we introduce our choices of the state-of-art solutions
and also our proposed novel approach to address the challenges and satisfy the requirements.

2.1 Business Problem

In the context of bank transactions, fraud detection techniques refer to the techniques of identi-
fying abnormal transactions from a stream of transaction data. There are different conditions,
objectives, challenges and requirements regarding fraud detection in different business problem
settings. For example, abnormal transactions may have different types and meanings, e.g. the
transactions sent by stolen accounts can be considered as abnormal and the transactions involved
in money laundering can also considered as abnormal. Furthermore, different types of data in the
past can be provided for the fraud detection task, e.g. both confirmed abnormal transactions and
normal transactions in the past can be provided, or just the confirmed normal transactions can
be provided. As for the objectives of fraud detection, some business problem settings may require
the employed techniques to identify completely unseen types of abnormal transactions, some may
only need to identify similar abnormal transactions as the given abnormal ones in the past.

Besides the common challenges as we have discussed in Section 1.2, different business settings
may have different requirements for the employed fraud detection techniques. Two important
requirements that we consider in our business problem setting are less false alerts and easy to
interpret. The false alerts are defined as the false predictions that we predict to be abnormal but
are actually normal in reality. The model preference towards producing less false alerts is mainly
due to the high human costs of manual investigations and the customer dissatisfaction when
their transactions are falsely identified as abnormal. The interpretability of a machine learning
model is critical in the banking or financial industry, since these industries are highly regulated
and the domain specialists who are going to use these models always want to know exactly why
and how a transaction is identified as abnormal, such transparent knowledge about the model
can give the domain specialists and industry regulators confidence to trust and use the model in
production. Hence, the machine learning models that are known to be “black box” like Artificial
Neural Network are usually avoided considering the importance of interpretability in these highly
regulated industries (there are ongoing research to make neural network interpretable but they
are not the focus in this thesis).

Besides the above two requirements, the employed fraud detection techniques are also required
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to not just give an alert when a new transaction is predicted to be abnormal, but also provide a
score for each prediction that can indicate the decision confidence so that the domain specialists
can investigate the potential abnormal transactions in a top-down manner (start from the most
confident prediction).

In this thesis, we only consider the fraud detection problem (in the context of bank transactions)
with the following specific conditions, objectives, challenges and requirements:

• Conditions

1. “Abnormal” and “normal” are defined by the bank, and there may be different sub-
classes contained in the abnormal and normal class.

2. Both confirmed abnormal and normal transactions in the past need to be provided by
the bank.

3. Features that are considered to be relevant to fraud detection need to be provided for
each transaction.

• Objectives

1. Identify new abnormal transactions that have similar behaviours or patterns as the
given abnormal transactions in the past.

2. Unnecessary to identify the potential sub-types of the transactions (e.g. either it is
money laundering or stolen account).

3. Unnecessary to identify completely unseen and new types of abnormal transactions.

• Challenges

1. Large volumes of data are provided (hundreds of millions of transactions in the provided
case).

2. High dimensional: lots of features are provided (thousands of features in the provided
case), most of them are weak signals, some of them are artifacts.

3. Highly imbalanced: lots of normal transactions are provided, but only a small number
of abnormal transactions in the past are provided (the average ratio in the provided
case is 10 : 1 million).

4. Sub-classes may exist in the two main classes (e.g. there may be different sub-types of
abnormal transactions).

• Requirements

1. Generate a small number of false alerts (less than 100 false alerts per 1 million trans-
actions) while correctly identify more than half of the abnormal transactions. More
precisely, FPR < 100 per 1 million and TPR > 0.5 (FPR and TPR are defined in
Section 3.2).

2. Easy to interpret to the domain specialists and/or regulators.

3. Not just classify if a transaction is abnormal, but also provide a score that can indicate
the decision confidence.

2.2 Conceptual Workflow of Fraud Detection

Here we describe a conceptual workflow of fraud detection in Figure 2.1, which is a conceptual
abstraction in the business context to make the following explanations (such as the definition of
True Positive) much easier. As we can see in the figure, the dashed box on the left side is related
to the research and development of fraud detection techniques, and the other part is related to
the application of fraud detection techniques in reality.
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In the research and development phase, we retrieve data from the confirmed database (where
each transaction has a confirmed label) and perform some R&D steps (e.g. model training and
testing) to get the final classification model. These specific R&D steps are the focus of the following
chapters, and the more detailed workflow of such R&D steps is shown in Figure 3.1.

The buffer database and confirmed database (along with the pre-defined time period and
transfer rules) act as the connection between the application phase and R&D phase. The newly
generated transactions from the transaction stream are stored in the buffer database for a pre-
defined period of time (2 weeks in this example). If the buffered transactions are identified as
abnormal within this period, they will be labelled as abnormal and immediately moved to the
confirmed database. If the buffered transactions have not been identified as abnormal in the pre-
defined period, they will be labelled as normal and moved to the confirmed database at the end
of the time period. If a normal transaction in the confirmed database get identified as abnormal
subsequently, its label in the confirmed database will be changed to abnormal immediately.

The application phase starts from the transaction data stream. To apply the final classification
model that we get from the R&D phase, we process the transactions from the data stream in real-
time or in a batch manner, and we pre-process the data to get the new transformed data (similar
as in the R&D phase). Then we apply the classification model on the new transformed data, and
we will get alerts for potential abnormal transactions with confidence scores. The alerts indicate
that the transactions are identified as potentially abnormal, and the scores indicate the prediction
confidence, based on which the domain specialists can perform manual top-down investigations on
the potential abnormal transactions. The manually investigated transactions with their confirmed
labels are then stored in the confirmed database.

In reality, the classification model needs to be updated periodically since there are always new
types of abnormal transactions occurring. To update the model, we just restart the R&D phase
from the confirmed database again (sine the confirmed database consistently gets newly confirmed
abnormal and normal transactions).

Figure 2.1: Conceptual workflow of fraud detection in R&D phase and application phase
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2.3 Research Problem

As discussed in [24], there are different data mining problem formulations for fraud detection
depending on different conditions and objectives of the business problem. The data mining for-
mulations of the fraud detection problem can be mainly categorized into three types: supervised
approach, semi-supervised approach, and unsupervised approach. In general, we can regard the
fraud detection as the problem of finding patterns in data that do not conform to the normal
behaviour. The supervised data mining approaches require labelled data for both the normal class
and the abnormal class, the semi-supervised approaches in most fraud detection domains only
require labelled data for the normal class, and the unsupervised approaches do not require any
labelled data. The supervised approaches aim to identify new transactions that have similar abnor-
mal behaviour and patterns as the given abnormal transactions in the past. The semi-supervised
approaches only take the normal data as input, and aim to identify any pattern that does not
conform to the given normal behaviour. The unsupervised approaches do not take any abnormal
or normal behaviour as input, but just aim to identify the unusual patterns that do not conform
to the usual behaviour (in this case, the unusual patterns are not guaranteed to be abnormal).

In the case of our business problem where both confirmed abnormal and normal transactions
are provided by the bank, we formulate the research problem as a supervised data mining problem.
Furthermore, considering that the objective is to identify similar abnormal behaviour or patterns
as the given abnormal transactions in the past, but not necessary to identify the potential sub-types
or completely unseen new types of abnormal transactions, we formulate the research problem as a
supervised binary classification problem. More specifically, considering the conditions, objectives,
challenges and requirements in the context of our business problem, we formulate the research
problem as follows:

Given the X variables (predictor variables) and the Y variable (label) in the transaction data-
set that has the four challenges as we have discussed above (i.e. large volumes of data, high
dimensional, highly imbalanced, and sub-classes may exist in the two main classes), our research
problem is to develop a binary classifier f such that:

1. f : X → R, the score f(x) can indicate the confidence of the classification. The label yi of
the ith transaction is predicted to be abnormal if f(xi) > 0, otherwise it is predicted to be
normal.

2. f is required to have FPR < 100 per 1 million and TPR > 0.5 (the TPR and FPR are
defined in Section 3.3.3).

3. f is easy to interpret.

2.4 Related Work on Solutions to the Challenges and Re-
quirements

In this section we briefly review some state-of-art solutions to address the above data challenges
(i.e. large volumes of data, high dimensional, highly imbalanced, and sub-classes may exist in the
two main classes) and satisfy the model requirements (i.e. low false positive rate, and easy to
interpret).

Large volumes of data

For the challenge of large volumes of data, it is related to two Vs (Volume and Velocity) of
the five Vs (i.e. Volume, Velocity, Variety, Veracity, and Value) in Big Data. The transaction
data provided by banks are usually in large volumes, since the data have been aggregated over
years and also the velocity of data generation is very fast (millions of transactions each day).
Such large volumes of data may cause problems in the phase of model training and testing due
to the limitations of time and computing resources, and the very fast data generation may also
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cause problems when the fraud detection need to be done in (nearly) real-time. To deal with
the challenge of large volumes, random sampling can be used to reduce the model training time,
but the sampling method may cause information loss. Another option is to add more computing
resources or use big data tools such as Hadoop with distributed computing clusters for model
training and testing. Besides, simple classification models such as linear classifiers can be used
considering the fast training and prediction speed of such simple classifiers. In our approach, we
use both down-sampling method and sparse linear classifiers as base models, which are fast to train
and test. As we have mentioned, down-sampling method may cause information loss or sampling
bias, so we need to use appropriate techniques to address the information loss problem. In our
case, for tree-based models we choose to down-sample the normal data when growing each tree
(Section 4.1), and for sparse linear classifiers we use a so-called stable feature selection method
to deal with the sampling bias based on taking multiple samples and averaging the feature vector
(Section 4.2.5).

High dimensional

For the challenge of high dimensional data, in some literature high dimensional problems may
refer to the situations where the number of data instances is much smaller than the number
of features, but in our case high dimensional only refers to the situations where the number
of features is relatively larger than common problems (e.g. more than 1000 features), and the
features may include lots of weak signals and irrelevant features. Hence, the high dimensional
problem in our case is actually a feature selection problem such that the used features can achieve
a good balance between predictive performance and interpretability. As shown in a survey of
feature selection methods [21], feature selections can be mainly categorized into three types: filter,
wrapper and embedded methods. Filter methods select features based on the intrinsic properties of
the features (such as correlation coefficient with the dependent variable) regardless of the learning
algorithm. Wrapper methods use the learning algorithm as subroutine and evaluate different
feature subsets based on the performance of the learning algorithm, examples of wrapper methods
include recursive feature elimination and genetic algorithms. Embedded methods have the feature
selection process embedded in the learning algorithm, examples of embedded methods include
decision trees and L1 regularization. In our approach, we mainly use embedded methods since
they have better predictive performance than filter methods and usually faster training speed
than the wrapper methods. More specifically, we use L1-regularized linear classifiers or tree-based
models to tackle high dimensional problem, and we use a so-called stable feature selection method
for linear classifiers to filter out noisy features based on sampling and averaging the feature vectors
(Section 4.2.5).

Highly imbalanced

For the challenge of highly imbalanced classes (i.e. there are lots of normal transactions but
only a few abnormal transactions in the dataset), besides choosing more appropriate evaluation
metrics (such as the AUC instead of the accuracy), the state-of-art approaches to tackle the highly
imbalanced problem can be mainly categorized into three types: down-sampling the majority
class, over-sampling the rare class, and cost-sensitive learning [33]. Examples of over-sampling the
rare class include the SMOTE [8], which generates new and non-replicated rare class examples
by interpolating the nearest rare class examples. However, SMOTE may generate meaningless
data points when the features are categorical. In our approach, we choose a more appropriate
evaluation metric (i.e. PAUC in Section 3.3.3), and we use both down-sampling the majority class
and cost sensitive learning to tackle the highly imbalanced problem. We explain the down-sampling
approach in Section 3.3.2 and the cost sensitive learning in Section 4.2.2.

Sub-classes within each main class

For the challenge of sub-classes may exist in each main class, it refers to the problem that the
complex regions formed by the sub-classes within each main class may reduce the classification
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performance of some classification models (especially simple classifiers like linear classifiers). State-
of-art solutions to tackle this problem include using non-linear classifiers such as decision trees
that can find non-linear complex decision boundaries. However, as we discuss in Section 5.1,
using a single decision tree may lead to over-fitting in reality, and using many decision trees (like
Random Forest based on instance sampling and feature sampling) may make the model harder to
interpret (compared with a single decision tree). Hence, we propose a clustering-based ensemble
approach for (sparse) linear classifiers to have better predictive performance than single linear
classifiers while keeping the final ensemble model possibly easy to interpret (depending on the
interpretability of the obtained clusters), i.e. we first perform clustering within each main class,
then we train local classifiers using the “Class Crossing One-vs-All” scheme, and finally we combine
the local classifiers based on the distance information (the instance’s distances to different cluster
centers). We explain this ensemble approach in Chapter 5 in more details.

Model requirements

For the model requirement of low false positive rate, similar as tackling the highly imbalanced
problem, we use PAUC as evaluation metric (Section 3.3.3), and we use both down-sampling and
cost sensitive learning in our approach. Besides, we also need to choose appropriate classification
thresholds for our chosen model to achieve preferred false positive rate (Section 3.3.5). For the
requirement of good interpretability, we again use our novel clustering-based ensemble approach
as mentioned above, i.e. we can interpret each local classifier as specialized in identifying a certain
obtained cluster (but it still depends on the interpretability of the obtained clusters). The choice
of using L1-regularized sparse linear classifiers as the base classifiers in the ensemble approach can
also improve the interpretability. Furthermore, we can interpret the weighted sum combination as
giving different levels of trust to the local specialized classifiers. For the requirement of not just
outputting the discrete labels but also the confidence scores, we only use classification models that
can generate such scores, such as SVM model and logistic regression model. And this requirement
also relates to the choice of classifier combination schemes in our ensemble approach (Section 5.8),
since some common combination schemes such as majority voting cannot generate continuous
confidence scores as output when the number of votes is small.
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Chapter 3

High Level Aspects of Our
Approach for Fraud Detection

In this chapter, we describe the high level aspects of our approach that aim to address different
data challenges and model requirements defined in the research problem. These high level aspects
can be combined with different classification models that are described in the next two chapters.

In the first section, we show the workflow of the R&D steps (e.g. model training and testing),
then we describe each component (in red) in the workflow one by one in the following two sections.

In the second section, we describe some feature engineering techniques such as data discretiz-
ation that need to be performed before training the classification models.

In the third section, we introduce high level aspects of our model training and testing (e.g.
evaluation metrics). Each of these aspects aims to address a corresponding data challenge or
requirement. More specifically, we split the dataset by time to avoid unrealistic testing results,
we down-sample the majority class to (partly) address the highly imbalanced challenge, we choose
PAUC as our model evaluation metric to address the highly imbalanced challenge and the require-
ment of low false positive rate, and we choose an appropriate classification threshold to achieve a
preferred false positive rate.

3.1 R&D Workflow

The workflow of our R&D procedures is shown in Figure 3.1. As we can see, the R&D workflow
starts from the confirmed database (where all the transactions have been confirmed as abnormal
or normal), and then we pre-process the raw dataset (such as some feature engineering techniques)
to get the transformed dataset. Then we split the transformed dataset into training set and testing
set. For the training set, we further perform down-sampling on the normal class and retain all
the abnormal data to get the model training set. On the other hand, the testing set is left for
final model evaluation. For the model training set, we train our selected model and tune the
hyper-parameters by cross validation and using the PAUC as evaluation metric. Then we apply
the tuned model on the testing set to have a final model evaluation. If the model perform well
on the testing set, we retrain this model on the whole transformed dataset (also down-sample the
normal class and retain all the abnormal data). Finally, we select an appropriate classification
threshold based on the transformed dataset and the final model. Then the final model with the
chosen threshold can be used in the application phase.

This workflow can be combined with different classification models that are described in the
next two chapters. There are different steps in this R&D workflow addressing different data
challenges and requirements. We show the steps (in red) in the following sections one by one.
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Figure 3.1: R&D workflow of fraud detection

3.2 Feature Engineering Techniques

We show some feature engineering and pre-processing techniques in this section. These techniques
are used to transform the raw dataset into transformed dataset, which is then used for subsequent
model training and testing.

3.2.1 Data types determination

The features used in the raw transaction dataset can be mainly categorized into three types:
categorical (e.g. country code), numerical (e.g. transaction amount), and textual (e.g. beneficiary
address). The categorical features usually have relatively small number of unique values, while
the numerical and textual features have much more unique values. Hence, we can first determine
whether a feature is categorical based on an aggregated sample, i.e. we can aggregate the data in
a time range (e.g. one week), count the number of unique values for each feature, and determine
the feature type to be categorical if the number of unique values is smaller than a pre-defined level
(e.g. 200). The features that have a relatively large number of unique values are determined to be
numerical or textual based on the proportion of numerical values, e.g. if a feature has more than
200 unique values in the aggregated sample and more than 80% of the unique values are numerical,
it is determined to be numerical, otherwise it is determined to be textual. After determining the
data types for each feature, we apply different discretization rules for features of different data
types as follows.
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3.2.2 Data discretization

Based on the determined data types, we can apply different data discretization rules for different
data types as follows. For categorical features, we can simply sort the categories according to
ASCII order if the majority of categories are non-numerical or according to numerical order if the
majority of categories are numerical. Then we can encode the categories into different numbers.
For both numerical and textual features, we can use frequency-based binning method to bin and
encode the values into numbers, the only difference between binning the numerical and textual
features is how we sort the values, i.e. we sort the numerical features according to numerical order
and sort the textual features according to ASCII character order. The frequency-based binning
method aims to produce bins that have the same (or similar) frequency of the contained original
values. We describe the data discretization method in more details in Section 6.1.1.

3.2.3 Removing artifacts and single-valued features

Here artifacts refer to the features that can perfectly predict the dependent variable but useless
in reality, e.g. a feature that is equivalent to the timestamp may give perfect predictions when the
training set and testing are split by time. We can identify potential artifacts by the correlation
coefficient with the dependent variable, i.e. the features that have high correlation coefficient may
be artifacts. We also require domain knowledge to investigate those potential artifacts.

Single-valued features refer to the features that have only one single value among a large
enough sample. We remove the single-valued features because they cannot provide information
for classification and it can speed up the model training (if the training implementation does not
include this feature).

3.2.4 One-hot encoding

Some classification models such as tree-based models can handle categorical data in nature, but
some models such as linear classifiers cannot. Hence, we need to convert all the categorical features
to one-hot encoding (dummy variables) for models like linear classifiers. Firstly, we identify the
categorical features that have exactly 2 unique values in the aggregated sample, and convert each
of them into a single 0-1 binary variable (maps the larger bin value to 1 and the smaller one to 0).
Secondly, we convert all the features that have at least 3 unique values in the aggregated sample
into one-hot encoding, i.e. a single variable with n observations and p unique values is converted
to p variables with n observations, and each observation of the p variables indicate the presence
1 or absence 0 of the corresponding value. After this one-hot encoding conversion, the predictor
variables have 1 single variable for each binary variable, and p variables for each variable with p
unique values (p ≥ 3).

3.3 High Level Aspects of Model Training

In this section, we describe the high level aspects of the model training (e.g. dataset splitting,
model evaluation metrics) in our approach. These high level aspects can be combined with all the
different base classification models that are described in the next two chapters.

3.3.1 Dataset splitting by time

After applying the above pre-processing techniques, we split the transformed dataset into training
set and testing set, which is usually done by stratified random sampling. However, the stratified
random sampling may make the model testing results too optimistic and unrealistic in our case,
since it is not uncommon to have very similar transactions happening in a short period of time
(e.g. 4 very similar transactions triggered by the same person happened in a few minutes), if we
split the dataset by stratified random sampling, some of the very similar transactions that fall
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into the testing set will easily get classified correctly since their similar counterparts fall into the
training set.

To address the above problem, we can split the time span of the dataset into two consecutive
parts, then we take the transactions in the first part of the time span as training set and the
transactions in the second part as testing set. For example, if the total time span of a dataset
is 5 months, then we take the transactions that happened in the first 4 months as training set,
and take the transactions that happened in the last month as testing set. In this way of splitting,
the very similar transactions happening in short time can only fall into either the training set or
testing set, which makes the testing results more realistic and reliable. This time-based dataset
splitting manner is used in all of our experiments.

There are even more realistic evaluation schemes such as prequential evaluation (test the model
on new instances and retrain the model by including the new instances, and so on). However, we
only consider this static training and testing manner in this thesis due to time limitations.

3.3.2 Down-sampling the normal class

Considering the highly imbalanced challenge of the transformed dataset, we perform down-sampling
on the normal class data and retain all the abnormal class data in the training set. The down-
sampling ratio depends on different classification models that we use in our approach. For example,
we down-sampled the normal transactions from 150 million to around 2.7 million as inputs for
the random forest model. Furthermore, we can perform down-sampling in different places, e.g. we
perform down-sampling when growing each tree for the Random Forest model in order to avoid
too much information loss (Section 4.1.2). We will specify and justify the down-sampling ratio for
each model in the experiment section.

3.3.3 Model evaluation metrics

Many evaluation metrics are available for binary classification models, e.g. confusion matrix, pre-
cision, recall, accuracy, F-measure and AUC. Hereby we formally define several evaluation metrics
that are related to our binary classification problem, and we discuss which of them is the most
suitable in our case.

First we define GTP (ground truth positive), GTN (ground true negative), TP (true positive),
FP (false positive), TN (True negative) and FN (false negative), because many evaluation metrics
depend on the these concepts. The definitions of these concepts are related to how we confirm
the labels of transactions in the business problem settings. As we have discussed in the business
problem (Section 2.2), the newly generated transactions from the stream are stored in the Buffer
Database for a pre-defined period of time (let’s assume x days). If the buffered transactions are
identified as abnormal within this period, they will be labelled as abnormal and immediately moved
to the Confirmed Database. If the buffered transactions have not been identified as abnormal in
x days, they will be labelled as normal and moved to the Confirmed Database at the end of the x
days. If a normal transaction in the Confirmed Database get identified as abnormal subsequently,
its label in the Confirmed Database will be changed to abnormal immediately.

For model evaluations in the R&D phase (workflow shown in Figure 3.1), the definitions of
the above concepts are simple and direct because the dataset used for R&D is taken from the
Confirmed Database, where the label of each transaction are considered as confirmed according
to the above rule. The GTP is defined as the number of transactions that have been confirmed as
abnormal according to the above rule, and the GTN is the number of transactions that have been
confirmed as normal according to the above rule. The TP is defined as the number of transactions
that have been confirmed as abnormal and predicted to be abnormal, the FP is defined as the
number of transactions that have been confirmed as normal and predicted to be abnormal, and
similar for the definitions of TN and FN.

For the application phase, the model evaluation process is shown in Figure 3.2. Assume that
we are in Place 1 (so the new transactions keep coming in from the stream) and we have used the
Confirmed Database to train a model that we can apply to new transactions, now we can choose
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Figure 3.2: Model evaluation in application phase

two different places to start evaluating the model in reality. If we start the model evaluation in
Place 1, it means we apply and evaluate the model only on new transactions, which is quite intuitive
but we need to wait for at least x days for the transactions to be confirmed. Hence, instead we
can start the model evaluation in Place 2 (the earliest transactions in the Buffer Database), since
these transactions are not used for model training and also close to be confirmed, which means
that we don’t have to wait for too many days to start seeing the evaluation results. Furthermore,
a transaction can only get evaluated if it is in the Confirmed Database, so we can apply the model
on the transactions starting from Place 2 and keep track of them, and we can evaluate them once
they get into the Confirmed Database (according to the above rule). The definitions of the above
concepts (e.g. GTP, GTN, TP, FP) are the same as in the R&D phase, the only difference is that
in the application phase we only evaluate the transactions that are entered into the Confirmed
Database and we start evaluating the transactions from the Place 2.

Table 3.1: Confusion matrix

PP (Prediction Positive) PN (Prediction Negative)
GTP (Ground Truth Positive) TP (true positive) FN (false negative)
GTN (Ground Truth Negative) FP (false positive) TN (true negative)

Now we formally define several relevant evaluation metrics based on the definitions of the above
concepts:

• Confusion Matrix: defined in Table 3.1

• Precision = TP
PP = True Positive

Prediction Positive = True Positive
True Positive+False Positive

• Recall = TP
GTP = True Positive

Ground Truth Positive = True Positive
True Positive+False Negative

• Accuracy = TP+TN
all = True Positive+True Negative

Total Population = True Positive+True Negative
Ground Truth Positive+Ground Truth Negative

• F1-score = 2·Precision·Recall
Precision+Recall

• TPR (true positive rate) = TP
GTP = True Positive

Ground Truth Positive (same as Recall)

• FPR (false positive rate) = FP
GTN = False Positive

Ground Truth Negative

• ROC-curve: the curve of TPR (y-axis) against FPR (x-axis) when the classification threshold
is varied.

• AUC: the whole area under the ROC-curve along the whole span of FPR (x-axis) from 0 to
1.
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• PAUCn: the partial area under the ROC-curve along the span of FPR (x-axis) in the range
0 ≤ x ≤ n × 10−6, where n × 10−6 is a predefined level indicating the maximum allowed
FPR value in reality.

The single metrics such as precision, recall, TPR and FPR are not enough to provide a balance for
the classification model, e.g. a model that predict all transactions to be positive can yield recall or
TPR to be 1, but the precision and FPR are very bad. The F1-score can be viewed as the harmonic
mean of the precision and recall, it is usually used to balance the precision and recall rate, but it
is not suitable for our case since there is a realistic requirement of FPR and the F1-score cannot
explicitly control the FPR. The accuracy is widely used and simple, but it is also not suitable for
the highly imbalanced class, e.g. if a dataset has 95% transactions as normal (negative), then a
model that predict all transactions to be negative can yield accuracy 0.95, which is very high but
not reasonable since missing the positive ones can be costly in reality.

The above metrics only require the classification models to have discrete predictions (class
labels) as output. In contrast, the AUC requires the binary classification models to generate
continuous (or nearly continuous) scores that can indicate the confidence of the model’s predictions,
e.g. the probability output of a binomial logistic regression model, or the distance to the decision
boundary of a linear SVM (support vector machine) model. The AUC can be interpreted as a
single number that can summarize the classification model’s overall performance on the testing
dataset, since the ROC-curve is generated by varying the classification threshold and it provides
a way to choose a preferred balance between TPR and FPR.

However, considering that there is a realistic requirement of the classification model to have
FPR less than a predefined level (in our case, the model is required to have FPR ≤ 100 per 1
million), the whole AUC is still not the best metric in our case since the FPR (x-axis) of the
whole AUC can range from 0 to 1. The area when FPR is larger than 100 per 1 million (on the
right side) is useless to us and it can influence the whole AUC value. Besides the whole AUC,
we may also consider to use the single point TPR when the FPR is exactly (or very close to) the
predefined level. However, the single point TPR is also not suitable since our model is required to
have FPR at most the predefined level, but not necessary to be exactly equal to it. For example,
if the TPR keeps the same when the FPR varies from 0.05 to 0.1, then we should choose the point
at FPR = 0.05 instead of the point at 0.1.

We illustrate the differences between the PAUC, the whole AUC and the single point TPR at
predefined FPR in two imagined scenarios (as shown in Figure 3.3 and Figure 3.4). In both figures,
we can see two ROC curves of two classifiers respectively1. In Figure 3.3, we prefer classifier 1
over classifier 2 since our predefined requirement of FPR is at most 0.1 and the TPR of classifier
1 is consistently higher than classifier 2 when FPR is less than 0.1. However, in this imagined
scenario, the metric of the whole AUC suggests to choose classifier 2 since it also includes the area
on the right part, which is useless to us and affects the whole AUC value. In contrast, the PAUC
(when FPR ≤ 0.1) can help us select the right classifier. In Figure 3.4, we may prefer classifier
1 over classifier 2, since theoretically classifier 1 can achieve TPR = 0.93 with FPR only 0.05, on
the other hand, classifier 2 can only achieve TPR = 0.98 with FPR = 0.2 (we sacrifice FPR 0.15
for the gain of TPR 0.05). However, the metric of single point TPR at the predefined FPR level
0.2 suggests us to choose classifier 2 since it has a higher TPR at that single point compared with
classifier 1. In contrast, the PAUC (when FPR ≤ 0.2) still provides us with the right choice again.

In summary, the PAUC is more suitable than all the above metrics including the whole AUC and
the single point TPR at predefined FPR level. In our case, the bank prefers classification models
to have FPR ≤ 100 per 1 million, since typically there are around 1 million transactions everyday,
then there are at most 100 false alerts generated everyday on average if the FPR requirement is
satisfied. For final model evaluation and comparison on the testing set, we use PAUC100 (FPR ≤
100 per 1 million) considering the realistic requirement. For the model evaluation when tuning the
hyper-parameters (as shown in the next subsection), considering that the partial area when FPR
≤ 100 per 1 million may be too small and noisy, we choose a larger area PAUC300 (FPR ≤ 300

1Such exact shapes of ROC curves are not likely to occur in reality, we just use them for illustrations.

16 Fraud Detection in Bank Transactions



CHAPTER 3. HIGH LEVEL ASPECTS OF OUR APPROACH FOR FRAUD DETECTION

Figure 3.3: Comparison between the whole AUC and the PAUC

Figure 3.4: Comparison between the PAUC and the single point TPR
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per 1 million) and use this evaluation metric for hyper-parameter tuning consistently in all of our
experiments.

3.3.4 Hyper-parameter tuning by cross validation

In the phase of hyper-parameter tuning, we use 5-fold stratified cross validation with 2 repetitions,
i.e. we split the training dataset into 5 folds by random stratified sampling (we use stratified
sampling due to the highly imbalanced classes), train the model with specific parameters on each
4 different folds of the 5 folds, test the model on the rest fold (using the PAUC300 as evaluation
metric when tuning), and take the average of the 5 evaluation metric values. Then we perform
the above process again with another random stratified splitting of the training set and again take
the average of the evaluation metric values. Finally, the average evaluation metric value PAUC300

can be viewed as an unbiased evaluation of that specific model (with those specific parameters),
and it can be used to select the best hyper-parameters for different classification models.

3.3.5 Choosing threshold

For the binary classification models that can output (nearly) continuous confidence scores, we need
to select a suitable score threshold such that the model can achieve the preferred TPR and FPR.
Since we use the PAUC as model evaluation metric, which is generated by varying the classification
threshold and constraining the range of FPR, the default threshold (e.g. majority vote ratio 0.5
in Random Forest model) used by the chosen model does not guarantee to achieve the preferred
TPR and FPR.

After we have chosen the best model with the best hyper-parameters according to the PAUC
metric (by cross validation), we have a ROC curve as in the above Figure 3.4. Then we can select
a point on the curve with the preferred balance between TPR and FPR (also satisfying the FPR
constraint) according to domain knowledge. After selecting a point on the ROC curve, we can take
the corresponding FPR value to guide the process of choosing classification threshold. Let’s say
we select the turning point with FPR = 0.05 in the above Figure 3.4, the next step is to calculate
an approximate threshold such that the model can get the chosen FPR. Since the testing dataset
is only used for model testing and final evaluation, it cannot be used for choosing threshold.

Hence, we aggregate all the normal transactions in the last few weeks of the transformed
dataset, apply the chosen classification model on those normal data, and get the score which is
(nearly) the top X% among all the calculated confidence scores, where X% is the FPR of the
chosen point (5% in the example of Figure 3.4). It is reasonable to choose the threshold in this
way, because (1) the FPR is only concerned with the ground-truth normal data (2) usually only
a small part of the normal transactions in the transformed dataset are used for model training
since the down-sampling ratio is very small (e.g. 1 million out of 1 billion normal transactions),
thus there are lots of out-of-bag samples in the aggregated normal transaction sample, which can
avoid poor choices of the threshold.
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Chapter 4

State-of-art Classification
Techniques

In this chapter, we describe several state-of-art classification models (both linear and non-linear
classifiers) and different techniques that can adapt those classification models in order to address
the challenges and requirements defined in the research problem. We focus on non-linear classifiers
in the first section and linear classifiers in the second section.

Firstly, we describe the two most popular ensemble methods, i.e. bagging and boosting. Cor-
responding to bagging and boosting respectively, we describe two state-of-art tree-based ensemble
models, i.e. Random Forest and XGBoost (Extreme Gradient Boosting), both of which are non-
linear tree-based classifiers. We choose the Random Forest model since (1) it has good predictive
performance and robustness against over-fitting; (2) it is widely used in the industry; (3) it can
act as a representative model of the bagging method in our later comparisons. We choose XG-
Boost since it can act as a representative example of boosting, and it also exhibits great predictive
performance.

Secondly, we introduce the L1 regularization and cost sensitive approach, which are combined
with two base linear classifiers (linear SVM and logistic regression) to address the high dimensional
and highly imbalanced problem in our case. Lastly, we show a feature selection method for linear
classifiers that can filter out the noisy features based on sampling and averaging the feature vectors.

4.1 Tree-based Ensemble Models (non-linear)

In this section, we describe two ensemble methods, i.e. bagging and boosting. And we also intro-
duce two state-of-art tree-based ensemble models, i.e. Random Forest and XGBoost. Each of them
acts as a representative model of bagging and boosting. Furthermore, we show how to address the
highly imbalanced problem in our case based on down-sampling the normal data and adjusting
the imbalanced ratio when growing each tree.

4.1.1 Ensemble Methods: Bagging & Boosting

Bagging was proposed by [4]. It is based on a simple but effective idea, i.e. it draws multiple
bootstrap samples (random samples with replacement), trains models on the obtained samples,
and then it takes average of the results (e.g. majority vote) predicted by those models. Bagging
aims to reduce the variance, and it is more suitable for models with low bias but high variance.
The models trained over the multiple bootstrap samples are independent to each other, which
enables the implementation to be parallelized easily.

Boosting works in a different direction compared with Bagging, i.e. it starts from a weak
classifier and tries to improve the weak classifier into a stronger one. The boosting method
improve the weak classifier by identifying the instances where the weak classifier performs poorly
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and giving more weights to those instances in order to predict them better in the next round.
Different as Bagging, the Boosting method aims to reduce the bias, and it is more suitable for
models with high bias but low variance. The training manner of Boosting is sequential, i.e. the
training of a new model depends on the previous model, which is also different as Bagging’s parallel
training manner.

4.1.2 Random Forest

Random Forest was proposed by [5]. In addition to the idea of bagging, it adds an additional layer
of randomness by making each node to split among only a subset of the features. In more details,
the originally proposed Random Forest first draws multiple bootstrap samples (same size as the
original dataset), then it trains independent tree models for each bootstrap sample. For each node
of each tree, it selects a random subset of the original features, from which the tree model chooses
the best feature and the best split at that node. All the trees are grown with the maximum depth
without pruning such that the model has low bias but high variance, and the high variance of each
single tree is reduced by the idea of bagging.

Many variants of Random Forest have been proposed to improve its performance in different
problems, some of them aim to solve the imbalanced class problem, which is also one of the
challenges in our case. For example, the BRF (Balanced Random Forest) and WRF (Weighted
Random Forest) were proposed to solve the imbalanced class problem [9]. The BRF follows the
sampling approach, however, it does not down-sample the majority class before applying the
Random Forest, instead it down-samples the majority class when growing each tree such that
the number of majority and minority instances are exactly the same. The WRF follows the cost
sensitive approach, i.e. it incorporates the costs in two places, one is the Gini criterion when
splitting each node, and the other one is the weighted majority vote when making predictions.

In our case where the transaction dataset is also highly imbalanced, we wanted to follow
the WRF (cost sensitive) approach. However, the WRF approach is not implemented in the
RandomForest package in R [20]. Hence, we followed the idea of the BRF approach and slightly
changed it such that it fits in our case. The BRF follows the data sampling approach to tackle the
imbalanced class problem. We show the two places where we can perform sampling when applying
the Random Forest algorithm in Figure 4.1.

Figure 4.1: Two places in Random Forest where we can perform sampling
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As we can see, if we perform sampling at the place 1 (before applying the Random Forest
algorithm), we may lose too much information if we down-sample the majority class here. Instead,
if we perform sampling at the place 2 (when growing each tree), we won’t lose information if we
grow large enough number of trees in the forest while keeping the class balance when growing each
tree.

The BRF approach performs down-sampling at the place 2 such that number of instances in
each class are exactly the same. However, the model in our case is required to have very low FPR,
so the exactly balanced ratio (1:1) between normal and abnormal data when growing each tree
does not guarantee to have the best performance in terms of the PAUC metric. Hence, we regard
the ratio between the normal and abnormal data when growing each tree as a hyper-parameter,
and we choose the best ratio that gives the highest PAUC when tuning the parameters with cross
validation. In short, we follow the same idea of BRF to adjust the imbalanced ratio when growing
each tree, but we don’t restrict the ratio to be exactly 1, instead we allow the model to tune the
best ratio.

4.1.3 XGBoost (Extreme Gradient Boosting)

The XGBoost, a variant of tree-based gradient boosting model, was proposed by [10]. The idea
of gradient boosting came from [13], who found out that the Boosting can be interpreted as an
algorithm optimized for a specific cost function (e.g. Adaboost can be viewed as an optimization
over the exponential loss function). As discussed by [23], the traditional GBM (gradient boosting
machine) model uses gradient descent (first order of Taylor expansion) of the function space,
while the XGBoost model uses Newton method (second order of Taylor expansion). Moreover,
the XGBoost model employs more effective regularization of individual trees such as the number
of terminal nodes and the L2 regularization on the leaf weights in its objective function.

More specifically, the step-wise optimization problem is to find ft at each step such that it

can minimize
∑n
i=1 l(yi, ŷ

(t−1)
i + ft(xi)) + Ω(ft), where l is the chosen differentiable loss function,

ŷ
(t−1)
i is the prediction of the previous step, and Ω is the regularization term Ω(ft) = γT+ 1

2λ||w||
2

(T is the number of leaves and w is the weight vector of the leaves). Using the second order
approximation, the above minimization problem can be approximated as follows:

Minimize

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ||w||2 (4.1)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1)). An optimal w can then be solved for

each tree structure in this optimization problem, and the value of the above equation can be used
to evaluate a given tree structure, hence it can also be used to evaluate the split of each node. A
more detailed description is shown in [10].

XGBoost also integrates different instance weights into the model, for example, if we denote
the instance weights as wi, the only difference between the new optimization problem with wi and
the above original optimization problem is that gi and hi become ĝi and ĥi, where ĝi = wigi and
ĥi = wihi, which means that the instance weights are taken into account when finding the best
split on each node. In our case where the data is highly imbalanced, we can use cost sensitive
approach by utilizing the instance weights in XGBoost, i.e. we can set the weights for all negative
instances as 1, and the weights for all positive instances as r. Then we can take this r as parameter
and tune the best r according to the evaluation metric (PAUC).
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4.2 Sparse Linear Classification Models

In this section, we introduce two common regularization techniques (L1 and L2 regularization) to
address the high dimensional problem. And we introduce cost sensitive learning to solve the highly
imbalanced problem. Then we show two base linear classifiers (linear SVM and logistic regression)
combined with the above two techniques (L1 regularization and cost sensitive learning). Finally,
we describe a feature selection method for linear classifiers based on sampling and averaging the
feature vector.

4.2.1 L1 and L2 regularization

Regularization in general aims to reduce the overfitting in machine learning model, and it can take
different forms in different models, e.g. number of leaves in a tree model. The L1 and L2 regular-
ization are the two most common and widely used regularization terms for linear classifiers. The
L2 regularization imposes L2 norm (i.e. sum of squares) constraints on the parameters that need
to be optimized, while the L1 regularization imposes L1 norm (i.e. sum of absolute) constraints.
The L2 regularization was proposed in the Ridge regression [15], and the L1 regularization was
proposed in the LASSO regression [30]. The objective functions of Ridge regression and LASSO
regression are shown in the following:

Ridge regression (L2 regularization): min

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

β2
j (4.2)

LASSO regression (L1 regularization): min

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj | (4.3)

Now to graphically compare the L1 and L2 regularization, we first convert the above minimization
problems to their equivalent forms according to the Lagrangian multiplier and KKT condition:

Ridge regression (L2 regularization): min

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 s.t.

p∑
j=1

β2
j ≤ c for some c (4.4)

LASSO regression (L1 regularization): min

n∑
i=1

(yi−
p∑
j=1

βjxij)
2 s.t.

p∑
j=1

|βj | ≤ c for some c (4.5)

The comparison of L2 regularization and L1 regularization are shown in Figure 4.2. As we can
see, the absolute sum constraints imposed by the L1 regularization is much easier to reach the
“corners” compared with the square sum constraints imposed by L2 regularization, which means
that using L1 regularization is more likely to give sparse models (i.e. some feature parameters are
exactly 0, so the corresponding features are completely dropped). Hence, the L1 regularization
can be viewed as an internal feature selection method, and we can combine it with different loss
functions (such as the logistic loss in logistic regression) in the objective function. In practice, the
regularization parameter λ (or shrinkage parameter) controls the trade-off between the magnitude
of regularization and the loss from the loss function.

In our case where the data are high dimensional and the model is required to be easy-to-
interpret, we consistently use L1 regularization since it can produce sparse models (using just a
few features) so that the model is easy-to-interpret, and the trade-off between regularization and
classification loss can be adjusted as preferred.

4.2.2 Cost sensitive learning

The objective function that the model tries to optimize usually consists of two parts, i.e. loss
function and regularization. The cost sensitive learning is related to the component of loss function
in the objective function. Many originally proposed models (e.g. logistic regression) give the same
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Figure 4.2: Comparison of L2 regularization and L1 regularization. Figure remade from [30]

Table 4.1: Cost matrix for binary classification

PP (Prediction Positive) PN (Prediction Negative)
GTP (Ground Truth Positive) CTP (true positive) CFN (false negative)
GTN (Ground Truth Negative) CFP (false positive) CTN (true negative)

costs when the model misclassify an actual positive or an actual negative instance. However,
this is usually not true in reality, and the different misclassification costs highly depend on the
domains. For example, missing a hacking attack in cyber-security can be much more expensive
than misclassifying a normal service request as an attack. Hence, the cost sensitive learning aims
to take the different misclassification costs into consideration and integrate the costs in the loss
function. The cost matrix for binary classification is shown in Table 4.1. In practice, the costs for
true positive and true negative classifications are 0 (CTP = CTN = 0) since they are correct. The
costs for false positive CFP and false negative CFN are usually different in reality and depend on
domain knowledge. When integrating the cost matrix in the loss function, we can decompose the
loss function into two parts: one for the loss of misclassifying the actual positives (attached with
the cost CFN ), and another one for the loss of misclassifying the actual negatives (attached with
the cost CFP ).

In our case, the transaction data are highly imbalanced and our model is required to have low
FPR (FPR ≤ 100 per 1 million). We use the cost sensitive learning approach to address the highly
imbalanced problem, but we do not have accurate domain knowledge about the misclassification
costs. By also considering that we have a requirement of FPR and we use the PAUC as model
evaluation metric, we can regard the two costs CFN and CFP as hyper-parameter and tune the
best costs according to the PAUC such that the highly imbalanced problem is addressed and also
satisfying the FPR requirement.

4.2.3 L1-regularized cost sensitive linear SVM (L1-SVM)

The SVM (support vector machine) is a maximum margin classifier, i.e. if the data are linearly
separable, then the model tries to find the best hyper-plane that can separate the two classes
of data and has the maximum margin (distances to the two parallel hyper-planes on each side).
Mathematically, it can be expressed as minimize 1

2 ||~w||
2 subject to yi(~w · ~xi + b) ≥ 1 for every i,

here minimizing ||~w||2 is equivalent to maximizing 2
||~w||2 (the distances between the two separating

hyper-planes). If the data are not linearly separable, some slack variables εi can be introduced in
the constraints: minimize 1

2 ||~w||
2+C

∑n
i=1 εi subject to yi(~w ·~xi+b) ≥ 1−εi, and εi ≥ 0 for every
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i. The above minimization problem with constraints is equivalent to the following minimization
problem without constraints by using the hinge loss:

minimize
1

2
||~w||2 + C

n∑
i=1

max(0, 1− yi(~w · ~xi + b)) (4.6)

As discussed in the above two subsections, we use the L1 regularization and cost sensitive approach
to tackle the high dimensional and imbalanced problems. More specifically, we change the L2
norm of ~w in the objective function to L1 norm, and we decompose the loss function into two
parts corresponding to the false negative and false positive loss. The linear SVM model with L1
regularization and cost sensitive approach is shown in the following:

minimize

p∑
i=1

|wi|+ Cp
∑
yi=1

max(0, 1− (~w · ~xi + b))2 + Cn
∑
yi=−1

max(0, 1 + (~w · ~xi + b))2 (4.7)

In this model, we can see that it uses L1 regularization, and it decomposes the loss functions into
two parts corresponding to the loss of false negative and false positive (yi = 1 means the instance
i is ground truth positive, and yi = −1 means the instance i is ground truth negative). We also
use squared hinge loss to penalize more on the severely misclassifying instances, which means that
this model focus more on observations with large negative margins. The two parameters Cp and
Cn control the relative costs of misclassifying the actual positive and actual negative instances.
And the regularization also depends on the magnitude of these two parameters.

4.2.4 L1-regularized cost sensitive logistic regression (L1-LR)

The logistic regression for binary classification expresses the probability of an instance being
positive as the logistic function of the variables’ linear combination, as follows:

p(yi = 1|x = ~xi) =
1

1 + e−(~w·~xi+b)

p(yi = −1|x = ~xi) = 1− p(yi = 1|x = ~xi) =
1

1 + e(~w·~xi+b)

(4.8)

Hence, the likelihood function can be combined into one: p(y = yi|x = ~xi) = 1
1+e−yi(~w·~xi+b) .

Then maximizing the likelihood function is actually equivalent to minimizing the loss function, as
follows:

maximize log

n∏
i=1

p(y = yi|x = ~xi) = −
n∑
i=1

log(1 + e−yi(~w·~xi+b)) where yi ∈ {−1, 1}

minimize

n∑
i=1

L(yi, f(xi)) =

n∑
i=1

log(1 + e−yi(~w·~xi+b)) where yi ∈ {−1, 1}
(4.9)

Similar as how we integrate the L1 regularization and cost sensitive in the linear SVM, we can
add the L1 regularization term and decompose the loss function into two parts, as follows:

minimize

p∑
i=1

|wi|+ Cp
∑
yi=1

log(1 + e−(~w·~xi+b)) + Cn
∑
yi=−1

log(1 + e(~w·~xi+b)) (4.10)

As we can see in the objective function, the two parameters Cp and Cn can control the relative
costs of FP and FN, and also control the magnitude of regularization. And we can see that the
only difference compared with the above SVM case is the loss function, the above SVM model
uses a squared hinge loss while this logistic regression model uses a logistic loss.
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4.2.5 Stable feature selection

The above two base linear classifiers can be applied on the dataset after down-sampling the normal
data and converting to the one-hot encoding. Here we describe a feature selection technique for
linear classifiers. The main idea of this feature selection comes from [29], who applied the L1-
SVM model to mine the medical equipment log for predictive maintenance. They selected “stable”
features by performing following steps:

1. Draw N random samples (each sample with same number of instances) from the majority
class, denote them as Mi (i = 1, 2, . . . , N)

2. Combine the above samples with all the minority data respectively. If we denote the minority
data as D, then the combined samples are Ci = Mi ∪D

3. Train the L1-regularized linear classifiers on each Ci, and denote the corresponding feature
vector as fi,j (the jth feature of the ith model, i = 1, 2, . . . , N , and j = 1, 2, . . . , p)

4. Take the sum of all the feature vectors, and denote the sum of feature vector as F (so we

have Fj =
∑N
i=1 fi,j)

5. Only keep the top X features with large enough absolute values of Fj (i.e. sort the values of
|Fj | and only keep the largest X ones)

6. Finally train the model on the final training set using only the features kept in the above
step

We can explain that this stable feature selection technique is reasonable because of the following
reasons:

1. If the model is only trained over one sample that only accounts for a small proportion of the
total dataset, there is sampling bias such that the sample does not reflect the real behavior
of the total population, which inevitably causes our model to learn this sampling bias. By
drawing multiple samples and training multiple models in the above way, we can reduce the
sampling bias.

2. The sign of the feature weights of linear classifiers (like the L1-SVM) can be interpreted as
making the instance more likely to be in the positive or negative class. The features with
unstable signs (sometimes positive and sometimes negative) are considered to be noisy, since
the effect of the features on the classification score should be either positive or negative
consistently. Taking the sum of the feature vectors can filter out the features with unstable
signs, since if the feature is sometimes positive and sometimes negative, it’s likely to sum up
to 0 in the combined feature vector.

3. The magnitude (absolute values) of the feature weights reflects the feature’s influence on the
final classification score. Hence, the features with small absolute values can be filtered out
since they have less influence on the model compared with the features with larger absolute
values.

In our case where we are using one-hot encoding for our features, we may further improve this
feature selection idea to make it more suitable for our model. We only change the step 4 and 5 in
the above feature selection technique as follows:

• In step 4, we also calculate the standard deviation for each feature among the feature vectors,
and we denote the vector of the standard deviation for each feature as SD (so we have
SDj = sd{f1j , f2j , . . . , fNj}).

• In step 4, since the original calculation (|F | as absolute sum) is for the features at the one-hot
encoded level, we also calculate the OFj at the original feature level as the sum of |Fi| who
belongs to the original feature j. So we have OFj =

∑
i∈j |Fi|, where i ∈ j means the i

one-hot encoded feature belongs to the j original feature.
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• In step 5, the one-hot encoded features with large enough absolute values F and small enough
standard deviation SD are kept. And the original features with too small OF values are
completely filtered out.

As we can see in the above 3 changes, we consider the “stable” features as having large enough
absolute sum values and small standard deviation, so the features that vary a lot across different
samples are considered to be not stable and should be filtered out. Furthermore, we adjust this
feature selection technique according to our one-hot encoding setting, i.e. we filter our the features
not just based on the one-hot encoded feature level, but also the original feature level, which can
enable us to have more explicit controls over the number of original features that are used in the
final model.
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Chapter 5

Clustering-based Ensemble of
Local Sparse Linear Classifiers

In this chapter, we describe a novel clustering-based ensemble approach to improve the predictive
performance of single linear classifiers for binary classification problems where the two main classes
may have well-separated sub-classes, and we show that the final ensemble model is still easy to
interpret if the obtained clusters have meaningful interpretations. In short, our approach is to first
perform clustering within each class (the abnormal and normal class), then train multiple local
sparse linear classifiers using the “Class Crossing One-vs-All” scheme, and finally combine the
classification scores from the local classifiers based on the instance’s distances to different cluster
centers.

In the following sections, we first illustrate the intuitions and the main idea of this approach,
then we describe each component of this approach, i.e. clustering schemes, clustering algorithms,
base linear classifiers, classifier training schemes, score pre-processing before combining the classi-
fiers, and classifier combination schemes. Finally, we show an example of such ensemble approach
and review related work that are similar to this clustering-based ensemble approach.

5.1 Intuitions

As we can see in the experiment section, the “stable feature selection” technique described in the
previous section indeed can improve the predictive performance of a single sparse linear classifier.
However, its predictive performance is still not good enough compared with some state-of-art
classification techniques such as Random Forest. The main limitation of a single linear classifier
is its poor performance when the data are not linearly separable to a large extent, which is
quite common in reality (also in our case). Furthermore, in this binary classification problem
setting where the labels are quite coarse (as we have discussed about the challenges of the data in
Chapter 1), the transactions of each main class may have more fine-grained sub-classes that are
very different from each other, so the data of each class may form complex regions, which may
make it even harder to separate the two classes by a single linear classifier (in essence a single
hyper-plane in the feature space). In contrast, the Random Forest can deal with those complex
regions quite well, since the base model (i.e. decision tree) is designed to identify the complex
regions by dividing the feature space into axis-parallel hyper-rectangles and the bagging ensemble
can reduce the overfitting problem that a single decision tree may encounter.

In terms of interpretability1, a single decision tree has excellent interpretability, but a Random
Forest (an ensemble of many trees) makes it harder to interpret how a decision is being made
due to the randomness (instance sampling and feature subset sampling) included when growing

1It is not our focus to compare different models in terms of interpretability, because interpretability is rather
subjective, and it remains an open question to measure interpretability [3]
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each tree, and such randomness is the key point to help the model avoid over-fitting. Although
we can calculate some feature importance indexes, such as the average Gini index reduction for
each feature, the exact behavior and impact of each feature are not clear due to the complex
interactions (lots of deep trees in the Random Forest model) between the features. On the other
hand, a single linear classifier also has excellent interpretability. In our one-hot encoding setting
for linear classifiers (e.g. linear SVM), the feature weights can be simply interpreted as the effect
of the categorical values on the classification scores. If a one-hot encoded feature has a positive
(negative) weight, then it means the presence of that categorical value makes the instance more
(less) likely to be abnormal, and the magnitude (absolute value) of the feature weight implies the
magnitude of the feature’s influence on the classification score. However, a single linear classifier
does not perform well on complex data that are not linearly separable.

Hence, we want to build an ensemble of a small number of linear classifiers such that the final
ensemble model has higher predictive performance than a single linear classifier while keeping the
final ensemble model easy to interpret, which means that we try to draw several “reasonable”
lines (or hyper-planes) instead of just one line (or hyper-plane) in the feature space. This small
set of linear classifiers should also relate to the fact that sub-classes may exist in each main
class. If each of those linear classifiers can be interpreted as a “specialized” classifier that aims
to identify a specific sub-class, and the combination of those local classifiers is based on some
locality information (e.g. distance information), then the final ensemble model is possible to have
good interpretability. The idea of “clustering-based ensemble of local sparse linear classifiers”
is illustrated in Figure 5.1. As we can see in the figure, the “+” represents abnormal data (in

Figure 5.1: Illustration of the clustering-based ensemble idea, where + is abnormal, and - is normal
data

red color), the “-” represents normal data (in grey color), and our binary classification task is to
train a model to separate the abnormal and normal ones. In this imagined scenario, there are 4
sub-classes (clusters) in the abnormal class, they are well separated from each other and located
in the four corners. If we consider 3 models (i.e. one single linear classifier, decision tree, and
ensemble of linear classifiers) in the above scenario, they have different behaviours respectively as
follows:

1. If the model is just one single linear classifier, which is equivalent to drawing one single line
in a two-dimensional feature space, there is no perfect solution that can separate all the “+”
from the “-” without any misclassification. For example, if we draw the “line 1” (as shown in
the figure), we can correctly classify two “+” corners on the right side, but also misclassify
two corners of “+” and some “-” region. If we draw the “line 2”, we can classify one “+”
corner and all the “-” data correctly, but also sacrifice all the other three “+” corners. As
we have discussed before, the cost sensitive approach may prefer line 2 over line 1 if the
costs of misclassifying a normal instance is very high, and in our case where there is a FPR
requirement on the model, we may also prefer the line 2. All in all, in this situation, one
single linear classifier is not good enough due to the complex regions formed by the four
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well-separated sub-classes of the abnormal data.

2. If the model is a decision tree, which is able to divide the two-dimensional feature space
into axis-parallel rectangles, then we may end up with classifying all the four rectangles
located in the four corners as abnormal. Again, the volume of the four rectangles (a larger
rectangle can include more TP but also more FP) depends on the misclassification costs in
the cost sensitive learning. In our case where the FPR is required to be very low, the four
rectangles are likely to be small. All in all, the decision tree can do a reasonably good job in
terms of the predictive performance, but as we have discussed before, one single tree can get
overfitting easily in reality, and the Random Forest becomes harder to interpret compared
with the single decision tree model.

3. If we can train and combine several “reasonable” linear classifiers instead of just one single
linear classifier, we can imitate the behavior of a decision tree to improve the predictive
performance. The question left is how to train and combine several linear classifiers “reason-
ably”. In this imagined scenario, our solution is to first perform clustering in the abnormal
class, and we get 4 clusters located in each of the four corners. Then for each pair of the ab-
normal cluster and all of the normal data (each pair of the corner and the center region), we
train a local linear classifier (preferably also sparse) separately, which results in 4 local linear
classifiers. When a new data instance comes in, we evaluate this instance using all of the 4
classifiers, then combine their classification scores based on the instance’s distances to each of
the 4 abnormal cluster centers. In this way, we can improve the predictive performance since
the sub-problems (each of the 4 local classifiers) created by performing a suitable clustering
within each main class become more linearly separable and the combination can be viewed
as distributing different levels of trust to local experts based on the locality information of
the instances. Furthermore, if the obtained clusters have meaningful interpretations (e.g.
corresponding to different types of abnormal transactions), each of the local classifiers can
be interpreted as specialized in identifying a certain sub-class, which makes each of them
easy to interpret. And we can keep the final ensemble model still easy to interpret by inter-
preting the combination as giving different levels of trust to those local specialized classifiers
based on distance information. In short, we train the local linear classifiers “reasonably”
by performing clustering to properly divide each main class and then train the classifiers
on the clustering results using a proper scheme (“Class Crossing One-vs-All” as we explain
later), and we combine their results “reasonably” by exploiting their distances to the cluster
centers (“Soft Combination” scheme as we explain later).

In the above imagined scenario, our approach (i.e. clustering-based ensemble of local sparse linear
classifiers) can give a perfect solution without making any misclassification, and the final ensemble
model is still easy to interpret. Although it’s an imagined scenario, the fact that the two main
classes (the abnormal class and normal class) may contain sub-classes that are very different
from each other encourages us towards this clustering-based ensemble approach, and the sub-
problems created by performing a suitable clustering within each main class should become more
linearly separable. The experiment results on the transaction dataset also supports our approach
by showing improvement in predictive performance while still being relatively easy to interpret,
although the interpretability of the final ensemble model also highly depends on the clustering
results. We formulate the main idea in the following section.
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5.2 Main Idea

The main idea of our approach (i.e. clustering-based ensemble of local sparse linear classifiers)
can be decomposed into several components (e.g. clustering schemes, classification schemes). The
components and the workflow of the approach are shown in Figure 5.2. As we can see in the

Figure 5.2: Components and workflow of the clustering-based ensemble approach

workflow, firstly the training set is split by the main class labels, and then we perform clustering
inside each main class. This step is related to the clustering schemes in the components, since
besides “clustering inside each class” we can also perform clustering in the whole training set
(mixed class). When performing the clustering, we need to choose a suitable clustering algorithm
and evaluation metric. Then the next step is to train local classifiers based on the clustering results
(i.e. partitions of the data), which is related to the classification models and classifier training
schemes in the components (e.g. we can choose different base classifier models and different training
schemes). Finally, we need to combine the local classifiers based on the clustering information
(e.g. cluster centers), which is related to the score pre-processing (usually we need to pre-process
the scores from different local classifiers) and combination schemes (i.e. the rules to combine the
classification scores from the local classifiers) in the components. After we create such an ensemble
model, we can make predictions on new data based on the model and the distance information
(i.e. the instance’s distances to different cluster centers).

In the following sections, we describe each component in more details (i.e. clustering schemes,
clustering algorithms and evaluation, classification models, classification training schemes, score
pre-processing and classifier combination schemes). Then we show the pseudo code as an example
of our clustering-based ensemble approach. Finally, we review and discuss related work that are
similar to this clustering-based ensemble approach.

5.3 Clustering Schemes

The reason that we perform clustering is to find out the local structure of the data (e.g. different
sub-classes inside each main class) such that the sub-problems created by the clustering results
(i.e. partitions of the data) become more linearly separable, which should in return improve the
predictive performance of the original binary classification task. Depending on our later choices
of clustering algorithms and classification models, there are two main types of clustering schemes:

• Clustering the whole training dataset (data of mixed classes)

• Clustering inside each main class separately
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The first scheme (i.e. Clustering the whole training dataset) has the advantage that the discovered
locality is directly related to both main classes (e.g. the abnormal transactions and normal trans-
actions are close to each other in a cluster trained by this scheme), so we may just build a local
classifier for each of the discovered cluster that may contain data of both main classes. However,
this is also its disadvantage since the data of both main classes have strong locality in one cluster
does not mean the (linear) classifier can separate them well. And we can imagine if a linear clas-
sifier can separate the data of both main classes very well, the data of both main classes do not
have to exhibit locality at all (the two main classes do not have to be close to each other in the
feature space). Another disadvantage of the first clustering scheme is that the ratio between the
two main classes in each cluster can be even more imbalanced than the original problem and give
more challenges for the classification task.

We only focus on the second scheme (i.e. Clustering inside each main class) in our approach
since it can discover different clusters inside each main class, and the classifiers trained later can
be interpreted as “specialized” classifiers if the obtained clusters have meaningful interpretations.

5.4 Clustering Algorithms and Evaluations

Here we discuss some clustering algorithms, dissimilarity measures and evaluation metrics that are
closely related to our clustering-based ensemble approach, and we refer to [36] for a more detailed
survey of clustering.

1. Clustering algorithms

• K-means

• K-medoids

• K-modes

• Self-organizing map (SOM)

2. Dissimilarity measures, between points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn)

• Euclidean distance:
√∑n

i=1(pi − qi)2

• Manhattan distance:
∑n
i=1 |pi − qi|

• Hamming distance:
∑
pi 6=qi 1 (number of distinct value pairs)

3. Clustering evaluations

• External index: Adjusted Rand Index

• Internal index: the average Silhouette index

• Others: cluster instances distribution, time distribution, and interpretations by domain
experts

Clustering algorithms

We can see that most of the listed clustering algorithms are hard partitional (i.e. each data instance
can only belong to one cluster), which makes the later classifier training task much easier. The
K-means is the most widely used and simplest, it first randomly selects K points as cluster centers
and iteratively updates by assigning the closest points and calculating the mean points as new
cluster centers until it converge. Compared with K-means, the K-medoids only considers actual
data instances as cluster centers instead of the mean points, and it is usually more robust to
noise. The K-modes is a variant of K-means designed for clustering categorical data [16], since the
K-means is based on Euclidean distance and it is not suitable for categorical data. The K-modes
updates the clusters in a similar manner, but it calculates the modes of the categories instead of
the mean points as cluster centers. All of the above three algorithms (i.e. K-means, K-medoids
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and K-modes) are hard partitional and based on cluster centers, which perfectly fits our ensemble
approach. Similarly, the SOM can also be viewed as a clustering algorithm to partition the data
based on cluster centers (node centers). The difference between SOM and the previous algorithms
is that SOM uses a neural-network-like manner to update the centers [19].

Besides the above four clustering algorithms that are all hard-partitional and center-based, we
have also considered some alternative algorithms, e.g. Fuzzy C-means, DBSCAN, and subspace
clustering. The Fuzzy C-means can be viewed as a soft-partitional version of K-means, which
means that it allows each data instance to belong to different clusters (to different extents) and it
is also center-based. If in later stage we want to train classifiers based on Fuzzy C-means clustering,
we can use the cluster memberships of an instance as its weights and we need classification models
that accept the instance weights as inputs. However, we prefer hard partitions of the data since we
want a model that is simple and easy to interpret, so we do not use Fuzzy C-means in our ensemble
approach. Different from all the above five clustering algorithms based on centers, the DBSCAN
is also hard-partitional but based on density, it can group regions with high density (defined by
the minimum points in a neighborhood) into clusters. The main advantage of DBSCAN is that it
can find out arbitrary shape of clusters, whereas the algorithms like K-means are biased towards
finding clusters of spherical shapes. Subspace clustering is also related to our ensemble approach
in terms of its ability to find out not just the clusters, but also the subspace attached to each
cluster. If we can establish a classifier training scheme to only train in the subspace attached
with the clusters, we can easily meet the requirement of a sparse model. However, the subspace
attached with the clusters are not guaranteed to be useful for classification, and also many subspace
clustering algorithms are not hard partitional, so we do not focus on subspace clustering in our
ensemble approach.

Dissimilarity measures

As for the dissimilarity measures, we consider 3 distances, i.e. Euclidean distance, Manhattan
distance and Hamming distance. For example, we may use Euclidean distance for K-means,
Manhattan distance for K-medoids, and Hamming distance for K-modes. The Manhattan distance
is more robust to noises compared with Euclidean distance since it uses the L1-norm, which can
reduce the effects of noises. The Hamming distances are used for categorical features, since the
numerical distance notion is usually not applicable for categorical values. The Euclidean and
Manhattan distance are still applicable in our case considering that our categorical features are
encoded in float numbers in the range (0, 1) such that there are some orderings for numerical
categories preserved (e.g. 10 to 0.1, 100 to 0.2 and 1000 to 0.3). And as we can see in the experiment
section, the clustering results of K-means (Euclidean distance) and K-modes (Hamming distance)
on the transaction dataset are very similar in our case.

Clustering evaluations

As for the clustering evaluations, external indexes refer to the evaluation metrics that require the
ground-truth labels, and the internal indexes refer to the ones that do not require ground-truth
labels and usually calculated based on the internal structure or characteristics of the clusters (e.g.
within-cluster distances). External indexes require the ground-truth labels that we usually don’t
have in reality, while the internal indexes can be biased towards a certain type of algorithms.
Evaluating the clustering results is not an easy task considering that our clustering scheme is
“clustering inside each main class” and we don’t have subclass-labelled data for external evalu-
ations. However, we can still use the main class labels with external index like ARI (Adjust Rand
Index, defined in Appendix A.1) for evaluating the clustering results of mixed data in order to
choose suitable clustering algorithms that can perform well on our data. More specifically, we
can combine the abnormal data and some random samples of the normal data in the training set,
keep their main class labels, perform clustering by a chosen algorithm and parameter (like cluster
number K in K-means), and evaluate the clustering results using external index ARI with their
main class labels. A clustering algorithm that is applicable to our data should roughly separate
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the abnormal and normal data, which usually results in a higher ARI value. After we have chosen
a suitable algorithm, we can perform the clustering inside each main class and use internal index
like the average Silhouette index to evaluate, which is used to measure how tightly grouped the
data in the clusters are. More specifically, we can use the average Silhouette index (defined in
Appendix A.2) to choose the number of clusters (K) when performing K-means inside each main
class.

Besides the above two metrics, we can also use another two metrics that are more related to
realistic considerations: the instance distribution and time distribution in all obtained clusters. In
our ensemble approach, we prefer clusters inside each main class that have balanced number of
instances in order to avoid the too imbalanced problem for later classifier training, and we also
prefer the time distribution within each cluster to be evenly spread (i.e. the time-stamps of the
instances in each cluster should be widely and evenly spread in the total time span, but not only
limited to a specific time), since the abnormal transactions in a very time-specific cluster may not
happen again in the future.

All the above four metrics (i.e. the external index ARI, internal index average SI, instance
distribution, and time distribution) can be easily quantified and measured. There is another
metric, i.e. interpretation by domain experts, that is difficult to quantify and measure. However, as
we show in the experiment section, the interpretability of the final ensemble model highly depends
on the interpretations of the obtained clusters. The “Class Crossing One-vs-All” classifier training
scheme that is described in the following sections can guarantee that each local classifier can be
interpreted as “specialized” in identifying a certain obtained cluster, but the obtained clusters
do not necessarily have meaningful and practical interpretations (e.g. different types of abnormal
transactions). Hence, if we want to make the final ensemble model easy to interpret, we should also
seek help from domain experts to check if the obtained clusters have meaningful interpretations.

5.5 Classification Models

As mentioned in Section 5.1 where we illustrated the intuitions of the clustering-based ensemble
approach, we want to train and combine a small set of linear classifiers to imitate the behaviour of
a decision tree, so we only consider linear classifiers (preferably sparse) as the base classification
models in our ensemble approach. We consider the following two linear classifiers as shown in
Section 4.2.3 and 4.2.4:

1. L1-regularized cost sensitive linear SVM

2. L1-regularized cost sensitive logistic regression

The L1 regularization is for internally selecting the features such that each local classifier is sparse
enough and the total number of used features after combining all the local classifiers is not too
large. On the other hand, the cost sensitive approach used in the two base linear classifiers aims
to address the imbalanced problem that may have different imbalanced ratios when training local
classifiers over different pairs of obtained clusters.

The linear SVM is a maximum-margin classifier, while the logistic regression models the prob-
ability of an instance being positive as the logistic function of the variables’ linear combination.
Both of them can output classification scores that can indicate the confidence of the classification.
The classification scores of the linear SVM model can be interpreted as the distances from the
classification hyper-plane (boundary), whereas the classification scores of the logistic regression
can be viewed as the estimated probability of being positive. The different meanings of the classi-
fication scores in the base classification models drive the needs of pre-processing the scores before
combining the classifiers. And we show in the experiment section that even if we use the same
base classification model, the score pre-processing is still necessary.
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5.6 Classifier Training Schemes

Now we need to choose a suitable classifier training scheme after we have performed the clustering
inside each main class and selected a base classification model. Let’s only focus on the hard-
partitional and center-based clustering algorithms (e.g. K-means, K-medoids, K-modes and SOM).
Assume that we have k+ clusters (k+ ≥ 1) for the abnormal class (each denoted as A1, A2, . . . , Ak+)
and k− clusters (k− ≥ 1) for the normal class (each denoted as N1, N2, . . . , Nk−), so we have
k+ + k− hard partitions of the training dataset, and each of these partitions has a label attached
to them (either abnormal or normal). We also denote the set of all abnormal clusters as A (so

we have A = ∪k+i=1Ai), the set of all normal clusters as N (so we have N = ∪k−i=1Ni), and the
set of all clusters as T = A ∪ N . We also denote Ti = Ai for 1 ≤ i ≤ k+ and Tj = Nj for
(k+ + 1) ≤ j ≤ (k+ + k−).

A classifier training scheme is a manner of training a set of classifiers on different combinations
of the above obtained k+ + k− data partitions. Some common classifier training schemes and our
proposed scheme “Class Crossing One-vs-All” are shown in the following:

1. One-vs-All (binary): for each cluster Ti ∈ T , we train a classifier on Ti (as positive) and
all the rest clusters T \ Ti (as negative), i.e. A1 as positive and {A2, . . . , Ak+ , N1, . . . , Nk−}
as negative, and so on. So in this scheme we need to train k+ + k− classifiers in total.

2. One-vs-One (binary): for each cluster pair Ti, Tj ∈ T and i < j, we train a classifier on Ti
(as positive) and Tj (as negative), i.e. A1 as positive and A2 as negative, A1 as positive and

A3 as negative, and so on. So in this scheme we need to train (k++k−)(k++k−−1)
2 classifiers

in total. The classifiers that are trained over the clusters from the same main class (e.g. A1

vs. A2) can be ignored considering that our final task is just binary classification but not
necessary to predict the specific types.

3. Direct extension to multi-class (multi): this scheme is only possible for the classifica-
tion models that can be naturally extended for multi-classification, e.g. multinomial logistic
regression. Instead of training binary classifiers (positive and negative), it can train multi-
classifier on all the clusters at once using the cluster’s labels as classification labels, i.e.
A1, A2, . . . , Ak+ , N1, N2, . . . , Nk− . So in this scheme we only need to train 1 multi-classifier.

4. Class Crossing One-vs-All (binary): we assume at least one of k+ or k− greater than 1
(otherwise we can only train 1 global classifier). For each Ai ∈ A (1 ≤ i ≤ k+), we train a
binary classifier on Ai (as positive) and all normal clusters N (as negative). And for each
Ni ∈ N (1 ≤ i ≤ k−), we train a binary classifier on all abnormal clusters A (as positive)
and Ni (as negative). In the case where k+ = 1 or k− = 1, a global classifier is trained (A as
positive and N as negative). So in this scheme we need to train k+ + k− classifiers in total.

We can also represent the above binary schemes using a so-called coding matrix. The coding
matrix representation of transforming a multi-class problem to binary classification problem was
first proposed by [11], who restricted the elements of the matrix to be {+,−} (it means that every
subset has to be used for training, either labelled as positive or negative). The coding matrix was
later extended by [1], who allowed the elements of the matrix to be {+, 0,−}, which means that
some subsets can be ignored and not included in the training (when the element is 0). If we assume
k+ = 3 and k− = 2, the coding matrix for “One-vs-All”, “One-vs-One”, and “Class Crossing One-
vs-All” are shown in Table 5.1, 5.2, and 5.3 respectively. Each row of the code matrix represents
each cluster, and each column represents the training of one binary classifier. For example, in
Table 5.3, the first column means that the classifier f1 is trained over A1 (as positive) and all
normal clusters (N1 and N2 as negative), ignoring the other two abnormal clusters A2 and A3.
We can see that the code matrix provides a very clear representation of different binary classifier
training schemes.
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Table 5.1: Code matrix representation for One-vs-All scheme

f1 f2 f3 f4 f5
A1 + - - - -
A2 - + - - -
A3 - - + - -
N1 - - - + -
N2 - - - - +

Table 5.2: Code matrix representation for One-vs-One scheme

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
A1 + + + + 0 0 0 0 0 0
A2 - 0 0 0 + + + 0 0 0
A3 0 - 0 0 - 0 0 + + 0
N1 0 0 - 0 0 - 0 - 0 +
N2 0 0 0 - 0 0 - 0 - -

Now we analyze the advantages and disadvantages of each classifier training scheme in our
clustering-based ensemble approach as follows:

1. One-vs-All (binary): this scheme is the simplest and most widely used for reducing the
multi-class problem to binary classification, it only needs to train a relatively small number
of classifiers. However, there are a few disadvantages of this scheme: firstly, every local
classifier trained by this scheme is hard to interpret, since in each local classifier there are
clusters of the same class on both sides (e.g. A1 is positive and A2, A3 are negative as shown
in Table 5.1), but our ultimate task is only to classify whether the instance is abnormal
(or normal). Secondly, the highly imbalanced problem becomes even more severe for every
local classifier since there is only one cluster on one side and all the other clusters on the
other side. Lastly, this scheme is hard to incorporate the distance information (instance’s
distances to different cluster centers), since every local classifier is trained over the whole
training set (with different data partitions and training labels), for example, if an instance
has the smallest distance to the cluster center of A1, we cannot give preference over the local
classifier f1 since other classifiers such as f2 is also trained over A1 (although with different
labels).

2. One-vs-One (binary): as mentioned above, we can disregard the classifiers trained over
the clusters of same class (e.g. A1 as positive and A2 as negative) since our task is only
binary classification of the two main classes. After removing them, every classifier left is
trained over a cluster of one main class (as positive) and a cluster of another main class (as
negative). The main disadvantage of this scheme is that we need to train a relatively large
number of local classifiers even after removing the useless ones, for example, if we assume
k+ = 5 and k− = 5, then we need to train 25 local classifiers. Moreover, each local classifier
is also not easy to interpret, since they are trained over only one cluster of one main class

Table 5.3: Code matrix representation for Class Crossing One-vs-All scheme

f1 f2 f3 f4 f5
A1 + 0 0 + +
A2 0 + 0 + +
A3 0 0 + + +
N1 - - - - 0
N2 - - - 0 -
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against one cluster of another main class.

3. Direct extension to multi-class (multi): this scheme is not applicable to every base
classification model since it requires the model to be able to deal with multi-class directly.
Some classification models can deal with multi-class naturally such as decision trees, some
have direct extensions to multi-class such as the multinomial logistic regression and artificial
neural network, but some classification model do not have such simple and direct extensions
such as the SVM. Hence, we do not focus on this scheme.

4. Class Crossing One-vs-All (binary): this scheme has the following advantages compared
with the above common schemes

• Firstly, the local classifiers trained by this scheme are easy to interpret, i.e. each of
them can be interpreted as specialized in identifying the corresponding cluster from the
another main class, since on one side there is one cluster of one main class and on the
other side there are all the data of the other main class. For example, as shown in Table
5.3, the local classifier f1 is trained on A1 as positive and all the other normal clusters
(N1, N2) as negative, so this local classifier can be interpreted as a specialized classifier
that can distinguish the abnormal cluster A1 from all the normal data.

• Secondly, we only need to train a relatively small number of classifiers (k+ + k−) by
this scheme, for example, if we assume k+ = 5 and k− = 1, then we only need to
train 6 classifiers, and if we assume k+ = 5 and k− = 5, then we only need to train 10
local classifiers. Such a small number of local classifiers can also help to improve the
interpretability of the final ensemble model.

• Thirdly, this scheme is additive and recyclable. For example, assume that as a starting
point we only want to perform clustering inside the abnormal class and keep the normal
class as a whole (assume k+ = 3 and k− = 1), then we only need to train 4 classifiers
(3 local classifiers and 1 global classifier). If in a later stage we also want to perform
clustering inside the normal class (such that k− > 1), we can just add the new classifiers
corresponding to the new normal clusters and keep the existing 3 classifiers correspond-
ing to the 3 abnormal clusters unchanged. Furthermore, if we assume that we already
have 5 local classifiers for k+ = 3 and k− = 2, and now we want to perform a new
clustering within the normal class such that k− = 3, we can still keep the 3 classifiers
corresponding to the k+ = 3 and add the new ones corresponding to k− = 3. This
additive and recyclable feature can reduce the burden of model updating. In contrast,
all the above common schemes (except the One-vs-All scheme) need to train completely
new classifiers to replace all the old ones when there is any change on the clusters.

• Lastly, this scheme is much easier to incorporate the distance information as we explain
in the following section of combination schemes.

5.7 Classifier Score Pre-processing

Now assume that we have trained the local classifiers based on the Class Crossing One-vs-All
scheme and the clustering results, then we can apply these local classifiers on any data instance
and get a classification score for each local classifier, which can indicate the confidence of the clas-
sifications. Before combining the scores of local classifiers, we should pre-process the scores since
they are not guaranteed to be in the same scale and usually they do not have the same mapping to
the posterior probability. It’s important to note the difference between the classification scores and
the posterior probability: the classification scores can only indicate the confidence of classification
but do not directly correspond to the posterior probability (except the classification models like
logistic regression that explicitly express the probability estimates as scores). For example, the
classification scores of the SVM model corresponds to the instance’s distance to the classification
hyper-plane (the decision boundary), and the higher the margin yiscorei is, the more confident
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the classification is. The classification scores from different types of classifiers can have totally
different meanings and scales, and even the classifiers that are of the same type but trained over
different partitions of the training set can have different scales of classification scores. Hence, we
can consider several score pre-processing techniques as follows:

• Simple scaling

– Standardization: ŝi = si−mean
sd

– Min-max scaling: ŝi = si−min
max−min

• Probability calibration

– Platt’s scaling (fits a sigmoid function)

– Isotonic regression (fits an isotonic function)

For the simple scaling techniques, the standardization re-scales the scores to new scores with
mean = 0 and sd = 1. The min-max scaling simply maps the original scores to new scores in the
range of [0, 1]. It’s important to note that we should not use the testing set for the the estimations
of mean, sd in standardization and min,max in the min-max scaling. In our experiment, we use
the last three weeks of the training set (around 28 million rows) to estimate the above statistics.

For the techniques of probability calibration, the Platt’s scaling proposed by [25] fits a sigmoid
function to the scores, i.e. P (yi = 1|si) = 1

1+exp(β1si+β0)
, we can think of it as fitting a logistic

regression from the scores to the probability estimates. The Platt’s scaling method is especially
effective for models that have a sigmoid-like mapping function from scores to probability, e.g. the
SVM model. For other models that the mapping function shape is unknown, it is suggested to
use isotonic regression to fit a non-decreasing constant step function from scores to probability
estimates [37]. A graphical comparison of Platt’s scaling and Isotonic regression is shown in Figure
5.3.

Figure 5.3: Comparison between Platt’s scaling and Isotonic regression

As discussed by [22], the fitting of the sigmoid function or isotonic regression should be based
on a calibration set, i.e. we should separate an independent set from the training set and use it for
calibration to avoid a poor probability estimation. In our case, we use the last three weeks of the
training set (around 28 million rows) to fit the calibration methods. This should provide a good
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probability estimation since our model training set (e.g. 10K rows for training the SVM model)
only uses a small down-sampling set of normal data in the training set (around 120 million rows),
so we include lots of extra normal data that are out-of-bag (not included in the model training
set). Furthermore, this large dataset for calibration can also provide a realistic ratio between
abnormal data and normal data, which is impossible to achieve if we take the calibration set from
the model training set.

5.8 Classifier Combination Schemes

After we have pre-processed the scores from different local classifiers, they should have approxim-
ately the same scale and/or same meaning as probability estimates (by probability calibration).
Now we consider different schemes to combine the local classifiers. As shown in the following sec-
tion of related work, many existing approaches that have similar idea to ours use simple rules to
combine local classifiers like majority votes, which ignore the magnitude of the scores from local
classifiers. In our approach, considering the model requirement to output (nearly) continuous
scores (as discussed in Section 2.3), we only focus on the combination schemes that can combine
the scores of local classifiers into one single score that can indicate the confidence of the combined
classification. Furthermore, we incorporate the distance information (i.e. an instance’s distances
to different cluster centers) into the combination. In the following, first we introduce a method to
calculate cluster memberships based on the distances to the cluster centers, then we show different
combination schemes for the “Class Crossing One-vs-All” training scheme.

Given an instance’s distances to different cluster centers D = {d1, d2, . . . , dn}, we can calculate
the instance’s membership m(i,D) belonging to cluster i as follows:

m(i,D) =
( 1
di

)m∑
dj∈D( 1

dj
)m

(5.1)

where m is called fuzzy membership degree (larger m results in crisper and less fuzzier member-
ships). This membership calculation is the same as the membership degree in Fuzzy C-means [2],
it has several properties: the memberships sum up to 1 (i.e.

∑n
i=1m(i,D) = 1), and a smaller

distance results in a larger membership.
Assume that there are k+ abnormal clusters and k− normal clusters obtained by a clustering

algorithm that is center-based (e.g. K-means). We denote the cluster centers of abnormal clusters
as a1, a2, . . . , ak+ and the centers of normal clusters as n1, n2, . . . , nk− . Based on the “Class
Crossing One-vs-All” scheme, we denote the local classifier corresponding to each abnormal cluster
as fa1 , fa2 , . . . , fak+ and each normal cluster as fn1

, fn2
, . . . , fnk−

, we also train a global classifier
on the whole training set (all the abnormal clusters as positive and all the normal clusters as
negative), and we denote this global classifier as fg. Now assume that we have a data instance,
we can apply the local classifiers on the instance and pre-process the scores, and we denote the
scores after pre-processing as S+ = {sa1 , sa2 , . . . , sak+} and S− = {sn1 , sn2 , . . . , snk−

} respectively,
and the set of all scores S = S+ ∪ S−. We can also calculate the instance’s distance to each
cluster center based on the chosen dissimilarity metric in clustering algorithms (e.g. Euclidean
distance in K-means, Hamming distance in K-modes), and we denote its distances to the abnormal
cluster centers as D+ = {da1 , da2 , . . . , dak+} and its distances to the normal cluster centers as
D− = {dn1 , dn2 , . . . , dnk−

}, we also denote the set of all distances as D = D+∪D−. Now we show
different combination schemes for our proposed “Class Crossing One-vs-All” training scheme as
follows:

1. Without distance information:

• Min rule: s = min(S), where S = {sa1 , sa2 , . . . , sak+ , sn1 , sn2 , . . . , snk−
}

• Max rule: s = max(S)

• Average rule: s = average(S)
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2. With distance information:

• Hard Combination with / without Global Classifier: we take the score from the
local classifier corresponding to the cluster that the instance has smallest distance to, i.e.
s = sj∗ where j∗ = arg minj{dj ∈ D} and D = {da1 , da2 , . . . , dak+ , dn1

, dn2
, . . . , dnk−

}.
We can also ask for the help of global classifier when the minimum distance is still too
large, otherwise same as above, i.e. if dj∗ > α then s = sg, otherwise s = sj∗ , where
j∗ = arg minj{dj ∈ D}. The α is a parameter to control how much our combined
classifier relies on the local or global classifier.

• Hard-Soft Combination: we treat the distances to abnormal clusters and normal
clusters differently, first we take the two scores with the minimum distances in the
abnormal clusters and normal clusters respectively, and take the weighted sum of the
two scores based on the memberships calculated on the two minimum distances, i.e. s =
sj+ ·m(1, Dmin)+sj− ·m(2, Dmin), where j+ = arg minj{dj ∈ D+}, j− = arg minj{dj ∈
D−}, and Dmin = {dj+ , dj−}. The membership calculation is defined in Equation 5.1.

• Soft Combination: we take the weighted sum of all the scores, and the weights are the

cluster memberships, i.e. s =
∑k++k−

i=1 si ·m(i,D), where D is the set of the distances
between the instance and all the cluster centers.

Now we show the intuitions and relations of the above 3 combination schemes with distance
information as follows. As we can see in the above combination schemes, the “Hard Combination
without Global Classifier” can be viewed as a special case of “Soft Combination” if we set the
fuzzy degree m to be very large as shown in Equation 5.1, since when the fuzzy degree is very large
the cluster memberships become completely crisp (the membership corresponding to the minimum
distance is close to 1 and other memberships are shrunk to 0), which is exactly the definition of
the hard combination.

The “Hard-Soft” combination can be viewed as a compromise between completely hard and
soft combinations. We can explain why this combination is reasonable in the following example:
assume we have 3 abnormal clusters and 2 normal clusters, and we have trained the 5 local
classifiers according to the “Class Crossing One-vs-All” scheme (as shown in Table 5.3). Now when
we get a new data instance, we assume it has the smallest distances to the centers of abnormal
cluster A2 and normal cluster N1 respectively, so we get the scores from the two corresponding
classifiers f2 and f4 and combine them based on “Hard-Soft” scheme. We argue that this manner
is reasonable because:

1. If the ground-truth label of the instance is abnormal, then using the score from the local
classifier f2 should be beneficial to our final result since the instance has the smallest distance
to that abnormal cluster and the sub-problem should become more linearly separable (as
illustrated in Figure 5.1). On the other hand, using the score from the f4 should not hurt
our final result since the f4 is trained against the whole abnormal set (so it has “seen” all
the abnormal patterns), and the membership value for the score of f4 (corresponding to
normal cluster N1) should be smaller since we assume the ground-truth label of the instance
is abnormal and it should be quite far away from normal clusters.

2. If the ground-truth label of the instance is normal, then we have the same reasoning but in
this case f4 should be beneficial to our final result and f2 should not hurt our final result.

Hence, no matter what the ground-truth label of the instance is, one of our chosen local classifier
in the “Hard-Soft” scheme can be beneficial and the other one should not hurt, which can improve
our final combined results on average.

As for the “Soft” combination, it is a generalized version of the above “Hard-Soft” scheme, it
is also reasonable because some clusters within the same main class can be close to each other,
so we can take “advices” from all the local classifiers and give different levels of “trust” based on
the distances, but not just take the one that has the smallest distance. The direct comparison
between the distances to abnormal cluster centers and the normal cluster centers is also reasonable
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since the clustering within each main class is performed in the same feature space using the same
clustering algorithm and distance metric.

5.9 Example

To illustrate the whole workflow of our ensemble approach, we select an example with the following
chosen components:

• Clustering scheme: Clustering inside each main class separately

• Clustering algorithm: K-means (Euclidean distance, k+ = 3, k− = 2)

• Classification model: L1-regularized cost sensitive linear SVM (abbreviated as L1-SVM)

• Classifier training scheme: Class Crossing One-vs-All

• Classifier score pre-processing: Platt’s scaling (fits a sigmoid function)

• Classifier combination scheme: Soft Combination with fuzzy membership degree m = 4

The pseudo code of the above example is shown in the Algorithm 1. As we can see, the final
ensemble model can output a classification score for each new data instance, then we can choose
a classification threshold (as shown in Section 3.3.5) and use the classifier with the threshold to
make binary classification.
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Algorithm 1 Pseudo code of an example for our ensemble approach

1: procedure Clustering(A,N, k+, k−) . A: abnormal class, N : normal class
2: perform K-means with k = k+ within A, get clusters A1, A2, . . . , Ak+
3: perform K-means with k = k− within N , get clusters N1, N2, . . . , Nk−
4: k ← k+ + k−

5: C ← {c1, c2, . . . , ck} ← centers(A1, A2, . . . , Ak+ , N1, N2, . . . , Nk−) . get the centers
6: return A1, A2, . . . , Ak+ , N1, N2, . . . , Nk− , C
7: end procedure
8:

9: procedure ClassifierTraining(A1, A2, . . . , Ak+ , N1, N2, . . . , Nk−)
10: for 1 ≤ i ≤ k+ do
11: Train the L1-SVM classifier f+i on Ai (as positive) and N (as negative)
12: end for
13: for 1 ≤ i ≤ k− do
14: Train the L1-SVM classifier f−i on A (as positive) and Ni (as negative)
15: end for
16: k ← k+ + k−

17: F ← {f1, f2, . . . , fk} ← {f+1 , . . . , f
+
k+ , f

−
1 , . . . , f

−
k−}

18: return F
19: end procedure
20:

21: procedure Calibration(F,CSET, k+, k−) . CSET : dataset for fitting the calibration
22: k ← k+ + k−

23: for 1 ≤ i ≤ k do
24: fits the sigmoid function SGi based on fi ∈ F and CSET
25: end for
26: SG← {SG1, SG2, . . . , SGk} . SG: set of sigmoid functions for calibration
27: return SG
28: end procedure
29:

30: procedure TestingNewData(F, SG,C, T, k,m) . T : new data used for testing
31: . m: membership function as defined in Equation 5.1
32: for each data instance ti in T do
33: for 1 ≤ j ≤ k do
34: si,j ← fj(ti) . apply the classifier fj ∈ F on the instance ti
35: ŝi,j ← SGj(si,j) . apply the calibration sigmoid function SGj on the score si,j
36: di,j ← d(ti, cj) . calculate the distance between instance ti and center cj ∈ C
37: end for
38: Di ← {di,1, di,2, . . . , di,k}
39: for 1 ≤ j ≤ k do
40: mi,j ← m(j,Di) . calculate the memberships based on the set of distances

41: si ←
∑k
j=1mi,j ŝi,j . calculate the combined score based on memberships

42: end for
43: end for
44: S ← {s1, s2, . . . , sn} . the final scores for the testing set T
45: return S
46: end procedure
47:

Fraud Detection in Bank Transactions 41



CHAPTER 5. CLUSTERING-BASED ENSEMBLE OF LOCAL SPARSE LINEAR
CLASSIFIERS

5.10 Related Work on Clustering-based Ensemble

Similar idea of our clustering-based ensemble approach dated back to 2002, when Japkowicz [18]
performed K-means clustering within each main class several times (for the sake of randomness) to
have several sets of clusters. Then a decision tree (multi-classifier) was trained for each obtained
set of clusters, and the classification results from those decision trees were then combined based
on unweighted or weighted votes (probability output of the decision tree), which improved the
classification accuracy. This approach falls in the “Direct extension to multi-class” category of
classification training schemes, since decision tree is a multi-classifier in nature.

A complicated decision tree usually exhibits low bias and high variance characteristic. Vilalta et
al. [32] proposed a framework to improve classification accuracy of low-variance classifiers (such as
linear classifiers) by performing clustering inside each main class and merging the obtained clusters
by greedy search. Then they trained a multi-classifier over the merged clusters and converted
the cluster predictions back to the class predictions. Their results showed improvements in the
performance of Naive Bayes, but no significant improvement for the linear SVM model, and their
classifier training scheme was not discussed.

Fradkin [12] also used the clustering inside classes approach to improve the classification accur-
acy for linear classifiers (namely, logistic regression and linear SVM). The results showed significant
accuracy improvement for the two linear classifiers by using the clustering approach, but no signi-
ficant improvement for the non-linear SVM model. A multinomial logistic regression model and a
multi-class SVM model were used, although not mentioned in the paper, here the multi-class SVM
model being used should be the “One-vs-One” approach in LibSVM [7]. The classifier training
schemes and combination schemes were not the focus in this work.

Wu et al. [34] used the clustering inside each main class approach with over-sampling (such
that the obtained clusters are relatively balanced) to address the imbalanced problem. Similar
as above, they used the multi-class linear SVM model (“One-vs-One” training scheme) and their
results showed accuracy improvements for several real-world imbalanced datasets.

Similar as Japkowicz [18] who performed clustering several times to have different partitions of
the training data, Rahman et al. [26] proposed an approach to generate different base classifiers
based on performing clustering several times (called layered clustering) over the mixed data. Since
they performed clustering on the mixed data, some clusters may contain examples of one single
class (called atomic clusters) and some may contain mixed class data (called non-atomic clusters).
They trained Neural Network models over the non-atomic clusters, and simply assigned the class
label if the data instances were passed to the atomic clusters. The distances between the instance
and different cluster centers were used to select appropriate clusters. They only considered fusion
methods (majority votes) for the base classifiers that can produce discrete-valued class decisions.

Verma et al. [31] proposed a two layer approach Cluster-Oriented Ensemble Classifier (COEC)
to improve the classification accuracy by clustering the data, learning different base classifiers
to map instances to cluster confidence vectors, and finally training a fusion classifier to map the
cluster confidence to the class confidence vector. More specifically, they have considered k-Nearest-
Neighbor, Neural Network and SVM for the base classifiers, and the Neural Network for the fusion
classifier. They also considered both clustering inside each class and clustering the whole dataset
(mixed data), and they found the clustering within each class was significantly better than the
latter one in their approach.

Xiao et al. [35] used a similar clustering-based ensemble approach in the domain of credit
scoring (similar to our fraud detection domain). They also performed clustering within each class
and used the “One-vs-One” scheme to train base classifiers. Then they combined the results
of base classifiers by a weighted voting, and the weights are determined by evaluating the base
classifiers’ performance on the nearest neighbors of an instance.

In summary, most of the above related work use the clustering scheme “clustering inside each
main class separately”, which is the same as in our clustering-based ensemble approach. Some
of them use base classifiers that have direct extension to multi-class such as decision trees and
multinomial logistic regression, and some of them (implicitly) use the “One-vs-One” classifier
training scheme for linear classifiers like linear SVM. In our ensemble approach, we propose a
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classifier training scheme (i.e. Class Crossing One-vs-All) to improve the predictive performance
when combined with the “Soft Combination” scheme based on the instance’s distances to different
cluster centers. Furthermore, each local classifier trained by the Class Crossing One-vs-All scheme
can be interpreted as specialized in identifying a certain obtained cluster, which means that each
local classifier is possible to have good interpretability if the obtained clusters have meaningful
and practical interpretations (e.g. each obtained cluster may correspond to one type of abnormal
transactions). For the classifier combination schemes, most of the existing work use majority
voting to combine the base classifiers that output discrete-valued classification decisions, whereas
we incorporate the distance information and propose several combination schemes for the base
classifiers that can output continuous-valued scores. And we can interpret the “Soft Combination”
(weighted sum) scheme as giving different levels of trust to each local specialized classifier based on
the distance information such that the final ensemble model is possible to have good interpretability
(although it still highly depends on the interpretability of the obtained clusters).
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Experiment

In this chapter, we perform different experiments on the real transaction dataset provided by Ra-
bobank. More specifically, we apply and evaluate the previous state-of-art classification models
(with specific techniques to address the challenges and requirements) and our novel clustering-
based ensemble approach on the real transaction dataset. The goal of the experiment is to eval-
uate and compare those techniques in terms of predictive performance and interpretability. For
predictive performance, as discussed in Section 3.3.3, we use the PAUC100 (FPR ≤ 100 per 1
million) as final model evaluation metric considering that the FPR is required to be smaller than
100 per 1 million in reality (it’s important to note that PAUC300 is used for parameter tuning).
For interpretability, as discussed in Section 5.1, it’s rather subjective to define and compare in-
terpretability between different classification models [3]. One metric that we can quantify is the
number of features that are used by the classification model (e.g. when comparing two linear
classifiers, the one using less features is usually easier to interpret). Besides the number of used
features, we also compare the model structure in terms of interpretability, for example, we analyze
the features used by each local classifier in our clustering-based ensemble model.

In the following sections, firstly we describe the experimental settings, e.g. dataset description,
dataset splitting and hyper-parameter tuning settings that are applicable to all the following
experiments. Secondly, we show the experiment results of the state-of-art classification techniques
that we have discussed in Chapter 4, i.e. L1-SVM, L1-LR, stable feature selection, Random Forest
and XGBoost. Then we show the experiment results of our proposed Clustering-based ensemble
approach. Finally, we give conclusions on all the experiments.

6.1 Experimental Settings

In this section, we show the experimental settings including the dataset description, one-hot
encoding setting, dataset splitting for training and testing set, and the hyper-parameter tuning
settings that are applicable to all the following experiments.

6.1.1 Dataset description

Firstly we briefly describe the raw dataset that we get from the Confirmed Database, where every
transaction has a label that is confirmed by the time delaying rule (as discussed in Section 2.2),
then we describe the transformed dataset.

For the raw dataset: each row of the raw transaction dataset represents one transaction, and
each transaction contains a label indicating whether the transaction has been confirmed as ab-
normal or normal, a timestamp indicating the transaction time, and a unique hash that can be
used to identify the transaction. Besides the label, timestamp and hash, each transaction also
has around 1300 features recording information that is considered as relevant to fraud detection.
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These features can be numerical, categorical or textual, which need to be transformed before ap-
plying machine learning algorithms.

For the transformed dataset (anonymous and binned dataset), the following operations have
been applied on the above raw dataset:

1. Data labelling: we denote the label of every abnormal transaction as 1, and the label of
every normal transaction as 0. We also denote this label variable as Y (our target variable).

2. Meta-information extraction: we denote the two information features timestamp and
meta-hash as I, and these two information variables should not be used to predict the target
variable Y . Besides Y and I variables, all the other variables are denoted as X, which are
used to predict the target variable.

3. Data type determination: we determine each X feature to be one of the three data types
(i.e. categorical, numerical and textual). Firstly, one week of transaction data (the first
week in January 2017) has been aggregated as a sample to generate statistics of each feature
(e.g. how many unique values). Then according to the sample statistics, the feature type is
determined as follows:

• If a feature has less than 200 unique values, it is determined to be categorical (denoted
by C).

• Otherwise: if it has more than 80% of its values as numerical, it is determined to be
numerical (denoted by N), or else it is determined to be textual (denoted by T ).

4. Data discretization (binning): We apply different binning rules to different data types.
The binning processes corresponding to the three determined data types are shown in the
following:

• C (categorical) - one to one encoding: the unique values are first sorted according to
ASCII character order, then the feature values are mapped to the bin values between
0.1 and 0.9 according to that order. Each category corresponds to one bin value, and
all the values between two consecutive categories also corresponds to one bin value. For
example, if there are 2 unique categories A and B, then x = A corresponds to bin value
0.3, A < x < B corresponds to bin value 0.5, and x = B corresponds to bin value 0.7,
so all the categories and their possible values in between are evenly spread in the range
of (0.1, 0.9). Since categorical variable has at most 200 unique values, there are at most
400 bin values for each categorical variable.

• N (numerical) - equal frequency based: the unique values are sorted according to
numeric order, then the bins with different widths but approximately equal frequencies
are generated. There are at most 800 bins (bin values ranging from 0.1 to 0.9, in unit
of 0.001). Hence, except some very frequent and identical values, each bin is expected
to contain value range that has total frequency around 1/800 = 0.125%. The bin id
value is taken as the middle point of the bin, for example, if the smallest value 0 has
frequency 87.5% (it takes 700 bins), the second smallest value 1 has frequency 0.25%
(2 bins), and the third smallest value 2 has frequency 0.125% (1 bin), then the first bin
id is (0.1 + (0.1 + 700 ∗ 0.001))/2 = 0.45 (original values ranging from 0 ≤ x < 1), and
the second bin id is ((0.1 + 700 ∗ 0.001) + (0.1 + 702 ∗ 0.001))/2 = 0.801 (original values
ranging from 1 ≤ x < 2), and so on.

• T (textual) - equal frequency based: the unique values are sorted according to ASCII
order, then applies the same frequency based binning process as N variables.

• Global binning setting: besides the above binning process, the values that are smaller
than the minimum value of the binning sample are mapped to the bin id 0.05, values
that are larger than the maximum value of the binning sample are mapped to the bin
id 0.95, empty value is mapped to 0, and the error value is mapped to 0.999. Hence,
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Table 6.1: Example of the transformed dataset

I variables (information) X variables of only C types Y variable
Timestamp Meta-hash C 001 C 002 · · · C 856 label

12:00:00 AM 01/10/2016 Sf/dsfJKFds2 0.201 0.3 · · · 0.95 1
12:00:05 AM 01/10/2016 Dfsf*Fdsfnxl 0.05 0.701 · · · 0.342 0

· · · · · · · · · · · · · · · · · · · · ·
23:59:50 AM 03/03/2017 bdf*Fdf2axd 0.678 0.701 · · · 0.782 0

for all the variables, the binned values float numbers in unit of 0.001, ranging from 0
to 1.

5. Removal of artifacts and useless variables: we remove variables that are exactly equi-
valent to the timestamp but in different encoding (e.g. encoded in numbers), since such
variables may give perfect but useless predictions when the time periods of the abnormal
and normal transactions in the training set are very different.

6. Anonymization: we anonymize the original feature names by mapping them to a new set
of anonymized feature names. And any information related to the customers have been
removed in the binning stage (since all the features are binned to float numbers between 0
and 1).

In this project, we are only concerned with the C features (categorical), so we remove all the
features of types N and T . There are 856 categorical features kept in the transformed dataset,
each of them is in the range from 0 to 1. Besides, we only consider the transaction data in the
time range from 1st October 2016 to 3rd March 2017. An example of the transformed dataset
is shown in Table 6.1. In summary, there are around 150 million normal transactions and 1100
abnormal transactions in this transformed dataset. Each row contains two I variables (information
features), 856 C type features as X predictors, and the binary target variable Y = {0, 1}. All the
following experiments are concerned with the transformed dataset instead of the raw dataset.

6.1.2 One-hot encoding

As discussed in Section 3.2.4, we use one-hot encoding for linear classifiers since all the features of
the transformed dataset are of categorical type. For other classification models such as tree-based
models, we use the original representation without one-hot encoding because those tree-based
models can handle categorical features in nature. The transformed dataset after converting to
one-hot encoding resulted in a matrix with 24988 columns of 0-1 variables. We use the sparse
matrix format to store and train models due to the sparsity of the one-hot encoded matrix.

6.1.3 Dataset splitting

As we have shown in the R&D workflow (Figure 3.1), we split the transformed dataset into training
set and testing set by time. Considering that the total time span of the transformed dataset is
from 1st October 2016 to 3rd March 2017 (approx. 5 months of data), we take the transactions
that happened in the first 4 months (1st Oct. 2016 to 31st Jan. 2017) as training set, and make
the transactions that happened in the last month (1st Feb 2017 to 3rd March 2017) as testing set.
The statistics related to the dataset splitting is shown in Table 6.2. The training set is further
down-sampled by different ratios and used for model training, and the testing set is used for final
evaluation and comparison of different models. This setting of training and testing set is used for
all the following experiments. There are better evaluation schemes such as prequential evaluation
(test the model on new instances and retrain the model by including the new instances, and so
on), but we only consider the above static manner in this thesis due to time limitations.
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Table 6.2: Statistics of the training set and testing set after splitting by time

Training set Testing set

Timespan
4 months

(1st Oct. 2016 to 31st Jan. 2017)
1 month

(1st Feb 2017 to 3rd March 2017)
Abnormal 769 rows 333 rows
Normal 120 million rows 30 million rows

6.1.4 Hyper-parameter tuning settings

As discussed in Section 3.3.3 and Section 3.3.4, we use the PAUC300 (FPR ≤ 300 per 1 million)
as model evaluation metric for parameter tuning (it’s important to note that we use PAUC100 for
final model evaluation and comparison). For the algorithms that have very fast training speed
such as the two linear classifiers L1-SVM and L1-Logistic-Regression, we use 5-fold stratified cross
validation with 2 repetitions for parameter tuning. For more time-consuming algorithms such as
Random Forest and XGBoost, we use 5-fold stratified cross validation (with only 1 repetition) for
parameter tuning due to limitations of time and computing resources.

6.2 Experimental Results of State-of-art Classification Tech-
niques

In this section, we show the experiment results of the state-of-art classification techniques that
are described in Chapter 4. Firstly, we start from the linear classifiers, i.e. we compare the
predictive performance of L1-SVM and L1-LR on the transaction dataset. Then we compare
the performance of L1-SVM with and without the stable feature selection technique. Finally, we
show the experiment results of the two tree-based (non-linear) classifiers, i.e. Random Forest and
XGBoost.

6.2.1 L1-SVM vs. L1-LR

The L1-SVM (L1-regularized cost sensitive linear SVM) and L1-LR (L1-regularized cost sensitive
logistic regression) models are the two sparse linear classifiers that we use as base classification
models in our ensemble approach. Here we compare the predictive performance of them just as a
single classifier. For training the linear classifiers, we further down-sample the normal transactions
to 10,000 and combine with all the 769 abnormal transactions in the training set. And we use
one-hot encoding for all the categorical features as discussed above.

As discussed in Section 4.2, there are two parameters, i.e. misclassification costs for positive
instances Cp and negative instances Cn, that we need to tune according to our tuning evaluation
metric (PAUC300). The relative magnitude of those two parameters controls the relative import-
ance of classifying the positive instances and negative instances, the absolute magnitude controls
the trade-off between regularization and loss function. In this experiment, for both models we
tune the two costs in the Cartesian grid C × C, where C belongs to a set of 43 elements in the
range from 0.001 to 500, so there are 43 × 43 = 1849 combinations in total. We tune the above
grid by 5-fold cross validation with 2 repetitions, and we record the mean values of the following:
number of one-hot encoded features (since we are using one-hot encoding) that are used by the
model (with non-zero feature weights), number of original features used by the model, PAUC300,
and the whole AUC. The detailed CV results of tuning the L1-SVM parameters are shown in
Figure A.1 in Appendix.

For both models (L1-SVM and L1-LR), we select the best combination of Cp and Cn that
has the highest mean PAUC300, i.e. Cp = 0.1 and Cn = 40 for L1-SVM model (we denote this
model as L1-SVM-0.1-40), and Cp = 0.3 and Cn = 15 for L1-LR model (we denote this model as
L1-LR-0.3-15), then we train the models with the above selected parameters on the down-sampled
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Table 6.3: Model details and testing results of L1-SVM and L1-LR

Models
No. of one-hot

encoded features
No. of original

features
PAUC100 PAUC300 AUC

L1-SVM-0.1-40 1137 390 3.33× 10−5 1.27× 10−4 0.975
L1-LR-0.3-15 848 365 2.89× 10−5 1.19× 10−4 0.983

training set (10,000 normal and 769 abnormal transactions), and test them on the whole testing
set. The testing results (PAUC) and model details of the two models are shown in Figure 6.1 and
Table 6.3. From the above comparison between L1-SVM and L1-LR, we can conclude that:

1. The PAUC is indeed more suitable than the whole AUC used for model evaluation in our
case, since as we can see in Table 6.3, the PAUC of L1-SVM is consistently higher than
that of L1-LR when the FPR is required to be less than 100 per 1M, but the whole AUC of
L1-LR is higher than L1-SVM. And please note that both models are tuned by the PAUC300

metric.

2. L1-SVM has higher predictive performance than L1-LR on this real transaction dataset. In
terms of the PAUC100, the L1-SVM is almost 20% better than the L1-LR, and both models
use similar number of original features.

Figure 6.1: Model testing results: L1-SVM vs. L1-LR

6.2.2 L1-SVM with stable feature selection

Here we compare the predictive performance of L1-SVM with and without stable feature selection.
As discussed in Section 4.2.5, the stable feature selection is done by first creating multiple random
samples, training models on the samples, then averaging the feature vectors and filtering the
features. In this experiment, we create 100 training samples by taking random samples of 10,000
normal transactions and combining with all the 769 abnormal transactions in the training set, so
each training sample has 10,769 transactions (same as the above experiment setting). We tune the
two parameters Cp and Cn for each training sample as above (the only difference is that we tune
the parameters in a smaller grid due to time limitations), and we train 3 models for each sample
using the top 3 sets of parameters according to the PAUC300 metric. Then we have 300 feature
vectors in total, and we take the average of these 300 feature vectors and take the absolute values

48 Fraud Detection in Bank Transactions



CHAPTER 6. EXPERIMENT

Figure 6.2: Absolute values of the average of the 300 feature vectors

Table 6.4: Model details and testing results of L1-SVM with and without feature selection

Models
No. of one-hot

encoded features
No. of original

features
PAUC100 PAUC300 AUC

L1-SVM-FS-0.06-5 429 210 3.75× 10−5 1.35× 10−4 0.983
L1-SVM-0.1-40 1137 390 3.33× 10−5 1.27× 10−4 0.975

L1-SVM-0.15-1.5 643 254 3.44× 10−5 1.31× 10−4 0.981

of the averaged vector. The bar chart of the absolute average vector is shown in Figure 6.2. As
we can see in the figure, there are a few outstanding features that are consistently important in
all the models trained on the 100 random samples, and many of others are less important (quite
many of them are even consistently 0). As an example, there are around 1300 one-hot encoded
features that have absolute average value more than 0.01 (which is quite small already). Hence,
we only keep the top 1500 one-hot encoded features, and the top 300 original features with respect
to the absolute sum values (as discussed in Section 4.2.5), which results in a final selected set of
features consisting of 1494 one-hot encoded features.

Using only this selected set of stable features, we tune and train the L1-SVM model on the same
training set (the one that was used to compare L1-SVM and L1-LR), we get the best parameter
set Cp = 0.06 and Cn = 5 and we denote this model as L1-SVM-FS-0.06-5 (FS means feature
selection). This model with feature selection uses 429 one-hot encoded features and 210 original
features. For a more reasonable comparison, we also select the parameter set Cp = 0.15 and
Cn = 1.5 for the L1-SVM model without feature selection (denoted as L1-SVM-0.15-1.5), which
uses similar number of features compared with the number of features used by the L1-SVM-FS-
0.06-5. Finally, we test the above models on the testing set. The PAUC graph of the testing
results are shown in Figure 6.3, and the model details and testing results are shown in Table 6.4.

From the testing results, we can conclude that:

1. Without the stable feature selection, the L1-SVM model that uses less features (more reg-
ularization) is possibly better than the one that uses much more features, since the more
regularized model is less likely to overfit the data.

2. Stable feature selection can improve the predictive performance of linear classifiers (L1-SVM
in this case). We can see that the PAUC metric of the L1-SVM model with feature selection
is better than the two models without feature selection (including a model that uses similar
number of features).
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Figure 6.3: Model testing results: L1-SVM with feature selection vs. without feature selection

Table 6.5: Testing results of Random Forest and XGBoost

Model PAUC100 PAUC300 AUC
Random Forest 5.22× 10−5 1.76× 10−4 0.981

XGBoost 4.7× 10−5 1.66× 10−4 0.986

6.2.3 Random Forest vs. XGBoost

For training the Random Forest model, we down-sample the normal data in the training set
from 120 million rows to around 2.7 million rows and combine them with all the abnormal data
(769 rows) in the training set. In this experiment, we use the H2O Distributed Random Forest
implementation [14] to train the Random Forest model because of its better scalability and higher
efficiency. There are two main hyper-parameters that we need to tune, i.e. mtry (number of
features to consider on each node) and the sample rate per class (down-sample ratio per class
when growing each tree). Due to time limitations, we only tune the best mtry using all the other
default parameters in a grid from 5 to 40 (step size 5), and we chose the mtry = 25 according to
the evaluation metric PAUC300. Using this best mtry, we then fix the down-sampling ratio for
abnormal class when growing each tree to be 0.7, and tune the best down-sampling ratio (0.6)
for normal class. Using mtry = 25 and sample rate per class = (normal 0.6, abnormal 0.7), we
keep other parameters as default and grow 500 trees. Then we test this Random Forest model on
the testing set, and the performance (PAUC graph) is shown in Figure 6.4.

For training the XGBoost, we further down-sample the normal data in the training set from
120 million rows to around 1 million rows and combine them with all the abnormal data (769
rows) in the training set. There are many parameters in the XGBoost algorithm, including the
cost sensitive parameter scale pos weight that controls the relative weights between positive and
negative examples. However, tuning this model is not our main focus in this thesis due to time
limitations, thus we use all default parameters with nrounds = 1000 and early stopping rounds =
10 to avoid overfitting. We end up with a model consisting of 123 trees, then we test this XGBoost
model on the testing set, and the performance (PAUC graph) compared with the above Random
Forest model and the L1-SVM model with feature selection (L1-SVM-0.1-40) is shown in Figure
6.4. The PAUC and AUC values of the above RF and XGBoost model (on the testing set) are
shown in Table 6.5.

From this experiment, we can conclude that:
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Figure 6.4: Random Forest vs. XGBoost

1. Both tree-based ensemble models (i.e. Random Forest and XGBoost) achieve great predictive
performance on this real transaction dataset. However, as discussed in Section 5.1, these
tree-based ensemble models are relatively hard to interpret compared with a single decision
tree or linear classifier.

2. Both tree-based ensemble models (non-linear classifiers) outperform the L1-SVM model (lin-
ear classifier) significantly. The obtained Random Forest model is 60% better than the
L1-SVM-0.1-40 in terms of the PAUC100 metric.

3. In Table 6.5 we can observe that the RF model has higher PAUC100 and PAUC300 than the
XGBoost, but it has lower AUC than the XGBoost, which again confirm that the PAUC is
a suitable evaluation metric considering the low FPR requirement in reality.

We take the above Random Forest model as a representative of tree-based ensemble models to
compare with our proposed clustering-based ensemble approach in the following experiments.

6.3 Experimental Results of Clustering-based Ensemble Ap-
proach

In this section, we show the experimental results of our proposed approach, i.e. clustering-based
ensemble of local sparse linear classifiers. As shown in Chapter 5, our approach can be decomposed
into 6 components, i.e. clustering schemes, clustering algorithms, classification models, classifier
training schemes, classifier score pre-processing, and classifier combination schemes. Since there
are 6 different components and many different combinations in our ensemble approach, to make
it more clear for the comparisons of following experiments, we create and show the notations of
different choices for those components in Table 6.6. In this table, the clustering algorithms are
not shown since we choose and fix our clustering algorithm to be K-means as shown in the next
subsection.

In the following sections, firstly we show the experimental results about clustering on the
transaction dataset, which are then used in the following experiments. Secondly, we fix the classifier
training scheme to be CCOvA (Class Crossing One-vs-All) and the base classifiers to be L1-
SVM, and we compare the predictive performance of different component choices in our ensemble
approach (i.e. different clustering choices, different score pre-processing methods and different
classifier combination schemes). Thirdly, we compare the performance of the CCOvA classifier
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Table 6.6: Notations for different choices and components in the clustering-based ensemble ap-
proach

Components Choices Notations

Classifier training schemes

One-vs-All OvA
One-vs-One OvO

Direct Multi-Classifiers DMC
Class Crossing One-vs-All CCOvA

Clustering choices
Only clustering within abnormal class

i.e. KA = 3,KN = 1
K31

Clustering within abnormal and normal
class separately, i.e. KA = 3,KN = 2

K32

Classification Models
L1-SVM L1-SVM
L1-LR L1-LR

Score Pre-processing
No pre-processing #
Standardization SD
Platt’s Scaling PS

Classifier combination

Min rule MIN
Max rule MAX

Average rule (mean rule) AVG
Hard Combination with

or without Global
HC(G)

Hard-Soft combination with fuzzy
membership degree k

HSk

Soft Combination with fuzzy
membership degree k

SCk

training scheme with two common training schemes (i.e. OvA and OvO). Fourthly, we validate
the idea of this clustering-based ensemble approach by examining the effects of clustering and
classification separately, and we also show the main limitations of such approach. Finally, we
compare the predictive performance of our proposed clustering-based ensemble approach with
some state-of-art classification techniques (e.g. Random Forest and the simple Bagging of linear
classifiers), and we also analyze the interpretability of the obtained clustering-based ensemble
model.

6.3.1 Clustering

In this subsection, we first select a suitable clustering algorithm that can work well on the real
transaction dataset, then we apply this chosen algorithm to perform clustering within the abnormal
class and normal class separately. To select a suitable algorithm, we mix the abnormal and normal
data (keeping their class labels), apply a clustering algorithm on this mixed dataset and evaluate
the clustering results based on the external index ARI (Adjusted Rand Index) as discussed in
Section 5.4. A reasonably good clustering algorithm should be able to roughly separate the two
main classes of the mixed dataset, and we also have the class labels to use external index ARI,
although the main class labels are coarse.

First we randomly select 2300 normal transactions and combine them with all the 769 abnormal
transactions in the training set, then we perform K-means clustering with Euclidean distance, and
K-medoids (PAM - Partitioning Around Medoids in this case) with Manhattan distance on this
mixed dataset. We also choose different K (number of clusters) and calculate the adjusted Rand
index (external index using the main class labels) for different choices of K. The different ARI
values for K-means and K-medoids with different choices of K are shown in Figure 6.5. As we
can see in the figure, the ARI values of K-means (with Euclidean distance) are consistently higher
than that of K-medoids (with Manhattan distance). For both algorithms, the ARI index suggests
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Figure 6.5: ARI values for K-means and K-medoids with different choices of K

Table 6.7: K-means (K=7) clustering results on the mixed data

Clusters
1 2 3 4 5 6 7

Classes
0 237 19 744 641 14 36 616
1 62 153 25 84 221 137 87

K=7, so we can run both algorithms with K=7 on the mixed dataset, and we show the clustering
results of K-means (K=7) and K-medoids (K=7) in Table 6.7 and Table 6.8. As we can see in
the two tables, the K-means with K=7 is more capable of separating the two main classes apart,
and the K-means with K=7 suggests there are 3 clusters (2, 5 and 6) for the abnormal class. On
the other hand, the K-medoids can only get two clusters for the abnormal class (6 and 7), and
the other abnormal data are mixed with normal clusters. Hence, we conclude that K-means with
Euclidean distance is more suitable than K-medoids with Manhattan distance on this transaction
dataset.

Now we perform K-means clustering (with Euclidean distance) inside each main class separ-
ately. The training set (same as the one used for training L1-SVM models) has 769 abnormal
transactions and 10000 normal transactions. First, we perform K-means clustering within the
abnormal class, then within the normal class. As discussed in Section 5.4, we don’t have sub-type
labels for clustering inside each main class, so we can only rely on internal index such as the
average SI (silhouette index) and some other metrics such as the instance distribution and time
distribution of the clusters. Now for the 769 abnormal transactions in the training set, we run the

Table 6.8: K-medoids (K=7) clustering results on the mixed data

Clusters
1 2 3 4 5 6 7

Classes
0 547 636 534 332 239 8 11
1 20 151 102 136 61 133 166
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Table 6.9: Instance distribution and time distribution of K-means inside abnormal class when
K=2 and K=3

No. of instances Min time Max time Mean time SD time

K = 2
Cluster 1 185 20161010 20170131 20170104 27 days
Cluster 2 584 20161003 20170131 20161207 33 days

K = 3
Cluster 1 251 20161003 20170131 20161204 36 days
Cluster 2 334 20161005 20170127 20161212 29 days
Cluster 3 184 20161010 20170131 20170104 27 days

K-means with different K (number of clusters), and we show the SI values for different K in Figure
6.6. The SI values suggest to choose K=2, however, the obtained two clusters have quite imbal-

Figure 6.6: Average Silhouette index values for performing K-means with different choices of K
inside the abnormal class

anced instance distribution (cluster 1 has 185 instances and cluster 2 has 584 instances). Hence
we choose K=3, which results in three clusters that have more balanced numbers of instances and
more spread time distributions. The instance distribution and time distribution of the obtained
clusters when K=2 and K=3 are shown in Table 6.9. From the table, we can observe that K=3
is a better choice since the resulted clusters have more balanced number of instances, which is
beneficial to our ensemble approach at later stage.

So far we have performed K-means clustering (K=3) with Euclidean distance within the ab-
normal class, one may argue that the Euclidean distance is not that suitable for our transaction
dataset, whose features are considered as categorical. Hence, we also experiment with K-modes
(as shown in Section 5.4), which is designed for clustering categorical data. We apply K-modes
(with K=3) on the abnormal data, and we compare the clustering results of K-means and K-modes
in Table 6.10. As we can see in the table, the clustering results of K-means and K-modes only
differ by less than 10%. Hence, we only use K-means with Euclidean distance as our clustering
algorithm in the following experiments, and we have already chosen K = 3 for the abnormal class.
Some of the following experiments of our ensemble approach only require to cluster the abnormal
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Table 6.10: Clustering result comparison between K-means and K-modes, when K = 3

K-means
Cluster 1 Cluster 2 Cluster 3

K-modes
Cluster 1 245 7 2
Cluster 2 0 303 13
Cluster 3 6 24 169

class and keep the normal class as a whole, but some of them also require to cluster the normal
class. For clustering the normal data (10,000 normal transactions in the training set), we choose
K-means with K = 2 considering similar reasons as above. The clustering results of K=2 for the
normal class are shown in Table A.1 in Appendix.

Besides, as discussed in Chapter 5, the interpretability of the final ensemble model highly de-
pends on the interpretability of the obtained clusters. Hence, we also check the interpretability
of the clustering results (3 abnormal clusters) with the Rabobank domain experts, and one pos-
sible interpretation of those obtained 3 clusters is that each of them corresponds to one type of
transaction sources with their typical fraud patterns.

In summary, we choose K-means clustering with Euclidean distance as our clustering algorithm,
and we have perform K-means with K=3 for abnormal class (3 abnormal clusters) and K=2 for
normal class (2 normal clusters). Some of the following experiments only require the 3 abnormal
clusters and keep the normal class as a whole (denoted as K31), some of them require both of the 3
abnormal clusters and the 2 normal clusters (denoted as K32). The information (such as instance
memberships, cluster centers) of the above 3 abnormal clusters and/or 2 normal clusters are used
for the following classifier training in our ensemble approach.

6.3.2 Comparisons within the CCOvA scheme

In this subsection, we fix the classifier training scheme to be CCOvA (Class Crossing One-vs-
All) and the base classifiers to be L1-SVM model, and we compare the predictive performance of
different clustering choices (i.e. K31 or K32), different score pre-processing methods (SD or PS),
and different classifier combination schemes (HC, HSk and SCk). The meanings of the above
notations are shown in Table 6.6. Firstly we show the details of how we train the local classifiers
for K31 and K32, then we show the experimental results of the above different combinations.

Since we choose the classifier training scheme to be CCOvA, we need to train 4 classifiers (3
local, 1 global) for K31 and 5 classifiers (5 local) for K32. It is important to note that we do not use
the stable feature selection technique in this ensemble approach to train local classifiers, except
that we reuse the single global L1-SVM classifier with stable feature selection for convenience. For
K31, we train 3 L1-SVM classifiers for the three abnormal clusters (K31) by making each abnormal
cluster as positive and the whole normal class as negative, and 1 global L1-SVM classifier for the
whole abnormal class and normal class (we reuse the one trained in Section 6.2.2). For training
those 3 local classifiers separately, we also tune the parameters by 5-fold cross validation with
2 repetitions as in the previous experiments, the only difference is that we explicitly restrict the
number of original features used by each local classifier to be smaller than 200 (the average number
of used features is recorded when doing cross validations), which can make each local classifier
more sparse and regularized. To train the 5 local classifiers (K32) for the three abnormal clusters
and two normal clusters, we can reuse the previous 3 local classifiers and just need to add 2 more
additional local classifiers for the two normal clusters, since our CCOvA scheme is additive (as
shown in Section 5.6). For training the two additional classifiers, we use the same training process
as above by making each normal cluster as negative and the whole abnormal class as positive. The
model details of these 5 local classifiers and the single global classifier are shown in Table 6.11.

According to the classifier training scheme of CCOvA, the ensemble classifier for K31 is com-
posed of 3 local classifiers (corresponding to the 3 abnormal clusters) and the global classifier, and
the ensemble classifier for K32 is composed of the previous 3 local classifiers for the 3 abnormal
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Table 6.11: Model details of the 5 local classifiers and the single global classifier

Training scheme
(positive vs. negative)

No. of one-hot
encode features

No. of original
features

Global all abnormal vs. all normal 429 210
Local 1 abnormal 1 vs. all normal 297 164
Local 2 abnormal 2 vs. all normal 308 189
Local 3 abnormal 3 vs. all normal 118 102
Local 4 all abnormal vs. normal 1 436 246
Local 5 all abnormal vs. normal 2 165 131

K31 Local 1, 2, 3 & Global 743 310
K32 Local 1, 2, 3, 4, 5 751 331

Table 6.12: Top 10 combinations with highest predictive performance

Combinations
PAUC100

(×10−5)
PAUC300

(×10−5)
AUC

K31 PS SC 3 5.16 17.29 0.983
K32 PS SC 3 5.15 17.29 0.983
K31 PS SC 2 5.15 17.27 0.982
K31 PS HS 3 5.14 17.32 0.983
K32 PS SC 2 5.14 17.29 0.982
K31 PS HS 2 5.13 17.29 0.983
K32 PS HS 2 5.1 17.28 0.98
K32 PS HS 3 5.1 17.27 0.981
K32 PS AVG 5.09 17.26 0.981
K31 PS MAX 5.08 17.15 0.979

clusters and the 2 local classifiers for the 2 normal clusters. The number of features used by the
K31 and K32 is the number of features in the union of the contained classifiers, e.g. the features
used by K31 are the union of features used by Local 1, 2, 3 and the global classifier.

We fix the classifier training scheme to be CCOvA and the base classifiers to be L1-SVM
models, and we test different combinations of the other ensemble components, i.e. 2 possibilities
for clustering choices (K31 and K32), 3 possibilities for score pre-processing (#, SD, PS), and 8
possibilities for classifier combination methods (MIN, MAX, AVG, HC, HS2, HS3, SC2 and SC3),
which result in 2 × 3 × 8 = 48 combinations. For the score pre-processing, we aggregate all the
transactions (around 280 abnormal and 28 million normal transactions) in the last 3 weeks of the
training set, we apply the classifiers on this aggregated sample and calculate the mean value and
standard deviation for the SD method, and we also fit the Platt’s scaling (in essence, a logistic
regression of the labels against the scores) on this sample. Then the calculated mean, standard
deviation and logistic regression parameters are used for pre-processing the classifier scores when
testing. For the classifier combination methods, we experiment with two fuzzy membership degrees
(2 and 3), so there are two possibilities for each of the HS and SC. The testing results of all these
48 possibilities are shown in Table A.2 in Appendix. The top 10 combinations with the highest
performance (in terms of PAUC100) are shown in Table 6.12. As we can see in the table, the
top 10 combinations are all using PS (Platt’s scaling) as score pre-processing method, and the
top 8 combinations are all based on distance information (compared with the last 2 combinations
that use simple combination rules). Furthermore, the best combination is PS (Platt’s scaling) and
SC (soft combination) with fuzzy membership degree 3. In terms of the best combination, the
performance results of K31 and K32 are similar to each other.

To compare different possibilities within each component, we fix each choice in each component
and calculate the average performance (PAUC100) by varying choices in other components, and
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Table 6.13: Average performance for different choices in different components

Components Choices
Average PAUC100

(×10−5)
Clustering

choices
K31 4.38
K32 3.93

Score
pre-processing

# 3.89
SD 3.91
PS 4.67

Classifier
Combinations

MIN 1.89
MAX 4.02
AVG 4.44
HC 4.52

HS
4.5

(with PS: 5.11)

SC
4.68

(with PS: 5.15)

Fuzzy degree
2 4.55
3 4.62

the average performances for different possibilities are shown in Table 6.13. From the table, we
can see that the predictive performance (PAUC100) of K31 is higher than K32 on average, which
may due to the fact that the classifier training scheme of K31 includes the global classifier, and
the K32 does not (it includes all five local classifiers). Furthermore, the clustering results of the 2
normal clusters may hinder the predictive performance since the cluster instances of the 2 normal
clusters are a bit unbalanced (one normal cluster has around 6500 instances, and another has
around 3500 instances). However, the best combinations of K31 and K32, i.e. K31 PS SC 3 and
K32 PS SC 3, have very similar performance. Furthermore, from the average performance table,
we can also conclude that the simple standardization method (SD) is just a bit better than no
score pre-processing (#), and the score pre-processing by PS (Platt’s scaling) can significantly
improve the ensemble performance. And we can also see that the classifier combination methods
that are based on distance information have higher performance than the simple combination
rules, and the SC (soft combination) method has the highest performance. Different fuzzy degrees
can also affect the ensemble performance, higher fuzzy degrees can result in a crisper and less
fuzzier combination. On this dataset, the ensemble with higher fuzzy membership degree 3 has
higher performance.

The ensemble of K31 consists of 3 local classifiers and the global classifier (as shown in Table
6.11), so we also compare the performance of the best combination of K31 (K31 PS SC 3) and
each individual classifier that is contained in the ensemble, the PAUC graph of the comparison is
shown in Figure 6.7. As we can see in the figure, the predictive performance of the ensemble model
K31 PS SC 3 is significantly higher than all the individual classifiers (3 locals and 1 global). We
can also see that the performance of the local classifier 3 performs better than the global classifier
on the testing set, which is quite surprising and needs further investigations as follows. As shown in
the previous clustering experiment section, we perform K-means (K=3) within the 769 abnormal
transactions in the training set to get 3 abnormal clusters, which results in 251, 334 and 184
instances in the 3 clusters respectively (32%, 44%, 24%). On the other hand, we can define that
an abnormal transaction in the testing set belongs to one of the above 3 clusters if it has the
smallest distance to that cluster center, then there are 67, 107 and 159 abnormal transactions
in the testing set that belong to the above 3 clusters respectively (20%, 32% and 48%). The
proportion of instances in the cluster 3 is much higher in the testing set than in the training
set (24% in the training set and 48% in the testing set), which implies that the local classifier 3
benefits a lot from this proportion change and performs much better on the testing set, and the
global classifier becomes worse since it was trained to concentrate on the majority clusters (cluster
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Figure 6.7: Performance comparison between the ensemble model K31 PS SC 3 and each indi-
vidual classifier

1 and 2) in the training set. This proportion change also reflects the fact that such distribution
of abnormal sub-types can change over time and usually it is unknown in reality. Hence, our
clustering-based ensemble approach can overcome this difficulty by discovering clusters, training
local classifiers that are specialized in identifying certain obtained clusters, and combining the
local classifiers flexibly based on the distance information.

In summary, we fix the classifier training scheme to be CCOvA and the base classifiers to be
L1-SVM models, and we have compared the predictive performance of different choices in different
components (e.g. different score pre-processing methods). Our experiment results show that:

1. For clustering choices, there is no significant difference between the K31 and K32, so we only
use K31 (only clustering the abnormal class into 3 clusters and keep the normal class as a
whole) in the following experiments for simplicity.

2. For the score pre-processing methods, there is no significant difference between no score-
processing (just keep the original scores) and simple standardization. On the other hand,
the score pre-processing method PS (Platt’s scaling) can improve the performance of the
ensemble significantly, since the PS can not only convert the scores into same scales, but also
into same meanings as probability estimates. Furthermore, Platt’s scaling is also the most
suitable for SVM models, which are known to have sigmoid shapes in terms of probability
calibration.

3. For the classifier combination methods, the simple average rule can do fairly well, but the
combination methods that are based on distances, especially the SC (soft combination), can
further improve the ensemble performance.

4. For the fuzzy membership degrees, the fuzzy degree 3 has better performance on this trans-
action dataset (it prefers crisper and less fuzzier combinations).

In the following experiment sections, we take the best combination K31 PS SC 3 as the repres-
entative of our ensemble approach for the CCOvA scheme, and we compare it with other classifier
training schemes such as OvA and also the state-of-art classification techniques (such as Random
Forest) in the following experiments.
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6.3.3 Comparisons with other classifier training schemes

In the previous section, we focus on the comparisons of different component choices within the
CCOvA classifier training scheme. In this section, we compare the performance of CCOvA scheme
(K31 PS SC 3 as the representative) with two common classifier training schemes OvO (One-vs-
One) and OvA (One-vs-All) . We use L1-LR as base classification models in this section since the
outputs of each local logistic regression model are probabilities and do not require pre-processing
(e.g. probability calibration for L1-SVM in the above section). The training set and testing
set are exactly the same (except the fact that some additional training data were used for pre-
processing each local L1-SVM model in the above section), so that the performance comparisons
are reasonable.

For the OvO classifier training scheme, we ignore the individual classifiers whose positive and
negative examples are of the same main class since our final task is just binary classification of
the two main classes. Furthermore, we only consider the clustering choice K32 since the OvO for
K31 is almost the same as our proposed CCOvA (the only difference is that the CCOvA scheme
has 1 more global classifier). We train 6 local L1-LR classifiers for K32 by making each abnormal
cluster as positive and each normal cluster as negative. For tuning the parameters of each local
L1-LR classifier, we use two different evaluation metrics PAUC300 and AUC. For the classifier
combination rules, we use three different simple rules, i.e. AVG, MIN and MAX, to get the final
scores. Hence, we have 2× 3 = 6 different combinations for OvO with K32. The testing results of
those different combinations in the OvO training scheme are shown in Table 6.14.

For the OvA classifier training scheme, we consider the two clustering choices (i.e. K31 and
K32 that are obtained in the clustering section), so we train 4 local L1-LR classifiers for K31 and
5 local L1-LR classifiers for K32 respectively (each cluster acts as positive examples once and
all the other clusters act as negative examples). To tune the parameters (Cp and Cn) for each
local L1-LR classifier, the evaluation metrics PAUC300 and AUC are not suitable anymore since
the training examples of the same class (abnormal or normal) can be both positive and negative,
which means that a FP (in the sense of false cluster prediction) of a local classifier in this OvA
training scheme can be actually TP in the sense of the original main class prediction. In fact, the
experiment results also show very bad predictive performance when using the PAUC or AUC for
tuning the local classifiers separately in OvA scheme. Hence, we take the binary classification task
into consideration when tuning each local classifier, i.e. when testing on the cross validation fold,
we first scale the probabilities from each local classifier such that they sum up to 1 after divided
by their sum (p̂i = pi∑

pi
), then we take the sum of the probabilities corresponding to the abnormal

local classifiers (the ones that use abnormal clusters as positive examples) as the final scores, and
we evaluate the final scores by the main class labels and get the PAUC300 metric. For simplicity,
we restrict the cost sensitive weights of all local classifiers corresponding to the abnormal clusters
to be the same (Cp = CA1

= CA2
= CA3

and also the weights of all the normal clusters to be the
same (Cn = CN1

= CN2
), then we tune the parameters Cp and Cn according to the above way.

For consistency, the classifier combination rule is the same as above (scale the probabilities from
the local classifiers such that they sum up to 1, then take the sum of the probabilities from the
local classifiers that use each of the 3 abnormal clusters as positive examples). We denote this
rule as “scale sum” rule, and the testing results of the OvA scheme are shown in Table 6.14. The
model details (such as number of used features) of the above OvO and OvA models are shown in
Table 6.15.

Comparing the testing results of the models trained by OvO and OvA schemes with the models
trained by our proposed CCOvA scheme (as shown in Section 6.3.2), we can conclude that:

1. The models trained by the CCOvA have much higher predictive performance than the models
trained by the OvO and OvA schemes (when only using simple combination rules such as
AVG). The main disadvantage of OvA scheme is that it differs from our final task, i.e. binary
classification, since the positive and negative examples of this scheme contain instances of the
same main class (e.g. A2 and A3 are negative when A1 is positive). As for the OvO scheme,
each local classifier is only concerned with part of the abnormal examples and part of the
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Table 6.14: Testing results of the OvO scheme and OvA scheme

Classifier
Training
Scheme

Clustering
Choice

Tuning
Evaluation

Metric

Classifier
Combination

Rules

PAUC100

(×10−5)
PAUC300

(×10−5)
PAUC

OvO K32 PAUC300 MIN 2.15 9.55 0.881
OvO K32 PAUC300 MAX 1.73 6.51 0.882
OvO K32 PAUC300 AVG 2.18 8.78 0.946
OvO K32 AUC MIN 0.407 2.45 0.912
OvO K32 AUC MAX 1.01 4.65 0.911
OvO K32 AUC AVG 1.20 5.93 0.963

OvA K31
Scale sum
PAUC300

Scale sum 2.60 10.0 0.981

OvA K32
Scale sum
PAUC300

Scale sum 1.29 7.06 0.979

Table 6.15: Model details of the OvO scheme and the OvA scheme

Models
No. of used one-hot

encoded features
No. of used original

features
OvO K32 PAUC300 2505 464

OvO K32 AUC 1003 413
OvA K31 Scale sum 1816 677
OvA K32 Scale sum 3922 478

normal examples, the scores from the local classifiers are not guaranteed to be in the same
scale although they have the same meanings as probabilities when using logistic regression
as base models, thus the simple combination rules such as AVG may not work well. The
common classifier combination rule Majority Voting can solve this problem by making each
local classifier only output a vote, but we do not consider Majority Voting in our case since
we use PAUC as performance evaluation metric and the majority voting cannot produce
continuous output when the number of classifiers is small.

2. The models trained by the CCOvA are much easier to interpret than the models trained
by the OvO and OvA schemes. As we can see in Table 6.11 and Table 6.15, the models
trained by the CCOvA scheme use less number of original features (300+ compared with
400+) and one-hot features (700+ compared with at least 1000). Furthermore, the OvO
scheme needs to train relatively large number of local classifiers (KA ×KN ), and each local
classifier of the OvO scheme only involve part of the abnormal transactions and part of the
normal transactions, which is harder to interpret compared with the CCOvA scheme. As for
the OvA, it is even harder to interpret compared with the CCOvA scheme since the positive
and negative examples of each local classifier can be in the same main class (i.e. each local
classifier is not just identifying the abnormal from the normal transactions, but also the sub-
types of the abnormal transactions). In contrast, the CCOvA scheme can guarantee that
each local classifier can be interpreted as specialized in identifying certain obtained clusters
from the other whole main class, although the interpretability of the final ensemble model
still highly depends on the interpretability of the obtained clusters.

In summary, we have shown that the models trained by the CCOvA scheme (using distance-
based combination rules) have higher predictive performance and better interpretability than the
models trained by the common OvO and OvA schemes (using simple combination rules).
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6.3.4 Validation of the clustering-based ensemble idea

In this section, we validate the idea of this clustering-based ensemble approach by examining the
effects of clustering and classification respectively. More specifically, since this ensemble approach
is a combination of both clustering and classification (training local classifiers based on the clus-
tering results), one may argue that the final ensemble model has good performance merely because
it is an ensemble of several classifiers (but not due to the improvement by clustering), one may
also argue that the final ensemble model has good performance merely due to a good clustering
(but not due to the local classifiers trained on the clusters). Hence, firstly we examine the effects
of clustering by removing the clustering results (so the only difference is that we replace the ob-
tained clusters with random clusters) and comparing the final classification performance. We also
examine the limitations of such clustering-based ensemble approach (i.e. its high dependency on
the clustering results). Then we examine the effects of classification by removing all the classifiers
(so we assign the labels of new instances to their closest cluster centers) and comparing the final
classification performance.

Effects of clustering in this ensemble approach

To examine the effects of clustering, we train two groups of ensemble models and evaluate their
performance (PAUC100) on the testing set:

• For the first group of ensemble models (with the effects of clustering), we choose “clustering
inside each main class separately” as clustering scheme and only perform clustering within
the abnormal class (keep the normal class as a whole), we choose K-means (with different
choices of K) as clustering algorithm, CCOvA as classifier training scheme, L1-SVM as
base classification model, PS as score pre-processing method, and SC (soft combination) as
classifier combination scheme.

• For the second group of ensemble models (without the effects of clustering), the only differ-
ence compared with the first group is that we put abnormal instances randomly (without
replacement) in the clusters that are generated in the first group, so the size of each random
cluster in the second group is the same as the cluster size in the first group. For example,
in the first group if we choose K = 3 and generate 3 abnormal clusters with 50, 30 and 60
instances respectively, then in the second group we generate 3 random clusters that also have
50, 30 and 60 abnormal instances respectively. And all the other steps (such as calculating
the cluster centers, combining the classifiers based on distances) are exactly the same.

We denote the models of the first group (with the effects of clustering) as Kx1 where x is the choice
of K (number of clusters) when performing K-means within the abnormal class and 1 means that
we keep the normal class as a whole. And we denote the models of the second group (without the
effects of clustering) as Rx1 where R means random and x is the number of random clusters. The
classification performance of these two groups of models (with different values of x) are shown in
Figure 6.8.

As we can see in the figure, the predictive performance of the clustering group is significantly
higher than the random group, which validates that the clustering indeed significantly improves
the performance of the final ensemble model and it is necessary in the clustering-based ensemble
approach. We can also see that the predictive performance of the random group (ensemble models
with random clusters) is just a bit higher than the single global linear L1-SVM model, which is as
expected because each individual classifier is trained on a random abnormal cluster and the final
ensemble model is similar to a Bagging ensemble. We also compare our approach with a simple
Bagging ensemble of linear classifiers in the next section (Figure 6.9).

Besides, we can also see that the predictive performance of the clustering group varies quite
a lot with different x values (number of K-means clusters in the abnormal class), although all
choices of x are consistently higher than the random group and the single global classifier. Hence,
the main limitation of such clustering-based ensemble approach is that the predictive performance
and interpretability of the final ensemble model highly depends on the “quality” of the clustering
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Figure 6.8: Performance comparison between ensemble models with clustering and without clus-
tering (random clusters)

results, which is not easy to evaluate in practice. As discussed in Section 6.3.1, we evaluate
and choose the number of abnormal clusters as 3 considering the following metrics: the average
Silhouette index (as shown in Figure 6.6) at K=3 is higher than K = 4 and K = 5, the time
distribution of the obtained clusters when K = 3 is widely and evenly spread, and the instance
distribution of the obtained clusters when K = 3 is more balanced than K = 2. We can also see
that the shape of the predictive performance of final ensemble model when 3 ≤ K ≤ 5 (as shown
in Figure 6.8) is similar to the shape of the average Silhouette index (as shown in Figure 6.6),
which implies the final ensemble model’s dependency on the clustering results, although we do not
continue the experiments for larger K due to time limitations.

In practice, such limitation can be overcome by evaluating the above three metrics (internal
index, time distribution and instance distribution) and the interpretability of obtained clusters.
Furthermore, we can also try different clustering settings and choose the one whose final ensemble
model has a good balance between predictive performance and interpretability. The above steps
usually require human effort (e.g. domain experts to check if the clusters make sense) and they
are not like some off-the-shelf algorithms (e.g. Random Forest) that can “click and run”, but
the clustering-based ensemble approach can offer the users a possibility to gain more knowledge
about the data by clustering and improve the predictive performance by an ensemble of linear
classifiers based on the obtained clustering results. If the obtained clusters have meaningful and
practical interpretations (e.g. each cluster may correspond to one type of abnormal transactions),
the local classifiers in the final ensemble model can also have good interpretability because each
local classifier corresponds to one obtained cluster in the CCOvA training scheme.

Effects of classification in this ensemble approach

To examine the effects of classification, we simply examine the case of K31, where we have 3
abnormal clusters and keep the normal class as a whole. By removing the effects of classification,
we mean that we do not build local classifiers on the obtained clusters, but instead use the
clustering results directly for classification, i.e. we predict the label of a new instance directly
based on its distances to the 3 abnormal cluster centers and the normal class center. We consider
two prediction rules and examine their TPR and FPR:
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• For a less strict prediction rule, we may predict a new instance to be abnormal if its smallest
distance to all the 3 abnormal cluster centers is smaller than its distance to the normal
class center (i.e. it is closer to one of the 3 abnormal clusters than the normal class). This
classification rule (totally based on the cluster distance information) yields TPR = 90% and
FPR = 20%, which severely violates the requirement of FPR ≤ 100 per 1 million (0.01%)
defined by the bank.

• For a stricter prediction rule, we may predict a new instance to be abnormal if its largest
distance to all the 3 abnormal cluster centers is smaller than its distance to the normal
class center (i.e. it is closer to all of the 3 abnormal clusters than the normal class). This
classification rule yields TPR = 6% and FPR = 160 per 1 million, which also severely violates
the requirement of TPR > 50% and FPR < 100 per 1 million.

Hence, we conclude that only directly using the clustering results (distances to different cluster
centers) for classification has bad predictive performance, and we should build local classifiers
based on the clustering results for more fine-grained classification.

Summary of validation and limitation

In summary, we can conclude that:

1. Both clustering and classification (local classifiers) are necessary in our clustering-based
ensemble approach, and removing any one of them significantly decreases the performance
of the final ensemble model.

2. The main limitation of the clustering-based ensemble approach is that both predictive per-
formance and interpretability of the final ensemble model have high dependency on the
clustering results. Although we can overcome this limitation by evaluating the obtained
clusters (as discussed in Section 6.3.1) and trying different clustering settings to choose the
one whose final ensemble model has good performance and interpretability, it still requires
much more human efforts and interventions than other off-the-shelf algorithms such as Ran-
dom Forest.

6.3.5 Comparisons with state-of-art classification techniques

In this section, firstly we compare the predictive performance (PAUC100 values) of the models
trained by our clustering-based ensemble approach (K31 PS SC 3 as a representative) and the
state-of-art classification techniques (Random Forest as a representative). For more reasonable
comparisons, we also compare the above 2 models with a single global linear classifier and a
Bagging ensemble of linear classifiers. Then we analyze the interpretability of the clustering-
based ensemble approach, e.g. the number of used features, and the feature structure of each local
classifier.

Predictive performance

For the predictive performance, the PAUC testing results of the Random Forest model, the single
global L1-SVM model with feature selection, the Bagging of 20 L1-SVM classifiers (without feature
selection), and the clustering-based ensemble model (K31 PS SC 3) are shown in Figure 6.9. For
the Bagging of 20 L1-SVM classifiers (without FS), we randomly create 20 bootstrapped samples
of the same size as the original model training set (i.e. 10769 instances) and train L1-SVM models
on those samples (all using the same parameters Cp = 0.01 and Cn = 0.3, which are tuned by CV
on a single classifier), then we combine those 20 individual classifiers by simply taking the average
of their scores. The PAUC values and number of used features of the above models are shown in
Table 6.16.

As we can see in the figure and table, the clustering-based ensemble model (K31 PS SC 3)
achieves predictive performance (PAUC100 = 5.16 × 10−5) as good as the Random Forest model
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Figure 6.9: PAUC comparison between the Random Forest, single global L1-SVM, simple Bagging
of 20 L1-SVM classifiers, and clustering-based ensemble approach

Table 6.16: PAUC values and model details of Random Forest, global L1-SVM, simple Bagging,
and the clustering-based ensemble model

Models
PAUC100

(×10−5)
PAUC300

(×10−4)
AUC

No. of used one-hot
encoded features

No. of used original
features

Random Forest 5.22 1.76 0.981 # 542
Global L1-SVM 3.75 1.35 0.983 429 210
Simple Bagging 3.61 1.36 0.983 399 248
Clustering-based

Ensemble
5.16 1.73 0.983 743 310

(5.22 × 10−5) on this transaction dataset. Our ensemble model can be viewed as a significant
improvement of the single global L1-SVM model, since the base model and training set of our
ensemble model is exactly the same as the single global L1-SVM model. Besides, we can also see
that the clustering-based ensemble model significantly outperforms the simple Bagging of 20 L1-
SVM linear classifiers with average rule. The simple Bagging model has a bit lower performance
compared with the single global model, which may be due to the facts that we fix the cost sensitive
parameters for all individual classifiers but the imbalanced ratios for different samples are different.

We can see from the PAUC figure that the clustering-based ensemble approach theoretically
can achieve TPR = 0.56 and FPR = 50 per 1 million. Since there are around 1 million normal
transactions and 10 abnormal transactions every day, the clustering-based ensemble model can
identify 5 out of the 10 abnormal transactions (56%) while only making 50 false positives every
day on average. All the above performance results are based on the testing set (in a whole month),
now we can select a classification threshold for Random Forest and the clustering-based ensemble
model respectively and perform a daily testing (aggregate transactions on each day) as follows.

As discussed in Section 3.3.5, we aggregate all the transactions in the last 3 weeks of the
training set, evaluate the two models on the aggregated sample, and calculate the top 5 × 10−5

(50 per 1 million) scores as the model thresholds. The calculated threshold for Random Forest is
0.06416, and the threshold for the clustering-based ensemble model (K31 PS SC 3) is 0.01447. We
remove the days that do not contain any abnormal transactions (otherwise the TPR is undefined),
which ends up with 26 days of aggregated transactions in the testing set. Then we apply the
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two models with the thresholds on the daily transactions and calculate the (FPR, TPR) pair for
each day, and we show the daily testing results of both models in Figure 6.10. In the figure, the

Figure 6.10: Daily testing results of the K31 ensemble model and Random Forest model

type of points represents the type of models (the points for Random Forest are triangles and the
points for K31 ensemble model are circles), the size of points represents the number of abnormal
transactions on that day (the results are more reliable if there are more abnormal transactions on
one day), and the color of points represents the number of days (a darker point means that day
is closer to the time span of the training set, and a lighter point means that day is further from
the training set). As we can see in the figure, for both models the darker points locate in the
upper part and the lighter points locate in the bottom part of the figure, which means that the
performance of both models degrade gradually by time and reflects the reality that there are new
and unseen types of frauds. We can also see that both models satisfy the low FPR requirement
and the K31 ensemble model tends to produce even less FPs. We also calculate the (FPR, TPR)
pair for both models using their thresholds on the whole month dataset, the Random Forest model
has the performance (FPR = 50 per 1 million, TPR = 0.544), and the K31 ensemble model has
the performance (FPR = 44 per 1 million, TPR = 0.550). The K31 ensemble model performs
even better than the RF model when choosing their thresholds based on the requirement of FPR
≈ 50 per 1 million.

Interpretability

The above experiment results are concerned with the predictive performance, and now we analyze
the interpretability of the clustering-based ensemble approach (we take the above K31 ensemble
model as a representative). The first simple metric of interpretability that we can use is the
number of used features. As we can see in Table 6.16, the Random Forest model uses 542 features
while the K31 ensemble model (comprised of 3 local and 1 global linear classifiers) only uses
310 (original) features. Hence, the K31 ensemble model is easier to interpret in terms of the
number of used features. However, the number of used features is just one single metric that
cannot completely reflect the interpretability of models (it remains an open question to define and

Fraud Detection in Bank Transactions 65



CHAPTER 6. EXPERIMENT

measure interpretability).
We also consider the model structure of the ensemble method, which is hard to quantify. Both

the Random Forest and the clustering-based ensemble are ensemble methods. The Random Forest
is a tree-based bagging model, although a single decision tree is very easy to interpret, there are
500 trees in the above Random Forest model and each tree has depth 20 and 337 leaves on average.
As discussed in Section 5.1, the model structure of Random Forest is not easy to interpret because
of the randomness introduced into the model. Although we can calculate some feature importance
indexes, such as the average Gini index reduction for each feature, the exact behavior and impact
of each feature are not clear due to the complex interactions (lots of deep trees in the Random
Forest model) between the features.

On the other hand, the clustering-based ensemble model only involves a relatively small number
of sparse linear classifiers, for example, the above K31 ensemble model consists of only 4 individual
linear classifiers. Firstly, each individual classifier contained in the clustering-based ensemble ap-
proach is easy to interpret especially when we use the one-hot encoding for the categorical features,
i.e. the feature weights of each feature bin value (category) are the influences on the classification
scores if that feature bin value is present. Positive feature weights have positive influence on the
scores (making the transaction more likely to be abnormal) and the negative feature weights have
negative influence (making the transaction less likely to be abnormal). The absolute values of the
feature weights can be viewed as the magnitude of the effects. Furthermore, we use sparse linear
classifiers by L1-regularization as the base models for the clustering-based ensemble approach, i.e.
the number of features being used in the sparse linear classifier is relatively small compared with
the number of input features. Hence, each individual linear classifier contained in the clustering-
based ensemble approach is easy to interpret since the influence of each feature (among a relatively
small number of used features) is explicit and fixed. Secondly, although the final ensemble model
(i.e. the K31 ensemble model) is not linear anymore since it involves a weighted sum based on the
instance’s Euclidean distances to different cluster centers in the feature space, it is still easy to
interpret considering the following reasons:

1. As we can see in Table 6.11, each comprised local classifier (Local 1, 2, and 3) in the K31
ensemble model is sparse (using less than 200 original features).

2. As we can see in the following Figure 6.11, the top features (we measure the importance of
features in linear classifiers by the absolute values of the feature weights) of the three local
linear classifiers are almost non-overlapping. Hence, each local classifier is doing their own
job, i.e. each of them is specialized in identifying a certain obtained abnormal cluster.

3. The interpretation of each local linear classifier can also be linked to the interpretation of
the corresponding obtained cluster, since each classifier is trained on each cluster and the
other whole main class according to the CCOvA scheme. As discussed in Section 6.3.1,
one possible interpretation of the obtained 3 abnormal clusters by the Rabobank domain
experts is that each abnormal cluster corresponds to one type of transaction sources with
their typical fraud patterns.

4. The combination (weighted sum) of local classifiers based on the instance’s distances to
different cluster centers can be interpreted as giving different levels of trust to the local
classifiers based on distance information.

Now as we can see in Figure 6.11, we take the top 50 features with largest absolute weights
from each of the 3 local classifiers, and we present them in 3 different bar charts. There are 50
features (bars) in each figure, the bars are sorted by the feature importance of the corresponding
classifier, and the length of the bars of specific colors represent the importance of that feature
in the corresponding classifier. We can see that most of the top features of each local classifier
are almost non-overlapping with each other, even if there are some top features overlapping, the
overlapping features that are important in one local classifier are less important in other local
classifiers. Hence, each local classifier can be seen as doing their own jobs, and we can interpret
their specializations by the top features of each local classifier. Furthermore, according to the
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(a) Local classifier 1

(b) Local classifier 2

(c) Local classifier 3

Figure 6.11: Top 50 features of the 3 local classifiers
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CCOvA scheme, the practical meanings or specializations of those local classifiers can also be
linked to the abnormal clusters obtained in the clustering section. Hence, we conclude that the
final ensemble model of the clustering-based ensemble approach is still relatively easy to interpret
even if it is not linear anymore in the feature space.

In summary, we conclude that:

• For predictive performance: we compare our proposed clustering-based ensemble model
(K31) with the state-of-art Random Forest, the single global L1-SVM model, and the simple
Bagging ensemble of 20 L1-SVM classifiers on this transaction dataset. The clustering-
based ensemble model has predictive performance as good as the Random Forest on this
transaction dataset and both of them satisfy the TPR and FPR requirement defined in the
research problem. The clustering-based ensemble model also significantly outperforms the
single global L1-SVM model and the simple Bagging ensemble of linear classifiers.

• Besides testing on the one-month testing set, we also test the clustering-based ensemble
model and the Random Forest model on daily basis by choosing classification thresholds.
The daily testing results show that both models gradually degrade by time.

• For interpretability: we compare the number of used features and model structure of the
clustering-based ensemble model (K31) and the Random Forest model. We show that each
local classifier of the K31 ensemble model is linear and sparse, and the top features of the
obtained 3 local classifiers almost do not overlap with each other. According to the CCOvA
scheme, the interpretation of the local classifiers can be linked to the obtained clusters, and
one possible interpretation of the 3 obtained abnormal clusters by the Rabobank domain
experts is that each abnormal cluster corresponds to one type of transaction sources with
their typical fraud patterns. Furthermore, the “Soft Combination” (weighted sum) of local
classifiers based on the instance’s distances to different cluster centers can be interpreted
as giving different levels of trust to the local experts. Hence, we conclude that the final
ensemble model (K31) is still relatively easy to interpret.

6.4 Conclusion of Experiments

From the experiments of the state-of-art classification techniques, we can conclude that:

1. PAUC is more reasonable than the whole AUC as the model evaluation metric considering
the realistic requirement of low FPR.

2. L1-SVM performs better than L1-LR on this transaction dataset.

3. The stable feature selection technique based on sampling and averaging the feature vectors
can improve the predictive performance of linear classifiers.

4. The two tree-based non-linear ensemble models Random Forest and XGBoost achieve great
performance on this transaction dataset, although they are not easy to interpret (compared
with a single decision tree).

5. The single linear classifier L1-SVM is easy to interpret, but its predictive performance is not
good enough compared with the Random Forest model.

From the experiments of the clustering-based ensemble approach, we can conclude that:

1. Clustering experiments:

• We evaluate the K-means algorithm with Euclidean distance and K-medoids algorithm
with Manhattan distance on mixed dataset using the external index ARI, and the clus-
tering results show that the K-means works better than K-medoids on this transaction
dataset.
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• We perform K-means clustering within the abnormal class and normal class separately.
We choose K=3 for abnormal class and K=2 for normal class considering the internal
index Silhouette index, cluster instance distribution and time distribution.

• The clustering results of K-modes with Hamming distance are almost the same as K-
means with Euclidean distance, hence we use K-means in the following experiments.

• One possible interpretation of the obtained 3 abnormal clusters by the Rabobank do-
main experts is that each abnormal cluster corresponds to one type of transaction
sources with their typical fraud patterns.

2. Comparisons within the CCOvA scheme:

• There is no significant difference between the two clustering choices K31 and K32.

• The Platt’s scaling as the score pre-processing method can significantly improve the
performance of the ensemble model when the base models are L1-SVM classifiers.

• The classifier combination method SC (weighted sum) based on the instance’s distances
to different cluster centers has the highest performance in this ensemble approach.

3. The CCOvA classifier training scheme outperforms the other two common schemes (OvO
and OvA) in terms of predictive performance and interpretability when only simple rules
are used for the two common schemes.

4. Validations and limitations:

• We validate that both clustering and classification (local classifiers) are necessary in our
clustering-based ensemble approach, and removing any one of them will significantly
decrease the performance of the final ensemble model.

• The main limitation of the clustering-based ensemble approach is that both predictive
performance and interpretability of the final ensemble model have high dependency
on the clustering results. Although we can overcome this limitation by evaluating the
obtained clusters (as discussed in Section 6.3.1) and trying different clustering settings
to choose the one whose final ensemble model has good performance and interpretability,
it still requires much more human efforts and interventions than other off-the-shelf
algorithms such as Random Forest.

5. Comparisons with the state-of-art classification techniques:

• The clustering-based ensemble model (K31) achieves similar predictive performance
(PAUC100 = 5.16 × 10−5) as the Random Forest (PAUC100 = 5.22 × 10−5) on this
transaction dataset.

• By choosing the ensemble classification threshold 0.01447, the clustering-based ensemble
model (K31) gets FPR = 44 per 1 million and TPR = 0.55 on the one-month testing
set, which has satisfied the TPR and FPR requirement in the research problem. In
contrast, the Random Forest model gets FPR = 50 per 1 million and TPR = 0.544.

• The daily testing results of the K31 ensemble model and Random Forest model show
that both models gradually degrade by time, hence require periodic updates to keep up
with the unseen types of abnormal transactions.

• The clustering-based ensemble model (K31) uses less features (310 original features)
than the Random Forest (542 features). Each local classifier in the K31 ensemble is
linear and sparse, and most of their top features do not overlap with each other, which
means that they are doing their own jobs. Furthermore, according to the CCOvA
scheme, the interpretation of the local classifiers can be linked to the 3 obtained clusters
(see the above clustering conclusions). And the “Soft Combination” scheme can be
interpreted as giving different levels of trust to the local experts based on distance
information. Hence, we conclude that the clustering-based ensemble model (K31) is
still relatively easy to interpret.
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Conclusion

In this thesis, we aim to develop and apply classification techniques for fraud detection in bank
transactions. The research problem is formulated as a supervised binary classification problem
with specific challenges (i.e. large volumes of data, high dimensional, highly imbalanced, and
sub-classes may exist in the two main classes) and model requirements (i.e. output continuous
confidence scores, low FPR, and easy to interpret).

In the following two sections, firstly we conclude our contributions in terms of academic and
business values. Then we discuss the limitations and future work.

7.1 Contributions

In this section, firstly we conclude our academic contributions. Then we conclude our contributions
in terms of business values.

7.1.1 Academic contributions

In this thesis, we proposed a clustering-based ensemble of sparse linear classifiers such that the
final ensemble model has higher predictive performance than single linear classifiers for binary
classification problems where the two main classes may have well-separated sub-classes, and the
final ensemble model is also possibly easy to interpret, depending on the interpretability of the
obtained clusters.

We decomposed such idea into six components (i.e. clustering schemes, clustering algorithms,
base classification models, classifier training schemes, score pre-processing, and classifier combina-
tion schemes). The main contributions lie in the classifier training schemes and classifier combin-
ation schemes, where we proposed the CCOvA (Class Crossing One-vs-All) scheme for training
local linear classifiers on the obtained clusters and the Soft Combination (weighted sum) scheme
for combining the classification scores from local classifiers based on the instance’s distances to
different cluster centers. We showed that the CCOvA scheme has higher predictive performance
and interpretability than the other two common schemes (i.e. OvA and OvO) when combined with
the Soft Combination scheme.

According to the CCOvA (Class Crossing One-vs-All) scheme, the interpretations of the local
classifiers can be linked to the obtained clusters (i.e. each local classifier can be interpreted as spe-
cialized in identifying a certain obtained cluster). Hence, if the obtained clusters have meaningful
and practical interpretations (e.g. different sub-classes in the main class), the final ensemble model
is also easy to interpret since the Soft Combination scheme can be simply interpreted as giving
different levels of trust to the local specialized classifiers.

We also validated the effects of clustering and classification (local classifiers) in the clustering-
based ensemble approach. Furthermore, we examined the limitations of this approach and we
concluded that the main limitation is that the predictive performance and interpretability of the
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final ensemble model have high dependency on the clustering results. Although we also proposed
several ways to overcome this limitation (e.g. trying different clustering settings, evaluating the
obtained clusters by several metrics), such approach still requires more human efforts and inter-
ventions than other off-the-shelf classification algorithms such as Random Forest.

We compared the above clustering-based ensemble approach with several state-of-art classi-
fication techniques (e.g. Random Forest, simple Bagging ensemble of linear classifiers) on a real
transaction dataset provided by Rabobank. We showed that it significantly outperforms the simple
Bagging ensemble of linear classifiers, and it has similar predictive performance compared with
Random Forest on this transaction dataset.

However, we did not evaluate the proposed approach on other datasets with different charac-
teristics due to time limitations. Hence, some future work (e.g. evaluate the approach on a dataset
where the two main classes are compact and do not have well-separated sub-classes) need to be
done to further investigate the performance and behaviour of such approach in different situations.

7.1.2 Business values

We made the following contributions in terms of business values for Rabobank who provided the
real and anonymized transaction dataset:

• We identified and removed several artifact features that were later confirmed by the domain
experts in Rabobank. We also illustrated and validated that the PAUC as a model evaluation
metric is more suitable than the whole AUC when the model is required to have low FPR
in our case.

• We explored different state-of-art classification models with specific techniques to address
the above challenges and model requirements, e.g. down-sampling when growing each tree
in the Random Forest model to address the highly imbalanced challenge. Furthermore, the
features and weights of the single L1-SVM model (L1-SVM-FS-0.06-5 as shown in Section
6.2.2) were considered to be reasonable and useful by domain experts in Rabobank, i.e. the
signs and magnitudes of the feature weights correctly reflect their effects and importance in
fraud detection.

• We explored and applied different unsupervised clustering algorithms such as K-means and
K-modes on the transaction dataset. The generated 3 clusters of the abnormal data by
K-modes were easy to interpret (since each cluster in the K-modes algorithm is represented
by a center that consists of the most frequent categories of each feature). One possible
interpretation by the Rabobank domain experts of the above 3 clusters is that each cluster
corresponds to one type of transaction sources (e.g. Internet, mobile payment) with their
typical fraud patterns.

• We trained and tested the clustering-based ensemble model (K31 ensemble model as shown
in Section 6.3.5) on the real transaction dataset, it achieved PAUC100 = 5.16× 10−5 on the
one-month testing set. Using the chosen threshold 0.01447 (it was calculated by aiming at
FPR = 50 per 1 million), the ensemble model achieved FPR = 44 per 1 million and TPR =
0.550 on the one-month testing set, which satisfied the TPR and FPR requirements (TPR
> 0.5 and FPR < 100 per 1 million) defined by Rabobank.

• Besides testing on the one-month scale, we also performed model testing on daily basis (as
shown in Figure 6.10). The daily testing results showed that the FPR requirement was
satisfied not just on the monthly basis, but also on daily basis (i.e. the FPR on each day
was smaller than 100 per 1 million with no exception). Besides, the daily testing results
provided a rough estimation of how fast the model degrade by time, hence it also gave an
idea to choose a suitable model update timing.

• Besides predictive performance, we also showed that the K31 ensemble model was relatively
easy to interpret since each local classifier was linear and sparse, and the top features of each
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local classifier almost did not overlap with each other. According to the CCOvA scheme,
the interpretations of the local classifiers can be linked to the 3 obtained abnormal clusters
(shown in the above clustering results). Furthermore, the “Soft Combination” (weighted
sum) scheme can be interpreted as giving different levels of trust to the local classifiers
based on distance information.

7.2 Limitations & Future Work

We conclude the limitations and future work of this thesis as follows:

• We only evaluated the proposed clustering-based ensemble approach on the real transaction
dataset provided by Rabobank, so the performance comparison with other state-of-art classi-
fication techniques was only applicable on this transaction dataset. For future work, we can
evaluate the proposed approach on public datasets to have more reliable comparisons. And
some future work (e.g. evaluate the approach on a dataset where the two main classes are
compact and do not have well-separated sub-classes) need to be done to further investigate
the performance and behaviour of such ensemble approach in different situations.

• We only evaluated the models in a static training and testing manner. Although our dataset
splitting manner was based on time span (training on previous 4 months and testing on the
last month) to make the testing results more realistic and reliable, there are better evaluation
schemes such as prequential evaluation (test and retrain the new instances), which is more
realistic considering that we need to update the model periodically in reality. For future
work, we can evaluate the models using the prequential evaluation.

• We only provided a rough explanation of interpretability, since interpretability is rather
subjective, and it remains an open question to define and measure interpretability of machine
learning models. For future work, we can provide a running example to illustrate why the
obtained clustering-based ensemble model is easy to interpret.

• We only compared the CCOvA (Class Crossing One-vs-All) scheme with the other two
common schemes (i.e./ OvO and OvA) when the simple rules (such as average rules) were
used for combining classifiers. However, we did not compare with those schemes when the
most common classifier combination rule (i.e. voting) was used, since we used PAUC as
evaluation metric and our model was required to output (nearly) continuous scores (the
outputs of voting are discrete especially when the number of classifiers is small). For future
work, we can still compare with those two common schemes when voting is used, we can do
this by adjusting the voting threshold of each involved local classifier, and we should have
a set of (TPR, FPR) as outputs, then we can compare this sets of points with the partial
ROC curve of the model trained by the CCOvA scheme.
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Appendix

A.1 Definitions of ARI

The ARI (adjusted Rand index), proposed by [17], is an adjusted version of the originally pro-
posed Rand Index by [27]. Let I = {i1, i2, . . . , in} be the whole set of n data instances, X =
{X1, X2, . . . , Xl} and Y = {Y1, Y2, . . . , Yr} be two partitions of the I, so there are l clusters in X
and r clusters in Y . Let a be the number of pairs of instances that are in the same subset in X
and in the same subset in Y , let b be the number of pairs of instances that are in different subsets
in X and in different subsets in Y . The RI (Rand index) is defined as RI = a+b

(n
2)

, which means that

it measures the agreement between the two partitions. Now if the partition X is the ground-truth
label set, then this RI index can be used to measure how close the cluster Y is compared with the
ground-truth label set X. However, the expected value of the RI of two random partitions does
not equal to 0. Hence the ARI is defined as Index−ExpectedIndex

MaxIndex−ExpectedIndex such that the expected value

of ARI of two random partitions are 0. We refer to [17] for more detailed definitions of ARI (it
involves the contingency table).

A.2 Definitions of average Silhouette Index

The Silhouette Index was proposed by [28]. Given a dissimilarity measure d(x, y) (e.g. Euclidean
distance), a data partition of c clusters P = {P1, P2, . . . , Pc}, we define the average dissimilarity

of an instance i to a given cluster Pj as d(i, Pj) =

∑
j∈Pj

d(i,j)

|Pj | . Now we assume i is in cluster

Pk, and we define the average dissimilarity of instance i with all the other instances in the same
cluster Pk as a(i) = d(i, Pk). And we define the smallest average dissimilarity of i to any other
cluster (not Pk) as b(i) = minj 6=kd(i, Pj). The Silhouette Index for instance i is then defined as

s(i) = b(i)−a(i)
max{a(i),b(i)} . The a(i) measures the dissimilarity of i to its own cluster, and b(i) measures

the dissimilarity of i to its second best cluster, so a larger s(i) implies that such clustering is good
for the instance i. Hence, the average Silhouette Index defined as average(s(i)) measures how
tightly grouped all the data in each cluster are.

A.3 Figures and tables
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Figure A.1: An example of parameter tuning details for the L1-SVM model, sorted by PAUC300

Table A.1: Instance distribution and time distribution of K-means (K=2) within normal data

No. of instances Min time Max time Mean time SD time

K = 2
Cluster 1 6266 20161001 20170131 20161204 34 days
Cluster 2 3734 20161001 20170131 20161203 34 days
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Table A.2: Testing results for different combinations of ensemble components

Classifier
Schemes

Clustering
Choices

Score
Preprocess

Classifier
Combination

PAUC100

(×10−5)
PAUC300

(×10−5)
AUC

CCOvA

K31

# MIN 2.39 9.55 0.929
# MAX 4.62 16.53 0.981
# AVG 4.22 15.38 0.976
# HC 4.51 16.35 0.982
# HS 2 4.42 16.51 0.985
# HS 3 4.52 16.64 0.985
# SC 2 4.48 16.54 0.983
# SC 3 4.61 16.78 0.984
SD MIN 2.47 9.83 0.932
SD MAX 4.49 16.41 0.978
SD AVG 4.32 15.31 0.978
SD HC 4.29 16.04 0.982
SD HS 2 4.29 16.11 0.985
SD HS 3 4.34 16.27 0.985
SD SC 2 4.52 16.48 0.982
SD SC 3 4.59 16.79 0.983
PS MIN 2.41 10.01 0.941
PS MAX 5.08 17.15 0.979
PS AVG 5.06 17.21 0.98
PS HC 4.95 16.81 0.982
PS HS 2 5.13 17.29 0.983
PS HS 3 5.14 17.32 0.983
PS SC 2 5.15 17.27 0.982
PS SC 3 5.16 17.29 0.983

K32

# MIN 2.4 9.56 0.929
# MAX 0.47 2.55 0.904
# AVG 3.63 13.5 0.984
# HC 4.11 15.52 0.981
# HS 2 4.8 17.01 0.984
# HS 3 4.78 16.98 0.984
# SC 2 4.1 15.18 0.986
# SC 3 4.29 15.96 0.986
SD MIN 0.74 3.44 0.949
SD MAX 4.41 16.28 0.974
SD AVG 4.36 15.5 0.98
SD HC 4.3 16.05 0.977
SD HS 2 3.01 12.85 0.985
SD HS 3 3.3 13.78 0.985
SD SC 2 4.48 16.45 0.984
SD SC 3 4.49 16.63 0.985
PS MIN 0.96 4.6 0.973
PS MAX 5.06 17.12 0.979
PS AVG 5.09 17.26 0.981
PS HC 4.97 16.84 0.977
PS HS 2 5.1 17.28 0.98
PS HS 3 5.1 17.27 0.981
PS SC 2 5.14 17.29 0.982
PS SC 3 5.15 17.29 0.983
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