
 Eindhoven University of Technology

MASTER

Cryptanalysis of Simon et al.
cryptanalysis of lightweight symmetric ciphers

Lambooij, E.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/cc5df2e5-edfd-4cbe-b437-a0f3ad168791

Cryptanalysis of Simon et al.

Cryptanalysis of lightweight symmetric ciphers

E. Lambooij
Email: e.lambooij@student.tue.nl

Student-ID: 0721553

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computer Science and Engineering

Supervisors:
dr. Orr Dunkelman (University of Haifa)

prof.dr. Tanja Lange (TU/e)
msc. Rolf Pielage (Deloitte)

July 2017

Contents

1 Introduction 1
1.1 Related work . 4

2 Introduction to Cryptanalysis 4
2.1 Linear Toy Cipher: LTC . 8
2.2 Breaking the Toy Linear Cipher 11
2.3 Non-linear Toy Cipher: NTC . 12
2.4 The Combined Toy Cipher: CTC 13

3 Differential Cryptanalysis 14
3.1 Differential Characteristics of CTC 16
3.2 Key recovery . 19
3.3 Hardening the cipher against differential Cryptanalysis 21

4 Related Key differential cryptanalysis 22
4.1 Hardening CTC against Related Key differential attacks 22

5 Simon 23
5.1 Simon structure . 23

6 Distinguishing t-encryption 25
6.1 Background knowledge . 25

6.1.1 Permutations . 25
6.1.2 Distinguishing t-encryption 26
6.1.3 Equal cycle length distinguisher 27
6.1.4 Impossible cycle length distinguisher 28

6.2 Experimental verification on Simon32 30
6.3 Constant memory cycle length decomposition 30
6.4 Conclusion . 34

7 Rewriting Simon into ATC 34
7.1 Expansion layer . 35
7.2 S-box layer . 35
7.3 Permutation layer . 37

8 Related key differential attack on Simon 37
8.1 Key schedule Cycles . 37
8.2 Related Key attack Simon32/64 39

8.2.1 Other versions . 43
8.2.2 Extending the differential 43

8.3 Experimental results . 44
8.4 Observations . 44

8.5 Conclusion . 46

9 Discussion 46
9.1 Academic significance . 48

9.1.1 Distinguishing k-encryption 48
9.1.2 ATC . 49
9.1.3 Related Key differential Attack 50

9.2 Public significance . 50
9.3 Simon and the design of lightweight ciphers 51
9.4 Conclusion . 52

10 Appendices 60

A S-boxes for ATC 60

B Unit vectors for key differences generating cycles in the Si-
mon32 key schedule 60

C RoadRunneR 67

II

Abstract

Unlike most ciphers the lightweight symmetric cipher Simon did not
have a design rationale or any cryptanalysis when it was published. To
determine whether the cipher is safe to be used in real life a thorough
cryptanalysis is to be conducted. The cryptanalysis of ciphers has always
been a cornerstone in the design of new ciphers. This thesis consists of
three methods analysing the cryptographic strength of Simon. The first
method defines a generic distinguisher for k-encryption using the same
key with sub full-codebook complexity. The second method describes a
framework to transform Simon into an S-box based cipher. This reduces

the cost of computing a Difference Distribution Table from 22n to n · 216

4

where n denotes the word size used. The third method introduces a related
key differential attack covering 14 rounds and using 216 chosen plaintexts.
These results, although not breaking Simon, provide cryptanalysts with
new tools to work with and provide new directions into which researchers
can conduct their research.

III

Acknowledgements

IV

INTENTIONALLY LEFT BLANK

V

1 Introduction

Cryptogaphy has had a major influence in the technical innovation of the last
couple of decades. Many modern processes rely on the use of cryptography to
ensure confidentiality and integrity. These processes are protected by certain
assumptions made in the design of the cryptographic protocols.

Cryptographic protocols are built using standard building blocks, which
are called cryptographic primitives. Examples of these cryptographic building
blocks are: stream ciphers, block ciphers, cryptographic hashes and asymmetric
encryption/signatures/key exchange. Cryptographic protocols can be proven to
be strong, assuming the used cryptographic primitives are strong. Or in other
words, if the building blocks are cryptographically weak, then no strong cryp-
tographic protocols using them can exist.

One could say that researching cryptographic primitives is as important as
developing strong cryptographic protocols. This thesis focuses on finding weak
spots in cryptographic primitives, i.e. the cryptanalysis of cryptographic prim-
itives. It mainly focuses on the cryptanalysis of block ciphers. This thesis
mainly focuses on the Simon family of block ciphers by Beaulieu, Shors, Smith,
and Treatman-clark [3].

In contrast to asymmetric cryptographic primitives, symmetric cryptographic
primitives usually do not have an underlying mathematical hard problem. This
means that the cryptographic primitive cannot be proven computationally hard
by giving a reduction proof to a known hard problem. A reduction proof is
a proof that maps a certain mathematical problem onto another mathemati-
cal problem. By giving a reduction proof, one can prove that a mathematical
problem is at least as hard as another problem. In the case of cryptographic
primitives one would want to give a reduction proof to a random self reducible
hard problem, such as the discrete log problem, lattice problems such as the
nearest vector problem, or multivariate polynomial equation solving.

In protocols, cryptographic primitives are often modelled as a perfect version
of the primitives. To prove a security protocol a block cipher is often modelled
as a Perfect Random Permutation (PRP). A PRP is a bijective function that
maps an input onto an output, thus every input maps exactly one output and
every output is mapped to by exactly one input. Moreover a PRP is a random
mapping, which means that there exists no relation between in- and output. In
Figure 1 a graphical representation of a PRP is given.

Modelling a block cipher as a PRP is convenient for protocol designers, but
since a block cipher needs a concrete description it cannot be proven to be a
PRP. This implies that other techniques need to be used to assure the crypto-
graphic strength of a block cipher.
The cryptographic strength of a primitive is expressed as a security level. The

1

I4

I3

I2

I1

I0

O4

O3

O2

O1

O0

Figure 1: An instance of a PRP (Perfect Random Permutation) mapping 5
inputs to 5 outputs

unit of a security level is bits. A primitive with a security level of 80-bits means
that the amount of work needed to be done to break a cipher that is in the order
of 280 operations.
The most fundamental way to bound the security level of a block cipher is to
look at how much work it is to try out all different keys. This is called a brute
force search and generally speaking for block ciphers with a k-bits key the num-
ber of different keys is 2k. Thus the upper bound of the security level of a block
cipher using a k-bits key is k.
To find better attacks than a brute force search several techniques have been
proposed in the past, e.g. differential [4], linear [29] and algebraic cryptanaly-
sis [12] . One part of the cryptanalysis of a cipher is trying to carry out known
’attacks’ and observing if any of the attacks lower the security level of the cipher.
In this manner a cryptanalyst can prove an upper bound on the security level
of a cipher, but unlike with a PRP no lower bound of a cipher can be proven in
this way.

By the nature of the process, assessing the security level of a cipher costs a
significant amount of time. Another drawback is that the cryptographic strength
of a symmetric cipher can only be assessed against known attacks. This makes
it vital not only to cryptanalyse ciphers using known attacks, but to devise
new attacks as well and to communicate the results with the public. If new
attacks are not shared, a situation could occur where different researchers know
different attacks. This could lead to a situation where one group of researchers
has knowledge of an attack of which the other researchers (in most cases the
public) is not aware. Using this information the first group of researchers could
construct a cipher that is weak against the new attack and strong against all
publicly known attacks. The public, not aware of the existence of this attack,
will assume the cipher to be strong, since it survives all known attacks. This is
an undesirable situation.

2

The currently used block ciphers have all received lots of public crutiny. Of
all the major ciphers e.g. AES (Rijndael cipher) [14], Twofish [42], RC5 [40],
PRESENT [9], etc. the security bounds under the publicly known attacks have
been stable for a relatively long time. Standardised ciphers should be used for
most uses, but as technology advances, cryptography is deployed on a increas-
ingly varying set of devices. Not all devices, even today, possess the compu-
tational power, chip area, energy and/or RAM size to be able to handle the
conventional ciphers.

One of the technological advances that exposed the needs of more lightweight
block ciphers is the Internet of Things (IoT). The devices that exist in the IoT
’realm’ have to be small, cheap and energy efficient. However, these devices
should use cryptography to secure the communication. The security of the
communication gets even more important when considering that most of the
IoT devices communicate wirelessly with each other and on the internet. To
handle the new design criteria of this emerging technological field, the crypto-
graphic community has recently designed several lightweight block ciphers.

Two particularly interesting families of lightweight block ciphers are: Simon
and Speck. Both have been designed by the same team and have been pub-
lished in the same preprint by Beaulieu et al.[3]. Opposite to common scientific
convention the authors did not provide any design rationale or cryptanalysis of
their algorithms. This has led to lots of scrutiny by the cryptanalysis commu-
nity, nevertheless no full break of either Simon or Speck has been reported yet.

This research focusses on the cryptanalysis of the Simon family of block ci-
phers. A family of ciphers is a set of ciphers sharing one design using different
parameters. Simon deserves and receives more scrutiny by the academic commu-
nity due to its peculiar design. Speck uses a more standard ARX (Add-Rotate-
Xor) construction built onto a Feistel network. ARX uses modular addition as
the non-linear component, which has been used in several other (lightweight)
block ciphers (e.g. PRINCE [10], HIGHT [23], LEA [24], RC5 [40]). Unlike
Speck, Simon uses a less used and researched non-linear component, the logical
and. The main advantage of the construction used by Simon is that it is more
efficient to implement a logical and in hardware than a modular addition (due to
having to take care of the carry in modular addition which is quite expensive in
hardware). One advantage of using modular addition as the non-linear operator
instead of the logical and, is that modular addition diffuses unlike the logical and.

Organisation

This thesis consists of three main parts. The first part, starting at Section 2,
provides the background knowledge needed to understand the rest of the thesis.
This part also explains some basics of cryptanalysis and block cipher design and
describes differential (Section 3) and related key differential attacks (Section 4).

3

In Section 5 a brief overview of Simon is given.

The second part consists of novel work done for this thesis. In Section 6 I
research a distinguisher for k-encryptions with the same key. In Section 7 an
algorithm for transforming Simon into an S-box based algorithm is proposed.
Section 8 contains a related key differential attack.

The last part (Section 9) contains a discussion of the aforementioned sec-
tions. It mainly focusses on the public and academic significance of the research
conducted. The discussion also provides some insight in the way the research
for this thesis was done.

1.1 Related work

One of the first cryptanalysis papers on Simon was done by Abed, List, Lucks,
and Wenzel [1]. This research set a baseline for the papers to come. The 13
round differential characteristic introduced (for Simon32) in that paper is shown
to be optimal by an adaptation of Matsui’s algorithm [30] in [27]. In [44] the
researchers use Mouha et al.’s framework [33], especially the adaptation geared
towards bit oriented ciphers [44] is used to compute the maximum number of
active components using Mixed Integer Linear Programming. This is used to
find fixed and related key differential characteristics and differentials for var-
ious lightweight block ciphers including Simon. Nevertheless, no related key
differential characteristics are reported for Simon in this study. In [45] the au-
thors mainly focus on the cryptanalysis of the 32 and 48 bit versions of Simon
and find a 21 round integral distinguisher by experimental analysis for Simon32.

The work of Biryukov and Perrin [6] on hidden structures influenced signif-
icantly the direction of Section 7. While the paper by Patarin [38] on general
attacks on Feistel networks influenced the work on Section 6. Although slightly
different the authors in [32] find a similar result as in Section 6, while giving
a bound on the advantage of the attacker. The preprint by Nandi [34] greatly
simplifies the proof in comparison to [32]. In [1] a 14 round related key differen-
tial is proposed for Simon32. We found a characteristic with equal length, but
with nicer properties that are described in Section 8.

2 Introduction to Cryptanalysis

What is a better way learning cryptanalysis then diving straight into it? This
section describes some basic cryptanalysis and cryptography concepts. Using
this knowledge a very basic encryption scheme is described, which the reader
should be able to dissect and attack using the just acquired skills.

Everyone slightly interested in mathematics or computing science has heard
about the Ceasar Cipher or the Vigniere cipher. And although they both have

4

had their importance in the past, they are nowhere near the state of the art
cryptographic systems which are widely employed nowadays. Therefore, a bit
breaking with traditions, these cryptographic (toy) systems will not be described
in this thesis. What will be described is an easy to understand (slightly) crip-
pled block cipher with which the basic concepts of cryptographic systems and
their cryptanalysis are described.

As described earlier the cryptographic primitives can be divided in a couple
of basic concepts. The two main concepts for maintaining confidentiality are:
symmetric and asymmetric cryptography. This thesis focuses on symmetric
cryptography, therefore this introduction will be mainly focusing on symmetric
cryptography and its cryptanalysis.

Symmetric encryption can be viewed as a function

E : Fn2 × Fk2 → Fm2 ,

where n denotes the plain text size, k denotes the key size and m denotes
the cipher text size. This function transforms a plain text, which is a human
readable text, into a cipher text using a key.

Remark 1. In the literature in the field of cryptography as well as in this thesis
the plaintext is often denoted by p. The ciphertext and key material are often
denoted by c and κ respectively . Fn2 denotes the set of all n-bit words. Another
way to denote n-bit words would be {0, 1}n. The xor(⊕) between two elements
of Fn2 is the bitwise modular addition of the two elements. The logical and(·)
can be seen as the bitwise multiplication of the two elements.

For encryption to be useful a function to unravel the encryption is needed.
This function is named decryption. Symmetric decryption can be described as
the following function:

D : Fm2 × Fk2 → Fn2

such that:
D(E(p, κ), κ) = p for p ∈ Fn2 and κ ∈ Fk2 .

Following the Kerckhoffs’ principles [25] the only secret part of a cryptographic
system should be the key. A very simple ’unbreakable’ symmetric cipher, the
One Time Pad (OTP) only uses the xor operator. The encryption and decryp-
tion functions are the same and are defined by:

E(p, κ) = D(p, κ) = p⊕ κ.

It is straightforward to check if this is sound (i.e. decryption is the inverse of
encryption):

D(E(p, κ), κ) = ((p⊕ κ)⊕ κ) = p⊕ κ⊕ κ = p.

As Shannon described in 1949 the one time pad is information theoretically
secure, which means that no matter how much computing power is used, the

5

message cannot be deciphered without possession of the key [43]. Nevertheless
there are various problems in using OTP as a cipher. The first problem is that
the key has to be as long as the message. This shifts the problem of sending
the message in secrecy to sending the key in secrecy. Of course, this could be
overcome by for example burning a large chunk of random data onto a (or two)
cd-rom(s) and exchanging the cd-rom in person. Afterwards the two parties
can communicate using this data. This may be useful for low bandwidth high
risk/secrecy communication (such as the communication between the Kremlin
and the White House), but using such a cipher to encrypt your e.g. YouTube
video stream is unpractical and quite costly.
(it would be a funny first of april joke, ”Now introducing: OTP, the new stan-
dard. One key, One time, One DVD for all your communications”)

The second practical problem with OTP, as the name suggests, is that the
key may only be used once. Otherwise the whole secrecy breaks due to statistical
analysis.

Remark 2 (Reusing the key in OTP). Say we have two messages encrypted
using OTP c1 = m1 ⊕ κ and c2 = m2 ⊕ κ and assume we know that the
distribution of m1,m2 is not uniform (e.g. the english language), then we do
know the distribution of m1 ⊕m2. If we now xor the two ciphertexts we get:
c1 ⊕ c2 = m1 ⊕m2. Which makes it easier to break, since the probability that
two e’s overlap each other is higher than two q’s.

The third problem of OTP is that it is only information theoretically secure
when used with true random key. True random data is hard and expensive
to come by, you need specialised hardware to generate it and even then the
throughput of the random data is quite low. This leads to another scalability
problem.

To tackle the problems mentioned above, current ciphers do use a combi-
nation of two concepts, diffusion and confusion to reach a certain guarantee of
confidentiality [43]. These two concepts are used to hinder statistical analysis
of the cipher. Diffusion ensures that there are lots of dependencies between
’blocks’ in the cipher text and due to confusion these dependencies are hard to
analyse statistically. One of the side effects of using these concepts is that the
so called avalanche effect can be observed. This causes, given a change of one
part in the plain text, a change in all parts of the ciphertext with a uniform
probability.

Another concept which is employed by most contemporary ciphers is divid-
ing the amount of work into smaller chunks. So instead of one function that
performs all the work needing to be done to encrypt the plain text, designers
tend to use a smaller function that does a small amount of work and iterate
that function to ensure proper encryption. There are three reasons to do so, the
first reason is that designing and analysing a smaller function that is iterated
is often easier then designing a function that has to do all the work at once.
The second reason is that by using a round based scheme proper diffusion of the
key material is easier to accomplish. The third reason is that by reducing the

6

p f f ... f c

k1 k2 ... kr

Figure 2: A round based encryption function, with and r rounds and roundkeys
k1, k2, ..., kr .

number of rounds the analysis of the cipher is easier. By breaking these round
reduced versions in a certain way the strength of a cipher is measured.
There are roughly two round based schemes used in the contemporary cryp-
tographic designs: Substitution Permutation Networks (e.g. AES) and Feistel
networks (DES, Simon). In this thesis I will mostly focus on the Feistel net-
works, since Simon is a (traditional) Feistel network.

Definition 1 (Round based Cipher). Let f : Fn2 × Fk2 → Fn2 be the round
function, then the encryption function can be defined as (see Figure 2 for a
visual representation):

E(p, κ) = f ◦ f ◦ ... ◦ f(p, κ) = f(f(...f(p, κ), ...κ), κ)

Most of the time the amount of key material needed for the round keys is
larger than the amount of key material in the master key. To solve this problem
a key-schedule is designed that expands the key. Note that although the master
key is expanded the entropy of this expanded key is still equal to or less than
the entropy of the master key. The key schedule described here is not safe.

Feistel networks [28] have been used for symmetric cryptography for almost
four decades. One of the first (widely used) symmetric ciphers using a Feistel
network is DES [17]. Since then many ciphers have been designed using a (gen-
eralised) Feistel cipher. (One Feistel round is depicted in Figure 3)

Definition 2 (Feistel network cipher). A Feistel cipher with r rounds can be
described as follows: Let p = L0|R0 and let the internal state after the i-th
round be described by :

Li+1 = Ri ⊕ f(Li, ki)

Ri+1 = Li

The decryption of a Feistel cipher is computed by starting (Lr, Rr) and going
back to (L0, R0) by computing:

Li = Ri+1

Ri = Li+1 ⊕ f(Ri+1, ki)

7

Li Ri

f

ki

Li+1 Ri+1

Figure 3: General Feistel network round function

2.1 Linear Toy Cipher: LTC

To practise the just obtained knowledge a cipher using a Feistel cipher is de-
scribed and an analysis of its cryptographic strength is done. Note that since
this is an introduction into cryptanalysis the cipher described is far from perfect,
making it easy to break. Please do not see this cipher stated in this document
to be any form of approval of such a cipher and therefore please do not use it
other than as an attack target.

Remark 3 (Why not to use LTC, NTC or CTC). I especially designed LTC,
NTC and CTC such that the cryptanalysis would be near to trivial. Consider-
able effort has been made in choosing the constants, key schedule, and S-boxes
such that the ciphers seem strong at first sight, but can be easily broken by dif-
ferent techniques. Although the name bears resemblance to the cipher named
Toy Cipher by Courtois [13] this is merely a naming collision.
These ciphers are designed such that the reader understands Simon better as
that is the target of this thesis.

As defined in Definition 2 a Feistel cipher can be described by a function f
and a key schedule. The cipher defined in this section in and outputs 32-bits
blocks of data, uses a 64-bits key and uses 12 rounds to encrypt the data. First
the key schedule is defined:

Definition 3 (TLC Key schedule). Let master key K ∈ F64
2 then round key ki

is defined as:
ki = (K ≫ 16i) mod 216

This results in the following key schedule which is greatly influenced by the key

8

schedule used by RoadRunneR [2]:

K = A|B|C|D with A,B,C,D ∈ F16
2

k0 = A

k1 = B

k2 = C

k3 = D

k4 = A

...

k11 = D

The round function f is described by:

f(x, ki) = (x≪ 7)⊕ (x≪ 2)⊕ ki

For a visual representation of the first four rounds of the cipher see Figure 4.
The pseudocode of the cipher is:

Algorithm 1 TLC Encryption

roundkeys = [(K ≫ 16i) mod 216 for 0 ≤ i < 12]
L|R = plaintext
for 0 ≤ i < 12 do
L′ = L
L = R⊕ f(L,roundkeys[i])
R = L′

end for
ciphertext = L|R

Exercise 1. Try to write down the pseudo code for the decryption function of
TLC.

Remark 4 (Encoding). Most ciphers act on bit strings (actually there are
ciphers defined on integers which are described by Black and Rogaway [8]).
Writing down, and reading, these bit strings is quite tedious. This is solved
by encoding all raw in- and outputs in hexadecimal encoding. Not only is
hexadecimal encoding shorter than using bit or decimal encoding, it is also
easier to see structures since each character is encoded by exactly four bits.
Unless stated otherwise all keys, plaintexts and ciphertexts are encoded with
hexadecimal encoding (essentially all data in this thesis typefaced in a fixed
width font is encoded in hexadecimal encoding).

Using this encryption algorithm we get the following plaintext/ciphertext
pairs when encrypting with key 1234 5678 9012 3456: At a first glance no

9

L0 R0

≪ 2

≪ 7

⊕ ⊕ A

L1 R1

≪ 2

≪ 7

⊕ ⊕ B

L2 R2

≪ 2

≪ 7

⊕ ⊕ C

L3 R3

≪ 2

≪ 7

⊕ ⊕ D

L4 R4

Figure 4: First four rounds of TLC with K = A|B|C|D

10

plain text cipher text
0000 0000 3B5A 511B

0000 0001 5A52 514A

0000 0002 F94A 51B9

0000 0003 9842 51E8

0000 0004 BF7B 505F

0000 0005 DE73 500E

0000 0006 7D6B 50FD

0000 0007 1C63 50AC

0000 0008 3319 5393

0000 0009 5211 53C2

Table 1: 10 plaintext ciphertext pairs for the TLC with key: 1234 5678 9012

3456

obvious structure can be found in the ciphertexts, even when the plain text is
obviously structured. Can we now conclude that this a strong cipher? In the
next section the cipher is broken by what is called the linearisation attack.

2.2 Breaking the Toy Linear Cipher

As can be observed from the definition of TLC the cipher consists of only linear
operations.

Exercise 2. Verify that ≪ and ⊕ are both linear operations.

By carefully analysing the expansion of the internal state of the first couple
of rounds, it is easy to see that the key material can be separated from the
message.

L1 = (L0 ≪ 7) ⊕ (L0 ≪ 2) ⊕ R0 ⊕ k0

R1 = L0

L2 = ((L0 ≪ 7) ⊕ (L0 ≪ 2) ⊕ R0 ⊕ k0) ≪ 7) ⊕ ((L0 ≪ 7) ⊕ (L0 ≪ 2) ⊕ R0 ⊕ k0) ≪ 2) ⊕ R1 ⊕ k1

= (L0 ≪ 14) ⊕ (L0 ≪ 9) ⊕ (R0 ≪ 7) ⊕ (k0 ≪ 3) ⊕ (L0 ≪ 9) ⊕ (L0 ≪ 4) ⊕ (R0 ≪ 2) ⊕ (k0 ≪ 2) ⊕ L0 ⊕ k1

= ((L0 ≪ 14) ⊕ (R0 ≪ 7) ⊕ (L0 ≪ 4) ⊕ R0 ⊕ (L0 ≪ 2)) ⊕ ((k0 ≪ 7) ⊕ (k0 ≪ 2) ⊕ k1)

Note that in the last expression the part on the left only depends on the plain
text and the right part only depends on the key. This observation can be used
to break the cipher. The key contribution can be computed by encrypting 0

C = TLCencrypt(0, κ).

This constant C can now be used to encrypt and decrypt without knowing the
key by:

TLCencrypt(p, κ) = TLCencrypt(p, 0)⊕ C

and decryption:

TLCdecrypt(c, κ) = TLCdecrypt(c⊕ C, 0)

11

Note that for both encryption and decryption one does not need the key, but
one does need to obtain the encryption of one chosen plaintext (in this case 0)
for this attack to succeed.

This cipher is obviously broken due to it only consisting of linear components,
there are multiple other ways (which take advantage of the same weakness to
break this cipher). Nevertheless this attack is by far the easiest to understand
and implement. To avoid this weakness one needs to introduce some form of
non-linearity in the cipher. In the next section a cryptosystem is introduced
which does employ a non-linear component.

Exercise 3. Prove that LTC with 64 rounds is equal to the identity regardless
of the key used.

2.3 Non-linear Toy Cipher: NTC

To counteract the weaknesses of TLC this cipher contains a source of non-
linearity. One of the most used, analysed and understood sources of non-
linearity are Substitution-boxes (S-boxes). S-boxes are functions that substitute
one value for another. The S-box used in the design of this cipher is:

S = [0, 2, 3, A, 6, F, E, 1, 8, B, 9, C, 4, 5, 7, D]

This is a 4 × 4-bits S-box as its in-and output is 4 bits (e.g. S(5) = F). This
means that if we want to use S directly on a word in the cipher we need the
function S̄ : F16

2 → F16
2 . Let S̄ be defined by:

S̄(x) = S(x1)|S(x2)|S(x3)|S(x4),

for x = x1|x2|x3|x4.
Recall the Feistel network cipher of the previous section and recall that a

Feistel network cipher is defined by its key-schedule and its round function. This
cipher reuses the key-schedule of LTC see Definition 3. The round function f is
defined as:

f(x, ki) = S̄(x)⊕ ki
The function f applies S to every 4-bit nibble in the word and then xors the key
with the result. See Figure 5 for a visual representation of the round function.
The number of rounds in NTC is 12, which is the same as in LTC

The algorithm used in breaking the LTC does not work in this case since
the cipher is using a non-linear component to ’hide’ the key material. I.e. if we
write down for the i-th nibble x and k0 to kr, then what happens after r rounds
is:

S(S(...S(S(xi)⊕ (k0)i)...)⊕ (kr)i), for 1 ≤ i ≤ 4

Since S is non-linear the following inequality holds in general:

S(x⊕ y) 6= S(x)⊕ S(y)

12

S

S

S

S

⊕ k

Figure 5: Round function of NTC

Thus the key bits cannot be separated from the plaintext bits as in the linear
case.

One exploitable property of this cipher is that one nibble is only affected
by its own bits and the key material, (i.e. a change in one nibble of the plain
text will only affect the nibble with the same index in the cipher text). This
allows for an attack on the cipher by brute forcing all possible sub-keys for each
nibble. Each nibble only is affected by 4 bits of the round key at a time, thus
for each nibble we need to try at most 48 bits of key material, assuming random
round keys, (i.e. NTC has 12 rounds and since every nibble can be broken indi-
vidually, 4 bits of key material need to be brute forced per round). This basic
analysis assumes that there is no key schedule. Since we have 4 nibbles, this
would lead to an an attack using 250 computations. Note that this is smaller
than the original workload of 264 encryptions, but we can do better.

Recall that in the key schedule the number of key bits influencing each nibble
in the encryption path is 16. This results in a brute force attack with a total
of 218 partial encryptions (a number that most scientific calculators can do in
a matter of minutes/seconds).

2.4 The Combined Toy Cipher: CTC

As we have seen, the cipher with only linear components as well as the cipher
with only non-linear components can be easily broken. As Shannon already
noticed in 1949 we need both confusion and diffusion to have a cipher that is
cryptographically strong (we need more, but that is for a later section). The
linear layer that is used in the LTC provides diffusion, but the resulting func-
tion is easily analysed since all relations in the resulting ciphertext are linear.
On the other hand the non-linear cipher, NTC, had statistically hard to anal-
yse relations in the resulting cipher text. But since there was no diffusion and
therefore the bits only had local influence, the cipher was ’easily’ brute forced
(and due to the ’very interesting’ key-schedule it was even easier).

To solve the above problems we devise a new cipher combining a linear and a

13

non linear layer. For the analysis in this chapter we will use a (slightly) weaker
linear layer not to complicate things too much. This results in the following
round function used in our Feistel network.

f(x, κ) = S̄(x) ≫ 2⊕ κ
The key schedule used is the one used in the previous ciphers and the num-

ber of rounds is 12.

This cipher is not breakable with the techniques discussed until now. In the
next section a technique is proposed that can be used to break this cipher.

3 Differential Cryptanalysis

When Eli Biham and Adi Shamir discovered differential cryptanalysis [4] and
disclosed it to the public in 1990 the world was shocked. The discovery made it
possible to attack ciphers that researchers were not able to break before. DES,
the standard block cipher of that time was broken soon after by using differen-
tial cryptanalysis [5]. Differential cryptanalysis is still the powerful technique it
was almost four decades ago. It is used in many attacks against contemporary
ciphers. By using adaptations, the technique can manoeuvre itself through the
defences of the modern ciphers. Nevertheless, most of the currently used ciphers
do not see a full break by the use of differential cryptanalysis. Researchers at-
tack round reduced versions of the ciphers instead, therefore most attacks only
serve as a ’measure’ of the strength of a cipher and cannot be used in a practice.
As we have seen in the previous sections modern ciphers try to withstand at-
tacks by using diffusion and confusion. This makes it such that the statistical
relationship between the plaintext and ciphertext is hard to unravel and depen-
dent on all input bits of the function.
Recall the S-box used in the previous section:

S = [0, 2, 3, A, 6, F, E, 1, 8, B, 9, C, 4, 5, 7, D].

If the input to the S-box is uniformly distributed the output of this S-box is
uniformly distributed as well.
By analysing the difference of two inputs and the difference of the accompanying
outputs we can see that two different input differences can map to the same
output difference. Inputs 1, 2 have an input difference of 1⊕2 = 3 and an output
difference of S(1) ⊕ S(2) = 2 ⊕ 3 = 1. We can get the same output difference
if we take as inputs 3 and 9 (3 ⊕ 9 = A) which will result in: S(3) ⊕ S(9) =
A⊕B = 1. This shows that the mapping between input and output differences
is not bijective and this leads to a mapping whose outputs may not be uniformly
distributed when the inputs are chosen uniformly.

This property can be used to attack the S-box such that a relationship
between the input and output of the cipher can be found. To be able to easily
compute such a relationship a Difference Distribution Table (DDT) for this S-
box is computed. The DDT describes the probability of a differential transition

14

through the S-box. To compute the DDT every possible input pair of the S-
box is input and the number of different output differences for a certain input
difference are counted (see Algorithm 2).

Algorithm 2 Compute the DDT

Let S be the S-box to be analysed
Let DDT be a |S| × |S| dimensional array initialised to 0
for All possible input differences diff do

for All inputs i do
let outputDiff = S(i)⊕ S(i⊕ diff)
DDT[diff][outputDiff]++

end for
end for
return DDT

In the DDT the rows denote the input differences and the columns denote
the output differences coupled to the input difference. The row with index 2
defines how many times each output difference occurred when the input differ-
ence 2 was fed into the S-box. Note that every row in this DDT sums up to
16 = 24, since there are 16 different pairs of inputs that lead to a certain input
difference. As we can see in the DDT (Table 2) when the input difference is 5
the output difference is 4 with probability 6

16 . The differential uniformity of a S-
box is equal to the highest number in the DDT, except for the entry with input
0. Differential uniformity is used as a measure for how well the S-box performs
with respect to differential cryptanalysis, the higher the differential uniformity
the stronger the strongest possible attack is. The differential uniformity of the
S-box used in CTC is 10.
The most interesting (highest) entries of the DDT are marked in blue. In Sec-
tion 3.1 this non-uniformity is used to attack the cipher.
Note that if an input difference is 0, the output difference is always 0, since
having an input difference of 0 means that the two inputs are equal and thus
the outputs are equal.

Remark 5 (Bent functions and ’perfect’ S-boxes). The S-box in this section
has been designed such that the resulting DDT contains high entries. This way
finding a differential characteristic with high probability would become easier.
Of course in a real cipher one should construct the S-box in such a way that the
highest value in the DDT is as low as possible.
The question immediately arises if it would be possible to create an S-box such
that the DDT generated by the S-box would be uniform. This topic has been
studied by Nyberg [35] and many other after that. By using bent functions such
S-boxes can be designed, but they are not practical since the number of input
bits needs to be twice the number of output bits. In [36] Nyberg describes how
to control the linearity and differential uniformity of S-boxes.

15

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 2 2 0 2 0 0 0 4 2 0 0 0 0 2
2 0 2 0 4 0 0 0 2 6 0 0 0 0 0 2 0
3 0 4 4 0 2 0 0 2 0 2 2 0 0 0 0 0
4 0 2 0 0 0 0 2 0 0 0 0 2 2 4 4 0
5 0 0 2 0 6 0 0 0 0 0 0 2 0 2 0 4
6 0 0 0 2 0 4 2 0 0 2 0 0 0 2 2 2
7 0 2 0 0 0 2 0 0 2 0 0 0 10 0 0 0
8 0 0 2 0 0 0 2 0 2 4 4 0 2 0 0 0
9 0 0 0 6 0 0 2 0 0 0 2 4 0 0 0 2
A 0 4 2 0 2 0 0 0 0 2 2 2 0 0 2 0
B 0 0 2 0 0 2 0 0 4 0 0 6 2 0 0 0
C 0 0 0 0 6 0 0 6 0 0 0 0 0 2 2 0
D 0 0 2 0 0 2 2 2 2 0 0 0 0 4 2 0
E 0 0 0 2 0 0 2 4 0 0 2 0 0 0 0 6
F 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0

Table 2: The DDT of the S-box. The values denote the number of times the
output difference (column) occurred given a certain input difference (row).

3.1 Differential Characteristics of CTC

Looking at the DDT of our S-box (Table 2) a couple of high numbers can be
discovered. In this particular instance they should be easy to find, since they
are coloured red and blue in the table. Using these numbers so called differential
characteristics can be constructed, which can be seen as a couple of differential
transitions leading into each other. One such characteristic, although a pretty
bad one, is given in Figure 6.

In the differential setting it is meaningful to overload S to be able to handle
difference input, this is called a differential transition and is associated with
a probability that the transition occurs. For example the differential transi-
tion S(∆0009) = ∆0003 with probability 6

16 and the differential transition
S(∆0000) = ∆0000 with probability one. What happens in this character-
istic is that in the first round we have S(∆0007) = ∆000C with a prob-
ability of 10

16 . Then the linear function, right rotation by two, transforms
∆000C ≫ 2 = ∆0003. This is xored with the right part and the key dif-
ference (which are both 0) and swapped. This results in the left and right parts
in the second round to be: 0003 and 0007. Note that the difference behaves
well under rotation.

In Figure 6 the characteristic is shown. As can be seen the probability this
characteristic occurs is 10

16 ·
2
16 ·

2
16 ≈ 2−6.678 which is almost 1 in a hundred

times. In the next part of this section a characteristic with better probability
and better properties is created.

16

S ≫ 2 ⊕

0007 0000
10
16

0007 000C 0003

S ≫ 2 ⊕

0003 0007
2
16

0003 0004 0001

S ≫ 2 ⊕

0006 0003
2
16

0006 000D 4003

4000 00 06

Figure 6: An example of a (bad) differential characteristic for CTC. In this
figure the ∆ for denoting differences is omitted for clarity reasons.

17

S ≫ 2 ⊕

0002 0002
6
16

0002 0008 0002

S ≫ 2 ⊕

0000 0002
1

0000 0000 0000

S ≫ 2 ⊕

0002 0000
6
16

0002 0008 0002

0002 0002

Figure 7: The differential characteristic used for the key recovery attack on
CTC. In this figure the ∆ for denoting differences is omitted for clarity reasons.

Due to the relative simplicity of this cipher a differential characteristic can
be found which has at most 1 active S-box in each transition. This characteristic
is (see Figure 7 for a visual representation of this characteristic):

0002 0002
6
16−−→ 0000 0002

1−→ 0002 0000
6
16−−→ 0002 0002

Note that the input and output of this characteristic is the same. This kind
of characteristic is called an iterative characteristic. Due to the in- and output
of the characteristic we can chain them together, hence the name.
The probability of this characteristic occurring is:

6

16
· 1 · 6

16
=

(
3

8

)2

≈ 2−2.83

There are 232 different pairs of inputs giving the difference 0002 0002. Each
pair follows the characteristic with probability 2−2.83. Which means that after
one iteration of the characteristic there are 232 · 2−2.83 ≈ 229.17 pairs that have
the correct output difference. After two iterations there will be approximately

18

232 · 2−2.83 · 2−2.83 ≈ 226.34 pairs left with the right output. The number of
iterations of the characteristic we can cover until the expected number of correct
pairs left is > 1 is 11.

Since the iterative characteristic spans 3 rounds, this gives us a differential
characteristic of 33 rounds with a probability of:

(2−2.83)11 = 2−31.13 > 2−32

This probability gives us an expected number of correct pairs of approximately
20.87 ≈ 1.87 which is larger than 1 and therefore can be used as a distinguisher.
An attentive reader would however have figured out that the cipher in question
only uses twelve rounds. To cover twelve rounds only four iterations of the
characteristic are needed which leads to the differential probability:

(2−2.83)4 = 2−11.32

To get an expected number of correct pairs of 1 for the 12 rounds characteristic
we need approximately 212 = 2556 chosen plaintext ciphertext pairs.

3.2 Key recovery

Having a distinguisher for a cipher is nice and in most cases one should not use
a cipher for which a distinguisher exists. Nevertheless, having a key recovery
attack for a cipher is even nicer.

In this part a key recovery attack against CTC using the distinguisher from
Section 3.1 is described.

The key recovery attack can be divided into three parts:

Pair collection In the pair collection phase a set of plain text pairs with the
given input difference and their accompanying cipher text pairs
are collected.

Pair filtering In the pair filtering phase all pairs with the wrong output dif-
ference are filtered out.

Key guessing In the key guessing phase some bits of the key are guessed and
verified by using the differential characteristic.

The first two phases are quite straightforward, so this section elaborates on
the last phase, key guessing. The main idea in the key guessing phase is to
guess the part of the key influencing the active S-box and then checking if the
differential characteristic after the S-box is still in accordance to the differential
characteristic.

Note that in the case of CTC the last key is added after the S-box. The
contribution of the last round key disappears in the difference, thus in the case

19

of CTC it is necessary to roll back two rounds. A table with keys to be guessed
is initialised to 0 and for every correct pair the pair is partially decrypted. If
the difference after the partial decryption is in accordance to the differential
characteristic the counter for the guessed key is increased by one. The key with
the highest counter is the most probable key.

In the following section the Key Guessing phase for CTC is designed. Let
the ciphertext pairs be denoted as:

(C,C ′) = (L12|R12, L
′
12|R′12) = (L12|L11, L

′
12|L′11)

and let the round keys for round 11 and 12 be denoted as: k11 and k12.
Recall that the differential characteristic only affects the four least significant
bits of each block which will only activate one S-box. This means that only the
four least significant bits of the round keys can be determined.

Let K12 and K11 be the sets of possible round keys for round 11 and 12 with
only the four least significant bits set. Note that each set contains 16 elements.
Now for every combination of possible round keys rk11 ∈ K11 and rk12 ∈ K12

verify for every ciphertext plaintext pair L10, L11 and L′10, L
′
11, where F (x) =

S̄(x) ≫ 2:

L11 = F (R12)⊕ L12 ⊕ k12
L′11 = F (R′12)⊕ L′12 ⊕ k12
L10 = F (R11)⊕ L11 ⊕ k11
L′10 = F (R′11)⊕ L′11 ⊕ k11

and then verify that the following two equations hold:

0000 = L11 ⊕ L′11
0002 = L10 ⊕ L′10

For every pair for which the above two equations hold increase the counter of
the key by 1. After analysing all pairs and keys the key with the highest counter
is the most probable key.
Once the round keys for round 11 and 12 have been determined the same tactic
can be used to determine the round keys for round 9 and 10. Due to the key
schedule, we have at this point recovered the four least significant bits of each
block in the master key.
To recover the remaining bits we could either brute force the remainder, which
would cost 248 encryptions. Or we could take advantage of the fact that the
following variations of the given differential characteristic exist:

0002 0002

0020 0020

0200 0200

2000 2000

20

Using these characteristics the full key recovery is straightforward.
So how much does this attack cost? To have enough ciphertext pairs to pull
of the attack (and we are erring on the safe side here) we will need 215 chosen
plain text pairs, which will net an expected 12 correct pairs. Then if choosing
to go for brute force attack the total cost would be 215 plaintext pairs and 248

computation time.
If the other characteristics are used the number of chosen plaintext pairs would
be 4 · 215 = 217 while reducing the computation time to 4 · 28 · 4 · 12 which is
negligible (for every correct pair (12) try all possible round keys (28) for four
rounds and do this four times).

3.3 Hardening the cipher against differential Cryptanaly-
sis

There are a couple of ways to harden CTC against differential cryptanalysis.
One is to use an S-box with a more uniform DDT, reducing the differential
uniformity of the S-box. This would reduce the probabilities of the differential
transitions succeeding, e.g., by using the AES S-box or a smaller S-box with
a similar differential uniformity. Exchanging the S-box does, in this case, not
negatively impact the cipher’s complexity as long as the S-box is substituted
with a similar sized S-box. Note that an S-box could be engineered in such a
way that it has specific properties that increase performance.

Increasing the number of rounds is another way of hardening the cipher
against differential cryptanalysis. The differential characteristic found is ef-
fective for up to 34 rounds, thus increasing the number of rounds to 60 should
protect the cipher against this particular characteristic and probably more char-
acteristics. However, increasing the number of rounds does negatively impact
the performance of the cipher.

The last way to harden the cipher against differential cryptanalysis is to
make the linear part in the round function more robust. This facilitates to in-
creasing the minimal number of active S-boxes. Combined with the differential
uniformity this is often given as a argument for an upper bound of the number
of rounds attackable with differential cryptanalysis. This is not always true due
to a cipher not being a Markov process. This is especially the case in lightweight
ciphers.

Exercise 4. Try to find a differential attack for the Feistel cipher with 12 rounds
and the round function, being:

F (x, κ) = (S(x) ≪ 7)⊕ (x≪ 2)

21

round difference key difference transitional prob.
1 0002 0002 0000 6

16
2 0000 0002 0002 1
3 0000 0000 0000 1
4 0000 0000 0000 1
5 0000 0000 0000 1
6 0000 0000 0002 1
7 0002 0000 0000 6

16
8 0002 0002 0000 6

16

9 0000 0000 0000 1
10 0002 0000 0002 6

16
11 0000 0002 0000 1
12 0002 0000 0000 6

16

output 0002 0002

Table 3: The Related Key differential characteristic for CTC

4 Related Key differential cryptanalysis

Can we do better then a differential attack? In the differential attack a differ-
ence is introduced into the plaintext pairs. In certain circumstances a difference
could also be introduced in the key. This can be used to gain some extra attack
surface. One such circumstance would be that an oracle allows the attacker to
flip bits of the key and rerun the attacks. Whether this extra attack surface
leads to a better attack is mostly dependent on the key schedule used.

To analyse how CTC behaves in the related key setting the starting point
is the differential characteristic described in Section 3.1. This characteristic
worked with a key difference of 0000 0000 0000 0000. To enhance this char-
acteristic one could for example try to negate the 0002 difference in the second
round by assuring that the key difference in the second round is 0002. By
employing the key difference 0000 0002 0000 0000 the characteristic as in Ta-
ble 3 is possible: The characteristic has a probability of (6

16)5 ≈ 2−7.08, which
is larger than the iterated characteristic described in the previous section. This
characteristic would allow us to mount the same key recovery attack as in the
previous section but with, only 211 chosen plaintext ciphertext pairs.

4.1 Hardening CTC against Related Key differential at-
tacks

Note that by hardening the cipher against differential attacks in the fixed key
model it is often also hardened in the related key model. However, this does not
provide full protection against related key differential attacks. To fully harden
the cipher against related key differential attacks, the key schedule should be
updated such that the round keys cannot be easily manipulated and no cycles

22

occur in the key schedule.

To accomplish this, several methods are employed, from adding round con-
stants to reusing the round function for the key schedule as in Simeck [46]. The
key schedule of Simon is mainly linear, which makes it easy to reason about the
smallest cycles possible, see Section 8.1 for an analysis.

Exercise 5. try attacking CTC with the following key schedule:

K = k0|k1|k2|k3
ki+4 = ki ≪ 1⊕ ki+3 ≪ 2

Please note that this scheme is weak on purpose, so even with all the hard-
ening explained and applied this should never be used in any system.

5 Simon

Simon [3] is a family of lightweight block ciphers defined on a variety of block and
key sizes. Simon is geared towards hardware implementations and is therefore
constructed from hardware friendly components. It uses rotations for diffusion
and bitwise logical and as the non-linear component.

Simon has met some controversy by the cryptographic community due to its
non-standard design and the lack of publicly available cryptanalysis or design
rationale by its authors. This has led to a great amount of cryptanalysis papers
targeting Simon over the last four years.

This amount of cryptanalysis has become an argument used by the authors
and standardisation committees to standardise Simon. Until now [mid May
2017] all but the 128-bit versions of Simon have been retracted from standard-
isation, i.e. in ISO JCT1/SC27, and there exists no reason to believe the re-
maining version will be standardised by NIST in the near future. Nevertheless,
the industry is looking for a lightweight alternative either for the advantages or
to have a next best thing. This should be an incentive for the cryptographic
community and standardisation organisations to find a suitable new standard.
In case no suitable lightweight cipher is brought forward the industry will use
the most advertised and most cryptanalysed lightweight cipher, which at this
moment in time would be Simon.

5.1 Simon structure

As stated before Simon is a family of lightweight block ciphers. The different
versions and their parameters are described in Table 4. Simon is a Feistel

23

Block size 2n Key size mn Word size n Key words m Rounds
32 64 16 4 32
48 72 24 3 36

96 4 36
64 96 32 3 42

128 4 44
96 96 48 2 52

144 3 54
128 128 64 2 68

192 3 69
256 4 72

Table 4: Simon versions

xi yi

≪ 8

≪ 1

≪ 2
ki

xi+1 yi+1

Figure 8: Simon round function

network with two branches using the following round function:

f(x, ki) = (x≪ 2)⊕ (x≪ 1 and x≪ 8)⊕ ki

where x is a word half the block size and ki is the round key for round i (see
Figure 8 for a visual representation of Simon’s round function).

Simon uses four different key schedules depending on the number of key
words (m). In this thesis mainly the keyschedule for m = 4 is analysed. The
key schedule with four key words can be described by:

ki+4 = c⊕ (z)i ⊕ ki ⊕ (ki+1 ≫ 1)⊕ (ki+1 ≫ 4)

Where c = −3 = 2n − 3 and z is a version dependent constant to make a
cryptographic separation between different versions of Simon. See [3] for the
definition of z and the two other key schedules.

24

6 Distinguishing t-encryption

Assume the following scenario: Alice wants to send Bob a secret message. She
does this by encrypting the message with a secret key which only she and Bob
know. They however do not trust the cipher they are using and decide to encrypt
the message twice with the same key. Does this tactic (apart from obviously
wasting cycles) harm Alice and Bob?

It is clear that this tactic does not significantly increase security, but can it
impact the security negatively? In this section the negative impact of such a
tactic is shown in the general case. Then experimental results of double encryp-
tion on Simon32 [3] are discussed.

6.1 Background knowledge

6.1.1 Permutations

The main operation discussed in this section is t-encryption, which means en-
crypting t times with the same key iteratively. To be able to reason about
what happens when performing t-encryption, let us first have a look at happens
when a double encryption (t = 2) is performed. Recall that encryption can be
seen as a random permutation. Let P be the set of all permutations and let
C : Fn2 ×Fk2 → Fn2 denote encryption of an n-bit word with a k bit key. Now C
can be seen as a generator for a subset of P, such that Cκ(p) = C(p, κ) is the
encryption under one key and Cκ ∈ P for every κ ∈ Fk2 .
A permutation can be written down as a cycle decomposition of the permuta-
tion. The following permutation:(

1 2 3 4 5 6 7 8 9 10
3 2 8 9 4 6 10 5 1 7

)
which maps the element 1 to 3, 3 to 8, 8 to 5, etc. can be written down as:

(1, 3, 8, 5, 4, 9)(2)(6)(7, 10)

As can be seen in the cycle representation of the permutation, the permutation
has 4 cycles of which two are two fixed points (6 and 2) which are considered
cycles of length one.
The squaring of a permutation P , which is equal to applying the permutation
twice, is denoted as P 2. Squaring only affects the cycles with an even number
of elements. This can be easily seen when the above permutation is squared,
which leads to the following permutation:(

1 2 3 4 5 6 7 8 9 10
8 2 5 1 9 6 7 4 3 10

)
The cycle decomposition of the squared permutation is:

(1, 8, 4)(3, 5, 9)(2)(6)(7)(10)

25

Exercise 6. Ensure that squaring the following permutation does not change
the number of cycles, nor the sizes of the cycles .

(1, 8, 4)(3, 5, 9)(2)(6)(7)(10)

The expected number of cycles in a random permutation on N elements is
theN -th Harmonic number (

∑N
k=1(1

k)) which can be (for largeN) approximated
by the natural logarithm. The expected number of cycles with an even number
of elements is equal to the expected number of odd cycles in a permutation.
This leads to the following theorem:

Lemma 1. Let C` be a permutation cycle with length ` ∈ N and let t ∈ N such
that l is divisible by t, then the permutation (C`)

t consists of t cycles of length
l
t .

Proof. Let S = (s0, s1, s2, ..., s`−1) be a sequence of length `. Since ` is divisible
by t the t subsequences S0 = (s0, st, s2t, . . .), S1 = (s1, st+1, s2t+1, . . .), . . . , Si =
(si, st+i, s2t+i, . . .), . . . , St−1 = (st−1, stk−1, . . .) are disjoint subsequences ob-
tained by skipping t elements. The permutation cycle Cl can be mapped to S
by taking s0 to be an element of the cycle e ∈ Cl, s1 = P (e), s2 = P (P (e))
etc.

Theorem 1. Given a permutation P ∈ P with P having N elements. The
expected number of cycles in P t is for prime t: 2t−1

t · ln(N)

Proof. The expected number of cycles with length divisible by t is 1
t ln(N) and

by Lemma 1 the cycles with length divisible by t are split into t cycles when
raising the permutation to the power t. This results in an expected number of
cycles of:

t · 1

t
ln(N) +

t− 1

t
ln(N) =

2t− 1

t
ln(N)

By Lemma 1 a random permutation P containing a cycle with a length
divisible by t to the power t contains t equally sized cycles.

6.1.2 Distinguishing t-encryption

Patarin [38] shows that a Feistel network corresponds to an even permutation,
that means that it can be written as a product of an even number of transposi-
tions. Using the full codebook (O(2n)) one can thus distinguish a Feistel cipher
from a random permutation. We note that this also implies that the number of
cycles in the permutation is even.

However, distinguishing a Feistel based cipher from a even permutation is
much harder in the general case. In this section a distinguisher is explored that
can distinguish double encryption with the same key from a random Feistel net-
work based permutation in the general case.

26

Let C(p, κ) = c with κ ∈ Fk2 and p, c ∈ Fn2 denote a cipher that given a
key κ and plaintext p produces a ciphertext c. Note that this function gen-
erates a permutation for each key κ. Let double encryption be denoted by
C2(p, κ) = C(C(p, κ), κ). Then C2(p, κ) has the same effect as squaring the
permutation generated by the cipher. By Theorem 1 the expected number of
cycles in the cycle decomposition of the permutation generated by C2 for every
key κ is 3

2 ln(N) for N = 2n.
The above property can be used to create the following distinguisher: Given
that the number of cycles of a random permutation follows a Poisson distribu-
tion with a mean equal to ln(N), where N is the number of elements of the
permutation, the distribution of the number of cycles of a squared permutation
is Poisson distributed with a mean equal to 3

2 ln(N).

To decide when the distinguisher should return ”double encryption” and
when it should return ”random permutation” the following equality should be
solved:

e−µ · µx

x!
=
e−1.5µ · (1.5µ)x

x!

e−µ · µx = e−1.5µ · (1.5µ)x

µx

(1.5µ)x
=
e−1.5µ

e−µ

ln
µx

(1.5µ)x
= ln

e−1.5µ

e−µ

ln 1.5−x = −1.5µ+ µ

x =
−.5µ
− ln 1.5

x ≈ 1.23315 · µ.

Thus given a permutation on N elements the distinguisher should return ”ran-
dom permutation” if the number of cycles in the permutation is lower then

ln(N) · 1.23315

and ”double encryption” otherwise.
To extend this distinguisher to distinguish k-encryptions note that the fol-

lowing inequality holds for t > 2:

2k − 1

t
lnN ≥ 1.23315 lnN

This implies that the distinguisher works for k encryptions with k ≥ 2.

6.1.3 Equal cycle length distinguisher

The aforementioned distinguisher is very straightforward, but there is another
property of squared permutations that can be exploited to construct a distin-
guisher for double encryption.

27

Recall that given a permutation P ∈ P the cycles with even size will be split
up in two equally sized cycles in P 2. This can be used to create a distinguisher
as the probability of two cycles of equal length m appearing in a random per-
mutation is (1

m)2.

Lemma 2. The probability of a random permutation of N elements containing
two cycles with equal length m is 1

m2 , for 2m ≤ N .

Proof. To prove this lemma a counting argument is used. First, the number of
ways 2m elements can be picked from a permutation with N elements is

(
N
2m

)
.

The elements can be divided into two sets of size m in
(
2m
m

)
ways. The sets can

be permuted in (m− 1)! ways and the elements not in one of the cycles can be
permuted in (N − 2m)! ways. This leads to(

N

2m

)(
2m

m

)
((m− 1)!)2(N − 2m)! =

N !

m2
for 2m ≤ N

permutations having at least two cycles with length m. The probability that a
randomly chosen permutation has at least two cycles with size m is

N !

m2
· 1

N !
=

1

m2
for 2m ≤ N

.

This distinguisher does not need a full code book analysis. Future work
could focus on computing the expected number of oracle calls needed for this
distinguisher to work (and the probability that the distinguisher is right).

6.1.4 Impossible cycle length distinguisher

To distinguish double encryption the following observation can be used: When
squaring the permutation not all cycle lengths are possible. To be precise, with
a permutation of size N the square permutation cannot contain cycles of even
length larger than N

2 . Thus when a cycle with even length is observed with a

length larger than N
2 the permutation is not an even permutation.

Lemma 3. Given a random permutation p of size N , the probability that in
this permutation a cycle larger than N

2 is present, is approximately

HN −HN
2
≈ ln 2 ≈ 0.69315

where Hm is the m-th Harmonic number.

Proof. First we prove that the number of permutations of length N containg a
cycle of length m < N

2 is N !
m . We can choose

(
N
m

)
sets with m elements from N

elements. Fixing the first element to account of rotational symmetry of cycles,

28

each set can be ordered in (m-1)! ways. The rest of the elements can be ordered
in (N −m)! ways. This gives(

N

m

)
(m− 1)!(N −m)! ==

N !

m

permutations with a cycle of length m for m > N
2 .

Since the sets of permutations with cycles of length > N
2 are mutually exclusive,

the number of permutations containing a cycle with length> N
2 can be expressed

as:
N∑

m=N
2

N !

m
.

This leads to the probability of picking a permutation with N elements, con-
taining a cycle with length > N

2 to be:

1

N !
·

N∑
m=N

2

N !

m
=

N∑
m=N

2

1

m
=

N∑
m=1

1

m
−

N
2∑

m=1

1

m

This can be expressed as:

HN −HN
2
≈ lnN − ln

N

2
= ln 2 ≈ 0.69315

This has been described in the 100 prisoners problem which was introduced
by [20].

This can be generalized such that the probability of a random permutation
containing a cycle with length > k ·N , but since the sets of permutations con-
taining cycles with a length < N

2 are not mutually exclusive, care has to be
taken not to double count the number of permutations.

There exists only one cycle with length > N and this cycle has with equal
probability even or odd length. Using the above result the probability that an
even length cycle of length > n in the permutation p exists is:

0.69315 · 0.5 = 0.346575

By using these probabilities an algorithm can be constructed distinguishing be-
tween a random permutation and the square of a random permutation. The
attacker is given an oracle O which emulates a random permutation or the
square of a random permutation with equal probability. The attacker should
output 1 if O emulates a squared random permutation and 0 if the oracle O
emulates a random permutation. The attacker is allowed at most q queries to

29

the oracle.

The probability that the attacker guesses right if the number of queries q
is smaller than N (for a permutation of size 2N) is exactly 0.5. When the
number of available queries is larger than N the probability of finding a cycle
with length divisible by 2 and larger than N is 0 if the permutation is square.
If the permutation is random the probability of finding a cycle with even length
and with a length larger than N is:

0.5 · 0.346575 = 0.1732875

What rests is to design an algorithm such that the attacker gains an advantage
using a maximal amount of queries q. This can be done by using the observation
as discussed before. The algorithm proposed is as follows: Start at a random
element s and set the counter i = 0. Then request the oracle for an encryption
c = O(s) and increase i by one. If c is equal to s then stop, otherwise compute
a new c = O(c) and increase the counter by one. Repeat until a cycle is found
or i > q.
If i > q and no cycle is found return 0 (random permutation). If a cycle is found
with i > N and i divisible by 2 return 0, return 1 otherwise.

6.2 Experimental verification on Simon32

To verify the idea experimentally the number of cycles generated by double
encrypting with Simon32 is computed and compared to normal Simon32. As
expected double encrypting with Simon32 generates the expected cycle length
patterns as can be seen in Figure 9. The next thing to check is the number
of cycles with equal length in double encrypted Simon32 and Simon32 which
is depicted in Figure 10. These figures were produced using 400 random keys
and calculated the number and the length of cycles by doing a full codebook
analysis.

6.3 Constant memory cycle length decomposition

Finding a cycle decomposition of a permutation from an n bit cipher generally
takes O(2n) memory and time. In this section a constant memory algorithm
is given to compute the cycle lengths of the disjoint cycle decomposition of a
permutation. The worst case running time of this algorithm given a maximum

amount of memory m is O(
∑2n

i=0 2n − i) < O(22n) for m� 2n. The algorithm
is given in Algorithm 3.

The idea behind the algorithm is that every cycle in the permutation has
one element that defines the cycle. We choose the defining element to be the
smallest element in the cycle. To decompose the permutation into disjoint cycles
we pick an element and traverse the permutation starting at the element. If we

30

Figure 9: The number of cycles for 400 random keys using Simon32 with 12
rounds.

31

Figure 10: The number of cycles with equal length for 400 random keys using
Simon32 with 12 rounds.

32

find an element smaller than the element we started on, the starting element
is not the identifier of the cycle and we abort and pick the next element. If
we reach the starting element without encountering a smaller element we are
sure that the starting element uniquely defines the cycle we traversed and we
increase the cycle counter by one and continue with the next element. Once
we tried all elements in the permutation the counter contains the amount of
disjoint cycles in the permutation.
The starting elements are picked in lexicographical order.
The above sketches the algorithm when memsize is 0. We can save some time by
allowing the algorithm to save some of the encountered elements that still have
to be tried. We can save some time by skipping those elements when choosing
new starting point. If we choose memsize to be N , for a permutation on N
elements, the algorithm runs in N operations.

Algorithm 3 DecomposeCyclesLowMemory(Permutation σ, Int memsize)

Let C be the number of clusters
Let p = 0 be a counter
Let F be an array of booleans of size memsize initialised to 0
Let |σ| denote the size of the permutation
while p < |σ| do

let start vertex s = p
while true do
s = σ(s)
if s < p then

break
else if s == p then
C = C + 1
break

end if
if s < p+memsize then
F [s− p] = 1

end if
end while
if F contains a 0 then

Let next be the index of the first 0 in F
p = p+ next
Shift F to the left by next bits.

else
Set all cells in F to 0
p = p+memsize

end if
end while
return C

33

6.4 Conclusion

This section describes a distinguisher to distinguish double encryption with the
same key. It does also work on ciphers that can be written as a power of a
permutation.

7 Rewriting Simon into ATC

This section describes a method to rewrite or restructure Simon (or any similar
cipher). The transformation was used to better understand the cryptanaly-
sis tools encountered during my studies regarding Simon. The transformation
transforms Simon into a structure somewhat similar to DES.

Note that by restructuring a cipher the cryptographic properties do not
change. The same attacks work and the security of the transformed cipher is
equal to the original cipher. Nevertheless, it can be an interesting way to look
at a cipher and it certainly is possible to find new interesting properties in the
transformed cipher.

One advantage of restructuring a Simon-like cipher to contain S-boxes is
that constructing a DDT for a reasonably sized S-box is easy. This allows for
faster and easier differential cryptanalysis of Simon-like ciphers by significantly
reducing the time and memory needed to create and store the DDT.

The basic idea is to transform a cipher C, which in this case is a Feis-
tel cipher, to another equivalent function C ′ that has some kind of predefined
structure. One trivial solution would be to treat the whole round function as
one big substitution box and substitute the round function by this S-box.

Assume that C : Fn2 × Fk2 → Fn2 then for C ′ to be equivalent to C we
need C ′ : Fn2 × Fk2 → Fn2 such that for all κ ∈ Fk2 and p ∈ Fn2 we have
C(p, κ) = C ′(p, κ). Let f : Fn2 × Fm2 → Fn2 denote the round function, then a
cipher consisting of r rounds can be described by

C(p, k) = f(f(...f(p, k0), k1), ..., kr)

where k0, k1, ..., kr are determined by the key κ and a key schedule K : Fk2 →
(Fm2)r. Note that in this section only the case is considered where the round
functions f and f ′ of C and C ′ are equivalent although this is not needed for C
and C ′ to be equivalent.

There are infinitely many equivalent functions, but as noted earlier the goal
of the transformation was to transform Simon into a more DES-like structure.
As can be seen in Figure 11 the new structure consists of Expansion, S-box and
Permutation layers. In the next paragraphs three possible and equally valid

34

constructions will be argued.

The first construction that springs to mind is the construction where the
S-box layer consists of one n × n S-box and the Expansion and Permutation
layers are both the Identity. The main disadvantage of this construction is that
all structure is removed from the round function. This is a valid tactic to use for
differential cryptanalysis. A better and more interesting tactic, especially for
differential cryptanalysis would be a top down technique as described by Dinur,
Dunkelman, Gutman, and Shamir [18].

A second possibility is to look at the structure of Simon and create an S-box
for each output bit. For Simon32 this would result in 16 small, easy to anal-
yse S-boxes. Nevertheless, the analysis of the transformed cipher would not be
different from the original cipher. The expansion function of this variant will
become quite large, while the permutation layer will stay equal to the Identity.

The third possibility and the one chosen to elaborate on in this section is to
look at the input bits influencing each output bit. The output bits are grouped
into sets such that the total number of input bits needed to compute each set of
output bits is minimal. As can be seen in Table 5 each output bit is dependent
on 3 input bits. When going for four S-boxes the best possible partitioning of
output bits results in 8 × 4 S-boxes (8 input bits to 4 output bits). One such
partitioning is defined in the next sections. Note in this case both the expansion
and permutation layers are non trivial.

These 8 × 4 S-boxes allow for a more efficient differential cryptanalysis by
reducing the time needed to create a DDT for Simon. The DDT of the S-boxes
needed for Simon32 can be constructed in 22·8 ·4 = 218 time. Since every version
of Simon can be expressed in the same fashion, and only the number of S-boxes
grows, the DDT of a Simon version with n-bit words can be computed in 22·8 · n4
time and memory.

7.1 Expansion layer

The expansion expands the 16 bit blocks to 32 bits to feed the four 8-bit S-boxes.
The bit permutation of the expansion layer is given in Figure 12.

7.2 S-box layer

The ouput of the expansion matrix is divided into four blocks of 8 bits which
are then fed into the S-boxes. ([1 . . . 8] → S1, [9 . . . 16] → S2[17 . . . 24] →
S3, [25 . . . 32]→ S4)
The S-box layer consists of four different 8 bit S-boxes with 4 bit outputs which
are given by Tables 10, 11, 12, 13. The columns of the tables denote the least

35

I1 I2 I3 Output bit
16 8 15 1
1 9 16 2
2 10 1 3
3 11 2 4
4 12 3 5
5 13 4 6
6 14 5 7
7 15 6 8
8 16 7 9
9 1 8 10
10 2 9 11
11 3 10 12
12 4 11 13
13 5 12 14
14 6 13 15
15 7 14 16

Table 5: Dependency of output bits on input bits in Simon32

p E

S1

S2

...

Sl−1

Sl

P K c

Figure 11: ATC round function

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

)
7→(

1 2 8 9 10 11 15 16 2 3 4 5 6 12 13 15 3 4 5 9 10 11 12 14 1 6 7 8 13 14 15 16
)

Figure 12: Expansion layer bit expansion for E

36

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

)
7→(

1 2 3 10 4 5 7 14 6 11 12 13 8 9 16 15
)

Figure 13: Permutation layer bit permutation for P

significant bits and the rows denote the most significant bits of the input. The
elements of the table denote the output of the S-box.

7.3 Permutation layer

The permutation layer takes the 16 bit output of the S-box layer and rearranges
the bits according to the bit permutation as given in Figure 13

8 Related key differential attack on Simon

As discussed in Section 4 the relations between keys can be used to increase the
attack area of a cipher. This section takes advantage of a cycle found in the
key schedule to construct a novel related key attack. This attack is different
from other related key attacks in the sense that the Hamming weight of the
transitions is high (n2 with n the word size of the cipher) in comparison to other
differential attacks.

Another difference to other differential attacks is that the transitions used in
this attack have an underlying structure that can be used to enhance the attack.

8.1 Key schedule Cycles

The Simon key schedule can be seen as function that maps an internal key
schedule state to the next internal key schedule state (F64

2 → F64
2). By look-

ing at the xor of two keys this function becomes an invertible linear func-
tion and can be described by an invertible matrix M . Given an internal state
Kj = (kj , kj+1, kj+2, kj+3), the matrix M can be used to compute the j + i-th
internal state Kj+i by computing: Kj ·M i.
The set of linearly independent eigenvectors of the matrix M i denote the unit
vectors of internal key states that result in a cycle of length i.

Two interesting internal states which create cycles are: aaaa aaaa aaaa

aaaa and 5555 5555 5555 5555 which both will generate a cycle of length 1
(e.g. given that the xor of two master keys is 5555 5555 5555 5555 the xor

of every round key is 5555)

37

Apart from the method described above the existence of cycles with length
1 can also be proven as is shown in Lemma 4

First an expression for the difference of two round keys must be established.
Let S−i denote the right bitwise rotation by i bits. Then round key ki+4 is
expressed by:

ki+4 = c⊕ (zj)i ⊕ ki ⊕ (S−4 · ki+3)⊕ (S−3 · ki+3)⊕ (S−1 · ki+1)⊕ ki+1,

then the difference ki+4 ⊕ k′i+4 = ∆ki+4 can be expressed as:

∆ki+4 = ∆ki ⊕ (S−4 ·∆ki+3)⊕ (S−3 ·∆ki+3)⊕ (S−1 ·∆ki+1)⊕∆ki+1,

Lemma 4. Given that

∆ki+4 = ∆ki ⊕ S−4 ·∆ki+3 ⊕ S−3 ·∆ki+3 ⊕ S−1 ·∆ki+1 ⊕∆ki+1

and let
∆ki = ∆ki+1 = ∆ki+2 = ∆ki+3 (1)

1-cycles exist for the key schedule.

Note that for 1-cycles to be present in the key schedule assumption (1) is
essential and we need to prove that equation (2) is true.

∆ki+4 = ∆ki = ∆ki+1 = ∆ki+2 = ∆ki+3 (2)

Proof.

∆ki+4 = ∆ki ⊕ S−4 ·∆ki+3 ⊕ S−3 ·∆ki+3 ⊕ S−1 ·∆ki+1 ⊕∆ki+1 (3)

= ∆ki ⊕ S−4 ·∆ki+3 ⊕ S−3 ·∆ki ⊕ S−1 ·∆ki ⊕∆ki (4)

= S−4 ·∆ki ⊕ S−3 ·∆ki ⊕ S−1 ·∆ki (5)

If ∆ki+4 = ∆ki then

∆ki ⊕ S−1∆ki = S−3∆ki ⊕ S−4∆ki = S−3(∆ki ⊕ S−1∆ki)

and
∆ki ⊕ S−4∆ki = S−1(∆ki ⊕ S−1∆ki).

From these expressions we get that ki = S−1∆ki or ki = S−2∆ki.

38

F 5555⊕

0000 5555

20

0000 0000

F 5555⊕

0000 0000

20

0000 0000

F 5555⊕

5555 0000

2−8

5555 5555

0000 5555

Figure 14: The related key differential characteristic used to attack Simon

8.2 Related Key attack Simon32/64

Some of the most powerful differential attacks rely on iterated characteristics [4].
These are differential characteristics where the input and output difference are
equal. To find these characteristics in the related key setting the key schedule
has to have a cycle with the same phase as the size of the iterated characteristic.

As described in Section 8.1 the key schedule of Simon32/64 has a few key
differences that result in cycles in the round key differences. These keys can be
used to look for iterated differential characteristics in the related key setting.
The characteristic described in this section works for two different key differ-
ences, namely: aaaa aaaa aaaa aaaa and 5555 5555 5555 5555.

The 3-round iterated characteristic for key difference aaaa aaaa aaaa aaaa

is: 0000 aaaa
20−→ 0000 0000

20−→ aaaa 0000
2−8

−−→ 0000 aaaa and for the

key difference 5555 5555 5555 5555: 0000 5555
20−→ 0000 0000

20−→ 5555 0000
2−8

−−→ 0000 5555. See Figure 14 for a visual representation of this characteristic.

Note that since the two key differences (i.e. aaaa and 5555 will result in
a related key differential distinguisher with the same probability it means that

39

two key pairs can be used to increase the code book by a factor of two. To
increase the codebook by a factor of 22 keys K0,K1,K2,K3 should be used
with the following relationships:

K0 ⊕K1 = 5555 5555 5555 5555

K0 ⊕K2 = aaaa aaaa aaaa aaaa

K1 ⊕K3 = aaaa aaaa aaaa aaaa

K2 ⊕K3 = 5555 5555 5555 5555

Breaking one of the keys, breaks all the keys.

The probability of this characteristic occurring can be computed as follows.
Assume that the round function and key schedule produce random output. The
proposed characteristic has two distinct cases that influence the probability of
the differential characteristic occurring. In the first case the left hand side is
0000 and it is easy to see that the right hand side difference after the round
function will be 5555 with probability 1. In the second case where the left hand
side difference is 5555 should result in a right hand side difference of 0000 after
the round key difference addition. This means that the right hand side differ-
ence before the key additition should be equal to the left hand side difference,
namely 5555. The probability of this event occurring is calculated in the next
paragraph.

Note that the round function can be split up in two parts. A linear and
non-linear part, where the linear part is L(p) = p ≪ 2 and the non-linear
part is N(p) = p ≪ 1 and p ≪ 8. The linear part L will always preserve
the difference, thus we have to make sure that the difference of the non-linear
part N(p1) ⊕ N(p2) = 0000, otherwise the output difference after both parts
would be different. This leads to the following equation with inputs p1, p2 ∈ F16

2

required to be true:

p1 ≪ 1 and p1 ≪ 8 = p2 ≪ 1 and p2 ≪ 8

in addition to p1 ⊕ p2 = 5555. Using this, the above equation is only true if
every 0 bit in the difference is the result of two 0 bits in the plaintexts, leading
to p1 and p2 being elements of the Moser-de Bruijn sequence [16] if the above
equation holds.

Definition 4 (Moser-de Bruijn sequence). A natural number n ∈ N is an
element of the Moser-de Bruijn sequence if every 2 · i + 1-st bit is 0 for i ∈ N,
i.e., every bit with an odd index bit is 0.

The number of elements in the Moser-de Bruijn sequence up to n is
√
n

[16] thus the probability of x ∈ F16
2 to be an element of the Moser-de Bruijn

sequence is 2−8. In general, the probability that a random element from Fn2 is

40

an element of the Moser-de Bruijn sequence is 2−
n
2 .

Notice that if word p1 is an element of the Moser-de Bruijn sequence and
p1⊕p2 = 5555, then p2 is an element of the Moser-de Bruijn sequence, thus the
probability that both p1, p2 are elements of the Moser-de Bruijn sequence is 2−8.

The above leads to a probability of 2−8 that the three round characteristic
succeeds.

The interesting part here is that if all inputs to the round function of Simon
are elements of the Moser-de Bruijn sequence, the outputs of the round function
are as well.
Note that if it could be proven or disproven that there exists a master key for
which the key schedule generates an element of the Moser de Bruijn sequence
for each round key, then this would be a weak key. Encryption with such a
key could easily be distinguished from a random function by giving as input
an element of the Moser-de Bruijn sequence, which would result in an element
of the Moser-de Bruijn sequence as an output. Note that no such master key
exists for Simon32 and probably no such master key exists for the other versions.

An experiment has been run to see if such a key exists for Simon32. Since
there are 2

64
2 = 232 Moser-de Bruijn keys this experiment was feasible. No

keys have been found to generate a Moser-de Bruijn round key for every round.
Nevertheless an interesting observation is that a sizeable fraction of these keys al-
ways generates a Moser de-Bruijn element as a round key on rounds: 1, 2, 3, 4, 9, 21, 27
Although at this moment this has not led to an attack it is something to keep
in mind.

The same reasoning can be applied for the aaaa aaaa aaaa aaaa case.
Using the above it is interesting to notice that the differential path can only

succeed if both plaintexts in the pair succeed to keep generating an Moser-de
Bruijn element every third round (i.e. every time the differential transition
5555 → 0000 occurs the left hand input of the round function must be an el-
ement of the Moser-de Bruijn sequence). The probability of this happening if
we consider the key schedule to be a random function (as often is assumed) is
2−8. Experiments show that this is not the case for every key pair especially if
we take care with choosing the key pairs. The average number of correct pairs
found seems to stay true to the expected probability, but some of the key pairs
tend to generate far more correct pairs thanothers (see Table 6 for a histogram
of the number of correct pairs with Moser-de Bruijn key and plaintext.

Another interesting idea is that since the characteristic can only occur when
the left hand part of the characteristic is an element of the Moser-de Bruijn
sequence we can cut down the number of input pairs to be tried to 224.
By choosing the keys to be Moser-de Bruijn elements we can reduce the number
of input pairs by even more because then all the inputs for the first four rounds

41

keys # correct pairs
4862 0

6 1
16 2
4 3

12 4
5 5

11 6
10 8
1 9
2 10
2 11

12 12
2 14
1 15
8 16
1 17
4 18
1 21
2 22

10 24
1 28
3 32
1 33
2 36
2 42
7 48
1 56
1 60
1 62
1 72
2 96
1 120
1 144
1 156
1 182
1 240
1 512

Table 6: The number of keys generating a certain number of correct pairs. All
experiments were run with a random Moser-de Bruijn key and Moser-de Bruijn
inputs on 12 round Simon32

42

will be elements from the Moser-de Bruijn sequence. This would mean that we
essentially skipped the first 4 rounds in the differential path. Nevertheless at
this moment in time I am still trying to witness this behaviour in my exper-
iments. In essence this would lead to an extension of the differential by one
round which in the current experiments is not witnessed.

8.2.1 Other versions

The characteristic is applicable to every Simon version using the key schedule
with four keywords (i.e. m = 4). The probability for the 3-round characteristic
is directly defined by the word size (i.e. 2−

n
2 where n is the word size. For

versions with word size 16, 24, 32, 64 the probability of the 3-round iterated
characteristic occurring is respectively 2−8, 2−12, 2−16, 2−32. This results in a
maximum of 12 rounds for every version using m = 4.

Lemma 5. When m = 2, the key schedule does not exhibit key difference cycles
with master key differences 5555 5555 and aaaa aaaa.

Proof. The key schedule with m = 2 is

ki+2 = ki ⊕ (S−3 · ki+1)⊕ (S−4 · ki+1).

To have a 1 round cycle the following needs to hold:

ki+2 = ki+1 = ki

which gives us the following equation:

ki = ki ⊕ S−3 · ki ⊕ S−4 · ki

which holds if
S−3 · ki = S−4 · ki

Which holds if
ki = S−1ki

For this equation to hold all bits need to be equal, thus only allowing for 0000

0000 and ffff ffff to be master keys giving a one round cycle in the key
schedule.

8.2.2 Extending the differential

The differential can be extended for free by two rounds by using the differential

characteristic 0000 aaaa
20−→ 0000 0000

20−→ aaaa 0000
2−8

−−→ 0000 aaaa
...−→

0000 aaaa
20−→ 0000 0000

20−→ aaaa 0000

43

metric 9 rounds 12 rounds 15 rounds
samples 800 800 800
fails 0 409 799
average # correct pairs 254.9 0.961 0.001
standard deviation 130.0 1.384 0.035

Table 7: Experimental results for Simon32 with 9, 12 and 15 rounds

8.3 Experimental results

An experiment was conducted by trying random key k and k′ = k⊕5555 5555 5555 5555

and recording how many plaintext pairs followed the differential described in
Figure 14. A summary of the results is given in Table 7. A fail is an instance
where no right pairs have been found.

Another experiment was done by using only plaintext pairs consisting of
Moser-de Bruijn elements. This resulted in far fewer plaintext pairs to be tried
per key (216 instead of 232 pairs). This allowed for far more key pairs to be
tried. Finding a correct pair can be modelled as a Poisson process and in this
particular instance it is a Poisson process with λ = 1. The results of the exper-
iment can be found in Table 8. Note that this does not fit a Poisson process
(the probability of encountering an instance with 48 correct pairs would approx-
imately be 2−205, but was observed).

8.4 Observations

During my research I have done a lot of experiments of which not all have re-
sulted in an attack. Nevertheless, some I have made some observations that
might be interesting for others to read. This section contains a couple of inter-
esting observations done for Simon32.

The first observation is that some key pairs generate a larger than expected
number of right pairs. The first thought was that this could be caused by the key
schedule and thus by looking at the keys that invoke high number of occurrences
some sort of system could be found. This, however, is (at least at first sight) not
the case. The keys which generate more then 18 correct pairs are summarised
in Table 9.

Another observation is that the number of correct pairs, which is the number
of input pairs resulting in the correct output and the number of right differen-
tials, which are the pairs for which the differential is right, are the same. This
is observed in all experiments that have a Moser-de Bruijn input.

The following observation does not solely focus on differential cryptanalysis,
but it is interesting to note nevertheless. When the left hand part of the cipher
is a Moser-de Bruijn element the non-linear part of the cipher is skipped and

44

occurrences Right pairs
47232 0
28070 1
13486 2
5836 3
2686 4
1229 5
680 6
298 7
155 8
95 9
69 10
52 11
39 12
20 13
12 14
11 15
11 16
5 18
1 19
3 20
1 21
1 22
1 25
1 26
1 28
1 29
1 32
1 42
1 46
1 48

Table 8: Experiment run on 12-round Simon32.

45

Key 1 Key 2 Right pairs Right differentials
051098C151775211 5045CD9404220744 18 18
1AAB75B53FB9D557 4FFE20E06AEC8002 18 18
20025C3E73E71DE0 7557096B26B248B5 18 18
3001725E5F4AEF0E 6554270B0A1FBA5B 18 18
4F1D54C14A677875 1A4801941F322D20 18 18
1089165466B96D12 45DC430133EC3847 19 19
400146753F2F7964 155413206A7A2C31 20 20
6144CB711C97505F 34119E2449C2050A 20 20
6503078D76DADAED 305652D8238F8FB8 20 20
1A9574ED436723C0 4FC021B816327695 21 21
5D96144C4B8EEA5D 08C341191EDBBF08 22 22
14C724074358FFA2 41927152160DAAF7 25 25
44929D4A050D1902 11C7C81F50584C57 26 26
7478C2CF04B3C780 212D979A51E692D5 28 28
3780600126D03FBC 62D5355473856AE9 29 29
0EC3302D35F5A132 5B96657860A0F467 32 32
2532322461C3888E 706767713496DDDB 42 42
7D57603A685210D5 2802356F3D074580 46 46
04257D107369805F 51702845263CD50A 48 48

Table 9: Interesting keys

the round is linear. This also works on Moser-de Bruijn elements rotated by 1.

8.5 Conclusion

The most interesting part in this section is to see that this related key differ-
ential characteristic of Simon can be explained through the structure of the
Simon round function. This results in the differential characteristic having con-
crete preconditions on when it succeeds. Nevertheless, this has not lead to any
break throughs. The differential found in this round spans 14 rounds which is
the same as in [1]. In contrast to the differential described by Abed et al. [1]
the differential described in this section only needs 216 chosen plaintexts to work.

9 Discussion

The title of this thesis is perhaps a little misleading. By reading the title one
may be tempted to think that this thesis does only cover the cryptanalysis of Si-
mon. Nevertheless, upon reading the thesis, Simon does not appear frequently.
One has to keep in mind that most, if not all, parts have had Simon as a major
influencer and motivator. Most of the time these sections started as an alterna-
tive method to analyse Simon. They evolved throughout the research and got

46

altered such that the initial goal (finding weaknesses in Simon) was often in a
sense neglected.

To give an example, Section 6 started as a project to analyse the graphs
generated by the round function of Simon32. This lead to a fairly weak analysis
which was able to replace some encryptions in a brute force search by 1 round
encryptions. Later this idea evolved into a description of the cipher describing it
as a permutation. Not much later, after some experimentation, a distinguisher
with respect to a random permutation, for Simon32, was found experimentally.
This however, proved to be already known [38]. This whole track lead to the
section on distinguishing t-Encryption. Although the section on k-Encryption
does use Simon32 to verify the theory experimentally, originally it was an at-
tempt to break Simon

All sections have had multiple transformations, dead ends and side tracks.
This example does show the way I have been working the last months. It maybe
is not the most fruitful way of researching and may seem at some times ad hoc or
unguided. But it resembles the way my mind works and tries to tie everything I
learn, hear and read together. This can sometimes lead to some interesting ideas.

In the past weeks/months I have been thinking a great deal about research
and especially cryptanalysis in respect to how I have been working. My main
concern was that I might have been working in the wrong state of mind. Too
much trying to find something novel, something innovative, something that
would break Simon. A state in which I have tickled and observed Simon, seen it
twitch, wrinkle and roll over in despair never to fall apart. This thought made
me think. Not only about the fruitlessness of my attempts, more so about the
attempts (I) made on breaking Simon in the traditional way.

This traditional cryptanalysis which started with Biham and Shamir [4] giv-
ing us, the public, differential cryptanalysis. Not long after Matsui [29] invented
linear cryptanalysis. A newer, but less successful analysis is Algebraic crypt-
analysis by Courtois and Pieprzyk [12].

These attacks are the backbone of contemporary cryptanalysis. Most, if not
all, interesting new ciphers, are designed such that these attacks have only had
success against round-reduced versions. I think, that it is fair to state that new
ciphers that are properly designed to withstand these types of attack cannot
be broken by them. Notice that there are formal methods of proving a certain
cipher to be resistant against these types of attack [26], but it is infeasible (for
most ciphers) to prove resistance against all attacks possible by a computation-
ally bounded adversary.

This leads to my belief, that to attack contemporary ciphers, which have
all defensive measures in place against the well-known attacks, we need new
cryptanalysis tools. Inventing these new cryptanalysis tools takes up a lot of

47

time and energy. Both have to be invested in an uncertain goal, invested in
something more bound to fail than lead to success.

In this light I deemed my chaotic style of learning as a trait and stopped
suppressing it. Especially since a thesis is a moment where one can (1) fall, get
up, goto 1 until one is bruised and battered and full of knowledge. All of this
without major adverse effects.

9.1 Academic significance

One question often asked to you as a researcher in the midst of the corporate
world is: ‘What is the significance of your research to the public?’. As strange
as it seems, academics (in my vicinity) never ask you the question: ‘What is the
significance of your research to your field of study?’. At least not straight away.

The academic significance of my work is not easy to quantify. There are a
lot of bits of which the significance varies greatly. Not all my endeavours are
as polished and well developed as it might have been, have I had focussed more
on one topic. Nevertheless, they could be seen as a ‘proof of concept’, a start,
as a way to pave the way for further research. It could be seen as a wandering
through an exciting forest full of fruits of which only some contain the sweet
scent as well as the sweet taste of academic significance.

In the next section I will go over the concepts in this thesis and try to argue
their academic significance.

9.1.1 Distinguishing k-encryption

In this section I describe a distinguisher that can distinguish in a generic way a
k-encryption with the same key from a random even permutation. This advo-
cates against the use of multiple encryptions with the same encryption key. As
well as against encryption schemes having symmetry in their key schedule. Both
of these constructions are not seen much nowadays. This distinguisher would
have had a larger impact if the attack would be targeting a specific cipher or
protocol. I have, to no avail, been looking for symmetry in the Simon key
schedule. I have also spent some energy and time on identifying ciphers using
a weak key schedule and structure, but no ciphers have been found which are
vulnerable. Note that RoadRunneR [2] uses a key schedule that would be ex-
ploitable. Nevertheless due to the use of key whitening the attack does not work.

Although the distinguisher does not target any known cipher I know of, it is
an interesting distinguisher to keep in mind and one to be used to argue against
weak key schedules such as in RoadRunneR [2] or DES. In C a paper is included
which describes an attack on RoadRunneR making use of the weak key schedule

48

to mount a related key differential attack. Note that slide attacks [7] do take
advantage of the same weakness of ciphers, but they do require more properties
to succeed. Nevertheless when slide attacks do succeed they are more powerful.

Another use case of this technique is to find hidden structures in for example
S-boxes as described by [6]. This technique can discover if and how many times
a certain structure is repeated without having to know the structure.

After a discussion with Rogaway we came to the conclusion that there are
some interesting open questions regarding this topic. The first distinguisher
described, the cycle count distinguisher, is a static distinguisher where the at-
tacker needs a full (or near full) codebook number of queries. The second
distinguisher, the equal cycle length distinguisher, is adaptive in the sense that
after each query the next query is decided upon. In the studies I conducted I did
not look at the optimal tactic to choose the next query. This, however, would
be very interesting to look at as then a function could be composed expressing
the advantage of an attacker given the permutation size and a maximal number
of queries q. The mathematical structures to handle these types of statistical
problem are described by Flajolet and Sedgewick [19], but are at the moment
of writing out of reach.

9.1.2 ATC

In this section a transformation of Simon to an equivalent function is described.
The transformation can be used to describe bit-based ciphers as word-based ci-
phers. This greatly reduces the amount of memory and time needed to compute
the DDT.

The transformation does, however, also spring some interesting ideas to
mind. One idea is that it should be possible to design a structure such that
every block cipher can be transformed into that structure. This structure could
then be used for the cryptanalysis of the cipher. Rewriting ciphers into stan-
dard structures could unlock the possibility of automatic cryptanalysis, where
the cryptanalyst’s job is to provide the proper transformation. It could be that
this structure is as simple as treating the whole round function as one S-box.
At the moment I do not know whether such is possible, but I think it would be
worthwhile to do a little bit more research in this direction.

Another interesting question raised is whether or not all structures used in
cryptography nowadays have the same expressivity, i.e. are all structures ex-
hibited in the design of ciphers in the same equivalence class? In other words,
and to be a bit more concrete, can for example, all Substitution Permutation
Networks [22] be expressed as traditional Feistel networks [28]? What about
generalised Feistel networks [37]? Or a structure as used in Minalpher [41]?

49

The last thing this transformation could be used for is hiding structure. In
the case of Simon it proved to be ‘easy’ to recover the structure of the original
cipher as Neves showed in a discussion. Nevertheless it is not unthinkable to use
such a scheme to hide a certain structure in a round function or even a whole
cipher. This is much like hiding structures in S-boxes as in [6], but then on a
different scale. Note that DES has a similar structure to the structure Simon
has been transformed to. It would be interesting to see whether there is some
hidden structure in DES.

9.1.3 Related Key differential Attack

In the section describing the related key differential attack on Simon I describe
an attack using a related key differential characteristic of 14 rounds. This char-
acteristic needs 216 chosen plaintexts for a distinguisher. This characteristic has
a high Hamming weight which is often advantageous for key recovery attacks.
The only other related key differential attack on Simon I encountered in my
studies is an attack by Abed et al. [1], which uses a 14 round related key char-
acteristic to achieve an 18 round key recovery attack, using 254.55 time and 230.86

chosen plaintexts.
The main concern with related key differentials used against lightweight block
ciphers is that on the one hand they are infeasible. This is due to the tendency
of devices deploying a lightweight cipher to have a fixed key and the probability
of two devices having a specific key difference is small. This means that to
use this attack an attacker needs to find two devices with the appropriate key
difference, or mount a fault attack on one device to flip some key bits.
On the other hand these devices have a higher tendency to use the Merkle-
Damgard construction [15, 31]. Which makes the related key setting more sig-
nificant.

9.2 Public significance

As stated before a question often asked to me is: ‘What is the significance of
your research to the public?’ Most of the time this question is answered with
the following statement: ‘Let’s assume I do find an attack against Simon or
AES or any contemporary cipher. And let’s assume that this attack reduces
the time needed for key recovery from 2128 to 2126. Then this attack, having
major academic significance, would reduce the time to attack said cipher from
an eternity to one fourth of an eternity.’ Although true, this does not tell the
whole story. As is often remarked by academics, once a crack has formed in a
cipher, the eventual practical break of the cipher is reached sooner.

Another argument often heard is that cryptanalysis nowadays often focuses
on round reduced or otherwise crippled ciphers (or hashes) as a target. This, in
reality, means that even if one finds a 30 round differential key recovery attack
for Simon32 (which has 32 rounds), this attack would not make breaking the

50

full cipher faster than brute forcing the key.

In this light it is better to see cryptanalysis as a way to measure the cryp-
tographic trust of the ciphers. In this case cryptographic trust is a subjective
measure that can be attributed to a certain cipher and depending on who you
ask the cryptographic trust in a cipher can greatly vary between parties. Es-
tablishing a measuring tool and plotting the distribution of cryptographic trust
throughout the population, would be an interesting research topic combining
many different fields of studies.

The question of public significance of the research could be answered by
stating that my cryptographic trust in Simon has increased over the course of
my thesis.

9.3 Simon and the design of lightweight ciphers

One major asset of the academic reviewing process is that it is a double blind
process. This is one of the reasons I have high regards for the academic way of
working. Nevertheless, after publication, the papers are attributed to persons
which removes the anonymity of the authors (in most cases the reviewers stay
anonymous after publication, which in essence is quite remarkable). Most of the
time this protocol does not inhibit any drawbacks.

In the case of Simon I do not feel the same way. Simon is met with a lot of
suspicion and is treated with much more caution because of the authors listed
at the top of the paper. The structures and simplicity used in Simon should be
receiving a lot of reviewing, but the reviewing should be done without any bias,
which is in my opinion part of the scientific legacy.

The goal of lightweight ciphers is often explained by the following: small,
efficient and strong, where small implies that the structure should help create a
small implementation, either in hardware or in software (or both).
Efficiency touches on several different concepts which are for the most part in-
tertwined. Lightweight ciphers often run on constrained devices, making the
efficiency of encryption, i.e., the (amortized) number of bytes encrypted in each
clock cycle, an important measure. Another facet of efficiency is often expressed
in the energy consumption/latency of the cipher.
A lightweight cipher also needs to be strong, removing the assumption that
lightweight ciphers can be less cryptographically secure with respect to ‘normal’
ciphers.

To this list I would like to add the necessity of a lightweight cipher to be
simple. Simple to implement, analyse and audit. This simpleness becomes more
important when one keeps in mind that lightweight ciphers are often deployed
in speciality processors. This often leads to developers implementing their own

51

cryptography. And although this practice should not be encouraged and or en-
dorsed, making a cipher overly complicated is not the way to discourage it.

Apart from having ample choices in the cryptographic strength, Simon is in
my opinion a good example of a cipher that is simple. The authors show this
by including (readable) pseudo code of the cipher in the body of the paper. An-
other characteristic of a simple cipher is that has to be easily analysable. One
argument often used against Simon is that it includes a version with 32-bits
blocks and a 64-bits key. Although these versions are not up to standards with
regards to security they are often used as a dummy target to test new attacks
against Simon as can be seen in [18], [1] and this thesis. This greatly increases
the simplicity of analysis of a cipher.

9.4 Conclusion

Although some interesting concepts have been touched upon in this thesis, the
main, ultimate and somewhat unreachable goal, of breaking full round Simon
has not been met. By researching Simon I got a peek into cryptanalysis, cipher
design and standardisation of ciphers. Since and before Simon many interesting
lightweight ciphers have been published after, and I look forward to the advances
in the lightweight cryptography field with enthusiasm and interest.

52

References

[1] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differ-
ential Cryptanalysis of Round-Reduced Simon and Speck. In Car-
los Cid and Christian Rechberger, editors, Fast Software Encryption
- 21st International Workshop, FSE 2014, London, UK, March 3-5,
2014. Revised Selected Papers, volume 8540 of Lecture Notes in Com-
puter Science, pages 525–545. Springer, 2014. ISBN 978-3-662-46705-
3. doi: 10.1007/978-3-662-46706-0 27. URL https://doi.org/10.1007/

978-3-662-46706-0_27.

[2] Adnan Baysal and Sühap Sahin. RoadRunneR: A Small and Fast Bitslice
Block Cipher for Low Cost 8-bit processors. In Lightweight Cryptogra-
phy for Security and Privacy - 4th International Workshop, LightSec 2015,
Bochum, Germany, September 10-11, 2015, Revised Selected Papers, pages
58–76, 2015.

[3] Ray Beaulieu, Douglas Shors, Jason Smith, and Stefan Treatman-clark.
The Simon and Speck families of lightweight block ciphers. Cryptology
ePrint Archive, pages 1–42, 2013. URL http://eprint.iacr.org.

[4] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances
in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1990, Proceed-
ings, volume 537 of Lecture Notes in Computer Science, pages 2–21.
Springer, 1990. ISBN 3-540-54508-5. doi: 10.1007/3-540-38424-3 1. URL
https://doi.org/10.1007/3-540-38424-3_1.

[5] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-
Round DES. In Ernest F. Brickell, editor, Advances in Cryptology -
CRYPTO ’92, 12th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740 of
Lecture Notes in Computer Science, pages 487–496. Springer, 1992. ISBN
3-540-57340-2. doi: 10.1007/3-540-48071-4 34. URL https://doi.org/

10.1007/3-540-48071-4_34.

[6] Alex Biryukov and Léo Perrin. On Reverse-Engineering S-Boxes with Hid-
den Design Criteria or Structure. In Gennaro and Robshaw [21], pages
116–140. ISBN 978-3-662-47988-9. doi: 10.1007/978-3-662-47989-6 6. URL
https://doi.org/10.1007/978-3-662-47989-6_6.

[7] Alex Biryukov and David A. Wagner. Slide Attacks. In Lars R. Knud-
sen, editor, Fast Software Encryption, 6th International Workshop, FSE
’99, Rome, Italy, March 24-26, 1999, Proceedings, volume 1636 of Lec-
ture Notes in Computer Science, pages 245–259. Springer, 1999. ISBN
3-540-66226-X. doi: 10.1007/3-540-48519-8 18. URL https://doi.org/

10.1007/3-540-48519-8_18.

53

https://doi.org/10.1007/978-3-662-46706-0_27
https://doi.org/10.1007/978-3-662-46706-0_27
http://eprint.iacr.org
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-48071-4_34
https://doi.org/10.1007/3-540-48071-4_34
https://doi.org/10.1007/978-3-662-47989-6_6
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18

[8] John Black and Phillip Rogaway. Ciphers with Arbitrary Finite Domains.
In Bart Preneel, editor, Topics in Cryptology - CT-RSA 2002, The Cryptog-
rapher’s Track at the RSA Conference, 2002, San Jose, CA, USA, February
18-22, 2002, Proceedings, volume 2271 of Lecture Notes in Computer Sci-
ence, pages 114–130. Springer, 2002. ISBN 3-540-43224-8. doi: 10.1007/
3-540-45760-7 9. URL https://doi.org/10.1007/3-540-45760-7_9.

[9] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkel-
soe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Pail-
lier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2007, 9th International Workshop, Vienna, Aus-
tria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in
Computer Science, pages 450–466. Springer, 2007. ISBN 978-3-540-74734-
5. doi: 10.1007/978-3-540-74735-2 31. URL https://doi.org/10.1007/

978-3-540-74735-2_31.

[10] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In Xiaoyun Wang and Kazue Sako,
editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of
Lecture Notes in Computer Science, pages 208–225. Springer, 2012. ISBN
978-3-642-34960-7. doi: 10.1007/978-3-642-34961-4 14. URL https://

doi.org/10.1007/978-3-642-34961-4_14.

[11] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer
Science, 1990. Springer. ISBN 3-540-97317-6. doi: 10.1007/0-387-34805-0.
URL https://doi.org/10.1007/0-387-34805-0.

[12] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations. In Yuliang Zheng, editor, Advances
in Cryptology - ASIACRYPT 2002, 8th International Conference on the
Theory and Application of Cryptology and Information Security, Queen-
stown, New Zealand, December 1-5, 2002, Proceedings, volume 2501 of
Lecture Notes in Computer Science, pages 267–287. Springer, 2002. ISBN
3-540-00171-9. doi: 10.1007/3-540-36178-2 17. URL https://doi.org/

10.1007/3-540-36178-2_17.

[13] Nicolas T. Courtois. How Fast can be Algebraic Attacks on Block Ci-
phers? In Eli Biham, Helena Handschuh, Stefan Lucks, and Vincent Ri-
jmen, editors, Symmetric Cryptography, number 07021 in Dagstuhl Sem-
inar Proceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs-

54

https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/0-387-34805-0
https://doi.org/10.1007/3-540-36178-2_17
https://doi.org/10.1007/3-540-36178-2_17

und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.
URL http://drops.dagstuhl.de/opus/volltexte/2007/1013.

[14] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002. ISBN 3-540-42580-2. doi: 10.1007/978-3-662-04722-4. URL
https://doi.org/10.1007/978-3-662-04722-4.

[15] Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [11],
pages 416–427. ISBN 3-540-97317-6. doi: 10.1007/0-387-34805-0 39. URL
https://doi.org/10.1007/0-387-34805-0_39.

[16] Nicolaas Govert de Bruijn. Some direct decompositions of the set of inte-
gers. Mathematics of Computation, 18(88):537–546, 1964.

[17] Des. Data Encryption Standard. In In FIPS PUB 46, Federal Information
Processing Standards Publication, pages 46–2, 1977.

[18] Itai Dinur, Orr Dunkelman, Masha Gutman, and Adi Shamir. Im-
proved Top-Down Techniques in Differential Cryptanalysis. In Kristin E.
Lauter and Francisco Rodŕıguez-Henŕıquez, editors, Progress in Cryptol-
ogy - LATINCRYPT 2015 - 4th International Conference on Cryptology
and Information Security in Latin America, Guadalajara, Mexico, Au-
gust 23-26, 2015, Proceedings, volume 9230 of Lecture Notes in Com-
puter Science, pages 139–156. Springer, 2015. ISBN 978-3-319-22173-
1. doi: 10.1007/978-3-319-22174-8 8. URL https://doi.org/10.1007/

978-3-319-22174-8_8.

[19] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, 2009. ISBN 978-0-521-89806-5. URL http://www.

cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065.

[20] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct
data structures. In International Colloquium on Automata, Languages, and
Programming, pages 332–344. Springer, 2003.

[21] Rosario Gennaro and Matthew Robshaw, editors. Advances in Cryptol-
ogy - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215
of Lecture Notes in Computer Science, 2015. Springer. ISBN 978-3-662-
47988-9. doi: 10.1007/978-3-662-47989-6. URL https://doi.org/10.

1007/978-3-662-47989-6.

[22] Howard M. Heys and Stafford E. Tavares. Substitution-Permutation Net-
works Resistant to Differential and Linear Cryptanalysis. J. Cryptology,
9(1):1–19, 1996. doi: 10.1007/BF02254789. URL https://doi.org/10.

1007/BF02254789.

55

http://drops.dagstuhl.de/opus/volltexte/2007/1013
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-319-22174-8_8
https://doi.org/10.1007/978-3-319-22174-8_8
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
https://doi.org/10.1007/978-3-662-47989-6
https://doi.org/10.1007/978-3-662-47989-6
https://doi.org/10.1007/BF02254789
https://doi.org/10.1007/BF02254789

[23] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-
seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong,
Hyun Kim, Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block
Cipher Suitable for Low-Resource Device. In Louis Goubin and Mitsuru
Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES
2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006,
Proceedings, volume 4249 of Lecture Notes in Computer Science, pages 46–
59. Springer, 2006. ISBN 3-540-46559-6. doi: 10.1007/11894063 4. URL
https://doi.org/10.1007/11894063_4.

[24] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho
Ryu, and Donggeon Lee. LEA: A 128-Bit Block Cipher for Fast Encryption
on Common Processors. In Yongdae Kim, Heejo Lee, and Adrian Perrig,
editors, Information Security Applications - 14th International Workshop,
WISA 2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected
Papers, volume 8267 of Lecture Notes in Computer Science, pages 3–27.
Springer, 2013. ISBN 978-3-319-05148-2. doi: 10.1007/978-3-319-05149-9
1. URL https://doi.org/10.1007/978-3-319-05149-9_1.

[25] Auguste Kerckhoffs. La cryptographie militaire, volume 9. University Mi-
crofilms, 1883.

[26] Neal Koblitz and Alfred Menezes. Another Look at ”Provable Security”.
J. Cryptology, 20(1):3–37, 2007. doi: 10.1007/s00145-005-0432-z. URL
https://doi.org/10.1007/s00145-005-0432-z.

[27] Zhengbin Liu, Yongqiang Li, and Mingsheng Wang. Optimal Differential
Trails in SIMON-like Ciphers. IACR Trans. Symmetric Cryptol., 2017(1):
358–379, 2017. URL http://tosc.iacr.org/index.php/ToSC/article/

view/598.

[28] Michael Luby and Charles Rackoff. How to Construct Pseudo-Random Per-
mutations from Pseudo-Random Functions. In Hugh C. Williams, editor,
Advances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA,
August 18-22, 1985, Proceedings, volume 218 of Lecture Notes in Computer
Science, page 447. Springer, 1985. ISBN 3-540-16463-4. doi: 10.1007/
3-540-39799-X 34. URL https://doi.org/10.1007/3-540-39799-X_34.

[29] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor
Helleseth, editor, Advances in Cryptology - EUROCRYPT ’93, Workshop
on the Theory and Application of of Cryptographic Techniques, Lofthus,
Norway, May 23-27, 1993, Proceedings, volume 765 of Lecture Notes in
Computer Science, pages 386–397. Springer, 1993. ISBN 3-540-57600-
2. doi: 10.1007/3-540-48285-7 33. URL https://doi.org/10.1007/

3-540-48285-7_33.

[30] Mitsuru Matsui. On Correlation Between the Order of S-boxes and
the Strength of DES. In Alfredo De Santis, editor, Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on the Theory and Application

56

https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/s00145-005-0432-z
http://tosc.iacr.org/index.php/ToSC/article/view/598
http://tosc.iacr.org/index.php/ToSC/article/view/598
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48285-7_33

of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceed-
ings, volume 950 of Lecture Notes in Computer Science, pages 366–375.
Springer, 1994. ISBN 3-540-60176-7. doi: 10.1007/BFb0053451. URL
https://doi.org/10.1007/BFb0053451.

[31] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [11],
pages 428–446. ISBN 3-540-97317-6. doi: 10.1007/0-387-34805-0 40. URL
https://doi.org/10.1007/0-387-34805-0_40.

[32] Brice Minaud and Yannick Seurin. The Iterated Random Permu-
tation Problem with Applications to Cascade Encryption. In Gen-
naro and Robshaw [21], pages 351–367. ISBN 978-3-662-47988-9.
doi: 10.1007/978-3-662-47989-6 17. URL https://doi.org/10.1007/

978-3-662-47989-6_17.

[33] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential
and Linear Cryptanalysis Using Mixed-Integer Linear Programming. In
Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Information Secu-
rity and Cryptology - 7th International Conference, Inscrypt 2011, Beijing,
China, November 30 - December 3, 2011. Revised Selected Papers, vol-
ume 7537 of Lecture Notes in Computer Science, pages 57–76. Springer,
2011. ISBN 978-3-642-34703-0. doi: 10.1007/978-3-642-34704-7 5. URL
https://doi.org/10.1007/978-3-642-34704-7_5.

[34] Mridul Nandi. A Simple Proof of a Distinguishing Bound of Iterated Uni-
form Random Permutation. IACR Cryptology ePrint Archive, 2015:579,
2015. URL http://eprint.iacr.org/2015/579.

[35] Kaisa Nyberg. Perfect Nonlinear S-Boxes. In Donald W. Davies, edi-
tor, Advances in Cryptology - EUROCRYPT ’91, Workshop on the The-
ory and Application of of Cryptographic Techniques, Brighton, UK, April
8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Sci-
ence, pages 378–386. Springer, 1991. ISBN 3-540-54620-0. doi: 10.1007/
3-540-46416-6 32. URL https://doi.org/10.1007/3-540-46416-6_32.

[36] Kaisa Nyberg. S-boxes and Round Functions with Controllable Linearity
and Differential Uniformity. In Preneel [39], pages 111–130. doi: 10.1007/
3-540-60590-8 9. URL https://doi.org/10.1007/3-540-60590-8_9.

[37] Kaisa Nyberg. Generalized Feistel Networks. In Kwangjo Kim and Tsu-
tomu Matsumoto, editors, Advances in Cryptology - ASIACRYPT ’96,
International Conference on the Theory and Applications of Cryptology
and Information Security, Kyongju, Korea, November 3-7, 1996, Proceed-
ings, volume 1163 of Lecture Notes in Computer Science, pages 91–104.
Springer, 1996. ISBN 3-540-61872-4. doi: 10.1007/BFb0034838. URL
https://doi.org/10.1007/BFb0034838.

[38] Jacques Patarin. Generic Attacks on Feistel Schemes. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, 7th International Conference

57

https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-662-47989-6_17
https://doi.org/10.1007/978-3-662-47989-6_17
https://doi.org/10.1007/978-3-642-34704-7_5
http://eprint.iacr.org/2015/579
https://doi.org/10.1007/3-540-46416-6_32
https://doi.org/10.1007/3-540-60590-8_9
https://doi.org/10.1007/BFb0034838

on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of
Lecture Notes in Computer Science, pages 222–238. Springer, 2001. ISBN
3-540-42987-5. doi: 10.1007/3-540-45682-1 14. URL https://doi.org/

10.1007/3-540-45682-1_14.

[39] Bart Preneel, editor. Fast Software Encryption: Second International
Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, volume
1008 of Lecture Notes in Computer Science, 1995. Springer. doi: 10.1007/
3-540-60590-8. URL https://doi.org/10.1007/3-540-60590-8.

[40] Ronald L. Rivest. The RC5 Encryption Algorithm. In Preneel [39], pages
86–96. doi: 10.1007/3-540-60590-8 7. URL https://doi.org/10.1007/

3-540-60590-8_7.

[41] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara,
Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher. A
submission to CAESAR, 2014.

[42] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. Twofish: A 128-bit block cipher. NIST AES Proposal,
15, 1998.

[43] Claude E Shannon. Communication theory of secrecy systems. Bell Labs
Technical Journal, 28(4):656–715, 1949.

[44] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. Automatic Security Evaluation and (Related-key) Differential Char-
acteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and
Other Bit-Oriented Block Ciphers. In Palash Sarkar and Tetsu Iwata, ed-
itors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, volume 8873 of Lecture Notes in Computer Science, pages 158–178.
Springer, 2014. ISBN 978-3-662-45610-1. doi: 10.1007/978-3-662-45611-8
9. URL https://doi.org/10.1007/978-3-662-45611-8_9.

[45] Qingju Wang, Zhiqiang Liu, Kerem Varici, Yu Sasaki, Vincent Rijmen, and
Yosuke Todo. Cryptanalysis of Reduced-Round SIMON32 and SIMON48.
In Willi Meier and Debdeep Mukhopadhyay, editors, Progress in Cryptology
- INDOCRYPT 2014 - 15th International Conference on Cryptology in
India, New Delhi, India, December 14-17, 2014, Proceedings, volume 8885
of Lecture Notes in Computer Science, pages 143–160. Springer, 2014. ISBN
978-3-319-13038-5. doi: 10.1007/978-3-319-13039-2 9. URL https://doi.

org/10.1007/978-3-319-13039-2_9.

[46] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and Guang
Gong. The Simeck Family of Lightweight Block Ciphers. In Tim Güneysu
and Helena Handschuh, editors, Cryptographic Hardware and Embedded

58

https://doi.org/10.1007/3-540-45682-1_14
https://doi.org/10.1007/3-540-45682-1_14
https://doi.org/10.1007/3-540-60590-8
https://doi.org/10.1007/3-540-60590-8_7
https://doi.org/10.1007/3-540-60590-8_7
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-13039-2_9
https://doi.org/10.1007/978-3-319-13039-2_9

Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Com-
puter Science, pages 307–329. Springer, 2015. ISBN 978-3-662-48323-
7. doi: 10.1007/978-3-662-48324-4 16. URL https://doi.org/10.1007/

978-3-662-48324-4_16.

59

https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16

10 Appendices

A S-boxes for ATC

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 04 00 04 08 0c 08 0c 00 04 08 0c 08 0c 00 04
01 00 06 00 06 08 0e 08 0e 00 06 08 0e 08 0e 00 06
02 00 04 04 00 08 0c 0c 08 00 04 0c 08 08 0c 04 00
03 00 06 04 02 08 0e 0c 0a 00 06 0c 0a 08 0e 04 02
04 01 05 01 05 09 0d 09 0d 01 05 09 0d 09 0d 01 05
05 01 07 01 07 09 0f 09 0f 01 07 09 0f 09 0f 01 07
06 01 05 05 01 09 0d 0d 09 01 05 0d 09 09 0d 05 01
07 01 07 05 03 09 0f 0d 0b 01 07 0d 0b 09 0f 05 03
08 02 06 02 06 0a 0e 0a 0e 03 07 0b 0f 0b 0f 03 07
09 02 04 02 04 0a 0c 0a 0c 03 05 0b 0d 0b 0d 03 05
0a 02 06 06 02 0a 0e 0e 0a 03 07 0f 0b 0b 0f 07 03
0b 02 04 06 00 0a 0c 0e 08 03 05 0f 09 0b 0d 07 01
0c 03 07 03 07 0b 0f 0b 0f 02 06 0a 0e 0a 0e 02 06
0d 03 05 03 05 0b 0d 0b 0d 02 04 0a 0c 0a 0c 02 04
0e 03 07 07 03 0b 0f 0f 0b 02 06 0e 0a 0a 0e 06 02
0f 03 05 07 01 0b 0d 0f 09 02 04 0e 08 0a 0c 06 00

Table 10: S-box S1

B Unit vectors for key differences generating
cycles in the Simon32 key schedule

Unit vectors for keys generating cycles with phase 1 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 2 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 3 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 4 [8]
1001100110011001 0000000000000000 0011001100110011 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0011001100110011 0000000000000000 0110011001100110 0000000000000000

60

0000000000000000 1001100110011001 0000000000000000 0011001100110011

0000000000000000 0101010101010101 0000000000000000 0101010101010101

0000000000000000 0011001100110011 0000000000000000 0110011001100110

0000000000000000 0000000000000000 1111111111111111 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1111111111111111

Unit vectors for keys generating cycles with phase 5 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 6 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 7 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 8 [16]
1000011110000111 0000000000000000 0000111100001111 0001000100010001

0100010001000100 0000000000000000 0001000100010001 0000000000000000

0010001000100010 0000000000000000 0001000100010001 0000000000000000

0001000100010001 0000000000000000 0001000100010001 0000000000000000

0000111100001111 0000000000000000 0001111000011110 0001000100010001

0000000000000000 1000011110000111 0001000100010001 0000111100001111

0000000000000000 0100010001000100 0000000000000000 0001000100010001

0000000000000000 0010001000100010 0000000000000000 0001000100010001

0000000000000000 0001000100010001 0000000000000000 0001000100010001

0000000000000000 0000111100001111 0001000100010001 0001111000011110

0000000000000000 0000000000000000 1001100110011001 0000000000000000

0000000000000000 0000000000000000 0101010101010101 0000000000000000

0000000000000000 0000000000000000 0011001100110011 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1001100110011001

0000000000000000 0000000000000000 0000000000000000 0101010101010101

0000000000000000 0000000000000000 0000000000000000 0011001100110011

Unit vectors for keys generating cycles with phase 9 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 10 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 11 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 12 [8]

61

1001100110011001 0000000000000000 0011001100110011 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0011001100110011 0000000000000000 0110011001100110 0000000000000000

0000000000000000 1001100110011001 0000000000000000 0011001100110011

0000000000000000 0101010101010101 0000000000000000 0101010101010101

0000000000000000 0011001100110011 0000000000000000 0110011001100110

0000000000000000 0000000000000000 1111111111111111 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1111111111111111

Unit vectors for keys generating cycles with phase 13 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 14 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 15 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 16 [32]
1000000001111111 0000000000000000 0000000011111111 0000000000000000

0100000001000000 0000000000000000 0000000100000001 0000000000000000

0010000000100000 0000000000000000 0000000100000001 0000000000000000

0001000000010000 0000000000000000 0000000100000001 0000000000000000

0000100000001000 0000000000000000 0000000100000001 0000000000000000

0000010000000100 0000000000000000 0000000100000001 0000000000000000

0000001000000010 0000000000000000 0000000100000001 0000000000000000

0000000100000001 0000000000000000 0000000100000001 0000000000000000

0000000011111111 0000000000000000 0000000111111110 0000000000000000

0000000000000000 1000000001111111 0000000000000000 0000000011111111

0000000000000000 0100000001000000 0000000000000000 0000000100000001

0000000000000000 0010000000100000 0000000000000000 0000000100000001

0000000000000000 0001000000010000 0000000000000000 0000000100000001

0000000000000000 0000100000001000 0000000000000000 0000000100000001

0000000000000000 0000010000000100 0000000000000000 0000000100000001

0000000000000000 0000001000000010 0000000000000000 0000000100000001

0000000000000000 0000000100000001 0000000000000000 0000000100000001

0000000000000000 0000000011111111 0000000000000000 0000000111111110

0000000000000000 0000000000000000 1000000110000001 0000000000000000

0000000000000000 0000000000000000 0100000101000001 0000000000000000

0000000000000000 0000000000000000 0010000100100001 0000000000000000

0000000000000000 0000000000000000 0001000100010001 0000000000000000

0000000000000000 0000000000000000 0000100100001001 0000000000000000

0000000000000000 0000000000000000 0000010100000101 0000000000000000

0000000000000000 0000000000000000 0000001100000011 0000000000000000

62

0000000000000000 0000000000000000 0000000000000000 1000000110000001

0000000000000000 0000000000000000 0000000000000000 0100000101000001

0000000000000000 0000000000000000 0000000000000000 0010000100100001

0000000000000000 0000000000000000 0000000000000000 0001000100010001

0000000000000000 0000000000000000 0000000000000000 0000100100001001

0000000000000000 0000000000000000 0000000000000000 0000010100000101

0000000000000000 0000000000000000 0000000000000000 0000001100000011

Unit vectors for keys generating cycles with phase 17 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 18 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 19 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 20 [8]
1001100110011001 0000000000000000 0011001100110011 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0011001100110011 0000000000000000 0110011001100110 0000000000000000

0000000000000000 1001100110011001 0000000000000000 0011001100110011

0000000000000000 0101010101010101 0000000000000000 0101010101010101

0000000000000000 0011001100110011 0000000000000000 0110011001100110

0000000000000000 0000000000000000 1111111111111111 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1111111111111111

Unit vectors for keys generating cycles with phase 21 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 22 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 23 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 24 [16]
1000011110000111 0000000000000000 0000111100001111 0001000100010001

0100010001000100 0000000000000000 0001000100010001 0000000000000000

0010001000100010 0000000000000000 0001000100010001 0000000000000000

0001000100010001 0000000000000000 0001000100010001 0000000000000000

0000111100001111 0000000000000000 0001111000011110 0001000100010001

0000000000000000 1000011110000111 0001000100010001 0000111100001111

63

0000000000000000 0100010001000100 0000000000000000 0001000100010001

0000000000000000 0010001000100010 0000000000000000 0001000100010001

0000000000000000 0001000100010001 0000000000000000 0001000100010001

0000000000000000 0000111100001111 0001000100010001 0001111000011110

0000000000000000 0000000000000000 1001100110011001 0000000000000000

0000000000000000 0000000000000000 0101010101010101 0000000000000000

0000000000000000 0000000000000000 0011001100110011 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1001100110011001

0000000000000000 0000000000000000 0000000000000000 0101010101010101

0000000000000000 0000000000000000 0000000000000000 0011001100110011

Unit vectors for keys generating cycles with phase 25 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 26 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 27 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 28 [8]
1001100110011001 0000000000000000 0011001100110011 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0011001100110011 0000000000000000 0110011001100110 0000000000000000

0000000000000000 1001100110011001 0000000000000000 0011001100110011

0000000000000000 0101010101010101 0000000000000000 0101010101010101

0000000000000000 0011001100110011 0000000000000000 0110011001100110

0000000000000000 0000000000000000 1111111111111111 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1111111111111111

Unit vectors for keys generating cycles with phase 29 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 30 [4]
1010101010101010 0000000000000000 1010101010101010 0000000000000000

0101010101010101 0000000000000000 0101010101010101 0000000000000000

0000000000000000 1010101010101010 0000000000000000 1010101010101010

0000000000000000 0101010101010101 0000000000000000 0101010101010101

Unit vectors for keys generating cycles with phase 31 [2]
1010101010101010 1010101010101010 1010101010101010 1010101010101010

0101010101010101 0101010101010101 0101010101010101 0101010101010101

Unit vectors for keys generating cycles with phase 32 [62]
1000000000000000 0000000000000000 0000000000000001 0000000000000000

0100000000000000 0000000000000000 0000000000000001 0000000000000000

0010000000000000 0000000000000000 0000000000000001 0000000000000000

64

0001000000000000 0000000000000000 0000000000000001 0000000000000000

0000100000000000 0000000000000000 0000000000000001 0000000000000000

0000010000000000 0000000000000000 0000000000000001 0000000000000000

0000001000000000 0000000000000000 0000000000000001 0000000000000000

0000000100000000 0000000000000000 0000000000000001 0000000000000000

0000000010000000 0000000000000000 0000000000000001 0000000000000000

0000000001000000 0000000000000000 0000000000000001 0000000000000000

0000000000100000 0000000000000000 0000000000000001 0000000000000000

0000000000010000 0000000000000000 0000000000000001 0000000000000000

0000000000001000 0000000000000000 0000000000000001 0000000000000000

0000000000000100 0000000000000000 0000000000000001 0000000000000000

0000000000000010 0000000000000000 0000000000000001 0000000000000000

0000000000000001 0000000000000000 0000000000000001 0000000000000000

0000000000000000 1000000000000000 0000000000000000 0000000000000001

0000000000000000 0100000000000000 0000000000000000 0000000000000001

0000000000000000 0010000000000000 0000000000000000 0000000000000001

0000000000000000 0001000000000000 0000000000000000 0000000000000001

0000000000000000 0000100000000000 0000000000000000 0000000000000001

0000000000000000 0000010000000000 0000000000000000 0000000000000001

0000000000000000 0000001000000000 0000000000000000 0000000000000001

0000000000000000 0000000100000000 0000000000000000 0000000000000001

0000000000000000 0000000010000000 0000000000000000 0000000000000001

0000000000000000 0000000001000000 0000000000000000 0000000000000001

0000000000000000 0000000000100000 0000000000000000 0000000000000001

0000000000000000 0000000000010000 0000000000000000 0000000000000001

0000000000000000 0000000000001000 0000000000000000 0000000000000001

0000000000000000 0000000000000100 0000000000000000 0000000000000001

0000000000000000 0000000000000010 0000000000000000 0000000000000001

0000000000000000 0000000000000001 0000000000000000 0000000000000001

0000000000000000 0000000000000000 1000000000000001 0000000000000000

0000000000000000 0000000000000000 0100000000000001 0000000000000000

0000000000000000 0000000000000000 0010000000000001 0000000000000000

0000000000000000 0000000000000000 0001000000000001 0000000000000000

0000000000000000 0000000000000000 0000100000000001 0000000000000000

0000000000000000 0000000000000000 0000010000000001 0000000000000000

0000000000000000 0000000000000000 0000001000000001 0000000000000000

0000000000000000 0000000000000000 0000000100000001 0000000000000000

0000000000000000 0000000000000000 0000000010000001 0000000000000000

0000000000000000 0000000000000000 0000000001000001 0000000000000000

0000000000000000 0000000000000000 0000000000100001 0000000000000000

0000000000000000 0000000000000000 0000000000010001 0000000000000000

0000000000000000 0000000000000000 0000000000001001 0000000000000000

0000000000000000 0000000000000000 0000000000000101 0000000000000000

0000000000000000 0000000000000000 0000000000000011 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1000000000000001

0000000000000000 0000000000000000 0000000000000000 0100000000000001

65

0000000000000000 0000000000000000 0000000000000000 0010000000000001

0000000000000000 0000000000000000 0000000000000000 0001000000000001

0000000000000000 0000000000000000 0000000000000000 0000100000000001

0000000000000000 0000000000000000 0000000000000000 0000010000000001

0000000000000000 0000000000000000 0000000000000000 0000001000000001

0000000000000000 0000000000000000 0000000000000000 0000000100000001

0000000000000000 0000000000000000 0000000000000000 0000000010000001

0000000000000000 0000000000000000 0000000000000000 0000000001000001

0000000000000000 0000000000000000 0000000000000000 0000000000100001

0000000000000000 0000000000000000 0000000000000000 0000000000010001

0000000000000000 0000000000000000 0000000000000000 0000000000001001

0000000000000000 0000000000000000 0000000000000000 0000000000000101

0000000000000000 0000000000000000 0000000000000000 0000000000000011

Unit vectors for the keys generating cycles with phase 64 [64]
1000000000000000 0000000000000000 0000000000000000 0000000000000000

0100000000000000 0000000000000000 0000000000000000 0000000000000000

0010000000000000 0000000000000000 0000000000000000 0000000000000000

0001000000000000 0000000000000000 0000000000000000 0000000000000000

0000100000000000 0000000000000000 0000000000000000 0000000000000000

0000010000000000 0000000000000000 0000000000000000 0000000000000000

0000001000000000 0000000000000000 0000000000000000 0000000000000000

0000000100000000 0000000000000000 0000000000000000 0000000000000000

0000000010000000 0000000000000000 0000000000000000 0000000000000000

0000000001000000 0000000000000000 0000000000000000 0000000000000000

0000000000100000 0000000000000000 0000000000000000 0000000000000000

0000000000010000 0000000000000000 0000000000000000 0000000000000000

0000000000001000 0000000000000000 0000000000000000 0000000000000000

0000000000000100 0000000000000000 0000000000000000 0000000000000000

0000000000000010 0000000000000000 0000000000000000 0000000000000000

0000000000000001 0000000000000000 0000000000000000 0000000000000000

0000000000000000 1000000000000000 0000000000000000 0000000000000000

0000000000000000 0100000000000000 0000000000000000 0000000000000000

0000000000000000 0010000000000000 0000000000000000 0000000000000000

0000000000000000 0001000000000000 0000000000000000 0000000000000000

0000000000000000 0000100000000000 0000000000000000 0000000000000000

0000000000000000 0000010000000000 0000000000000000 0000000000000000

0000000000000000 0000001000000000 0000000000000000 0000000000000000

0000000000000000 0000000100000000 0000000000000000 0000000000000000

0000000000000000 0000000010000000 0000000000000000 0000000000000000

0000000000000000 0000000001000000 0000000000000000 0000000000000000

0000000000000000 0000000000100000 0000000000000000 0000000000000000

0000000000000000 0000000000010000 0000000000000000 0000000000000000

0000000000000000 0000000000001000 0000000000000000 0000000000000000

0000000000000000 0000000000000100 0000000000000000 0000000000000000

0000000000000000 0000000000000010 0000000000000000 0000000000000000

66

0000000000000000 0000000000000001 0000000000000000 0000000000000000

0000000000000000 0000000000000000 1000000000000000 0000000000000000

0000000000000000 0000000000000000 0100000000000000 0000000000000000

0000000000000000 0000000000000000 0010000000000000 0000000000000000

0000000000000000 0000000000000000 0001000000000000 0000000000000000

0000000000000000 0000000000000000 0000100000000000 0000000000000000

0000000000000000 0000000000000000 0000010000000000 0000000000000000

0000000000000000 0000000000000000 0000001000000000 0000000000000000

0000000000000000 0000000000000000 0000000100000000 0000000000000000

0000000000000000 0000000000000000 0000000010000000 0000000000000000

0000000000000000 0000000000000000 0000000001000000 0000000000000000

0000000000000000 0000000000000000 0000000000100000 0000000000000000

0000000000000000 0000000000000000 0000000000010000 0000000000000000

0000000000000000 0000000000000000 0000000000001000 0000000000000000

0000000000000000 0000000000000000 0000000000000100 0000000000000000

0000000000000000 0000000000000000 0000000000000010 0000000000000000

0000000000000000 0000000000000000 0000000000000001 0000000000000000

0000000000000000 0000000000000000 0000000000000000 1000000000000000

0000000000000000 0000000000000000 0000000000000000 0100000000000000

0000000000000000 0000000000000000 0000000000000000 0010000000000000

0000000000000000 0000000000000000 0000000000000000 0001000000000000

0000000000000000 0000000000000000 0000000000000000 0000100000000000

0000000000000000 0000000000000000 0000000000000000 0000010000000000

0000000000000000 0000000000000000 0000000000000000 0000001000000000

0000000000000000 0000000000000000 0000000000000000 0000000100000000

0000000000000000 0000000000000000 0000000000000000 0000000010000000

0000000000000000 0000000000000000 0000000000000000 0000000001000000

0000000000000000 0000000000000000 0000000000000000 0000000000100000

0000000000000000 0000000000000000 0000000000000000 0000000000010000

0000000000000000 0000000000000000 0000000000000000 0000000000001000

0000000000000000 0000000000000000 0000000000000000 0000000000000100

0000000000000000 0000000000000000 0000000000000000 0000000000000010

0000000000000000 0000000000000000 0000000000000000 0000000000000001

C RoadRunneR

This paper resulted from a workshop at the Lorentz Center that I participated
in during my masters project.

67

Refined Probability of Differential Characteristics
Including Dependency Between Multiple Rounds
Anne Canteaut1, Eran Lambooij2, Samuel Neves3, Shahram Rasoolzadeh4,

Yu Sasaki5 and Marc Stevens6

1 Inria, France, Anne.Canteaut@inria.fr
2 Technische Universiteit Eindhoven, The Netherlands, e.lambooij@student.tue.nl

3 CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal, sneves@dei.uc.pt
4 Ruhr-Universität Bochum, Germany, Rasoolzadeh.shahram@gmail.com
5 NTT Secure Platform Laboratories, Japan, sasaki.yu@lab.ntt.co.jp

6 CWI Amsterdam, The Netherlands, marc.stevens@cwi.nl

Abstract. The current paper studies the probability of differential characteristics for
an unkeyed (or with a fixed key) construction. Most notably, it focuses on the gap
between two probabilities of differential characteristics: probability with independent
S-box assumption, pind, and exact probability, pexact. It turns out that pexact is larger
than pind in Feistel network with some S-box based inner function. The mechanism
of this gap is then theoretically analyzed. The gap is derived from interaction of
S-boxes in three rounds, and the gap depends on the size and choice of the S-box.
In particular the gap can never be zero when the S-box is bigger than six bits. To
demonstrate the power of this improvement, a related-key differential characteristic
is proposed against a lightweight block cipher RoadRunneR. For the 128-bit key
version, pind of 2−48 is improved to pexact of 2−43. For the 80-bit key version, pind
of 2−68 is improved to pexact of 2−62. The analysis is further extended to SPN with
an almost-MDS binary matrix in the core primitive of the authenticated encryption
scheme Minalpher: pind of 2−128 is improved to pexact of 2−96, which allows to extend
the attack by two rounds.

Keywords: differential cryptanalysis · independent S-box · fixed key · unkeyed con-
struction · exact probability · RoadRunneR · Minalpher

1 Introduction
Differential cryptanalysis [BS90, BS93] is one of the most fundamental cryptanalytic
approaches targeting symmetric-key primitives. While its basic concept in an idealized
environment under several assumptions can easily be understood, predicting the actual
behavior of concrete algorithms is quite complex and a lot of research has been done
regarding this topic.

Most block ciphers are designed to iterate a small keyed permutation, called the round
function, with many rounds being performed to build a conversion between the plaintext
and ciphertext. The plaintext x0 is updated by round function RFi in the ith round by
processing xi+1 ← RFi(xi) for i = 0, 1, 2, · · · . The most common approach for evaluating
the effect of differential analysis consists in applying the Markov assumption to the cipher
[LMM91] and evaluating the probability of differential propagation for each round. The
probability of the differential characteristic over the entire cipher is then equal to the
product of the probabilities of the differentials of all rounds.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology Vol. 0, No.0, pp.1—25, DOI:XXXXXXXX

2 Refined Probability of Differential Characteristics

Given a pair of differences (ai, ai+1), the corresponding probability pi , Prx∈P[RFi(x)⊕
RFi(x⊕ ai) = ai+1] is searched for each i, where P is the plaintext space, and Πipi is the
probability of the characteristic (a0, a1, . . . , ar) for the entire r-round cipher.

The hidden argument in the above explanation is the treatment of a key k or subkeys
ki. The Markov assumption can be established when the state xi is first xored with a
subkey ki and all subkeys are chosen independently uniformly at random. Therefore, most
analyses are based on bounds on the expected probability of a differential characteristic,
i.e., the probability averaged over all keys. However, the implementation environment
for symmetric-key primitives does not allow to store all independent subkeys, thus ki is
usually expanded from k, and the Markov assumption collapses.

Moreover, subkeys may not be xored in every round to all state bits, which can be
seen in designs of lightweight cryptographic schemes such as Simon [BSS+13], SKINNY
[BJK+16] and LED [GPPR11]. Also some primitives, like hash functions or Even-Mansour
schemes [DKS12, EM91, EM97], are based on an iterated permutation which does not
involve any key at all. In such a case, the evaluation using the Markov assumption may
still give some insight about the security against differential analysis, but never leads to
the exact probability of the differential propagation for multiple rounds.

To conclude, evaluating the probability of differential propagations for multiple rounds
precisely without the Markov assumption is a big challenge.

1.1 Related Work on Precise Evaluation of Differential Probability
Our work then focuses on the evaluation of the probability of a differential characteristic
for a primitive with a fixed key, or for a keyless primitive. It is worth noticing that both
contexts are similar in the sense that the absence of a key can equivalently be seen as the
insertion of an all-zero key. Conversely, a structure with a fixed key is equivalent to an
unkeyed one with different building blocks. For instance, using an S-box S with a fixed
round-key k is equivalent to using S′ : x 7→ Sk(x) as an S-box without any key. Let E
be a block cipher with a fixed key and let ∆P and ∆C be the plaintext and ciphertext
differences, respectively. Suppose that the goal is to precisely evaluate the probability of
Pr[E(x)⊕E(x⊕∆P) = ∆C], where the probability is taken over all plaintexts x. Besides
the issue of subkeys for multiple rounds, there are several aspects to precisely evaluate
this probability.

The first issue we would like to mention is the contrast between differential charac-
teristics and differential effect. The differential characteristics specify not only (∆P,∆C)
but also differences in intermediate states, often the initial difference in each round, and
evaluate the probability of each section and multiplies all the probabilities. On the contrary,
the differential effect sums up the probabilities of all possible differential characteristics,
thus gives a more precise probability. A lot of research has been done to evaluate the exact
maximum expected differential probability (and the maximum expected linear potential)
in particular for AES, e.g. [HLL+00, KMT01, PSC+02, PSLL03, DR06, KS07, CR15], and
for Feistel or MISTY networks, e.g. [NK92, Mat96]. Those researches are different from
the current paper with respect to the point that all state bits are xored by subkeys which
are assumed to be chosen independently and uniformly at random.

In contrary, our work focuses on determining the exact probability of a differential
characteristic when the key is fixed. This fixed-key probability has been determined in a
very few cases only. The most prominent example is the AES, for which the probabilities
of 2-round characteristics have been determined, for all possible values of the key [DR07].

Alternative approaches can be used when such a theoretical analysis is out of reach.
One approach is carrying out some experiment, which exhaustively chooses plaintexts
P ∈ P and actually computes EK(x)⊕EK(x⊕∆P). The experiment is then iterated for
several keys (see e.g. [BG10]). The experiment can include any complex event, however,
the lack of theoretical analysis limits its versatility to be applied to other ciphers. Of

Canteaut et al. 3

course the approach can only be applied to ciphers with small block sizes, often 32-bit
block sizes, such as Simon and KATAN [DDGS15, CDK09]. Another approach introduced
in [BBL13] consists in computing the maximal expected probability of a characteristic
and deriving a bound on the probability of the existence of characteristics whose fixed-key
probability exceeds a given value. This result can be used by designers to guarantee that
characteristics with high probability are very unlikely. However, this bound exhibits a
large gap between the fixed-key and the expected probabilities (see Table 1 in [BBL13]).
It is then of little use to the cryptanalyst who needs to estimate the exact probability of
some characteristic for a given key.

1.2 Our Contributions
In this paper, we evaluate the exact probabilities of the differential characteristics in some
unkeyed constructions. In particular, we provide an in-depth study of the probabilities
of the differential characteristics over three rounds of an unkeyed Feistel network. Most
notably, when the inner function follows an SPN construction with an S-box having
differential uniformity 4, the exact probability of a 3-round characteristic is either zero
or a value which is greater than or equal to the usual estimate with independent S-box
assumption, pind. A more thorough analysis is then provided when the inner function
consists of a single n-bit S-box with differential uniformity 4. We show that, in this case,
the exact probability of any 3-round characteristic with only active Sboxes is either zero,
or exceeds pind by a factor of 2` where ` ≥ max(0, n− 6).

The above analysis is then applied to the lightweight 64-bit block cipher RoadRun-
neR [BS15]. It adopts a Feistel construction and its inner function starts and ends with
the S-box application without applying any subkey, therefore the above generic analysis
can be applied. Although no security is claimed against related-key attacks, the designers
mentioned related-key differential characteristics with 24 active S-boxes on the full (12)
rounds of RoadRunneR-128, whose probability is expected to be 2−2·24 = 2−48. The
designers also speculated that the number of active S-boxes could be reduced further with
more careful analysis. In this paper, we first concretize the related-key characteristic
with 24 active S-boxes and show that the exact probability is higher than the original
expectation. The comparison of two probabilities is shown in Table 1. The attack is
implemented up to 8 rounds and the improved factor is verified. We prove that the
minimum number of active S-boxes is 24 by using a SAT solver, thus our characteristic is
fairly tight.

Finding related-key differential characteristics is much harder in RoadRunneR-80
due to its key schedule. We propose an 8-round characteristic with pind = 2−68 which
are unlikely to be satisfied even with a full codebook, but the improvement with pexact
increases it to 2−62.

We then extend the application of our observations to SPN-based structures with almost-
MDS binary matrices. In particular, we analyze pexact of the differential characteristic in an
authenticated encryption scheme Minalpher [STA+14], which offers 128-bit security. The
previous differential characteristic reaches 2−128 for 6 (out of 17.5) rounds. We show that
for this characteristic a refined estimate of the exact probability is 2−96. This significant
increase enables us to extend the attack by two rounds. The comparison of the probabilities
are given in Table 1.

1.3 Paper Outline
The paper is organized as follows. Section 2 provides theoretical analysis of pexact for
3-round Feistel structure. Section 3 applies the observation to RoadRunneR with 128-bit
key. Section 4 extends the application to SPN with almost-MDS matrices in Minalpher.

4 Refined Probability of Differential Characteristics

Table 1: Improved probability of characteristics for RoadRunneR-128 and Minalpher.
Rounds 1 2 3 4 5 6 7 8 9 10 11 12
RoadRunneR-128
pind -4 -8 -12 -16 -20 -24 -28 -32 -36 -40 -44 -48
pexact -4† -8† -12† -15† -19† -22† -26† -29† -33 -36 -40 -43

RoadRunneR-80
pind -8 -17 -26 -34 -42 -51 -60 -68
pexact -8† -17† -25† -32† -39† -47 -55 -62
Minalpher
pind -16 -48 -64 -80 -112 -128
pexact -16† -40‡ -48 -64 -88 -96 -112 -128

Numbers denote logarithm of the probabilities. Probabilities with † were experimentally
verified. Probability with ‡ was experimentally verified only for the essential part, namely
the probability of passing through S-boxes that are affected by our analysis was verified.

2 Probabilities of 3-Round Characteristics in some Keyless
Feistel Networks

In this section, we evaluate the exact probability of a differential characteristic over
three rounds of an unkeyed Feistel network whose inner function is seen as a single S-box
application. We then want to determine the probability over all possible inputs (x0, x1)
of the three-round characteristic depicted in Figure 1, where the difference at the output
of the ith S-box is defined as bi = ai+1 ⊕ ai−1. It is worth noticing that the differential
probabilities for an unkeyed 3-round Feistel have been previously investigated in order
to determine the smallest differential uniformity we can get for an S-box which follows
this construction [LW14, CDL15]. However, these papers focus on the maximum possible
probability for a 3-round differential characteristic, while we want to obtain a formula
which captures any given characteristic.

Using that x3 = S(x2)⊕x1, we get that the probability of the three-round characteristic
defined by (a0, . . . , a4) is equal to the following probability:

pexact =Prx1,x2∈Fn
2
[S(S(x2)⊕ x1 ⊕ a1 ⊕ b2)⊕ S(S(x2)⊕ x1) = b3

and S(x2 ⊕ a2)⊕ S(x2) = b2 and S(x1 ⊕ a1)⊕ S(x1) = b1] .

We will show that this probability may differ from the usual estimate obtained when
assuming that the inputs of the three S-boxes are independent, i.e. from

pind = Prx3∈Fn
2
[S(x3 ⊕ a1 ⊕ b2)⊕ S(x3) = b3]× Prx2∈Fn

2
[S(x2 ⊕ a2)⊕ S(x2) = b2]

× Prx1∈Fn
2
[S(x1 ⊕ a1)⊕ S(x1) = b1] .

The difference between the two probabilities mainly comes from some dependencies
due to the fact that the input of the S-box in the third round is the sum of two elements,
x1 and S(x2), where x1 and x2 respectively conform to the S-box differentials (a1, b1) and
(a2, b2). Also, we show that the size of the S-box and, for a given size, the choice of the
S-box may affect the factor between the exact probability and the usual estimate.

More precisely, we first show that, in many cases, including when S has an SPN
structure based on an S-box with differential uniformity at most 4, the factor λ between
these two probabilities is either zero or a power of 2 whose exponent corresponds to the
dimension of a well-defined linear space. Most notably, if S corresponds to a single S-box
with differential uniformity at most 4, then

pexact = λpind.

Canteaut et al. 5

j+S- - ?

���������9

XXXXXXXXXz

j+S- - ?

���������9

XXXXXXXXXz

j+S- - ?

���������9

XXXXXXXXXz

? ?

?

?

?

?

x1 x0

x2

x3

x3

x1

x2

x4

a1 a0

a1 b1

b2

a4 a3

a2

a3 b3

Figure 1: Differential characteristic of a three-round Feistel network where bi = ai+1⊕ai−1.

with λ ∈ {0, 2`, with max(0, n− 6) ≤ ` ≤ n− 2}, unless one of the three S-boxes in the
differential path is inactive, which corresponds to pexact = pind.

2.1 General result
The technique used in the proof is similar to the one used by Daemen and Rijmen for
computing the fixed-key probabilities of the differentials over two rounds of the AES [DR07].
It mainly relies on the algebraic structure of the sets of inputs (resp. of outputs) of the
S-box conforming to a given differential. These sets are defined as follows.

Definition 1. Let S be an n-bit to n-bit S-box. For any pair (a, b) of differences, we use
the following notation:

XS(a, b) , {x ∈ Fn2 : S(x⊕ a)⊕ S(x) = b},

and
YS(a, b) , {S(x) ∈ Fn2 : S(x⊕ a)⊕ S(x) = b}.

Remark 1. In the following, we will use some relationships between the sets XS(a, b) and
YS(a, b). Obviously,

YS(a, b) = S (XS(a, b)) .

Moreover, if S is a permutation,

YS(a, b) = XS−1(b, a) .

Indeed, y ∈ YS(a, b) if and only if x = S−1(y) satisfies

S(x⊕ a)⊕ S(x) = b .

6 Refined Probability of Differential Characteristics

Then, we have
S(S−1(y)⊕ a) = y ⊕ b

which is equivalent to
S−1(y)⊕ a = S−1(y ⊕ b) ,

i.e., y ∈ XS−1(b, a).
Now, we focus on the following data transformation depicted in Figure 2:

z = S(x2)⊕ x1 such that x1 ∈ XS(a1, b1) and x2 ∈ XS(a2, b2).

n+S S- - - -
?

x2

x1

z

∆ = a1

∆ = b2∆ = a2 ∆ = b3

Figure 2: Target structure.

When the three sets XS(a1, b1), YS(a2, b2) and XS(a1 ⊕ b2, b3) are affine subspaces, we
get the following result.

Theorem 1. Let S be a permutation of Fn2 , and let a1, b1, a2, b2, b3 be five elements in Fn2 .
Assume that there exist α1, α2, α3 ∈ Fn2 and three linear subspaces V1, V2, V3 ⊆ Fn2 such
that

XS(a1, b1) = α1 + V1, YS(a2, b2) = α2 + V2, and XS(a1 ⊕ b2, b3) = α3 + V3 .

Then, the multiset

{(x1, x2) ∈ XS(a1, b1)×XS(a2, b2) : S(S(x2)⊕ x1 ⊕ a1 ⊕ b2)⊕ S(S(x2)⊕ x1) = b3}

is either empty or has size 2d with

d = dimV1 + dimV2 + dimV3 − dim(V1 + V2 + V3)

where V1 +V2 +V3 denotes the linear space formed by all elements of the form v1 + v2 + v3
with vi ∈ Vi.
Proof. We first observe that we do not need to restrict ourselves to the situation where
the input differences of all S-boxes are nonzero. Indeed, if the input difference of one
S-box is zero (i.e. a1 = 0 or a2 = 0 or a1 = b2), either the corresponding output difference
is nonzero, which implies that pexact = 0 and the multiset we consider is empty, or the
corresponding output difference is zero, and the associated set (i.e. XS(a1, b1) or YS(a2, b2)
or XS(a1 ⊕ b2, b3)) satisfies the hypothesis since it equals the whole space Fn2 .

Let us now define the following set (without multiplicity)

Z = {(S(x2)⊕ x1) : (x1, x2) ∈ XS(a1, b1)×XS(a2, b2)} .

Then, Z = (α1⊕α2) + (V1 +V2), and each element in Z corresponds to 2r pairs (x1, x2) in
XS(a1, b1)×XS(a2, b2) with r = dimV1 + dimV2 − dim(V1 + V2). We want to determine
the size of the set

S = {z ∈ Z : S(z ⊕ a1 ⊕ b2)⊕ S(z) = b3} .

Canteaut et al. 7

Clearly, this set corresponds to the intersection between Z and XS(a1 ⊕ b2, b3), which are
both affine subspaces of Fn2 . Since the intersection between two affine subspaces is either
empty or a coset of the intersection between the corresponding linear subspaces, we deduce
that, if S 6= ∅, then there exists some s such that

S = s+ ((V1 + V2) ∩ V3) .

Recall that, for any two linear subspaces U and V ,

dim(U + V) = dimU + dimV − dim(U ∩ V) . (1)

It follows from (1) that, if S 6= ∅, we have

dimS = dim((V1 + V2) ∩ V3) = dim(V1 + V2) + dimV3 − dim(V1 + V2 + V3) .

Since each element in Z and then in S corresponds to 2r pairs (x1, x2) in XS(a1, b1) ×
XS(a2, b2), we deduce that the multiset

{(x1, x2) ∈ XS(a1, b1)×XS(a2, b2) : S(S(x2)⊕ x1 ⊕ a1 ⊕ b2)⊕ S(S(x2)⊕ x1) = b3}

is either empty or has size 2d with

d = r + dimS
= dimV1 + dimV2 − dim(V1 + V2) + dim(V1 + V2) + dimV3 − dim(V1 + V2 + V3)
= dimV1 + dimV2 + dimV3 − dim(V1 + V2 + V3) .

Remark 2. For the sake of simplicity, the previous theorem considers a 3-round Feistel
network with the same keyless S-box. However, since the result only relies on the structure
of the three sets XS(a1, b1), YS(a2, b2) and XS(a1⊕b2, b3), it clearly appears that Theorem 1
also holds for a Feistel network with three different S-boxes, S1, S2 and S3, as soon as
XS1(a1, b1), YS2(a2, b2) and XS3(a1 ⊕ b2, b3) are affine subspaces.

As a direct consequence of Theorem 1, we get the following corollary.

Corollary 1. Let S be a permutation of Fn2 , and let a1, b1, a2, b2, b3 be five elements in
Fn2 . Assume that there exist α1, α2, α3 ∈ Fn2 and three linear subspaces V1, V2, V3 ⊆ Fn2
such that

XS(a1, b1) = α1 + V1, YS(a2, b2) = α2 + V2, and XS(a1 ⊕ b2, b3) = α3 + V3 .

Let

pexact = Prx1,x2∈Fn
2

[S(S(x2)⊕ x1 ⊕ a1 ⊕ b2)⊕ S(S(x2)⊕ x1) = b3 and
S(x2 ⊕ a2)⊕ S(x2) = b2 and S(x1 ⊕ a1)⊕ S(x1) = b1]

and

pind = Prx1∈Fn
2
[S(x1 ⊕ a1)⊕ S(x1) = b1]× Prx2∈Fn

2
[S(x2 ⊕ a2)⊕ S(x2) = b2]

×Prz∈Fn
2
[S(z ⊕ a1 ⊕ b2)⊕ S(z) = b3]

Then, either pexact = 0 or

pexact = 2`pind with ` = n− dim(V1 + V2 + V3) .

Most notably, 0 ≤ ` ≤ n− 2.

8 Refined Probability of Differential Characteristics

Proof. Let us focus on the case where pexact 6= 0. We deduce from Theorem 1 that

pexact = 2dimV1+dimV2+dimV3−dim(V1+V2+V3)−2n .

Since pind = 2dimV1+dimV2+dimV3−3n, we obtain that

λ = pexact
pind

= 2`

with

` = dimV1 + dimV2 + dimV3 − dim(V1 + V2 + V3)− 2n− (dimV1 + dimV2 + dimV3 − 3n)
= n− dim(V1 + V2 + V3) .

Since V1 + V2 + V3 is a subspace of Fn2 , its dimension does not exceed n. On the other
hand, when pind 6= 0, V1 (resp. V2) contains at least two elements, 0 and a1 (resp. 0
and b2). It follows that, if a1 6= b2, then V1 + V2 contains the linear space spanned by
a1 and b2, i.e. 〈a1, b2〉, which has dimension 2, implying that dim(V1 + V2 + V3) ≥ 2.
This lower bound also holds when a1 = b2 since this corresponds to V3 = Fn2 , leading to
dim(V1 + V2 + V3) = n. Therefore, we have proved that

2 ≤ dim(V1 + V2 + V3) ≤ n

implying
0 ≤ ` ≤ n− 2 .

The hypothesis required for applying by this result, i.e., the fact that the three sets
XS(a1, b1), YS(a2, b2) and XS(a1⊕b2, b3) are affine subspaces, is satisfied in many practical
cases. Indeed, when an S-box σ has differential uniformity at most 4, i.e., when 4 is the
maximal value in the difference distribution table of σ, all sets Xσ(a, b) and Yσ(a, b) are
affine subspaces (see e.g., Lemma 2 in [DR07]). Therefore, the hypothesis is satisfied when
S has an SPN structure based on a smaller differentially 4-uniform S-box σ: in this case,
XS(a, b) (resp. YS(a, b)) corresponds to the Cartesian product of sets of the form Xσ(a, b)
(resp. Yσ(a, b)).

An interesting observation deduced from the previous corollary is that, in all the previ-
ously mentioned situations, if the exact probability of a 3-round differential characteristic
is non-zero, then it is greater than or equal to the usual estimate pind.

2.2 When S is differentially 4-uniform
There is a specific case where the factor λ between the two probabilities can be easily
lower-bounded: when S itself is a function with differential uniformity at most 4.

Theorem 2. Let S be a permutation of Fn2 with differential uniformity at most 4. Let
a1, b1, a2, b2, b3 be five nonzero elements in Fn2 . Let

pexact = Prx1,x2∈Fn
2

[S(S(x2)⊕ x1 ⊕ a1 ⊕ b2)⊕ S(S(x2)⊕ x1) = b3 and
S(x2 ⊕ a2)⊕ S(x2) = b2 and S(x1 ⊕ a1)⊕ S(x1) = b1]

and

pind = Prx1∈Fn
2
[S(x1 ⊕ a1)⊕ S(x1) = b1]× Prx2∈Fn

2
[S(x2 ⊕ a2)⊕ S(x2) = b2]

×Prz∈Fn
2
[S(z ⊕ a1 ⊕ b2)⊕ S(z) = b3]

Then,

Canteaut et al. 9

• if a1 = 0 or a2 = 0 or a1 = b2, then

pexact = pind ;

• if the three S-boxes are active, i.e. a1 6= 0 and a2 6= 0 or a1 6= b2, then either
pexact = 0 or

pexact = 2`pind with max(0, n− 6) ≤ ` ≤ n− 2 .

Moreover, if all three differentials (a1, b1), (a2, b2), and (a1 ⊕ b2, b3) have probability
21−n, then λ ∈ {0, 2n−2}.

Proof. We know from Corollary 1 that pexact = 0 or pexact = 2`pind with ` = n− dim(V1 +
V2 + V3). Since V1 + V2 + V3 is a subspace of Fn2 , its dimension does not exceed n and is
also smaller than the sum of the dimensions of the three subspaces. Since the S-box has
differential uniformity at most 4, all Vi have dimension at most 2 unless the corresponding
S-box is inactive, which is equivalent to Vi = Fn2 .

• Let us first assume that the input difference of one of the S-boxes is zero. If the
corresponding output difference is nonzero, the transition is not valid. In this case,
we have pexact = pind = 0. If the corresponding output is zero, i.e. if the S-box
is inactive, the associated linear space Vi equals the whole space. It follows that
` = n− dim(V1 + V2 + V3) = 0, leading to pexact = pind.

• Let us now assume that all the three S-boxes are active. Then, dim(V1 + V2 + V3) is
smaller than 6. We derive that

max(0, n− 6) ≤ ` ≤ n− 2 .

Moreover, when all three subspaces V1, V2, and V3 have dimension 1, then

V1 + V2 + V3 = 〈a1, b2〉 .

It follows that, in this case,
λ ∈ {0, 2n−2} .

In other words,
pexact ∈ {0, 2−2n+1} .

Most notably, when n > 6, if the differential path contains three active S-boxes, then
its exact probability can never be equal to the product of the probabilities of the three
constituent transitions.

Example 1. Theorem 2 can be verified for instance when S is the AES S-box, which
operates on F8

2. Most differentials for the AES S-box have probability 2−7. For such
differential paths, we can check that pexact ∈ {0, 2−15}. For instance, for (a1, b1) =
(0x01, 0xca), (a2, b2) = (0xe5, 0x18), and b3 = 0xb3, there are exactly two pairs (x1, x2) ∈
XS(a1, b1)×XS(a2, b2) such that (S(x2)⊕ x1) satisfies the differential (a1 ⊕ b2, b3). Then,
the probability of the whole differential path is 2−15 while all three differentials have
probability 2−7, i.e., λ = 2−15+21 = 26. This factor varies when some of the involved
differentials have probability 2−6. For (a1, b1) = (0x01, 0x1f), (a2, b2) = (0x33, 0x0f) and
b3 = 0xb8, the probability of the whole differential path is again 2−15, while the second
differential has probability 2−7 and the other two have probability 2−6. We then have
λ = 2−15+19 = 24.

10 Refined Probability of Differential Characteristics

If all S-boxes are active, the highest possible value for pexact is 2n−2 ×
(
2−(n−2))3 =

2−2n+4. It is worth noticing that this also corresponds to the highest possible value for
pexact when only two S-boxes are active, i.e. pexact =

(
2−(n−2))2 = 2−2n+4. We now give

a simple necessary condition on a1 and b2 for obtaining differential paths with three active
S-boxes achieving this maximal probability.
Proposition 1. Let S be a permutation of Fn2 with differential uniformity exactly 4. If
there exist nonzero a1, b1, a1, b2, b3 ∈ Fn2 such that pexact = 2−2n+4, then there exist x and
y in Fn2 such that the second-order derivatives of S and S−1 satisfy

Da1Db2S(x) = 0 and Da1Db2S
−1(y) = 0 , (2)

where DuDvS(x) = S(x)⊕ S(x⊕ u)⊕ S(x⊕ v)⊕ S(x⊕ u⊕ v).
It is worth noticing that, if S is an involution, then there always exists a pair (a1, b2)

such that Condition (2) holds for some x and y in Fn2 .
Proof. By hypothesis, all the three S-boxes are active. Then, pind ≤ 2−3n+6 and we know
from Theorem 2 that λ ≤ 2n−2. It follows that pexact = 2−2n+4 if and only if λ = 2n−2

(i.e., if dim(V1 + V2 + V3) = 2) and all the three involved differentials have probability
2−(n−2). Since the differential (a1, b1) has probability 2−(n−2), there exists x, v1 ∈ Fn2 with
v1 6= {0, a1} such that XS(a1, b1) = x+ 〈a1, v1〉. This implies that

S(x)⊕ S(x⊕ a1) = b1 = S(x⊕ v1)⊕ S(x⊕ v1 ⊕ a1)

leading to
Da1Dv1S(x) = 0 .

Similarly, a2 is such that YS(a2, b2) = y + 〈b2, v2〉 for some y, v2 ∈ Fn2 with v2 /∈ {0, b2}.
We now use the fact that, for any permutation S, YS(a, b) = XS−1(b, a) (see Remark 1).
From the same arguments as for v1, we deduce that

Db2Dv2S
−1(y) = 0 .

But, since λ = 2n−2, we know that

dim(V1 + V2) = dim〈a1, b2, v1, v2〉 = 2 .

It follows that v1 ∈ {b2, b2⊕a1} and v2 ∈ {a1, a1⊕ b2}. This implies that Da1Db2S(x) = 0
and Da1Db2S

−1(y) = 0.
It is well-known that there is no pair of nonzero distinct elements (a, b) such that

DaDbS takes the value 0 if and only if S is APN (i.e., its differential uniformity equals
2) [Nyb94]. In our case, S is not APN, implying that such a pair (a, b) exists. When S is
an involution, is also satisfies DaDbS

−1(y) = 0 for some y.

Example 2 (RoadRunneR S-box). It is easy to check that, for the RoadRunneR [BS15]
S-box, there is no pair of nonzero distinct elements (a1, b2) such that both Da1Db2S and
Da1Db2S

−1 vanish at some points. We then deduce that any differential path with three
active S-boxes satisfies pexact ≤ 2−5. By examining all second-order derivatives of this
S-box which take the value 0, we have searched for all (a1, b1, a2, b2, b3) such that all three
differentials have probability 2−2 and lead to a differential path with overall probability
2−5. We have found 136 such configurations. One example is

a1 = 0x1, b1 = 0x1, a2 = 0x8, b2 = 0x4, b3 = 0x8 .

Among these patterns, the only one which satisfies a2 = a1 ⊕ b2 and such that also the
differentials (a1, b2) and (a1, b3) have probability 2−2 is the one we will use in the next
section:

a1 = 0xd, a2 = 0xc and b1 = b2 = b3 = 0x1 ,
and the configuration obtained by inverting the roles of a1 and a2.

Canteaut et al. 11

Example 3 (Klein S-box). The Klein [GNL11] S-box is an involution over F4
2. Then,

there exist some pairs of nonzero distinct elements (a1, b2) such that both Da1Db2S and
Da1Db2S

−1 vanish at some points. For instance, a1 = 0x1 and b2 = 0x2 satisfy this
property. For this S-box, the differential path defined by

a1 = 0x1, b1 = 0x3, a2 = 0xd, b2 = 0x2, and b3 = 0xe

has overall probability 2−4. In other words, any pair of elements (x1, x2) satisfying the
first two differentials also leads to some (S(x2)⊕ x1) which satisfies the third one.

All previous results hold in the keyless setting, but are still valid when the three S-boxes
are distinct permutations with differential uniformity 4. This enables us to cover the fixed-
key scenario since using S with a fixed round-key k is equivalent to using S′ : x 7→ Sk(x).
For instance, in the fixed-key scenario, Theorem 2 states that a differential path with three
active S-boxes satisfies pexact = λpind with λ ∈ {0, 2`, with max(0, n − 6) ≤ ` ≤ n − 2}.
However, for a given differential path, the value of λ may vary with the key. For instance,
the same differential path may have probability zero for some round-keys, and probability
pexact > 0 for the other ones.

3 Application to RoadRunneR
3.1 Description of RoadRunneR
RoadRunneR is a lightweight block cipher recently proposed by Baysal and Sahin [BS15].
It has a Feistel network structure with a 64-bit block size and it supports both 80 and
128-bit keys. In the 80-bit version, the number of rounds is 10, whereas in the 128-bit
version the number of rounds is 12. Whitening keys (WK0 and WK1) are applied to the
left half of the block in the first and last round. The general structure of RoadRunneR
is depicted in Figure 3.

Round Function. RoadRunneR’s round function, named F , takes as input a 32-bit
block Li, a 96-bit subkey Ki, and a 32-bit constant Ci. The constant Ci for round i is the
32-bit value Nr − i, where Nr is the total number of rounds of the cipher as defined above.

The round function in RoadRunneR consists of three subsequent applications of SLK,
which is composed of a substitution layer followed by a linear layer and a key addition
layer. After three SLK layers a single substitution layer (S) is performed. In between the
second and third SLK layer the constant Ci is added (cf. Figure 3).

Key Schedule. The key expansion of the 128-bit RoadRunneR version chops the key
up in four 32-bit words. The round keys are permutations of these words. Similarly, in the
80-bit version the key is split into five 16-bit words, and the key schedule is a permutation
of six words. Table 2 lists the exact permutations for the round and whitening keys.

Substitution Layer. The substitution layer S consists of a parallel composition of the
4× 4-bit S-box of Table 31 to every 4-bit nibble of the block.

Linear Layer. The linear layer L applies the function L′ : F8
2 7→ F8

2 to each individual
byte of the block

L′(x) = x⊕ (x≪ 1)⊕ (x≪ 2).
This construction is known to be invertible in general for distinct rotation offsets [Riv11],
and the designers of RoadRunneR argue that this particular set of rotation offsets has
good diffusion properties.

1 This is the “optimal” S-box 13 in [UCI+11, Table 4].

12 Refined Probability of Differential Characteristics

L0 R0

WK0

F

C0

K0

F

C1

K1

F

Ci

Ki

F

CNr−1

KNr−1

LNr RNr

WK1

SLK SLK SLK S

Ci
Ki,1 Ki,2 Ki,3

S

S

S

S

S

S

S

S

L′

L′

L′

L′

K

Figure 3: Overview of the RoadRunneR block cipher. Left: Feistel network with
whitening keys xored in the first and last round. Top right: The round function F , taking
in as input a 32-bit word, a 32-bit constant and a 96-bit round key. Bottom right: The
core SLK function, which consists of an S-box layer followed by a linear diffusion layer
and finally a key addition.

3.2 Security Analysis by the Designers
The designers claim no security in the related-key setting, due to the fact that the key
schedule uses the master key without any change in between rounds. The designers in
fact mention in the paper that each F can be passed with only two active S-boxes in a
related key attack, with total of 24 active S-boxes, and that this total number may be
further reduced in a more detailed analysis. We stress that no information about concrete
characteristics, such as plaintext and subkey difference is provided.

In the single-key setting, the designers show that the minimum number of active
S-boxes in an active F is 10 along with concrete propagation patterns. The authors
experimentally checked that the probability of characteristics and differentials is correct. In
their experiments they report that, the differential probability does not significantly increase
from the theoretically calculated characteristic probability. Based on this experiment, the
authors assume that each active S-box multiplies the probability with 2−2 and an active
F has approximately a probability of 2−20.

3.3 Applications of our Observations
By comparing Figure 1 and Figure 3, it is easy to see that the analysis in Section 2 can
directly be applied to RoadRunneR when the number of rounds is more than two. We

Canteaut et al. 13

Table 2: RoadRunneR’s key schedule.

(a) 128-bit key.

Round Number Key schedule
WK0 A
WK1 B

0 (mod 4) B‖C‖D
1 (mod 4) A‖B‖C
2 (mod 4) D‖A‖B
3 (mod 4) C‖D‖A

(b) 80-bit key.

Round Number Key schedule
WK0 A‖B
WK1 C‖D

0 (mod 5) C‖D‖E‖A‖B‖C
1 (mod 5) D‖E‖A‖B‖C‖D
2 (mod 5) E‖A‖B‖C‖D‖E
3 (mod 5) A‖B‖C‖D‖E‖A
4 (mod 5) B‖C‖D‖E‖A‖B

Table 3: The RoadRunneR S-box.
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 0 8 6 D 5 F 7 C 4 E 2 3 9 1 B A

emphasize that the observations can be applied both in the single-key and related-key
settings. We also notice that the observation does not contradict the experiments by the
designers that verified the probability of differentials within one round. What we are
showing is that even before calculating the effect of collecting multiple differences, the
actual probability of characteristics pexact is higher than theoretically calculated one, pind,
under the independent S-box assumption when the number of rounds is more than two.

In the following sections, we demonstrate the power of our observations with applications
to concrete attacks.

3.4 Attack on RoadRunneR-128
First, we concretize the characteristic having only two active S-boxes per round mentioned
by the designers. Suppose that a 128-bit master key K is denoted by four 32-bit values
and the difference of those values are denoted by ∆0,∆1,∆2 and ∆3. By following the key
schedule described in Table 2, the difference of the initial whitening key is ∆WK0 = ∆0.
Then, subkey differences are (∆1,∆2,∆3) for the first round, (∆0,∆1,∆2) for the second
round, (∆3,∆0,∆1) for the third round, and so on. Four rounds with those subkey
differences are illustrated in Figure 4.

We then choose ∆0,∆1,∆2 and ∆3. There are four S-layers in each round. Our strategy
consists in canceling the difference from ∆1 with ∆2 after the S-layer, which makes the
next S-layer inactive. Then canceling the difference from ∆3 with ∆0 after the S-layer,
which makes the next S-layer inactive. By iterating this, non-active S-layers and active
S-layers appear alternately, and we only have 2 active S-boxes per round.

As a result of our analysis, we construct a 4-round iterative characteristic by satisfying
the following four conditions.

Prx∈F4
2
[S(x)⊕ S(x⊕ δ1) = γ2] = 2−2, (3)

Prx∈F4
2
[S(x)⊕ S(x⊕ δ3) = γ0] = 2−2, (4)

Prx∈F4
2
[S(x)⊕ S(x⊕ δ1) = δ1 ⊕ δ3] = 2−2, (5)

Prx∈F4
2
[S(x)⊕ S(x⊕ δ3) = δ1 ⊕ δ3] = 2−2, (6)

where δ1 is a group of 4 bits in the 32-bit differences ∆1 and the 4 bits gather into a single
active S-box after the bit-permutation around the S-layer. δ3 can similarly be defined.

14 Refined Probability of Differential Characteristics

∆0 ∆1

∆0 SL SL SL S

∆1 ∆2 ∆3

SL SL SL S

∆0 ∆1 ∆2

SL SL SL S

∆3 ∆0 ∆1

SL SL SL S

∆2 ∆3 ∆0

2−2 2−2

2−2 2−2

2−2 2−2

2−1 2−2

0 0 ∆1 ∆2 0 0 ∆3

∆1⊕
∆3

∆3 ∆0 0 0 ∆1 ∆2 0 0

0 0 ∆3 ∆0 0 0 ∆1

∆1⊕
∆3

∆1 ∆2 0 0 ∆3 ∆0 0 0

Figure 4: Four-round iterative differential characteristic against RoadRunneR-128.

The difference γ0 (resp. γ2) corresponds to the corresponding nibble of L−1(∆0) (resp. of
L−1(∆2)) where L denotes the whole linear layer. For example, when the active S-box
position is fixed to the top in Figure 3, δ1 = 0xf corresponds to ∆1 = 0x01010101.

We note that by setting ∆0 = ∆2 = L(∆1 ⊕∆3), the first two conditions can always
be satisfied when the last two conditions are satisfied. The characteristic is iterative after
4 rounds including subkey differences, and can be extended to 12 rounds easily.

By analyzing the differential distribution table (DDT) of the S-box, we chose δ1 = 0xc
and δ3 = 0xd (or ∆1 = 0x01010000 and ∆3 = 0x01010001). Then, δ1 ⊕ δ3 = 0x1
(∆0 = ∆2 = L(0x00000001)). This configuration satisfies the above listed conditions.

Evaluation of pind and pexact. From Eqs. (3) to (6), pind can be calculated from the
transition probability for each S-box, 2−2, and the number of active S-boxes, leading to
2−2·24 = 2−48.

Recall that for any pair (a, b) of differences, we use the following notation: XS(a, b) =
{x ∈ F4

2 : S(x) ⊕ S(x ⊕ a) = b} and YS(a, b) = {S(x) ∈ F4
2 : S(x) ⊕ S(x ⊕ a) = b}. By

applying the analysis in Section 2, pexact of the first S-layer in round 4 in Figure 4 is

Pr
x∈XS(0xd,0x1),y∈YS(0xc,0x1)

[x⊕ y ∈ XS(0xc, 0x1)]. (7)

By analyzing the DDT, we obtain XS(0xd, 0x1) = {0x0, 0x1, 0xc, 0xd}, YS(0xc, 0x1) =
{0x4, 0x5, 0xe, 0xf}, and XS(0xc, 0x1) = {0x4, 0x5, 0x8, 0x9}, which leads to pexact = 2−1.

Canteaut et al. 15

Similarly, pexact of the first S-layer in rounds 6, 8, 10, and 12 are 2−1, which leads to 2−43.
It is important to notice that this probability is evaluated in the keyless scenario studied

in the previous section because it is not affected by the values of the round-keys. Indeed,
the round-key is inserted after applying the S-box and then does not affect XS(0xc, 0x1)
and XS(0xd, 0x1). Moreover, the S-box involved in YS(0xc, 0x1) corresponds to the last
S-box-layer in the third round and is independent from the key. It follows that, in this
situation, pexact takes the same value for any fixed-key.

Experiments. First of all, we experimentally proved that 24 active S-boxes in 12 rounds
is minimal by using the SAT-solver based tool [MP13]. Differently from the expectation
by the designers, the number of active S-boxes will not be further reduced.

We then implemented the attack up to 8 rounds. We refer back to Table 1 for the
results, which clearly indicates the gap between pind and pexact in rounds 4, 6 and 8.

3.5 Attack on RoadRunneR-80
In this part, we present an 8-round attack against RoadRunneR-80. Differently from
RoadRunneR-128, the key is divided into 16-bit values (A,B,C,D,E) and each of them
can be both the top half or the bottom half of 32-bit subkeys. Hence, constructing
systematic subkeys is harder than in RoadRunneR-128.

By applying the bit-permutation around S, a group of 4 bits for a single S-box will
move to symmetric positions in the 32-bit state. To exploit this fact, we set ∆A = ∆B =
∆C = ∆D = ∆E to make all 32-bit subkey differences identical and symmetric.

We set subkey difference to the xor of two differences ∆X and ∆Z. ∆X takes a role of
input difference to the subsequent S-layer, and ∆Z cancels the difference from the previous
S-layer. Namely, in every S-layer, cancellation and injection of differences are performed.
The characteristic is illustrated in Figure 5, which is iterative after four rounds.

We then choose ∆X and ∆Z , where ∆Z , L(∆Y). We define δX , δY similarly to
the previous section, namely 4-bit difference in the 32-bit variable corresponding to an
active S-box. Because subkey difference is symmetric, ∆X and ∆Y must be symmetric,
which further limits δX , δY to be symmetric (and non-zero). Therefore, δX , δY ∈ {5, a, f}.
According to the characteristic in Figure 5, we have the following two conditions;

Prx∈F4
2
[S(x)⊕ S(x⊕ δX) = δY] > 0, (8)

Prx∈F4
2
[S(x)⊕ S(x⊕ δX ⊕ δY) = δY] > 0, (9)

δX 6= δY . (10)

From DDT, there is only one choice, δX = 5 (∆X = 0x00010001) and δY = a, which
satisfies Conditions (8) and (9) with probability 2−2 and 2−3, respectively.

Evaluation of pind and pexact. We first evaluate pind. In every two rounds, there are
seven active S-boxes with probability of 2−2 and there is one active S-box with probability
of 2−3. Thus pind is 2−17 in every 2 rounds and 2−68 for 8 rounds, which are unlikely to
be satisfied with 264 plaintexts of the full codebook.

The mechanism of occurring the advantage of pexact is the same as in the attack against
RoadRunneR-128, but we now have an active S-box at the beginning of the inner function
in every round. Therefore, from the third round, pexact is higher than pind by a factor of 2,
which improves the probability of 8-rounds to 2−8−9−8−7−7−8−8−7 = 2−62.

In more details, pexact of the first S-layer in rounds with pind = 2−8 and pind = 2−9 are

Pr
x∈XS(0xf,0xa),y∈YS(0x5,0xa)

[x⊕ y ∈ XS(0x5, 0xa)], (11)

Pr
x∈XS(0x5,0xa),y∈YS(0x5,0xa)

[x⊕ y ∈ XS(0xf, 0xa)]. (12)

16 Refined Probability of Differential Characteristics

∆Z ∆X

∆X⊕
∆Z

SL SL SL S

∆X ⊕ ∆Z ∆X ⊕ ∆Z ∆X ⊕ ∆Z

SL SL SL S

∆X ⊕ ∆Z ∆X ⊕ ∆Z ∆X ⊕ ∆Z

SL SL SL S

∆X ⊕ ∆Z ∆X ⊕ ∆Z ∆X ⊕ ∆Z

SL SL SL S

∆X ⊕ ∆Z ∆X ⊕ ∆Z ∆X ⊕ ∆Z

2−2 2−2 2−2 2−2

2−3 2−2 2−2 2−2

2−2 2−2 2−2 2−2

2−1 2−2 2−2 2−2

∆X ∆Z ∆X ∆Z ∆X ∆Z ∆X ∆Y

∆X⊕
∆Y ∆Z ∆X ∆Z ∆X ∆Z ∆X ∆Y

∆X⊕
∆Y ∆Z ∆X ∆Z ∆X ∆Z ∆X ∆Y

∆X ∆Z ∆X ∆Z ∆X ∆Z ∆X ∆Y

Figure 5: 4-round iterative characteristic for RoadRunneR-80. ∆X = 0x5, ∆Y = 0xA,
∆Z = L(∆Y). The transition probabilities in red are those which differ from the estimate
with the independent S-box assumption.

Given that XS(0x5, 0xa) = {0x2, 0x3, 0x6, 0x7}, YS(0x5, 0xa) = {0x6, 0x7, 0xc, 0xd} and
XS(0xf, 0xa) = {0x0, 0xf}, pexact in eq. (11) is 2−1 instead of 2−2 and pexact in eq. (12)
is 2−2 instead of 2−3.

Experiments. To ensure our estimates match reality, we performed some computational
verification of the above differential characteristic:

• 1 round of RoadRunneR-80 yielded 65870 (≈ 216) matches over 224 trials;

• 2 rounds of RoadRunneR-80 yielded 1011 (≈ 210) matches over 227 trials;

• 3 rounds of RoadRunneR-80 yielded 124 (≈ 27) matches over 232 trials;

• 4 rounds of RoadRunneR-80 yielded 28 (≈ 25) matches over 237 trials;

• 5 rounds of RoadRunneR-80 yielded 16 (= 24) matches over 243 trials.

These results are summarized in Table 1.

Canteaut et al. 17

4 Extension to Almost-MDS Matrix in Minalpher-P
In this section, we show that improving the probability by evaluating pexact can be extended
to SPN with almost-MDS binary matrices. An example of such matrices is




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


 , (13)

which is actually adopted by Minalpher [STA+14]. The rotated version of the above
matrix is more popular, which can be seen in several designs e.g. PRINCE [BCG+12],
FIDES [BBK+13], and Midori [BBI+15]. Section 4.1 provides an overview of our obser-
vation. Section 4.2 introduces the specification of Minalpher-P. Section 4.3 introduces
the previous best differential characteristic evaluated by pind. Section 4.4 improves the
probability by evaluating pexact and extends the attack by two rounds.

4.1 Overview
Let us consider a 1-column state consisting of four cells of size n bits, thus the state size
is 4n bits. Suppose that the state is updated by an SPN, in which the S-layer applies
an n-bit S-box to all of four cells and the P-layer applies the matrix in Eq. (13). With
this structure, the number of active cells can be two per rounds owing to the following
property: When two cells have an identical difference, the matrix multiplication does not
change the number of active cells and the differential value.

Let us consider the 2-round characteristic shown in Figure 6, which assumes that
Prx∈Fn

2
[S(x)⊕ S(x⊕∆a) = ∆b] = 2−n+2 and Prx∈Fn

2
[S(x)⊕ S(x⊕∆b) = ∆c] = 2−n+2.

pind is (2−n+2)4 because of the four active S-boxes, meanwhile we show that pexact is

S-layer

Δ𝑎

P-layer S-layer

×
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

Δ𝑎

Δ𝑏

Δ𝑏

Δ𝑏

Δ𝑏

Δ𝑐

Δ𝑐

2−𝑛+2 2

𝑆

𝑆

𝑆

𝑆

2−𝑛+2

Figure 6: Overview: 2-round characteristic in SPN with single column.

(2−n+2)3 in which the S-layer can be satisfied only with 2−n+2 from the second round.
The state of SPN ciphers usually have more columns, thus the improvement by a factor of
2−n+2 can be amplified, which makes the improved factor significantly large.

4.2 Specification of Minalpher-P
The core part of Minalpher is the Even-Mansour construction in which a 256-bit plaintext
is masked by a 256-bit secret value, and then a nibble-wise 256-bit permutation called
Minalpher-P is computed. Finally, the output of Minalpher-P is masked by the 256-bit
secret value. A 256-bit state is described as two 4× 8 nibble-matrices denoted by A and B.

Let Ai−1 and Bi−1 be the inputs of the round function for round i. The states
are updated to Ai and Bi with a round function, which consists of SubNibbles (SN),
ShuffleRows (SR), SwapMatrices (SM), XorMatrix (XM) and MixColumns (MC), where

18 Refined Probability of Differential Characteristics

SN , SR and MC are functions from
{
F4

2
}4×8 to

{
F4

2
}4×8. In the end, the state is xored

with the round constant. We use notations Aop and Bop to denote
{
F4

2
}4×8 data after

operation op. See Figure 7 for its illustration.

𝑆𝑁 𝑆𝑅 𝑀𝐶

𝑆𝑁 𝑆𝑅−1 𝑀𝐶

𝐴𝑖−1
𝑆𝑁

𝐵𝑖−1
𝑆𝑁

𝐴𝑖−1
𝑆𝑅

𝐵𝑖−1
𝑆𝑅

𝐴𝑖−1
𝑆𝑀

𝐵𝑖−1
𝑆𝑀

𝐴𝑖−1
𝑋𝑀

𝐵𝑖−1
𝑋𝑀

𝐴𝑖−1
𝑀𝐶

𝐵𝑖−1
𝑀𝐶

𝑐𝑜𝑛𝑖−1

𝐴𝑖−1

𝐵𝑖−1

𝐴𝑖

𝐵𝑖

Figure 7: Illustration of the round function of Minalpher-P.

SubNibbles (SN). SN substitutes each nibble by using 4-bit involution S-box S.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) B 3 4 1 2 8 C F 5 D E 0 6 9 A 7

ShuffleRows (SR). SR shuffles nibble positions within each row. SR consists of two
shuffle functions SR1 and SR2 defined as follows. Elements in 4× 8 matrix A are moved
according to the table below, and for B, SR−1 is applied instead of SR.

i 0 1 2 3 4 5 6 7
SR1(i) 6 7 1 0 2 3 4 5
SR2(i) 4 5 0 1 7 6 2 3
SR−1

1 (i) 3 2 4 5 6 7 0 1
SR−1

2 (i) 2 3 6 7 0 1 5 4

SwapMatrices (SM). SM swaps the matrix A and the matrix B.

XorMatrix (XM). The matrix B is xored with the matrix A.

MixColumns (MC). MC is a column-wise linear operation. As introduced before, MC
is expressed as a multiplication by the matrix in Eq. (13).

Round Constant. The round constant coni−1 is xored to the matrix B. In this paper,
the fact that the matrix A is not updated by round constant is important.

4.3 Differential Characteristics of Minalpher-P
The designers of Minalpher found a 6-round iterative truncated differential with 64 active
S-boxes, which is shown in Figure 8. Note that this is not the one with minimal number
of active S-boxes for 6 rounds. However, if it is iterated beyond 6 rounds, the number of
active S-boxes matches the lower bound obtained by automated search.

Then, we convert the truncated differential to a specific characteristic by fixing the
differential values. By calculating DDT of the 4-bit S-box, we observe that the input
difference 0x4 will be mapped to the output difference 0x4 with probability 2−2. So, we
replace all filled cells in Figure 8 with the particular difference 0x4.

Canteaut et al. 19

Round 1

(8)

Round 2

(16)

Round 3

(8)

Round 4

(8)

Round 5

(16)

Round 6

(8) con 6

SN SR
-1 MC

SN SR MC

SR

SR
-1

SR

SR
-1

SR

SN

SN

SN

SN

SN

SN

SN

SN

SN

SR
-1

SR

SR
-1

SR

SR
-1

MC

con 1

MC

MC

con 2

MC

MC

con 3

MC

MC

SN

con 4

MC

MC

con 5

MC

Figure 8: 6-round iterative truncated differential of Minalpher-P. Filled and empty cells
denote active and inactive nibbles, respectively. Note that we rotated the original 6-round
iterative characteristic by one round to optimize it in our analysis.

Let us evaluate the probability of the 6-round characteristic. Here we assume that
the secret mask of the Even-Mansour construction prevents the attacker from choosing
the plaintext or ciphertext to deterministically satisfy differential propagations through
S-box in the first and the last rounds. The linear part is satisfied with probability
1, thus the probability only comes from the S-box, which is 2−2 per S-box. Because
8 + 16 + 8 + 8 + 16 + 8 = 64 S-boxes are included in the characteristic, the probability is
(2−2)64 = 2−128 when all transitions through all S-boxes are assumed to be independent.
Considering that the security of Minalpher is claimed up to 128 bits, extending the
characteristic by a few more rounds is impossible.

4.4 Analysis of Exact Probability
Preliminaries. Recall that for any pair (a, b) of differences, we use the following notation:
XS(a, b) = {x ∈ F4

2 : S(x)⊕S(x⊕a) = b} and YS(a, b) = {S(x) ∈ F4
2 : S(x)⊕S(x⊕a) = b}.

When S is involution as in Minalpher-P, XS(a, a) is equal to YS(a, a) for any a. In
particular, when a = 4 in the S-box of Minalpher-P, XS(4, 4) = YS(4, 4) = {9, a, d, e}.
This is represented by an affine space 〈3, 4〉+ 9, where 〈x, y〉 is a linear subspace.

Analysis of pexact. Here, we show that the probability of the 6-round characteristic is
actually 2−96 instead of 2−128, thus the number of attacked rounds can be extended. We

20 Refined Probability of Differential Characteristics

begin with the analysis of the simple case; SN and MC are iterated twice in a column,
which is shown in Figure 9.

SN
Δ

MC SN MC

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

2−4 2−2

𝑠𝑡𝑎𝑡𝑒: 𝑋1 𝑠𝑡𝑎𝑡𝑒: 𝑋1
𝑆𝑁 𝑠𝑡𝑎𝑡𝑒: 𝑋1

𝑀𝐶 𝑠𝑡𝑎𝑡𝑒: 𝑋2
𝑆𝑁 𝑠𝑡𝑎𝑡𝑒: 𝑋2

𝑀𝐶

Figure 9: Analysis of simple case (∆ = 0x4). Probability is 2−8 if two SN operations are
evaluated independently, while the exact probability is 2−6.

As shown in Figure 9, the five states are denoted by X1, X
SN
1 , XMC

1 , XSN
2 , XMC

2 .
Suppose that the 4-nibble value of X1 is chosen uniformly at random. Then the probability
of satisfying the first SN layer is (2−2)2 = 2−4. When this occurs, the value of XSN

1 [0]
and XSN

1 [2] are limited to four choices in YS(4, 4) = {9, a, d, e}. From the specification of
MC, the value of active nibbles in XMC

1 are calculated as

XMC
1 [0] = XSN

1 [0]⊕XSN
1 [1]⊕XSN

1 [3],
XMC

1 [2] = XSN
1 [1]⊕XSN

1 [2]⊕XSN
1 [3].

In order to satisfy the differential propagation in the second SN operation, both of XMC
1 [0]

and XMC
1 [2] must be in the affine space of XS(4, 4) = {9, a, d, e}. Considering that XSN

1 [0]
and XSN

1 [2] are in the affine space, the condition that both of XMC
1 [0] and XMC

1 [2] are
in the same affine space is XSN

1 [1]⊕XSN
1 [3] is in its linear subspace 〈3, 4〉 = {0, 3, 4, 7}.

This occurs with probability 2−2, thus the probability of satisfying the second SN layer is
2−2, instead of 2−4.

Application to 6-Round Characteristic. All the differences in Figure 8 are fixed to 0x4.

Round 1. Suppose that the lower half of the input state, B0, is chosen uniformly at random.
Then, the probability of satisfying the SN layer in round 1 is (2−2)8 = 2−16.

Round 2. The SR operation does not mix the value, thus irrelevant to this analysis. The
state BSN0 is next updated by MC and then passed to SN in round 2. Namely,
the simple column-wise analysis discussed above appears in four columns. Thus the
probability that the differences in A1 are propagated to ASN1 is (2−2)4 = 2−8 instead
of 2−16. Note that BXM0 is xored with random state value BSM0 and round constant,
thus the probability between B1 and BSN1 is 2−16. In total, the probability of round
2 is 2−24.

Round 3. The same event as round 2 occurs. Namely BSN1 is updated with MC and then
SN in round 3. As discussed before, this probability is 2−8 instead of 2−16.

Rounds 4–6. The probabilities for rounds 4, 5, and 6 are calculated round by round.
The analysis becomes almost the same as round 1, 2, and 3, respectively because
of the similarity of the active S-boxes positions. To avoid redundancy, we omit
the round-by-round explanation. In the end, the probability for those rounds is
2−16−24−8 = 2−48.

From the above discussion we conclude that the probability of the 6-round differential
characteristic in Figure 8 is 2−96, which is significantly larger than pind of 2−128.

Canteaut et al. 21

Experimental Verification. The probability of the first three rounds already reach 264,
which is infeasible in our environment. The gap between pind and pexact first appears
in state ASB1 of the SN operation in the second round, which is independent of the
propagation in state BSB1 . We thus implement the state update from BSB0 to ASB1 with
the limitation that values of active bytes are sampled randomly from YS(4, 4).

We generated 65, 536(= 216) random values at BSB0 , and 250(≈ 28) values satisfy the
difference in ASB1 , which confirms that the probability of the characteristic from BSB0 to
ASN1 is actually (2−2)4 = 2−8 instead of (2−4)4 = 2−16.

Extension to 8 Rounds. We append 1 round to both of the beginning and the end of
the 6-round iterative characteristic in Figure 8. Remember that the probability of the first
round in the 6-round characteristic is 2−16. Due to the iterative structure, with the same
reason, the probability of the last extended round is 2−16. The extended round at the
beginning has eight active S-boxes. Because the advantage of pexact cannot be exploited at
the beginning, the probability is (2−2)8 = 2−16.

To conclude, the probability of the 8-round characteristic is 2−96−16−16 = 2−128.
Considering that the previous 6-round characteristic has the same probability, we improved
the previous attack by 2 rounds.

Note that a path with probability 2−128 cannot be a straightforward distinguisher with
2128 queries. Here our main focus is improving the previous analysis, and using the path
with probability 2−128 is the same setting as the designers of Minalpher. Moreover, by
combining with similar paths, the probability may be amplified to be greater than 2−128.

5 Concluding Remarks

This paper studied the interaction between the differential transitions occurring in the
multiple rounds of a fixed-key or unkeyed primitive. We showed that assuming independent
input values for each S-box does not correspond to the actual situation, and pexact can
be much larger than pind. Our general analysis on the Feistel network showed that the
gap between pexact and pind depends on the S-box size and the S-box choice. In addition,
having non-zero gap is inevitable when the S-box has differential uniformity 4 and a size
larger than six bits (unless one Sbox is inactive).

This observation actually impacts the security of practical algorithms. We applied it
to the lightweight block cipher RoadRunneRand the authenticated encryption scheme
Minalpher. The results showed that with pexact the number of attacked rounds could be
improved compared to the evaluation with pind.

Symmetric-key primitives with unkeyed functions or public permutations are getting
more popular due to its lightweight property and can be seen in many contemporary
structures such as the sponge and the Even-Mansour constructions. This paper alerts us
that the resistance against differential cryptanalysis needs to be analyzed carefully.

Acknowledgments

This work has been initiated during the Lorentz Center workshop on “High-Security
Lightweight Cryptography”, held in Leiden, the Netherlands, in October 2016 and we
would like to thank the organizers for inviting us. We also thank the anonymous reviewers
for their careful reading and their valuable comments.

22 Refined Probability of Differential Characteristics

References
[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,

Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

[BBK+13] Begül Bilgin, Andrey Bogdanov, Miroslav Knezevic, Florian Mendel, and
Qingju Wang. Fides: Lightweight authenticated cipher with side-channel
resistance for constrained hardware. In Guido Bertoni and Jean-Sébastien
Coron, editors, Cryptographic Hardware and Embedded Systems - CHES 2013 -
15th International Workshop, Santa Barbara, CA, USA, August 20-23, 2013.
Proceedings, volume 8086 of Lecture Notes in Computer Science, pages 142–158.
Springer, 2013.

[BBL13] Céline Blondeau, Andrey Bogdanov, and Gregor Leander. Bounds in shallows
and in miseries. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology - CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science,
pages 204–221. Springer, 2013.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science, pages 208–225. Springer, 2012.

[BG10] Céline Blondeau and Benoît Gérard. Links between theoretical and effective dif-
ferential probabilities: Experiments on PRESENT. Cryptology ePrint Archive,
Report 2010/261, 2010. http://eprint.iacr.org/2010/261.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 123–153. Springer, 2016.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology -
CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture Notes
in Computer Science, pages 2–21. Springer, 1990.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[BS15] Adnan Baysal and Sühap Sahin. RoadRunneR: A small and fast bitslice block
cipher for low cost 8-bit processors. In Tim Güneysu, Gregor Leander, and

Canteaut et al. 23

Amir Moradi, editors, Lightweight Cryptography for Security and Privacy - 4th
International Workshop, LightSec 2015, Bochum, Germany, September 10-11,
2015, Revised Selected Papers, volume 9542 of Lecture Notes in Computer
Science, pages 58–76. Springer, 2015.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http:
//eprint.iacr.org/2013/404.

[CDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A family of small and efficient hardware-oriented block
ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 272–288. Springer, 2009.

[CDL15] Anne Canteaut, Sébastien Duval, and Gaëtan Leurent. Construction of
lightweight S-Boxes using Feistel and MISTY structures. In Orr Dunkel-
man and Liam Keliher, editors, Selected Areas in Cryptography - SAC 2015 -
22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, volume 9566 of Lecture Notes in Computer Science,
pages 373–393. Springer, 2015.

[CR15] Anne Canteaut and Joëlle Roué. On the behaviors of affine equivalent Sboxes
regarding differential and linear attacks. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 45–74. Springer,
2015.

[DDGS15] Itai Dinur, Orr Dunkelman, Masha Gutman, and Adi Shamir. Improved top-
down techniques in differential cryptanalysis. In Kristin E. Lauter and Francisco
Rodríguez-Henríquez, editors, Progress in Cryptology - LATINCRYPT 2015 -
4th International Conference on Cryptology and Information Security in Latin
America, Guadalajara, Mexico, August 23-26, 2015, Proceedings, volume 9230
of Lecture Notes in Computer Science, pages 139–156. Springer, 2015.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography:
The Even-Mansour scheme revisited. In David Pointcheval and Thomas Jo-
hansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of
Lecture Notes in Computer Science, pages 336–354. Springer, 2012.

[DR06] Joan Daemen and Vincent Rijmen. Understanding two-round differentials in
AES. In Roberto De Prisco and Moti Yung, editors, Security and Cryptography
for Networks, SCN 2006, volume 4116 of Lecture Notes in Computer Science,
pages 78–94. Springer, 2006.

[DR07] Joan Daemen and Vincent Rijmen. Plateau characteristics. IET Information
Security, 1(1):11–17, 2007.

[EM91] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu
Matsumoto, editors, Advances in Cryptology - ASIACRYPT ’91, International
Conference on the Theory and Applications of Cryptology, Fujiyoshida, Japan,

24 Refined Probability of Differential Characteristics

November 11-14, 1991, Proceedings, volume 739 of Lecture Notes in Computer
Science, pages 210–224. Springer, 1991.

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. J. Cryptology, 10(3):151–162, 1997.

[GNL11] Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family of
lightweight block ciphers. In Ari Juels and Christof Paar, editors, RFID.
Security and Privacy - 7th International Workshop, RFIDSec 2011, Amherst,
USA, June 26-28, 2011, Revised Selected Papers, volume 7055 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2011.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2011, volume 6917 of Lecture Notes
in Computer Science, pages 326–341. Springer, 2011.

[HLL+00] Seokhie Hong, Sangjin Lee, Jongin Lim, Jaechul Sung, Dong Hyeon Cheon,
and Inho Cho. Provable security against differential and linear cryptanalysis
for the SPN structure. In Bruce Schneier, editor, Fast Software Encryption, 7th
International Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000,
Proceedings, volume 1978 of Lecture Notes in Computer Science, pages 273–283.
Springer, 2000.

[KMT01] Liam Keliher, Henk Meijer, and Stafford E. Tavares. New method for upper
bounding the maximum average linear hull probability for SPNs. In Birgit
Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, International
Conference on the Theory and Application of Cryptographic Techniques, Inns-
bruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in
Computer Science, pages 420–436. Springer, 2001.

[KS07] Liam Keliher and Jiayuan Sui. Exact maximum expected differential and linear
probability for two-round Advanced Encryption Standard. IET Information
Security, 1(2):53–57, 2007.

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differential
cryptanalysis. In Donald W. Davies, editor, Advances in Cryptology - EU-
ROCRYPT ’91, Workshop on the Theory and Application of of Cryptographic
Techniques, Brighton, UK, April 8-11, 1991, Proceedings, volume 547 of Lecture
Notes in Computer Science, pages 17–38. Springer, 1991.

[LW14] Yongqiang Li and Mingsheng Wang. Constructing S-boxes for lightweight
cryptography with Feistel structure. In Lejla Batina and Matthew Robshaw,
editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th
International Workshop, Busan, South Korea, September 23-26, 2014. Pro-
ceedings, volume 8731 of Lecture Notes in Computer Science, pages 127–146.
Springer, 2014.

[Mat96] Mitsuru Matsui. New structure of block ciphers with provable security against
differential and linear cryptanalysis. In Dieter Gollmann, editor, Fast Software
Encryption, Third International Workshop, Cambridge, UK, February 21-23,
1996, Proceedings, volume 1039 of Lecture Notes in Computer Science, pages
205–218. Springer, 1996.

[MP13] Nicky Mouha and Bart Preneel. Towards finding optimal differential charac-
teristics for ARX: Application to Salsa20. Cryptology ePrint Archive, Report
2013/328, 2013. http://eprint.iacr.org/2013/328.

Canteaut et al. 25

[NK92] Kaisa Nyberg and Lars R. Knudsen. Provable security against differential
cryptanalysis. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO
’92, 12th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in
Computer Science, pages 566–574. Springer, 1992.

[Nyb94] Kaisa Nyberg. S-boxes and round functions with controllable linearity and dif-
ferential uniformity. In Bart Preneel, editor, Fast Software Encryption: Second
International Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings,
volume 1008 of Lecture Notes in Computer Science, pages 111–130. Springer,
1994.

[PSC+02] Sangwoo Park, Soo Hak Sung, Seongtaek Chee, E-Joong Yoon, and Jongin
Lim. On the security of Rijndael-like structures against differential and linear
cryptanalysis. In Yuliang Zheng, editor, Advances in Cryptology - ASIACRYPT
2002, 8th International Conference on the Theory and Application of Cryptology
and Information Security, Queenstown, New Zealand, December 1-5, 2002,
Proceedings, volume 2501 of Lecture Notes in Computer Science, pages 176–191.
Springer, 2002.

[PSLL03] Sangwoo Park, Soo Hak Sung, Sangjin Lee, and Jongin Lim. Improving the
upper bound on the maximum differential and the maximum linear hull proba-
bility for SPN structures and AES. In Thomas Johansson, editor, Fast Software
Encryption, 10th International Workshop, FSE 2003, Lund, Sweden, February
24-26, 2003, Revised Papers, volume 2887 of Lecture Notes in Computer Science,
pages 247–260. Springer, 2003.

[Riv11] Ronald L. Rivest. The invertibility of the XOR of rotations of a binary word.
Int. J. Comput. Math., 88(2):281–284, 2011.

[STA+14] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yu-
miko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1. CAESAR
Round 1 submission, 2014.

[UCI+11] Markus Ullrich, Christophe De Cannière, Sebastiaan Indesteege, Özgül Küçük,
Nicky Mouha, and Bart Preneel. Finding optimal bitsliced implementations
of 4 × 4-bit S-boxes. In SKEW 2011 Symmetric Key Encryption Workshop,
Copenhagen, Denmark, 16–17 February, 2011.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 01 02 03 00 01 02 03 04 05 06 07 04 05 06 07
01 00 01 02 03 00 01 02 03 04 05 06 07 04 05 06 07
02 08 09 0b 0a 08 09 0b 0a 0c 0d 0f 0e 0c 0d 0f 0e
03 08 09 0b 0a 08 09 0b 0a 0c 0d 0f 0e 0c 0d 0f 0e
04 00 01 02 03 02 03 00 01 04 05 06 07 06 07 04 05
05 08 09 0a 0b 0a 0b 08 09 0c 0d 0e 0f 0e 0f 0c 0d
06 08 09 0b 0a 0a 0b 09 08 0c 0d 0f 0e 0e 0f 0d 0c
07 00 01 03 02 02 03 01 00 04 05 07 06 06 07 05 04
08 00 01 02 03 00 01 02 03 04 05 06 07 04 05 06 07
09 04 05 06 07 04 05 06 07 00 01 02 03 00 01 02 03
0a 08 09 0b 0a 08 09 0b 0a 0c 0d 0f 0e 0c 0d 0f 0e
0b 0c 0d 0f 0e 0c 0d 0f 0e 08 09 0b 0a 08 09 0b 0a
0c 00 01 02 03 02 03 00 01 04 05 06 07 06 07 04 05
0d 0c 0d 0e 0f 0e 0f 0c 0d 08 09 0a 0b 0a 0b 08 09
0e 08 09 0b 0a 0a 0b 09 08 0c 0d 0f 0e 0e 0f 0d 0c
0f 04 05 07 06 06 07 05 04 00 01 03 02 02 03 01 00

Table 11: S-box S2

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 00 01 01 00 00 01 01 02 02 03 03 02 02 03 03
01 04 06 05 07 04 06 05 07 06 04 07 05 06 04 07 05
02 08 08 0d 0d 08 08 0d 0d 0a 0a 0f 0f 0a 0a 0f 0f
03 0c 0e 09 0b 0c 0e 09 0b 0e 0c 0b 09 0e 0c 0b 09
04 00 00 01 01 08 08 09 09 02 02 03 03 0a 0a 0b 0b
05 04 06 05 07 0c 0e 0d 0f 06 04 07 05 0e 0c 0f 0d
06 08 08 0d 0d 00 00 05 05 0a 0a 0f 0f 02 02 07 07
07 0c 0e 09 0b 04 06 01 03 0e 0c 0b 09 06 04 03 01
08 00 00 01 01 01 01 00 00 02 02 03 03 03 03 02 02
09 04 06 05 07 05 07 04 06 06 04 07 05 07 05 06 04
0a 08 08 0d 0d 09 09 0c 0c 0a 0a 0f 0f 0b 0b 0e 0e
0b 0c 0e 09 0b 0d 0f 08 0a 0e 0c 0b 09 0f 0d 0a 08
0c 00 00 01 01 09 09 08 08 02 02 03 03 0b 0b 0a 0a
0d 04 06 05 07 0d 0f 0c 0e 06 04 07 05 0f 0d 0e 0c
0e 08 08 0d 0d 01 01 04 04 0a 0a 0f 0f 03 03 06 06
0f 0c 0e 09 0b 05 07 00 02 0e 0c 0b 09 07 05 02 00

Table 12: S-box S3

93

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 00 01 01 02 02 03 03 00 02 01 03 02 00 03 01
01 08 08 09 09 0a 0a 0b 0b 08 0a 09 0b 0a 08 0b 09
02 04 04 05 05 0e 0e 0f 0f 04 06 05 07 0e 0c 0f 0d
03 0c 0c 0d 0d 06 06 07 07 0c 0e 0d 0f 06 04 07 05
04 00 00 01 01 02 02 03 03 04 06 05 07 06 04 07 05
05 08 08 09 09 0a 0a 0b 0b 0c 0e 0d 0f 0e 0c 0f 0d
06 04 04 05 05 0e 0e 0f 0f 00 02 01 03 0a 08 0b 09
07 0c 0c 0d 0d 06 06 07 07 08 0a 09 0b 02 00 03 01
08 00 00 01 01 03 03 02 02 00 02 01 03 03 01 02 00
09 08 08 09 09 0b 0b 0a 0a 08 0a 09 0b 0b 09 0a 08
0a 04 04 05 05 0f 0f 0e 0e 04 06 05 07 0f 0d 0e 0c
0b 0c 0c 0d 0d 07 07 06 06 0c 0e 0d 0f 07 05 06 04
0c 00 00 01 01 03 03 02 02 04 06 05 07 07 05 06 04
0d 08 08 09 09 0b 0b 0a 0a 0c 0e 0d 0f 0f 0d 0e 0c
0e 04 04 05 05 0f 0f 0e 0e 00 02 01 03 0b 09 0a 08
0f 0c 0c 0d 0d 07 07 06 06 08 0a 09 0b 03 01 02 00

Table 13: S-box S4

94

	Introduction
	Related work

	Introduction to Cryptanalysis
	Linear Toy Cipher: LTC
	Breaking the Toy Linear Cipher
	Non-linear Toy Cipher: NTC
	The Combined Toy Cipher: CTC

	Differential Cryptanalysis
	Differential Characteristics of CTC
	Key recovery
	Hardening the cipher against differential Cryptanalysis

	Related Key differential cryptanalysis
	Hardening CTC against Related Key differential attacks

	Simon
	Simon structure

	Distinguishing t-encryption
	Background knowledge
	Permutations
	Distinguishing t-encryption
	Equal cycle length distinguisher
	Impossible cycle length distinguisher

	Experimental verification on Simon32
	Constant memory cycle length decomposition
	Conclusion

	Rewriting Simon into ATC
	Expansion layer
	S-box layer
	Permutation layer

	Related key differential attack on Simon
	Key schedule Cycles
	Related Key attack Simon32/64
	Other versions
	Extending the differential

	Experimental results
	Observations
	Conclusion

	Discussion
	Academic significance
	Distinguishing k-encryption
	ATC
	Related Key differential Attack

	Public significance
	Simon and the design of lightweight ciphers
	Conclusion

	Appendices
	S-boxes for ATC
	Unit vectors for key differences generating cycles in the Simon32 key schedule
	RoadRunneR

