
 Eindhoven University of Technology

MASTER

An assessment of ECM authentication in modern vehicles

Bokslag, W.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/14c6306f-659f-4d58-800e-c903de92aa6c

An assessment of ECM
authentication in modern

vehicles

Master Thesis

Wouter Bokslag

Department of Mathematics and Computer Science

Supervisor:
prof. dr. Sandro Etalle

Tutor:
dr. ing. Roel Verdult

Assessor:
dr. Benne de Weger

CONFIDENTIAL

Eindhoven, July 2017

Abstract

All modern road vehicles are fitted with an electronic immobilization system, intended to prevent
the vehicle from starting unless an authorized transponder is presented. Many immobilization
solutions are on the market, and extensive research into the quality of these solutions has been
done. However, internally, vehicles generally use a different protocol for authentication between the
car immobilizer component and the engine control module. Insecurities in these authentication
protocols would potentially allow attackers to bypass the immobilization system. This thesis
presents an analysis of three such authentication protocols, extracted from vehicles from three
different manufacturers. Using a standardized connector, CAN-bus traffic was analysed, and by
means of reverse engineering, the underlying cryptographic primitives were identified and assessed.
Two solutions were cryptographically and practically broken, while the third solution does not
contain obvious cryptographic weaknesses.

An assessment of ECM authentication in modern vehicles iii

Contents

Contents v

1 Introduction 1
1.1 Background . 1
1.2 Research questions . 2
1.3 Structure . 2

2 Notation and terminology 3

3 Standardized interfaces and protocols 5
3.1 The SAE J1962 connector . 5
3.2 The ISO 9141 K-line protocol . 6
3.3 The ISO 15765 CAN protocol . 6
3.4 The ISO 14229 UDS protocol . 7

4 Literature review 9

5 Methodology 11

6 Assessed vehicles 15
6.1 Model A . 15
6.2 Model B . 15
6.3 Model C . 15

7 Case study: Model A 16
7.1 Identifying the protocol messages . 16
7.2 Obtaining the algorithm . 18
7.3 Algorithm details . 19
7.4 Properties of the cipher . 21

7.4.1 Insufficiently large keyspace . 21
7.4.2 Lack of diffusion . 21
7.4.3 Inverse of the transformation function . 21
7.4.4 Biased responses . 22
7.4.5 Leakage of key information . 22

7.5 Attacks . 22
7.5.1 Attack with valid key . 22
7.5.2 Car-only attack . 23

8 Case study: Model B 24
8.1 Identifying the protocol messages . 24
8.2 Obtaining the algorithm . 25
8.3 Algorithm details . 26

8.3.1 Phase 1: Initialization . 26

An assessment of ECM authentication in modern vehicles v

CONTENTS

8.3.2 Phase 2: Proof generation . 27
8.3.3 Phase 3: Second secret absorption . 28
8.3.4 Phase 4: Response generation . 28

8.4 Properties of the cipher . 29
8.4.1 The feedback function . 29
8.4.2 Inverse round function . 29
8.4.3 Knowledge of state bits based on output bit 30

8.5 Attacks . 30
8.5.1 Naive exhaustive-search . 30
8.5.2 Pruning exhaustive-search . 30
8.5.3 State reconstruction . 31
8.5.4 Deriving the second secret l . 33

9 Case study: Model C 34
9.1 Identifying the protocol messages . 34
9.2 Obtaining the algorithm . 35
9.3 Algorithm origin . 36
9.4 Algorithm details . 39

9.4.1 Phase 1: Initialization . 39
9.4.2 Phase 2: Partial challenge absorption . 39
9.4.3 Phase 3: Partial response generation . 41
9.4.4 Phase 4: Remaining challenge absorption 42
9.4.5 Phase 5: Remainder of response generation 43

9.5 Properties of the cipher . 43
9.5.1 Table lookups . 43
9.5.2 Dependency between table lookups . 44
9.5.3 Inverse round function . 45
9.5.4 Rotate, round counts and array sizes . 46
9.5.5 Two-phase challenge absorption / response generation 47

9.6 Attacks . 47
9.6.1 Divide-and-conquer attack . 47
9.6.2 Correlation attack . 47
9.6.3 Guess-and-determine attack . 48
9.6.4 Differential cryptanalysis . 48
9.6.5 Algebraic attacks . 48
9.6.6 Meet-in-the-middle attacks . 49

9.7 Remarks . 49
9.7.1 Usage in 32-bit mode . 49
9.7.2 Random number generation . 49

10 Suggestions for improvement 51

11 Discussion 53
11.1 How do manufacturers implement BCM-ECM authentication 54
11.2 What is the strength of the cryptographic components used in the BCM-ECM

authentication . 54
11.3 How can manufacturers improve upon the current strength of BCM-ECM authen-

tication . 54

12 Conclusions 56

Bibliography 57

Appendix 60

vi An assessment of ECM authentication in modern vehicles

CONTENTS

A Model B lookup tables 60
A.1 FeedbackTable . 60
A.2 OutputTable . 60

B Model C PCF7935 lookup table 61
B.1 LookupTable . 61

An assessment of ECM authentication in modern vehicles vii

Chapter 1

Introduction

1.1 Background

Nowadays, immobilizers play an essential role in preventing large-scale theft of vehicles. Intended
to raise the complexity involved with stealing a vehicle by introducing non-mechanical safety
measures, immobilizers have always worked by the same basic principle: disallowing the ignition1

to activate until some secret is presented to the vehicle. Electronic car immobilizers have existed
for as long as since 19192, however, until 1990, only very few car were equipped with electronic
immobilization solutions3. Widespread adoption was a consequence of legislation: the European
Union adopted regulation in 1995[7], mandating the use of electronic immobilization solutions in
all cars sold within the EU as of 1998.

Immobilizers prove to be highly effective in the effort to reduce theft rates. According to a
report in The Economic Journal, titled ”The Engine Immobiliser: A Non-starter for Car Thieves”
and written by Van Ours and Vollaard[40], the broad deployment of immobilization devices has
lead to a reduction in car theft of an estimated 40% on average during 1995-20084. However, car
thieves have proven to be able to bypass electronic security mechanisms[1]. The German motoring
association ADAC maintains a list[2] of Keyless Go-equipped5 vehicles they have tested for relay
attack vulnerability. Nearly all vehicles on the list are affected. Also, multiple sources report
cars being stolen by exploiting vulnerabilities in electronic security systems[38], sometimes to
extents where insurance companies refuse to insure models unless additional security measures are
taken[22]. The strength of these systems is thus crucial in protecting vehicles against unauthorized
access and theft.

Most immobilizer systems are designed as follows. The mechanical car key is fitted with
a small passive RF tag, referred to as the transponder. When the ignition is switched on, an
antenna near the ignition lock emits a low frequency 125KHz radio field that powers the tag,
and two-way communication between transponder and steering column is initiated. The car’s
immobilizer component (nowadays integrated in the BCM, or Body Control Module) queries the
key and ascertains the transponder is authorized. Keyless Go systems operate in a similar manner,
except that the key fob only houses a transponder, and the mechanical key is no longer required.
Instead, the presence of the transponder is detected whenever the key is in proximity of the vehicle.
As soon as the ignition is switched on, the ECM (or Engine Control Module) sends a challenge to
the BCM. If the BCM is able to successfully authenticate with the transponder in the car key, the
response to the ECM challenge will be computed and transmitted. If the ECM indeed receives a
valid response, it will unlock, allowing the car to start.

1And often, also the fuel pump and starter circuit.
2In 1919, Evans et al. patented the first electric car immobilization solution[9], however primitive it was.
3According to [40], < 1 %.
4In the 2011 report, Van Ours and Vollaard state that during the ten years after the regulation went into effect,

the overall rate of car theft dropped by 70% and 80% in the Netherlands and England/Wales respectively.
5Keyless Go is a technology where the key does not need to be inserted into the ignition lock.

An assessment of ECM authentication in modern vehicles 1

CHAPTER 1. INTRODUCTION

1.2 Research questions

This thesis focuses on the protocols and underlying cryptographic primitives manufacturers employ
for the ECM authentication step, in which the BCM authenticates towards the ECM. To the best
of our knowledge, no academic research has explicitly targeted this part of the immobilizer system,
while its security is as important as the strength of the transponder authentication. In order to
properly assess the strength of inter-component authentication, we have restricted the scope to
answer the following research questions.

• Which protocols do manufacturers use for BCM-ECM authentication?

• What is the strength of the cryptographic components used in BCM-ECM authentication?

• How can manufacturers improve upon the current strength of BCM-ECM authentication?

The first question aims to clarify the high-level approach to ECM authentication: which data is
transmitted, whether one-way or mutual authentication protocols are used, which party initiates
communication, and whether rate limiting or other mechanisms are implemented. The second
question targets the cryptographic strength of the primitives used in the protocols, while the third
question seeks to provide suggestions for improvements that will enhance the security of the ECM
authentication step.

1.3 Structure

In order to answer the research questions, we first define some terminology and notations in Section
2. This is followed by a general introduction to the CAN bus, the standardized interface used for
inter-component communication in nearly all recent6 vehicles in Section 3. Related work will be
discussed in Section 4, followed by a section outlining the general methodology adopted when
assessing a vehicle. A motivation for the choice of models to investigate, as well as some details
about the models is found in Section 6. In Sections 7, 8 and 9, the three case studies will be
presented. This is followed by a section suggesting how manufacturers could adopt safe ECM
authentication protocols. Section 11 will discuss the implications of the findings, followed by the
conclusions, presented in Section 12.

6There is another standardized interface. K-line is the predecessor of CAN and may still be found in some, often
older, vehicles. However, its popularity is declining and the interface is not relevant to the contents of this thesis.

2 An assessment of ECM authentication in modern vehicles

Chapter 2

Notation and terminology

This section will briefly introduce the terminology and notations that will be used throughout the
thesis.

ECU Electronic Control Unit. This a the generic term for any embedded computer system
in a vehicle. The term ECU is also commonly used for Engine Control Unit, which
leads to a confusing ambiguity. In this thesis, ECU will always refer to the generic
term, while ECM is used as an abbreviation for Engine Control Module.

ECM Engine Control Module. This component is responsible for controlling the engine. It
is also part of the immobilizer system, refusing to start the engine if the authenticity
of the key has not been established.

BCM Body Control Module, also called central electronics. This component controls many
sensors and components not directly related to the engine. It authenticates towards
the ECM in modern immobilizer systems.

CAN Controller Area Network, the bus standard that is used in nearly all modern vehicles.
K-line Predecessor of CAN, which resembles the UART (serial port) protocol.

UDS Unified Diagnostic Services, as defined in ISO 14229. Defines a set of functions a
vehicle should support, as well as their respective parameters and response packets.

Seedkey Authentication method for diagnostic services over CAN. Before certain UDS func-
tions may be used, a successful seedkey authentication must take place. The vehicle
will present a challenge, the so called seed, to which a correct response (key) must
be provided.

OBD-II On Board Diagnostics II, an extension of the OBD standard. OBD-II has defined the
capabilities of modern vehicles to self-diagnose and report error codes (in a partially
standardized way) to compatible diagnostic tools. These tools can connect to the
vehicle using the OBD-II connector, present in any modern vehicle.

ISO-TP ISO standard that defines the structure of both single- and multi-frame CAN packets.
PIN The car PIN, or vehicle security code, is a code that is required in order to perform

key programming and other actions for which authorization is required. The terms
PIN and vehicle security code are used interchangeably throughout the thesis.

The algorithms discussed perform both bit-wise and byte-wise operations. In order to clearly
distinguish references to a single bit from references to a byte, the following notation is adopted.

• r[n] refers to byte n in byte array r.

• rn refers to bit n in variable r. We follow the lsb 0 convention, thus, r0 is the least significant
bit of the register.

• Concatenation of bits is denoted by comma-separating the bits, surrounded by square brack-
ets: [bk, bl, bm] is a 3-bit string with bm as least significant bit.

• Concatenation of bytes is denoted as follows: r[n : m] = r[n], r[n + 1], . . . , r[m]

An assessment of ECM authentication in modern vehicles 3

CHAPTER 2. NOTATION AND TERMINOLOGY

• Any multi-byte variable r is in big-endian notation. That is, r[0] is the most significant byte.

We also define the behaviour of several bitwise operators. We define these operators over bit
strings in Fn

2 for n > 0.

Definition 2.0.1. The bitwise or operator over bit strings Fn
2 ∨ Fn

2 → Fn
2 is defined as follows.

x ∨ y = [(xn−1 ∨ yn−1), . . . , (x0 ∨ y0)]

The bitwise and operator over bit strings Fn
2 ∧ Fn

2 → Fn
2 is defined as follows.

x ∧ y = [(xn−1 ∧ yn−1), . . . , (x0 ∧ y0)]

The bitwise xor operator over bit strings Fn
2 ⊕ Fn

2 → Fn
2 is defined as follows.

x⊕ y = ((xn−1 ⊕ yn−1), . . . , (x0 ⊕ y0))

The bitwise negate operator over bit strings Fn
2 → Fn

2 is defined as follows.

x = [¬xn−1, . . . ,¬x0]

The bitwise right shift operator Fn
2 � N→ Fn

2 is defined as

x� c =

x if c = 0

[0, xn−1, . . . , x1] if c = 1

(x� (n− 1))� 1 if c > 1

The bitwise left shift operator Fn
2 � N→ Fn

2 is defined as

x� c =

x if c = 0

[xn−2, . . . , x0, 0] if c = 1

(x� (n− 1))� 1 if c > 1

The bitwise right rotate function ror : Fn
2 ,N→ Fn

2 is defined as

ror(x, c) =

x if c = 0

[x0, xn−1, . . . , x1] if c = 1

ror(ror(x, c− 1), 1) if c > 1

The bitwise left rotate function rol : Fn
2 ,N→ Fn

2 is defined as

rol(x, c) =

x if c = 0

[xn−2, . . . , x0, xn−1] if c = 1

rol(rol(x, c− 1), 1) if c > 1

Lastly, it is often practical to express numbers in a specific base. Hexadecimal numbers will be
prefixed with 0x, such as 0xAB34. Binary numbers will be prefixed with 0b, such as 0b00101101.
Decimal numbers will be written as-is, without prefix.

4 An assessment of ECM authentication in modern vehicles

Chapter 3

Standardized interfaces and
protocols

In order to comply with EU legislation laid out in Directive 98/69/EC of the European
Parliament[8], each petrol car registered since January 1, 2001 and each diesel car registered
since January 1, 20041 supports the EOBD (European On Board Diagnostics) standard. This
mandates the use of the SAE J1962 connector (Figure 3.1a) and specifies pin assignments and
protocols that should be available for diagnostic purposes. Differences between EOBD and OBD-
II2 standards are minimal, and may be ignored for the purpose of this thesis3. In this section,
standards relevant to the work presented in the thesis are introduced.

3.1 The SAE J1962 connector

Commonly referred to as the OBD-II connector, The SAE J1962[25] specifies the connector socket
that is legally required to be installed in abovementioned passenger vehicles. The female connector
is present near the steering wheel of all recent passenger vehicles and is visible on Figure 3.1a, while
the standardized part of the pinout is shown in Figure 3.1b. Pin 6 and 14 are used in conjunction
with the CAN protocol, while communication over pin 7 and 15 uses the K-line protocol. Pin
2 and pin 10 are used for the J1850 serial interface and are shown for completion, but are not
relevant for this thesis and will not be discussed.

1Passenger cars with no more than 8 seats and a gross weight of at most 2500 kg. Different dates apply for other
categories and for newly introduced models, as can be found in Directive 98/69/EC.

2Compatibility with OBD-II is required for vehicles sold in the USA.
3Differences are discussed in [36]

An assessment of ECM authentication in modern vehicles 5

CHAPTER 3. STANDARDIZED INTERFACES AND PROTOCOLS

(a) The SAE J1962 connector, used in all
recent passenger vehicles

(b) Pinout for female SAE J1962 con-
nector. Blue: J1850, grey: ground, yellow:
K-line, red: battery voltage. Others are
manufacturer specific

Figure 3.1: The SAE J1962 connector and the standardized pinout

3.2 The ISO 9141 K-line protocol

The K-line interface is standardized in ISO 9141[14], and uses Keyword Protocol 2000 (KWP2000)4

for communication, as defined in ISO 14230[12]. K-line is a single wire interface5. K-line is a
predecessor of CAN, and its use in passenger vehicles is declining. Since CAN is widely adopted
in modern vehicles as the standard for both inter-component communication and diagostics, and
most of the work presented in this thesis is related to the CAN bus, the K-line interface will not
be discussed in detail in this thesis.

3.3 The ISO 15765 CAN protocol

ISO 15765[13] defines Keyword Protocol 2000 (KWP2000) over CAN. It defines both the CAN
frame format, how multi-frame messages are to be constructed and how diagnostic services are to
be implemented. CAN is a two-wire interface, where transmission as a 0-bit is defined as actively
driving the CAN HI wire to the high voltage6 and the CAN LO wire to 0V. A 1-bit is transmitted
by not driving either wire, resulting in CAN HI being 0V and CAN LO passively returning to a
voltage by a resistor. This allows for elegant collisions resolution on the bus: if a sending party
recognizes that a 0-bit is detected on the wire while it was itself sending a 1-bit, a collision is
detected, and the detecting party will abort its transmission.

Figure 3.2: A CAN frame as it is transmitted over the bus. Source: Wikipedia

A CAN frame7 starts with an 11 bit Arbitration Field, better known as the CAN ID, which can

4The same protocol is used in CAN, and KWP-2000 will be discussed in more detail in Section 3.3.
5An optional, second wire may be used, the L-line. However, in practice, it is rarely used.
6Which voltage is used for the high signal depends on the implementation
7We omit the notion of stuffbits, which are an addition for electro-technical reasons. Understanding the concept

is not required for this thesis and would only add unnecessary complexity.

6 An assessment of ECM authentication in modern vehicles

CHAPTER 3. STANDARDIZED INTERFACES AND PROTOCOLS

be interpreted as an identifier for the destination ECU. An ECU can listen for multiple IDs. Due
to the nature of the collision resolving mentioned above, the CAN ID also acts as a bus arbitration
mechanism. A 0-bit will have priority over a 1-bit, as any party simultaneously transmitting a
1-bit will detect the collision and abort its transmission. This implies that lower CAN IDs have
priority over higher CAN IDs. The CAN ID is followed by seven control bits, among which four
bits that define the number of bytes in the data field. The control bits are followed by 0 to 8
data bytes. Then, a 15-bit CRC checksum, followed by 10 end-of-frame bits, one of which allows
the receiving party to acknowledge reception by sending a dominant 0-bit while the sending party
sends a recessive 1-bit.

There also is an extended CAN frame definition. The main distinction is that extended frames
use 29-bit CAN IDs instead of 11. More details may be found in the ISO specification.

In ISO 15765-2, the transport layer protocol is defined. This is commonly referred to as
ISO-TP, and allows for the construction of both single-frame and multi-frame packets. Although
multi-frame packets are very common, in this thesis, only single frame packets are encountered
and as such, only the single frame format will be explained.

A CAN frame can contain up to 8 data bytes. The first byte is used by ISO-TP for frame type
and size information. The first nibble designates frame type and will be 0 for a single-frame packet
while the values 1, 2 and 3 are used for the construction of multi-frame packets. The second nibble
designates the number of payload bytes. An ISO-TP frame can thus contain 7 payload bytes.

12 : 5 1 : 3 2 .067 | can id [7 E0] : 0627069DBCE907]

Listing 3.1: An example of an ISO-TP message, as intercepted by a Jifeline tool.

In above example, a message is sent on CAN ID 0x7E0. The packet is a single frame (first
nibble equals 0), with a six byte payload (second nibble) consisting of the bytes 0x27069DBCE907.
Please note that not all CAN messages in this thesis are ISO-TP packets, as internal functionality
often uses raw CAN data packets. The frame type and packet length nibbles are then omitted
and all 8 bytes can be used as payload bytes.

3.4 The ISO 14229 UDS protocol

The UDS protocol is a diagnostic protocol, specified in ISO 14229[11]. Support is required by EU
and US legislation. It defines a list of services that the vehicle must or could provide, and defines
the request and response formats. The services that are relevant to this thesis are listed below, a
full list can be obtained from the ISO standard documents8.

Identifier Name Description
0x10 Diagnostic Session Control Opens a diagnostic session of some type.
0x11 ECU Reset Resets the ECU. Different reset types exist.
0x22 Read Data By Identifier Read a data element. This can be all kinds of in-

formation, such as sensor data, VIN, ECU number
and more.

0x23 Read Memory By Address Reads a part of the internal memory of the ECU. The
address and the number of bytes to be returned are
specified as parameters.

0x27 Security Access Authentication in order to unlock security-critical
services.

One service UDS defines is Diagnostic Session Control, which opens a session for various types
of diagnostic functions. Often, authentication is needed before diagnostic procedures may be
invoked, which is handled by the Security Access service. Authentication for Security Access is

8Softing published a poster summarizing all common services and response codes, which may act as a practical
quick reference document. It can be found at https://automotive.softing.com/fileadmin/sof-files/pdf/de/

ae/poster/uds_info_poster_v2.pdf

An assessment of ECM authentication in modern vehicles 7

https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/uds_info_poster_v2.pdf
https://automotive.softing.com/fileadmin/sof-files/pdf/de/ae/poster/uds_info_poster_v2.pdf

CHAPTER 3. STANDARDIZED INTERFACES AND PROTOCOLS

done by means of a challenge-response. Upon receiving a Security Access request, the ECU sends
a so-called seed, which serves as a challenge. The diagnostic device then authenticates by sending
the correct response, referred to as (key). The cryptographic primitive for the challenge-response
is chosen by the manufacturer. Many seedkey functions require authentication by means of the
vehicle security code (or PIN).

12 : 2 0 : 2 7 .038 | can id [18DA40F1] : 022707
12 : 2 0 : 2 7 .068 | can id [18DAF140] : 066707BF795856
12 : 2 0 : 2 7 .108 | can id [18DA40F1] : 0627080DDE3A63
12 : 2 0 : 2 7 .137 | can id [18DAF140] : 026708

Listing 3.2: An example of a successful seedkey authentication, as captured by a Jifeline tool.

Listing 3.2 shows an example of how seedkey authentication may take place. The diagnostic
device sends a seedkey request (0x27) of type 0x07. The type byte is always odd. The ECU
responds with an acknowledgement (0x27 + 0x40 = 0x67) and sends the seed, 0xBF795856. The
diagnostic device computes the correct response using the seed and possibly an additional secret,
such as the vehicle security code, and sends the response (0x0DDE3A63), preceded by a 0x27
service byte and the type byte, incremented by one. After verification of the correctness of the
response, the ECU then acknowledges the successful authentication.

8 An assessment of ECM authentication in modern vehicles

Chapter 4

Literature review

The main focus of this thesis is on the assessment of cryptographic components of immobilizer
systems. As such, this literature study focuses on research regarding vulnerabilities in modern
vehicles and in the underlying cryptographic primitives. A fair amount of academic work has been
done regarding secure ECU authentication and entity authentication in general. Some of this work
will be presented in Section 10, as it can be used constructively in order to improve the security
of ECM authentication.

In 2010, Kosher et al. pushished a paper titled ”Experimental Security Analysis of a Modern
Automobile”[27], in which they perform an in-depth study on one vehicle model. Using various
techniques, they determine a large set of functional CAN packets, allowing for control over brakes,
engine, door locks and more. The research does discuss access control on diagnostic functions
and firmware flashing routines, and is further extended in a more formal way in Kosher’s 2014
dissertation[26], however, ECM authentication is not discussed. Another detailed case study of
a single vehicle was presented by Miller and Valisek in [30]. Focusing on remote access, they
managed to find a remotely useable attack on a 2014 Jeep Cherokee. Using the remote IP of the
vehicle, they were able to leverage unauthenticated remote access to the vehicle’s D-Bus service in
order to gain control over the CAN bus. Also, a large amount of scientific work has been presented
on the subject of vehicle immobilization. This research however focuses on the transponder tech-
nology embedded in the car key, such as [43] and [42] by Verdult et al., on Megamos and Hitag2
respectively. The immobilizer component that authenticates the key, however, is generally the
BCM, implying that another authentication must take place between the BCM and the ECM in
order to prevent the engine from starting when an invalid key is inserted. Criminals are known to
use tools that communicate over the CAN-bus[35], and as such, the security of this authentication
is crucial in order to guarantee the safety of the immobilization system. During his presentation
on Sigint13, K. Nohl stated[32] that theft of modern, immobilizer-equipped cars is not done by
means of cryptographic attacks on immobilizer systems, but rather by attacking the other ECU
functionality. While it is true that many ECUs implement weak authentication on functionality
such as key programming or EEPROM access, this is only one way to circumvent security, and
as such, strong ECM authentication is necessary to secure the vehicle against theft. The use of
weak cryptographic components may also lead to false confidence, and as such, these components
should be carefully assessed to ascertain the desired security guarantees can indeed be provided
by the chosen protocols and cryptographic primitives.

It is noteworthy that knowledge about the internals of ECU authentication does seem to exist
outside of the manufacturers, however, often only embedded in proprietary commercial tools.
An example encountered during the research is the use of the SP Diagnostics tool for deriving
the Model A immobilizer algorithm, as is discussed in Section 7.2. Abrites ltd[29]. is another
company that has extensive knowledge on the internals of a wide array of vehicles. Their diagnostic
devices support retrieval of vehicle security codes for a large amount of vehicles. Also, on various
marketplaces, tools are available that bypass or disable immobilization without requirement for a
valid key or security code. These products are highly suited to facilitate vehicle theft. An example

An assessment of ECM authentication in modern vehicles 9

CHAPTER 4. LITERATURE REVIEW

of such a tool is the JRL CAN adapter, which allows to program a new key for recent Range Rover
vehicles while connected to the blind spot sensor, as shown in Figure 4.1.

Figure 4.1: CAN adapter that allows for key learning while connected to the vehicle blind spot
sensor. Source: [37]

10 An assessment of ECM authentication in modern vehicles

Chapter 5

Methodology

In this section, the general methodology for extracting of the ECM authentication protocol from
a vehicle will be introduced. While the exact approach differs for each model, there is sufficient
overlap to justify a general overview, allowing us to be more concise when describing the process
for each case study.

Figure 5.1: The Jifeline tool. It can be connected to a tablet using USB-OTG, which then forwards
the CAN data over wifi. This allows for easy analysis as well as the possibility to interact and
inject frames using Python.

Having chosen which vehicle to assess, I first observe the behavior of the vehicle on the CAN
bus. Using a Jifeline (Figure 5.1), all messages on a CAN-bus are captured and stored for research.
I investigate the messages that are sent when the key is inserted, and when the ignition switch is
turned to the ON position. In general, one will observe large amounts of messages, while only a
few will deal with the immobilizer system. However, using some simple heuristics, one can often
easily identify the messages that are part of the immobilizer system. As we expect to observe
a challenge-response, one such heuristic is to identify any message with high-entropy bytes that
are different each time the vehicle is powered up1. If such a message is an actual challenge or
response message, this implies a second message should have been sent slightly earlier or later2.
Identification of two messages that fit this heuristic provides us with details about the presumed
challenge/response message format.

1Often, the car has to remain switched off for about 10 seconds before such values are reininitalized.
2Generally, in the order of 100ms.

An assessment of ECM authentication in modern vehicles 11

CHAPTER 5. METHODOLOGY

It is important to establish a high confidence in having found the actual challenge-response
messages. This can be done in various ways. First, one can disconnect some components from the
CAN-bus and observe changes in the traffic to learn which device sends which messages3. Another
useful method is to inject challenges onto the bus, watching for a response from the other part of
the immobilizer system. The response should be generated by a deterministic function depending
on the injected challenge bytes. Lastly, it is interesting to remove the transponder from the keyfob
and observe how this affects the immobilizer challenge/response.

Once the messages that are related to the immobilizer have been identified and the structure of
the exchange has been analysed4, we have sufficient information to start investigating the firmware.

Obtaining the firmware can be done in various ways. Forums and other online resources exist
where firmwares for many popular ECUs can be either downloaded freely or purchased. Another,
possibly more reliable way, is to extract the firmware directly from an ECU. This way, one can
be sure that the firmware dump corresponds to that particular ECU. As an additional advantage,
it is often easier to know where in the memory space the firmware is loaded when it is extracted
directly from the ECU. Lastly, one need not rely on the competence of some (often unfamiliar)
individual who originally created the dump.

There are different approaches to dumping firmware directly from an ECU. One way is to use
the UDS 0x23 ReadMemoryByAddress function. A successful 0x27 SecurityAccess (see Section
3.4) authentication must generally be done onbeforehand, which is possible if the seedkey algorithm
and the vehicle security code are known. Another method is by leveraging the on-chip debugging
functionality as provided by many modern microcontrollers. JTAG is commonly implemented and
functional on ARM and MIPS-based microcontrollers5. BDM is a similar debugging interface,
available on many Freescale microcontrollers based on ARM and PowerPC architectures. BDM
and JTAG both provide a reverse engineer with powerful features, such as raw register/memory
access and the usage of breakpoints. Using an on-chip debugging tool is a relatively easy way to
obtain the firmware and/or analyse the behaviour of the firmware by debugging.

In order to start reverse engineering a firmware image, one needs to know some details about
the microcontroller. Obtaining the microcontroller’s datasheet, as well as an architecture reference
document, is often crucial in the process of figuring out how the firmware image is loaded into
memory and executed.

Once some details about the microcontroller are known, the firmware image can be loaded into
a disassembler. For my research, I have been using Hex-Rays IDA Pro 6.95. IDA can disassemble
binaries for a large variety of architectures, and while it is a static disassembler, it implements lots
of tricks and heuristics that make a reverse engineer’s life a lot easier. Scripting support makes it
easy to automate some tedious tasks, allowing the user to load and execute Python-based scripts
that make use of IDA’s powerful API. Also, for some architectures, IDA is able to decompile the
disassembly, effectively translating assembly into c-like pseudocode (Figure 5.2). While far from
perfect, this often greatly helps in quickly understanding the behaviour of a function.

Once the firmware has been loaded into IDA at the right memory address6, segments can
be created for RAM and I/O regions. As soon as these have been created at the appropriate
addresses, IDA will recognize references to these areas. This makes it easy to find out which code
or data regions contain references to some address under investigation.

Different strategies exist for finding the relevant cryptographic functions in a firmware dump.
Searching for exclusive-or operations generally works well, as the operation is relatively rarely
used in ”regular” functions7 while being popular in cryptographic functions. Also, cryptographic
function usually exhibit a clearly recognizable structure. Little conditional branching (other than

3Naturally, this method is not fully accurate, as the messages may originate from an ECU that is still connected
but expects a message from the disconnected ECU before sending some packet. Still, this approach often yields
usable information.

4Useful features are for example the involved CAN IDs, opcodes, and the length of the non-static part.
5However, I did not personally investigate any ECU based on ARM or MIPS.
6For some microcontrollers, the flash memory where the firmware is stored is mapped to memory address 0,

but this is certainly not always the case. The datasheet will provide the necessary details on where in memory the
internal flash will be mapped.

7Asides from simple bitflip operations, which are easily recognized based on the constant that is being used.

12 An assessment of ECM authentication in modern vehicles

CHAPTER 5. METHODOLOGY

(a) Disassembly

(b) Decompilation

Figure 5.2: A function, both disassembled (5.2a) and decompiled (5.2b) by IDA

An assessment of ECM authentication in modern vehicles 13

CHAPTER 5. METHODOLOGY

based on counter values), no IO-related activity and few cross references (or xrefs) to both main
and subfunctions (as they are typically only used in one or several places) are other features that
are distinguishing for cryptographic functions in most firmware images.

14 An assessment of ECM authentication in modern vehicles

Chapter 6

Assessed vehicles

We will briefly discuss the assessed vehicles. Due to a responsible disclosure process, the manu-
facturers and car models will not be published in this thesis, but will be made public at a later
point in time.

The choice for the three models was motivated by availability of ECU test sets. The vehicles
are listed in the order in which they were investigated. All ECM authentication protocols assessed
in the course of this research are listed in this thesis. Research was performed on these models
in the belief that, with high probability, the identified protocols would still be in use in currently
produced vehicles. Verification learned this is indeed the case, as is detailed below.

6.1 Model A

The research on Model A was conducted on ECUs from a vehicle manufactured in 2009. Although
this vehicle is no longer in production, we have confirmed the same ECM authentication protocol
to be used in at least one model introduced in 2016, which as of today is still in production, and
have confirmed the attack presented in 7.5.1 can still be carried out successfully.

6.2 Model B

The Model B ECU set originates from a vehicle constructed in 2009. While the model is no longer
in production, we have confirmed the ECM protocol to be used in at least one vehicle that is still
in production and was introduced in 2014. The attacks presented in 8.5 have been confirmed to
work on this vehicle.

6.3 Model C

Our Model C ECU set was obtained from a vehicle built in 2008. However, the Model C ECM
authentication protocol was confirmed to be present in the ECM of at least one vehicle introduced
in 2015 and is still being manufactured.

An assessment of ECM authentication in modern vehicles 15

Chapter 7

Case study: Model A

7.1 Identifying the protocol messages

When starting the assessment of model A, the CAN messages that related to the immobilizer
functionality were easily identified by searching for high-entropy bytes that are different each time
the ignition is switched on. Listing 7.1 shows a successful authentication between the BCM and
the ECM.

The ECM initiates the communication by sending an opcode byte 0x00, followed by a 32-
bit challenge. The BCM will, if an authorized key is present, send a response starting with
opcode 0x04, followed by 32 response bits. The ECM will validate the response and if accepted,
acknowledge this by sending a 0x02 opcode.

11 : 1 0 : 5 5 .417 | can id [0 7 2] : 0051D70B2C // ECM CHALLENGE
11 : 1 0 : 5 5 .458 | can id [0A8] : 04257670B6 // BCM RESPONSE
11 : 1 0 : 5 5 .421 | can id [0 7 2] : 0200000000 // ECM ACK

Listing 7.1: Immobilizer message exchange

Using the Jifeline scripting API, I created a script that injects a challenge and obtains a
response from the BCM. Using this, I injected related challenges and analysed the responses,
which revealed a remarkable dependency between challenge bits and response bits, as is visualized
in Listing 7.2 and will be discussed in more detail in Section 7.4.2.

16 An assessment of ECM authentication in modern vehicles

CHAPTER 7. CASE STUDY: MODEL A

Cha l l enge : Response :
0 b00000000000000000000000000000001 0 b00000000010101000001000010101111
0 b00000000000000000000000000000010 0 b00000000010101000001000101110110
0 b00000000000000000000000000000100 0 b00000000010101000001001010101110
0 b00000000000000000000000000001000 0 b00000000010101000001010101111110
0 b00000000000000000000000000010000 0 b00000000010101000001101010110110
0 b00000000000000000000000000100000 0 b00000000010101000001010101100110
0 b00000000000000000000000001000000 0 b00000000010101000011101011100110
0 b00000000000000000000000010000000 0 b00000000010101000101010110100110
0 b00000000000000000000000100000000 0 b00000000111111100001000000100110
0 b00000000000000000000001000000000 0 b00000001010101000001000000100110
0 b00000000000000000000010000000000 0 b00000010111111000001000000100110
0 b00000000000000000000100000000000 0 b00000101010101000001000000100110
0 b00000000000000000001000000000000 0 b00001010111101000001000000100110
0 b00000000000000000010000000000000 0 b00010101010101000001000000100110
0 b00000000000000000100000000000000 0 b00101010110101000001000000100110
0 b00000000000000001000000000000000 0 b01010101010101000001000000100110
0 b00000000000000010000000000000000 0 b00000000010101000011010011100111
0 b00000000000000100000000000000000 0 b00000000010101000111100110100110
0 b00000000000001000000000000000000 0 b00000000010101000101110011101111
0 b00000000000010000000000000000000 0 b00000000010101000101001101100111
0 b00000000000100000000000000000000 0 b00000000010101000001000010100111
0 b00000000001000000000000000000000 0 b00000000010101000011000100101110
0 b00000000010000000000000000000000 0 b00000000010101000101001000110110
0 b00000000100000000000000000000000 0 b00000000010101000111100001110110
0 b00000001000000000000000000000000 0 b00110011110111010001000000100110
0 b00000010000000000000000000000000 0 b01100111010111100001000000100110
0 b00000100000000000000000000000000 0 b01010111110101010001000000100110
0 b00001000000000000000000000000000 0 b00111001010111110001000000100110
0 b00010000000000000000000000000000 0 b01110010010111100001000000100110
0 b00100000000000000000000000000000 0 b01101101110111010001000000100110
0 b01000000000000000000000000000000 0 b01100101010111110001000000100110
0 b10000000000000000000000000000000 0 b00100010111111000001000000100110

Listing 7.2: Visible relation between challenge bits and response bits.

An assessment of ECM authentication in modern vehicles 17

CHAPTER 7. CASE STUDY: MODEL A

7.2 Obtaining the algorithm

Although Listing 7.2 seems to suggest the algorithm has a simple structure, deriving the algorithm
from a set of challenge/response pairs is extremely hard. My tutor pointed out that we had a
proprietary tool in the office, based on an ARM microcontroller, that is able to derive the car
PIN. This tool is manufactured by SP Diagnostics[6], and allows to derive the car PIN over the
OBD-II connector, instructing the operator to repeatedly toggle between the ignition ON and
OFF positions. In order to obtain the pin, the tool demands the ignition to be switched from off
to on six times. It thus seemed highly probable that this tool captures the challenge/response
pairs and derives the PIN based on a computation over these pairs. While the tool had JTAG
headers on the PCB, halting the processor for on-chip debugging turned out to be impossible.
Presumably, the halting function was disabled by the vendor. However, my tutor was aware of an
embedded USB debug function, allowing to dump internal memory regions by address.

As I did not know where in the internal memory space the immobilizer algorithm is located, I
decided the easiest way to find this is by dumping the stack at two distinct moments in time: once
when the tool displays the main menu, and once when the tool is actually capturing challenges.
My intuition was that the bottom part1 would be identical, and a deviation would occur around
the point where the model-specific immobilizer code is invoked. Indeed, a loader function was
identified that loads an application from SD card into memory. Dumping the memory region
where the application was loaded yielded the PIN derivation application code for this vehicle.
Finding the code segments that actually dealt with computing the PIN was straightforward: cross
references to easily identifiable springs (Figure 7.1) were present.

Figure 7.1: Clearly recognizable strings were present in the binary. The data xrefs point to the
location in memory where these strings are used.

A simple brute force algorithm was encountered, along with the authentication algorithm.
A candidatePin variable is initialized to 0x30303030, which translates to 0000 in ASCII. The
tool then checks if the pin satisfies all challenge/response pairs that were captured before, and
increments2 the PIN if not. The loop ends if either a valid candidatePin is found, or if the search
space is exhausted, as is visible in Figure 7.2.

The information from the SP Diagnostics tool matches the code that executes the immobilizer
authentication protocol which we recovered from an ECM firmware image. A decompilation of the
transformation function as found in the ECM (as will be discussed in the next section) is shown
in Figure 7.3.

The PIN can be any four-character combination of numbers and uppercase letters, with the
exception of the I and O characters. This yields a total of 344 = 1336336 possible pin codes. The
computeResponse function implements the algorithm that translates a PIN / challenge pair to a
response, and will be discussed in the following section.

1As in, the higher memory addresses, thus, the oldest values on the stack.
2As in, selects the next valid PIN.

18 An assessment of ECM authentication in modern vehicles

CHAPTER 7. CASE STUDY: MODEL A

Figure 7.2: Brute force pseudocode snippet. Some lines were omitted for clarity.

Figure 7.3: Transformation function, as found in the decompiled ECM firmware.

7.3 Algorithm details

The immobilizer algorithm itself is based on a single transformation function T (). Although it
is based on mathematical operands such as multiplication, division and modulo, it also relies on
several low-level implementation details of C. In order to properly express the transformation
function, we need to define a field containing all 32-bit signed integers. While the inputs and
outputs of the transformation function are all 16-bit signed integers, defining the 32-bit signed
integer field will remove the necessity of extensive overflow handling, improving the readability of
the definition of T ().

An assessment of ECM authentication in modern vehicles 19

CHAPTER 7. CASE STUDY: MODEL A

Definition 7.3.1. The signed 32-bit integer field is defined as Z32
2 , in two’s complement bitwise

representation.
The mapping of a 16-bit unsigned integer a ∈ F16

2 to a 32-bit signed integer a′ ∈ Z32
2 is defined as

follows

a′ =

{
a if a < 0x8000

a ∨ 0xFFFF0000 otherwise

The mapping of a 32-bit signed integer a ∈ Z32
2 to a 16-bit unsigned integer a′ ∈ F16

2 is defined
as follows

a′ = a ∧ 0xFFFF

We also need to define a division remainder operation, as the C modulo operator ’%‘ does not
behave according to the mathematical definition of modulo when a negative left-hand side operand
is used.

Definition 7.3.2. The remainder rem : Z32
2 → Z32

2 is defined as

rem(a, b) = a− (a/b) ∗ b

Definition 7.3.3. The transformation function T (i, d, q, r) : (Z32
2 ,Z32

2 ,Z32
2 ,Z32

2)→ F16
2 is defined

as follows.

T (i, d, q, r) =

{
m− n if m− n ≥ 0

m− n + a otherwise

where m = rem(i, d) ∗ r,
n = (i/d) ∗ q,
a = d ∗ r + q

Note that the output of T () is cast to the F16
2 field as defined in Definition 7.3.1. The transfor-

mation function is used by the main function, that splits the vehicle security code k and challenge c
in parts and feeds them to the transformation function as parameter i in four distinct invocations.

Definition 7.3.4. The challenge/response function F (k, c) : (F32
2 ,F32

2)→ F32
2 is defined as follows.

F (k, c) = ((a ∨ b)� 16) ∨ (c ∨ d)

where

a = (T ((c[0]� 8) ∨ c[2], 0xB2, 63, 0xAA, 0x7673)

b = (T ((k[0]� 8) ∨ k[3], 0xB1, 2, 0xAB, 0x763D)

c = (T ((k[1]� 8) ∨ k[2], 0xB2, 63, 0xAA, 0x7673)

d = (T ((c[1]� 8) ∨ c[3], 0xB1, 2, 0xAB, 0x763D)

20 An assessment of ECM authentication in modern vehicles

CHAPTER 7. CASE STUDY: MODEL A

Figure 7.4: Illustration of the structure of the Model A algorithm. The parameters of T (), other
that i, have been omitted.

7.4 Properties of the cipher

7.4.1 Insufficiently large keyspace

While even a 32-bit key would be insufficiently strong to protect against a brute-force attack, the
key that is being used for the immobilizer system is the vehicle security code. For this model,
as was stated before in Section 7.2, the vehicle security code consists of 4 characters, with 34
possibilities per character. The attack complexity for an exhaustive search would thus be 344,
which is approximately 220,35.

7.4.2 Lack of diffusion

The challenge and the key are both split in two 2-byte parts. Due to the structure of the algorithm,
the lower half of the response is only dependent on two challenge bytes and two key bytes. The
upper half of the response is only dependent on the remaining two challenge bytes and two key
bytes. This lack of interdependency makes that the algorithm does not adhere to the strict
avalanche principle, as defined by Webster et al. in 19863. This is clearly visible in the traces
shown in Listing 7.2.

7.4.3 Inverse of the transformation function

The transformation function requires four parameters. The first one, i, is a 16-bit value4 derived
from either the challenge or the PIN, while the remaining three are fixed constants. As the
transformation function outputs a 16-bit value5, it acts as a mapping from a 16-bit integer to a
16-bit integer.

Due to the nature of the transformation function, multiple values for i will result in the same
output. As such, the inverse function T−1 is not bijective. However, as the domain of the PIN
is limited (Section 7.4.1) , only few pre-images could possibly have been derived from the vehicle
security code. Indeed, in all cases, there is only one unique pre-image for T () if we know the
pre-image has been derived from part of the PIN.

3Webster et al. defined the strict avalanche principle, which is an extended definition of the avalanche principle
defined by Feistel[10] in 1973. Webster et al. introduce a desired probability of p = 0.5 of any output bit to flip
if any single input bit were flipped. Indeed, the Model A algorithm does not even adhere to the weaker original
definition of the avalanche principle, as each output bits is fully independent of a large amount of input bits.

4Cast from F16
2 to Z32

2
5Cast back from Z32

2 toF16
2

An assessment of ECM authentication in modern vehicles 21

CHAPTER 7. CASE STUDY: MODEL A

7.4.4 Biased responses

Due to the use of the logical or operator to merge two outputs from the transformation function
(a∨b and c∨d in Definition 7.3.4), a bias is introduced in the output. Assuming the output of the
transformation function is uniform random, we can expect 75% of the bits in the output domain
of F () to be 1, and thus, on average 75% of the bits in the response will be set6. The average
amount of observed bias is dependent on the PIN, as a PIN that will result in low hamming weight
output from T () will exhibit bias to a lesser extent.

7.4.5 Leakage of key information

The cause of the previously mentioned bias also causes another undesired property. One can
abuse the bitwise or operation to derive the output of T () for the two parts of the PIN k. This
can be done by simply observing several responses. Bits that are always set are also set in the
corresponding output of T (), while bits that vary are not set. This can clearly be seen in Listing
7.2. As the output values of T () with respect to k have been derived, a list of pre-images can be
constructed, yielding several key candidates.

Theorem 7.4.1. Given response r and transformation function output a and d. It then holds
that

bi =

0 if ai = 0 ∧ rli = 0

1 if ai = 0 ∧ rli = 1

undefined otherwise

∀i ∈ (0, 15)

ci =

0 if di = 0 ∧ rri = 0

1 if di = 0 ∧ rri = 1

undefined otherwise

∀i ∈ (0, 15)

where a, b, c, d are the outputs of T () as defined in Definition 7.3.4, rl = r � 16, rr = r∧0xFFFF.

Thus, we can obtain on average 1/2 of the bits of b and c, depending on the hamming weight
of a and d. If we obtain the response corresponding to c = 0x00000000, both a and d equal zero,
resulting in full recovery of b and c.

7.5 Attacks

For this model, I devised two attacks that derive the car security code. Both are detailed below.

7.5.1 Attack with valid key

This attack will retrieve the vehicle security code. A key with an authorized transponder must be
present in the ignition lock.

As was stated in 7.4.1, the car PIN is only four characters long, with 34 possibilities per
character. Clearly, the resulting key space is insufficient to prevent an attacker from mounting
a successful brute force attack based on a set of intercepted challenge/response pairs. My C
implementation of a brute force search exhausts the search space in approximately 0.3 seconds7.
The number of challenge/response pairs to obtain a single pin satisfying all pairs is variable, but
when random pairs are captured, five pairs is usually sufficient.

However, one can also inject chosen challenges onto the CAN-bus and capture the response. Fol-
lowing the property given in Section 7.4.5, capturing the response associated with c = 0x00000000

6This bias is not visible in Listing 7.2, as the challenges contain a large amount of zeros. This leads to small
output values of the transformation function, explaining the relatively low amount of 1 bits in the output.

7Single threaded, on an Intel i5-4200U CPU.

22 An assessment of ECM authentication in modern vehicles

CHAPTER 7. CASE STUDY: MODEL A

will result in exactly one candidate PIN. Deriving the car security code using this attack takes less
than one second. This attack was verified to work against multiple other models from the same
concern8.

A more efficient variant

A far more efficient attack is possible. Combining the properties found in Sections 7.4.5 and 7.4.3,
we can identify the outputs of T () that were based on the vehicle security code (referred to as b and
c), then find the corresponding pre-image. The PIN is easily derived, as only one pre-image exists.
The required outputs of T () can either be obtained by observing multiple challenge/response pairs
or by injecting challenge 0x00000000 and analyzing the response, as this single challenge will result
in full recovery of b and c.

7.5.2 Car-only attack

Contrary to the previous attack, this attack does not require a valid key to be present. It will allow
an attacker to either deactivate the immobilizer system (effectively allowing the car to start), or
obtain the vehicle security code.

A characteristic of the algorithm is that given a challenge c, there are many PIN codes k
that will result in the same response r. This is due to the use of the bitwise or operation for
combination of values derived from k and c, as pointed out in Section 7.4.5. Due to the small
keyspace, we can easily compute the responses for all PINs given a challenge p, then grouping
those by response. We define the set Kr as the set containing all PINs k that yield response r for
a given challenge c and candidate PIN set K, as defined formally below.

Definition 7.5.1. For a given challenge c and set of candidate PINs K, the set Kr is defined as

k ∈ Kr ⇐⇒ k ∈ K ∧ F (c, k) = r

This can be used to construct a car-only attack. The BCM will provide the attacker with a
challenge. When an incorrect response is sent to the BCM, it immediately sends a new challenge.
No rate limiting is implemented, and authentication can be attempted at a rate of up to 5 times
per second.

The attack works as follows. Initially, all PINs are potentially correct, so K will contain each
k. When presented with a challenge c, the set Kr is constructed for this challenge by computing
the associated response for each k ∈ K. Now pick response r that corresponds to the largest set
Kr. By attempting to authenticate with this response, we have a small chance to authenticate
successfully, with p = |Kr| / |K|. If the authentication fails, we have found that each pin in Kr

is invalid. We can now update K by taking K ← K \ Kr. Having removed the PINs from the
candidate pin set K, we now repeat the process with a new ECM challenge.

Simulations have shown that on average 4000 challenge/response attempts are needed in order
to successfully authenticate, resulting in an expected optimal attack time of approximately 15
minutes.

8Although this algorithm is used by multiple car models, some small implementation differences were en-
countered. For some models, injection of challenges is less reliable, as the ECM also continuously sends challenges to
the BCM, even when the engine is running. The decrease in reliability was solved by simply intercepting the ECM
challenges and associated BCM responses, and computing the car PIN as soon as five pairs have been acquired.
This is slightly slower, the attack takes about 10 seconds.

An assessment of ECM authentication in modern vehicles 23

Chapter 8

Case study: Model B

8.1 Identifying the protocol messages

For this model, the challenge/response messages were again easily identified by searching for
messages containing variable high-entropy parts upon switching on the ignition. A trace of a
successful authentication is shown in Listing 8.1.

14 : 0 5 : 2 9 .459 | can id [0010 A001] : 0508938F220E53
14 : 0 5 : 2 9 .461 | can id [0010 A000] : AB1FDE
14 : 0 5 : 2 9 .474 | can id [0010 A001] : 06

Listing 8.1: Message exchange of successful authentication

The ECM initates the challenge/response by sending opcode 0x05, followed by six bytes with
variable values. The BCM replies with opcode 0xAB, followed by two variable bytes. The ECM
acknowledges a correct response with an opcode 0x06. My initial intuition was that the challenge
consisted of six bytes, expecting a two-byte response. However, when trying to obtain responses
for chosen (injected) challenges, the BCM responds with an error code 0x10 (Listing 8.2).

14 : 0 5 : 4 0 .102 can id [0010 A001] : 0512345678ABCD
14 : 0 5 : 4 0 .104 can id [0010 A000] : 10000000000000

Listing 8.2: Message exchange with injected challenge

The reason for this behaviour was found in the firmware, as will be discussed in the following
section.

24 An assessment of ECM authentication in modern vehicles

CHAPTER 8. CASE STUDY: MODEL B

Figure 8.1: The BCM from Model B.

8.2 Obtaining the algorithm

I obtained a firmware image from the BCM, which was based on the NEC1 V850ES2 architecture.
This is a 32-bit RISC architecture with some particularities when compared to architectures like
x86, PowerPC and ARM. For instance, it features two hardware registers that have to be initialized
to point to certain base addresses in memory: the GP (Global Pointer) register and the CTBP
(CALLT base pointer) register. Serving as a base address for relative references to RAM and a
table of commonly used functions3, initialization to the correct address is required in order to be
able to properly follow the control flow. A search for write accesses to these registers yielded a
few candidate values, while further analysis allowed for identification of the one combination that
yielded sensible results across the firmware.

Despite my best efforts, at first, I was unable to locate the immobilizer-related cryptographic
functions in the BCM. Therefore, I started working on a dump of an ECM from the same vehicle,
based on a 16-bit STMicroelectronics ST10F280 microcontroller4. In this firmware, the crypto-
graphic function responsible for the challenge/response authentication was identified by analysing
functions that use exclusive or instructions. Having found the algorithm, I created a first C imple-
mentation based on the code extracted from ST10F280 firmware. Then, presence of the algorithm
in the BCM was verified. As the algorithm makes use of a 32-bit constant that is absorbed into
the state upon initialization, a search for this constant allowed for straightforward confirmation
of the algorithm’s presence in the BCM firmware. This allowed for easier reverse engineering, as
32-bit V850ES assembly has a very high information density when compared to the ST10F280’s
16-bit architecture.

A second implementation was made, based on the 32-bit assembly extracted from the BCM.

1After merging with Renesas in 2010, sold under the Renesas brand name.
2Datasheet available online: http://pdf.datasheet.company/datasheets-1/renesas_electronics/

UPD70F3237M1GJ_A_-UEN.pdf
3In this firmware, mainly different kinds of frequently used function prologues / epilogues.
4Datasheet available online: http://www.keil.com/dd/docs/datashts/st/st10f280_ds.pdf

An assessment of ECM authentication in modern vehicles 25

http://pdf.datasheet.company/datasheets-1/renesas_electronics/UPD70F3237M1GJ_A_-UEN.pdf
http://pdf.datasheet.company/datasheets-1/renesas_electronics/UPD70F3237M1GJ_A_-UEN.pdf
http://www.keil.com/dd/docs/datashts/st/st10f280_ds.pdf

CHAPTER 8. CASE STUDY: MODEL B

I thoroughly inspected the code and created a third version, that more elegantly implements
the algorithm for Intel x86 / AMD64 architectures instead of merely translating the V850/ES
assembly.

The algorithm uses three input parameters. Two 32-bit values are used to initialize the internal
state of the algorithm. One 16-bit value is loaded after approximately half of the rounds of
the algorithm have been performed. Also, at separate phases of the algorithm, a 12-bit and a
14-bit output value are constructed. When comparing this behaviour with traces of successful
authentications, such as in Listing 8.1, the format of the challenge response packets became clear.
The ECU sends a 0x05 opcode, followed by a 32-bit challenge, followed by the 12-bit output. This
was visible, because in all traces, the most significant four bits of the last two byte part are zero.
A similar phenomenon was visible in the response: after the 0xAB opcode, the first nibble of the
two following bytes was always a number between 0 and 3: clearly, this is where the 14-bit output
is used. Concluding, the 14-bit output is the actual response, while the 12-bit output serves as
a proof of knowledge of the secret, serving to convince the BCM that the challenge was indeed
generated by the ECU.

Naturally, I had to verify the correctness of my implementations. Renesas CS+, a develop-
ment environment provided by Renesas, is equipped with an emulator for V850ES based targets.
Loading the firmware, setting GP and CTBP to their respective values, and setting breakpoints
and PC to the desired locations allowed for emulating parts of the firmware, which was used to
generate sample traces for validation purposes.

8.3 Algorithm details

The algorithm is constructed around a 32-bit Fibonacci LFSR5 and consists of four stages. First,
the internal state is initialized, using a 32-bit secret k. Then, 12 bits of output p (used as a proof
of knowledge on k) are generated. This is followed by loading an additional 16-bit secret l into the
internal state, followed by the generation of the actual response r. The four phases are discussed
in detail in the following sections, while the high-level definition of the algorithm is given here.

Code Listing 1 Model B authentication algorithm

function ModelB auth(c, k, l)
st← P1(c, k)
st, p← P2(st)
st← P3(st, l)
st, r ← P4(st)
return p, r

8.3.1 Phase 1: Initialization

During the first stage, the 32-bit state register st is initialized based on the 32-bit secret k,
challenge c and a constant:

st← k ⊕ c⊕ 0x0E080004

After setting the initial value, the round function is invoked 38 times. Each round, eight state
bits are used to construct a selector byte s, which is used to perform a table lookup from the
feedback table (Appendix A.1) and generate a new state bit. The selector byte s is derived from
the state st as defined in Definition 8.3.1.

5LFSRs, or linear feedback shift registers, are a commonly used, light-weight solution to generating keystream
based on a secret initial state. More information on LFSR types and theory can be found in various resources
online, such as [24] and [5].

26 An assessment of ECM authentication in modern vehicles

CHAPTER 8. CASE STUDY: MODEL B

Definition 8.3.1. The selector byte s is defined as

s = [st31, st14, st21, st12, st19, st26, st1]

Figure 8.2: Construction of selector s from st. The feedback bit is generated by function F (s).
Phase 2 output bits are generated by function O(s).

Each round, a new state bit is generated, and the state is shifted one position to the left. The
generated bit becomes the least significant state bit st0. In order to generate st0, the selector byte
s is split into the upper 5 bits, to be used as an index, and the lower three bits, to be used as a
mask.

Definition 8.3.2. The feedback function F (st) : F32
2 → F2 is defined as

F (st) = FeedbackTable[s[s7,...,s3]]7−[s2,...,s0]

where s is derived from st as defined in Definition 8.3.1.

Definition 8.3.3. The round function R(st) : F32
2 → F32

2 is defined as

R(st) = st� 1 + F (st)

For example, if s = 0x42 = 0b01000010, we have [s7, . . . , s3] = 0b01000 and [s2, . . . , s0] =
0b010. The feedback table byte at index 8 is 0x66 or 0b01100110. We select bit 7− [s2, . . . , s0] = 5,
which is set. Thus, a state that yields s = 0x42 would generate a 1 as feedback bit. Although a
byte is obtained from the feedback table, the construction using the mask has the advantage of
requiring less storage space.

The LFSR, the construction of selector s and the feedback function are illustrated in Figure
8.2. Pseudocode of the phase 1 initialization function is given below.

Code Listing 2 Phase 1

function P1(c, k)
st← k ⊕ c⊕ 0x0E080004
for i = 0 to 37 do

st← R(st)

return st

8.3.2 Phase 2: Proof generation

After the state has been initialized, 12 bits of output are generated. These 12 bits are sent along
with the challenge to the BCM, and serve to prove that the challenge was generated by someone
who knows secret k, asserting that only the ECM can send a valid challenge/proof pair. We will
refer to the generated proof as p.

The generation of the proof is done by generating one output bit after each invocation of the
round function. This is done in a similar way as the feedback bit generation, using the same
selector byte s but a different lookup table, given in Appendix A.2.

An assessment of ECM authentication in modern vehicles 27

CHAPTER 8. CASE STUDY: MODEL B

Definition 8.3.4. The output function O(st) : F32
2 → F2 is defined as

O(st) = OutputTable[s[s7,...,s3]]7−[s2,...,s0]

where s is derived from st as defined in Definition 8.3.1.

Twelve output bits are generated, from left to right. That is, after the first invocation of the
round function p11 is generated, followed by p10 after the second round, and so on until the least
significant bit p0 has been generated. The pseudocode for phase 2 is given below.

Code Listing 3 Phase 2

function P2(st)
p← 0
for i = 0 to 11 do

st← R(st)
p11−i ← O(st)

return st, p

8.3.3 Phase 3: Second secret absorption

After proof p has been generated, a value derived from the 16-bit secret l is absorbed into the
state. We will refer to the transformed value as m, the transformation T () is defined below.

Definition 8.3.5. The function T (l) : F16
2 → F32

2 is defined as

T (l) = (l ⊕ 0x11)� 6

Note that the left shift occurring in T () implies the lower six bits of m are zero. Also, as the
first bit of m that is used in P3() is m19, l15 and l14 are never used and do not affect the state.
The pseudocode for phase 3 is given below.

Code Listing 4 Phase 3

function P3(st, l)
m← T (l)
for i = 0 to 19 do

st← R(st)
st0 ← st0 ⊕m19−i

return st

8.3.4 Phase 4: Response generation

The fourth phase is structured identically as the proof generation phase. The response r is gen-
erated by invoking the round function 14 times. After each invocation, output function O(st) is
used to compute the next response bit. As is the case in the proof generation phase, the most
significant response bit is generated first. The pseudocode for the generation of response r is given
below.

28 An assessment of ECM authentication in modern vehicles

CHAPTER 8. CASE STUDY: MODEL B

Code Listing 5 Phase 4

function P4(st)
r ← 0
for i = 0 to 13 do

st← R(st)
p13−i ← O(st)

return st, r

8.4 Properties of the cipher

8.4.1 The feedback function

The algorithm is shaped as a 32-bit Fibonacci LFSR with 8 taps for the feedback function F (). As
was mentioned in Section 8.3.1, the feedback function uses a selector byte s to generate a single
feedback bit using the feedback table in Appendix A.1. However, analysis of the feedback table
reveals it can be rewritten as a linear operation on s that uses only four state bits.

F (s) = s7 ⊕ s5 ⊕ s1 ⊕ s0

This can be mapped directly to the state bits that were used to construct s.

Lemma 8.4.1. The feedback function F (st) : F32
2 → F32

2 , as defined in Definition 8.3.2, is
equivalent to

F (st) = st31 ⊕ st21 ⊕ st1 ⊕ st0

The resulting simplified feedback LFSR is visualized in Figure 8.3.

Figure 8.3: The feedback LFSR with four taps.

It is interesting to note that although the table-based implementation uses five table index bits
([s7, . . . , s3]) and three output bit selection bits ([s2, . . . , s0]), only four bits are of influence in the
feedback function F (st).

8.4.2 Inverse round function

As the round function operates as an LFSR, once the state is known, it can be rolled back easily.
Although eight state bits are used to select the feedback bit, we have shown in Section 8.4.1 that
only four state bits are used for generating the feedback bit. As the feedback function is a linear
operation, an inverse function can be found.

Lemma 8.4.2. The inverse round function R−1(st) : F32
2 → F32

2 is given by

R−1(st) = ((st22 ⊕ st2 ⊕ st1 ⊕ st0)� 31) + (st� 1)

An assessment of ECM authentication in modern vehicles 29

CHAPTER 8. CASE STUDY: MODEL B

8.4.3 Knowledge of state bits based on output bit

If at some point in time, an output bit6 is generated, we know it is some bit from a byte in the
output table (Appendix A.2). Which bit is selected is determined based on the selector byte s,
which consists of eight state bits. Given an output bit, there are exactly 128 values for s that
would have resulted in the observed output bit. Assume sg is a correctly guessed value of s. We
can now reconstruct 8 bits of the internal state, namely, the state bits that were used to construct
s.

8.5 Attacks

Having derived the algorithm, I developed three incrementally efficient attacks. All these attacks
are car-only: they do not require an authorized transponder key to be present. This is possible
due to the fact that the ECM sends a proof in conjunction with the challenge, which allows
for reconstruction of the 32-bit secret k. Using these attacks, the actual response r cannot be
computed, since we lack the ability to infer the second secret l, which is 16 bits in size.

The inability to derive l is irrelevant from an adversary’s perspective. This is due to the fact
that the vehicle security code can be derived from k. The procedure to derive the security code
is as follows: Consider k written down as a hexadecimal number. Take the five rightmost nibbles.
For each nibble, if the value is greater than 9, subtract 9. If the resulting value is 0, set it to 7.
The remaining decimal-digit-only hexadecimal string is the vehicle security code.

An example will clarify this procedure. Suppose we have k = 0xB15C03F2. Omitting the
rightmost three nibbles yields 0xC03F2. We subtract 9 from all non-decimal nibbles, yielding
0x30372. We have one 0-nibble, which we replace by 7, resulting in a car security code of 37372.

This method of deriving the vehicle security code from the master secret k has its drawbacks.
Clearly, the keyspace is only 95 = 59049, which means an exhaustive search on the PIN would be
of a complexity of approximately 215,85. Additionally, the PINs are biased, as hexadecimal digits
0xA . . . 0xF map to the decimal digits 1 . . . 7, implying 8 and 9 are less common7. This could be
used to prioritize certain guesses when mounting a brute force attack, allowing an adversary to, on
average, find the correct PIN before having tried half of the search space. However, rate limiting
mechanisms are in place, alleviating the risk of a successful brute force on seedkey authentication.

Deriving the value of k is thus an interesting venue of attack, as it would allow us to obtain
the vehicle security code using the method outlined before. The PIN, derived from k, can then be
used to authenticate a diagnostic session and, for instance, program a new key to be authorized
by the vehicle. This would allow an adversary to successfully deactivate the immobilizer without
any need to obtain l.

8.5.1 Naive exhaustive-search

The first attack consists of a exhaustive search on k, similar to the one presented in 7.5.1. However,
as the immobilizer algorithm employs a 32-bits key k, the search space is a lot larger than was the
case for the Model A attack. The attack works by trying all possible values of k, and comparing
whether or not the key will match a known set of challenge / proof pairs. Single-threaded on an
Intel i5-4200U, the key space is exhausted in 166 minutes.

8.5.2 Pruning exhaustive-search

The naive exhaustive search computes the entire response for each candidate key, before checking
whether or not the computed response matches the observed response. A significant improvement
in running time may be obtained by performing this check bit-by-bit as soon as a proof bit is
generated. This way, when an incorrect key is used, the algorithm has a 50% chance each round

6Either a proof bit or a response bit.
7Assuming the 32-bit secret k is uniformly distributed across cars.

30 An assessment of ECM authentication in modern vehicles

CHAPTER 8. CASE STUDY: MODEL B

to detect a difference between the generated and the observed proof bits. As soon as a difference
is detected, the candidate key can be disregarded. This yields an average of two rounds of proof
generation required to detect an invalid key. Instead of running for 50 rounds, the algorithm will
now run for 40 rounds on average.

However, further optimization is possible by omitting the 38 initialization rounds, and finding
a post-initialization state (the state after the initialization phase) that will generate the observed
proof. Once identified, this state can be rewound by 38 rounds in order to obtain the corresponding
initial state. The inverse round function is given in Section 8.4.2.

The key k can be found by computing the exclusive or of the initial state, the challenge and
the 0x0E080004 LFSR initialization constant. The average number of rounds required to detect
an invalid key is now reduced from 50 to 2. The running time of the attack was reduced to
approximately 90 seconds8

8.5.3 State reconstruction

Although the previous attack already yielded a fairly low attack time, a more efficient attack
is possible. The generated proof bits reveal information about the internal state, as they are
generated based on the value of selector s. For each generated output bit, 256 possible values of s
must be considered. Half of those can be discarded right away, as O(st)9 must yield the observed
output bit. This leaves us with 128 candidate values for s. As the state determines the value
of s (Figure 8.2), the opposite also holds: a candidate selector value determines eight bits of the
associated candidate state. This is visualized in Figure 8.4.

Figure 8.4: The orange state bits can be inferred from a given selector s.

This can be extended to a multi-round guess-and-determine attack. We start out at round o
and observe the first generated proof bit p11. There are 128 values for s that generate the observed
proof bit p11. We can now apply the round function on each partially known candidate state.

This depth in the recursive algorithm will correspond to round 1 of the proof generation step.
Once more, we generate a list of candidate selectors, of which 128 will generate the observed proof
bit p10 for round 1. However, we have less options to consider for s than in the previous round.
The value of st1 does not need to be guessed, as we have already assumed its value in the previous
round: st0 was shifted to the left and now determines st1. Similarly, we already have the new
value of st0, as we have generated it by applying the round function on the previously assumed
state. On average, there are thus only 32 candidate values for s.

In the following rounds, more and more state information is inferred. The state bits that need
to be guessed each round are visualized in Figure 8.5. Using this principle, we can construct a
recursive algorithm that generates a list of all keys k that, combined with the observed challenge
c, would result in the observed proof p. To help building this algorithm, we define a knowledge
mask for each round, which indicates for a round n which bits are assumed known (marked by a 1
in the knowledge mask), and which bits are free from assumptions. This helps to detect conflicts
in assumed knowledge and candidate selectors, allowing to skip invalid selector candidate values.

Definition 8.5.1. The knowledge mask Mn at the start of round n is defined as

Mn =

{
0 if n = 0

rol(Mn−1 ∨ 0x84285003) otherwise

8This is faster than the expected factor of 25, which is explained by several other tweaks that improved per-
formance.

9Note s is derived from st, according to Definition 8.3.4.

An assessment of ECM authentication in modern vehicles 31

CHAPTER 8. CASE STUDY: MODEL B

Figure 8.5: Propagation of knowledge about state bits per round. Orange bits have to be guessed.
Dark green bits are known as a guess from previous rounds. Light green bits are selector bits that
are fixed by previous guesses.

We can now define our recursive algorithm RecursiveSearch(), along with a helper function
RollbackToKey(), which will be discussed shortly.

Code Listing 6 Recursive search algorithm

function RecursiveSearch(c, p, st, n)
if n = 12 then

print RollbackToKey(c, st)

for s = 0 to 0xFF do
st′ ← S(s)
if (p11−n = O(st′) then

if st ∧Mn = st′ ∧Mn then
st′ = R(st ∨ st′)
RecursiveSearch(c, p, st′, n + 1)

Each time RecursiveSearch() is called with depth n = 12, we have found a valid LFSR
sequence, that would have resulted in the observed proof p. The corresponding key is then easily
derived by using the inverse round function to roll back to the initial state of the algorithm and
then extracting the key from the initial state. This is done by RollbackToKey(), as is defined in
Code Listing 7.

RecursiveSearch(), initially called with the challenge and proof while supplying zero values
for st and n, thus lists all keys k that would have resulted in the observed proof p.

When testing against a sample challenge/proof pair, we see in Figure 8.6 that the number
of invocations grows exponentially up to round 5 (which is reached 2134283 times), where it
stabilizes. At the start of round 11, the inferred state information is complete (in other words,
our knowledge mask is 0xFFFFFFFF), and as such, no further branching occurs. Instead, half of
these states will generate a conflicting last output bit r0, which explains why depth 12 is reached
half as often as depth 11. We can now test each identified candidate key against other captured

32 An assessment of ECM authentication in modern vehicles

CHAPTER 8. CASE STUDY: MODEL B

Code Listing 7 Rollback function

function RollbackToKey(c, st)
for i = 0 to 49 do

st← R−1(st)

return st⊕ c⊕ 0x0E080004

0 2 4 6 8 10 12
0

24

210

216

222

Recursion depth

N
u

m
b

er
o
f

in
vo

ca
ti

on
s

Figure 8.6: Total number of RecursiveSearch() function calls per round depth.

challenge/response traces, after which the true key k is easily identified. The attack complexity is
approximately 221 and a single-threaded run on on an Intel i5-4200U CPU takes approximately 8
seconds.

8.5.4 Deriving the second secret l

The 16-bit secret l that is required to compute the actual response r can also be recovered us-
ing above attack methods. However, in order to mount such an attack, an adversary needs to
obtain a set of valid challenge/response pairs. In order to capture these pairs, the BCM needs
to acknowledge the presence of an authorized transponder key in the ignition lock. Surprisingly,
deriving vehicle security code can be done without presence of an authorized transponder key,
as cooperation from the BCM is not required. Based on the recovered 32-bit key k, the vehicle
security code can be computed, which can in turn be used to program a new key. This key will
now be accepted and the immobilizer can be deactivated without the need to recover the value of
l.

An assessment of ECM authentication in modern vehicles 33

Chapter 9

Case study: Model C

9.1 Identifying the protocol messages

My research on Model C started with an analysis of CAN traffic on a test set. This test set
comprises of an ECM, BCM and IPC module. I found that when the ignition is switched on,
different ”challenge/response-like” messages can be identified.

12 : 4 0 : 3 1 .379 | can id [0 4 0] : 0023FAE51E8B
12 : 4 0 : 3 1 .388 | can id [0 5 0] : 01024 A740000
12 : 4 0 : 3 1 .392 | can id [0 4 8] : 01014 A740000
12 : 4 0 : 3 1 .394 | can id [0 6 8] : 01204 A740000
12 : 4 0 : 3 1 .576 | can id [0 4 0] : 0000FAE50E80
12 : 4 0 : 3 4 .156 | can id [0 4 0] : 0023FAE51E8B
12 : 4 0 : 3 4 .172 | can id [0 5 0] : 01024 A740000
12 : 4 0 : 3 4 .173 | can id [0 4 8] : 01014 A740000
12 : 4 0 : 3 4 .181 | can id [0 6 8] : 01204 A740000
12 : 4 0 : 3 4 .355 | can id [0 4 0] : 0000FAE50E80
12 : 4 0 : 3 4 .524 | can id [0 4 0] : 0023FAE51E8B
12 : 4 0 : 3 4 .536 | can id [0 5 0] : 01024 A740000
12 : 4 0 : 3 4 .536 | can id [0 6 8] : 01204 A740000
12 : 4 0 : 3 4 .544 | can id [0 4 8] : 01014 A740000
12 : 4 0 : 3 4 .729 | can id [0 4 0] : 0000FAE50E80
12 : 4 0 : 3 4 .922 | can id [0 4 0] : 0000FAE50680
12 : 4 0 : 3 5 .113 | can id [4 8 0] : 101104A5D7CEFC68 // ECM c h a l l e n g e
12 : 4 0 : 3 5 .147 | can id [4 8 8] : 0766020000000000 // BCM empty response
12 : 4 0 : 3 5 .212 | can id [4 8 0] : 101104A5D7CEFC68 // ECM c h a l l e n g e
12 : 4 0 : 3 5 .229 | can id [4 8 8] : 0766420059BA58EE // BCM response

Listing 9.1: Model C challenge/response messages

These messages can be separated in two independent authentication mechanisms. One is
initiated by CAN id 0x040, while the other is initiated by 0x480. We will refer to these mechanisms
as the 0x040 authentication and 0x480 authentication respectively, both will be discussed in the
following sections.

0x040 authentication

We see that CAN id 0x040 repeatedly sends a message, to which different components in the
0x040-0x068 range respond. This is part of a system that verifies that multiple components
(ECM, BCM, IPC1 and ACM2) in the car all have knowledge of the vehicle security code. This
is done by means of a challenge, that varies per vehicle but is static each time the authentication
takes place, followed by responses from three devices, once again diversified per vehicle without

1Instrument Panel Cluster
2Airbag Control Module

34 An assessment of ECM authentication in modern vehicles

CHAPTER 9. CASE STUDY: MODEL C

freshness guarantees per authentication. Also, note the responses from each authenticating device
are equal (in this case, 0x4A74).

Despite the obvious weaknesses in this authentication system, it does not play a crucial role in
the security of the vehicle. If this authentication fails, the car will not be immobilized. Instead, the
only observable consequence is that the immobilizer status indicator on the IPC starts blinking,
indicating to the user that there is a component authentication problem3. Due to the fact that
this protocol does not play a role in the immobilization system, no further research has been done
to uncover the internals of this challenge response algorithm.

0x480 authentication

The 0x040 authentication is followed by the actual immobilizer authentication step, initiated by
a challenge sent on CAN id 0x480. The first two bytes are an opcode, 0x1011. This is followed
by two status bytes, with value 0x04A5 in Listing 9.1. The exact value may vary by a few bits,
and although the exact significance of each bit is not clear, it is not part of the challenge. The
challenge consists of the last four bytes, and are different each time the authentication takes place.
The first time the challenge is sent, a response message is sent with all-zero response bytes and
status bytes 0x02004. The challenge is repeated, followed by the actual BCM response, along with
status bytes 0x4200. No acknowledgement message is sent, instead, the BCM ceases to send the
challenge message5.

In contrast to the 0x040 authentication messages, the 0x480 authentication does relate to the
actual immobilizer functionality: failure will lead to the ECM refusing to start the engine, and
the immobilizer status indicator will light up continuously.

9.2 Obtaining the algorithm

In order to obtain the algorithm behind the immobilizer protocol, I started reverse engineering
several firmwares of different cars from the same manufacturer.

In order to do more thorough research and verify that the found algorithm was actually used as
a challenge-response algorithm, I obtained a test set consisting of only an ECM and a BCM from
the same model. The ECM is manufactured by Bosch and equipped with a Freescale MPC555
microcontroller, based on a 32-bit PowerPC architecture. Freescale microcontrollers support BDM,
which is a standard for on-chip debugging, allowing one to halt processor execution. In the halted
state, one can inspect and update CPU registers and memory6. Also, a hardware breakpoint can
be set, halting execution as soon as the breakpoint address is reached. This allowed me to verify
that the found algorithm was actually executed, and obtain the key and challenge loaded on each
run.

3According to the manufacturers, this kind of authentication system is intended to decrease the potential profit
from trading stolen car parts. However, it also serves as an additional barrier when replacing parts with legitimate
second-hand components. In most cases, a garage is able to reprogram the car security code in the donor part in
order to successfully authenticate during this phase.

4The reason for this behavior is unknown. Possibly, the BCM has not yet had time to validate the transponder
key.

5If no valid key is present, the ECM will send the challenge message 19 times, then stop transmitting the
message. Immobilization will still be active.

6With memory, we mean the full internal 32-bit address space. Of course, not all addresses are readable or
writeable, this depends on whether flash, I/O or RAM is mapped to the requested address.

An assessment of ECM authentication in modern vehicles 35

CHAPTER 9. CASE STUDY: MODEL C

Figure 9.1: The ECM from model C, with the Multilink FX on-chip debugging tool connected to
the BDM debug pads.

9.3 Algorithm origin

The obtained algorithm turned out to be closely related to an immobilizer transponder family de-
signed by Philips: PCF7935. This is a passive LF transponder introduced around 19947, designed
to be fully backward compatible with two related, but more light-weight transponder types, the
PCF7930 and the PCF7931. Several security issues in these transponder types were addressed
with the PCF7935, which implements a challenge/response algorithm based on a 128-bit symme-
tric secret in conjunction with, according to the datasheet, 48-bit challenges in order to generate an
equally long response. The PCF7935 was superseeded by the PCF7936 transponder type, better
known as HITAG2[19].

Interestingly, Model C uses a key with a HITAG 2 passive LF transponder. Internally, the
BCM emulates the behaviour of a PCF7935 security transponder in order to authenticate itself
towards the ECM. A simplified message sequence chart of this authentication scheme is given in
Figure 9.2.

We were surprised to find the BCM emulates an obsolete transponder for internal authentic-
ation, and sought to find a rationale behind this scheme. Our hypothesis was that the use of an

7I was unable to find any press statement or other clear evidence of a launch date of the PCF7935 transponder.
However, in 1994, the first cars were introduced that use the PCF7935 transponders.

36 An assessment of ECM authentication in modern vehicles

CHAPTER 9. CASE STUDY: MODEL C

ECM BCM Transponder

Store: kpcf Store: kpcf , khitag2 Store: khitag2
Generate nonce ce

ce−−−−−−→
Generate nonce cb

cb−−−−−−→
Compute

rb ← Hitag2(cb, khitag2)
rb←−−−−−−

Verify
rb = Hitag2(cb, khitag2)

Compute
re ← PCF7935(ce, kpcf)

re←−−−−−−
Verify
re = PCF7935(ce, kpcf)

Figure 9.2: Model C situation: BCM and transponder authenticate using Hitag 2, while BCM
and ECM authenticate using PCF7935.

”emulated” PCF7935 transponder was due to legacy requirements. It is possibly hard to upgrade
the firmware of an ECM to a new transponder technology, since engines are developed separately
from vehicles. If a new vehicle is equipped with a newer transponder technology, the need for
emulation of the old, obsolete transponder becomes a necessity in order to be able to authenticate
towards the ECM.

This was confirmed by investigating an older model from the same manufacturer. This vehicle
was equipped with a PCF7935 transponder in the ignition key, and indeed, we found the ECM
authenticates directly with the security transponder. An immobilizer box that serves as the LF
interface only checks if the world-readable transponder identifier matches an authorized key. If
so, it forwards the transponder response to the ECM. A simplified message sequence chart of this
design is given in Figure 9.3.

ECM Immobilizer box Transponder

Store: k Store: IDs Store: k, id

Generate nonce c
c−−−−−−→

Forward c
c−−−−−−→

Compute r ← PCF7935(c, k)
id, r

←−−−−−−
Verify id ∈ IDs

Forward r
r←−−−−−−

Verify r = PCF7935(c, k)

Figure 9.3: Old situation: immobilizer box forwards communication between ECM and transpon-
der, and only verifies if transponder id is known.

When designing a first-generation immobilizer system, this seems a logical approach. How-
ever, the aforementioned compatibility issues may arise, which possibly pushed manufacturers to
abandon this model in favour of the current approach: the BCM validates the key, after which the
BCM authenticates towards the ECU if a valid key is present. This approach, however, introduces
additional surface for an attack, as two instead of one challenge/response mechanism are in place.

An assessment of ECM authentication in modern vehicles 37

CHAPTER 9. CASE STUDY: MODEL C

As we are dealing with a software implementation of a physical LF transponder, it is relevant to
have some understanding of the transponder design. The PCF7935 is a passive RFID transponder,
operating on 125KHz. Access control flags allow for the restriction of write access to its 768 bits
of user memory. It also incorporates a challenge/response algorithm, which uses a public 32-
bit identifier (the IDE) and a 128-bit symmetric secret (referred to as shadow bytes) in order to
generate a 48-bit response for a 48-bit challenge. A more detailed overview can be found in the
PCF7935 datasheet, which can be found online8.

Figure 9.4: The PCF7935 internal memory layout. Source: NXP

As illustration 9.4 shows, the memory of the PCF7935 consists of 8 blocks of 16 bytes. Block
0 and block 1 are control memory, while block 2 to 7 are user memory. Some control registers
are there for backwards compatibility with the older PCF7931 and PCF7930 transponder types,
such as the 56-bit password. Of interest are the IDE field, which holds a four-byte identifier that
is specific per car manufacturer9, and the SHD byte, which determines whether or not the shadow
memory is accessible. When a transponder is personalized, the vehicle will set SHD byte such that
accesses to memory block 2 are redirected to memory block 2s: the shadow memory. The vehicle
then writes a 128-bit symmetric key to shadow memory and then sets the lock bits such that the
shadow memory is no longer accessible and the symmetric key cannot be retrieved. The contents

8Datasheet: http://datasheet.datasheetarchive.com/originals/distributors/Datasheets-309/70124.pdf,
memory layout: http://www.computersolutions.cn/blog/wp-content/uploads/2011/02/pcf7930_35.pdf

9For instance, a fictive car manufacturer ”Carman” could choose to use an IDE value of 0x4341524D, which
translates to the ascii string ”CARM”. Of course, a manufacturer could also choose to diversify the value of the
IDE per vehicle.

38 An assessment of ECM authentication in modern vehicles

http://datasheet.datasheetarchive.com/originals/distributors/Datasheets-309/70124.pdf
http://www.computersolutions.cn/blog/wp-content/uploads/2011/02/pcf7930_35.pdf

CHAPTER 9. CASE STUDY: MODEL C

of the shadow memory block serve as the secret symmetric key in the PCF7935 challenge-response
algorithm, and are referred to as the shadow bytes.

9.4 Algorithm details

The algorithm uses a 48-bit challenge c, a 32-bit manufacturer identifier IDE, and a 128-bit key
s in order to generate a 48-bit response r.

The authentication algorithm can be divided in five phases. During the first phase, the state
and key byte array are initialized. The second phase absorbs 32 challenge bits into the state, while
the third phase generates 32 response bits, by means of a very similar round function. The fourth
phase is identical in structure to the second phase, and absorbs an additional 16 challenge bits.
This is followed by the fifth and final phase that generates 16 more response bits. The high level
algorithm is presented below, while each phase will be detailed in the following sections.

Code Listing 8 Model C authentication algorithm

function ModelC auth(c, s, IDE)
st, k, kbp← P1(c, s, IDE)
st, kbp← P2(st, c, k, kbp)
st, kbp, r ← P3(st, k, kbp)
st, kbp← P4(st, c, k, kbp)
st, kbp, r ← P5(st, r, k, kbp)
return r

9.4.1 Phase 1: Initialization

Upon initialization, the 32-bit state st and the 29-byte key array k are initialized with the afore-
mentioned 128-bit shadow bytes s and the 32-bit IDE, as is illustrated in Figure 9.5. Pseudocode
of this phase is given in Code Listing 9. Note that k[0 : 11] = k[16 : 27], and k[12] = k[28]. A key
byte pointer, kbp, is initialised to zero, and will be used as an incrementing pointer (modulo 29)
to a byte in key array k.

Figure 9.5: Initialisation of k and st from shadow bytes s and identifier IDE.

9.4.2 Phase 2: Partial challenge absorption

During this phase, 32 bits of the challenge c are absorbed into the state. In order to absorb a
single bit of the challenge into the internal state, the round function is invoked 17 times. During
phase 2, the round function is thus invoked 544 times in total. The absorption phase feedback
function FA() and the absorption phase round function RA() functions are defined below, followed
by pseudocode for P2() which is given in Code Listing 10.

Definition 9.4.1. The absorption round function RA(st, ci, k, kbp) : F32
2 ,F2,F29

2 ,F128
2 → F32

2 is
defined as follows.

RA(st, ci, k, kbp) = (st� 8) + ((ror(st[3])⊕ FA(st, ci)⊕ k[kbp])� 24)

An assessment of ECM authentication in modern vehicles 39

CHAPTER 9. CASE STUDY: MODEL C

Code Listing 9 Phase 1

function P1(c, s, IDE)
for i = 0 to 3 do

st[i]← s[3− i]
k[i + 12]← IDE[i]

for i = 0 to 11 do
k[i]← s[i + 4]
k[i + 16]← s[i + 4]

k[28]← k[12]
kbp← 0
return st, k, kbp

with FA() as given by Definition 9.4.3.

Figure 9.6: Phase 2: Challenge absorption round function RA(st, ci, k, kbp.)

The round function computes a new state byte as the xor of three bytes. The first byte is a
right-rotate by one bit of state byte st[3]. Second is the output of a nonlinear absorption phase
feedback function FA() over state and challenge bit. Lastly, a byte from the key array k is used.
The state is shifted to the right by one byte, whereafter st[0] is set to be the newly computed state
byte. This process is illustrated in Figure 9.6.

The absorption phase nonlinear feedback function Fa() is given by Definition 9.4.3. The chal-
lenge bit and state bits are used to compose four selector bytes sa, sb, sc, sd. The first selector
sa is then used as index for a table lookup in the Model C feedback table, as given in Appendix
B.1. The retrieved byte a is masked to retain only two bits, that will eventually be part of the
returned byte. The remaining three selectors are used in a similar way, however, each one is altered
depending on the value of a prior table lookup. Eventually, four lookups have been performed,
and the values are merged by addition10, yielding the result.

Definition 9.4.2. The absorption phase selectors are defined as

sa = [st22, st30, 0, st12, st11, st26, st17 ∨ ci, st8]

sb = [st31, st14, st13 ⊕ ci, st28, st19, st18, st9, 0]

sc = [st23, st6, st29, st4, 0, 0, st25, st16]

sd = [st10, 0, st21, st20, st27, st2, st1, st24]

where ci is the challenge bit as supplied to the feedback function FA().

10As the union of the masks equals 0xFF, and the intersection of the masks equals 0, the bits in a, b, c and d do
not overlap.

40 An assessment of ECM authentication in modern vehicles

CHAPTER 9. CASE STUDY: MODEL C

Definition 9.4.3. The absorption phase nonlinear feedback function FA(st, ci) : F32
2 ,F2 → F8

2 is
defined as follows.

FA(st, ci) = a + b + c + d

where

a = LookupTable[sa] ∧ 0xA0

b = LookupTable[sb ∨ a7] ∧ 0x09

c = LookupTable[sc ∨ (b0 � 2)] ∧ 0x12

d = LookupTable[sd ∨ (c1 � 5)] ∧ 0x44

with sa, sb, sc, sd as given by Definition 9.4.2, and LookupTable as given by Appendix B.1.

Phase 2 only absorbs challenge bits c47 down to c16. The remaining part of the challenge is
absorbed in phase 4. Pseudocode of phase 2 is given in Code Listing 10.

Code Listing 10 Phase 2

function P2(st, c, k, kbp)
for i = 0 to 31 do

for j = 0 to 16 do
st← RA(st, c47−i, k, kbp)
kbp← kbp + 1 mod 29

return st, kbp

9.4.3 Phase 3: Partial response generation

The round function during response generation is nearly identical to the round function in phase
2. One difference is in the fact that no challenge bit is absorbed. The output phase round function
RO() and the corresponding nonlinear feedback function FO() and selector definitions are given
below. The round function RO() is visualized in Figure 9.7.

Definition 9.4.4. The output generation round function RO(st, k, kbp) : F32
2 ,F29

2 ,F128
2 → F32

2 is
defined as follows.

RO(st, k, kbp) = (st� 8) + ((st[3]⊕ FO(st)⊕ k[kbp])� 24)

with F0() as given by Definition 9.4.6.

Definition 9.4.5. The output phase selectors are defined as

sa = [st22, st30, 0, st12, st11, st26, st17, st8]

sb = [st31, st14, st28, st19, st18, st9, 0]

sc = [st23, st6, st29, st4, 0, 0, st25, st16]

sd = [st10, 0, st21, st20, st27, st2, st1, st24]

where ci is the challenge bit as supplied to the feedback function FO().

An assessment of ECM authentication in modern vehicles 41

CHAPTER 9. CASE STUDY: MODEL C

Definition 9.4.6. The output phase nonlinear feedback function FO(st) : F32
2 → F8

2 is defined as
follows.

FO(st) = a + b + c + d

where

a = LookupTable[sa] ∧ 0xA0

b = LookupTable[sb ∨ a7] ∧ 0x09

c = LookupTable[sc ∨ (b0 � 2)] ∧ 0x12

d = LookupTable[sd ∨ (c1 � 5)] ∧ 0x44

with sa, sb, sc, sd as given by Definition 9.4.2, and LookupTable as given by Appendix B.1.

Figure 9.7: Phase 3: challenge absorption round function RO(st, k, kbp).

Round 3 function P3() resembles P2(), but the round function RO() is invoked twice before the
key byte pointer kbp is incremented. challenge related permutations. Second, in order to produce
two bits of output, the round function is called 34 times, incrementing the key byte pointer kbp
after each two rounds. The two output bits are defined as [st31, st30]. The round function is
visualized in Figure 9.7.

The pseudocode for phase 3 is given in Code Listing 11.

Code Listing 11 Phase 3

function P3(st, k, kbp)
r ← 0
for i = 0 to 15 do

for j = 0 to 16 do
st← RO(st, k, kbp)
st← RO(st, k, kbp)
kbp← kbp + 1 mod 29

r47−(2∗i) ← st31
r46−(2∗i) ← st30

return st, kbp, r

Phase 3 computes the values for the response bits r47 down to r16. The remaining bits are
computed in phase 5.

9.4.4 Phase 4: Remaining challenge absorption

The last 16 bits c15 to c0 of the challenge are absorbed in phase 4. The structure of this phase
is identical to phase 2, using the same round function and nonlinear feedback function. The
pseudocode is given in Code Listing 12.

This phase absorbs the challenge bits that have not been absorbed in Phase 2: bits c15 to c0.

42 An assessment of ECM authentication in modern vehicles

CHAPTER 9. CASE STUDY: MODEL C

Code Listing 12 Phase 4

function P4(st, c, k, kbp)
for i = 32 to 47 do

for j = 0 to 16 do
st← RA(st, c47−i, k, kbp)
kbp← kbp + 1 mod 29

return st, kbp

9.4.5 Phase 5: Remainder of response generation

Phase 5 is constructed similarly to phase 3, generating the last 16 bits of the response. It employs
the same round function structure and the same nonlinear feedback function. The pseudocode for
phase 5 is given in Code Listing 13.

Code Listing 13 Phase 5

function P5(st, k, kbp)
r ← 0
for i = 16 to 23 do

for j = 0 to 16 do
st← RO(st, k, kbp)
st← RO(st, k, kbp)
kbp← kbp + 1 mod 29

r47−(2∗i) ← st31
r46−(2∗i) ← st30

return st, kbp, r

This phase computes the response bits that have not been computed in Phase 3: bits r15 to
r0.

9.5 Properties of the cipher

9.5.1 Table lookups

The implementations we reverse-engineered use a lookup table (Appendix B.1) in the round func-
tion. The table is balanced for each output bit, that is, when comparing all entries in the table,
the amount of 0 and 1 bits are equal for each bit position. The table has many duplicate entries
and as such, is not an s-box. Rather, it implements a nonlinear function.

In the round function, four lookups are performed, and each time, two different bit positions of
the retrieved value are used. We can thus replace the single 8-to-8 bit lookup table by four 8-to-2
bit lookup tables, which we will label according to the mask that is applied on the output value
by the round function: T0xA0, T0x09, T0x12, T0x44.

When inspecting the truth table of the first 8-to-2 bit table T0xA0, we observe several relations.
A Karnaugh map of the 8-to-2 bit function is found in Listing 9.2. The four topmost rows and
four leftmost columns designate the values of the different bit positions of selector byte sa, while
the table shows the associated two bits11.

11In order to keep the map readable, only the two relevant bit positions are displayed, the most significant one
first.

An assessment of ECM authentication in modern vehicles 43

CHAPTER 9. CASE STUDY: MODEL C

3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

7 6 5 4
0 0 0 0 : 11 11 00 11 00 11 11 00 00 00 00 00 11 11 00 00
0 0 0 1 : 00 00 11 11 00 11 00 11 11 11 11 00 11 00 11 00
0 0 1 0 : 00 00 11 00 11 00 00 11 11 11 11 11 00 00 11 11
0 0 1 1 : 11 11 00 00 11 00 11 00 00 00 00 11 00 11 00 11
0 1 0 0 : 00 00 11 11 11 11 00 00 11 11 11 00 00 00 11 00
0 1 0 1 : 11 00 00 00 11 00 11 00 00 11 00 11 11 11 00 11
0 1 1 0 : 11 11 00 00 00 00 11 11 00 00 00 11 11 11 00 11
0 1 1 1 : 00 11 11 11 00 11 00 11 11 00 11 00 00 00 11 00
1 0 0 0 : 01 01 10 01 10 01 01 10 10 10 10 10 01 01 10 10
1 0 0 1 : 10 10 01 01 10 01 10 01 01 01 01 10 01 10 01 10
1 0 1 0 : 10 10 01 10 01 10 10 01 01 01 01 01 10 10 01 01
1 0 1 1 : 01 01 10 10 01 10 01 10 10 10 10 01 10 01 10 01
1 1 0 0 : 10 10 01 01 01 01 10 10 01 01 01 10 10 10 01 10
1 1 0 1 : 01 10 10 10 01 10 01 10 10 01 10 01 01 01 10 01
1 1 1 0 : 01 01 10 10 10 10 01 01 10 10 10 01 01 01 10 01
1 1 1 1 : 10 01 01 01 10 01 10 01 01 10 01 10 10 10 01 10

Listing 9.2: Karnaugh map of the Model C nonlinear feedback table.

A first observation is that bit 7 determines whether the second output bit matches or comple-
ments the first output bit12. Second, a flip in bit 5 always results in a flip of both output bits:
we see each row where bit 5 is set is the complement of the the row where bit 5 is not set. These
observations can be implemented as two simple linear operations, which allows us to eliminate bit
5 and 7 from the function input and conditionally perform the bit 5 and bit 7 linear operation a
posteriori. This leads to a simplified table for T0xA0, as shown in Listing 9.3.

3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

7 6 5 4
∗ 0 ∗ 0 : 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0
∗ 0 ∗ 1 : 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0
∗ 1 ∗ 0 : 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
∗ 1 ∗ 1 : 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1

Listing 9.3: Karnaugh map after fixing bit 5 and 7 to zero. The effect of these bits can be written
as a linear function on the output.

The original value can be derived as follows. For selector s, look up bit b in the reduced table
for index s ∧ 0b01011111. The two output bits can be obtained as [b ⊕ s5, b ⊕ s5 ⊕ s7]. The
remaining three tables are similar: all have one bit that complements the output and a bit that
defines the second output bit. We have thus reduced the nonlinear component from four large
8-to-8 bit lookups to four small 6-to-1 bit lookups.

9.5.2 Dependency between table lookups

In the feedback function FA() and FO(), all but the first table lookup are dependent on earlier
lookup values. This is visualized in Figure 9.8a.

Similarly, the third lookup is dependent on the second, and the fourth is dependent on the
third. However, when inspecting the structure of the mapping, it becomes apparent that this
dependency can be rewritten as a linear operation on the output of the latter table lookup. This
allows for simplification of the lookup function to a shape where the four lookups can be done
independently, and the interdependency can be computed as a series of XOR operation a posteriori.

12Naturally, this is also valid the other way around, but the choice for which one to work with is arbitrary.

44 An assessment of ECM authentication in modern vehicles

CHAPTER 9. CASE STUDY: MODEL C

(a) Original (b) Reduced

Figure 9.8: Removal of dependencies of nonlinear function inputs on earlier outputs. Mapping to
output bits is not displayed. Dotted lines represent multiple bits, where the label indicates the
number.

We can combine this with the structure we identified in the lookup tables in Section 9.5.1. The
structure of the simplified FA() function is visualized in Figure 9.8b, FO() is of a

9.5.3 Inverse round function

Inverting the absorption round function will allow to retrieve the pre-round state stpre, having
knowledge of selected challenge bit ci, post round state stpost and the currently selected key byte
k[kbp]. Three of the pre-round state bytes are trivially recovered, as we simply have to invert the
state shift operation. Recovery of the last pre-state byte stpre[3] is harder, as it was shifted out of
the state register. The known post-state byte stpost[0], however, is partially derived from stpre[3],
as was given in Definition 9.4.1. We can rewrite the computation of stpost[0] to obtain an equation
for obtaining stpre[3]:

stpost[0] = ror(stpre[3])⊕ FA(stpre, ci)⊕ k[kbp]

ror(stpre[3]) = stpost[0]⊕ FA(stpre, ci)⊕ k[kbp]

stpre[3] = rol(stpost[0]⊕ FA(stpre, ci)⊕ k[kbp])

As we assume the value of k[kbp] to be known, we only need to obtain the value of FA(stpre, ci)
to be able to compute stpre[3]. As the nonlinear feedback function FA() depends on the previous
state, of which one byte is unknown, we have 256 candidate values. A candidate pre-state must
be consistent with the post-state, as is denoted in the following lemma.

Lemma 9.5.1. The set of pre-images S for the absorption phase round function with state stpost
is given as follows.

∀stpre ∈ F32
2 : st ∈ S iff:

stpre = (stpost � 8) + a

for any a ∈ F8
2 satisfying

a = rol(stpost[0]⊕ FA(stpre, ci)⊕ k[kbp])

These pre-states stpre ∈ S satisfy FA(stpre, ci, k, kbp) = stpost. A very similar lemma can be
formulated for the generation phase round function RO().

An assessment of ECM authentication in modern vehicles 45

CHAPTER 9. CASE STUDY: MODEL C

i Round st30 st32
0 34 15 8
1 68 31 24
2 102 8 9
3 136 24 25
4 170 9 10
5 204 25 26
6 238 10 11
7 272 26 27
8 306 11 12
9 340 27 28
10 374 12 13
11 408 28 29
12 442 13 14
13 476 29 30
14 510 14 15
15 544 30 31

Table 9.1: Bit origins per output moment

Generally, only a single a satisfies this equation, resulting in a single valid stpre. However,
state merges can occur, where FA(sta, ci, k, kbp) = FA(stb, cj , k, kbp) where sta 6= stb or ci 6= cj .
In this case, both sta and stb will be a pre-image of FA(sta, ci, k, kbp).

9.5.4 Rotate, round counts and array sizes

For this section, we need to define the notion of origin. Suppose we make a modification to the
PCF7935 algorithm, leaving out the xor operation with k[kbp] and xor operation with feedback
functions FA() and FO(). The algorithm then only performs bytewise and bitwise rotates. If for
any round i we say bit sta originates from position p, we mean that stp ended up at the position
of bit sta after n invocations of the round function.

It is interesting to know from where st31 and st30 originate when they are output as response
bits. This is determined by the number of rounds between output moments (34), each round
performing a right rotate by one byte, and an additional right rotate by one bit on the new st[0].
The table below shows for each output moment (where i relates to the phase 3 pseudocode in
Section 9.4.3) which are the bit origins of the state bits st31 and st30. The origin is defined as the
bit position at the beginning of phase 3.

During challenge absorption, the round function RA() is invoked 17 times per challenge bit
while, during output generation, the round function RO() is invoked 34 times. The choice for 17
and 34 instead of, for instance, 16 and 32, is motivated by the fact that if not, the state register
would have shifted a number of times that is divisible by 4. This would imply that between each
time output bits are generated, the state register would have made a number of full cycles. When
17 rounds are performed, the state register makes a quarter cycle more. This, combined with the
rotate operation on st[3], creates variation in which bit origins are output, as is visible in Table
9.1. However, a pattern is still visible, as each output moment, one bit position is re-used two
output moments later.
As stated in Section 9.4.1, key byte array k has a repeating structure. While this may seem odd at
first, choosing to increase the length to 29 bytes has a positive effect on the strength of the cipher.
After each round (or 2 rounds during output phases) the key byte pointer kbp is incremented.
The choice for a length of k that is relatively prime with 4, the number of state bytes, leads
to a situation where each key byte is only xorred against a subset of state byte origins. This
would introduce a weakness, potentially allowing for construction of a divide-and-conquer attack

46 An assessment of ECM authentication in modern vehicles

CHAPTER 9. CASE STUDY: MODEL C

by attemting to reconstruct the key in four separate parts13.

9.5.5 Two-phase challenge absorption / response generation

Due to the limited 32-bit internal state, absorbing all 48 challenge bits into the state at once
would inevitably lead to a large number of collisions. As the challenge is 16 bits larger than the
internal state, and no state divergence can occur during output generation, absorbing the full 48
bits would imply there are on average at least 216 challenges that lead to the same internal state,
and consequentially, the same response.

Splitting the absorption / generation phases in a 32-bit and a 16-bit phase solves this14. How-
ever, there is a downside to this approach: the generated response can easily be split in two
parts.

9.6 Attacks

Although it is certainly possible attacks against PCF7935 exist, we were unable to come up with
an attack that would result in a reduced (less than 2128) complexity. Further research would
be required to shed light on the strength of the cipher. In order to justify the efforts spent on
finding an approach to weaken the cipher, we will briefly motivate why we were unable to leverage
several common attack classes15 in order to carry out a successful attack against the PCF7935
cipher. Some remarks, that do not conceptually weaken the cipher but are potential security issues
nonetheless, are discussed in Section 9.7.

9.6.1 Divide-and-conquer attack

A divide-and-conquer attack is not viable, as, plainly put, there is nothing to divide. Such an
attack exploits the possibility to separate a hard problem into two (or more) subproblems, each
of which have a lower complexity than the original problem. In the case of PCF7935, that would
amount to identifying a way to attack parts of the key separately. This could be a subset of bytes
in k, but it could also involve attacking certain bit positions within the set of key bytes. This is
however not possible, as the full 128-bit key is used with each invocation of round function RA()
or RO(). The rotate 1 operation on the old state byte guarantees that the bits within each state
byte are also variable, making separation of the problem into less complex subproblems infeasible.

9.6.2 Correlation attack

A correlation attack focuses on exploiting statistically biased output in order to learn information
about specific state bits. While the feedback functions FA() and FO() do exhibit bias if parts of
the state are fixed16, this cannot be extended to an attack. This is because of the distance between
output moments. If after round n we obtain the two most significant bytes of st[0], we only obtain
the next two output bits after round n + 34. That means 34 invocations of FO() have occurred.
Although we may derive some statistical information from the generated bits, the cryptographic
relevance of this information is lost by the time the next output bits are generated.

13Naturally, there is still the feedback function that needs to be dealt with, but it would certainly weaken the
cipher.

14Although, due to the nature of the algorithm, some collisions still occur.
15These are all cryptographic attacks listed and discussed in Section 3.1 of [41], with the exception of the

malleability attack, which cannot be applied on a challenge/response mechanism.
16Known or assumed

An assessment of ECM authentication in modern vehicles 47

CHAPTER 9. CASE STUDY: MODEL C

9.6.3 Guess-and-determine attack

While the Model B algorithm allowed for the construction of a guess-and-determine attack, this
is not the case for Model C. The main problem is that although we do get two bits of state
information per output moment, guessing state information will not reveal any advantages. This
is due to the bitwise xor operation that takes place:

ror(st[3])⊕ FO(st)⊕ k[kbp]

Guessing either parts of the state, or the key byte will not allow to distinguish between a
correct and an incorrect guess. If we would guess the full state, we could predict the output of
ror(st[3])⊕ FO(st). We could compare this to two observed output bits st31, st30. However, the
xor step removes the distinguisher, as is shown below for :

st31 =

0 if s7 ∧ k[kbp]7

0 if s7 ∧ k[kbp]7

1 if s7 ∧ k[kbp]7

1 if s7 ∧ k[kbp]7

where s = ror(st[3]) ⊕ FO(st). In other words, guessing s would17 amount to finding the corres-
ponding key bits k[kbp]7...6, but the guess cannot be verified for correctness. This also holds when
comparing multiple rounds, as kbp is incremented.

There is however, an exception, which will be detailed in the next section.

9.6.4 Differential cryptanalysis

During phase 2, the challenge is absorbed, and differential cryptanalysis would require some kind
of exploitable relation in the state between related challenges to persist until the end of phase 2.
This way, it could be identified by observing the output bits during phase 3. However, due to the
large number of rounds, this relation is lost.

Possibly, the nature of state merges can be explored as a venue to weaken the cipher. State
merges tend to occur during the last rounds of the absorption phase. As such, some information
about the internal state can be derived: the conditions that result in a state merge were satisfied.
Unfortunately, we have had insufficient time to fully explore this approach.

Another possible approach is an extension of the analysis made previously in Section 9.6.3.
While in most cases, the xor operation with the key byte renders distinction of a proper guess of
the state impossible, there is an exception to this. Five bytes of the key array k are known: at
index 12, 13, 14, 15 and 28, the manufacturer-specific IDE bytes are found. The value of kbp is
known throughout the algorithm. If we observe response bits generated at a time where k[kbp] is
known, we do not only obtain two state bits, but also (ror(st[3] ⊕ FO(st))[7...6]. Considering the
first 32 bits of response generation, the response bits r39, r38, r27, r26, r17 and r16 are generated
in a round where a known key byte is selected. However, we have not been able to property this
to a functional attack.

9.6.5 Algebraic attacks

As pointed out in 9.6.3, relations between observable output, internal state and key exist. These
might be usable for an algebraic attack. However, there are several reasons why this is not feasible.
Knowing or guessing the state would provide us with information about the associated key byte
(at the time of producing output), however, any uncertainty about key or state bits would quickly
propagate (well within 34 rounds) to no usable residual knowledge. Knowing or guessing parts

17Or guessing st and deriving s

48 An assessment of ECM authentication in modern vehicles

CHAPTER 9. CASE STUDY: MODEL C

of the key would be a more fruitful approach, as the key is immutable and any knowledge will
persist across rounds and across challenge/response pairs. However, the secret key is 128 bits large
(although the key space of k is only 96 bits, see Section 9.4.1), and is too large to guess entirely.
Guessing parts of the key leads to uncertainty about the state as rounds progress, thus the relation
is insufficient to attack the cipher.

9.6.6 Meet-in-the-middle attacks

Although the algorithm can be run in the opposite direction, a meet-in-the-middle attack is not
practical. Suppose we start at round n, and two bits of state information are revealed. Then, we
consider the end state, where two more bits are revealed. In order to meet in the middle, one
must be run forward for 17 rounds, while the other needs to run backwards for 17 rounds. One
must then determine for which initial / post state pairs a valid path from start to end exists.
This is, however, strongly dependent on the key array, and all distinct key bits are used within
17 rounds. Although a meet-in-the-middle might reduce the attack complexity compared with
rolling forwards for 34 rounds, we did not find a way to reduce the complexity below (or even
near) 2128. The fact that the algorithm doubles the amount of rounds between output moments,
when compared to the challenge absorption phase, is a design choice that increased robustness
against this class of attack.

9.7 Remarks

9.7.1 Usage in 32-bit mode

In Model C, only 32-bit challenges and 32-bit responses are used. This is done by computing only
phases 1 to 3. This weakens the security of the authentication scheme, as it becomes less resilient
against birthday attacks.

9.7.2 Random number generation

The Model C pseudorandom number generator is used in order to generate the challenge, and as
such, shoud be both cryptographically secure and properly seeded. The design of the Model C
PRNG uses a 32-bit multiplication constant that was originally used in the Nescape 1.1 PRNG,
dating back to 1995, and proven insecure in 1996[20]. While the Nescape 1.1 PRNG uses time and
process id as entropy source, the Model C ECM, visible in Figure 9.9, solely uses time for seeding
the PRNG. Clearly, time is not a sufficient seed for a cryptographically secure pseudorandom
number generator. The large multiplications with the Netscape 1.1 0xDEECE66D constant do
not bear any cryptographic significance. Although a time-based side channel attack is outside the
scope of this thesis, it is fair to assume this attack vector could result in breaking the randomness
of the challenge, potentially allowing for a replay attack.

An assessment of ECM authentication in modern vehicles 49

CHAPTER 9. CASE STUDY: MODEL C

Figure 9.9: Model C ECM PRNG pseudocode. Lines 23-26 retrieve the value from the clock
register. The entropy pool is not properly seeded after reset.

50 An assessment of ECM authentication in modern vehicles

Chapter 10

Suggestions for improvement

Multiple approaches can be taken when designing an ECM authentication protocol. While Model
A and Model C implement unilateral authentication, Model B implements mutual authentication.
Unilateral authentication serves to allow the ECM to ascertain the BCM is authorized. In the
encountered implementations, the BCM will only authenticate itself if the BCM recognizes the
presence of an authorized key, so successful authentication of the BCM must also be considered a
proof that an authorized key is present. A mutual authentication scheme would also authenticate
the ECM towards the BCM. This has the advantage that simply replacing the original ECM
would be detected, allowing the BCM to take measures to prevent the vehicle from operating. Car
theft by replacing the ECM by a module with disabled immobilization functionality could thus be
prevented.

Whether unilateral or mutual authentication is chosen, both the protocol and the underlying
cryptographic primitives must be resilient to attack. A lot of academic work has been done in
this field, and multiple light-weight authentication protocols have been published and scrutinized
by the academic community. ISO 9798-2[17] specifies several variants of both unilateral and
mutual authentication protocols, based on symmetric encryption and decryption, while ISO 9798-
4[16] specifies protocols based on a cryptographic hash function. Lastly, ISO 9798-3[15] specifies
authentication schemes using digital signatures, which, although generally more computationally
intensive, has the advantage that secrets never have to be transmitted over the bus, even when a
new module is installed in the vehicle.

Several academic publications have presented protocols for secure communication over CAN.
LeiA[34], as presented by Radu et al. implements an authentication protocol for ECUs, allow-
ing for light-weight authentication of CAN messages by means of message authentication codes.
Kurachi et al. presented CaCAN[28], a centralized authentication system that relies on a single
central monitoring node, that will destroy unauthorized CAN frames by transmitting an error
frame during the transmission of the unauthorized frame1. More proposals can be found in the
literature[39][21][23].

Besides using a secure protocol, a suitable choice for cryptographic primitives needs to be
made. It is wise to choose a well known, publicly scrutinized cryptographic primitive such as
SHA-256, SHA-3 and AES. Faster ciphers have been published, such as Chaskey, presented in
[31], but while assessed by the scientific community, these have not yet withstood the amount of
academic attention necessary to justify strong confidence in its security guarantees. Either way,
the use of secret proprietary cryptographic components is to be avoided, as there are numerous
examples of cryptographic systems that were broken shortly after their secrecy was lost[42][43][4].

It is important the cryptographic primitives result in a low latency on embedded platforms, in
order to ensure swift authentication and immobilizer deactivation. Strong cryptographic primitives
can often be efficiently implemented on embedded devices. For many architectures, optimized
implementations of popular ciphers and hashing algorithms are publicly available[33][3].

1This is possible due to the distinction between the dominant and recessive CAN signals, as outlined in Section
3.3.

An assessment of ECM authentication in modern vehicles 51

CHAPTER 10. SUGGESTIONS FOR IMPROVEMENT

As an example of currently accepted latency, we will consider PCF7935. Its cryptographic
algorithm invokes its round function 1632 times, and each round relies on a less-than-trivial feed-
back function. It is fair to assume suitable scrutinized cryptographic primitives exist that can
meet or exceed PCF7935 in both latency and security.

52 An assessment of ECM authentication in modern vehicles

Chapter 11

Discussion

In this section, we will elaborate how the work fits into the field of vehicle security and what
contribution it seeks to make. Additionally, we will summarize the findings in order to formulate
answers to the research questions specified in Section 1.

As was stated before, to the best of our knowledge, no academic research has explicitly invest-
igated ECM authentation. By means of the three case studies, we hope to shed some light on the
general shape and strength of this authentication step.

One might argue that ECM authentication is not crucial to the security of a vehicle. Naturally,
all modern vehicles implement secondary security mechanisms, of either an electronic or mechanical
nature. While mechanical door locks are becoming less popular, in favor of RKE (Remote Keyless
Entry) systems, mechanical ignition locks are still commonly encountered in currently produced
vehicles. A mechanical ignition lock generally also acts as a steering column lock. While the car
can be powered in other ways than by turning the ignition to ‘on’1, theft of the vehicle requires -
in one way or another - the steering column lock to be disengaged. Vehicles equipped with Keyless
Go do no longer require the use of mechanical keys. The presence of a transponder in the vehicle
is detected, and the column lock will be disengaged electronically. Still, these vehicles rely on
more than ECM authentication for theft protection purposes. Nevertheless, both of these security
mechanisms have been proven to provide less-than-perfect security. Mechanical locks can either
be picked or broken, and copying mechanical keys is2 relatively easy. Even a photograph of a
mechanical key can be used to craft a duplicate. Numerous times, RKE and Keyless Go systems
have been proven insecure, and it is not reasonable to depend only on these systems for theft
prevention.

The investigated vehicles have been manufactured between 2008 and 2009, and as such, it is
possible manufacturers have adopted more secure authentication mechanisms. However, we have
found all three of the investigated protocols in currently produced vehicles. The development
cycle of most car manufacturer seems to be relatively slow. Since ECM authentication has had
little academic attention over the past few years, there is need for a public discussion regarding
the strength of the involved protocols and cryptographic primitives. While manufacturers may be
motivated to protect their vehicles against theft, it is possible insurance companies have a stronger
incentive to secure the immobilizer system, as financial losses are suffered for each theft claim.

Also, it must be noted that new immobilization systems are not necessarily secure, or even more
secure than its predecessor. Garcia et al. demonstrated this in [18], as they found a 2009 Remote
Keyless Access system based on XTEA was using a single global key. All cars equipped with this
system thus share the same secret key, nullifying the advantage of choosing strong cryptographic
primitives.

1For instance, by ”hotwiring” the wires connected to the ignition lock.
2Depending on the key and the resources of an attacker

An assessment of ECM authentication in modern vehicles 53

CHAPTER 11. DISCUSSION

11.1 How do manufacturers implement BCM-ECM authen-
tication

Of the three investigated manufacturers, two use unilateral authentication, implemented as a
challenge-response protocol employing a symmetric key. One implements symmetric key mutual
authentication, where the BCM will only generate a valid response if the authenticity of the ECU
is validated, ruling out the risk of a birthday attack. All encountered models use 32-bit challenges,
the response length however varies. Two models employ 32-bit responses, while Model B was once
more the exception with a 14-bit response length.

Another interesting note is that none of the three manufacturers use ISO-TP packets for inter-
component authentication, but use raw CAN frame payloads instead. While not necessarily a
problem, ISO-TP allows for the construction of multi-frame packets, which can in turn be used
when handling longer challenge-response messages

11.2 What is the strength of the cryptographic components
used in the BCM-ECM authentication

First, we have encountered two algorithms where the key space is insufficiently large. For Model
A and Model B, the keyspace is severely lacking, rendering the algorithm vulnerable to brute-force
attacks. Model C employs a 128-bits key, which is sufficiently strong to render exhaustive search
infeasible.

Second, all three models use 32-bit challenges, which is insufficient. While PCF7935, found
in Model C, supports 48-bits challenges, this feature was not used in Model C. The use of 32-bit
challenges poses a potential security risk, as a birthday attack may successfully be mounted.

Model A uses 32-bit responses, but as the keyspace is only 344, there are less than 223 possible
responses3. Model C uses 32-bit responses4. Model B uses 14-bit responses. A larger response
length would be advisable, as it incurs virtually no performance penalty and would result in a
lower chance of successfully guessing a correct response.

The cryptographic primitives underlying the authentication protocol of model A and model
B were broken. Car-only attacks allow to recover the vehicle security code and deactivate im-
mobilization in approximately 7 seconds for model B and on average 15 minutes for model A. If
an authorized key is present, recovery of the vehicle security code can be done for Model A in
less than a second. Model C does not exhibit obvious flaws and was not broken. However, it is
based on a discontinued transponder technology, introduced in 1994. Relying on such obsolete
cryptographic components is questionable.

11.3 How can manufacturers improve upon the current
strength of BCM-ECM authentication

There is sufficient academic work online that specify protocols and cryptographic primitives. Ad-
opting publicly scrutinized protocols and cryptographic components could greatly enhance the
strength of ECM authentication. Some obvious flaws, such as extremely small keys, should clearly
be avoided: one can have a strong algorithm, but when using a key space of 232, a practical attack
is trivially found. Rate limiting may solve the potential problem of an exhaustive search. How-
ever, relying on such a mechanism introduces a potential security risk, as methods may exist that
allow an attacker to bypass rate limiting5. As such, it is advisable to provide strong cryptographic
resilience against attacks involving large numbers of authentication attempts.

3And in practice, a lot less, as was shown in the car-only attack against model A in Section 7.5.2
4Once again, PCF7935 supports 48-bit responses, but this was not used.
5Such as, attempting to reset the timeout by sending an UDS ECU reset command as soon as a response was

rejected.

54 An assessment of ECM authentication in modern vehicles

CHAPTER 11. DISCUSSION

It is important to note that while the ECM-BCM authentication step can be improved by
following above recommendations, changes in other parts of ECU firmware design are required in
order to secure the system as a whole. Weak seed-key authentication algorithms would allow an
attacker to open an authenticated diagnostic session and read memory contents or program keys,
defeating the need to break the ECM-BCM authentication. Weak random number generators,
depending only on time, will allow for timing-based side channel attacks, potentially allowing an
attacker to have the ECM generate a challenge chosen by the attacker. It is reasonable to assume
current ECUs are also vulnerable to other classes of side channel attacks, but most of these6 need
physical access to the ECU PCB. This reduces the practicality of such attacks in a real-world
scenario, as the procedures involve more than merely capturing and injecting packets on the CAN
bus.

6Such as power glitching, clock glitching and fault injection.

An assessment of ECM authentication in modern vehicles 55

Chapter 12

Conclusions

Although the investigated models are no longer being produced, we have confirmed that all three
uncovered protocols are still being used in some currently-produced vehicles. The three case
studies are thus still representative for current vehicles, and as such, allow us to draw some
conclusions about the methods manufacturers employ for BCM authentication, and the quality of
the underlying cryptographic components. On one examined vehicle (Section 8), we found a car-
only attack, deriving the vehicle security code within seconds. This allows for the authorization
of a new key and subsequently, disable immobilization. On another vehicle (Section 7), we also
found a car-only attack, which on average takes about 15 minutes to obtain the vehicle security
code or disable immobilization directly. The immobilizer protocol of the third vehicle (Section 9)
does not exhibit obvious flaws and was not broken, but emulates an obsolete security transponder
originating from 1994. While no attack is presented in this paper, relying on obsolete proprietary
cryptographic components is questionable[41]. As all three case studies revealed shortcomings
in the immobilizer protocol, flaws can be expected to be present in other models from different
manufacturers.

For car thieves, breaking the BCM-ECM authentication is a very convenient approach, as it is
non-intrusive1 and uses a standardized OBD-II connector and protocol. Furthermore, attacks can
be carried out discreetly and with high reliability. As criminals have proven themselves capable
of wielding high-tech devices in order to facilitate their theft of modern vehicles, weak ECM
authentication does incur an increased risk of theft.

As a conclusion, the strength of BCM-ECM authentication protocols assessed during this
research is of inconsistent and generally unsatisfactory quality. Usage of short keys and challenges,
poorly designed algorithms and reliance on secret, proprietary cryptographic components pose
a risk. We would recommend manufacturers to reconsider the design of their authentication
protocols and embrace well-understood public cryptographic algorithms in order to ensure the
expectations of customers regarding theft resilience are met.

1Besides the requirement of physical access to the car interior.

56 An assessment of ECM authentication in modern vehicles

Bibliography

[1] ADAC. Wie sicher sind keyless-schliesysteme? — adac. https://www.youtube.com/watch?
v=xHCUpLBGIKQ, 2016. 1

[2] ADAC. Autos und motorrder mit keyless-schliesystem, die der adac illegal ffnen
und wegfahren konnte”. https://www.adac.de/_mmm/pdf/Keyless_Liste-gepr%C3%

BCfte-Fahrzeuge%20mit%20Motorr%C3%A4dern%2020170518_257944.pdf, 2017. 1

[3] Kubilay Atasu, Luca Breveglieri, and Marco Macchetti. Efficient aes implementations for arm
based platforms. In Proceedings of the 2004 ACM symposium on Applied computing, pages
841–845. ACM, 2004. 51

[4] Alex Biryukov, Ilya Kizhvatov, and Bin Zhang. Cryptanalysis of the atmel cipher in secure-
memory, cryptomemory and cryptorf. In ACNS, volume 11, pages 91–109. Springer, 2011.
51

[5] B Cherowitzo. Linear feedback shift registers. http://www-math.ucdenver.edu/~wcherowi/
courses/m5410/m5410fsr.html. 26

[6] SP Diagnostics. Sp diagnostics website. http://spdiagnostics.com/. 18

[7] EU Directive. Commission directive 95/56/ec, euratom of 8 november 1995 adapting to
technical progress council directive 74/61/eec relating to devices to prevent the unauthorized
use of motor vehicles. Official Journal of the European Communities L, 286:1–44, 1995. 1

[8] EU Directive. 98/69/ec of the european parliament and of the council of 13 october 1998
relating to measures to be taken against air pollution by emissions from motor vehicles and
amending council directive 70/220/eec. Official Journal of the European Communities L,
350(28):12, 1998. 5

[9] St George Evans and Edward N Birkenbeuel. Automobile-theft preventer., April 8 1919. US
Patent 1,300,150. 1

[10] Horst Feistel. Cryptography and computer privacy. Scientific american, 228:15–23, 1973. 21

[11] International Organization for Standardization. Iso 14229-1:2013 road vehicles – unified dia-
gnostic services (uds) – part 1: Specification and requirements. https://www.iso.org/

standard/55283.html. 7

[12] International Organization for Standardization. Iso 14230-1:2012 road vehicles – diagnostic
communication over k-line (dok-line) – part 1: Physical layer. https://www.iso.org/

standard/55591.html. 6

[13] International Organization for Standardization. Iso 15765-1:2011 road vehicles – diagnostic
communication over controller area network (docan). https://www.iso.org/standard/

54498.html. 6

An assessment of ECM authentication in modern vehicles 57

https://www.youtube.com/watch?v=xHCUpLBGIKQ
https://www.youtube.com/watch?v=xHCUpLBGIKQ
https://www.adac.de/_mmm/pdf/Keyless_Liste-gepr%C3%BCfte-Fahrzeuge%20mit%20Motorr%C3%A4dern%2020170518_257944.pdf
https://www.adac.de/_mmm/pdf/Keyless_Liste-gepr%C3%BCfte-Fahrzeuge%20mit%20Motorr%C3%A4dern%2020170518_257944.pdf
http://www-math.ucdenver.edu/~wcherowi/courses/m5410/m5410fsr.html
http://www-math.ucdenver.edu/~wcherowi/courses/m5410/m5410fsr.html
http://spdiagnostics.com/
https://www.iso.org/standard/55283.html
https://www.iso.org/standard/55283.html
https://www.iso.org/standard/55591.html
https://www.iso.org/standard/55591.html
https://www.iso.org/standard/54498.html
https://www.iso.org/standard/54498.html

BIBLIOGRAPHY

[14] International Organization for Standardization. Iso 9141:1989 road vehicles – diagnostic sys-
tems – requirements for interchange of digital information. https://www.iso.org/standard/
16737.html. 6

[15] International Organization for Standardization. Iso 9798-2 entity authentication mechanisms
using digital signature techniques. https://www.iso.org/standard/29062.html, 1998. 51

[16] International Organization for Standardization. Iso 9798-4 entity authentication mechanisms
using a cryptographic check function. https://www.iso.org/standard/31488.html, 1999.
51

[17] International Organization for Standardization. Iso 9798-2 entity authentication mechanisms
using symmetric encipherment algorithms. https://www.iso.org/standard/50522.html,
2008. 51

[18] Flavio D Garcia, David Oswald, Timo Kasper, and Pierre Pavlidès. Lock it and still lose
it-on the (in) security of automotive remote keyless entry systems. In USENIX Security
Symposium, 2016. 53

[19] Thomas Giesler. The first international workshop on it-solutions for physical security: State of
the art car access security systems. http://www.codekey.com.ar/public/manuales/basic_
transponder.pdf. 36

[20] I Goldberg and D Wagner. Randomness and the netscape browser. Dr. Dobbs Journal, 1996.
49

[21] Bogdan Groza, Pal-Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede. Libra-
can: A lightweight broadcast authentication protocol for controller area networks. In CANS,
pages 185–200. Springer, 2012. 51

[22] The Guardian. Thieves target luxury range rovers with keyless locking systems. https://www.
theguardian.com/money/2014/oct/27/thieves-range-rover-keyless-locking, 2014. 1

[23] Oliver Hartkopp and R MaCAN SCHILLING. Message authenticated can. In Escar Confer-
ence, Berlin, Germany, 2012. 51

[24] New Wave Instruments. Linear feedback shift registers - implementation, m-sequence prop-
erties, feedback tables. http://www.newwaveinstruments.com/resources/articles/m_

sequence_linear_feedback_shift_register_lfsr.htm. 26

[25] SAE International. Sae j1962 diagnostic connector equivalent to iso/dis 15031-3:december 14,
2001. http://standards.sae.org/j1962_201207/. 5

[26] Karl Koscher. Securing Embedded Systems: Analyses of Modern Automotive Systems and
Enabling Near-Real Time Dynamic Analysis. PhD thesis, University of Washington, 2014. 9

[27] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen
Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, et al. Experi-
mental security analysis of a modern automobile. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 447–462. IEEE, 2010. 9

[28] R Kurachi, Y Matsubara, H Takada, N Adachi, Y Miyashita, and S Horihata. Cacan-
centralized authentication system in can. In Proc. escar 2014 Europe Conference, Hamburg,
Germany, 2014. 51

[29] Abrites ltd. Abrites ltd. website. http://abrites.com. 9

[30] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015, 2015. 9

58 An assessment of ECM authentication in modern vehicles

https://www.iso.org/standard/16737.html
https://www.iso.org/standard/16737.html
https://www.iso.org/standard/29062.html
https://www.iso.org/standard/31488.html
https://www.iso.org/standard/50522.html
http://www.codekey.com.ar/public/manuales/basic_transponder.pdf
http://www.codekey.com.ar/public/manuales/basic_transponder.pdf
https://www.theguardian.com/money/2014/oct/27/thieves-range-rover-keyless-locking
https://www.theguardian.com/money/2014/oct/27/thieves-range-rover-keyless-locking
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
http://standards.sae.org/j1962_201207/
http://abrites.com

BIBLIOGRAPHY

[31] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Preneel, and
Ingrid Verbauwhede. Chaskey: an efficient mac algorithm for 32-bit microcontrollers. In
International Workshop on Selected Areas in Cryptography, pages 306–323. Springer, 2014.
51

[32] Karsten Nohl. Car immobilizer hacking. Sigint13, 2013. 9

[33] Dag Arne Osvik. Fast embedded software hashing. IACR Cryptology ePrint Archive, 2012:156,
2012. 51

[34] Andreea-Ina Radu and Flavio D Garcia. Leia: A lightweight authentication protocol for can.
In ESORICS (2), pages 283–300, 2016. 51

[35] Florian Sagstetter, Martin Lukasiewycz, Sebastian Steinhorst, Marko Wolf, Alexandre Bou-
ard, William R Harris, Somesh Jha, Thomas Peyrin, Axel Poschmann, and Samarjit
Chakraborty. Security challenges in automotive hardware/software architecture design. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages 458–463.
EDA Consortium, 2013. 9

[36] BJ Shinde, SS Kore, and SS Thipse. Comparative study of on board diagnostics systems -
eobd, obd-i, obd-ii, iobd-i and iobd-ii. International Research Journal of Engineering and
Technology, 3, 2016. 5

[37] Simon Touch Automotive Solutions. Jlr can adapter to unlock the car and program via can-
bus. https://www.keyprogtools.com/key-programming/range-jlr-can-adapter. 10

[38] Auto Express UK. Keyless car crime up as gangs target vans. http://www.autoexpress.co.
uk/car-news/consumer-news/90328/keyless-car-crime-up-as-gangs-target-vans,
2015. 1

[39] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. Canauth-a simple, back-
ward compatible broadcast authentication protocol for can bus. In ECRYPT Workshop on
Lightweight Cryptography, volume 2011, 2011. 51

[40] Jan C van Ours and Ben Vollaard. The engine immobiliser: A non-starter for car thieves.
The Economic Journal, 2016. 1

[41] Roel Verdult. The (in) security of proprietary cryptography. Sl: sn, 2015. 47, 56

[42] Roel Verdult, Flavio D Garcia, and Josep Balasch. Gone in 360 seconds: Hijacking with
hitag2. In Proceedings of the 21st USENIX conference on Security symposium, pages 37–37.
USENIX Association, 2012. 9, 51

[43] Roel Verdult, Flavio D Garcia, and Baris Ege. Dismantling megamos crypto: Wirelessly
lockpicking a vehicle immobilizer. In USENIX Security, pages 703–718, 2013. 9, 51

An assessment of ECM authentication in modern vehicles 59

https://www.keyprogtools.com/key-programming/range-jlr-can-adapter
http://www.autoexpress.co.uk/car-news/consumer-news/90328/keyless-car-crime-up-as-gangs-target-vans
http://www.autoexpress.co.uk/car-news/consumer-news/90328/keyless-car-crime-up-as-gangs-target-vans

Appendix A

Model B lookup tables

A.1 FeedbackTable

Index
0 66 66 66 66 99 99 99 99
8 66 66 66 66 99 99 99 99
16 99 99 99 99 66 66 66 66
24 99 99 99 99 66 66 66 66

A.2 OutputTable

Index
0 D7 74 24 91 83 65 BC 4D
8 E3 55 38 FB 76 2C 8D 70
16 F5 23 85 E5 8C 1C FC 6E
24 A7 22 B9 33 39 7C 48 0A

60 An assessment of ECM authentication in modern vehicles

Appendix B

Model C PCF7935 lookup table

B.1 LookupTable

Index
0 A8 A1 45 BA 5E F7 BA 01 4E 47 03 18 F5 B8 11 4E
16 13 5E BA E5 45 A8 4C F7 F5 B8 FC 03 AA 47 E7 18
32 5F 00 F6 1B ED 12 09 E4 B9 E6 F4 B9 02 19 A2 EF
48 A0 BB 4D 44 B2 4D BB 56 46 5D 0B A2 5D A2 54 FD
64 45 4C BA E5 B3 BA 45 5E AA A3 F5 4E 18 55 EE 11
80 EC 13 57 08 BA 45 A1 1A 0A F5 11 EE F5 AA 0A F5
96 A0 FF 09 56 12 4D F6 A9 4F 10 02 FD FD E6 5D A2
112 5F E4 B2 BB 4D B2 44 A9 B9 02 F4 5D 02 5D AB 02
128 73 7A 8C 61 8C 25 73 DA 95 9C CA C3 27 6A D8 95
144 C8 85 61 3E 9E 73 97 2C 2E 63 27 D8 71 9C 3C C3
160 96 DB 2D D2 2D C0 D2 2D 70 3D 2F 70 C2 CB 79 26
176 69 72 96 8D 7B 84 60 9F 8F 94 D0 6B 94 6B 8F 34
192 8C 97 73 2C 73 68 8C 97 63 78 3C 87 D8 87 27 D8
208 3E C1 9E C1 61 9E 61 DA D1 2E D1 2E 2E 71 CA 35
224 7B 24 C0 9F C0 9F 3F 60 94 CB CB 34 2F 34 94 6B
240 9F 36 69 60 84 69 96 7B 70 D9 26 8F CB 86 79 D0

An assessment of ECM authentication in modern vehicles 61

	Contents
	Introduction
	Background
	Research questions
	Structure

	Notation and terminology
	Standardized interfaces and protocols
	The SAE J1962 connector
	The ISO 9141 K-line protocol
	The ISO 15765 CAN protocol
	The ISO 14229 UDS protocol

	Literature review
	Methodology
	Assessed vehicles
	Model A
	Model B
	Model C

	Case study: Model A
	Identifying the protocol messages
	Obtaining the algorithm
	Algorithm details
	Properties of the cipher
	Insufficiently large keyspace
	Lack of diffusion
	Inverse of the transformation function
	Biased responses
	Leakage of key information

	Attacks
	Attack with valid key
	Car-only attack

	Case study: Model B
	Identifying the protocol messages
	Obtaining the algorithm
	Algorithm details
	Phase 1: Initialization
	Phase 2: Proof generation
	Phase 3: Second secret absorption
	Phase 4: Response generation

	Properties of the cipher
	The feedback function
	Inverse round function
	Knowledge of state bits based on output bit

	Attacks
	Naive exhaustive-search
	Pruning exhaustive-search
	State reconstruction
	Deriving the second secret l

	Case study: Model C
	Identifying the protocol messages
	Obtaining the algorithm
	Algorithm origin
	Algorithm details
	Phase 1: Initialization
	Phase 2: Partial challenge absorption
	Phase 3: Partial response generation
	Phase 4: Remaining challenge absorption
	Phase 5: Remainder of response generation

	Properties of the cipher
	Table lookups
	Dependency between table lookups
	Inverse round function
	Rotate, round counts and array sizes
	Two-phase challenge absorption / response generation

	Attacks
	Divide-and-conquer attack
	Correlation attack
	Guess-and-determine attack
	Differential cryptanalysis
	Algebraic attacks
	Meet-in-the-middle attacks

	Remarks
	Usage in 32-bit mode
	Random number generation

	Suggestions for improvement
	Discussion
	How do manufacturers implement BCM-ECM authentication
	What is the strength of the cryptographic components used in the BCM-ECM authentication
	How can manufacturers improve upon the current strength of BCM-ECM authentication

	Conclusions
	Bibliography
	Appendix
	Model B lookup tables
	FeedbackTable
	OutputTable

	Model C PCF7935 lookup table
	LookupTable

