
 Eindhoven University of Technology

MASTER

On the potential for machine learning in prediction of insurance policy sales
helping insurance intermediaries get insights in their clients' insurance needs

Ampt, A.B.F.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2699f595-d813-4e80-b93f-cb214e1d05ac

Department of Mathematics and Computer Science
Data Mining Group

Supervisors:
TU/e: prof. dr. M. Pechenizkiy

C-Profile: drs. W. Broeders
TU/e: dr. ing. M. Hassani

Public version

Eindhoven, June 2017

On the potential for machine
learning in prediction of

insurance policy sales
Helping insurance intermediaries get insights

in their clients’ insurance needs

Adrian B.F. Ampt

Abstract

C-Profile is currently experimenting with statistical analysis to give insurance intermediaries insights in the
insurance needs of their clients. This means that they analyze a client dataset and create a model to predict
if a client is interested in an insurance product. The statistical analysis has two problems. It is too slow
to integrate into the C-Profile platform, and the analysis is prone to mistakes. Therefore, we conduct this
study to investigate if we can use machine learning to make these predictions. We have implemented ten
classification algorithms and designed an experimental environment to run six experiments to answer the
question: Which machine learning technique has the highest potential for predicting insurance product in-
terest? Various algorithms have potential to create models quickly to make accurate predictions. Ultimately
the Decision Tree algorithm and Logistic regression could generate model quickly enough and make accur-
ate predictions. The results were not as accurate as statistical analysis in some cases, but the results were
competitive and consistent. The models could also be generated much faster than statistical analysis which
takes weeks to setup for a new dataset, whereas machine learning could make predictions within the eight
hour window, although often within a minute and even seconds. Finally, machine learning was able to handle
irrelevant features very well, which means that the a data scientist does not necessarily have to comb through
the data to pick relevant features. With these results in mind we have concluded that C-Profile should pursue
machine learning as a tool for making predictions of clients’ insurance product interest. Mainly focusing on
the two algorithms; Decision Tree and Logistic regression,

On the potential for machine learning in prediction of insurance policy sales iii

Preface

Before you lies my thesis: ”On the potential for machine learning in prediction of insurance policy sales.”
This thesis has been written as part of the graduation requirements for the Computer Science & Engineering
Master program at the University of Technology Eindhoven (TU/e). The project was undertaken at request
of C-Profile for their product C-Profile Advisory Portals. During the course of ten months, I have conducted
research to answer the following question: Which machine learning technique has the highest potential for
predicting insurance product interest?

Hereby, I would like to thank C-Profile for giving me space and time to properly execute my research. I
especially like to thank my daily supervisor Ward Broeders. You provided me with guidance and support for
the entire duration of the project. I always enjoyed our debates about the content and results of the project.
I would also like to show my gratitude towards my supervisor from the TU/e, Mykola Pechenizkiy; without
your feedback and insight, I would have never been able to deliver this level of quality in my work.

Furthermore, I would like to thank my colleagues at C-Profile. Your widespread enthusiasm and interest in
the project helped me a lot during moments of doubt. I also want to thank my parents Marie-Therse and
Kees for supporting me during the entirety of my academic career. Additionally, I like to thank my siblings
Sofie, Kirsten, Kevin and Eamon and their spouses Thomas, Erwin and Emmanuelle for believing in me and
helping me when needed. I would like to give thanks to my nieces and nephew Eline, Ella and Ruben for
cheering me up with their child like attitude. Finally, I would like to thank my friends and in particular my
girlfriend Sandra, for supporting me during these last ten months with their positive outlook.

I hope you enjoy your reading, and I would like to thank you for your interest.

Adrian B.F. Ampt
Eindhoven, Friday 30th June, 2017

On the potential for machine learning in prediction of insurance policy sales v

Contents

Contents vii

1 Introduction 1
1.1 C-Profile . 1
1.2 Motivation . 3
1.3 Goals . 5
1.4 Problem statement . 5
1.5 Methodology . 6

2 Background 7
2.1 Data . 7
2.2 Stakeholders . 8
2.3 Machine learning techniques . 9
2.4 Approach . 10
2.5 Feature normalization . 11
2.6 Parameter tuning . 12
2.7 Measuring accuracy . 13

3 Comparison of techniques 15
3.1 Techniques . 15

3.1.1 Statistical learning algorithms . 16
3.1.2 Regression techniques . 16
3.1.3 Instance based learning . 17
3.1.4 Clustering . 18
3.1.5 Perceptron based techniques . 18
3.1.6 Support Vector Machines . 19
3.1.7 Logic based algorithms . 20

3.2 Comparison . 21

4 Experimental setup 25
4.1 Experimental setup . 25

4.1.1 Components . 25
4.1.2 Phases . 26

4.2 How accurate can machine learning algorithms predict insurance product interest for differ-
ent data-sets? . 27
4.2.1 Should we optimize for correct classifications or for good probabilities to get the

best accuracy of predictions? . 28
4.2.2 How does feature scaling influence the algorithms and their prediction accuracy? . . 28

On the potential for machine learning in prediction of insurance policy sales vii

CONTENTS

4.2.3 Which algorithms have the highest potential for accurate predictions? 30
4.2.4 Can we predict insurance product interest for clients, with similar or even higher

accuracy compared to current statistical models? 31
4.3 How fast can machine learning algorithms create models for prediction of insurance product

interest for different datasets? . 31
4.3.1 How much do various parameters influence the prediction accuracy of the algorithms?

Can we eliminate the tuning phase? . 32
4.3.2 How well does the model creation time of algorithms scale to large datasets? 33

4.4 How well can machine learning algorithms handle irrelevant features? 34

5 Experimental evaluation 37
5.1 How accurate can machine learning algorithms predict insurance product interest for differ-

ent datasets? . 37
5.1.1 Should we optimize for correct classifications or for good probabilities to get the

best accuracy of predictions? . 38
5.1.2 How does feature scaling influence the algorithms and their prediction accuracy? . . 39
5.1.3 Which algorithms have the highest potential for accurate predictions? 40
5.1.4 Can we predict insurance product interest for clients, with similar or even higher

accuracy compared to current statistical models? 41
5.2 How fast can machine learning algorithms create models for prediction of insurance product

interest for different datasets? . 46
5.2.1 How does feature scaling influence the model creation speed of the algorithms? . . . 46
5.2.2 How much do various parameters influence the prediction accuracy of the algorithms?

Can we eliminate the tuning phase? . 47
5.2.3 How well does the model creation time of algorithms scale to large datasets? 48

5.3 How well can machine learning algorithms handle irrelevant features? 55

6 Conclusions 57
6.1 Research questions . 57

6.1.1 How accurate can machine learning algorithms predict insurance product interest
for different data-sets? . 58

6.1.2 How fast can machine learning algorithms create models for prediction of insurance
product interest for different datasets? . 58

6.1.3 How well can machine learning algorithms handle irrelevant features? 59
6.1.4 Verdict . 59

6.2 Future work . 60

Bibliography 61

Appendix 65

A Explanation of algorithms 65
A.1 Naive Bayes . 65

A.1.1 Assumptions . 66
A.2 Linear Regression . 66

A.2.1 Overfitting . 67
A.2.2 Solving minimization problem . 68
A.2.3 Output . 69
A.2.4 Parameter tuning . 70

A.3 Polynomial Regression . 70

viii On the potential for machine learning in prediction of insurance policy sales

CONTENTS

A.3.1 Picking features . 70
A.4 Logistic Regression . 71
A.5 K-nearest neighbours . 72

A.5.1 Classification . 73
A.5.2 Parameter tuning . 74

A.6 K-means classification . 74
A.6.1 Minimizing the cost function . 75
A.6.2 Parameter tuning . 75

A.7 Neural Network . 76
A.7.1 Hypothesis . 76
A.7.2 Minimizing the cost function . 78
A.7.3 Initialization . 79
A.7.4 Parameter tuning . 80

A.8 Support Vector Machine . 80
A.8.1 Cost function . 81
A.8.2 Introducing non-linearity . 82
A.8.3 Parameter tuning . 82

A.9 Decision Tree . 83
A.9.1 Regularization . 83
A.9.2 Parameter tuning . 84

A.10 Classification Rule Mining . 84
A.10.1 Parameter tuning . 85

B Results 86
B.1 How accurate can machine learning algorithms predict insurance product interest for differ-

ent data-sets? . 87
B.1.1 Should we optimize for correct classifications or for good probabilities to get the

best accuracy of predictions? . 87
B.1.2 How does feature scaling influence the algorithms and their prediction accuracy? . . 91
B.1.3 Which algorithms have the highest potential for accurate predictions? 94

B.2 How fast can machine learning algorithms predict insurance product interest for different
datasets? . 97
B.2.1 How much do various parameters influence the prediction accuracy of the algorithms?

Can we eliminate the tuning phase? . 101
B.2.2 How well do algorithms scale to large data sets? 105

B.3 How well can machine learning algorithms deal with non information? 108

On the potential for machine learning in prediction of insurance policy sales ix

Chapter 1

Introduction

This Chapter gives an introduction to this master thesis project. First, in Section 1.1 we give a brief intro-
duction about the company at which this project has been executed. Next, we give the motivation for this
project in Section 1.2. In Section 1.3 we will describe our research goals and in Section 1.4 the problem is
translated into research question to be solved. Finally, the methodology to realize the goals is elaborated in
Section 1.5.

1.1 C-Profile

C-Profile is a small startup located in Waalre, the Netherlands, developing solutions for insurance interme-
diaries. The company is a collaboration between two companies; Clascon and LD Software. Clascon is
an auditing consultancy, while LD Software designs and develops software. C-Profile has a team of twelve
members, divided over content, sales, data analysis and software, developing an online advice platform. The
goal of the platform is to deliver low budget, high quality, personal advice to clients of insurance intermedi-
aries.

Such advice is requested for instance if we want to buy a new house. We could research ourselves what
the consequences are. However, the advice we need depends on our income, whether we currently rent a
house or not, our family situation, i.e. if we have a partner? If we have kids? How old are those kids? and
a ton of other characteristics of our life situation. We might be able to factor some of those characteristics
in our research, but we surely will not be able to factor them all in within reasonable time, because we are
not experts on the subject. Hence we would normally go to our intermediary, to get it sorted out. However,
getting an intermediary to get the information is expensive, and for a lot of people it is not affordable. This
problem is known as the advice gap.[7]

The C-Profile platform is introduced to tackle this problem, by delivering digitally personalized advice in
the platform. The advice of C-Profile is roughly divided in four categories.

• Articles

On the potential for machine learning in prediction of insurance policy sales 1

CHAPTER 1. INTRODUCTION

• Personal articles

• Simulations

• Contact with intermediary

Every client has access to a set of articles. Articles are written around current events and developments that
affect a client’s daily life. They are not personalized. Besides generic articles, the portal contains personal
articles. Personal articles are customized to a person’s profile. This means the client only sees what is
relevant for their current situation. A more in depth form of advice, is given in simulations. Simulations run
a scenario in a person’s live given by their current situation. For instance, if a client wants to start a new
business. The simulation takes the client through the whole process and shows advice that is only relevant
to their situation in a compact and concise manner. If a client wants even more advice, the intermediary
can also be contacted. Either via message/email by web cam conversation or in the most extreme case by
making an appointment. See Figure 1.1 for the four advice categories.

Articles

Personal articles

Simulations

Contact intermediary

ProfileC
A D V I S O R Y P O R T A L S {

Contact intermediary

Simulations

Personal articles

Articles{
Figure 1.1: The advice type pyramid. Higher on the pyramid means less personal. Higher on the pyramid
also means more accessible (less costly).

Besides giving advice to the clients, the platform tries to help insurance intermediaries to get better insights
into their clients’ needs, by providing advice leads. Leads are indicators of either mutations in clients’ situ-
ations or life events that require adjustments and advice from the intermediary. So, a lead is a particular
situation that requires a product or advice from the intermediary to the client and therefore leads to conver-
sion. The leads result from mutations of client profiles on the one hand and properties of their profiles (i.e.
almost eighteen years old) on the other hand.[5]

Leads can also be generated by aggregating client data. With aggregated client data, statistics can be calcu-
lated about the population of clients. Using these statistics, we can derive some conclusions. A silly example
would be calculating the minimum age of clients who have a car insurance. If it turns out this is 17 years
old, it likely means that a 16-year-old will not ever buy a car insurance, which means we do not have to
target this demographic. This is very likely due to Dutch law that states you cannot get a (car) drivers license
before the age of 17. The statistics used to generate leads can of course be much more complex than the
example given.

2 On the potential for machine learning in prediction of insurance policy sales

1.2. MOTIVATION

See Figure 1.2 for a concept of the new leads page, where product sales potentials are laid out for each client.

Figure 1.2: Various product sales potentials are shown for each client.

1.2 Motivation

Current advice leads, are relatively simple and straightforward. They are generated based on the client’s own
profile. This does not give any new insights for the insurance company. The massive amounts of data the
insurance companies have is not aggregated, to help generate leads. From a statistical point of view this data
is very powerful, because this data is fairly rich which means a lot of client data is available. Furthermore,
data of a lot of clients is available, which allows us to make stronger statistical conclusions. Hence, we want
to generate new leads, by aggregating this data.

The data science department of C-Profile is experimenting with statistical analysis on the data from insurance
intermediaries to predict which client to target for which insurance product. The statistical analysis outputs
a predicted probability that a client will buy a product, for each client and each product.

Currently the models on which statistical analysis is performed are handpicked. This means that domain
knowledge of the data is required. A data scientist needs to comb through the data and determine which fea-
tures have which type of effect on the sales of an insurance product. This means that the data scientist needs
to know exactly what every feature describes and in which way each feature contributes to the likelihood of
a product sale. For small datasets this can be done quite well, but as the datasets grow in (mostly) the feature
size, (i.e. 100+ features) it becomes much harder to hand pick the features and their effect. Furthermore, the
data analyst might have too much of a preconception on the data. This means that new types of effects of

On the potential for machine learning in prediction of insurance policy sales 3

CHAPTER 1. INTRODUCTION

various features might stay underexposed.

Consider a dataset with 100 features detailing properties about 50K clients, and a classification if each of
these clients bought a 12 Month Travel Insurance Policy. A data scientist (with domain knowledge) wants to
create a model based on this data to make predictions. The data scientist first needs to inventorize the features
and their effect on the data. This is done using various statistical tests, for example by simply executing a
Linear Regression prediction and looking at the correlation of certain parameters on the prediction. A
correlation that might be found is, for instance, with age. Young people do not have the time to travel a lot,
while old people might not have the health to travel a lot. However, middle aged people might have the time
and the health to travel and hence are more inclined to buy a 12 Month Travel Insurance Policy. Another
correlation might exist for income. Clients with high income have more means to travel and hence are more
inclined to buy a 12 Month Travel Insurance Policy.

However, it is difficult for the current statistical analist, to detect correlations on prediction by specific
combinations of features. In the example above, the statistical annalist might miss a specific category of
clients. For instance, students. They are young (age between 18 and 24) and have low income. However,
students might travel a lot and hence buy a 12 Month Travel Insurance Policy.

This example illustrates the two main problems C-Profile is currently having with the generation of leads
using statistical analysis.

1. The statistical analysis might be prone to mistakes, which means the accuracy will decrease.

2. And more importantly, it takes a data scientist too long (weeks/months) to setup a good model for
statistical analysis. This will reoccur every time a new dataset becomes available, or if the datasets
changes often.

To counter these problems, C-Profile wants to investigate if it is possible to setup a model automatically,
using machine learning. The reason for choosing machine learning, is that machine learning has less of
a preconception of the features of the data, and hence has less bias towards such features. Secondly it
is believed by C-Profile that machine learning is capable of generating such models quickly, i.e. within
minutes or hours, without interference from the data scientists.

The research will focus on investigating various machine learning techniques to verify if they have the
potential to replace statistical analysis in predicting insurance policy sales opportunities. In order to do so,
the machine learning techniques must be able to generate models quickly, with high accuracy.

There are several potential issues that arise when using machine learning, though. One of these issues is
scalability. The notion of time complexity states that the runtime of algorithms increases if the size of
dataset upon which they act increases. This means that we must ensure that the algorithms we use are
scalable in the runtime necessary to generate models. C-Profile aims to regenerate the model on a weekly
basis. The time available to generate new models is roughly eight hours (overnight).

Furthermore, we set out to find algorithms that are capable of generating a good model on any dataset.
Often it is so that tailor made (statistical) models outperform generic models. However, it costs a lot of
time and effort to setup such a tailor made model. Hence we must aim to get similar accuracy with the
machine learning techniques (or optimistically better) compared to the current statistical analysis methods
(at a fraction of the time).

4 On the potential for machine learning in prediction of insurance policy sales

1.3. GOALS

Finally, we have to investigate if the machine learning techniques can handle irrelevant features. With
irrelevant features, we mean features that do not contribute (much) to the chance if a person is interested in
a product. If the algorithms are able to handle irrelevant features, we do not have to preprocess the data by
hand, thereby possibly losing information we think is irrelevant. This will both save time and (possible) loss
of information.

1.3 Goals

Our main research goal is to verify if we can use machine learning for predicting insurance product interest
for individual clients, based on a dataset of clients. Currently manual model selection is used in a statistical
approach for predicting insurance product interest. We want to investigate if machine learning has the
potential to replace statistical analysis for making these predictions.

The second goal of this study is to find out which type of machine learning technique has the highest potential
of creating models quickly, which can make accurate predictions on insurance product interest for clients.
We want to answer the question: Which technique should we develop further to make our predictions?

The final goal is to create a framework in which; data can be fed to algorithms, algorithms can be trained,
algorithm models can be retained, and prediction results can be retrieved. This framework should be in-
dependent of the algorithms, such that algorithms can be easily changed or enhanced. We will use this
framework for performing experiments, but this framework should be setup in such a way that it can be
incorporated in the C-Profile platform.

1.4 Problem statement

The main research question is formulated as follows:

Which machine learning technique has the highest potential to replace statistical analysis for predicting
insurance product interest?

We will answer this question using various sub research questions. As discussed in Section 1.2 we have
three potential issues by using machine learning techniques. The questions that arise are

1. How accurate can machine learning algorithms predict insurance product interest for different data-
sets? What we consider accurate will be covered in Chapter 2.

2. How fast can machine learning algorithms create models for prediction of insurance product interest
for different datasets? How does the size of the datasets influence the performance in terms of speed
for various techniques?

3. How well can machine learning algorithms handle irrelevant features? I.e. features that do not add
value to the prediction. Are the techniques able to filter out the important features to make accurate
predictions?

On the potential for machine learning in prediction of insurance policy sales 5

CHAPTER 1. INTRODUCTION

1.5 Methodology

In order to answer these questions, we will first give some insight in the type of data on which predictions
will be made, and what the desired form of these predictions is. We need to know this to find out which type
of machine learning techniques we should focus on. Once we know the type of predictions we want, we can
focus on the type of machine learning techniques we can utilize to solve the problem (Chapter 2).

Using this knowledge, we can implement and verify various machine learning techniques to make predic-
tions. Because this is a feasibility study, we will not go in too much depth for each of the techniques. We
will create a high level theoretical comparison for the techniques in our application domain (Chapter 3).

To analyze the performance and ultimately answer our research questions, we will detail the experimental
framework which allows us to test the algorithms on different datasets, measuring various performance
measures. Using various experiments, which will be executed using the experimental framework, we will
answer the research questions. (Chapter 4) The experiments will test various aspects of the algorithms such
as:

1. The ability to make accurate predictions

2. The ability to create models quickly

3. The ability to filter relevant information

The research questions defined in Section 1.4 will be answered using these experiments. (Chapter 5)

6 On the potential for machine learning in prediction of insurance policy sales

Chapter 2

Background

In this Chapter we will give some background for the problem. In Section 2.1 we will detail the data
available. In Section 2.2 we will describe our stakeholders and their requirements. In Section 2.3 we will
discuss the type of machine learning techniques are available and in Section 2.4 we detail how we will model
the problem, and which type of machine learning techniques we will investigate. Finally, in Section 2.7 we
will discuss how to measure the accuracy of predictions and what is considered accurate.

2.1 Data

In order to decide which algorithms we should investigate, we first have to take a look at the available
data. The data consists out of rows for each client containing features with properties about the client.
These properties range from the date of birth, (estimated) income, employer, family situation, geo-location
of living, etc. For each client, we also have binary values stating whether they have bought an insurance
product from a category in question. Product categories are for example: health insurance, car insurance,
burglary insurance, etc.

In practice the data used should be extracted from the information recorded in the web portal. The data in
the portal will have approximately 50 ∼ 100 features and consists out of 100K ∼ 1M clients (most likely
growing in the future). Currently we are recording 32 different categories of insurance products.

However, the statistical analysis performed at C-Profile is still in its experimental phase. This means that
analysis has only been performed for companies who were interested enough to fund the experiments. Un-
fortunately, they were reluctant to hand over all the data they have, which means we have fairly limited data
sets (in terms of feature size) to our disposal. This also means that individual data sets have different features.
In order to also test the techniques with a richer data set, we will use the TIC Benchmark / CoiL Challenge
2000 dataset.[37] This dataset records features of clients of an insurance intermediary, and a boolean value
indicating that they bought a caravan insurance. This is the same type of data we have in other datasets. This
dataset however, is far more enriched than the other datasets at our disposal. Unfortunately, the number of
clients is fairly low with approximately 10K rows only.

On the potential for machine learning in prediction of insurance policy sales 7

CHAPTER 2. BACKGROUND

For the experiments we will use a subset of the datasets in Table 2.1. Statistical analysis is performed for
datasets C, D and E

Name Number of clients (m) Number of features (n)
Dataset A 9822 86
Dataset B 180024 11
Dataset C 74768 17
Dataset D 74768 17
Dataset E 74768 17

Table 2.1: Statistics about the five datasets used during the experiments

2.2 Stakeholders

In order to determine the requirements we must meet, we will identify our stakeholders. This project has
three main stakeholders:

• C-Profile

• Insurance intermediaries

• Insurance intermediary clients

Each of these stakeholders have their own requirements and preferences.

C-Profile, the company for which we will develop this solution, wants to be able to provide its insurance
intermediaries with leads about insurance products for clients in their portal. For each client, the interest
for each product should be calculated. They want to give the advisor a list of probabilities for sales of
different products. See Figure 1.2 for a concept of the leads page. The prediction model should be created
every week, overnight (i.e. within eight hours) preferably without any interference of a data scientist (so no
preprocessing of the data nor parameter selection). Furthermore, a (future) request is the ability to extract
the reasoning behind a client’s interest in a product, so a story can be created to help intermediaries with
their sales.

Insurance intermediaries, the companies who target their clients with the information they gain, want to have
insights in which clients to pursue. The problem they have is that they have limited capacity to target every
client. Hence, they want to decide who to target. Targeting a client that is not interested costs man hours,
but a bigger concern is not targeting a client that is interested, because this is missed revenue. A secondary
problem they have is investment in new clients. If they register a new client, they want to be able to quickly
determine which insurance products are relevant for this new client. Hence they want to be able to quickly
create an overview of the products that should appeal to them.

Clients, the people who will be targeted by insurance intermediaries, only want to be approached for the
products they actually want or need. This means that the client does not want to be approached for products
the client does not care about.

8 On the potential for machine learning in prediction of insurance policy sales

2.3. MACHINE LEARNING TECHNIQUES

Each of these stakeholders have different priorities. We are developing this solution for C-Profile. Hence,
this is our main stakeholder. Their criteria have the highest priority. The secondary stakeholders are insur-
ance intermediaries and their clients.

The main criteria from the different stakeholders can be summarized in three main categories.

• Speed of model creation, C-Profile demands that at most eight hours are needed to create a model.

• Accuracy of the predictions, intermediaries and clients do not want incorrect predictions. They want
neither false negatives (intermediaries) nor false positives (clients).

• Autonomy, C-Profile requires that interference by data scientists is not required. Hence the techniques
should be able to filter irrelevant features.

these three criteria result in trade-offs between each other. Speed affects accuracy, while autonomy affects
speed and accuracy. It should be noted that for speed we have a hard criteria of eight hours. As long as we
meet that criteria, we can focus on accuracy and autonomy. The requirement for autonomy by C-Profile is
also quite strict. Hence we will ensure that the techniques will be able to filter irrelevant features, and that
no data scientist has to interfere. So the trade-off between these criteria becomes:

1. Autonomy

2. Speed (ensure model can be created within eight hours, as long as that criteria is met, low priority)

3. Accuracy

2.3 Machine learning techniques

Machine learning algorithms can be divided in three categories

• Supervised learning

• Unsupervised learning

• Reinforcement learning

[26]

The distinction is made in the way the algorithms learn their objective function. Supervised learning uses a
training set with labeled instances. In other words, it is given a set of instances with their classification. It
uses these classified instances, to estimate an underlying function to classify new or unknown instances. Un-
supervised learning does not consider the given classification when learning its objective function. It learns
completely on its own, the structure in the data. Reinforcement learning on the other hand, interacts with
a dynamic environment. It learns its objective function by using feedback it receives from its environment
and reacting on it.

On the potential for machine learning in prediction of insurance policy sales 9

CHAPTER 2. BACKGROUND

In Section 2.1 we state that the datasets used have labels indicating whether a client bought a certain product
or not. This means we can quickly focus on supervised learning techniques. However, there are various
generalizations in which a supervised learning problem can be modeled. Some of these generalizations are:

• Classification techniques

• Regression techniques

• Learning to rank

• Structured prediction

Classification is a form of machine learning that identifies to which category of instances an unknown in-
stance (a client in our case) belongs. In our case, we could generate two classes per product, one class
(usually 1) of clients that are interested in the product, and one class (usually 0) of clients who are not in-
terested in the product. For each product type, we run classification algorithms to determine which client is
interested in which product. This type of classification is known as binary classification. To handle ambigu-
ous cases, it is desirable to return a probability.[26] Classification can often be extended with a probability
model. Instead of only classifying an instance to belong to a certain class. We can return a score stating the
probability the instance belongs to the class in question.

Regression is a technique that tries to explain a relationship between variables. Where classification has a
discrete set of possible outputs, i.e. 0 and 1, regression has a real valued output. [26] In case we try to
predict a price for a house based on a set of features, a real value makes sense. However, in predicting
whether someone wants to buy an insurance product, these values are a bit more difficult to interpret. We
could interpret the output as a probability, but the output is not restricted to a domain of [0, 1] which might
make it unsuitable for this interpretation. [16]

Learning to rank is a technique that focuses on creating an optimal ordering of items. It is often used in
document retrieval.[14] We could use learning to rank to order product categories in predicted interest for
every client. In other words, we can create a ranking of products for each client. For products at the start
of the list the interest is higher than for products at the end of the list. Similarly, we can create a ranking of
clients for each product category. The drawback of ranking is that we do not explicitly predict how much
interest exists for each product or for each client. Instead instances are ordered, for instance, using pair wise
comparison.[34] This means that the cutoff point for which clients and which products to pursue is difficult
to determine.

Structured prediction is a technique that is fairly different from the previous techniques. Instead of predicting
a single value or order, structured prediction can predict any arbitrary object. Structured prediction often
deals with large (but finite) output spaces.[35] Instead of using classification on a large set of classes, we
can use the structure of the output space to make better predictions. Using structured prediction, we could
predict the classifications for all product categories at once. Structured prediction is often used in speech to
text recognition.

2.4 Approach

Using the information gathered in Sections 2.2 and 2.3, we can determine which type of techniques we will
pursue. We will discuss all four techniques and how capable they are to comply with the wishes of the

10 On the potential for machine learning in prediction of insurance policy sales

2.5. FEATURE NORMALIZATION

stakeholders.

The advantage of structured prediction is that the algorithms only have to generate one model for prediction
of all products. However, we believe that the structure between products does not give enough of an advant-
age to predict the interest of all products at once. Learning to rank seems like a technique that is usable at
first. However, learning to rank only states which products or which clients have the most potential. They do
not give insights in how much absolute potential they have. Therefore, it is still difficult to determine which
clients and products to pursue. Regression on the other hand does give insights in the interest per product for
each client. However, the score regression gives to a product for a client has in infinite range. Therefore, it is
difficult to interpret this result, we could cut off the results outside of our range [0, 1] or we could normalize
the results, but these methods are not flawless. Classification on the other hand does give a result that is easy
to interpret. There are only two categories; 1 (interested) or 0 (not interested). The problem with classic
classification is that we do not get an indication about how much interest a client has in a product. Hence
we will adapt classification using a probabilistic model. A probabilistic method assigns probabilities that a
client belongs to a certain class. In our case, we can simply focus on the probability a client belongs to the
class 1 (interested).

Because we will use classification with a probabilistic model, we will have to create a model for each product
category. Our research will be focused on fast model creation, resulting in accurate predictions. This means
we will not focus too much on prediction speed.

Lets formalize our classification problem as follows. We define a training set T , with m examples {x, y},
where x is a vector of n features about a client and y is the classification of x, with y ∈ {0, 1}. y = 1
indicates the client is interested in the product and y = 0 indicates the client is not interested in the product.
We can now define a classifier as a function h(x) ∈ [0, 1] where h(x) is interpreted as p(y = 1 | x). This
indicates the probability that a client with features x is interested in the product. The function h(x) is refined
by training the classifier with the training set T .

2.5 Feature normalization

The data available comes in various forms. Features may consist of numbers, dates, text, or as a defined
set of values, for instance {true, false}. Different algorithms have different capabilities of handling input
data. However, most algorithms are capable of handling continuous numerical values. Hence we choose
to transform where possible our data into a numerical range automatically without interference from a data
scientist. For features that have a finite set of values they can attain, we simple number each of the values
and assign it to the feature. For text values, we can often do something similar. We can check if the values
in the training set are unique or if they occur in multiple instances. If they do occur multiple times, we
can treat them as if they are a set of possible values. If strings are mostly unique, this is not a good idea,
because no new information is extracted from the feature. There are several techniques to get meaningful
information from such a type after all. These are based on distance metrics between a string A and B.
Techniques include; editdistance metrics, fast heuristic string comparators, tokenbased distance metrics, and
hybrid methods. However, domain knowledge is required to decide which metric should be used and string
distances are not suitable for comparing entities with non-trivial structures.[8] Therefore we simple ignore
text features with mostly unique values. Examples of such features are: names and description fields.

After converting our dataset to numerical values, only one problem remains. This is the problem of different

On the potential for machine learning in prediction of insurance policy sales 11

CHAPTER 2. BACKGROUND

feature scales. Consider two features, age and annual income. Age is on the scale [0, 120], whereas
annual income is roughly on the scale [0, 1000000]. Because these scales are so very different, adjusting
the parameters in algorithms might become biased. This is especially the case if (Euclidean) distance metrics
are used. The feature annual income has a much larger impact on the distance between two instances. To
counter this effect, we will scale all features to the same range. It is shown that for several algorithms feature
scaling obtains a better quality, efficient and more accurate result.[25] Therefore we will scale all features in
the [−1, 1] scale.

There are various techniques to perform this transformation. [33] Arguably the simplest technique is Min-
Max scaling. [1] For a feature xj and training set T , (x, y) ∈ T we scale as follows:

x′j =
xj −min(xj)

max(xj)−min(xj)
(2.1)

Where min(xj) and max(xj) are the minimum and maximum value of feature xj for {x, y} ∈ T respect-
ively. Scaling all features xj for x, y ∈ T using Min-Max scaling ensures ∀j | (x, y) ∈ T : 0 ≤ x′j ≤ 1,
which is certainly in the scale [−1, 1]. Note that if min(xj) = max(xj) it means that all values are equal.
Hence this feature does not provide any new information and we can just as well skip the feature entirely.

Another technique is standardization (also known as Z-score normalization)[1] which scales features such
that they will have the properties of a standard normal distribution with µ = 0 and σ = 1, where µ is
the mean and σ the standard deviation of xi for all (x, y) ∈ T . Hence again we have that this is in the
scale [−1, 1]. Note that this does not mean we stay within the range [−1, 1] because technically any value
is still possible. However, according to the three-sigma-rule, 99.7% of all values lay within three standard
deviations of the mean. [30] In our case this means 99.7% lies in the range [−3, 3], which is arguably in the
scale [−1, 1].

These two feature scaling techniques are amongst the most common techniques used for feature scaling.[33]
This means they are very broadly used and hence are most likely to work well in general.

2.6 Parameter tuning

Most algorithms have certain parameters that influence the quality of their predictions. These parameters
are often dependent on the data they are fed. However, as mentioned in Section 1.2, we like to remove
the requirement for domain knowledge. Hence we require a method to pick the best parameters for each
algorithm. The method we will use is known as parameter tuning (cross validation). Another method is
k-fold cross validation, but this is an expensive method (expensive as in it takes a long time).[17]

In parameter tuning, a finite predefined set of parameter settings are tested. The best combination of para-
meters is chosen for training. We test parameters using cross validation. In cross validation, the training
set is divided into two parts. The (new) training set, and the validation set. For all parameter settings, the
algorithm is trained using the training set, and tested using the validation set. The settings with the lowest
error rate, according to an error measurement, are chosen for training. In training, the entire training set
(training set and validation set) will be used again. How to measure errors will be discussed in Section 2.7

12 On the potential for machine learning in prediction of insurance policy sales

2.7. MEASURING ACCURACY

2.7 Measuring accuracy

Classification learning normally has two phases; the training phase and the execution phase. In the training
phase, the algorithm is fed data with labels. It uses this sample to get some understanding of the data, usually
by learning an objective function and minimizing the cost of mispredictions. After the training phase, the
algorithm goes through the execution phase. In the execution phase the data is provided without labels. The
algorithm predicts the classification of these unclassified instances.

When investigating which algorithms work best, the execution phase is often replaced with a testing phase.
In the testing phase, data with labels are available. However, the data fed to the algorithm does not contain
these labels, just like in the execution phase. The predictions of the algorithm can be compared to the actual
classifications. Then a metric of accuracy can be applied to determine which algorithm is the best. What
type of metric to use depends on what is considered accurate.

Accuracy can be defined and measured in different ways. In binary classification, there are four categories
a prediction can belong to. These are shown in Figure 2.1. Accuracy is then defined as the ratio between
true predictions (TP + TN) and false predictions (FP + FN). The most straightforward way to measure this
definition of accuracy is by using the Percental Error (PE) measurement. This measurement measures the
percentage of instances that were wrongly classified. PE is calculated as follows:

PE =
1

m

m∑
j=1

| bh(xj)e − yj | (2.2)

where h(xj) is the estimated value of yj , bxe is the nearest integer to x (also known as the round function),
and | x |, the absolute value of x.

However, we are using a probabilistic model on top of the classification. Hence we might not only want to
penalize wrong predictions, but also take the probabilities into account. To take probabilities into account we
can use the Mean Squared Error (MSE) measurement. The MSE takes into account how close the prediction
was to the actual classification. MSE is calculated as follows:

MSE =
1

m

m∑
j=1

(h(xj)− yj)2 (2.3)

This measurement takes into account the probabilities the algorithms output. If an algorithm gave a low
probability of its classification, the error is less, than when a high probability was given.

PE is an ideal measurement for communication to executives and insurance intermediaries, because it is
easy to understand. While MSE is a bit more sophisticated as it takes the probabilities into account. This
measurement effectively gives more information about how far off prediction were.

Accuracy however, is not always a good measure of the quality of classification models. [9] This is especially
true if the amount of observed training examples do not have a similar number of instances belonging to
each class. Consider a dataset containing 10000 clients of which only 500 bought a product. A classifier
predicting a client is not interested for every client, has an accuracy of 0.95 (or a PE of 0.05). This is a fairly
high accuracy even though the classifier is useless.

Hence we will use two more measures; precision and recall. Precision measures what percentage of positive
predictions were correct. This measurement is a good fit from the client perspective. They do not want to

On the potential for machine learning in prediction of insurance policy sales 13

CHAPTER 2. BACKGROUND

Figure 2.1: The four categories a prediction can belong to.

be bothered for products they are not interested in. Clients prefer a high Precision. Precision is defined as
follows:

P =
TP

TP + FP
(2.4)

[9]

Recall on the other hand measures what percentage of the positive cases we predict correctly. This meas-
urement is a good fit from the insurance intermediary perspective. They mostly care about targeting every
client that is interested. Insurance intermediaries prefer a high Recall. Recall is defined as follows:

R =
TP

TP + FN
(2.5)

[9]

In our experiments, we will mostly focus on the PE and MSE measurements, but we will take precision and
recall into consideration.

14 On the potential for machine learning in prediction of insurance policy sales

Chapter 3

Comparison of techniques

Several machine learning techniques exist that could be applied to our problem. In Section 3.1 we will briefly
discuss some of the techniques available and which ones we will use. In Appendix A a more comprehensive
explanation of each algorithm is given. In Section 3.2 we will make a theoretical comparison between the
various techniques and algorithms.

3.1 Techniques

Various classification techniques exist. One categorization of techniques is:

1. Statistical learning algorithms

2. Regression techniques

3. Instance based learning

4. Clustering

5. Perceptron based techniques

6. Support Vector Machines

7. Logic based algorithms

[21]

These seven techniques have different methods of finding their classifications, but they can all be used in
the same framework, because they all have a training and execution phase. This makes it easy to compare
the techniques. Most of them also have various parameters to set, hence parameter tuning can be applied as
well. See Figure 3.1 for the categories and algorithms that belong to those categories.

On the potential for machine learning in prediction of insurance policy sales 15

CHAPTER 3. COMPARISON OF TECHNIQUES

STATISTICAL
LEARNING
ALGORITHMS
- Naive Bayes

REGRESSION
TECHNIQUES
- Linear Regression
- Polynomial
 Regression
- Logistic Regression

INSTANCE BASED
LEARNING
- K-nearest
 Neighbours

CLUSTERING
- K-means
 Classification

PRECEPTRON
BASED
TECHNIQUES
- Neural Networks

SUPPORT VECTOR
MACHINES

LOGIC BASED
ALGORITHMS
- Decision Tree
- Classification Rule
 Mining

Figure 3.1: Seven classification techniques and some algorithms that belong to those categories.

3.1.1 Statistical learning algorithms

Statistical learning algorithms are based on an underlying statistical model. One of the algorithms in this
category is the Naive Bayes algorithm. Naive Bayes is based on Bayes’ rule. This rule is defined as follows:

p(Y | X) =
p(X | Y) p(Y)

p(X)
(3.1)

This rule states that the probability of product interest (Y = 1) given a certain person (features X) can be
calculated using the inverse p(X | Y). p(X | Y), P (Y) and P (X) are calculated using the training set.

Naive Bayes uses Bayes’ rule to classify instances. If P (Y = 1 | X = x) ≥ 0.5 the instance x is classified
as Y = 1 (i.e. client with features x is interested in the product), otherwise the instance x is classified as
Y = 0.

3.1.2 Regression techniques

Regression is a method to fit a (linear) equation to the data of the form:

h(x) = βTx (3.2)

x are the features of an instance. β is a vector of parameters. This vector shows the dependency of each fea-
ture on the classification. The parameters are found during the training phase by optimizing a cost function.
The exact cost function depends on the type of regression, but usually it is a form of minimizing the amount
of mispredictions.

The most straightforward method is Linear Least Squares Regression. This method fits a linear equation to
the data. A feature x0 is introduced such the line to fit the data does not have to go through the origin. The

16 On the potential for machine learning in prediction of insurance policy sales

3.1. TECHNIQUES

cost function can be defined as follows:

J(β, T) =

 m∑
i=1

(hβ(x
(i))− y(i))2 + λ

n∑
j=1

β2
j

 (3.3)

[16]

A bit more complicated method is Polynomial Least Squares Regression. This method has the same cost
function as Linear Least Squares, but enriches the features before optimizing the cost function. Features can
be combined to create polynomial features, on which linear least squares is performed. This allows for more
complex models.[3] For instance for a polynomial degree of two the features generated can be defined as
follows:

∀i ∈ {i | 0 ≥ i ≥ m}∀j ∈ {j | i ≥ j ≥ m}xixj

(See Algorithm 2 for an algorithm to generate these polynomials for polynomial degree ρ ≥ 2.)

A more complex method is Logistic Regression. Linear- and Polynomial Regression are technically re-
gression techniques. Logistic Regression however, is a classification technique by design. Rather than
modeling the response y directly, Logistic Regression models the probability that y belongs to a particular
category.[16]

Logistic Regression has a more complex cost function, that penalizes mispredictions heavily. The cost
function can be defined as follows:

J(β, T) = − 1

m

(
m∑
i=1

y(i) log hβ(x
(i)) + (1− y(i)) log(1− hβ(x(i)))

)
+

λ

2m

n∑
j=1

β2
j (3.4)

[28] Logistic Regression and Polynomial Regression can be combined to create an even more powerful
method.

The statistical analysis currently used by the data analysis department of C-Profile is also a form of regres-
sion.

3.1.3 Instance based learning

Instance based learning algorithms are known as lazy learners. This because most of the work is delayed
until the execution phase. K-nearest Neighbours (KNN) is a simple instance based learning algorithm. KNN
classifies an instance by searching its k nearest neighbours based on a distance metric. The instance is then
classified by a (weighted) average of the classifications of the neighbours. This can be formalized as follows.
Given a set of k nearest neighbours K:

h(x) =
1

‖K‖
∑

{xz,yz}∈K

yz (3.5)

On the potential for machine learning in prediction of insurance policy sales 17

CHAPTER 3. COMPARISON OF TECHNIQUES

A weighted version can also be considered if proximity of points to the instance x is considered important:

h(x) =

∑
{xz,yz}∈K

1

d(x, xz)2
yz

∑
{xz,yz}∈K

1

d(x, xz)2

(3.6)

[21] where d(x, z) is a distance measure, Euclidean distance in our case.

3.1.4 Clustering

The fourth technique is clustering. Clustering is typically used as unsupervised learning algorithms.[6] Clus-
tering algorithms group instances that are similar together. This means clustering techniques find structure
in unstructured data. We can also use this result to classify instances, if we add a classification to these
groups or clusters. The classification of a cluster of points C is defined as follows:

h(x) =
1

‖C‖
∑

{x,y}∈C

y (3.7)

K-means Classification is a clustering technique that can be used for classification. It is an algorithm that
finds k clusters based on proximity of the points. It chooses k random points and tries to form clusters. If the
clusters are formed it tries to find better clusters, until it cannot improve the quality of the clusters. It uses
a distance metric to determine clusters. The distance used is usually Euclidean distance. The cost function
(the function to optimize) for creating clusters is defined as follows:

J(T , k) =
k∑
i=1

∑
x∈Ci

‖x− µi‖2 (3.8)

[4]

3.1.5 Perceptron based techniques

Perceptron based techniques are similar to regression in that they try to fit an equation to the data and find
their parameters β by optimizing an objective function. The functions used however, can be very different.
A fairly new but by now common method is Neural Networks. Neural Networks is a technique that emulates
how the human brain learns. Neurons, axons and dendrite are translated to computational units, input wires
and output wires. The objective function searches the weights for these input wires.

a Neural Network often consists of a couple of layers with neurons. Neurons of layer 1 only have outgoing
connections to neurons from layer 2, and neurons from layer 2 only have outgoing connection to layer 3,
etc. The connections are known as axons. Each axon has a numerical value indicating the weight and each
neuron has an activation function aβ(x):

aβ(x) = tanh(βTx) (3.9)

18 On the potential for machine learning in prediction of insurance policy sales

3.1. TECHNIQUES

tanh(z) =
ez − e−z

ez + e−z
(3.10)

bishop1995neural In this case x indicate the value from the incoming neurons and β the weights from the
incoming axions. A classification for a client x is computed by setting the values of the features in the first
layer (also known as the input layer) and computing the activation function of the neuron in the last layer
(also known as the output layer). This activation function is dependent on the calculations in the layers
between.

In order to formalize the classification a Neural Network does we will introduce some notation. The number
of layers in our neural network will be denoted by L. We will introduce matrices β(j) as the matrix of
parameters (or weights) controlling function mapping from layer j to layer j + 1. Note that the size of βj
depends on the number of neurons in layers j and j + 1. If sj denotes the number of neurons in layer j. We
get that βj is a sj+1 × sj + 1 matrix. Furthermore we will use a(j)i as the activation of neuron i in layer
j. The activation is the result of the neuron’s activation function. for layer 1, the input layer, we will set
a
(1)
i = xi Finally we will introduce z(j)i as the weighted linear combination of input values in a neuron i in

layer j.

z
(j)
i =

sj∑
k=0

β
(j−1)
i,k a

(j−1)
k (3.11)

The concrete calculation of a(j)i becomes:

a
(j)
i = tanh(z

(j)
i) (3.12)

[3]

The classifier is then simply defined as

h(x) = a(L) (3.13)

3.1.6 Support Vector Machines

Another technique is Support Vector Machine. A Support Vector Machine is known as a large margin
classifier. This means it tries to separate the data such that the line separating them is as far away from the
nearest points as possible. The hyperplane seperating the data is used in the prediction:

h(x) =

{
1 if βTx ≥ 0

0 if βTx < 0
(3.14)

The hyperplane separating the data is chosen such that the gap between the separating hyperplane and the
closest points on either side of the hyperplane are as large as possible. This maximizes the likelihood that
unseen points closer to the hyperplane will still be classified correctly. This also means that the hypeplane is
defined by these two closest points. The points are known as support vectors. The classifier is trained using
the following condition:

On the potential for machine learning in prediction of insurance policy sales 19

CHAPTER 3. COMPARISON OF TECHNIQUES

∀i ∈ {i | 1 ≤ i ≤ m}y(i)βTx(i) − (1− y(i))βTx(i) ≥ 1 (3.15)

This condition can only be met if the data is linearly separable. This however, is not always the case. Hence
a hinge loss function L(β,x, y) is introduced. We want to minimize for all {x, y} ∈ T :

L(β,x, y) = max
(
0, 1− (yβTx− (1− y)βTx)

)
(3.16)

Using this hinge loss function we can define the cost function J(β, T) to optimize:

J(β, T) = C

m

(
m∑
i=1

L(β,x(i), y(i))

)
+

1

2
‖β‖2 (3.17)

[36]

Support Vector Machines also have a trick to transform the data such that a non-linear seperating hyperplane
can be defined. This is done using a kernel. Using a kernel the points can be transformed to m dimensional
points, hence raising the dimensionality of the problem. This means non-linear hyperplane (in n dimensions)
can be defined. A commonly used kernel is the Gaussian kernel (also know as the Radial Bias Function)[2].

K(u,v) = exp

(
‖u− v‖2

2σ2

)
(3.18)

3.1.7 Logic based algorithms

Logic based algorithms are techniques that classify instances based on a set of logic based rules. The rules
state exactly what values certain features of a client need to have in order to classify them as interested.
Using a rule based system ensures we have flexibility. This because we can classify our instances by only
using a subset of the features, or even using non-continuous ranges.

Decision Tree is a technique to generate such rules. Using the training set; a tree is build up. The tree is
growing by recursively partitioning the data using binary tests.[32]. At every node, a decision is made in
which direction the path should continue. At the end of a path, in the leaves, a classification is given. The
rules are defined by all the paths in the tree. The set of rules of a Decision Tree T can be defined by:

{
∧
n ∈ ancestors(l) | l ∈ T ∧ children(l) = ∅}} (3.19)

where ancestors(n) is the set of nodes on the path from the node n to the root (including the root itself)
and children(n) is the set of direct descendants of the node n.

Another technique is Classification Rule Mining. The Apriori algorithm is an algorithm to find such rules.
It uses frequent item sets to generate rules. Frequent item sets are combinations of features that occur often
together. If they often occur together with a given classification, it is likely that they have an influence on
that classification. Rules are found using the anti-monotonicity of itemsets, ”if an itemset is not frequent,

20 On the potential for machine learning in prediction of insurance policy sales

3.2. COMPARISON

any of its superset is never frequent” [38]. If we only consider the set of positive rules R (i.e all rules such
that I ⇒ 1) we can define our classifier as follows:

p(y | x) =

∑
{I,y}∈R:I⊆X

sI × c{I,y}∑
{I,y}∈R:I⊆X

sI
(3.20)

where sI is the support of I and c{I,y} the confidence of I ⇒ y. See Appendix A.10 for definitions of
support and confidence.

3.2 Comparison

The chosen algorithms belonging to one of the seven common techniques have various advantages and
disadvantages. we will start with listing the advantages and disadvantages of the techniques themselves.
Afterwards we judge all algorithms on four criteria in Table 3.1. The criteria the algorithms are judged upon
are:

• Model complexity, can the algorithms create complex models or only make the most straight forward
predictions.

• Conversion speed, are the algorithms able to create models quickly or does it take a long time?

• Probability model, do the algorithms have a probability model? Do we have to make some assump-
tions to get something resembling a prbabability? Or is a probability model not (yet) present.

• Parameters, do the algorithms have many parameters? And do these parameters have a big influence
on prediction?

The advantage of Statistical learning algorithms is mostly their simplicity. This means the methods are often
very fast. However, this simplicity also has some down sides. Simplistic methods often generalize too much,
hence they often do not fit very well in a concrete dataset. This means that although the speed is very fast,
the accuracy is most likely not good. Besides that, Naive Bayes assumes a normal distribution, which means
it will have a hard time with biased datasets that are not normally distributed. The algorithms does not have
any parameters to tune.

The advantages of Regression techniques are their mathematical soundness and broad experience with the
method in the scientific community. The method (mostly Logistic Regression, but also other forms) is also
used in statistical analysis. Hence its potential certainly exists. However, this also suggests that model
selection is quite important. Furthermore, due to the nature of regression forms, they are not able to handle
non-continuous ranges very well. Hence the ordering of categorized data makes a difference in the capability
to classify (hence additional features might be required). This means a bias is introduced. The accuracy is
most likely better than those of Bayesian methods. The speed of the algorithms probably varies a lot.
Where Polynomial Regression will take a long time if the dataset grows in n (the number of instances).
The probability model of Linear Regression and Logistic Regression is not completely sound, because their
output range is not in [0, 1]. Hence assumptions are made, and perhaps errors are introduced.

On the potential for machine learning in prediction of insurance policy sales 21

CHAPTER 3. COMPARISON OF TECHNIQUES

Instance based learning methods can quickly generate a model and hence are very fast methods. The model
created by K-nearest Neighbours is also very easy to understand. Its accuracy is hard to predict however as
it likely strongly depends on the parameters used.

The main advantage of clustering techniques is that it does not have a bias towards classifications, because
at its core its an unsupervised learning algorithm. Furthermore, the models generated can be complex, but
they are still fairly easy to understand. The K-means algorithm is also fast if implemented correctly.

The perceptron based techniques are amongst the more complex techniques. Neural Networks have the
capability to generate very complex methods. This is a major advantage, given that they should be able to
handle various datasets with different properties. This however, also makes it fairly difficult to understand
the model and which features impose certain classifications.

Support Vector Machines is one of the most complex methods for classification. Support Vector Machines
(SVM) also have the capability to generate very complex methods. However due to nature of SVMs, the
algorithm is fairly slow when using large datasets. This might be a deal breaker for real world usage. A
second disadvantage, is that SVMs only predict classes and not probabilities. SVM also requires a lot of
parameter tuning, this makes its model creation runtime even slower.

Logic based learning’s main advantage is flexibility. It is perfectly capable of generating complex models,
including non-continuous ranges. The models, however, are easy to understand. There are disadvantages
using this technique as well though. Its decision-making process is strongly influenced by the first choice
made. Furthermore, it is fairly difficult to determine which rules are meaningful or meaningless. Hence it
is difficult to predict the accuracy of these techniques. Similarly, the speed of the algorithms is difficult to
determine. Classification Rule Mining might become very slow if a lot of frequent item sets exist. Decision
Trees on the other hand becomes slow, if a lot of decisions have to be made. Another disadvantage of
the Decision Tree algorithm is that no probability model exists for the version used (C4.5)[15]. However
theoretically it should be possible to introduce a probabilistic model.

22 On the potential for machine learning in prediction of insurance policy sales

Algorithm Model complexity Conversion speed Probability model Parameters
Naive Bayes -- ++ + ++
Linear
Regression

- + o +

Polynomial
Regression

o - o +

Logistic
Regression

o o + o

K-nearest
Neighbours

o + + -

K-means
Classification

+ + + o

Neural Network ++ o + +
Support Vector
Machine

++ -- -- -

Decision Tree + + - +
Classification
Rule Mining

++ o + --

Table 3.1: Comparison of ten classification algorithms. The algorithms are judged on four criteria. Scores
can take one of five values: --, -, o, +, ++ (worst to best)

Chapter 4

Experimental setup

To answer the research questions defined in Section 1.3 we have defined some experiments. In this chapter,
we will first give an outline of our experimental setup in Section 4.1. After that we will give an outline of the
experiments designed for each question. For each experiment, we will give a table showing the configuration.
In this configuration, we show the algorithm(s), dataset, feature scalar and error measurement. The dataset
will be split up using a 2 - 2 - 3 ratio in training set, validation set, and test set, unless we explicitly mention
otherwise. Furthermore, we will limit the runtime of the algorithm to eight hours, which is considered
reasonable time.

4.1 Experimental setup

To facilitate the execution of the experiments we have designed an experimental environment. The environ-
ment is setup in a generic way such that the algorithms itself do not have to worry about measurements of
their performance. The environment follows a standard pipeline for supervised learning.[31]

4.1.1 Components

The experimental environment consists of five elements:

1. Input readers

2. Feature scalars

3. Algorithms

4. Error measurements

5. Output writers

On the potential for machine learning in prediction of insurance policy sales 25

CHAPTER 4. EXPERIMENTAL SETUP

For each of these elements one concrete implementation should be provided. Algorithms are the only ex-
ception. The experimental environment can handle multiple algorithms at the same time. Each of the five
elements are self-explanatory.

Input readers read data from a file, database, or any other data source. For instance, a CSV file, Excel file or
a MySQL database. Their only goal is to transform such a data source to a concrete training set.

Feature scalars scale the data to a [−1, 1] scale. Examples are the MinMax scalar and the Standardization
scalar as discussed in Section 2.5.

Algorithms are the actual algorithms discussed in Chapter 3 to be tested. The algorithms have four operations
which will be called by the experimental environment.

1. preProcess, to alter the dataset, if needed.

2. setParameters, to set different values of parameters of the algorithm.

3. train, to train the model, using a training set.

4. execute, to predict the result of an unknown instance.

Error measurements, are measurements to determine the error an algorithm made during the test phase.
They can be used to rank the algorithms (i.e. during the tuning phase) or to determine a confidence of
the algorithm. Examples are the Percental Error (PE) measurement and the Mean squared Error (MSE)
measurement as disused in Section 2.7.

Output writers simply output results to the console, a file or a database. This can either be classification
results or meta data of the algorithm. For instance, the error measurements, running time, etc.

4.1.2 Phases

If a run has all its components, its experiment can be executed. The procedure consists of:

1. Data extraction

2. Pre-processing

3. Feature scaling

4. Tuning

5. Training

6. Testing

7. Output

as shown in Figure 4.1. For each algorithm, the entire procedure is repeated. For the first three phases (up
to feature scaling), the entire dataset is used. After that the dataset is split into three equal parts, the training
set, the validation set and the test set. The training set is used for training during the tuning phase. The

26 On the potential for machine learning in prediction of insurance policy sales

4.2. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATA-SETS?

DATA
EXTRACTION

PRE-
PROCESSING

FEATURE
SCALING TUNING TRAINING TESTING OUTPUT

Set
parameters

Training Testing
Rank results
with error

measurement

Full dataset Full dataset
Training set +
validation set Test set

Training set Validation set

Training set +
validation set

Figure 4.1: Graph showing the phases of the experimental procedure. The purple blocks show which part of
the dataset is used in each phase.

validation set is used to test during the tuning phase. For each parameter, the results are ranked using the
error measurement. The best ranked parameter setup is then chosen for the next phases.

After tuning, the training phase comes in. The algorithm is trained with both the training- and the validation
set. After training the algorithm is tested using the test set, and its results are measured using the error
measurement. Finally, the results are fed to the output writer and the procedure ends. During all phases
(except feature scaling) the performance is measured. This includes running time and memory usage. These
results are also fed to the output writer.

If the experimental procedure is executed for all algorithms, the experiment simply terminates.

4.2 How accurate can machine learning algorithms predict insurance
product interest for different data-sets?

To answer this question, we have to determine which configurations give the best results. This means we
have to determine what we should optimize in tuning phase. Concretely this means we have to determine
which error measurement used in the tuning phase results in the best algorithm configuration. Similarly, we
have to determine which feature scalar results in the best accuracy.

If we know which configurations to use, we can determine which algorithms have the best potential, by
comparing the accuracy to each other. We will also compare the accuracy to statistical analysis already
performed on various datasets. Hence we will design four experiments to answer the following questions.

1. Should we optimize for correct classifications or for good probabilities to get the best accuracy of
predictions?

On the potential for machine learning in prediction of insurance policy sales 27

CHAPTER 4. EXPERIMENTAL SETUP

2. How does feature scaling influence the algorithms and their prediction accuracy? Which feature scalar
results in the best accuracy of predictions?

3. Which algorithms have the highest potential for accurate predictions?

4. Can we predict insurance product interest for clients, with similar or even higher accuracy compared
to current statistical models?

4.2.1 Should we optimize for correct classifications or for good probabilities to get
the best accuracy of predictions?

As explained in Section 2.7, we have two error measurements implemented to rank algorithms. These
measurements are the PE and MSE. Not only are they used to benchmark the algorithms, they are also used
to determine the best parameters during the tuning phase. Therefore, they have a significant influence on the
performance of the algorithms.

We propose an experiment to verify which error measurement gives the best results in the tuning phase. We
will tune all algorithms with both error measurements. For each error measurement, we determine the best
configuration, after which we test the algorithms with both error measurements again. Whichever config-
uration scores best on both error measurements in the testing phases determines which error measurement
works best.

The experiment will test all algorithms on subsets of all four datasets with m = 7000, using the standardiz-
ation feature scalar. See Table 4.1 for an outline of the experiment.

Expected results

We expect that the MSE measurement has a better influence in the prediction phase, because this measure-
ment takes into account how far off the hypothesis is, compared to the expected outcome. Note that this
is only useful if the algorithm outputs probabilities. Otherwise, the PE and MSE output exactly the same
values.

Even though we expect that the MSE measurement is better for the accuracy during the tuning phase, we
believe that the PE is not useless. This because the PE is an easy to interpret. Especially for communication
to the insurance intermediary companies who will use the results.

4.2.2 How does feature scaling influence the algorithms and their prediction accur-
acy?

As mentioned in Section 2.5 we have two feature scalars to scale the data to a [−1, 1] range. It is stated
that feature scaling improves the results for various algorithms. [25] However, we do not know which scalar
works best, and to which extend the results are improved. Feature scalars transform the data, and because
the algorithms are data driven, it is crucial to determine the effects of data transformation, in effect choosing
which feature scalar works best.

28 On the potential for machine learning in prediction of insurance policy sales

4.2. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATA-SETS?

Algorithm Dataset Feature scalar Error measurement
ALL A (with m = 7000) Standardization Scalar • Percental

Error
• Mean Squared

Error (during
testing only)

ALL B (with m = 7000) Standardization Scalar • Percental
Error
• Mean Squared

Error (during
testing only)

ALL C (with m = 7000) Standardization Scalar • Percental
Error
• Mean Squared

Error (during
testing only)

ALL D (with m = 7000) Standardization Scalar • Percental
Error
• Mean Squared

Error (during
testing only)

ALL A (with m = 7000) Standardization Scalar • Percental
Error (during
testing only)
• Mean Squared

Error
ALL B (with m = 7000) Standardization Scalar • Percental

Error (during
testing only)
• Mean Squared

Error
ALL C (with m = 7000) Standardization Scalar • Percental

Error (during
testing only)
• Mean Squared

Error
ALL D (with m = 7000) Standardization Scalar • Percental

Error (during
testing only)
• Mean Squared

Error

Table 4.1: The eight configurations run for the benchmark experiment. All ten algorithms are used, and an
additional error measurement is used during the testing phase.

We propose an experiment to test which feature scalar works best. We will tune train and test, all algorithms
with three possible feature scalars. The Min-max scalar, Standardization scalar, and a dummy scalar, which
does not transform the data. The experiment will use all four datasets with m = 7000, using the MSE error

On the potential for machine learning in prediction of insurance policy sales 29

CHAPTER 4. EXPERIMENTAL SETUP

measurement. See Table 4.2 for an outline of the experiment.

Algorithm Dataset Feature scalar Error measurement
ALL A (with m = 7000) Min-max Scalar Mean Squared Error
ALL B (with m = 7000) Min-max Scalar Mean Squared Error
ALL C (with m = 7000) Min-max Scalar Mean Squared Error
ALL D (with m = 7000) Min-max Scalar Mean Squared Error
ALL A (with m = 7000) Standardization Scalar Mean Squared Error
ALL B (with m = 7000) Standardization Scalar Mean Squared Error
ALL C (with m = 7000) Standardization Scalar Mean Squared Error
ALL D (with m = 7000) Standardization Scalar Mean Squared Error
ALL A (with m = 7000) Dummy Scalar (no scaling) Mean Squared Error
ALL B (with m = 7000) Dummy Scalar (no scaling) Mean Squared Error
ALL C (with m = 7000) Dummy Scalar (no scaling) Mean Squared Error
ALL D (with m = 7000) Dummy Scalar (no scaling) Mean Squared Error

Table 4.2: The twelve configurations run for the feature scaling experiment. All ten algorithms are used.

Expected result

We expect that feature scaling only slightly influences the results. Even though the scales become easier to
compare when scaling, we believe most algorithms will be capable handling different scalars. On the other
hand, we do expect that the Standardization scalar has a better influence on the prediction accuracy of some
of the algorithms. This because the standardization scalar scales to a normal distribution, which is assumed
in various algorithms, such as Naive Bayes (Appendix A.1) and Logistic Regression (Appendix A.4).

4.2.3 Which algorithms have the highest potential for accurate predictions?

This is the main experiment to determine which techniques to pursue after this study is completed. The
experiment is simple. Using the results of Experiments 4.2.1 and 4.2.2 to determine our configuration, we
will run all algorithms on all four datasets. The accuracy of the algorithms will be used as metric. See
Table 4.3 for an outline of the experiment.

Algorithm Dataset Feature scalar Error measurement
ALL A TBD (Experiment 4.2.2) TBD (Experiment 4.2.1)
ALL B TBD (Experiment 4.2.2) TBD (Experiment 4.2.1)
ALL C TBD (Experiment 4.2.2) TBD (Experiment 4.2.1)
ALL D TBD (Experiment 4.2.2) TBD (Experiment 4.2.1)

Table 4.3: The four configurations run for the potentiality experiment. All ten algorithms are used on the
full datasets.

30 On the potential for machine learning in prediction of insurance policy sales

4.3. HOW FAST CAN MACHINE LEARNING ALGORITHMS CREATE MODELS FOR
PREDICTION OF INSURANCE PRODUCT INTEREST FOR DIFFERENT DATASETS?

Expected results

There are various algorithms that have a high potential to be very accurate. The most accurate algorithms are
most likely the more complex algorithms, because these have been developed for a reason. Hence we have
high expectations for Neural Networks (Appendix A.7) and SVM (Appendix A.8). On the other hand, we
believe that KNN (Appendix A.5) and Naive Bayes (Appendix A.1) are too simple to result in very accurate
predictions. The various regression forms (Appendices A.2 to A.4) will probably also perform well, with
increasing accuracy. The other three algorithms: Decision Tree (Appendix A.9), Classification Rule Mining
(Appendix A.10) and K-means Classification (Appendix A.6) are more difficult to predict. They could be
really good or really disappointing.

4.2.4 Can we predict insurance product interest for clients, with similar or even
higher accuracy compared to current statistical models?

This experiment is the most important experiment of this paper. It determines whether C-Profile should
pursue machine learning or stick with statistical analysis as a technique to generate advice-leads about
client interest in insurance products. We will test the algorithms ability to make predictions to the current
statistical analysis performed at C-Profile. The experiment is similar to Experiment 4.2.3, with the exception
that we will use the datasets C, D and E, because these are the only datasets for which statistical analysis
is performed. The experiment is simply a comparison of the machine learning techniques and the statistical
analysis. The configuration will be the same as in Experiment 4.2.3. The results of all techniques will be
compared using the two error measurements. See Table 4.4 for an outline of the experiment.

Algorithm Dataset Feature scalar Error measurement
ALL C TBD (Experiment 4.2.2) TBD (Experiment 4.2.1)
ALL D TBD (Experiment 4.2.2) TBD (Experiment 4.2.1)
ALL E TBD (Experiment 4.2.2) TBD (Experiment 4.2.1)

Table 4.4: The three configurations run for the comparison experiment. All ten algorithms are used on the
full datasets.

Expected results

We expect that it will be difficult to get better accuracy than tailor made statistical analysis on the datasets.
However, we do believe that we can get close to the accuracy of statistical analysis (within 5%).

4.3 How fast can machine learning algorithms create models for pre-
diction of insurance product interest for different datasets?

To answer this question, we have to determine which factors determine the speed of the algorithms. One of
the components that can influence the speed of the algorithms is feature scaling.[25] So we need to answer

On the potential for machine learning in prediction of insurance policy sales 31

CHAPTER 4. EXPERIMENTAL SETUP

the question: How does feature scaling influence the model creation speed of the algorithms? We can use
the configuration of Experiment 4.2.2 to determine which feature scalar results in fast algorithms.

A huge factor in the time it takes algorithms to make predictions, is the tuning phase. If we can eliminate
this phase, some of the algorithms become a factor 100 faster. However, we can only eliminate this phase if
the parameters are always the same (or at least similar) for different datasets. Hence the following question
is raised: How much do various parameters influence the prediction accuracy of the algorithms? Can we
eliminate the tuning phase?

A third factor in speed is the size of the dataset. The notion of time complexity states that the algorithms
running time is influenced by the size of the data. Hence we have to investigate how much this influences the
speed of the algorithms. Hence the following question comes to mind: How well does the model creation
time of algorithms scale to large datasets?

Hence we define the following sub questions.

1. How does feature scaling influence the model creation speed of the algorithms? Which feature scalars
result in the fastest model creation times?

2. How much do various parameters influence the prediction accuracy of the algorithms? Can we elim-
inate the tuning phase?

3. How well does the model creation time of algorithms scale to large datasets?

To answer these three questions, we will reuse Experiment 4.2.2 to measure the effect of feature scalars on
the speed of the algorithms. To answer the other two questions, we will design the following two experi-
ments.

4.3.1 How much do various parameters influence the prediction accuracy of the
algorithms? Can we eliminate the tuning phase?

Tuning is one of the largest factors in total runtime for most algorithms. Some algorithms have to estimate
multiple parameters (and hence combinations of parameters) resulting in a large amount of parameter tuning
rounds. SVM, for instance, has two parameters C and σ which are both tested for 13 values. This results in
13× 13 = 139 tuning rounds. Hence it might be worth checking the influence of the various parameters, to
verify if tuning is necessary. We also wish to verify if a certain value of a parameter is always the best value,
or if it really does depend on the data.

We propose an experiment to record the errors during the tuning phase to verify if the effect of the various
parameters. This experiment will run for all algorithms except Naive Bayes (Appendix A.1), because Naive
Bayes does not have any parameters to tune. The experiment will run on all datasets with m = 7000 to
verify the dependence of parameters on the data. See Table 4.5 for an outline of the experiment.

32 On the potential for machine learning in prediction of insurance policy sales

4.3. HOW FAST CAN MACHINE LEARNING ALGORITHMS CREATE MODELS FOR
PREDICTION OF INSURANCE PRODUCT INTEREST FOR DIFFERENT DATASETS?

Algorithm Dataset Feature scalar Error measurement
ALL (except
Naive Bayes)

A (with m = 7000) Standardization scalar Mean Squared Error

ALL (except
Naive Bayes)

B (with m = 7000) Standardization scalar Mean Squared Error

ALL (except
Naive Bayes)

C (with m = 7000) Standardization scalar Mean Squared Error

ALL (except
Naive Bayes)

D (with m = 7000) Standardization scalar Mean Squared Error

Table 4.5: The four configurations run for the tuning experiment. All ten algorithms are used except Naive
Bayes. During the tuning phase, all errors are reported for analysis

Expected results

Unfortunately, we expect that tuning does have a significant influence on the accuracy of the various al-
gorithms. Not every parameter will have the same amount of influence. It is difficult to predict which
parameters will have a high influence. We also expect that the best parameter settings do depend on the
provided data. We expect that the amount of reduction that can be done in the tuning phase is minimal.

4.3.2 How well does the model creation time of algorithms scale to large datasets?

Accuracy of the algorithms is very important, but the algorithms should also be able to run on large datasets
in reasonable time. Datasets can be large in two dimensions. These are the number of instances (m) and the
number of features (n).

We propose an experiment to test the influence of these two dataset parameters on the run time of the
algorithms. In this experiment, we will not take accuracy into account. We will use dataset A to experiment
with various values of n. We will use the dataset with m = 7000 and values of n in the set {11, 22, 44, 86}.
On the other hand, we will use dataset B with various values of m in the set {7000, 21000, 63000, 180024}.
See Table 4.6 for an outline of the experiment.

Expected results

Creating expectations for this experiment are difficult. However, we do expect that SVM (Appendix A.8)
might have trouble with large values of m, because its kernel transforms the problem into an m dimensional
problem. For large values of m this might blow up the runtime. On the other hand, we believe that KNN
(Appendix A.5) might have problems with large values of n. This because the kd-tree becomes high dimen-
sional and therefore complicated. The same holds for Classification Rule Mining (Appendix A.10), where
a lot of itemsets can be generated. One almost certain algorithms having troubles is Polynomial Regression
(Appendix A.3). This because of the creation of polynomial features means we get n = 3741.

On the potential for machine learning in prediction of insurance policy sales 33

CHAPTER 4. EXPERIMENTAL SETUP

Algorithm Dataset Feature scalar Error measurement
ALL A (with m =

7000, n = 11)
Standardization Scalar Mean Squared Error

ALL A (with m =
7000, n = 22)

Standardization Scalar Mean Squared Error

ALL A (with m =
7000, n = 44)

Standardization Scalar Mean Squared Error

ALL A (with m =
7000, n = 86)

Standardization Scalar Mean Squared Error

ALL B (with m =
7000, n = 11)

Standardization Scalar Mean Squared Error

ALL B (with m =
21000, n = 11)

Standardization Scalar Mean Squared Error

ALL B (with m =
63000, n = 11)

Standardization Scalar Mean Squared Error

ALL B (with m =
180024, n = 11)

Standardization Scalar Mean Squared Error

Table 4.6: The eight configurations run for the scalability experiment. All ten algorithms are used.

4.4 How well can machine learning algorithms handle irrelevant fea-
tures?

In order to answer this question, we will design an experiment. In the experiment, we will add randomized
features in order to see if and how much it influences the results of the algorithms. We will add up to 50%
randomized features. The randomized features will be evenly distributed random numbers. We will use
dataset A for this experiment. See Table 4.7 for an outline of the experiment.

Algorithm Dataset Feature scalar Error measurement
ALL B (with m = 7000) Standardization Scalar Mean Squared Error
ALL B + 10% randomized features (with

m = 7000)
Standardization Scalar Mean Squared Error

ALL B + 30% randomized features (with
m = 7000)

Standardization Scalar Mean Squared Error

ALL B + 50% randomized features (with
m = 7000)

Standardization Scalar Mean Squared Error

Table 4.7: The four configurations run for the bias experiment. All ten algorithms are used.

Expected results

We expect that most algorithms will be capable of ignoring (some of) the irrelevant features. However, KNN
(Appendix A.5) and K-means Classification (Appendix A.6) might have trouble with excessive amounts of
irrelevant features, because the dimensions of the data influences the capability of structuring the data.
The same holds most likely for SVM (Appendix A.8). The other algorithms should have less trouble with

34 On the potential for machine learning in prediction of insurance policy sales

4.4. HOW WELL CAN MACHINE LEARNING ALGORITHMS HANDLE IRRELEVANT
FEATURES?

irrelevant features.

On the potential for machine learning in prediction of insurance policy sales 35

Chapter 5

Experimental evaluation

In this chapter, we will evaluate the results of the experiments defined in Chapter 4. We will briefly discus
the results and what it means. We will mostly take an aggregate result. Extended results of the experiments
can be found in Appendix B.

5.1 How accurate can machine learning algorithms predict insurance
product interest for different datasets?

To answer this question we had define four sub questions in Section 4.2:

1. Should we optimize for correct classifications or for good probabilities to get the best accuracy of
predictions?

2. How does feature scaling influence the algorithms and their prediction accuracy? Which feature scalar
results in the best accuracy of predictions?

3. Which algorithms have the highest potential for accurate predictions?

4. Can we predict insurance product interest for clients, with similar or even higher accuracy compared
to current statistical models?

The question will ultimately be answered by question four: Can we predict insurance product interest for
clients, with similar or even higher accuracy compared to current statistical models? (Experiment 4.2.4).
In order to answer this question, we will first answer the other three sub questions. Once we have answered
those, we will come back to answer our main question.

On the potential for machine learning in prediction of insurance policy sales 37

CHAPTER 5. EXPERIMENTAL EVALUATION

0.00

0.10

0.20

0.30

0.40

Dataset A Dataset B Dataset C Dataset D

Error for Logistic regression running
experiment 4.2.1 on various datasets

PE MSE MSE PE

Optimized for PE Optimized for MSE

Figure 5.1: The results of Logistic Regression for Experiment 4.2.1.

5.1.1 Should we optimize for correct classifications or for good probabilities to get
the best accuracy of predictions?

In Figures 5.1 and 5.2 the errors of Logistic Regression and Neural Networks are shown for Experiment
4.2.1. (See Figures B.1 to B.4 for the results of all algorithms) For each dataset we see four bars. The left
two bars indicate the test error, when tuning was performed using the PE measurement. The right two bars
indicate the test error, when tuning was performed using the MSE measurement. In most cases including
Logistic Regression (Figure 5.1) we see that the error measurements perform (roughly) the same. That
means that in both cases the PE values are similar and the MSE values are similar. This indicates that tuning
with one or the other error measurement does not make a significant difference. In Figure 5.2 however, we
see that this does not apply to the Neural Network algorithm. In some instances, in our case datasets A
and C, the error significantly increases when using the MSE measurement in the tuning phase. This is most
likely caused by over training. The penalty the MSE gives to slightly wrong predictions (i.e. predictions
with low probabilities, say 0.6) might cause over training of the model. When the model is actually trained
using these same parameters, the results are very different.

Since the results in most instances are very similar we can choose either measurement. However, for the
Neural Network algorithms, the difference is noticeable in some cases, where the PE measurement comes
on top. Hence we can conclude that the optimizing for correct classifications using the PE measurement
results in the best accuracy of predictions. This is somewhat of a surprise since it was believed that the MSE
measurement would yield better results.

38 On the potential for machine learning in prediction of insurance policy sales

5.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATASETS?

0.00

0.10

0.20

0.30

0.40

Dataset A Dataset B Dataset C Dataset D

Error for Neural network running
experiment 4.2.1 on various datasets

PE MSE MSE PE

Optimized for PE Optimized for MSE

Figure 5.2: The results of Neural Network for Experiment 4.2.1.

5.1.2 How does feature scaling influence the algorithms and their prediction accur-
acy?

In Figures 5.3 to 5.5 the errors of K-means, Logistic Regression and Naive Bayes are shown for Experiment
4.2.2. (See Figures B.5 to B.8 for the results of all algorithms) For each algorithm we see the MSE using
different feature scalars. It should be noted that Polynomial Regression (and in some cases Linear Regression
and Logistic Regression where ◦ = 2) was not able to converge in reasonable time (within eight hours).
Hence we do not have results for those instances.

There are some instances, including K-means (Figure 5.3) that do not seem to be significantly influenced
by feature scaling. On the other hand, we can see that for quite some cases, including Logistic Regression
(Figure 5.4) no scaling results in worse results.

Hence we have determined that feature scaling does in fact significantly influence the accuracy of algorithms.
In the results, we can see that the results using the Min-max scalar are similar to those using the Standard-
ization scalar. For some algorithms however, the results are improved by using the Standardization scalar,
an example is Naive Bayes (Figure 5.5). This is somewhat expected due to the normality assumption (See
Appendix A.1). However, we also expected that Logistic Regression would benefit more from the Standard-
ization scalar.

Hence the results suggest that feature scaling certainly influences the algorithms and their prediction accur-
acy. In most cases, it increases the accuracy of predictions. The Standardization scalar improves the results
the most of the scalars that were investigated.

On the potential for machine learning in prediction of insurance policy sales 39

CHAPTER 5. EXPERIMENTAL EVALUATION

0.00

0.05

0.10

0.15

0.20

0.25

Dataset A Dataset B Dataset C Dataset D

MSE for K-means running experiment
4.2.2 on various datasets

MinMax Standardization No scaling

Figure 5.3: The results of K-means for Experiment 4.2.2.

5.1.3 Which algorithms have the highest potential for accurate predictions?

Using the results of Experiments 4.2.1 and 4.2.2 we can define the configuration that should result in the
best predictions. As concluded in Section 5.1.1, the PE error measurement gives the best results. Similarly,
we have concluded in Section 5.1.2 that the Standardization scalar results in the best predictions.

Hence we use these two components in our configuration to make predictions on the full datasets. See
Figure 5.7 for the errors for each algorithm running Experiment 4.2.3 on dataset D. (See Figures B.9 to B.13
for the results of all algorithms on each dataset) We can see that the results between algorithms do not have
a high deviation. In Figure 5.6 we can see the errors for each algorithm running Experiment 4.2.3 on dataset
C.

We see that the results of Naive Bayes are worse than the other algorithms. We can also clearly see that
according to the PE measure, Decision Tree, Support Vector Machine, Logistic Regression and Classification
Rule Mining are the most promising algorithms to get a good accuracy. On the other hand, according to the
MSE measure Support Vector Machine and Decision Tree are amongst the worst algorithms (including
Naive Bayes). This is not entirely surprising since these are the only algorithms that classify only. they do
not have a probabilistic model. This means that a misclassification gets penalized maximally. From these
results, we can conclude two things. If we only value whether our predictions are correct, Decision Tree
is the most promising algorithm to get the best predictions. On the other hand, if we value the probability
behind predictions, Classification Rule Mining is the most promising algorithm.

In Section 2.7 we mentioned that we can also use Precision and Recall as a measurement of accuracy. In
Figure 5.8 the Precision and Recall for all algorithms running Experiment 4.2.3 on dataset C are outlined.
We can see that for Neural Networks the Precision and Recall are lower than for the other algorithms. We
can see that the most promising algorithms Decision Tree and Classification Rule Mining also have high
Precision and Recall. Hence they are still the most promising algorithms.

40 On the potential for machine learning in prediction of insurance policy sales

5.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATASETS?

0.00

0.20

0.40

0.60

Dataset A Dataset B Dataset C Dataset D

MSE for Logistic regression running
experiment 4.2.2 on various datasets

MinMax Standardization No scaling

Figure 5.4: The results of Logistic Regression for Experiment 4.2.2.

5.1.4 Can we predict insurance product interest for clients, with similar or even
higher accuracy compared to current statistical models?

As discussed in Section 4.2.4 statistical analysis is only performed on datasets C, D and E. Hence our results
are limited to that set. The results might seem a bit surprising. The results of data set C (Figure 5.9) suggest
that machine learning gives a better accuracy compared to statistical analysis, in both the PE and MSE
measures. However, the results of dataset D and E (Figures 5.10 and 5.11) suggest that machine learning is
less accurate than statistical analysis. This seems contradictory but it can be explained by bias from the data
scientist. After reviewing the data we found out that a correlation exists between one of the features if it was
transformed (birth date to age), and the classification. The data scientist left this feature out because this
correlation suggested perfect prediction. This directly feeds the argument made in Section 1.2 that statistical
analysis might be prone to mistakes.

If we only look at datasets D and E, we can conclude that statistical analysis results in better accuracy than
machine learning without model selection (specific data transformation). However, the machine learning
techniques can get close to the results of the statistical analysis. In Figure 5.10 we can see that the difference
in the PE for dataset D is 0.11 (i.e. 11%). In Figure 5.11 we can even see that the difference is 0.01 (i.e. 1%)
for dataset E. If we look at Recall and Precision for dataset E in Figure 5.12 we see that various machine
learning techniques have competitive Precision and Recall. These facts are a clear indication that machine
learning has the potential to get similar accuracy as statistical analysis. As of right now, machine learning
cannot predict insurance product interest for client, with higher accuracy compared to current statistical
models.

On the potential for machine learning in prediction of insurance policy sales 41

CHAPTER 5. EXPERIMENTAL EVALUATION

0.00

0.10

0.20

0.30

0.40

0.50

Dataset A Dataset B Dataset C Dataset D

MSE for Naive Bayes running experiment
4.2.2 on various datasets

MinMax Standardization No scaling

Figure 5.5: The results of Naive Bayes for Experiment 4.2.2.

Figure 5.6: The results of all algorithms running Experiment 4.2.3 on dataset C.

42 On the potential for machine learning in prediction of insurance policy sales

5.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATASETS?

Figure 5.7: The results of all algorithms running Experiment 4.2.3 on dataset D.

0.00

0.20

0.40

0.60

0.80

1.00

Precision Recall

Accuracy measurements for various algorithms
running experiment 4.2.3 on Dataset C

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassifiationRuleMining

KNN KMeans

Figure 5.8: The results of all algorithms running Experiment 4.2.3 on dataset C.

On the potential for machine learning in prediction of insurance policy sales 43

CHAPTER 5. EXPERIMENTAL EVALUATION

-0.100

-0.050

0.000

0.050

0.100

0.150

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.10

0.20

0.30

0.40

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset C

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans StatisticalAnalysis

Figure 5.9: The results of Experiment 4.2.3 for dataset C.

-0.150

-0.100

-0.050

0.000

0.050

0.100

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.10

0.20

0.30

0.40

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset D

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans StatisticalAnalysis

Figure 5.10: The results of Experiment 4.2.3 for dataset D.

44 On the potential for machine learning in prediction of insurance policy sales

5.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATASETS?

-0.060

-0.040

-0.020

0.000

0.020

0.040

0.060

0.080

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.10

0.20

0.30

0.40

0.50

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset E

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans StatisticalAnalysis

Figure 5.11: The results of Experiment 4.2.3 for dataset E.

0.00

0.20

0.40

0.60

0.80

1.00

Precision Recall

Accuracy measurements for various algorithms
running experiment 4.2.3 on Dataset E

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassifiationRuleMining

KNN KMeans StatisticalAnalysis

Figure 5.12: The results of Experiment 4.2.3 for dataset E.

On the potential for machine learning in prediction of insurance policy sales 45

CHAPTER 5. EXPERIMENTAL EVALUATION

5.2 How fast can machine learning algorithms create models for pre-
diction of insurance product interest for different datasets?

This question will be answered by answering the three questions defined in Section 4.3:

1. How does feature scaling influence the model creation speed of the algorithms? Which feature scalars
result in the fastest model creation times?

2. How much do various parameters influence the prediction accuracy of the algorithms? Can we elim-
inate the tuning phase?

3. How well does the model creation time of algorithms scale to large datasets?

5.2.1 How does feature scaling influence the model creation speed of the algorithms?

0

17

1008

60480

3628800

217728000

Dataset A Dataset B Dataset C Dataset D

Runtime for Logistic regression* running
experiment 4.2.2 for various datasets

MinMax Standardization No scaling

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure 5.13: The runtime of Logistic Regression with ◦ = 1 on all datasets for Experiment 4.2.2.

In Figure 5.13 the runtime for Logistic Regression with ◦ = 1 for each dataset are summarized. (See Fig-
ures B.14 to B.17 for the results of all algorithms). For each dataset, we see the runtime using different
feature scalars. It should be noted that in case of dataset C and D Logistic Regression did not converge in
reasonable time (within eight hours) when using no scalar. When we look at the individual results (Fig-
ures B.15 to B.17) we can see that all regression forms have trouble, if no scaling is used. Hence a form of
feature scaling is required.

If we look at the results of the runtime for the Min-max scalar and the Standardization scalar, we see that
the results are similar, on average Standardization results in the fastest runtimes. Hence we are free to pick
either of these two feature scalars, since they result in the bets model creation times.

46 On the potential for machine learning in prediction of insurance policy sales

5.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS CREATE MODELS FOR
PREDICTION OF INSURANCE PRODUCT INTEREST FOR DIFFERENT DATASETS?

0.00

0.05

0.10

0.15

0.20

0.25

MSE for Linear regression running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.14: The results of Experiment 4.3.1 for Linear Regression.

5.2.2 How much do various parameters influence the prediction accuracy of the
algorithms? Can we eliminate the tuning phase?

The results of this experiment are quite difficult to analyze. The various algorithms have different paramet-
ers, that have different effects on the results. Hence we must analyze the results separately. In Figures 5.14
and 5.15 we can see the results of both Linear and Polynomial Regression. Here we see that the results,
although quite minimal, are influenced quite differently depending on the value of λ. Dataset B gives better
results for low values of λ, whereas dataset C gives better results for high values of λ. The other datasets
remain quite similar over different values of λ. For Logistic Regression (Figure 5.16) the impact of λ is
more visible. The impact of the polynomial degree ◦ is more subtle, but still varies over the datasets. Hence
tuning is still required.

The results of Neural Network (Figure 5.17) and Support Vector Machine (Figure 5.18) have a far more
complex relation with the parameters and their error. No real pattern can be found over the four datasets.
For the results of Support Vector Machine some pattern still exists. However, the pattern is not consistent.
Dataset B has several valleys, whereas datasets A, B, and C have peaks. Hence tuning is certainly required
for the methods.

For the logic based learning techniques (Figures 5.19 and 5.20), some more patterns are visible. A confidence
value of c = 0.05 or c = 0.1 consistently give the best results for the Decision Tree, whereas lower and
higher values often give a higher error. This means that tuning might not be required for Decision Tree. For
Classification Rule Mining (Figure 5.20) we also see that a lower values of the interval size (Is) give better
results. This means that less discretization gives better accuracy. On the other hand, the minimum support
(Ms) and minimum confidence (Mc) have an influence on the results that does not have a regular pattern
between datasets. Hence tuning is still required but can be reduced to Mc and Ms only.

For the instance based and clustering methods (Figures 5.21 and 5.22) we also clearly see some patterns.

On the potential for machine learning in prediction of insurance policy sales 47

CHAPTER 5. EXPERIMENTAL EVALUATION

0.00

0.05

0.10

0.15

0.20

0.25

MSE for Polynomial regression running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.15: The results of Experiment 4.3.1 for Polynomial Regression.

First of, it is clear that unweighted (w = f) KNN gives far better results than weighted (w = t) KNN.
Furthermore, it seems that higher values of k (while w = f) gives better results than low values. Most
datasets give the best results at k = 64. The exception to this rule is Dataset B which gives the best result at
k = 16. Hence, tuning cannot be fully eliminated, but it can be greatly reduced to the unweighted version
and the higher values of k. Similarly, the range values of k for the K-means algorithm can be greatly reduced.
High value give similar results which are worse on average. Hence, values larger than k = 265 are not worth
investigating during the tuning phase. Similarly the low values of k do not seem to have much contribute
much on low errors for this method. Values of k = 8 start being interesting. It should be noted that for
datasets with larger values of m (number of instances) it might be worth to investigate larger values of k.

In conclusion, for some of the techniques tuning can be skipped or reduced. Unfortunately, the algorithm
with the highest running time, Support Vector Machine, does not belong to this category. On the other hand,
Classification Rule Mining, the algorithm with the second highest runtime, does belong to the category of
algorithms for which the tuning phase can be reduced. The other algorithms that can reduce or skip tuning,
already have fast running times. hence, skipping the tuning phase is not an option that will benefit a lot for
the running time of the algorithms in practice.

5.2.3 How well does the model creation time of algorithms scale to large datasets?

In this experiment, we made a distinction between Logistic Regression with ◦ = 1 only, and Logistic Re-
gression with either ◦ = 1 or ◦ = 2. This because Logistic Regression with ◦ = 2 did not always converge.
In Figures 5.23 and 5.25 the Logistic Regression with ◦ = 1 only, is indicated as ”LogisticRegression *”.

In Figure 5.23 we can see that Classification Rule Mining does not scale well for large values of n (number
of features). We can also see that Polynomial Regression and Logistic Regression with ◦ = 2 does not scale

48 On the potential for machine learning in prediction of insurance policy sales

5.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS CREATE MODELS FOR
PREDICTION OF INSURANCE PRODUCT INTEREST FOR DIFFERENT DATASETS?

0
0.05

0.1
0.15

0.2
0.25

λ
=

0
.0

0
1

; °
=

1

λ
=

0
.0

0
3

; °
=

1

λ
=

0
.0

1
; °

=
1

λ
=

0
.0

3
; °

=
1

λ
=

0
.1

; °
=

1

λ
=

0
.3

; °
=

1

λ
=

1
; °

=
1

λ
=

3
; °

=
1

λ
=

1
0

; °
=

1

λ
=

3
0

; °
=

1

λ
=

1
0

0
; °

=
1

λ
=

3
0

0
; °

=
1

λ
=

1
0

0
0

; °
=

1

λ
=

0
.0

0
1

; °
=

2

λ
=

0
.0

0
3

; °
=

2

λ
=

0
.0

1
; °

=
2

λ
=

0
.0

3
; °

=
2

λ
=

0
.1

; °
=

2

λ
=

0
.3

;
°

=
2

λ
=

1
; °

=
2

λ
=

3
; °

=
2

λ
=

1
0

; °
=

2

λ
=

3
0

; °
=

2

λ
=

1
0

0
; °

=
2

λ
=

3
0

0
; °

=
2

λ
=

1
0

0
0

; °
=

2

MSE for Logistic regression running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.16: The results of Experiment 4.3.1 for Logistic Regression.

well for large values of n. All three algorithms were not able to converge within eight hours for larger values
of n. In Figure 5.24 we can also see that the other algorithms have a run time dependency of approximately
O(log n). This means that these algorithms do scale well to large values of n.

In Figure 5.25 we can see that Support Vector Machine does not scale well to large values of m (number of
instances). Already for a value of m = 21000, Support Vector Machine is not able to converge within eight
hours. Hence Support Vector Machine does not scale well to large values of m. This is expected, because
Support Vector Machine transform the problem to an m dimensional problem. In Figure 5.26 we can also
see that the other algorithms have a run time dependency of approximately O(logm). This means that these
algorithms do scale well to large values of m.

In conclusion Classification Rule Mining, Polynomial Regression, Logistic Regression (with ◦ = 2) and
Support Vector Machine, do not scale well. This means that they might not be suitable for making predictions
in practice. The other algorithms do scale well and might still be suitable for making predictions in practice.

On the potential for machine learning in prediction of insurance policy sales 49

CHAPTER 5. EXPERIMENTAL EVALUATION

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

MSE for Neural network running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.17: The results of Experiment 4.3.1 for Neural Network.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

σ
 =

 0
.0

0
1

; C
 =

 0
.0

0
1

σ
 =

 0
.1

; C
 =

 0
.0

0
1

σ
 =

 1
0

; C
 =

 0
.0

0
1

σ
 =

 1
0

0
0

; C
 =

 0
.0

0
1

σ
 =

 0
.0

3
; C

 =
 0

.0
0

3
σ

 =
 3

; C
 =

 0
.0

0
3

σ
 =

 3
0

0
; C

 =
 0

.0
0

3
σ

 =
 0

.0
1

; C
 =

 0
.0

1
σ

 =
 1

; C
 =

 0
.0

1
σ

 =
 1

0
0

; C
 =

 0
.0

1
σ

 =
 0

.0
0

3
; C

 =
 0

.0
3

σ
 =

 0
.3

; C
 =

 0
.0

3
σ

 =
 3

0
; C

 =
 0

.0
3

σ
 =

 0
.0

0
1

; C
 =

 0
.1

σ
 =

 0
.1

; C
 =

 0
.1

σ
 =

 1
0

; C
 =

 0
.1

σ
 =

 1
0

0
0

; C
 =

 0
.1

σ
 =

 0
.0

3
; C

 =
 0

.3
σ

 =
 3

; C
 =

 0
.3

σ
 =

 3
0

0
; C

 =
 0

.3
σ

 =
 0

.0
1

; C
 =

 1
σ

 =
 1

; C
 =

 1
σ

 =
 1

0
0

; C
 =

 1
σ

 =
 0

.0
0

3
;

C
 =

 3
σ

 =
 0

.3
; C

 =
 3

σ
 =

 3
0

; C
 =

 3
σ

 =
 0

.0
0

1
; C

 =
 1

0
σ

 =
 0

.1
; C

 =
 1

0
σ

 =
 1

0
; C

 =
 1

0
σ

 =
 1

0
0

0
; C

 =
 1

0
σ

 =
 0

.0
3

; C
 =

 3
0

σ
 =

 3
; C

 =
 3

0
σ

 =
 3

0
0

; C
 =

 3
0

σ
 =

 0
.0

1
; C

 =
 1

0
0

σ
 =

 1
; C

 =
 1

0
0

σ
 =

 1
0

0
; C

 =
 1

0
0

σ
 =

 0
.0

0
3

; C
 =

 3
0

0
σ

 =
 0

.3
; C

 =
 3

0
0

σ
 =

 3
0

; C
 =

 3
0

0
σ

 =
 0

.0
0

1
; C

 =
 1

0
0

0
σ

 =
 0

.1
; C

 =
 1

0
0

0
σ

 =
 1

0
; C

 =
 1

0
0

0
σ

 =
 1

0
0

0
; C

 =
 1

0
0

0

MSE for Support vector machine running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.18: The results of Experiment 4.3.1 for Support Vector Machine.

50 On the potential for machine learning in prediction of insurance policy sales

5.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS CREATE MODELS FOR
PREDICTION OF INSURANCE PRODUCT INTEREST FOR DIFFERENT DATASETS?

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c = 0.0 c = 0.05 c = 0.1 c = 0.25 c = 0.5

MSE for Decision tree running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.19: The results of Experiment 4.3.1 for Decision Tree.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Is
 =

 0
.0

1
; M

c
=

 0
.5

;
M

s
=

0
.0

1

Is
 =

 0
.2

; M
c

=
 0

.5
;

M
s

=
0

.0
1

Is
 =

 0
.1

; M
c

=
 0

.6
;

M
s

=
0

.0
1

Is
 =

 0
.0

5
; M

c
=

 0
.7

;
M

s
=

0
.0

1

Is
 =

 0
.0

2
; M

c
=

 0
.8

;
M

s
=

0
.0

1

Is
 =

 0
.0

1
; M

c
=

 0
.9

;
M

s
=

0
.0

1

Is
 =

 0
.2

; M
c

=
 0

.9
;

M
s

=
0

.0
1

Is
 =

 0
.1

; M
c

=
 0

.5
;

M
s

=
0

.0
2

Is
 =

 0
.0

5
; M

c
=

 0
.6

;
M

s
=

0
.0

2

Is
 =

 0
.0

2
; M

c
=

 0
.7

;
M

s
=

0
.0

2

Is
 =

 0
.0

1
; M

c
=

 0
.8

;
M

s
=

0
.0

2

Is
 =

 0
.2

; M
c

=
 0

.8
;

M
s

=
0

.0
2

Is
 =

 0
.1

; M
c

=
 0

.9
;

M
s

=
0

.0
2

Is
 =

 0
.0

5
; M

c
=

 0
.5

;
M

s
=

0
.0

5

Is
 =

 0
.0

2
; M

c
=

 0
.6

;
M

s
=

0
.0

5

Is
 =

 0
.0

1
; M

c
=

 0
.7

;
M

s
=

0
.0

5

Is
 =

 0
.2

; M
c

=
 0

.7
;

M
s

=
0

.0
5

Is
 =

 0
.1

; M
c

=
 0

.8
;

M
s

=
0

.0
5

Is
 =

 0
.0

5
; M

c
=

 0
.9

;
M

s
=

0
.0

5

Is
 =

 0
.0

2
; M

c
=

 0
.5

;
M

s
=

0
.1

Is
 =

 0
.0

1
; M

c
=

 0
.6

;
M

s
=

0
.1

Is
 =

 0
.2

; M
c

=
 0

.6
;

M
s

=
0

.1

Is
 =

 0
.1

; M
c

=
 0

.7
;

M
s

=
0

.1

Is
 =

 0
.0

5
; M

c
=

 0
.8

;
M

s
=

0
.1

Is
 =

 0
.0

2
; M

c
=

 0
.9

;
M

s
=

0
.1

Is
 =

 0
.0

1
; M

c
=

 0
.5

;
M

s
=

0
.2

Is
 =

 0
.2

; M
c

=
 0

.5
;

M
s

=
0

.2

Is
 =

 0
.1

; M
c

=
 0

.6
;

M
s

=
0

.2

Is
 =

 0
.0

5
; M

c
=

 0
.7

;
M

s
=

0
.2

Is
 =

 0
.0

2
; M

c
=

 0
.8

;
M

s
=

0
.2

Is
 =

 0
.0

1
; M

c
=

 0
.9

;
M

s
=

0
.2

Is
 =

 0
.2

; M
c

=
 0

.9
;

M
s

=
0

.2

MSE for Classification rule mining running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.20: The results of Experiment 4.3.1 for Classification Rule Mining.

On the potential for machine learning in prediction of insurance policy sales 51

CHAPTER 5. EXPERIMENTAL EVALUATION

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

MSE for K-nearest neighbours running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.21: The results of Experiment 4.3.1 for K-nearest Neighbours.

0

0.1

0.2

0.3

0.4

0.5

MSE for K-means running
Experiment 4.3.1 on various datasets

A B C D

Figure 5.22: The results of Experiment 4.3.1 for K-means.

52 On the potential for machine learning in prediction of insurance policy sales

5.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS CREATE MODELS FOR
PREDICTION OF INSURANCE PRODUCT INTEREST FOR DIFFERENT DATASETS?

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

Runtime for various algorithms running
Experiment 4.3.2 on Dataset A

n = 11 n = 22 n = 44 n = 86

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure 5.23: The results of Experiment 4.3.2 for variations of dataset A.

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

n = 11 n = 22 n = 44 n = 86

Runtime for various algorithms running Experiment 4.3.2 on
Dataset A

NaiveBayes LinearRegression PolynomialRegression LogisticRegression *

LogisticRegression NeuralNetwork SupportVectorMachine DecisionTree

ClassificationRuleMining KNN KMeans

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure 5.24: The results of Experiment 4.3.2 for variations of dataset A.

On the potential for machine learning in prediction of insurance policy sales 53

CHAPTER 5. EXPERIMENTAL EVALUATION

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

Runtime for various algorithms running
Experiment 4.3.2 on Dataset B

m = 7000 m = 21000 m = 63000 m = 180024

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure 5.25: The results of Experiment 4.3.2 for variations of dataset B.

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

m = 7000 m = 21000 m = 63000 m = 180024

Runtime for various algorithms running Experiment 4.3.2 on
Dataset B

NaiveBayes LinearRegression PolynomialRegression LogisticRegression *

LogisticRegression NeuralNetwork SupportVectorMachine DecisionTree

ClassificationRuleMining KNN KMeans

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure 5.26: The results of Experiment 4.3.2 for variations of dataset B.

54 On the potential for machine learning in prediction of insurance policy sales

5.3. HOW WELL CAN MACHINE LEARNING ALGORITHMS HANDLE IRRELEVANT
FEATURES?

5.3 How well can machine learning algorithms handle irrelevant fea-
tures?

The results of this experiment are very straight forward. In Figures 5.27 and 5.28 we can see that the
number of random features (r) does not have influence on the results of the algorithms. This means that all
algorithms are capable of separating irrelevant features from relevant features.

0.00

0.02

0.04

0.06

0.08

0.10

PE for various algorithms running
Experiment 4.4 on Dataset B

r = 0% r = 10% r = 30% r = 50%

Figure 5.27: The results of Experiment 4.4 for dataset A and error measurement PE.

On the potential for machine learning in prediction of insurance policy sales 55

0.00

0.02

0.04

0.06

0.08

0.10

MSE for various algorithms running
Experiment 4.4 on Dataset B

r = 0% r = 10% r = 30% r = 50%

Figure 5.28: The results of Experiment 4.4 for dataset A and error measurement MSE.

Chapter 6

Conclusions

In Section 1.2 we have defined that C-Profile has two main problems with their current statistical analysis.

1. The statistical analysis might be prone to mistakes, which means the accuracy will decrease.

2. It takes a data scientist too long (weeks/months) to setup a good model for statistical analysis. This
will reoccur every time a new dataset becomes available, or if the datasets changes often.

We have investigated if we can solve these two problems using machine learning, by implementing ten
classification algorithms and running several experiments. In Section 6.1 we will answer our main research
question by answering the sub questions. In Section 6.2 we will discuss opportunities that are of interest of
future work.

6.1 Research questions

We have designed and executed experiments to answer the main research question defined in Section 1.4;
Which machine learning technique has the highest potential to replace statistical analysis for predicting
insurance product interest? We answer this question using three sub research questions in Sections 6.1.1
to 6.1.3 and finally answer our main research question in Section 6.1.4.

1. How accurate can machine learning algorithms predict insurance product interest for different data-
sets? What we consider accurate will be covered in Chapter 2.

2. How fast can machine learning algorithms create models for prediction of insurance product interest
for different datasets? How does the size of the datasets influence the performance in terms of speed
for various techniques?

3. How well can machine learning algorithms handle irrelevant features? I.e. features that do not add
value to the prediction. Are the techniques able to filter out the important features to make accurate
predictions?

On the potential for machine learning in prediction of insurance policy sales 57

CHAPTER 6. CONCLUSIONS

6.1.1 How accurate can machine learning algorithms predict insurance product in-
terest for different data-sets?

In Experiments 4.2.1 and 4.2.2 we have determined which configurations of error measurement and feature
scaling result in the best accuracy. It turns out that the PE measurement in combination with the Standard-
ization scalar gives the best accuracy, when measured for both the PE and MSE error measurement.

In Experiment 4.2.3 we have determined that the algorithm best suited for making predictions depends on
what we value most. If we only value correctness, the algorithms to pursue are Decision Tree, Support Vector
Machine and Logistic Regression. On the other hand, if we value the probability behind the predictions, the
algorithms to pursue are Classification Rule Mining, Logistic Regression and Polynomial Regression.

In Experiment 4.2.4 we have compared the accuracy of machine learning techniques compared to statistical
analysis. We have demonstrated that, although hand tailored statistical analysis gives better results, machine
learning gives consistent results that can compete with the accuracy of statistical analysis. We even showed
that statistical analysis is indeed prone to mistakes that reduces accuracy.

The accuracy of machine learning techniques is fairly high. We have shown that the PE scores of the
best algorithms range from 0.06 to 0.34 for different datasets. This means that the algorithms are up to
94% accurate. An accuracy of up to 94% allows us the present the predictions to insurance intermediaries
in practice with great confidence. This effectively allows insurance intermediaries to target clients to sell
insurance products with a 94% success rate. This is much more efficient than targeting all clients, and hence
lowing the success rate, but also the service level (clients do not like to be bothered for something they are
not interested in).

If we compare the statistical analysis results with the machine learning techniques on the same datasets
(excluding dataset C which turned out to be an unfair comparison in Section 5.1.4), we see that statistical
analysis has accuracy up to 78%, whereas machine learning can achieve accuracy up to 77%. However, the
lowest measures are lower for machine learning compared to statistical analysis with 78% versus 67%. In
the MSE measures the differences are less extreme with a worst MSE of 0.22 for machine learning compared
to a worst MSE of 0.15 for statistical analysis.

These results indicate that at this moment statistical analysis is still superior to machine learning regarding
accuracy. However, machine learning does have competitive accuracy, with a margin of only 11%. This
means that the most accurate machine learning techniques presented as of now can be used in practice for
automated lead generation in C-Profile. If a company requires a more in depth analysis, statistical analysis
would still be the better choice.

6.1.2 How fast can machine learning algorithms create models for prediction of
insurance product interest for different datasets?

In Experiment 4.2.2 we have determined that feature scaling does indeed have influence on the runtime of
model creation for the algorithms. Which particular scalar is used does not have much of an influence.
Hence we can choose the scalar used based on other criteria.

In Experiment 4.3.1 we investigated the influence of parameter tuning on the accuracy, because parameter

58 On the potential for machine learning in prediction of insurance policy sales

6.1. RESEARCH QUESTIONS

tuning has a big influence on the runtime of model creation for the algorithms. We have concluded that
most algorithms do require some form of parameter tuning, with the exception of Decision Tree. Hence, in
general we should not reduce model creation runtimes by eliminating parameter tuning.

In Experiment 4.3.2 we have determined that the runtime of model ceation does scale well for all algorithms
considering either large values of n (number of features) or large values of m (number of instances). The
algorithms in question are Support Vector Machine, Classification Rule Mining, Polynomial Regression and
Logistic Regression with ◦ = 2. Hence these algorithms are not suitable in practice.

This means that for large datasets, the remaining algorithms, Naive Bayes, Linear Regression, Neural Net-
work, Decision Tree, KNN, K-means and Logistic Regression with ◦ = 1, have capabilities of creating a
model withing the required eight hours. These algorithms are able to create a model within one Hour for
large datasets. Most algorithms can even generate models within a minute and a few even within a few
seconds. This is more than fast enough for the application in C-Profile. Instead of waiting weeks for an
analysis of the data and the resulting predictions, C-Profile can provide it within minutes. This has a huge
impact on the scalability of the platform.

6.1.3 How well can machine learning algorithms handle irrelevant features?

We answered this question using Experiment 4.4. The results are very convincing. The irrelevant features do
not have influence on the accuracy of the algorithms. Hence machine learning is excellent in separating rel-
evant features from irrelevant features. This means that we can generate accurate leads without interference
from a data scientist. This improves the speed in which we can give predictions for insurance intermediaries.

6.1.4 Verdict

The answers of the three questions above help us answer the main research question defined in Section 1.4:
Which machine learning technique has the highest potential to replace statistical analysis for predicting
insurance product interest?. The conclusion in Section 6.1.3 does not help us get closer to the answer,
because all algorithms have no problem with irrelevant features. Hence, the result depends on the runtime
and the accuracy of the algorithms.

In Section 6.1.2 we have determined that Support Vector Machine, Classification Rule Mining, Regression
regression and Logistic Regression with ◦ = 2 are not scalable and are therefore not suitable in practice.
The other six algorithms, and Logistic Regression with ◦ = 1 only, are suitable. They can make create a
model for predictions within the specified eight hours with ease.

With that in mind we can filter the most accurate algorithms as concluded in Section 6.1.1. If we only take
correctness in consideration, the Decision Tree algorithm has the highest potential, because it consistently
generates the best PE scores. On the other hand, if we take convincing probabilities behind the predictions
into account, the algorithm of choice would be Logistic Regression (with ◦ = 1), because it generates the
best MSE scores.

Logistic Regressing has the highest potential considering the MSE measurement. We believe that this meas-
urement is more important than PE as an indicator of the potential accuracy of the algorithm. We do however,

On the potential for machine learning in prediction of insurance policy sales 59

CHAPTER 6. CONCLUSIONS

believe that the Decision Tree algorithm has the highest potential if it can be enhanced with a probabilistic
model. Furthermore, we also believe that the K-means algorithm has some potential, because it is consist-
ently in the upper 50% in accuracy, for both PE and MSE measures, even though it is not a very complex
method.

6.2 Future work

In this study, we have only implemented relatively simple versions of the algorithms. This means that the
algorithms might still have potential to improve. It is worth investigating if the algorithms with the highest
potential (Decision Tree, Logistic Regression and K-Means) can give better results. Similarly, it might
be worth investigating if the runtime of Support Vector Machine and Classification Rule Mining can be
improved, because their models did result in high accuracy.

Besides applying machine learning to predict which insurance products a client is interested in, C-Profile
might want to investigate if it can use machine learning in other aspects of its platform. For instance in
information generation. Machine learning might be able to give insights in the type of content clients are
interested in.

This study has shown that C-Profile can certainly benefit from machine learning to generate Advice leads.
They should pursue the Decision Tree and Logistic Regression algorithms and implement them into their
platform.

60 On the potential for machine learning in prediction of insurance policy sales

Bibliography

[1] Luai Al Shalabi, Zyad Shaaban, and Basel Kasasbeh. Data mining: A preprocessing engine. Journal
of Computer Science, 2(9):735–739, 2006. 12

[2] Shun-ichi Amari and Si Wu. Improving support vector machine classifiers by modifying kernel func-
tions. Neural Networks, 12(6):783–789, 1999. 20, 82

[3] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press, 1995. 17, 19

[4] Paul S Bradley and Usama M Fayyad. Refining initial points for k-means clustering. In ICML,
volume 98, pages 91–99. Citeseer, 1998. 18, 75

[5] Ward Broeders. On the production efficiency of dutch insurance intermediaries. Master’s thesis,
Tilburg School of Economics and Management, 2016. 2

[6] M Emre Celebi and Kemal Aydin. Unsupervised Learning Algorithms. Springer, 2016. 18

[7] Urjan Claassen. De toekomst van particulier advies. Vakmedianet, 2016. 1

[8] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison of string metrics for match-
ing names and records. In Kdd workshop on data cleaning and object consolidation, volume 3, pages
73–78, 2003. 11

[9] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Pro-
ceedings of the 23rd international conference on Machine learning, pages 233–240. ACM, 2006. 13,
14

[10] Sam Drazin and Matt Montag. Decision tree analysis using weka. Machine Learning-Project II,
University of Miami, pages 1–3, 2012. 84

[11] J Friedman and Bogdan E Popescu. Gradient directed regularization for linear regression and classi-
fication. Technical report, Citeseer, 2003. 69

[12] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Aistats, volume 9, pages 249–256, 2010. 76

[13] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. Knn model-based approach in
classification. In OTM Confederated International Conferences” On the Move to Meaningful Internet
Systems”, pages 986–996. Springer, 2003. 74

[14] LI Hang. A short introduction to learning to rank. IEICE TRANSACTIONS on Information and Systems,
94(10):1854–1862, 2011. 10

On the potential for machine learning in prediction of insurance policy sales 61

BIBLIOGRAPHY

[15] Badr HSSINA, Abdelkarim MERBOUHA, Hanane EZZIKOURI, and Mohammed ERRITALI. A
comparative study of decision tree id3 and c4.5. 22

[16] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical
learning, volume 6. Springer, 2013. 10, 17

[17] Thorsten Joachims. Text categorization with support vector machines: Learning with many relevant
features. In European conference on machine learning, pages 137–142. Springer, 1998. 12

[18] George H John and Pat Langley. Estimating continuous distributions in bayesian classifiers. In Pro-
ceedings of the Eleventh conference on Uncertainty in artificial intelligence, pages 338–345. Morgan
Kaufmann Publishers Inc., 1995. 65, 66

[19] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation functions in general-
ized mlp architectures of neural networks. International Journal of Artificial Intelligence and Expert
Systems, 1(4):111–122, 2011. 76

[20] Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd, and Dimitry Gorinevsky. An
interior-point method for large-scale `1-regularized least squares. IEEE journal of selected topics
in signal processing, 1(4):606–617, 2007. 68

[21] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A review of classifica-
tion techniques, 2007. 15, 18

[22] Ron Kupers and Maurice Ptito. ”seeing” through the tongue: cross-modal plasticity in the congenitally
blind. In International Congress Series, volume 1270, pages 79–84. Elsevier, 2004. 76

[23] Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using weighted logistic
regression. In ICML, volume 3, pages 448–455, 2003. 72

[24] John Mingers. An empirical comparison of pruning methods for decision tree induction. Machine
learning, 4(2):227–243, 1989. 83

[25] Ismail Bin Mohamad and Dauda Usman. Standardization and its effects on k-means clustering al-
gorithm. Res. J. Appl. Sci. Eng. Technol, 6(17):3299–3303, 2013. 12, 28, 31

[26] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. 9, 10

[27] Andrew Ng. Linear regression with multiple variables - gradient descent in practice ii: learning rate,
2015. 70

[28] Andrew Ng. Regularized logistic regression, 2015. 17

[29] Andreas Nuchter, Kai Lingemann, and Joachim Hertzberg. Cached kd tree search for icp algorithms.
In 3-D Digital Imaging and Modeling, 2007. 3DIM’07. Sixth International Conference on, pages 419–
426. IEEE, 2007. 73

[30] John S Oakland. Statistical process control. Routledge, 2007. 12

[31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12(Oct):2825–2830, 2011. 25

[32] Anurag Srivastava, Eui-Hong Han, Vipin Kumar, and Vineet Singh. Parallel formulations of decision-
tree classification algorithms. In High Performance Data Mining, pages 237–261. Springer, 1999. 20,
83

62 On the potential for machine learning in prediction of insurance policy sales

BIBLIOGRAPHY

[33] Andreas Stolcke, Sachin Kajarekar, and Luciana Ferrer. Nonparametric feature normalization for svm-
based speaker verification. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE
International Conference on, pages 1577–1580. IEEE, 2008. 12

[34] Krysta Marie Svore, Lucy Vanderwende, and Christopher JC Burges. Enhancing single-document
summarization by combining ranknet and third-party sources. In Emnlp-conll, pages 448–457, 2007.
10

[35] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning structured prediction
models: A large margin approach. In Proceedings of the 22nd international conference on Machine
learning, pages 896–903. ACM, 2005. 10

[36] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector
machine learning for interdependent and structured output spaces. In Proceedings of the twenty-first
international conference on Machine learning, page 104. ACM, 2004. 20, 82

[37] P. van der Putten and M. van Someren (eds). Coil challenge 2000: The insurance company case.
Technical report, Sentient Machine Research, Amsterdam, June 2000. 7

[38] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J
McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top 10 algorithms in data mining. Knowledge
and information systems, 14(1):1–37, 2008. 21, 85

[39] Harry Zhang. The optimality of naive bayes. AA, 1(2):3, 2004. 65, 66

On the potential for machine learning in prediction of insurance policy sales 63

Appendix A

Explanation of algorithms

A.1 Naive Bayes

Naive Bayes is a fairly simple model for classification. It is based on Bayes’ rule:

p(Y | X) =
p(X | Y) p(Y)

p(X)
(A.1)

We can adapt this to our classification problem for an example x by setting X = x and Y = y for a concrete
class y. X is classified as class Y = 1 if

hb(X) =
p(Y = 1 | X)

p(Y = 0 | X)
≥ 1 (A.2)

X is classified as class Y = 0 otherwise. hb(X) is called a Bayesian classifier. [39] If we assume that all
features are conditionally independent, we get

p(X = x | Y = y) = p(

n∧
j=1

Xj = xj |Y = y) =

n∏
j=1

p(Xj = xj | Y = y) (A.3)

[18] which results in the following classifier

hnb(X) =

n∏
j=1

p(Y = 1 | Xj)

p(Y = 0 | Xj)
(A.4)

hnb(X) is called a naive Bayesian classifier.

If we are using discrete values it would be fairly easy to come up with the estimated probabilities p(X) and
p(X | Y) for each value of X and Y , using T . However when using continuous variables this would not
work since then p(X = x | Y = y) would be 0 for any value of x. If we assume that the data is a normal
distribution, we can use the Gaussian probability density function

g(x, µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 (A.5)

On the potential for machine learning in prediction of insurance policy sales 65

APPENDIX A. EXPLANATION OF ALGORITHMS

p(X = x | Y = y) = g(x, µx|y, σx|y) (A.6)

[18] This means we only need to estimate the mean µx|y and standard deviation σx|y from T . This is fairly
straight forward, where

µx|y =

∑
{X,Y }∈T |Y=y

X

∑
{X,Y }∈T |Y=y

1
(A.7)

and

σx|y =

∑
{X,Y }∈T |Y=y

(X − µx|y)2∑
{X,Y }∈T |Y=y

1
(A.8)

Note that for strict classification purposes the denominator of Equation A.1 does not need to be calculated
when using the naive Bayes classifier, because they cancel out in Equation A.2. See Equation A.9.

p(Y = 1 | X)

p(Y = 0 | X)
=

p(X|Y=1) p(Y=1)
p(X)

p(X|Y=0) p(Y=0)
p(X)

=
p(X | Y = 1) p(Y = 1)

p(X | Y = 0) p(Y = 0)
(A.9)

However, we prefer to get a probability as our result, hence we will also calculate the denominator. In
practice this means we calculate Equation A.1 for both Y = 0 and Y = 1 and use the highest probability
for classification.

A.1.1 Assumptions

As mentioned earlier naive Bayes makes two assumptions. Conditional independence of the features and the
normal distribution of features values within a class. The conditional independence assumption, is a dan-
gerous assumption to make because it is rarely true in real-world applications.[39] The normal distribution
assumption is less dangerous, but should be treated with care. If the data is normalized using a Gaussian
distribution (see Section 2.5) no harm is done, however if the data is not modified or modified in some other
way, the results might be unexpected. Despite these two assumptions, naive Bayes has a surprisingly good
performance.[39]

A.2 Linear Regression

Linear Regression (also known as linear least squares) is a statistical technique for modelling the relationship
of a set of variables by a linear equation hβ(x). The number of features determines the dimension of the
equation. If we have two features x1 and x2, the linear equations looks as follows:

hβ(x) = β2x2 + β1x1 + β0 (A.10)

66 On the potential for machine learning in prediction of insurance policy sales

A.2. LINEAR REGRESSION

where β0, β1and β2 are constants. We can generalize this equation by adding a constant feature x0 = 1, to
hβ(x) = β2x2 + β1x1 + β0x0. If we vectorize this equation we get

hβ(x) = β
Tx (A.11)

where β = [β0, β1, β2] and x = [x0, x1, x2]. This can be generalized for n >= 1.

Our goal is to find values for β, to get the best equation hβ(x) to predict values Y for instances of X . We
do this by minimizing a cost function J(β,T), which we will define as follows:

J(β, T) = 1

2m

m∑
i=1

(hβ(x
(i))− y(i))2 (A.12)

This cost function is known as the squared error cost function. Note that because we are minimizing J(β, T)
for a given T , we have that 1

2m is constant, and therefore does not contribute to the equation. However, when
solving the optimization problem, it is more convenient to use Equation A.12, because its partial derivative
with regard to β is easier to calculate.

A.2.1 Overfitting

Figure A.1: The green line represents an overfitted model, the black line represents a regularised model, the
magenta line represents a underfitted model. While the green line best follows the training data, it is too
dependent on it and it is likely to have a higher error rate on new unseen data, compared to the black line.
The magenta line is over regularized, resulting in a poor model.

The problem with this cost function is that it promotes overfitting of the model. Overfitting means that the
model is catered too specifically to the training data. This means that the overfitted model would probably
perform badly when it is presented with new data, because it is so depended on the data that was given. See

On the potential for machine learning in prediction of insurance policy sales 67

APPENDIX A. EXPLANATION OF ALGORITHMS

Figure A.1. There are various ways to counter this. The easiest method would be to decrease the number of
features used. Because the complexity of the regression hypothesis is determined by the number of features,
overfitting could easily occur, when a high number of features are used. However, this means that human
interference is required, when hand picking the features. It is possible to use a model selection algorithm,
however, loss of features means loss of data, which might be essential.

The most common method without losing features is regularization. This method reduces the magnitude of
the parameters β, by penalizing large values of these parameters. The cost function J(β, T) is altered as
follows:

J(β, T) = 1

2m

 m∑
i=1

(hβ(x
(i))− y(i))2 + λ

n∑
j=1

β2
j

 (A.13)

As can be seen a regularization term (λ
∑n
j=1 β

2
j) is introduced. All parameters, except β0, are penalized.

Because x0 is constant, it does not make a lot of sense to penalize its parameter. Furthermore, we can see
that a regularization parameter λ is introduced to determine the amount of regularization needed. λ should
be carefully chosen (or tuned in our case). A small value would promote overfitting, while a large value
would set all values of β (except β0) to zero, resulting in a horizontal line, which would be underfitted. See
Figure A.1 for an example.

A.2.2 Solving minimization problem

Now that we have determined our cost function J(β, T), all we need to do is solve the minimization prob-
lem. There are two widely used methods to solve this. Gradient descent and normal equation.

Normal equation for linear least squares is defined as follows:

β = (XTX + λI0)
−1XTy (A.14)

[20] Where X is a m × (n + 1) matrix of training examples, while y is a m × 1 vector of expected results
and I0 is defined as a (n+1)× (n+1) identity matrix, with one altercation, namely: 0 at the first entry (row
1, column 1). This because we do not regularize β0. The normal equation method seems fairly convenient
and simple. The only bottleneck is inverting XTX, but for reasonable low number of features (n), this can
be calculated fast enough with modern computer power. However, if XTX cannot be inverted, then the
equation cannot be solved. This is mostly the case when we have redundant (linearly dependent) features,
which can simply be removed because no additional information is gained.

While normal equation is an analytical solution specifically for linear least squares, gradient descent is a
generic iterative solution. This means that gradient descent can be used for any problem where a function
should be minimized for a number of parameters. Gradient descent tries to solve the minimization problem
by descending down the slope of the function. See Algorithm 1 for reference.

As we can see in Algorithm 1, gradient descent, keeps descending down the slope until its gain is minimal
(less than ε). One thing to note, is that a variable tempResult is introduced. We do this to ensure that β
is updated simultaneously. Otherwise we might get unexpected results. Furthermore we need to be able to

68 On the potential for machine learning in prediction of insurance policy sales

A.2. LINEAR REGRESSION

Algorithm 1 GrandientDescent

1: procedure GRANDIENTDESCENT(J, β, T)
2: newCost← J(β, T)
3: repeat
4: oldCost← newCost
5: tempResult← [LENGTH(β)] . Initialize a vector the size of β
6: for i← 1 to LENGTH(β) do
7: tempResulti ← βi − α ∂

∂βi
J(β, T)

8: β ← tempResult
9: newCost← J(β, T)

10: until newCost− oldCost < ε . Execute until convergence

calculate the partial derivative for J (∂
∂βi

J(β, T)) which in our case is:

∂

∂βj
J(β, T) = ∂

∂βj

1

2m

 m∑
i=1

(hβ(x
(i))− y(i))2 + λ

n∑
j=1

β2
j

=

1

m

m∑
i=1

(hβ(x
(i))− y(i))x(i)j if j = 0

1

m

m∑
i=1

(hβ(x
(i))− y(i))x(i)j +

λ

m
βj if j > 0

(A.15)

We also have to choose a learning rate α, to determine the step size. Setting α is fairly important, because
if we set α too large we might overshoot our objective, while a learning rate that is too small needs (too
many) iterations. There are various ways to set α. One way is to adapt α after each iteration. If the error is
decreased, α is increased, but if the error increases (i.e. we overshoot the optimum) α is decreased. Often
though, α = 1

n is chosen as the learning rate, which works well in practice. Finally we can see that gradient
descent takes an initial β as its parameter. We will simply choose β = 0 as our initial value.

One disadvantage of gradient descent is that it finds a local optimum which is not guaranteed to be the global
optimum. However if the cost function is convex (i.e. it has only one local optimum) then gradient descent
does find the global optimum. Luckily Equation A.13 is convex.[11]

A.2.3 Output

Now that we know how to determine our cost function, we have all the pieces to execute Linear Regression.
However as explained in Section 2.4 we require an output in [0, 1]. Hence we will simply round our values
back to this range. Hence we define our resulting Linear Regression function f(x) as

f(x) =

0 if h(x) < 0

1 if h(x) > 1

h(x) otherwise
(A.16)

On the potential for machine learning in prediction of insurance policy sales 69

APPENDIX A. EXPLANATION OF ALGORITHMS

A.2.4 Parameter tuning

Linear Regression has effectively one parameter to tune; the regularization parameter λ. For λ it would not
make sense to include negative values, because this would promote infinitely large parameters. Hence only
positive values makes sense. A common way to tune parameters is using a range from 10−3 to 103 using
regular increases of about 3. This means we get a range in the form 0.001, 0.003, 0.01, . . . 300, 1000. [27]

A.3 Polynomial Regression

Often, a linear hypothesis is not a good enough hypothesis for classification as shown in Figure A.2. Poly-
nomial Regression allows us to use the mechanism of Linear Regression with more complicated (non-linear)
functions. The process of solving the problem is exactly the same. The only difference is the model selec-
tion. Where Linear Regression has n+1 features, Polynomial Regression can have any number of features.
In our case we can construct new features from existing features. If, for example, we have a data set with
the length and width of a lot, we can calculate the area as area = width × length. Now if we suspect
that there is a cubic relation between the size of the house and the desire to buy a burglary insurance, we can
use area3 as one of our features.

Figure A.2: The green line represents a linear model and the black line represents a cubic model. The black
line does a better job separating the data, compared to the black line.

A.3.1 Picking features

New features can be generated by manual selection, but they can also be generated automatically for a certain
polynomial degree ρ. See Algorithm 2. The algorithm creates every combination of multiplying ρ features

70 On the potential for machine learning in prediction of insurance policy sales

A.4. LOGISTIC REGRESSION

exactly once. Note that xi × xj = xj × xi for any i, j ∈ N. For instance if ρ = 3 and n = 4, one of the
combinations is x1 × x3 × x3.

Because the algorithm creates every combination of ρ features, the algorithm should be called with x con-
taining the constant feature x0. Including x0 = 1 ensures that actually all polynomials are generated, also
the ones with fewer terms, since 1i × xj = xj for any i, j ∈ N. An example of such a combination is x22,
which should also be included as a feature.

The disadvantage of this automated method is that the number of features increases significantly when n
andρ increases at a rate of O(nρ) which in turn makes the algorithm slower. Therefore in practice we will
only use ρ = 1 and ρ = 2.

Algorithm 2 GeneratePolynomials

1: procedure GENERATEPOLYNOMIALS(ρ, x)
2: indices← []
3: for i← 1 to ρ do . Initialize all indices to 1
4: PUSH(indices, 1)

5: result← []
6: startCounter = 1
7: while indices[1] < LENGTH(x) do . We work from back to front so the first in-

dex determines when to stop
8: for i← startCounter to LENGTH(x) do
9: indices[ρ] = i . Set the index of the feature we are working on

10: newFeature← 1
11: for j ← 1 to ρ do
12: newFeature← newFeature× xindices[j]

13: PUSH(result, newFeature)
14: nextIndex = ρ
15: while indices[nextIndex] > LENGTH(x) do . Check which index is

next to increase
16: nextIndex← nextIndex− 1

17: startCounter = indices[nextIndex] + 1
18: for i← nextIndex to ρ do . Set all later indices to

indices[nextIndex] so
we do not get duplicates

19: indices[i] = startCounter

20: return result

A.4 Logistic Regression

Logistic Regression is a classification algorithm based on the mechanics of linear (or polynomial) regression.
Where the Linear Regression function hβ(x) ∈ R, we have that the logistic function hβ(x) ∈ [0, 1]. This
means it outputs a value we will interpret as a probability suited for classification, without any further post
processing. In order to get this output range, we introduce a new hypothesis defined as follows:

hβ(x) = g(βTx) (A.17)

On the potential for machine learning in prediction of insurance policy sales 71

APPENDIX A. EXPLANATION OF ALGORITHMS

g(z) =
1

1 + e−z
(A.18)

Equation A.18 is known as the sigmoid function. The sigmoid function is asymptotically bound by [0, 1].

Now that we have a new hypothesis, can we still use the same cost function for determiningβ? Unfortunately
J(β, T) as defined in Equation A.13 is non-convex for our new cost function. This means gradient descent
would not be guaranteed to find the optimal solution. Hence we will define a new cost function J(β, T) as

J(β, T) = − 1

m

(
m∑
i=1

y(i) log hβ(x
(i)) + (1− y(i)) log(1− hβ(x(i)))

)
+

λ

2m

n∑
j=1

β2
j (A.19)

This cost function is derived from the Maximum likelihood estimation principle.[23] This means that we
have an assumption that the data has a normal distribution. But as discussed in Appendix A.1 this is not a
big problem.

So how does this function work? The inner part of the sum is the most interesting. Lets define it as i(x, y) =
y log hβ(x) + (1 − y) log(1 − hβ(x)). If y = 1 and h(x) = 1 we get that i(x, y) = 1 log 1 + 0 log 0 =
1 × 0 + 0 × −∞ = 0, so no penalty is given when the hypothesis is exactly right. However if y = 1 and
h(x) = 0 we get that i(x, y) = 1 log 0 + 0 log 1 = 1×−∞+ 0× 0 = −∞ which, due to the minus sign in
J(β, T) is a huge error. This is justified, because the cost function was completely off.

As discussed in Appendix A.2.2 the update rule for gradient descent requires us to calculate ∂
∂βj

J(β, T).
With our new cost function we get

∂

∂βj
J(β, T) = ∂

∂βj

− 1

m

(
m∑
i=1

y(i) log hβ(x
(i)) + (1− y(i)) log(1− hβ(x(i)))

)
+

λ

2m

n∑
j=1

β2
j

=

1

m

m∑
i=1

(hβ(x
(i))− y(i))x(i)j if j = 0

1

m

m∑
i=1

(hβ(x
(i))− y(i))x(i)j +

λ

m
βj if j > 0

(A.20)

Which is the same as Equation A.15 except that hβ(x) is defined differently. Hence gradient descent remains
the same algorithm for both linear and Logistic Regression, and since the cost function is still convex [23],
gradient descent finds the global optimum.

A.5 K-nearest neighbours

K-nearest neighbours, also known as KNN, is one of the simplest classification algorithms. Classification
occurs by comparing a test instance {xz, yz} to all training examples {x, y}, and choosing the k nearest
neighbours. A (weighted) average of the classifications of these neighbours is used to calculate the classi-
fication of {xz, yz}.

72 On the potential for machine learning in prediction of insurance policy sales

A.5. K-NEAREST NEIGHBOURS

KNN queries are performed using a kd-tree. A kd-tree (k dimensional tree) is a data structure specialized in
multidimensional nearest neighbour searches. In this case the k is the number of dimensions of the values
in the tree. In our case k = n, since x are n dimensional vectors. kd-trees are constructed, by splitting
the values on one dimension in each node. To balance the tree, the median of the values in the particular
dimension is used. This ensures that the kd-tree is balanced (all nodes are approximately the same distance
from the root). See Figure A.3 for a kd tree with k = 2.

Figure A.3: A 2d-tree. Green lines separate the data on the first (x) dimension, blue lines separate the data
on the second (y) dimension. Every line is a node, every black dot is a vertex and every cell is a leaf.

A.5.1 Classification

Nearest neighbours are recursively found by traversing the tree in a depth first search manner. At every
node the best minimum distance so far is maintained and updated when necessary. if the hyper sphere of
the minimum distance so far does not intersect any of the regions in the sub tree. The entire sub tree can
be discarded, and the search can continue in a different part of the tree. This is done until all nodes are
discarded, at which point the nearest neighbour is found. This process can be generalized by maintaining
the k nearest neighbours and using the furthest neighbour (the k-th neighbour) as the minimum distance.
See [29] for a more detailed explanation on kd-tree nearest neighbour queries.

As mentioned earlier, classification of an unknown instance x is assigned by the average of the classification
of its k nearest neighbours. This however means that far neighbours are equally weighted as close neigh-
bours. Intuitively this seems wrong. To counter this we can use a weighted average. The inverse of the
distance is the weight. If the distance of one of the neighbours is 0, then that classification is used, since 0
cannot be inverted. for the set of k nearest neighbours K the formula becomes:

On the potential for machine learning in prediction of insurance policy sales 73

APPENDIX A. EXPLANATION OF ALGORITHMS

h(x) =

∑
{xz,yz}∈K

1

d(x, xz)2
yz

∑
{xz,yz}∈K

1

d(x, xz)2

(A.21)

where d(x, z) is a distance measure, Euclidean distance in our case.

dEuclidean(x, z) =

√√√√ n∑
i=1

(xi − zi)2 (A.22)

A.5.2 Parameter tuning

KNN’s parameter to tune is k, the number of neighbours to consider for classification. Naturally we have
k ∈ N. Low values for k result in complex models, because outliers can have a high influence on the
classification. Large values of k have a regularization effect. This because individual data points have less
influence on the classification results. Too large values of k however, will favour the majority, resulting in
underfitting the model.

There are not many guidelines on the values for k because it is largely data dependent. [13] Therefore we
will use a wide range of values. For the small values we will use a step of 1, and after we will decrease the
values with a factor 2. The resulting range becomes: [1, 2, 3, 4, 8, 16, 32, 64].

Another (binary) parameter to tune is whether we use weighted KNN or unweighted KNN. Weighted KNN
uses the classification as defined in Equation A.21. For unweighted KNN, the weights are set to 1. the
resulting classifier then becomes

h(x) =
1

‖K‖
∑

{xz,yz}∈K

yz (A.23)

A.6 K-means classification

K-means classification is a clustering algorithm. Clustering is usually not associated with classification,
however with some modification, clustering algorithms can be adopted to classification algorithms. The
idea is to cluster the data, and assign classifications to the clusters, based on the data points in the cluster
using the average of classifications. New points can be classified by identifying the cluster they belong to.
K-means is one of the most well known clustering algorithms. It assigns each data point to one of the k
clusters based on the minimum sum of squares to the mean of the cluster. This means that if we have sets
Ci for cluster i, we get the following objective function to minimize:

74 On the potential for machine learning in prediction of insurance policy sales

A.6. K-MEANS CLASSIFICATION

J(T , k) =
k∑
i=1

∑
x∈Ci

‖x− µi‖2 (A.24)

[4]

A.6.1 Minimizing the cost function

This objective function is minimized using the k-means algorithms. The k-means algorithm is initialized
using random initialization. k random points are assigned as cluster means µi for 1 ≤ i ≤ k. After
initialization, the algorithm has two steps; the assignment step, and the update step. The assignment step
assigns each point to one of the cluster means, such that the sum of squares of the distance is minimized.
This means for a point xj is assigned to cluster Ci such that:

Ci = {xj | ‖xj − µi‖2 ≤ ‖xi − µl‖2 ∀l ∈ {l | 1 ≤ l ≤ k}l 6= j (A.25)

The update step, updates the means µi to the centroids (the mean of the cluster points) of each cluster Ci for
1 ≤ i ≤ k.

µi =
1

| Si |
∑
x∈Ci

x (A.26)

These steps are repeated until the means do not change anymore.

After the clusters are found, they receive a classification based on the average of the points inside the cluster.
A new data point is then classified by finding the cluster it belongs to using the same process as in the
assignment-step, see Equation A.25.

A.6.2 Parameter tuning

k in K-Means determines the number of clusters to use for classification. Large amounts of clusters means
on average a small amount of data points are used in classification. Small amounts of clusters means on
average a large amount of data points are used in classification. Because k is a value that determines the
classifications of the entire data set, we need to consider very large values. We will use the same tactics as
in Appendix A.5.2, but with a higher upper bound. The range becomes [2, 3, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192]

On the potential for machine learning in prediction of insurance policy sales 75

APPENDIX A. EXPLANATION OF ALGORITHMS

A.7 Neural Network

Neural Network is a non-linear classification algorithm. Polynomial Regression is also able to learn non-
linear hypotheses. However, as discussed in Appendix A.3, the algorithm run time blows up if the non
linearity is increased. Neural Networks is better at handling such non-linearity.

Neural Networks are inspired by the learning capability of the human brain. The human brain is capable
of sensory substitution, which refers to the capacity of the brain to replace the function of a lost sense by
another sensory modality [22]. This means there exists one learning algorithm, which can learn how to see,
how to hear, etc. based on the (sensory) data it receives. This is very powerful and precisely the inspiration
behind Neural Networks.

As its name already suggests, Neural Networks consist of various connected neurons. Neurons consist of a
computational body (the cell body compared to neurons in the human brain), input wires (the dendrite) and
output wires (the axon). The computational body has an activation function hβ(x) which uses the values of
the input wires (x) as input and outputs its value to all output wires. Often a form of the sigmoid function is
used as the activation function. However, it is shown that the hyperbolic tangent (see Equation A.28) shows
better results.[19] [12] The activation function becomes:

hβ(x) = tanh(βTx) (A.27)

tanh(z) =
ez − e−z

ez + e−z
(A.28)

See Figure A.4 for an example of a neuron.

The networks often consist of several layers, where a layer only has input connections from the previous
layer. Such a Neural Network is called a feed-forward Neural Network. We distinguish three types of
layers. The input layer is the first layer in the network and coincides with the features used from the data set.
The output layer is the last layer in the network and determines the classification. For binary classification
this always consists of one node. The output value of this node is the predicted value. The third type of
layer, is the hidden layer. These are all layers between the input and output layer. These layers transform
the data between input and output layers. More hidden layers means the model becomes more complex.
As, expected, the computation time also grows with more hidden layers. Therefore, it should carefully
considered when a more complex model actually improves the results. Each layer, with the exception of the
output layer, has a bias node as well. The bias node has no input connections, and always outputs one. It is
similar to the x0 feature in regression (see Appendix A.2).

A.7.1 Hypothesis

In order to explain the calculations of a Neural Network we will introduce some notation. The number
of layers in our Neural Network will be denoted by L. We will introduce matrices β(j) as the matrix of
parameters (or weights) controlling function mapping from layer j to layer j + 1. Note that the size of βj
depends on the number of neurons in layers j and j + 1. If sj denotes the number of neurons in layer j. We
get that βj is a sj+1 × sj + 1 matrix. Furthermore we will use a(j)i as the activation of neuron i in layer
j. The activation is the result of the neuron’s activation function. for layer 1, the input layer, we will set
a
(1)
i = xi Finally we will introduce z(j)i as the weighted linear combination of input values in a neuron i in

76 On the potential for machine learning in prediction of insurance policy sales

A.7. NEURAL NETWORK

IMPUTS ACTIVATION FUNCTION

∑

β(j)
i,1

β(j)
i,2

β(j)
i,3

β(j)
i,n

x1

x2

x3

xn

tanh a(j)

......
PARAMETERS SUMMATION

Figure A.4: A depiction of a neuron with the hyperbolic tangent as activation function

layer j.

z
(j)
i =

sj∑
k=0

β
(j−1)
i,k a

(j−1)
k (A.29)

The concrete calculation of a(j)i becomes:

a
(j)
i = tanh(z

(j)
i) (A.30)

See Figure A.5 for an example of a Neural Network.

Using these equations we can calculate hβ(x) using an algorithm called forward propagation. See Al-
gorithm 3.

Note that because we are using tanh(x) as activation function we get that hβ(x) ∈ [−1, 1]. However as

On the potential for machine learning in prediction of insurance policy sales 77

APPENDIX A. EXPLANATION OF ALGORITHMS

IMPUT LAYER OUTPUT LAYERHIDDEN LAYERS

x1

x2

x3

x4

a(2)
1

a(2)
2

a(3)
1

a(3)
2

a(4)
1

1

1 1

hβ(x)

Figure A.5: A feed-forward Neural Network with 4 input features, 2 hidden layers, and one output feature.

explained in Section 2.4 we require an output in range [0, 1]. Hence we will post process this result as
p(y = 1|x) = hβ(x)+1

2

A.7.2 Minimizing the cost function

Just like Logistic Regression, Neural Networks learn by determining the values of β by minimizing a cost
function. Where Logistic Regression, has one vector β, Neural Networks have a β matrix for each layer.
However The cost function for Neural Networks is similar to the one for Logistic Regression. The only
difference is the regularization part of the cost function. This because we need to take the extra parameters

78 On the potential for machine learning in prediction of insurance policy sales

A.7. NEURAL NETWORK

Algorithm 3 ForwardPropagation

1: procedure FORWARDPROPAGATION(L, β, x)
2: a← 0
3: z ← 0
4: a(1) ← x
5: for j ← 1 to L− 1 do
6: z(j+1) = β(j)a(j)

7: a(j+1) = tanh(z(j+1))

8: return a(L)

β into account. See Equation A.31

J(β, T) =− 1

m

(
m∑
i=1

y(i) log hβ(x
(i)) + (1− y(i)) log(1− hβ(x(i)))

)

+
λ

2m

L−1∑
l=1

sl∑
j=1

sl+1∑
i=1

(β
(l)
i,j)

2

(A.31)

Once again we will use gradient descent in order to minimize this cost function. Therefore we will need
to be able to compute ∂

∂β
(l)
i,j

J(β, T). This is where the back propagation algorithm comes in. The back

propagation algorithm computes the partial derivative by computing error terms δ(j) for layer j. We compute
error terms for 2 ≥ j ≥ L, because we do not associate an error term to the input layer. We calculate these
error terms from the last layer up to the second layer, hence the algorithm is called back propagation. The
formula for the error terms δ(j) is as follows:

δ(j) =

y − a
(j) if j = L

(β(k))T δ(j+1) ◦ ∂

∂z(j)
tanh(z(j)) if j < L

(A.32)

where ◦ denotes the element wise multiplication of two vectors (also known as the Hadamard product) and
where

∂

∂z(j)
tanh(z(j)) = a(j) ◦ (1− a(j)) (A.33)

Using Equation A.32 we can define the back propagation algorithm to calculate ∂

∂β
(l)
i,j

J(β, T). See Al-

gorithm 4 for the pseudo code.

A.7.3 Initialization

Now we have all the ingredients to perform gradient descent and minimize J(β, T). However as you might
recall gradient descent takes an initial value of β. Unfortunately we cannot choose β = 0 as our initial
β because all neurons in layer j for 1 > j ≥ L will have the same activation. Which in turn means that
gradient descent will update the weights of the inputs for each neuron in layer j for 1 > j ≥ L the same.

On the potential for machine learning in prediction of insurance policy sales 79

APPENDIX A. EXPLANATION OF ALGORITHMS

Algorithm 4 BackPropagation

1: procedure BACKPROPAGATION(T , L, β)
2: ∆

(l)
i,j ← 0 . for all i, j, l

3: for i← 1 to m do
4: FORWARDPROPAGATION(L,β,x(i)) . Calculate all a(l)

5: δ ← 0
6: for j ← L to 2 do
7: δ(j) ← Calculate δ(j) using Equation A.32
8: ∆(l) ←∆(l) + δ(l+1)(a(l))T . for all l
9: D

(l)
i,j ← 1

m∆
(l)
i,j + λβ

(l)
i,j . for all i, j, l if j > 0

10: D
(l)
i,j ← 1

m∆
(l)
i,j . for all i, j, l if j = 0

11: return D

Therefore we will use random initialization we will initialize β(l)
i,j to a random value in [−ε, ε]. This will

insure symmetry breaking, meaning that the nodes are not likely to compute the same activation function. ε
is a small value close to 0.

A.7.4 Parameter tuning

Just like Linear Regression, Neural Networks have a regularization parameter. We will tune this parameter
the same way as described in Appendix A.2.4 for Linear Regression.

A.8 Support Vector Machine

Support Vector Machine also known as SVM is a large margin classifier. SVM tries to separate the data in
such a way that the margin between any of the training examples is as large as possible. See Figure A.6.

The hyperplane separating the data is of the form βTx = 0. This means that

hβ(x) =

{
1 if βTx ≥ 0

0 if βTx < 0
(A.34)

Hence we have no probabilities, but only classifications. (i.e. values in {0, 1})

Due to the formula of the hyperplane we have that β is normal to the hyperplane. We will use this to
calculate the margin. The margin is nothing less than twice the distance from the plane to the nearest point.
Hence we have to be able to calculate the distance of the hyper plane to each point. We do this by projecting
each point x(i) to β. We will call the projection, p(i). We define p(i) as follows:

p(i) = (u · x(i))u (A.35)

where
u =

β

‖β‖
(A.36)

80 On the potential for machine learning in prediction of insurance policy sales

A.8. SUPPORT VECTOR MACHINE

Figure A.6: The green line represents a model separating the data, but the margin is small, while black line
does a far better job separating the data, because the margin is large.

The margin becomes
m
min
i=1

2‖p(i)‖ (A.37)

A.8.1 Cost function

Now the optimization problem is simply finding the hyperplane with the largest margin. Given a hyperplane
H0 that separates the data which satisfies βTx = 0, We can define two additional hyper planes H1, H2

which also separate the data such that H1 satisfies βTx = 1 and H2 satisfies βTx = −1, where H0 is of
equal distance to both H1 and H2. The euclidean distance between these planes is 2

‖β‖ . H1 and H2 define
the margin. This means that no points should lie between these planes, so we will add the constraint:

∀i ∈ {i | 1 ≤ i ≤ m}

{
βTx(i) ≥ 1 if y(i) = 1

βTx(i) ≤ −1 if y(i) = 0
(A.38)

we can rewrite this as

∀i ∈ {i | 1 ≤ i ≤ m}y(i)βTx(i) − (1− y(i))βTx(i) ≥ 1 (A.39)

Hence if we minimize ‖β‖ such that Equation A.39 holds, we find the hyperplane separating the data with
the largest margin.

However, if the data is not linearly separable, Equation A.39 cannot be satisfied. Hence we will introduce a

On the potential for machine learning in prediction of insurance policy sales 81

APPENDIX A. EXPLANATION OF ALGORITHMS

hinge loss function L(β,x, y) we want to minimize for all {x, y} ∈ T :

L(β,x, y) = max
(
0, 1− (yβTx− (1− y)βTx)

)
(A.40)

Note that L(β,x, y) = 0 if the constraint is met. Using this function we can define a cost function J(β, T)
for the optimization problem. We define J(β, T) as follows:

J(β, T) = C

m

(
m∑
i=1

L(β,x(i), y(i))

)
+

1

2
‖β‖2 (A.41)

As you can see, a regularization parameter C is introduced.[36] C determines the trade off between the
constraint that all data points lie on the correct side and the size of the margin. Where large C favours the
constraint Equation A.39 to be satisfied as much as possible.

A.8.2 Introducing non-linearity

The Support Vector Machine so far, is a linear classifier. However, we can also adapt SVM as a non linear
classifier. This can be done with the use of a kernel function. A kernel function is a measure of simil-
arity between to points. A commonly used kernel is the Gaussian kernel (also know as the Radial Bias
Function)[2]. See Equation A.42

K(u,v) = exp

(
‖u− v‖2

2σ2

)
(A.42)

Note that this is a mapping from [0, 1], where 1 means two points are equal and 0 means two points are
infinitely far apart. σ determines the amount of decay in similarity. Large σ ensure items with large distance
are still deemed similar.

We can use the kernel function to define new features for our SVM classifier.For each 1 ≤ i ≤ m, 1 ≤ j ≤ m
we define a feature f (j) of length m such that f (j)i = K(x(i), x(j)). Once again we will also add f (j)0 = 1.
Now we have transformed our feature vectors in m + 1 dimensional vectors. Which makes sure we can
describe non linear (in n+ 1 dimension) functions. naturally this will increase the training time for SVM.

A.8.3 Parameter tuning

Instead of a regularization parameter λ, SVM has a regularization parameter C. Instead of penalizing a
complex model, C promotes reducing the error, and thereby satisfying the constraint. If we compare this
with Linear Regression, we can state C = 1

λ . Since λ determines the amount of regularization and C
determines the margin. This means that we can use the same range as defined for λ in Appendix A.2.4, since
1

103 = 10−3, and 1
300 ≈ 0.003.

Besides the regularization parameter, another parameter σ is introduced with the Gaussian kernel. σ determ-
ines the decay for the measure of similarity. Because σ is squared in the kernel function, we can rule out
negative values. Hence we will use the same tactics as used for C.

82 On the potential for machine learning in prediction of insurance policy sales

A.9. DECISION TREE

A.9 Decision Tree

A Decision Tree is based on the idea that you can make a big decision by making several small decisions.
Using the training set, a tree is created where at each node a decision is made which path to follow based on
a formula on the instance. The leaves of the three classify the instance.

A Decision Tree can handle two types of data, discrete values and continuous values. Discrete (or nominal)
data is data where no particular order is stated, but where the number of values is limited. Continuous
values on the other hand can take on an infinite number of values. In our case, because we generalize
the data, we only have continuous values. Therefore we will use binary tests on the nodes of the form
t = (xj >= value), where value is one of the values found in our training set for xj . This means that
we have a discrete number of tests we can conduct, because the training set has a finite number of training
examples. If t = true we will continue down the left branch, otherwise we will continue down the right
branch. The tree is growing by recursively partitioning the data using these tests.[32] When all data in a
node has the same expected value y, we can stop partitioning the data and make a leaf node, using y as the
classification. If all training examples in a node have the exact same features x, we also create a leaf node
and classify as the most common y.

Deciding with which test we use to start building the tree is one of the most important factors of building a
Decision Tree. This because it influences how big the tree will grow. Hence we want to pick the decision
that spilt the data most equally first. We will use the information gain for this. In order to define information
gain we must first define entropy H(Y) for a node:

H(Y) = −p(Y = 1) log(p(Y = 1))− p(Y = 0) log(p(Y = 0)) (A.43)

When considering a split we can calculate the H(Ybefore) before the split, and we can calculate H(Yafter)
after the split, which is simply

H(Yafter) = mleftH(Yleft) +mrightH(Yright) (A.44)

Together this forms the information gain:

I(Y) = H(Ybefore)−H(Yafter) (A.45)

Now we will simply calculate the information gain of all possible binary decisions defined above, and chose
the one with maximum entropy. This process is repeated until the process terminates.

A.9.1 Regularization

The described process, just like most other algorithms, is prone to overfitting. To counter the overfitting
problem, we will introduce the process of pruning. Pruning will decrease the size of the tree and remove
unneeded nodes. The pruning method we will use is pessimistic sub-tree replacement. This because no
additional validation set is required and its computationally simple. [24]

Pessimistic sub-tree replacement replaces a subtree with a leave classifying as the most common expected
value, if we believe that this would increase the accuracy. The error is calculated as E = enode

mnode
, where

enode is the number of misclassifications, and mnode the number of training examples at the node. However

On the potential for machine learning in prediction of insurance policy sales 83

APPENDIX A. EXPLANATION OF ALGORITHMS

because we only have a training set, we cannot calculate the accuracy exactly. Hence we will introduce
a confidence parameter. With the confidence parameter, we calculate the confidence interval of our error,
using the z-test (normal distribution). Since we are using pessimistic sub-tree replacement, we will replace
the sub-tree with a node if the upper bound of the error confidence interval is higher than the weighted sum
of the upper bounds of the error confidence interval of the nodes. [10] See Equation A.46.

Replace if

CIu(Es) >
∑
i∈s

(
mi

ms
CIu(En)

)
(A.46)

where CIu is the upper bound of the confidence interval, s is a sub-tree of nodes and ms the number of
training examples in s.

A.9.2 Parameter tuning

The algorithm’s only parameter to tune is the size of the confidence interval CISize. As mentioned before
this has an influence on the amount of pruning. We define that CISize = 0 means, no pruning occurs. The
maximum size of the confidence interval is 1, so our parameter tuning occurs within that range. Very small
values ofCISize do not make a lot of sense because the length of the confidence interval becomes too small.
A lower bound value of 0.1 seems enough. Because this is a rather small range, instead of tripling the value
each time, we can choose to (roughly) double it each step. Our parameter range becomes [0, 0.1, 0.2, 0.5, 1].

A.10 Classification Rule Mining

Classification Rule Mining is a technique that derives association rules, or in our case classification rules,
from frequent item sets found in the training set. That means if a subset of features I ⊆ x in a training set
occurs often with a given classification y, we associate I with y. The classification rule I ⇒ y is derived
from this.

Because Classification Rule Mining uses frequent item sets, it assumes the data is discrete. However as
explained in Section 2.5 our data might not be discrete. This means we have to discretize our data. We can
do this by introducing intervals. Since all our data is in the [-1, 1] range, we can simply discretize the data
using intervals. Every value is categorized in an interval and the intervals are used as the new discrete value.

Not every rule is equally reliable. This is where the confidence and support comes in. The support sI of
an item set I is the number of times it occurs in the training set. The support s{I,y} of a rule I ⇒ y is
the number of times the combination I and y occurs in the training set. Using this we can calculate the
confidence of a rule I ⇒ y. The confidence is a measure for how reliable a rule is. It is calculated as
follows:

c{I,y} =
s{I,y}

sI
(A.47)

84 On the potential for machine learning in prediction of insurance policy sales

A.10. CLASSIFICATION RULE MINING

Rules are found using the anti-monotonicity of itemsets, ”if an itemset is not frequent, any of its superset
is never frequent” [38]. An itemset is deemed frequent if a minimum support requirement is met. The
minimum support is defined by the parameter mins. Let Ck be the set of candidate item sets of size k and
let Fk be the frequent item sets of length k that meet the requirement of minimum support. Using Fk we
can generate Ck+1 by taking the union of pairs of itemsets Pk, Qk ∈ Fk which have k elements in common.
Then we can generate Fk+1 from all elements Pk+1 ∈ Ck+1 such that the minimum support requirement
is met. To prevent overfitting of the training set we prune the set of rules afterwards using a minimum
confidence requirement.

We can use the confidence of rules to classify instances with a probability p(Y = 1 | x). Since we only have
two types of classification, we can even classify instances with probability p(Y = 1 | X) by transforming
negative rules (of the form I ⇒ 0) into positive rules (of the form I ⇒ 1). Transforming negative rules into
positive rules is fairly easy. Since s{I,1} = sI − sI, 0 and c{I,1} = 1− c{I,0}.

Now that we only have positive rules, we can calculate the probability p(Y = 1 | X) using the set of positive
rules R as follows:

p(y | x) =

∑
{I,y}∈R:I⊆X

sI × c{I,y}∑
{I,y}∈R:I⊆X

sI
(A.48)

A.10.1 Parameter tuning

Classification Rule Mining has three parameters to tune. The first parameter is the interval size Is for the
discretization of the data. Since our data is in the scale [−1, 1], we have that for Is = 0.2, we have 10
different possible values for each feature. This also means that for Is = 0.01 we have 200 possible values
for each feature. This seems like an upper bound for the number of features Classification Rule Mining can
handle in a usable runtime. We can use the same step size as defined in Appendix A.9.2. The range for Is
becomes [0.01, 0.02, 0.05, 0.1, 0.2]

The second parameter to tune is the minimum support parameter mins. mins determines when an itemset
is frequent. mins can have a value between [0, 1]. However, using this full range as possible values is
not realistic. First of all, high values for mins are unrealistic, because this means a high percentage of
the training data should have the same (discretized) features, which is unlikely. So an upper bound of
minc = 0.2 is probably enough. On the other hand, too small values will ensure that we get too many rules.
This means that the relevance of the rules declines, as well as that the run time increases enormously. Hence
we will use a lower bound of mins = 0.01. We can use the same step size as defined in Appendix A.9.2.
The range for mins becomes [0.01, 0.02, 0.05, 0.1, 0.2]

The third parameter to tune is the minimum confidence parameter minc. Because we have two classes, we
have that the lower bound becomes minc = 0.5. This ensures we have only one rule for each itemset. On
the upper bound of minc, we have that minc = 1 might be a bit unrealistic. Since this means that the rules
are only taken into account if they always predict the same value. Hence we will pick an upper bound of
minc = 0.9. For this parameter we will use a regular interval with step size 0.1.

On the potential for machine learning in prediction of insurance policy sales 85

86 On the potential for machine learning in prediction of insurance policy sales

B.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATA-SETS?

Appendix B

Results

B.1 How accurate can machine learning algorithms predict insur-
ance product interest for different data-sets?

B.1.1 Should we optimize for correct classifications or for good probabilities to get
the best accuracy of predictions?

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Error for the various algorithms running
experiment 4.2.1 on dataset A

PE MSE MSE PE

Optimized for PE Optimized for MSE

Figure B.1: The results of Experiment 4.2.1 for dataset A.
On the potential for machine learning in prediction of insurance policy sales 87

APPENDIX B. RESULTS

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

Error for the various algorithms running
experiment 4.2.1 on dataset B

PE MSE MSE PE

Optimized for PE Optimized for MSE

Figure B.2: The results of Experiment 4.2.1 for dataset B.

88 On the potential for machine learning in prediction of insurance policy sales

B.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATA-SETS?

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Error for the various algorithms running
experiment 4.2.1 on dataset C

PE MSE MSE PE

Optimized for PE Optimized for MSE

Figure B.3: The results of Experiment 4.2.1 for dataset C.

On the potential for machine learning in prediction of insurance policy sales 89

APPENDIX B. RESULTS

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Error for the various algorithms running
experiment 4.2.1 on dataset D

PE MSE MSE PE

Optimized for PE Optimized for MSE

Figure B.4: The results of Experiment 4.2.1 for dataset D.

90 On the potential for machine learning in prediction of insurance policy sales

B.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATA-SETS?

B.1.2 How does feature scaling influence the algorithms and their prediction accur-
acy?

0.00

0.05

0.10

0.15

0.20

0.25

MSE for the various algorithms running
experiment 4.2.2 on dataset A

MinMax Standardization No scaling

Figure B.5: The results of Experiment 4.2.2 for dataset A.

On the potential for machine learning in prediction of insurance policy sales 91

APPENDIX B. RESULTS

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

MSE for the various algorithms running
experiment 4.2.2 on dataset B

MinMax Standardization No scaling

Figure B.6: The results of Experiment 4.2.2 for dataset B.

92 On the potential for machine learning in prediction of insurance policy sales

B.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATA-SETS?

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

MSE for the various algorithms running
experiment 4.2.2 on dataset C

MinMax Standardization No scaling

Figure B.7: The results of Experiment 4.2.2 for dataset C.

On the potential for machine learning in prediction of insurance policy sales 93

APPENDIX B. RESULTS

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

MSE for the various algorithms running
experiment 4.2.2 on dataset D

MinMax Standardization No scaling

Figure B.8: The results of Experiment 4.2.2 for dataset D. Note that logistic regression is ran without ◦ = 2

B.1.3 Which algorithms have the highest potential for accurate predictions?

-0.080

-0.070

-0.060

-0.050

-0.040

-0.030

-0.020

-0.010

0.000

0.010

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.02

0.04

0.06

0.08

0.10

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset A

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans

Figure B.9: The results of Experiment 4.2.3 for dataset A.

94 On the potential for machine learning in prediction of insurance policy sales

B.1. HOW ACCURATE CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE
PRODUCT INTEREST FOR DIFFERENT DATA-SETS?

-0.080

-0.070

-0.060

-0.050

-0.040

-0.030

-0.020

-0.010

0.000

0.010

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.02

0.04

0.06

0.08

0.10

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset B

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans

Figure B.10: The results of Experiment 4.2.3 for dataset B.

-0.100

-0.050

0.000

0.050

0.100

0.150

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.10

0.20

0.30

0.40

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset C

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans StatisticalAnalysis

Figure B.11: The results of Experiment 4.2.3 for dataset C.

On the potential for machine learning in prediction of insurance policy sales 95

APPENDIX B. RESULTS

-0.150

-0.100

-0.050

0.000

0.050

0.100

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.10

0.20

0.30

0.40

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset D

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans StatisticalAnalysis

Figure B.12: The results of Experiment 4.2.3 for dataset D.

-0.060

-0.040

-0.020

0.000

0.020

0.040

0.060

0.080

PE

NaiveBayes

LogisticRegression

DecisionTree

KMeans

0.00

0.10

0.20

0.30

0.40

0.50

PE MSE

Error for the various algorithms running experiment
4.2.3 on Dataset E

NaiveBayes LinearRegression PolynomialRegression LogisticRegression

NeuralNetwork SupportVectorMachine DecisionTree ClassificationRuleMining

KNN KMeans StatisticalAnalysis

Figure B.13: The results of Experiment 4.2.3 for dataset E.

96 On the potential for machine learning in prediction of insurance policy sales

B.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE PRODUCT
INTEREST FOR DIFFERENT DATASETS?

B.2 How fast can machine learning algorithms predict insurance product
interest for different datasets?

0

17

1008

60480

3628800

217728000

Runtime for various algorithms running
experiment 4.2.2 for dataset A

MinMax Standardization No scaling

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.14: The results of Experiment 4.2.2 for dataset A.

On the potential for machine learning in prediction of insurance policy sales 97

APPENDIX B. RESULTS

0

17

1008

60480

3628800

217728000

Runtime for various algorithms running
experiment 4.2.2 for dataset B

MinMax Standardization No scaling

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.15: The results of Experiment 4.2.2 for dataset B.

98 On the potential for machine learning in prediction of insurance policy sales

B.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE PRODUCT
INTEREST FOR DIFFERENT DATASETS?

0

17

1008

60480

3628800

217728000

Runtime for various algorithms running
experiment 4.2.2 for dataset C

MinMax Standardization No scaling

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.16: The results of Experiment 4.2.2 for dataset C.

On the potential for machine learning in prediction of insurance policy sales 99

APPENDIX B. RESULTS

0

17

1008

60480

3628800

217728000

Runtime for various algorithms running
experiment 4.2.2 for dataset D

MinMax Standardization No scaling

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.17: The results of Experiment 4.2.2 for dataset D. Note that logistic regression is ran without ◦ = 2

100 On the potential for machine learning in prediction of insurance policy sales

B.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE PRODUCT
INTEREST FOR DIFFERENT DATASETS?

B.2.1 How much do various parameters influence the prediction accuracy of the
algorithms? Can we eliminate the tuning phase?

0.00

0.05

0.10

0.15

0.20

0.25

MSE for Linear regression running
Experiment 4.3.1 on various datasets

A B C D

Figure B.18: The results of Experiment 4.3.1 for Linear regression.

0.00

0.05

0.10

0.15

0.20

0.25

MSE for Polynomial regression running
Experiment 4.3.1 on various datasets

A B C D

Figure B.19: The results of Experiment 4.3.1 for Polynomial regression.

On the potential for machine learning in prediction of insurance policy sales 101

APPENDIX B. RESULTS

0
0.05

0.1
0.15

0.2
0.25

λ
=

0
.0

0
1

; °
=

1

λ
=

0
.0

0
3

; °
=

1

λ
=

0
.0

1
; °

=
1

λ
=

0
.0

3
; °

=
1

λ
=

0
.1

; °
=

1

λ
=

0
.3

; °
=

1

λ
=

1
; °

=
1

λ
=

3
; °

=
1

λ
=

1
0

; °
=

1

λ
=

3
0

; °
=

1

λ
=

1
0

0
; °

=
1

λ
=

3
0

0
; °

=
1

λ
=

1
0

0
0

; °
=

1

λ
=

0
.0

0
1

; °
=

2

λ
=

0
.0

0
3

; °
=

2

λ
=

0
.0

1
; °

=
2

λ
=

0
.0

3
; °

=
2

λ
=

0
.1

; °
=

2

λ
=

0
.3

;
°

=
2

λ
=

1
; °

=
2

λ
=

3
; °

=
2

λ
=

1
0

; °
=

2

λ
=

3
0

; °
=

2

λ
=

1
0

0
; °

=
2

λ
=

3
0

0
; °

=
2

λ
=

1
0

0
0

; °
=

2

MSE for Logistic regression running
Experiment 4.3.1 on various datasets

A B C D

Figure B.20: The results of Experiment 4.3.1 for Logistic regression.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

MSE for Neural network running
Experiment 4.3.1 on various datasets

A B C D

Figure B.21: The results of Experiment 4.3.1 for Neural network.

102 On the potential for machine learning in prediction of insurance policy sales

B.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE PRODUCT
INTEREST FOR DIFFERENT DATASETS?

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

σ
 =

 0
.0

0
1

; C
 =

 0
.0

0
1

σ
 =

 0
.1

; C
 =

 0
.0

0
1

σ
 =

 1
0

; C
 =

 0
.0

0
1

σ
 =

 1
0

0
0

; C
 =

 0
.0

0
1

σ
 =

 0
.0

3
; C

 =
 0

.0
0

3
σ

 =
 3

; C
 =

 0
.0

0
3

σ
 =

 3
0

0
; C

 =
 0

.0
0

3
σ

 =
 0

.0
1

; C
 =

 0
.0

1
σ

 =
 1

; C
 =

 0
.0

1
σ

 =
 1

0
0

; C
 =

 0
.0

1
σ

 =
 0

.0
0

3
; C

 =
 0

.0
3

σ
 =

 0
.3

; C
 =

 0
.0

3
σ

 =
 3

0
; C

 =
 0

.0
3

σ
 =

 0
.0

0
1

; C
 =

 0
.1

σ
 =

 0
.1

; C
 =

 0
.1

σ
 =

 1
0

; C
 =

 0
.1

σ
 =

 1
0

0
0

; C
 =

 0
.1

σ
 =

 0
.0

3
; C

 =
 0

.3
σ

 =
 3

; C
 =

 0
.3

σ
 =

 3
0

0
; C

 =
 0

.3
σ

 =
 0

.0
1

; C
 =

 1
σ

 =
 1

; C
 =

 1
σ

 =
 1

0
0

; C
 =

 1
σ

 =
 0

.0
0

3
;

C
 =

 3
σ

 =
 0

.3
; C

 =
 3

σ
 =

 3
0

; C
 =

 3
σ

 =
 0

.0
0

1
; C

 =
 1

0
σ

 =
 0

.1
; C

 =
 1

0
σ

 =
 1

0
; C

 =
 1

0
σ

 =
 1

0
0

0
; C

 =
 1

0
σ

 =
 0

.0
3

; C
 =

 3
0

σ
 =

 3
; C

 =
 3

0
σ

 =
 3

0
0

; C
 =

 3
0

σ
 =

 0
.0

1
; C

 =
 1

0
0

σ
 =

 1
; C

 =
 1

0
0

σ
 =

 1
0

0
; C

 =
 1

0
0

σ
 =

 0
.0

0
3

; C
 =

 3
0

0
σ

 =
 0

.3
; C

 =
 3

0
0

σ
 =

 3
0

; C
 =

 3
0

0
σ

 =
 0

.0
0

1
; C

 =
 1

0
0

0
σ

 =
 0

.1
; C

 =
 1

0
0

0
σ

 =
 1

0
; C

 =
 1

0
0

0
σ

 =
 1

0
0

0
; C

 =
 1

0
0

0

MSE for Support vector machine running
Experiment 4.3.1 on various datasets

A B C D

Figure B.22: The results of Experiment 4.3.1 for Support vector machine.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c = 0.0 c = 0.05 c = 0.1 c = 0.25 c = 0.5

MSE for Decision tree running
Experiment 4.3.1 on various datasets

A B C D

Figure B.23: The results of Experiment 4.3.1 for Decision tree.

On the potential for machine learning in prediction of insurance policy sales 103

APPENDIX B. RESULTS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Is
 =

 0
.0

1
; M

c
=

 0
.5

;
M

s
=

0
.0

1

Is
 =

 0
.2

; M
c

=
 0

.5
;

M
s

=
0

.0
1

Is
 =

 0
.1

; M
c

=
 0

.6
;

M
s

=
0

.0
1

Is
 =

 0
.0

5
; M

c
=

 0
.7

;
M

s
=

0
.0

1

Is
 =

 0
.0

2
; M

c
=

 0
.8

;
M

s
=

0
.0

1

Is
 =

 0
.0

1
; M

c
=

 0
.9

;
M

s
=

0
.0

1

Is
 =

 0
.2

; M
c

=
 0

.9
;

M
s

=
0

.0
1

Is
 =

 0
.1

; M
c

=
 0

.5
;

M
s

=
0

.0
2

Is
 =

 0
.0

5
; M

c
=

 0
.6

;
M

s
=

0
.0

2

Is
 =

 0
.0

2
; M

c
=

 0
.7

;
M

s
=

0
.0

2

Is
 =

 0
.0

1
; M

c
=

 0
.8

;
M

s
=

0
.0

2

Is
 =

 0
.2

; M
c

=
 0

.8
;

M
s

=
0

.0
2

Is
 =

 0
.1

; M
c

=
 0

.9
;

M
s

=
0

.0
2

Is
 =

 0
.0

5
; M

c
=

 0
.5

;
M

s
=

0
.0

5

Is
 =

 0
.0

2
; M

c
=

 0
.6

;
M

s
=

0
.0

5

Is
 =

 0
.0

1
; M

c
=

 0
.7

;
M

s
=

0
.0

5

Is
 =

 0
.2

; M
c

=
 0

.7
;

M
s

=
0

.0
5

Is
 =

 0
.1

; M
c

=
 0

.8
;

M
s

=
0

.0
5

Is
 =

 0
.0

5
; M

c
=

 0
.9

;
M

s
=

0
.0

5

Is
 =

 0
.0

2
; M

c
=

 0
.5

;
M

s
=

0
.1

Is
 =

 0
.0

1
; M

c
=

 0
.6

;
M

s
=

0
.1

Is
 =

 0
.2

; M
c

=
 0

.6
;

M
s

=
0

.1

Is
 =

 0
.1

; M
c

=
 0

.7
;

M
s

=
0

.1

Is
 =

 0
.0

5
; M

c
=

 0
.8

;
M

s
=

0
.1

Is
 =

 0
.0

2
; M

c
=

 0
.9

;
M

s
=

0
.1

Is
 =

 0
.0

1
; M

c
=

 0
.5

;
M

s
=

0
.2

Is
 =

 0
.2

; M
c

=
 0

.5
;

M
s

=
0

.2

Is
 =

 0
.1

; M
c

=
 0

.6
;

M
s

=
0

.2

Is
 =

 0
.0

5
; M

c
=

 0
.7

;
M

s
=

0
.2

Is
 =

 0
.0

2
; M

c
=

 0
.8

;
M

s
=

0
.2

Is
 =

 0
.0

1
; M

c
=

 0
.9

;
M

s
=

0
.2

Is
 =

 0
.2

; M
c

=
 0

.9
;

M
s

=
0

.2

MSE for Classification rule mining running
Experiment 4.3.1 on various datasets

A B C D

Figure B.24: The results of Experiment 4.3.1 for Association rule mining.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

MSE for K-nearest neighbours running
Experiment 4.3.1 on various datasets

A B C D

Figure B.25: The results of Experiment 4.3.1 for K-nearest neighbours.

104 On the potential for machine learning in prediction of insurance policy sales

B.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE PRODUCT
INTEREST FOR DIFFERENT DATASETS?

0

0.1

0.2

0.3

0.4

0.5

MSE for K-means running
Experiment 4.3.1 on various datasets

A B C D

Figure B.26: The results of Experiment 4.3.1 for K-means.

B.2.2 How well do algorithms scale to large data sets?

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

Runtime for various algorithms running
Experiment 4.3.2 on Dataset A

n = 11 n = 22 n = 44 n = 86

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.27: The results of Experiment 4.3.2 for variations of dataset A.

On the potential for machine learning in prediction of insurance policy sales 105

APPENDIX B. RESULTS

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

Runtime for various algorithms running
Experiment 4.3.2 on Dataset B

m = 7000 m = 21000 m = 63000 m = 180024

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.28: The results of Experiment 4.3.2 for variations of dataset B.

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

n = 11 n = 22 n = 44 n = 86

Runtime for various algorithms running Experiment 4.3.2 on
Dataset A

NaiveBayes LinearRegression PolynomialRegression LogisticRegression *

LogisticRegression NeuralNetwork SupportVectorMachine DecisionTree

ClassificationRuleMining KNN KMeans

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.29: The results of Experiment 4.3.2 for variations of dataset A.

106 On the potential for machine learning in prediction of insurance policy sales

B.2. HOW FAST CAN MACHINE LEARNING ALGORITHMS PREDICT INSURANCE PRODUCT
INTEREST FOR DIFFERENT DATASETS?

0.280

16.800

1008.000

60480.000

3628800.000

217728000.000

m = 7000 m = 21000 m = 63000 m = 180024

Runtime for various algorithms running Experiment 4.3.2 on
Dataset B

NaiveBayes LinearRegression PolynomialRegression LogisticRegression *

LogisticRegression NeuralNetwork SupportVectorMachine DecisionTree

ClassificationRuleMining KNN KMeans

60 Hours

1 Hour

1 Minute

1 Second

15 ms

Figure B.30: The results of Experiment 4.3.2 for variations of dataset B.

On the potential for machine learning in prediction of insurance policy sales 107

APPENDIX B. RESULTS

B.3 How well can machine learning algorithms deal with non inform-
ation?

0.00

0.02

0.04

0.06

0.08

0.10

PE for various algorithms running
Experiment 4.4 on Dataset B

r = 0% r = 10% r = 30% r = 50%

Figure B.31: The results of Experiment 4.4 for dataset A and error measurement PE.

108 On the potential for machine learning in prediction of insurance policy sales

B.3. HOW WELL CAN MACHINE LEARNING ALGORITHMS DEAL WITH NON INFORMATION?

0.00

0.02

0.04

0.06

0.08

0.10

MSE for various algorithms running
Experiment 4.4 on Dataset B

r = 0% r = 10% r = 30% r = 50%

Figure B.32: The results of Experiment 4.4 for dataset A and error measurement MSE.

On the potential for machine learning in prediction of insurance policy sales 109

	Contents
	Introduction
	C-Profile
	Motivation
	Goals
	Problem statement
	Methodology

	Background
	Data
	Stakeholders
	Machine learning techniques
	Approach
	Feature normalization
	Parameter tuning
	Measuring accuracy

	Comparison of techniques
	Techniques
	Statistical learning algorithms
	Regression techniques
	Instance based learning
	Clustering
	Perceptron based techniques
	Support Vector Machines
	Logic based algorithms

	Comparison

	Experimental setup
	Experimental setup
	Components
	Phases

	How accurate can machine learning algorithms predict insurance product interest for different data-sets?
	Should we optimize for correct classifications or for good probabilities to get the best accuracy of predictions?
	How does feature scaling influence the algorithms and their prediction accuracy?
	Which algorithms have the highest potential for accurate predictions?
	Can we predict insurance product interest for clients, with similar or even higher accuracy compared to current statistical models?

	How fast can machine learning algorithms create models for prediction of insurance product interest for different datasets?
	How much do various parameters influence the prediction accuracy of the algorithms? Can we eliminate the tuning phase?
	How well does the model creation time of algorithms scale to large datasets?

	How well can machine learning algorithms handle irrelevant features?

	Experimental evaluation
	How accurate can machine learning algorithms predict insurance product interest for different datasets?
	Should we optimize for correct classifications or for good probabilities to get the best accuracy of predictions?
	How does feature scaling influence the algorithms and their prediction accuracy?
	Which algorithms have the highest potential for accurate predictions?
	Can we predict insurance product interest for clients, with similar or even higher accuracy compared to current statistical models?

	How fast can machine learning algorithms create models for prediction of insurance product interest for different datasets?
	How does feature scaling influence the model creation speed of the algorithms?
	How much do various parameters influence the prediction accuracy of the algorithms? Can we eliminate the tuning phase?
	How well does the model creation time of algorithms scale to large datasets?

	How well can machine learning algorithms handle irrelevant features?

	Conclusions
	Research questions
	How accurate can machine learning algorithms predict insurance product interest for different data-sets?
	How fast can machine learning algorithms create models for prediction of insurance product interest for different datasets?
	How well can machine learning algorithms handle irrelevant features?
	Verdict

	Future work

	Bibliography
	Appendix
	Explanation of algorithms
	Naive Bayes
	Assumptions

	Linear Regression
	Overfitting
	Solving minimization problem
	Output
	Parameter tuning

	Polynomial Regression
	Picking features

	Logistic Regression
	K-nearest neighbours
	Classification
	Parameter tuning

	K-means classification
	Minimizing the cost function
	Parameter tuning

	Neural Network
	Hypothesis
	Minimizing the cost function
	Initialization
	Parameter tuning

	Support Vector Machine
	Cost function
	Introducing non-linearity
	Parameter tuning

	Decision Tree
	Regularization
	Parameter tuning

	Classification Rule Mining
	Parameter tuning

	Results
	How accurate can machine learning algorithms predict insurance product interest for different data-sets?
	Should we optimize for correct classifications or for good probabilities to get the best accuracy of predictions?
	How does feature scaling influence the algorithms and their prediction accuracy?
	Which algorithms have the highest potential for accurate predictions?

	How fast can machine learning algorithms predict insurance product interest for different datasets?
	How much do various parameters influence the prediction accuracy of the algorithms? Can we eliminate the tuning phase?
	How well do algorithms scale to large data sets?

	How well can machine learning algorithms deal with non information?

