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Abstract 

Sepsis is a major problem and the main cause of death in intensive care units around the world. 

Despite advances in modern medicine and medical technologies, sepsis remains a leading cause 

of death. Overall mortality rates for sepsis neared 30% in 1979, but since 2000, these rates have 

decreased to 20%. The mortality rate for septic shock patients, however, is as high as 80%, 

which is much higher than the mortality of sepsis patients. In order to reduce the mortality rate 

of sepsis and septic shock patients, the severity of illness of such patients must be identified 

and treated immediately. Therefore, numerous mortality risk prediction tools were proposed to 

assist clinicians in the decision-making process. These prediction tools help clinicians in 

determining the severity of illness and, consequently, in aligning the type of treatment an ill 

patient receives. Probabilistic Fuzzy Systems, one of the mortality risk prediction tools, 

demonstrated satisfactory results in predicting the severity of illness. However, the definitions 

of sepsis and septic shock were updated in 2016; thus, the applicability of Probabilistic Fuzzy 

Systems based on these updated definitions has not yet been verified. Furthermore, the current 

literature lacks a well-structured approach for predicting mortality risk following the adoption 

of new definitions in this subdomain. In this master’s thesis, we focus on septic shock patients 

and address this research gap by providing a comprehensive approach toward the adaptation 

of mortality risk prediction tools to newly established definitions. Then, using both the adapted 

tool and traditional machine learning techniques, we build a model to predict the mortality risk 

of a patient. Finally, we compare the performance of both the old and updated definitions and 

present the impact of the updated definitions on predicting the mortality rate of septic shock 

patients. 

 

Keywords: Sepsis, SIRS, SOFA, Septic Shock, Sepsis-2, Sepsis-3, Mortality, Probabilistic Fuzzy 
Systems. 
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1. Introduction 

This master’s thesis is a graduation project for the Business Information Systems master’s 

degree at Eindhoven University of Technology (TU/e) and has been accomplished in 

collaboration with Maastricht University Medical Center (MUMC).  

Section 1.1 presents the thesis context by introducing the motivation behind mortality risk 

predictions within the Intensive Care Unit. The problem statement is formulated in Section 1.2 

by emphasizing the need for prediction models in global healthcare. The research question of 

this project is stated in Section 1.3. The main question and sub-questions required to meet the 

objectives of this master’s thesis and to address the gaps identified in the literature review are 

presented. Lastly, the overall research method and the outline of the subsequent chapters are 

described in Section 1.4. 

1.1  Research Context 
 

Sepsis is a major problem and the main cause of death in intensive care units (ICU) [3]-[4]. It is 

more common than heart attacks and results in more deaths than any cancer worldwide [9]. 

Kissoon et al. [5] claim that sepsis causes 60–80% of lost lives per year. Despite advances in 

modern medicine and medical technologies, sepsis remains a leading cause of death. The 

results of various research studies conducted by Benjamin et al. [6], Kaukonen et al. [7], and 

Shen et al. [8] indicate that the number of sepsis cases has increased steadily for the past 20 

years. Overall mortality rates for sepsis neared 30% in 1979, but since 2000, these rates have 

decreased to 20% [9]. The mortality rate for septic shock patients, however, is as high as 80% 

[12], which is much higher than the mortality of sepsis patients. These mortality rates are 

considered unacceptably high [10]. In addition to the associated mortality, sepsis also 

represents a large financial burden on global healthcare. The Agency for Healthcare Research 

and Quality reported that with costs of over $20 billion, sepsis was the most expensive medical 

condition treated in U.S. hospitals in 2011 [11]. Such high mortality rates and treatment costs 

were observed in the Netherlands as well. In the first half of 2009, the mortality rate due to 

severe sepsis and septic shock in ICU patients in the Netherlands was 34.8% [71]. Various 

“surviving sepsis” campaigns were launched to increase the awareness about sepsis among the 

medical profession, governments, and the general public. Alternatively, numerous mortality risk 

prediction tools were proposed to assist clinicians in the decision-making process related to 

treatment and prognosis [34].  

These prediction tools help clinicians determine the severity of illness and, consequently, 

customize the type of treatment an ill patient receives. This information helps clinicians in 
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making the choice of whether to intensify or reduce the treatment, which has an impact on 

saving resources (time, cost, etc.). However, what adds substantial value to this tool is that this 

information has a direct impact on selecting a treatment that can save a patient’s life, making it 

a life-saving prediction tool [13].  

In an extensive research study conducted by [72], accurate overall mortality prediction was 

observed in the mortality scoring systems, such as APACHE II, SAPS II, MPM II0, and MPM II24. 

However, since the definition and assessment of sepsis were both changed by Sepsis-3 in 2016, 

these predictions need to be remodeled. By making use of Probabilistic Fuzzy Systems (PFS), a 

type of classifier that has demonstrated satisfactory results in predicting the severity of illness 

[14], we can develop a model to forecast the mortality risk of septic shock patients. The goal of 

this project was to identify the possibility of model migration due to change of definitions and 

the consequences of that change on the modeling activities. The PFS-based model was used to 

generate the mortality risk indices of septic shock patients after 72 hours of admission based on 

the updated sepsis definitions.  

1.2  Problem Statement 
 

Following the above observations, the problem addressed in this thesis can be summarized as 

follows: 

 

Problem Statement: There is no precise approach in model migration due to change of 

definitions in predicting the mortality risk of septic shock patients. 

1.3  Research Questions 
 

The objective of this thesis was achieved by answering the following main question and sub-

questions: 

How to migrate the model due to change of definitions and what are the consequences of that 

change on the modeling activities? 

 

A. How should a predictive model be trained? 

A final machine learning model is a model used to make predictions on new data. In our case, it 

is the most essential tool necessary for mortality risk prediction. This model is responsible for 

correctly classifying the outcome of a patient. Specific technique has to be identified and 

employed in order to train a prediction model and to obtain the best outcome. The final 

predictive model identifies the applicability of PFS for classification. 

 



 
 

3 
 

B. What is the impact of updated definitions on the performance of the PFS 

predictive model? 

One of the main factors affecting the performance of the PFS predictive model is data. Specific 

data has to be gathered and processed that can be further used by the model. The final data is 

gathered and preprocessed using the updated definitions, thus having a vital effect affecting on 

the performance of the model. The impact of updated definitions may then be identified by 

comparing with the outcome of old definitions. By comparing the outcomes affected by these 

definitions, we may suggest clinicians to use the definition that had a better impact on the 

performance.  

C. What are the requirements for predicting mortality risk if such changes occur in 

the future?  

Due to advances in technology, the changes in a healthcare domain are inevitable. Therefore, it 

is utmost priority to know what steps need to be taken in order to adapt the new changes, and 

consequently analyze the worthiness of these definitions by building a model upon updated 

definitions.  

D. What are the differences between the old model and the new model? 

Changes in the definitions result in differences between the models. Knowing these 

dissimilarities, such as differences in variables and patient cohort, may help clinicians in 

understanding the essence of updated definitions. 

1.3.1 Scope  
 

The research focuses mainly on migration of the model due to adjustment of definitions. The 

mortality prediction of septic shock patients was performed using Probabilistic Fuzzy Systems in 

a Dutch setting based on old and updated sepsis definitions and was conducted within the 

Eindhoven University of Technology (TU/e). External data were obtained from Maastricht 

University Medical Center+ (MUMC+) as a part of the collaboration between TU/e and MUMC+. 

The hospital supervisors, as well as external supervisors, are dr. Dennis Bergmans and prof. dr. 

Walther van Mook, internists-intensivists.  

1.4  Research Method and Outline 
 

The following steps were taken in order to address the research questions: 

 The general description of sepsis and its conditions have been described first. A detailed 

explanation can be found in Chapter 2. This chapter also contains a discussion about the 

existing decision support systems in the ICU and the use of Probabilistic Fuzzy Systems 

(FPS) for mortality prediction. 
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 Chapter 3 presents the methodology followed in this thesis and complete 

implementation of Probabilistic Fuzzy Systems based on updated definitions to predict 

the mortality of septic shock patients.  

 

 The results are presented in Chapter 4, where the differences between the models are 

also discussed.  

 

 The conclusion of this thesis is presented in Chapter 5 that also contains limitations of 

the proposed method and discussions about future work. 

 

 A bibliography can be found at the end of the document. 
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2. Mortality Risk Prediction for Sepsis 

A literature review is necessary to identify what has and has not already been investigated. 

Furthermore, it is important to identify the key concepts, data sources, and methodologies that 

are relevant to our research and have been previously investigated by other researchers. 

Hence, in order to address the problem statement, a thorough literature review was 

conducted. Firstly, the definition and prevention of sepsis are identified and presented, 

referring to various research papers. Secondly, sepsis-related decision support systems in the 

Intensive Care Unit are defined. Finally, the Probabilistic Fuzzy Systems used for predicting the 

mortality risk of sepsis and septic shock patients and the subsequent results are described.  

2.1 Sepsis 
 

The subsection starts with the introduction of the sepsis definition, mostly focusing on general 

information about sepsis. Lastly, the conditions of sepsis and its assessment criteria are 

presented in the level of detail that is necessary for mortality prediction.  

2.1.1 Definition 
 

The immune system of every person is strong enough to fight an infection in order to make the 

body healthy again. Sometimes, unfortunately, the body overreacts and causes tissue damage, 

organ failure, and death. This is known as sepsis and is defined as a life-threating organ 

dysfunction caused by a dysregulated host response to infection [1]. 

Until 2016, a diagnosis of sepsis required having two or more Systemic Inflammatory Response 

Syndrome (SIRS) criteria in combination with an infectious cause of SIRS [1]. Bone et al. [2] 

suggested that sepsis is a subcategory of SIRS, which is a serious condition related to systematic 

inflammation, organ dysfunction, and organ failure. However, in February of 2016, the Third 

International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) was held to evaluate 

and update the definitions and criteria for sepsis and septic shock. The need for an update was 

necessary due to advances regarding unraveling the pathobiology (changes in organ function, 

morphology, cell biology, biochemistry, immunology, and circulation), management, and 

epidemiology of sepsis [1]. Proposed by Shankar-Hari et al. [1], SIRS does not reflect the actual 

existence of sepsis in ICU patients, since it is known that changes in white blood cell count, 

temperature, and heart rate reflect inflammation and that sepsis is now identified as 

comprising early activation of both pro- and anti-inflammatory responses [15]. Thus, SIRS was 

completely excluded from the definition of sepsis [1], resulting in redefinition for the states of 

sepsis. As known previously, Bone et al. [2] defined three altered states of sepsis: severe sepsis, 
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sepsis-induced hypotension, and septic shock. However, severe sepsis was claimed as being 

redundant by Shankar-Hari et al. [1] and, thus, only two states of sepsis were retained: 

1. Sepsis: life-threatening organ dysfunction caused by a dysregulated host response to 

infection, 

 

2. Septic Shock: subset of sepsis in which underlying circulatory and cellular/metabolic 

abnormalities are profound enough to substantially increase mortality. 

 

The Third International Consensus Definitions for Sepsis and Septic Shock not only updated the 

definition of sepsis but also assessed new clinical criteria for sepsis and septic shock. The major 

change to criteria was the introduction of a Sequential [Sepsis-related] Organ Failure 

Assessment (SOFA) score for the identification of the condition. Complete definitions are in 

Table 1: 

 

Organ dysfunction 

can be identified as 

an acute change in 

total SOFA score ≥ 2 

points consequent to 

the infection. 

 

Note: The baseline 

SOFA score can be 

assumed to be zero 

in patients not 

known to have 

preexisting organ 

dysfunction. 

Respiratory system Nervous system 

PaO2/FiO2 (mmHg) SOFA score GCS SOFA score 

<400 1 13-14 1 

<300 2 10-12 2 

<200 and mechanically ventilated 3 6-9 3 

<100 and mechanically ventilated 4 <6 4 

Cardiovascular system Liver 

MAP or administration of 

vasopressors required 

SOFA score Bilirubin (mg/dl) 

*μmol/L+ 

SOFA  

score 

MAP < 70 mm/Hg 1 1.2-1.9 [>20-32] 1 

dop ≤ 5 or dob (any dose) 2 2.0-5.9 [33-101] 2 

dop > 5 or epi ≤ 0.1 OR nor ≤ 0.1 3 6.0 – 11.9 [102-204] 3 

dop > 15 or epi > 0.1 OR nor > 0.1 4 >12.0 [>204] 4 

Kidneys Coagulation 

Creatinine (mg/dl) *μmol/L+  

(or urine output) 

SOFA score Platelets x 103/μl SOFA score 

1.2-1.9 [110-170] 1 < 150 1 

2.0-3.4 [171-299] 2 < 100 2 

3.5 – 4.9 [300-440] (or <500 ml/d) 3 < 50 3 

>5.0 [>440] (or <200 ml/d) 4 < 20 4 

Table 1: SOFA scoring system 

MAP – Mean Arterial Pressure 
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GCM – Glasgow Coma Scale 

Dop – Dopamine 

Dob – Dobutamine 

Epi – Epinephrine 

Nor - Norepinephrine  

 

The Sequential Organ Failure Assessment (SOFA) score numerically quantifies the number and 

severity of failed organs. By the new definitions, an increase in the SOFA score of 2 points or 

more represents an organ dysfunction. A sepsis patient with such scores has an in-hospital 

mortality greater than 10% [58]. The complete description of the SOFA score is presented in 

2.3.1.1. 

 

In order to quickly identify patients with a suspected infection that are at greater risk for a poor 

outcome, new assessment criteria, known as Quick SOFA (qSOFA), was introduced. Poor 

outcomes are expected if at least two of the following qSOFA conditions are present: 

 

1. Respiratory rate ≥ 22/min; 

2. Altered mentation; 

3. Systolic blood pressure ≤ 100 mmHg. 

 

A patient is considered to have septic shock if sepsis with persisting hypotension requiring 

vasopressors to maintain MAP ≥ 65mmHg and a serum lactate level > 2 mmol/L (18 mg/dL) is 

observed despite adequate volume resuscitation [1]. 

 

In modern ICU settings, multiple variables of patients are recorded and available for 

measurement. By making use of this information, the values that are crucial for the 

identification of sepsis and septic shock patients can be extracted. Furthermore, we combine 

that information with demographics recorded upon admission to generate additional insights 

regarding the distribution of sepsis and septic shock mortality rates among age, year, length of 

stay, gender, etc. 

2.2 Decision Support Systems in ICU 
 

This subsection starts with a general description of decision support systems in the ICU, known 

as scoring models, to predict outcomes, along with exploring the disease severity of patients 

with sepsis. Next, widely used scoring models and the development of their versions are 

presented. Lastly, the prediction of mortality rates using Probabilistic Fuzzy Systems is 

reviewed.     
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2.2.1 Scoring Models 
 

The first scoring model was developed more than 35 years ago and has since been the most 

common approach in assessing the severity of illness among critically ill patients and in 

predicting their mortality rate. These assessments improve clinical decision-making, which 

results in the improvement of patient outcomes. However, constant changes in intensive care 

practices, patient demographics, and disease pervasiveness [18] affected the continuous 

update of scoring models to provide more accurate results. Generic scores, such as Acute 

Physiology and Chronic Health Evaluation (APACHE), Simplified Acute Physiology Score (SAPS), 

Mortality Probability Model (MPM), and Sequential Organ Failure Assessment (SOFA), are 

currently the most commonly used prediction models in the ICU. The selection of variables and 

their weights for these models used to be performed by a panel of experts. However, since 

1985, the selection process has heavily relied on multiple logistic regressions. Common 

variables, such as age, surgical status, chronic health status, physiology, and acute diagnosis, 

are the main variables of such models. Upon admission to the ICU, risk-scoring models such as 

APACHE, SAPS, and MPM use the physiological values of the patient (within 24 hours) to 

determine the morbidity and mortality rates.  

2.2.1.1 Methodology of Scoring Models 
 

The abovementioned models have similar functionality. Initially, a nurse or a doctor obtains 

various physiological measurements, such as the systolic blood pressure, respiratory rate, and 

heart rate of a patient. These values are then converted to relevant points. Following the 

medical calculations by using each point, the total score is identified. As a result, this total score 

is used for determining the illness’s severity and for predicting a patient’s mortality rate. 

Although the methodology of scoring models is comparable, the variables being used for each 

model may vary. For instance, the SAPS II score uses 12 physiological variables and 3 disease-

related variables, while APACHE II also uses 12 physiological variables but only 2 disease-related 

variables are being used for prediction. Moreover, unlike the SAPS II score, the APACHE II score 

can be converted to a mortality rate only if the reason for ICU admission is known. The 

complete description and calculation methods of each scoring model are described below. 

SOFA 

The Sepsis-related Organ Failure Assessment score, also known as SOFA, was developed in 1994 

to assess the degree of organ dysfunction/failure of an individual or a group of patients. Unlike 

other scoring models, SOFA is not intended for predicting the mortality rate of a critically ill 

patient. The SOFA score is based on 6 different scores: respiratory, cardiovascular, hepatic, 

coagulation, renal, and neurological systems. A score from 0 (normal) to 4 (high degree of 

dysfunction) is assigned to each system depending on the measurement. The SOFA score range 
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is between 0 and 24. After assessing each physiological system separately, the total score is 

determined and the risk of morbidity is identified. The complete list of all variables, each 

representing an organ system, and relevant SOFA scores are described in Table 1. 

 

Although SOFA is not intended for predicting the outcome, Vincent et al. [37] made a rough 

estimation of correlation between the total score and mortality risk. These estimations can be 

found in Table 2.  

   

Maximum SOFA 

score 
Mortality rate 

0-6 < 10% 

7-9 15-20% 

10-12 40-50% 

13-14 50-60% 

15 >80% 

15-24 >90% 

Table 2: Correlation of maximum SOFA score with mortality rate 

In 2008, a systematic review of studies evaluating the performance of Sepsis-related Organ 

Failure Assessment (SOFA)-based models was initiated by Minne et al. [73]. Eighteen articles 

related to predicting mortality in patients in the ICU using SOFA were selected for this study. 

The results of this review revealed that models based on SOFA scores at admission had better 

performance than SAPS II models. However, the authors suggest using the sequential SOFA 

derivatives with APACHE II/III and SAPS II models since this approach has demonstrated 

improved performance. In another study, this one conducted by Safari et al. [74] the accuracy 

of the SOFA score in predicting the 30-day outcome of critically ill patients was assessed. This 

study included 140 patients older than 18 years old. The outcome of the research concluded 

the fair accuracy of the SOFA scoring system.  

 APACHE I-IV 

The first scoring system was developed in 1981. As described by Knaus et al. [20], the system, 

known as APACHE, is used to assess the degree of illness and to determine the chronic health 

status of patients by using physiological values. However, in 1985, a revised model, called 

APACHE II, was introduced, the major change of which was the reduction of physiological 

variables from 34 to 12. APACHE II is currently the most widely used scoring model. The 

maximum score of 71 can be obtained by assessing 12 routine physiological measurements 

(AaDO2 or PaO2, temperature, mean arterial pressure, pH arterial, heart rate, respiratory rate, 

sodium (serum), potassium (serum), creatinine, hematocrit, white blood cell count, and 
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Glasgow Come Scale). The worst 12 values of each measurement during the first 24 hours after 

the admission are utilized together with the age and chronic health status of the patient. The 

higher the score, the more severe the illness is. Although the previous health status of an ill 

person is not required for determining the severity of disease, it is one of the main criteria used 

in predicting the mortality risk. The morbidity and mortality rate of a patient may be calculated 

by using the following APACHE II equation:  

x=-3.517+(0.146*points)+0.603(if emergency surgery)+(Admission Indication Weight) 

ln(
 

   
)=x 

 

   
=                                                        (1) 

R (percent mortality) = 
  

         

APACHE III was introduced in 1991 [21] but was validated and updated in 1998 [22]. Similar to 

its predecessors, this model also uses the data of a patient collected during the first 24 hours of 

ICU admission. As described by Knaus et al. [20], the model also requires sex, race, preexisting 

comorbidities, and location prior to ICU admission. Unlike APACHE and APACHE II, this version 

uses logistic regression for the selection of variables and their weights. The range of an APACHE 

III score is between 0 and 299 points. The severity of illness is determined in the same way as 

previous APACHE models. A higher score means a higher acuteness and, respectively, a greater 

mortality risk. The last version of APACHE models, named APACHE IV, was the remodel of 

APACHE III and was developed in 2006. Although it uses the same physiological variables and 

weights as APACHE III, different predictor variables and refined statistical methods were 

incorporated in the final version of this scoring model [23]. In terms of performance, because 

the first developed APACHE was not intended for mortality prediction, numerous comparisons 

were conducted between the last three models of APACHE (II, III, IV). While comparing the 

performance of APACHE II and APACHE III in predicting the mortality of patients with sepsis, 

Sadaka et al. [26] concluded that both models perform equally well and both scores have very 

good discriminative powers. Further, Ayazoglu [24] compared the performance of APACHE II 

and APACHE IV scoring systems. His research indicated that these scores are equally good in 

predicting mortality rate in ICU stroke patients, but APACHE IV had a slight advantage over 

APACHE II in its reliability of prediction. In general, Abdelbaset et al. [25] suggest that each 

scoring system has a different aim and measurements. Hence, they should be perceived as 

complementary and not mutually exclusive. 

  MPM 

The Mortality Probability Model, abbreviated as MPM, consisted of two different models: an 

admission model with seven admission variables and a 24-hour model with seven 24-hour 

variables [27]. Similar to previously mentioned scoring models, MPM required a revision as 
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well; hence, MPM II was developed in 1993. The major difference between these models was 

the introduction of a logistic regression technique [28]. Like its predecessor, MPM II also has 

two scores, namely, MPM0 and MPM24. Unlike MPM models, MPM0 consists of 15 admission 

variables. MPM24, conversely, consists of 5 admission and 8 additional variables. Lemeshow et 

al. [27] claim that MPM0 is the only available model that may be used upon ICU admission. 

Although most well-known scoring models weight the variables, MPM II variables are labeled as 

either present or absent and are given a score of 1 or 0 respectively. After obtaining the 

required variables, a probability of hospital mortality is calculated by using a logistic regression 

equation. Additionally, to gain insight into resource utilization, Rapoport et al. [29] developed a 

Weighted Hospital Days scale (WHD-94), where the weights were assigned to days in the ICU 

and to days after the discharge from the ICU. The WHD-94 equation is capable of predicting 

resource utilization by calculating an ICU’s mean. To assess clinical performance, a revised 

MPM0, MPM0-II, was also developed by Rapoport et al. [29]. However, these models do not 

calibrate on contemporary data. Thus, both MPM0-III and WHD-94 models were updated in 

2007 [30], [31] to estimate mortality probability and resource utilization respectively. MPM0, 

MPM24, MPM48, and MPM72 models are part of Mortality Probability Models and are used for 

respective time periods from ICU admission. In terms of performance, except for the MPM0 

model, other models have shown good calibration and discriminative powers [30], [31], [32]. 

 SAPS 

The Simplified Acute Physiology Score, simply SAPS, was developed in 1984 and was aimed at 

predicting the risk of death in ICU patients [33]. SAPS was calculated using 13 weighted 

physiological variables, and similar to APACHE, it used the worst 12 values obtained during the 

first 24 hours after admission to the ICU. In 1993, however, Le Gall et al.[13] developed a newer 

version of this scoring model, known as SAPS II, where 12 physiological variables, 3 underlying 

disease variables, age, and type of admission were used for logistic regression analysis to build 

this model. The score was validated using 12,997 patients from 137 ICUs in 12 countries [33]. 

Although SAPS II was found to be superior to SAPS, a study conducted by Metnitz et al. [36] 

found it to be poorly calibrated. This model’s score range is between 0 and 163 points. Like 

APACHE, SAPS II weights were estimated using multiple logistic regression. Total score and 

hospital mortality rate may be calculated using (2). 

logit=-7.7631+(0.0737*score)+0.9971*ln(score+1)    (2) 

Mortality = 
      

          

In 2005, a completely refined model of SAPS, the SAPS 3, was created. Unlike other scoring 

models, SAPS 3 uses 20 variables divided into three sub-scores: Patient characteristics prior to 

admission, the reason for admission, and the worst values measured within one hour before or 
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after ICU admission. The score ranges from 0 to 217. SAPS 3 equations are customized based on 

the locality of patients, which is the main advantage over other risk-scoring models. Using this 

model, the mortality rate of 6 regions—Australasia; Central and South America; Central and 

Western Europe; Eastern Europe and Northern Europe; Southern Europe and the 

Mediterranean; and North America—may be calculated. Similar to its predecessor—SAPS II—

weights for SAPS 3 were assessed using multiple logistic regression [34]. In research conducted 

by Moreno et al. [75], SAPS 3 has demonstrated good discrimination, calibration, and goodness 

of fit. 

 qSOFA 

Quick SOFA, simply known as qSOFA, is a new scoring system introduced at the 2016 Third 

International Consensus Definitions for Sepsis and Septic Shock. It is aimed toward the 

identification of patients with suspected infection who are more likely to have a poor outcome 

outside the ICU. Moreover, qSOFA simplifies the SOFA score by only having 3 clinical criteria. 

The qSOFA score ranges from 0 to 3. The assessment of qSOFA and its corresponding score is 

given in Table 3. 

Assessment 
qSOFA 

score 

Low blood pressure (SBP ≤ 100mmHg) 1 

High respiratory rate (≥ 22 breaths/min) 2 

Altered mentation (GCS < 15) 3 

Table 3: qSOFA assessment 

For instance, a patient with low blood pressure (e.g. 60mmHg) and altered mentation (GCS=12) 

would score 4 qSOFA points. A qSOFA score of ≥ 2 proposes a 3- to 14-fold increase in the rate 

of in-hospital mortality [58]; therefore, the presence of organ dysfunction in such patients 

should be assessed by calculating a SOFA score as well. However, Vincent et al. [37] claim that a 

patient may have a qSOFA ≥ 2 without infection, or sepsis may be present without a qSOFA 

score ≥ 2 in numerous acute conditions. Thus, quick SOFA has raised many concerns among 

scientists and is considered an imperfect marker of sepsis. 

2.3 Probabilistic Fuzzy Systems for Mortality Prediction 

 

The term fuzzy and fuzzy-related concepts were proposed by Zadeh [43]. Fuzzy logic is a 

computing approach where the “degrees of truth” may be any real number between 0 and 1, 

unlike Boolean logic, where the variables take only “true or false” (1 or 0) values. Because 

fuzziness and probability are distinct phenomena, they should be accepted as complementary 

[38]. The first use of fuzzy logic in clinical decision support systems was proposed by Warren et 
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al. [76], but uncertainty concerning the occurrence of an event in the future required a 

different approach. Thus, in 2011, Meghdadi et al. [39] recommended Probabilistic Fuzzy 

Systems (PFS) to model vagueness in linguistic terms (fuzziness) and probabilistic uncertainty 

simultaneously. 

The first use of PFS for classification to predict the mortality of ICU septic shock patients was 

initiated by Fialho et al. [14]. A total of 131 patients admitted to the ICU with abdominal septic 

shock were selected for the experiment. The following physiological values, including systolic 

blood pressure, platelets, spO2, white blood cell count, arterial pO2, and PTT, were carefully 

chosen based on the previous process of feature selection [40]. Data preprocessing was 

initiated in order to improve the quality of the data. For instance, the difference in sampling 

periods urged the necessity of choosing a template variable. Heart rate was selected as a 

template variable since it was the most frequently measured variable, with one sample per 

hour. In terms of model setup, two models, namely, Fuzzy Systems and Probabilistic Fuzzy 

Systems, were trained and tested on equally-sized subsets. Then the fuzzy c-means clustering 

approach, with two parameters (number of clusters and the degree of fuzziness of the 

clustering), was used for PFS modeling. As the final step, the model assessment was performed 

and the discrimination, sensitivity, specificity, and accuracy of the model were obtained. To 

measure the difference in performance, first-order Takagi-Sugeno Fuzzy Models (FM) were 

applied to the same data set [41]. As a result, both FPS and FM had good results in all 

assessment criteria. The complete results of the research are presented in Table 4.   

 PFS FM 

AUC 0.80 ± 0.02 0.81 ± 0.03 

Specificity 0.79 ± 0.03 0.79 ± 0.02 

Sensitivity 0.81 ± 0.04 0.82 ± 0.03  

Accuracy 0.78 ± 0.03 0.80 ± 0.02 

Table 4: Results of Probabilistic Fuzzy Systems and Fuzzy Models [14] 

The latest research of Probabilistic Fuzzy Systems for mortality prediction was also carried out 

by Fialho et al. [64]. In total, 4 models, specifically the Probabilistic Fuzzy Systems with 

maximum likelihood estimation (PFS-ML) model, Probabilistic Fuzzy Systems with conditional 

probability (PFS-CP) model, Fuzzy Model (FM), and Logistic Regression (LR) model, were 

assessed. The primary goal was to calculate the patient condition (alive or deceased) in a 72-

hour window; hence, 27 variables representing 81 septic shock patients were selected. Briefly, 

Fuzzy Modeling, Probabilistic Fuzzy Systems, Sequential Method, maximum likelihood 

estimation, feature selection, model assessment, and simplification of fuzzy rules were 

implemented consecutively to obtain and compare the final results. Out of 81 patients, 36 were 

deceased, which resulted in a 42.3% mortality rate. Regarding classification performances, 
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except PFS-CP, all three types of models have demonstrated satisfactory results. Concerning the 

selected variables, each modeling technique has selected a different number of features; the 

most common features are diastolic blood pressure, platelets, spO2, and FiO2. Finally, the results 

in Table 5 were obtained after the assessment of all models based on most predictive variables 

through 10-fold cross validation. 

 PFS-ML PFS-CP FM LR 

AUC 0.81 ± 0.02 0.68 ± 0.03 0.83 ± 0.03 0.83 ± 0.02 

Specificity 0.81 ± 0.03 0.67 ± 0.02 0.82 ± 0.03 0.83 ± 0.03 

Sensitivity 0.78 ± 0.03 0.65 ± 0.03  0.82 ± 0.02  0.85 ± 0.02  

Accuracy 0.83 ± 0.04 0.70 ± 0.02 0.84 ± 0.03 0.81 ± 0.03 

Table 5: Results of PFS-ML, PFS-CP, FM, and LR models [64]. 

From the results of Fialho’s works, we can conclude that Probabilistic Fuzzy Systems 

demonstrate satisfactory results in Mortality Prediction. Therefore, Probabilistic Fuzzy Systems 

were employed to reach the objectives of this master thesis. 
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3. Mortality Prediction Modeling with Fuzzy 

Systems 

This chapter starts with the introduction of Fuzzy Modeling and the type of fuzzy system, 

namely, the Probabilistic Fuzzy System (PFS). Later, theoretical analysis of selected feature 

selection, model assessment, and simplification of fuzzy rules are presented. The general 

description of chosen data sets, applied data preprocessing techniques, and details of the 

experimental setup are presented in this chapter as well. 

3.1  Modeling 
 

The basics of the selected modeling technique used to meet the objectives of this thesis are 

presented in the following subsections. In mortality prediction, the output is considered as a 

binary problem with two classes. If c is denoted as an output and C as its class, 1 2{ , }c C C , 

where each C corresponds to the classes “patient will survive” (0) and “patient will die” (1) 

respectively.  

3.1.1 Fuzzy Modeling 
 

The concept of a set and set theory are powerful concepts in mathematics. As described by the 

principal notion underlying the set theory, an element can exclusively belong or not belong to a 

set. However, it is almost impossible to represent many elements of human speech, such as 

short distance, weak person, and talented student. Thus, Zadeh [43] introduced the fuzzy set 

theory to deal with uncertainty as regular sets with sharp boundaries. This approach is very 

powerful since “it provides not only a quantitative model, but also a linguistic interpretation in 

the form of rules and logical connectives” [14]. Contrary to clinical set theory, elements in fuzzy 

sets are not seen as being either part of it or not but rather being similar to other elements 

described by a fuzzy set. The numerical (membership) value assigned to elements varies from 1 

(equal) to 0 (dissimilar).  

 

In order to describe an element by assigning a membership value, sets of if–then rules with a 

fuzzy inference mechanism is used. The collection of simple if–then rules is part of fuzzy logic 

systems, which take a number of fuzzy sets as inputs (premises) and create fuzzy sets as 

outputs (conclusions). Such if–then rules can easily be interpreted by a human reader. This 

graduation project uses first-order Takagi-Sugeno (TS) Fuzzy Interference Systems [60] to 

classify each instance of a data set to one of the predefined classes. Takagi-Sugeno rules are 

defined as follows: 
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Rule c

jR : If 1x is 1jA  and … and Mx  is jMA              (3) 

Then ( ) ( ), 1,2,..., ,c
c jd x f j N x  

 

where
jf is the consequent function (output) for rule jR , M is the total number of inputs 

(features)  and the index 𝑐 indicates that the rule is associated with the output class 𝑐 [44]. 

Considering the fact that predicting mortality risk is a classification problem, the continuous 

output ' {0,1}c  should be converted into the binary output {0,1}c . Thus, the threshold t is 

required to carry this operation. To satisfy the abovementioned rules, if 'c <t, then c = 0, and if

'c t , then c = 1. 

3.1.1 Probabilistic Fuzzy System 
 

A Probabilistic Fuzzy System consists of a set of rules whose antecedents are fuzzy conditions 

and whose consequents are probability distributions. This fuzzy system was developed based 

on the “probability of a fuzzy event” concept suggested by Zadeh [43].  

Consider the task of determining the crisp class 1{ ,..., }cc C C to which a data point 

1( ,..., )dx x X x  belongs. Since it is a binary problem, the probabilistic fuzzy classifier has the 

following form [44]: 

 

                                     Rule jR : If x  is jA  then 1c C  with probability , 1jp and 

                      2c C with probability , 2jp                                       (4) 

 

where 1,...,j J  corresponds to the rule number, jA  is the antecedent fuzzy set of the thj rule, 

, 1jp  and , 2jp  are the probability parameters of patients surviving ( 1C ) and patients dying ( 2C ) 

classes, respectively, for rule j . 

 

The antecedent fuzzy sets jA  in (4) are defined in the d -dimensional input space X . It is 

important for each fuzzy set to correspond to a probabilistic fuzzy rule. Furthermore, the 

probability parameters ,j kp  in (4) satisfy 

 

                          , 0   for    1,...,  and 1,...,j kp j J k c                           (5) 

and 

,

1

1
C

j k

c

p


    for 1,..., .j J                                 (6) 
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Let ( )Aj x denote the membership function of a fuzzy set jA . A probabilistic fuzzy classifier with 

rules given by (4) was used to estimate Pr( | x)c , the conditional probability distribution of c

given x . As described in Takagi-Sugeno fuzzy reasoning, the normalized membership functions 

Aj define the probabilistic fuzzy rules activations. Therefore, the estimate ˆ ( | x)kp C  of a 

conditional probability Pr( | x)kC  is obtained as follows [45]: 

 

, .

1

( | ) ( )ˆ
J

k j j k

j

p C p



 x x                   (7) 

 

where ( )Aj x   indicates the normalized rule activation: 

 

1

( )
( ) .

( )
j

Aj
A

J
Aj

j











x
x

x
                               (8) 

 

Given x , ( )jA x  denotes the degrees of fulfillment of each of the probabilistic fuzzy rules. 

Obtained as a weighted average of the rules that fire, an estimate of the probability is provided 

by (7). Certainly, as with traditional fuzzy systems, the accuracy of the estimate is correlated 

with the number of rules. A higher number of rules provide better accuracy of the estimate. 

Furthermore, the estimated conditional probability distribution ˆ ( | )Pr c x  can be used in order 

to classify a data point x. The probability of misclassification may be minimized by the following 

classification rule:  

1 2

ˆ

{ , }

ar m | )ˆg ax (C

c C C

Pr c


 x                              (9) 

Thus, in a probabilistic fuzzy classifier, two conditions must be identified: Firstly, the 

parameters and type of the antecedent membership functions; secondly, the probability 

parameters of the rule consequents.   

The parameters of the probabilistic fuzzy classifiers can be determined in several ways. Kaymak 

et al. [43] proposed a sequential method for parameter estimation in a probabilistic fuzzy 

classifier. The approach is as follows. The parameters are divided into two disjoint sets, and 

each set of parameters is estimated. Usually, the first set of parameters is used for determining 

the parameters of the antecedent membership functions by using unsupervised learning 

methods or expert knowledge. Furthermore, assuming that the parameters in the first set are 

constant, the probability parameters for the rule consequents are estimated using a formula 

based on the probability measures of fuzzy events.  
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Waltman et al. [41] suggested that the sequential parameter estimation method does not 

provide optimal estimates of the parameters in a probabilistic fuzzy classifier. The main 

drawback of this approach is described as the parameters not being estimated simultaneously, 

where the optimal parameters in one set of parameters may not be optimal for the entire 

classifier. Additionally, the performance of the classifier is negatively affected by the fact that 

unsupervised learning of the antecedent parameters does not take class labels into account. Yet 

another issue with this approach is that the Conditional Probability (CP) method does not 

maximize the probability of observing the data set available for parameter estimation. 

Therefore, Waltman et al. [41] proposed a Maximum Likelihood Estimation (MLE) method that 

is superior to sequential parameter estimation. A proposed MLE method was used to estimate 

both the antecedent parameters and the probability parameters for the probabilistic fuzzy 

classifier while maximizing the likelihood of the data set available for parameter estimation and 

estimating all parameters simultaneously to meet the identification objective. 

 

However, Fialho et al. [14] demonstrated that the combination of Sequential Parameter 

Estimation and Maximum Likelihood Estimation methods provide satisfactory results. Hence, in 

this work, sequential parameter estimation is used for finding the initial values of the 

parameters, following the optimization of these values by applying the MLE method.  

3.1.1.1 Sequential Method for Parameter Estimation 
 

In order to estimate the rule and probability parameters, these parameters first have to be 

initialized and then estimated. The initial estimation of the rule parameters is done using Fuzzy 

C-means Clustering (FCM). Furthermore, the conditional probability method is used to initialize 

and estimate the probability parameters. Finally, the maximum likelihood estimation method is 

applied to optimize these values.  

A sequential method for parameter estimation approach is taken from the paper of Waltman et 

al. [41]. In their work, it is assumed that each antecedent membership function ( )Aj x in a 

probabilistic fuzzy classifier is the product of d  univariate Gaussian membership functions
2 2( ) exp( ( ) / )x x c    , one for each dimension of the input space X . Following the 

abovementioned assumption, the following result is obtained:  

2
1

2
1

( )
( ) exp( ).j

d
jl

A

l jl

x c
x




 

σ
               (10) 

For each membership function, 1, ....,{ }j j jlc c c  and ∑j = {σj,1, . . . , σj,l } vectors represent the 

parameters that need to be estimated. The vectors cj and ∑j correspond, respectively, to the 

center and the width of the membership function in each dimension of input space X. After the 
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estimation of cj and ∑j vectors, the probability parameters pjk, while satisfying (5) and (6), also 

need to be estimated. In the sequential method for parameter estimation, the antecedent 

parameters are determined separately from the probability parameters pjk [41]. 

For the estimation of antecedent parameters cj and ∑j, the data set containing n classification 

examples (xi,yi) (i = 1, .. ., n) must be available. Firstly, this data set is normalized using the 

following formula: 

il l
il

l

x
x





                (11) 

where l  and l  denote, respectively, the mean and the standard deviation of the thl  feature 

over the entire data set. Furthermore, for the set number estimation of cluster centers, the 

fuzzy c-means algorithm is applied to the normalized observations ix . The FCM uses the 

standard Euclidean distance measure, while obtained cluster centers serve as the centers of cj 

of the Gaussian membership functions µAj. After obtaining the cluster centers, the vectors ∑j, 

containing the width of the membership functions must be estimated. In order to estimate 

these vectors, the nearest neighbor heuristic [46] approach is used. The following approach 

results in: 

, '

'

min || ||j l j j

j j

c c


    for 1,...,l d            (12) 

where '|| ||j jc c  represents the Euclidean distance between jc  and 'jc . It is important to note 

that the width of a membership function is the same in each dimension.  

As discussed earlier, the probability parameters pjk need to be estimated. Kaymak et al. 

[44],[45],[47] suggest setting these parameters as equal to estimates of the conditional 

probabilities Pr(Ck|Aj). Proposed by [47], this approach results in:     
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                                           (13) 

where ( )kC y =1 if y=Ck and ( )kC y =0 otherwise. Equation (13) is usually referred to as the 

conditional probability estimation. Waltman et al. [41] suggest that this estimation is biased and 

that maximum likelihood estimation offers better estimates of the parameters.  
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3.1.1.2 Maximum Likelihood for Parameter Estimation 
 

After presenting the drawbacks of the sequential method and the advantages of maximum 

likelihood for parameter estimation in section 3.1.1, this section contains the mathematical 

description of the maximum likelihood approach. 

 

The likelihood of a data set is given by 

1

( | ).
n

i i

i

L p y x


                              (14) 

Maximization of the likelihood is equivalent to the minimization of the negative log likelihood 

[41]. Therefore, the following error function is minimized: 

1

ˆln ( | ).
n

i i

i

pE y x 



                         (15) 

In order to achieve the minimization of the error function in (15), a gradient descent 

optimization algorithm is used. The stochastic variant of gradient descent is applied, which 

means that the available classification examples are processed one by one, and updates are 

performed after each example [41]. In order for a gradient descent optimization algorithm 

work, we have to define the learning rate to an appropriate value. This value determines in 

what pace we are moving towards the optimal weights. If the learning rate is very high, the 

optimal solution may be skipped. If the learning rate is too low, then it is necessary to run many 

iterations to converge to the best values. Thus, using a decent rate is crucial. 

Subsequently, the probability parameters pjk must satisfy the conditions in (5) and (6), finding 

the parameters cj, ∑j and pj,k that minimize the error function in (15) is a constrained 

optimization problem. Thus, this constrained optimization problem is converted into an 

unconstrained optimization problem by using the auxiliary variables uj,k ( 1,...,j a and k = 1, 

...,c). The relation between these variables and the probability parameters pj,k is described by 

the softmax function, i.e., 
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                                                                   (16) 

 

Maximum likelihood estimates of the parameters cj, ∑j and pjk can then be obtained by the 

unconstrained minimization of (15) with respect to cj, ∑j and ujk. 

 



 
 

21 
 

Algorithm 1 is proposed by Waltman et al. [41] and summarizes the Maximum Likelihood 

method to determine the parameters of a probabilistic fuzzy system:  

 

Algorithm 1: Maximum Likelihood method to determine parameters cj, ∑j, and pj,k of a 

Probabilistic Fuzzy System. 

1) Initialize cj, ∑j, and pj,k 

- Apply FCM clustering to find cj, and ∑j 

- Determine initial values of pj,k by,  

2) Maximum likelihood 

for iter = 0 to no. of iterations do  

  for train = 1 to no. of classification examples do 

- Simultaneous re-estimation of the parameters vj, ∑j, and pj,k through 

minimization of error function (15) 

end for 

- Determine
1

ˆ( ) ln ( | )
n

i i

i

pE iter y x 



 . 

end for 

3.1.2 Feature Selection 
 

Features are the main determinants in model construction. Usually features are numeric, but 

they can also be strings and graphs. However, it is expected that the greater number of features 

increases the accuracy of the model; for some classifiers, it negatively affects the reliability of 

statistical parameter estimations, and thus it results in a decrease in the classification accuracy 

[48]. This phenomenon is known as the Hughes Effect, which describes the correlation between 

the number of features and the accuracy of classification. Hughes [49] suggested that the 

feature set size may be proportionally increased to the number of training samples. Otherwise, 

the accuracy of classification will decrease once the feature set size is reached. In our work, the 

feature selection algorithm was employed to select the most relevant features for mortality risk 

prediction.   

Feature selection methods can be used to identify and remove unnecessary, irrelevant, and 

redundant variables from a data set that do not improve the accuracy of a predictive model or 

may even negatively affect the accuracy of the model. In terms of preferred algorithms, feature 

selection algorithms can be divided into four different categories: filters, wrappers, hybrids, and 

embedded [50], [51]. The simplest type of feature selection algorithms is the filter method. This 

method selects the feature subsets without employing any mining algorithm simply by relying 
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on general characteristics of the training data to select features with independence of any 

predictor. Filters, such as chi squared test, information gain and correlation coefficient scores, 

provide a generic selection of variables and those variables are not tuned for a given learning 

machine. Somol et al. [65] concluded that the filters performed very poorly due to weak 

principal connection between the search and classification processes. Unlike filter method, the 

wrapper method employs one mining algorithm and uses the performance results for 

evaluation purposes. Many wrapper methods, such as best-first, branch-and-bound, genetic 

algorithms, forward selection, or backward elimination, are used to search for the features that 

improve the performance of the chosen algorithm. While comparing the performance of 

wrapper and filter methods, Somol et al. [65] concluded that the results of their research show 

an overall superiority of wrappers over filters. The hybrid method, however, takes advantage of 

the two previously explained methods. Firstly, a filter approach is applied to eliminate features 

according to the predefined criteria. Next, as a part of the wrapper method, a mining algorithm 

is used to select the relevant features. In contrast to previous feature selection algorithm 

categories, in the embedded method, the learning and feature selection parts are processed 

together. Decision trees are part of the embedded method. Overall, it is suggested to employ 

the hybrid methods with a large data set, whereas the wrapper methods have demonstrated 

better results with a small sample size [66]. 

After careful analysis of various feature selection methods, a wrapper method, namely 

sequential forward selection (SFS), was used in this project. Unlike other methods, SFS selects 

only the most relevant features and uses the performance results for evaluation purposes. 

Sequential forward selection, also known as bottom up selection, is an approach that starts 

with an empty feature set and adds one feature at a time. After the first feature is added to the 

subset, a new model is trained and the performance is tested. The next feature is then added to 

the same subset, and the same process is repeated until the optimal feature subset is obtained 

and adding a new feature does not improve the performance. Typically, the most occurred 

feature (variable) is added to the subset first, and the selection of consequent variables 

depends on the performance of the model. As the performance criteria, Area Under the Curve 

(AUC) is selected and used for the model evaluation. Although the sequential forward selection 

approach is considered simple and easy for graphical representation and the interpretation of 

results, the main disadvantage is known to be finding the local optima in a greedy and thus 

prone method [40]. 

For instance, if we applied sequential forward selection to MIMIC data set, which comprises 

over forty thousand patients who stayed in critical care units of Beth Israel Deaconess Medical 

Center between 2001 and 2012, we would start with an empty data set. Then, we would feed a 

single variable (e.g. glucose) to the model and compute the performance of this model upon 

the test set (e.g. an AUC of 0.63). Then other feature candidates are evaluated, one at a time, 
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and the feature that returns the best value of the performance criterion becomes the first 

selected feature. At the next step, other feature candidate, say, creatinine is added to the 

previous best model. This time the model is trained and tested on the combination these two 

features. Yet again, one feature at a time is added to the previous best model and the model is 

evaluated. The model with the highest performance is selected and now it has two features. 

This process is repeated until the value of performance criterion (e.g. AUC) stops increasing. In 

our thesis, the AUC is selected as the performance criterion and is described in the following 

section.    

3.1.3 Model Assessment 
 

Several model performance assessment methods exist to evaluate the performance of a 

classifier. Although the traditional confusion matrix or contingency table is used for the 

assessment of classification model performance, Fawcett et al. [77] suggest that the 

performance metrics derived from these matrices or tables are sensitive to data anomalies, 

such as class skew. Thus, David et al. [78] proposed using Receiver Operating Characteristics 

(ROC) curves that deliver the same information but in a much more intuitive and robust way. 

Subsequently, since we are looking into the classification problem with predicting survival 

outcomes, the area under the receiver-operating characteristic curve (AUC) can be used to 

measure how well a parameter can distinguish between two diagnostic groups 

(deceased/survived) [52]. AUC has a meaningful interpretation for disease classification in a 

healthcare domain. The main advantage of the area under the curve is the ability to determine 

the optimal cut off. Last but not least, this curve plays a key role in “evaluating diagnostic ability 

of tests to discriminate the true state of subjects” [67].  

3.1.3.1 ROC Curves 
 

ROC curves are two-dimensional graphs that visually represent the performance and 

performance trade-off of a classification model [79]. In order to construct ROC curves, the 

confusion matrix (or contingency table) should be created. Since the classification model 

classifies each instance into one of two classes, namely, a true (deceased) and a false (survived) 

class, this results in four possible classifications for each instance: a true positive (TP), a true 

negative (TN), a false positive (FP), or a false negative (FN). The format of a confusion matrix is 

depicted in Figure 1, where the columns and the rows represent the observed and the 

predicted classifications, respectively.    

 

 

 

Figure 1: Format of a Confusion Matrix 
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The most common model performance metrics derived from the Confusion Matrix are accuracy 

(17), precision (18), and recall (19). 

accuracy = 
     

           
     (17) 

precision = 
  

     
      (18) 

recall = 
  

     
       (19) 

To compare two different models, since it is more convenient to have a single metric rather 

than several, two new performance metrics are computed and later combined into one: 

True positive rate (
  

     
) reflects the proportion of correctly predicted positive cases over the 

total number of positive cases. False positive rate (
  

     
 , however, corresponds to the 

proportion of incorrectly predicted positive cases over the total number of negative cases. The 

true positive rate (TPR), known as sensitivity, and (1-false positive rate), known as specificity of 

the model, represent the cases where the patient was correctly classified as dying and 

surviving, respectively. After computing TPR and FPR, the ROC curve can be plotted. Each point 

on the ROC curve represents a sensitivity/specificity pair that illustrates the particular decision 

threshold. In our case, the sensitivity and specificity of the model corresponds to the cases 

where the patient was correctly classified as deceased and the cases where the patient was 

correctly classified as survived, respectively. Furthermore, the AUC, which is a single metric, can 

be used to assess the discriminatory power of the model [52].  

3.1.4 Cross-validation 
 

In 3.1.3, different types of metrics were described for assessing the model. Those metrics are 

used to evaluate model performance regarding our in-sample data. However, a specific model 

validation technique, namely, the cross-validation technique, is selected to assess how the 

results of a statistical analysis will generalize to an independent data set. Two types of cross-

validation can be performed: leave-one-out and k-fold. Leave-one-out, however, is 

computationally demanding. Thus, the k-fold cross validation technique is used in this work. 

In the k-fold cross-validation approach, each record is used k times for training and exactly once 

for testing. Briefly, suppose the data is being divided into two equal-sized subsets. First, one of 

the subsets is chosen for training and the other for testing. Then the roles of the subsets are 

swapped. This approach is called a two-fold cross-validation. The total error is acquired by 

summing up the errors of both runs. In this project, however, a 10-fold cross-validation was 

employed. Similar to the two-fold approach, in 10-fold cross-validation, the data is divided into 
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10 equal-sized portions. In each run, one of the portions is selected for testing and the rest are 

used for training. This process is repeated 10 times so that each portion is used for testing 

exactly once. Finally, the total error is computed by summing up the errors of all 10 runs, while 

AUC, sensitivity, and specificity results were obtained by averaging each result over the runs.  

3.2 Experimental Setup 
 

In order to test the hypothesis and reach the objectives of this project, an experiment is 

conducted. At the beginning, unaltered data sets are acquired. In this project, data obtained 

from MUMC+ was used. Then data preprocessing methods, such as the removal of outliers, as 

well as applying inclusion and exclusion criteria, were applied to the data sets. Following these 

preprocessing methods, the data was ready to be used for mortality prediction. Furthermore, 

the ready data set was split into 80% for feature selection and model building with the 

remaining 20% for model validation. Both data sets were undersampled to contain at least 48% 

observations with 72-hour mortality as an outcome [14]. Since each observation was labeled 

with 0s and 1s, the minimal percentage of 1s within the data set was set to 48%. This approach 

is necessary to prevent the misclassification due to a high ratio of surviving patients over 

deceased patients. The performance of the model is verified using 10-fold cross-validation. 

Figure 2 represents a complete diagram of this model setup. 

As a part of model settings, the following parameters were used: The probability measures of 

PFS were calculated using MLE estimation. The number of rules used for the analysis was set to 

two since it showed satisfactory results. These rules correspond to the number of clusters 

obtained from the FCM-based clustering process. Furthermore, the Gaussian membership 

function was used to represent vague and linguistic terms. This function requires the widths to 

be determined in advance, thus σnj≥ 0.1 with, (j=1,…,J) and (n=1,…,N), was set. Such an approach 

was also necessary to avoid numerical instability. The number of learning iterations (Algorithm 

1) and the learning rate, however, were set to 50 and 0.03, respectively. The number of 

iterations was fixed to a number that guaranteed that the error (15) would converge [41]. Thus, 

the use of convergence criteria was eliminated from the process [14]. 

Algorithm 2: Experimental setup [63]  

Require: Original unaltered data set 

1) Start data preprocessing 

a. Include patients using inclusion criteria 

b. Remove unusable features 

c. Merge duplicate feature IDs 

d. Clean data using pre-defined criteria  

Return: Cleaned data set 
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2) Split data into 80% Feature Selection & Model Building and 20% Model Validation 

3) Perform feature selection to obtain optimal feature subset 

4) Perform 10-fold cross-validation to determine optimal model parameters 

5) Perform model validation on holdout sample 

6) Perform external validation on samples from other data sets 

Return: Optimal model with internal and external performance measures 

 

 
Figure 2: Diagram of the model setup [14]. Each data set (Sepsis-2 and Sepsis-3) follows the 

same model setup. 

 

3.2.1 Data Preprocessing Technique 
 

In order to improve the quality of the data, few data preprocessing techniques are usually 

employed. One of those techniques is related to missing data, since it greatly affects the quality 

of data. Missing data can significantly affect the performance of predictive risk modeling, which 

is an important technique for developing medical guidelines [55]. Imputing or deleting the 

missing values are the two most commonly used strategies for resolving the missing data issue. 

Although the first strategy may cause bias, the second strategy causes both bias and a loss of 

statistical power [55].  

The built model requires the data to be presented in such a format that every row represents 

the patient ID, the date, the time, and all the features that are recorded for the same patient at 

a given moment. Even though the features are recorded automatically using medical machines, 

not all features are collected at the same time. For example, blood pressure may be measured 
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hourly, while blood gasses may be measured every 2 hours. A gridding template with a 1-hour 

sampling frequency will therefore show many instances of missing data for blood gasses. The 

reason for this is not because the blood gasses are not measured on time but because of the 

choice of sampling frequency. To deal with missing data, Cismondi et al. [55] proposed three 

steps: (a) a reliable method to align misaligned, unevenly sampled data using gridding and 

templating, (b) a statistical classification to differentiate absent values resulting from low 

sampling frequencies from those related to missingness mechanisms, and (c) an artificial 

intelligence technique to classify recoverable and not recoverable segments of missing data. 

The terms recoverable and not recoverable represent the missing values that must be imputed 

or deleted respectively.  

Time series are said to be misaligned when their samples are not recorded with the sampling 

time [55]. Usually, the data is collected either evenly or unevenly. Both types of misaligned 

sampled data are presented Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since, it is simple to align misaligned evenly sampled data, Cismondi et al. [57] suggest the 

methods used to deal with misaligned unevenly sampled data.  

To align misaligned, unevenly sampled data, the utilization approach of two alignment 

methods, namely, gridding and templating, are employed. Briefly, the gridding approach 

consists of aligning all variables according to a fixed sampling rate. Then the variables of all 

samples are shifted to occupy the nodes of the grid [56]. If several data points are shifted to the 

same node, then cubic interpolation determines the value that is positioned on that grid [57]. 

At this stage of the process, these values are blank and were further be determined by applying 

data imputation techniques.  

Figure 3: Simplified representation of automatically collected data [55]. 
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Although templating is a similar technique used for correcting misaligned time series, in 

templating the fixed-sampling-period grid, one of the variables in the data set is replaced with 

the sampling times. Figure 5 represents this approach.  

 

 

 

 

 

 

 

Usually, the most occurring variable is chosen as a templating variable. 

As a second step, the imputation process of missing values is initiated. However, it is important 

to understand the reason for this missingness. Generally, there are two groups that explain 

such a reason: (1) The variable is not measured intentionally. For example, in an intensive care 

unit, a patient may be taken to surgery; hence, the variables are not recorded during that time. 

Imputing these kinds of variables would result in significantly biased predictions. Thus, this 

group is defined as not-recoverable missing data. (2) The variable is measured but not recorded 

for unidentifiable reasons. The reasons could vary from communication errors to electricity 

failures. This group is defined as recoverable missing data. 

Figure 4: Representation of the gridding process [55]. 

Figure 5: Representation of a template variable [55] 
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Next, the missing data imputation technique is applied to recover the missing value. Well 

known imputation techniques, such as partial imputation, partial deletion, full analysis and 

interpolation, are used to deal with missing values in real-world databases.   

Finally, after incorporating preprocessing techniques, the data is normalized using min/max 

normalization. Such an approach is essential for reducing the influence of large values. 

3.3 Applying Probabilistic Fuzzy Systems for Classification to Mortality Risk 

Prediction 
 

This section describes the modeling method used to predict the mortality risk of septic shock 

patients using the Probabilistic Fuzzy Systems classifier, which was elaborated on in the 

previous chapter. First, the description of a problem is given. Then, the available data sets are 

presented. Finally, the data preprocessing steps and the experimental setup are described in 

detail.  

3.3.1 Problem Description 
 

The main problem tackled in this work was to develop a model for predicting the mortality risk 

of septic shock patients within a 72-hour time frame in an ICU setting based on updated 

definitions. 72-hour timeframe was chosen in accordance with Hanisch et al. [68] research, 

since it suggests that there is a high probability that the patient will die within three days.  

In mortality prediction, the outcome of a patient is either “survival” or “deceased.” Thus, we 

denote the outcomes with 0 and 1, respectively, where 0 represents the survival and 1 

represents the decease of a patient. Since the outcome is binary, the problem is defined as a 

classification problem, and Probabilistic Fuzzy Systems are employed to build this model.    

3.3.2 Data Sets 
 

Two data sets were used within this work. The prediction models for a similar data set were 

previously built by Fialho [14] and Balentien [63] to show the applicability of PFSC as a risk 

prediction model. All information regarding the patients was de-identified prior to use. 

 Maastricht University Medical Center+ (MUMC+) – Sepsis-2 

Maastricht University Medical Center+ (Maastricht UMC+) is located in the south of the 

Netherlands and is the result of a merger between Maastricht University and the University 

Hospital Maastricht. The hospital has 715 beds, including 18 general and 9 cardiothoracic ICU 

beds and 6 high-dependency care unit beds, 7,593 employees, 4,685 students, and 

approximately 27,500 annual admissions [69]. As a collaboration project between the 
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Eindhoven University of Technology and the MUMC+, sepsis patients’ data was collected within 

the Intensive Care Unit between 1/1/2013 and 1/12/2016. The data set contains 653 sepsis 

patients, and the identification of all septic shock patients was manually performed by dr. 

Ronny Schnabel. In total, 480 septic shock patients were identified with definitions accepted at 

International Sepsis Definitions Conference (Sepsis-2) in 2001. The final set was selected based 

on physiological variables and inclusion criteria (Table 6).  

 Maastricht University Medical Center+ (MUMC+) – Sepsis-3 

The second MUMC+ data set contains 299 septic shock patients out of 653 sepsis patients 

identified with definitions accepted at The Third International Consensus Definitions for Sepsis 

and Septic Shock (Sepsis-3) in 2016. The data, collected between 1/1/2013 and 1/12/2016, 

includes 27 physiological and behavioral variables.  

 

 

 

 

 

 

 

3.3.3 Data Preprocessing 
 

In this subsection, the data preprocessing steps that were taken in processing the available raw 

data are described in detail. First, the inclusion and exclusion criteria for all septic shock 

patients are presented. Then, the transformation of the data format is described. After the data 

format, the data-cleaning technique is applied to fill the missing values, smooth the noisy data, 

and resolve the inconsistencies in the data. Finally, issues with features recorded in different 

time intervals are tackled. Following the abovementioned process, the data is ready for 

modeling purposes. It is important to note that since the data sets used in this work are from 

the same hospital, preprocessing steps, such as data integration, are deemed unnecessary.  

3.3.3.1 Inclusion and Exclusion Criteria 
 

For the MUMC+ data, patients were selected based on the inclusion and exclusion criteria. In 

general, inclusion criteria are characteristics that the patients must display if they are to be 

Figure 6: Graphical representation of two data sets 
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included in the study. Inclusion and exclusion criteria may include factors such as age, race, sex, 

ethnicity, and type of disease. The general inclusion criteria for all data sets are defined as 

follows: 

1. Age ≥ 15 

2. First ICU stay 

3. Existence of septic shock 

4. At least one measurement for all features in Table 6 for Sepsis-2 and Sepsis-3 septic 

shock patients 

In this project, since the prediction models are built upon on the identification of septic shock 

patients based on two different definitions (Sepsis-2 and Sepsis-3), one common list of features 

is identified and used as part of the inclusion criteria. All chosen features are supposed to be 

independent with minimal correlation.  

Features 
Heart rate SpO2 Potassium 

Systolic arterial blood pressure Hematocrit Creatinine 

Diastolic arterial blood pressure Thrombocyte Albumin 

Temperature Leucocyte Urea 
Lactate Mean arterial pressure GOT (ASAT) 

Breath rate Urinary bladder catheter GPT (ALAT) 

Arterial pH APTT Bilirubin 

Arterial pO2 Arterial pCO2 CRP 
Bicarbonate Sodium Glucose 

Table 6: List of features used for inclusion of Sepsis-2 and Sepsis-3 septic shock patients 

Furthermore, exclusion criteria are applied to data sets to remove the outliers that are distant 

from other observations. Since no accurate model exists for how missing or noisy data are 

distributed, the interpolation of missing ICU data is extremely difficult [53]. The reason for 

missing data is because either the clinician believed that the data was not relevant for the 

observed disease and thus did not record it or different internal and external factors made the 

data useless [54]. Hence, values that are not available and missing for an intentional reason are 

removed from the data sets. The below-mentioned exclusion criteria are applied to all data 

sets, and the values satisfying these criteria are deleted and marked as missing values. 

1. NULL, empty, or non-numerical values; 

2. Wrong values that are not humanly possible (e.g., a human with -5 heart rate).  

The complete list of removal criteria is presented in Table 7.  
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Feature Removal criteria 

Any NULL, empty or non-numerical 

value 

Blood pH < 6.5 

Arterial BP ≤ 0 

SpO2 < 60% 

Heart rate ≤ 0 

Temperature < 25oC and > 45oC 

ALAT > 4000 

ASAT > 5000 

Table 7: List of removal criteria 

3.3.3.2 Missing Values 
 

The data collected at MUMC+ was recorded automatically using medical devices that the 

hospital uses. These recorded data were obtained in the format of Table 8. 

PatID Time ItemID Desc Value UoM 

1 11-06-14 11:43 13 Leucocyte 2  

1 15-06-14 10:20 29 Urea 11.4 mm/L 

1 15-06-14 10:20 25 Natrium 5.23 mm/L 

1 15-06-14 10:20 8 Arterial pH 7.44  
1 15-06-14 10:20 9 Arterial pO2 9.1 kPa 

1 15-06-14 17:00 12 O2 saturation 38 % 

Table 8: Obtained data format from MUMC+ 

However, the prediction model accepts the format in Table 9. 

 

 

 

 

 

In order to obtain the required data format from the obtained data format, the data had to be 

transposed. The easiest way to achieve it could simply be transposing the column of variables 

into rows. However, the variables were not recorded at the same time, which would lead to 

empty results in most of the rows. Thus, a specific approach, described in section 3.2.3.3, was 

taken to resolve this issue.  

PatID Time Var1 Var2 Var3 Var4 

1 11-06-14 11:43 1.5 7.44 38 11.4 

1 15-06-14 10:20 2 7.67 40 12 

1 15-06-14 10:20 2.1 7.7 60 12.3 
1 15-06-14 10:20 2.2 7.32 50 11.6 

1 15-06-14 10:20 1.8 7.5 55 11.7 

1 15-06-14 17:00 1.9 7.53 42 13 

Table 9: Required data format from MUMC+ 
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3.3.3.3 Imputation of Missing Values 
 

The data obtained from MUMC+ is unevenly sampled, thus, the utilization approach of two 

alignment methods, namely gridding and templating, was used in this work. The complete 

description of this approach is given in section 3.2.1.  

 

Next, the imputation process of missing values was initiated. First, the mean time µ between 

the two samples of all features, including upper and lower bounds, was calculated and included 

in a confidence interval table (CI-Table). The upper and lower bounds were calculated by µ ± 3 x 

σ. Furthermore, the second CI-Table was created, which included a patient–variable 

combination where each patient had n ≥ 30 observations of that feature. Finally, the last known 

value was imputed if the missing value fell within either the confidence of the first CI-Table or 

the second CI-Table. If the missing value did not fall within this confidence bound, the whole 

observation was dropped. 
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4. Results 

This chapter contains the results of the experiments. First, the results of the feature selection 

are presented, and the list of optimal features per data set is described. Furthermore, each 

model is built upon optimal features, and the corresponding results are discussed. After 

obtaining the results, the final models are selected and reviewed. Additionally, the performance 

of each model is validated using the validation set and the external data sets. Finally, the 

individual mortality risk estimation of an ill patient is offered and discussed. 

4.1 Mortality Risk Prediction for Septic Shock Patients  
 

Initially, the entire cohort of patients is selected while building the mortality risk prediction 

model for the septic shock patients. The entire cohort of patients includes the patients 

classified with Sepsis-2 and Sepsis-3 definitions. In order to build the final models, data 

preprocessing and feature selection steps are taken.  

4.1.1 Data Preprocessing 
 

Before incorporating the preprocessing steps, it is important to review the data sets and 

identify the impact of the cleaning process. In total, there are two data sets used for analysis 

purposes: MUMC+ (Sepsis-2) and MUMC+ (Sepsis-3). Each data set contains 653 sepsis patients 

respectively. The admission of patients with sepsis was defined by the existence of an infection 

and at least one organ dysfunction [59]. Using Sepsis-2 and Sepsis-3 definitions, 506 and 315 

septic shock patients were identified, respectively.  

 

After incorporating the inclusion criteria, exclusion criteria, and preprocessing steps, the final 

data sets are obtained. The MUMC+ (Sepsis-2) and MUMC+ (Sepsis-3) data sets contain 27 

variables representing 480 and 315 septic shock patients, respectively. The descriptive statistics 

of both data sets are shown in Table 10. 
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  MUMC+ (Sepsis-2) 

  Survived Deceased Total 

Age  62 (14.5) 64.5 (12.3) 63 (14) 

Gender  308 (64.2%) 172 (35.8%) 480 (100%) 

 Male 195 (63.3%) 113 (65.7%) 308 (64.2%) 

 Female 113 (36.7%) 59 (34.3%) 172 (35.8%) 

Weight  79.62 (22.7) 78.8 (24.4) 79.28 (23.8) 

Height  172 (9) 172 (9) 172 (9) 

Length of Stay  12.6 (15) 11.5 (16.8) 12.2 (15.7) 

    MUMC+ (Sepsis-3) 

  Survived Deceased Total 

Age  62.4 (14.2) 62.7 (14) 62.4 (14.1) 

Gender  175 (58.5%) 124 (41.5%)  299 (100%) 

 Male 113 (64.6%) 81 (65.2%) 194 (64.9%) 

 Female 62 (35.4%) 43 (34.8%) 105 (35.1%) 

Weight  80.82 (22.8) 80.5 (22.9) 80.47 (22.9) 

Height  172.7 (9.1) 172.3 (9.4) 172.4 (9.4) 

Length of Stay  12.4 (18.1) 12.4 (18) 12.4 (17.9) 

Table 10: Descriptive statistics of data sets 

The algorithm used to create the model accepts the data in a predefined format (Table 9) with 

non-empty values. The predefined format was achieved by aligning unevenly sampled data, as 

described in section 3.3.3.3. Since usually the most occurring variable is chosen as a templating 

variable, in our work, the heart rate variable is chosen for this purpose. After applying the 

imputation technique, observations with missing data were dropped, resulting in a reduced 

final data set. For the MUMC+ (Sepsis-2) data set, the initial number of observations was 

81.871, and only 59.586 observations were left after the imputation, resulting in a 27.2% loss. 

For MUMC+ (Sepsis-3), however, the original data set contained 49.583 observations, whereas 

the imputed one had only 36.493 observations (-26.4%). The possible reason of this data loss is 

missing values that were not recorded due to various reasons (e.g. a patient may be taken to 

surgery). Moreover, with regard to the data loss, the possible influence may be the poor 

performance of the algorithm. Usually, the cause of poor performance is either overfitting or 

underfitting the data. Since the model is memorizing the data it has seen, it is desirable for the 

model to see every case and further be able to generalize to unseen examples. The data loss 

may result in losing the important examples, and thus, the model may not be able to capture 

the relationship between the input and the target values. Furthermore, for both data sets, no 

any patient was dropped after applying the imputation technique. The reason for such an 

outcome is the fact that all patients had at least one complete observation where any missing 

values fell within either the confidence of the first CI-Table or the second CI-Table, and thus 

imputed, as described in section 3.2.3.3.   
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Since the data sets are from the same hospital, both data sets contain the same features and 

the same unit of measurements. Thus, there was no mismatch among the data sets, and the 

data sets were ready for analysis. The mean and standard deviations of all features between 

the data sets are present in Table 11. These values were obtained after the alignment of the 

distributions. 

Feature MUMC+ 

(Sepsis-2) 

MUMC+ 

(Sepsis-3) 

Heart rate 94.3 (21.1) 94.3 (20.4) 

Systolic arterial blood 

pressure 
124.9 (26.5) 125.2 (26.9) 

Diastolic arterial blood 

pressure 
61.4 (13.9) 61.6 (13.7) 

Lactate 3.3 (3.3) 3.9 (3.5) 

Temperature 37.1 (0.9) 37.1 (0.9) 

Breath rate 23.5 (7.7) 23.4 (7.6) 

Arterial pH 7.4 (0.1) 7.4 (0.1) 

Arterial pO2 12.2 (3.9) 12.4 (4.0) 

Bicarbonate 24.8 (6.3) 24.3 (6.6) 

SpO2 95.6 (3.2) 95.7 (3.2) 

Leucocyte 13.0 (11.2) 13.2 (11.4) 

Mean arterial pressure 82.7 (19.3) 83.2 (19.4) 

Hematocrit 0.3 (0.1) 0.3 (0.1) 

Thrombocyte 215.5 (175.1) 217.2 (183.2) 

Urinary bladder catheter 159.8 (136.2) 157.4 (135.2) 

APTT 46.3 (18.6) 47.4 (19.6) 

Arterial pCO2 5.5 (1.5) 5.5 (1.6) 

Sodium 142.6 (7.3) 143.0 (7.1) 

Potassium 4.3 (0.7) 4.3 (0.7) 

Creatinine 132.7 (110.9) 129.6 (99.8) 

Albumin 18.6 (7.1) 18.1 (7.4) 

Urea 13.1 (8.4) 13.6 (8.6) 

GOT (ASAT) 139.0 (406.7) 174.4 (480.4) 

GPT (ALAT) 120.0 (312.1) 145.5 (353.3) 

Bilirubin 32.2 (64.5) 31.2 (52.8) 

CRP 111.9 (492.9) 139.2 (114.8) 

Glucose 7.4 (2.5) 7.4 (2.5) 

Table 11: Means and standard deviations (in brackets) of the features 
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In order to check the similarity of the data sets, one-way analysis of variance (ANOVA) was 
performed. The values of the same features from both data sets were analyzed separately, and 
the results showed that neither of the data sets with the same features have means 
significantly different from the other data set. For instance, the similarity analysis of the 
heartrate variable was performed and no significant difference was found (Figure 7).  
 

 

 

 

 

 

 

 

 

 

 

 

Further, the similarity test between the two data sets was performed as well. One-way ANOVA 

was used for this purpose and the test has not shown any significant difference between these 

data sets (Figure 8). 

 

 

 

 

 

 

 

 

Figure 7: Similarity test of the heartrate variable 

Figure 8: Similarity test of two data sets 
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4.1.2 Feature Selection   
 

Following the normalization procedure, forward feature selection is employed for calculating 

the optimal feature set that is vital for the final model. In order to evaluate the predictive 

model, 10-fold cross-validation was applied, and the final optimal feature set was obtained. The 

complete list of features and the chosen optimal features are shown in Table 12. Since both 

models are from the same hospital, one would expect a bigger overlap in chosen features. 

However, due to the selection of septic shock patients using different definitions, namely, 

Sepsis-2 and Sepsis-3, only two features are shared by both models. One of the shared features 

is lactate, which shows a greater importance in predicting the mortality risk for septic shock 

patients. There have been numerous discussions on the importance of lactate in determining 

the severity of illness [1], [59] since that is the main addition to Sepsis-3 definitions in 

comparison with Sepsis-2. Also, our feature selection shows that lactate may be a new 

emerging vital sign of septic shock and, consequently, may be used in mortality risk prediction. 

Thrombocyte is another feature that is shared by both models, but further medical expert 

intervention is necessary for determining the reason for the significance of this variable. No 

other correlations between the features or across the models are found. Seventeen out of 27 

features were found to be less relevant by the feature selection algorithm and thus were not 

included in the final model.   

It is important to note that the feature selection was set to select only the top six features. The 

number of features lesser and greater than six was also tested, but it either had a negative 

effect on the accuracy of the model or did not show a significant improvement in accuracy. The 

order in which the features were chosen is also presented in Table 12. The blue background 

represents the features that are shared by both models. On the other hand, the green 

background, shows the features that are not shared by both models.  

Variables 
MUMC+ 

(Sepsis-2) 

MUMC+ 

(Sepsis-3) 

Heart rate   

Systolic arterial blood pressure   

Diastolic arterial blood pressure   

Lactate 2 4 

Temperature   

Breath rate   

Arterial pH  1 

Arterial pO2   

Bicarbonate   

SpO2 6  



 
 

39 
 

Leucocyte   

Arterial BP MAP 5  

Hematocrit   

Thrombocyte 4 5 

Urinary bladder catheter 1  

APTT [total]  6 

Arterial pCO2   

Sodium   

Potassium   

Creatinine  3 

Albumin   

Urea 3  

GOT (ASAT)   

GPT (ALAT)   

Bilirubin  2 

CRP   

Glucose   

Table 12: Optimal features per data set 

4.1.3 Models 
 

After obtaining the optimal feature set, the model was applied to model assessment data. The 

model was subjected to 10-fold cross-validation, and then the obtained model was tested on 

the second part, namely, the holdout set that was reserved for model validation purposes. 

Finally, the model was applied on other external data’s holdout set to classify the data.  

First, the models, the corresponding rule probabilities and parameters, and the detailed 

explanation of each rule are presented. The performance of each model on the other data set is 

then given and discussed. 

4.1.3.1 MUMC+ (Sepsis-2) 
 

As presented in Table 12, the optimal features for MUMC+ (Sepsis-2) model are Lactate, O2 

saturation, Arterial blood pressure, Thrombocytes, Urinary bladder catheter, and Urea. While 

training the model, Probabilistic Fuzzy Systems were set to generate two rule sets, and the 

corresponding probability parameters are given in Table 13.  
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Figure 9: Graphical representation of MUMC+ (Sepsis-2) model 

Rule Survived 72-hr mortality 

1 2.66% 97.34% 

2 97.35% 2.65% 

Table 13: Probability parameters per rule for MUMC+ (Sepsis-2) model 

From the Table 13, we can clearly identify two groups, where Rule 1 and Rule 2 correspond to a 

97.34% mortality chance within 72 hours and a 97.35% survival chance respectively. In order to 

better understand these rules, PFS presents a graphical representation that is easy to interpret 

for a person who is not familiar with the healthcare domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 9, the resultant if-then rules are the following: 
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1. Rule 1 (blue):  If Lactate and SpO2 are high, Arterial Blood Pressure is low, Thrombocytes 

are low, Urine Bladder Catheter is very low, and Urea is very high, then the patient will 

die within 72 hours with a probability of 97.34%.  

2. Rule 2 (red): If Lactate is very low, SpO2 is very high, Arterial BP MAP is normal, 

Thrombocytes are very high, Urine Bladder Catheter is very high, and Urea is normal, 

then the patient will survive with a probability of 97.35%.  

The other interesting observation is related to lactate. The feature selection technique chooses 

the most relevant variables and may reveal important but unconventional variables in the 

healthcare realm. With the addition of Probabilistic Fuzzy Systems, we can further help to 

determine the actual breakpoint between diagnostic measurements. For instance, although 

lactate is not a part of Sepsis-2 definitions, feature selection has considered this variable as one 

of the most important ones.  From the graph, we can see that the lactate breakpoint is at 2 

mmol/L, which actually aligns with the updated definitions of sepsis (e.g., Sepsis-3). A lactate 

value bigger than 2 mmol/L denotes an increased risk of mortality.  

The parameters of the corresponding rules are given in Table 14. 

Variable Rule Number vj σj 

Lactate 
Rule 1 0.8696 0.9089 

Rule 2 -0.1898 0.3593 

SpO2 
Rule 1 0.1985 1.1709 

Rule 2 1.1381 0.4148 

Arterial BP MAP 
Rule 1 -0.1061 0.6171 

Rule 2 0.5015 0.4850 

Thrombocytes 
Rule 1 -0.1991 0.6910 

Rule 2 0.9925 0.9654 

Urinary bladder catheter 
Rule 1 -0.2034 0.5082 

Rule 2 0.5884 0.7925 

Urea 
Rule 1 1.0417 0.8864 

Rule 2 -0.1855 0.8931 

Table 14: Parameters vj and σj for each rule of MUMC+ (Sepsis-2) model 

vj and σj in Table 14 are the parameters obtained for the membership functions, while Table 13 

presents the probability parameters pj,k associated to each rule. The plot of these membership 

functions is depicted in Figure 9. 

4.1.3.2 MUMC+ (Sepsis-3) 
 

The optimal feature subset of the MUMC+ (Sepsis-3) data set consists of Lactate, Arterial pH, 

Thrombocytes, APTT (activated partial thromboplastin time), Creatinine, and Bilirubin. The 

probability parameters of two predefined rules are shown in Table 15. 
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Figure 10: Graphical representation of MUMC+ (Sepsis-3) model 

Rule Survived 72-hr 

mortality 

1 2.78% 97.22% 

2 98.64% 1.36% 

Table 15: Probability parameters per rule for MUMC+ (Sepsis-3) model 

The graphical representation of both rules is given in Figure 10 and the linguistic interpretation 

is presented afterwards. 
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To better understand the rules, the Figure 10 would read as follows: 

1. Rule 1 (blue): If Lactate is very high, Arterial pH is normal, Thrombocytes are low, and 

APTT, Creatinine, and Bilirubin are high, then the patient will die within 72 hours with a 

probability of 97.22%.  

2. Rule 2 (red): If Lactate is very low, Thrombocytes are very high, and APTT, Creatinine, 

and Bilirubin are low, then the patient will survive with a probability of 98.64%. 

 

The parameters of both rules are presented in Table 16. 

Variable Rule Number vj σj 

Lactate 
Rule 1 0.8503 0.7976 

Rule 2 -0.3322 0.4398 

Arterial pH 
Rule 1 0.1016 0.7937 

Rule 2 1.0811 0.6638 

Thrombocytes 
Rule 1 -0.1352 0.6092 

Rule 2 0.8335 0.9605 

APTT 
Rule 1 0.5767 0.5936 

Rule 2 -0.3588 0.7065 

Creatinine 
Rule 1 0.6881 0.7353 

Rule 2 -0.2569 0.6911 

Bilirubin 
Rule 1 0.9054 1.0472 

Rule 2 -0.2470 0.4962 

Table 16: Parameters vj and σj for each rule of MUMC+ (Sepsis-3) model 

Since both models only share two features, it is difficult to directly compare the rule 

parameters. However, those two shared features, namely Lactate and Thrombocytes, show 

similar split (first rule high, second rule low).  In fact, the Sepsis-3 data set has fewer patients in 

total compared to the Sepsis-2 data set. However, Sepsis-3 patients are identified as much 

more critical than Sepsis-2 patients based on their mortality rate. 

4.2 Mortality Risk Prediction for Septic Shock Patients with Three Days 

Stay in ICU  
 

After the building the models to predict the mortality risk for septic shock patients for the 

entire cohort of patients within 72 hours, the next interesting step could be building a model 

for the same purposes but with different cohort of patients. This time, the length of stay (LOS) 

is selected as the main criterion in dividing the patients. Patients classified with Sepsis-2 and 

Sepsis-3 definitions, and maximum stay of three days are selected for building the final models. 

Selection of three days is based on previous works performed in non-cancer critically ill patients 
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and cancer patients with septic shock, where the organ failures during the first three days in the 

ICU were defined as the accurate outcome predictors [70]. 

4.2.1 Data Preprocessing 
 

For this analysis, the same raw data sets are used. After incorporating the inclusion, exclusion 

criteria, and preprocessing steps, the final data sets are obtained. As a result, MUMC+ (Sepsis-

2) LOS data set has 104 patients, whereas MUMC+ (Sepsis-3) data set LOS has 84 patients. The 

mortality rates for the data sets are 63% and 77% respectively.  

4.2.2 Feature Selection 
 

Following the data preprocessing steps, the feature selection algorithm is employed to select 

the most relevant variables for each of the data sets. The order in which the variables were 

chosen is presented in Table 17. The blue background represents the features that are shared 

by both models, whereas, the green background, depicts the features that are not shared by 

both models.  

Variables 
MUMC+ 

(Sepsis-2) LOS 

MUMC+ 

(Sepsis-3) LOS 

Heart rate  6 

Systolic arterial blood pressure   

Diastolic arterial blood pressure   

Lactate 1 1 

Temperature   

Breath rate   

Arterial pH 2  

Arterial pO2   

Bicarbonate 4  

SpO2 3  

Leucocyte  4 

Arterial BP MAP 6  

Hematocrit   

Thrombocyte   

Urinary bladder catheter 5  

APTT [total]  3 

Arterial pCO2   

Sodium   

Potassium   
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Creatinine  5 

Albumin   

Urea   

GOT (ASAT)   

GPT (ALAT)   

Bilirubin  2 

CRP   

Glucose   

Table 17: Optimal features per data 

4.2.3 Models 
 

After obtaining the optimal feature set, the model was applied to data that was reserved for 

model assessment. Next, the model was subjected to the 10-fold cross-validation. Following the 

cross-validation phase, the model was tested on the holdout set and on external data’s holdout 

set consecutively.  Finally, the corresponding rule probabilities and parameters, and the 

performance of each model on the other data set were obtained 

4.2.3.1 MUMC+ (Sepsis-2) LOS 
 

In order to generate the rules of the MUMC+ (Sepsis-2) LOS model, optimal features are 

required. As depicted in Table 17, the following features are selected from the FS data subset: 

Lactate, Arterial pH, Bicarbonate, SpO2, Arterial BP MAP, Urinary bladder catheter.  Two 

rulesets and corresponding probability parameters are given in Table 18. 

Rule Survived 72hr mortality 

1 97.5% 2.5% 

2 2.3% 97.7% 
Table 18: Probability parameters per rule for MUMC+ (Sepsis-2) LOS model 
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The linguistic interpretation of the rules given in Figure 11 would read as follows: 

1. Rule 1 (blue): If Lactate is very low, Bicarbonate are very high, SpO2 is normal, Arterial 

BP MAP is very low, and Urinary bladder catheter is very low, then the patient will 

survive within 72 hours with a probability of 97.5%.  

2. Rule 2 (red): If Lactate is very high, Bicarbonate are very low, SpO2 is high, Arterial BP 

MAP is very low, and Urinary bladder catheter is normal, then the patient will die within 

72 hours with a probability of 97.7%. 

Figure 11: Graphical representation of MUMC+ (Sepsis-2) LOS model 
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As previously built models (e.g. MUMC+ (Sepsis-2), MUMC+ (Sepsis-3), there is a clear 

separation between two groups, one where a patient survives with 97.5% probability or dies 

with a probability of 97.5% corresponding to rule 1 and rule 2 respectively. Four features, 

namely Lactate, SpO2, Arterial BP MAP and Urinary bladder catheter overlaps with the features 

of MUMC+ (Sepsis-2) model where the mortality risk was predicted for the entire cohort of 

patient.    

Parameters vj and σj for each rule of MUMC+ (Sepsis-2) LOS model for each rule are given in 

Table 19.  

Variable Rule Number vj σj 

Lactate 
Rule 1 -0.2842 0.5356 

Rule 2 0.8224 0.5284 

Arterial pH 
Rule 1 0.9031 0.4863 

Rule 2 0.0669 0.6265 

Bicarbonate 
Rule 1 0.7885 0.6724 

Rule 2 -0.0596 0.4750 

SpO2 
Rule 1 1.3030 0.6049 

Rule 2 0.3449 0.7083 

Arterial BP MAP 
Rule 1 0.3292 0.3280 

Rule 2 -0.2864 0.7298 

Urinary bladder catheter 
Rule 1 0.3893 0.5622 

Rule 2 -0.1627 0.5165 

Table 19: Parameters vj and σj for each rule of MUMC+ (Sepsis-2) LOS model 

4.2.3.2 MUMC+ (Sepsis-3) LOS 
 

The optimal feature set for the MUMC+ (Sepsis-3) model consists of Heart Rate, Lactate, 

Leucocyte, APTT, Creatinine and Bilirubin. The probability parameters of the obtained two rules 

are shown in Table 20. Yet again, there is a clear separation between two classes. 

 

Rule Survived 72hr mortality 

1 98.6% 1.4% 
2 1.6% 98.4% 

Table 20: Probability parameters per rule for MUMC+ (Sepsis-3) LOS model 

 

 

 

 



 
 

48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rules, depicted in Figure 12, can be interpreted as follows: 

1. Rule 1 (blue): If Heart Rate, Lactate, APTT and Creatinine are very low, Leucocyte and 

Bilirubin are very high, then the patient will survive within 72 hours with a probability of 

98.6%.  

2. Rule 2 (red): If Lactate is very high, Bicarbonate are very low, SpO2 is high, Arterial BP 

MAP is very low, and Urinary bladder catheter is normal, then the patient will die within 

72 hours with a probability of 98.4%. 

Lastly, the parameters of each rule of MUMC+ (Sepsis-3) LOS model are given in Table 21. 

 

 

Figure 12: Graphical representation of MUMC+ (Sepsis-3) LOS model 
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Variable Rule Number vj σj 

Lactate 
Rule 1 -0.2842 0.5356 

Rule 2 0.8224 0.5284 

Arterial pH 
Rule 1 0.9031 0.4863 

Rule 2 0.0669 0.6265 

Bicarbonate 
Rule 1 0.7885 0.6724 

Rule 2 -0.0596 0.4750 

SpO2 
Rule 1 1.3030 0.6049 

Rule 2 0.3449 0.7083 

Arterial BP MAP 
Rule 1 0.3292 0.3280 

Rule 2 -0.2864 0.7298 

Urinary bladder catheter 
Rule 1 0.3893 0.5622 

Rule 2 -0.1627 0.5165 

Table 21: Parameters vj and σj for each rule of MUMC+ (Sepsis-3) LOS model 

4.3 Model Performance 
 

In this subsection, the performance of the models generated with Probabilistic Fuzzy Systems is 

analyzed. Our focus is on the analysis of each model performed within internal cross-validation, 

on the holdout sample, and on other external data sets. Area Under Curve (AUC), Sensitivity, 

and Specificity are selected as the performance metrics, and all associated results are 

presented in Table 22. 

Metric Model CV MUMC+ 

(Sepsis-2) 

MUMC+ 

(Sepsis-3) 

MUMC+ 
(Sepsis-2) 

LOS 

MUMC+ 
(Sepsis-3) 

LOS 

AUC 

MUMC+ (Sepsis-2) 0.73 (0.02) 0.75 0.71 0.68 0.72 

MUMC+ (Sepsis-3) 0.77 (0.02) 0.70 0.65 0.62 0.69 

MUMC+ (Sepsis-2) LOS 0.89 (0.02) 0.82 0.85 0.83 0.83 

MUMC+ (Sepsis-3) LOS 0.89 (0.02) 0.85 0.83 0.86 0.74 

Sensitivity 

MUMC+ (Sepsis-2) 0.65 (0.04) 0.67 0.57 0.26 0.49 

MUMC+ (Sepsis-3) 0.76 (0.02) 0.57 0.53 0.18 0.50 

MUMC+ (Sepsis-2) LOS 0.90 (0.04) 0.79 0.80 0.54 0.81 

MUMC+ (Sepsis-3) LOS 0.85 (0.05) 0.67 0.93 0.32 0.81 

Specificity 

MUMC+ (Sepsis-2) 0.81 (0.03) 0.72 0.77 0.98 0.85 

MUMC+ (Sepsis-3) 0.78 (0.04) 0.76 0.81 0.99 0.85 

MUMC+ (Sepsis-2) LOS 0.89 (0.05) 0.67 0.87 0.95 0.61 

MUMC+ (Sepsis-3) LOS 0.93 (0.02) 0.87 0.57 0.91 0.69 

Table 22: Performance metrics of the models on the other data sets 

From Table 22, we can observe that the performance of the MUMC+ (Sepsis-2) model is slightly 

better than the performance of other models, but such a small difference makes these models 

comparable. It is also important to note that the performance of almost all models is slightly 
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better than the work of Balentien [63]. The main reason could be the quality and size of the 

actual data. MUMC+ (Sepsis-2) LOS and MUMC+ (Sepsis-3) LOS models have shown good 

discriminatory power (AUC>0.80). Surprisingly, the model trained on the smallest data set, 

namely MUMC+ (Sepsis-3) LOS model, performed satisfactory.  

Due to the fact that septic shock is considered a lethal syndrome, high sensitivity is preferred 

over specificity. However, our tool is focused on predicting the mortality rather than the 

existence of the syndrome. Thus, in our case, high specificity is preferred over high sensitivity. 

Further, since high specificity represents the proportion of patients expected to be deceased, 

the urgent alignment of treatment may be employed to save the life of a patient. Derived from 

this discussion, we can investigate each value of the models. 

Table 22 shows that the both models (MUMC+ (Sepsis-2) and MUMC+ (Sepsis-3) have 

demonstrated high specificity results, whereas the sensitivity of both the MUMC+ (Sepsis-2) 

and MUMC+ (Sepsis-3) models are lower in other data sets. Certainly, having equally high 

results on both performance metrics would be ideal. However, such results are acceptable since 

we are more interested in correctly predicting the truly ill patients and providing the necessary 

and immediate care needed to save those patients.   

Yet another interesting results were obtained after applying the models built upon the old 

definitions (MUMC+ (Sepsis-2) and MUMC+ (Sepsis-2) LOS)  to models built with updated 

definitions (MUMC+ (Sepsis-3) and MUMC+ (Sepsis-3) LOS). Table 22 shows that the MUMC+ 

(Sepsis-2) LOS model performs better on almost all data sets. In general, the models satisfying 

the old definitions have demonstrated better results than the models based on updated 

definitions. One of the possible reasons could be the bigger sample size used for training of 

these models with old definitions. Therefore, according to obtained results, a model trained on 

old definitions can be used on new ones. However, if we want to see the applicability of our old 

model on the future data sets that may be collected using the updated definitions, then it is 

important to look at the nature of these new definitions. If the new definitions consist of the 

variables used for building the old model, then the old model may perform satisfactory in 

predicting mortality risk of septic shock patients classified with new definitions (Figure 13). On 

the contrary, if the future definitions incorporate any variables that have never been used in 

building the old model, then our model cannot be used, and thus, the new model has to be 

retrained upon new definitions (Figure 14).       

 

 

 
Figure 13: Updated definitions incorporate previously used variables 
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The Area Under the Curves of the respective models depicted in Table 22 are graphically 

represented in Figure 15, Figure 16, Figure 17 and Figure 18. ROC curves depicted in all figures, 

helps us to discard the suboptimal models and select the optimal models. ROC graphs in Figure 

15 and Figure 16 indicate that the MUMC+ (Sepsis-2) model performs slightly better on the 

entire cohort of patient, whereas MUMC+ (Sepsis-2) LOS model performs better on the cohort 

of patients with at most 3 ICU days. Since the model generalizes better with bigger training set 

size, one of the possible reasons for both cases could be the size of the respective training sets 

in comparison with the other data sets’ training sets.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: ROC curves of all models for the MUMC+ (Sepsis-2) data set 

Figure 14: Updated definitions incorporate new variables 
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Figure 16: ROC curves of all models for the MUMC+ (Sepsis-3) data set 

Figure 17: ROC curves of all models for the MUMC+ (Sepsis-2) LOS data set 
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Lastly, it is important to consider the effort required for building the models based on the 

updated definitions. At the first stage, four months were spent on acquiring the initial data. 

Then it took three days to reclassify the patients using the old and updated definitions. At the 

next stage, one week was spent on formatting the data that model requires. Finally, two hours 

were spent on training the MUMC+ (Sepsis-2) model and one hour on the other models. 

4.4 Individual Mortality Risk Estimation 
 

The final model is trained on the cohort of patients admitted to the ICU between 1/1/2013 and 

31/12/2016. The predictive power of our model allows physicians to also apply the prediction 

to newly admitted patients. Based on the newly obtained values of a patient, the model may 

help doctors identify the severity of the illness and thus align the type of treatment for that 

specific patient. 

  

 

 

 

 

 

 

 

Figure 18: ROC curves of all models for the MUMC+ (Sepsis-3) LOS data set 
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In Figure 19, the Y-axis denotes the actual measurement of a patient’s physiological variable, 

whereas the X-axis represents the total number of observations. The blue line in the last row 

represents the mortality risk estimation, whereas the red line denotes the actual survival of a 

patient. Due to the fact that our observations were templated with the heart rate, and since the 

heart rate was measured every 2 hours, every 12 observations are equal to 24 hours. Thus, in 

order to estimate the mortality risk of a newly admitted septic shock patient, the blue line in 

the last row of Figure 19 should be considered. The model is not limited to a particular number 

of hours, and depending on the measurements, the particular timeframe may be adjusted 

within the model and the severity of illness of a patient may be obtained. For instance, 

although this patient has survived, in 30th observation (approximately at the end of the third 

day) the mortality risk of a patient was higher. Most probably, since the clinicians intensified 

the treatment of this particular patient, the mortality risk went down and thus saved the life of 

an ill patient.  

 

Figure 20 depicts the mortality risk estimation of another patient. From the last row of the 

graph, we can observe that the mortality risk estimator was constantly changing throughout 

Figure 19: Mortality risk estimation of patient no. 3 



 
 

55 
 

Figure 20: Mortality risk estimation of patient no. 2 

the number of observations. For example the mortality risk of a patient between 300 and 400 

observations (between the twenty-fifth and thirty-third days) were estimated as high. After the 

intervention of the clinician by increasing the intensity of a treatment, the patient’s mortality 

risk went down and the patient survived.    
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Lastly, the Figure 21 depicts a mortality risk estimation of another patient who was actually 

deceased. Mortality risk estimator, represented by the blue line, has correctly raised an alarm 

about the patient’s condition and eventually the patient was deceased.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Mortality risk estimation of patient no. 10 
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5. Conclusions 

This study was set out to identify the model migration approach due to change of definitions. 

The analysis was conducted using Probabilistic Fuzzy Systems for Mortality Risk Prediction 

based on old and updated sepsis definitions. Before discussing the major findings and 

contributions, it is appropriate to restate our main research question, which is defined as 

follows: 

 

Research Question: How to migrate the model due to change of definitions and what are the 

consequences of that change on the modeling activities? 

Prior to investigating the problem in detail, we discussed the applicability of scoring models in 

identifying the mortality of septic shock patients and indicated the advantages of prediction 

models in comparison to those traditional methodologies. We then introduced Probabilistic 

Fuzzy Systems as being a crucial approach toward modeling vagueness in linguistic terms and 

probabilistic uncertainty simultaneously. This approach provides doctors with an easier 

interpretation of the obtained results from prediction models.  

The main contribution we made with this work is a developed approach toward the migration 

of models when the definitions of a disease change, following the description of consequences 

of these changes on the modeling activities. For instance, if the new definitions incorporate the 

variables that were used to build the previous models, then the existing models can safely be 

migrated and used for mortality prediction by simply re-identifying the patients. If, however, 

definitions get updated with new variables that have never been used for building the models, 

then the re-identification of patients is impossible; thus, the hospital has to restructure its data-

recording mechanism and conduct the complete analysis using the new data.  

The next contribution was a data analysis of septic shock patients’ mortality using Probabilistic 

Fuzzy Systems built upon updated septic shock definitions. We have shown that PFS can 

perform satisfactorily for such analysis, regardless of the definition update. After predicting the 

mortality of patients classified with Sepsis-2 and Sepsis-3 definitions, the obtained results were 

compared, and the relevance of the updated definitions was identified. In this work, we have 

shown that the Sepsis-3 definitions demonstrate comparable results with Sepsis-2 definitions 

and that the identification of the presence of septic shock in critically ill patients may be 

performed using updated definitions. Undoubtedly, such a conclusion is drawn purely based on 

mathematical analysis and may be different from medical analysis. While comparing the 

performance of the models, however, it is essential to discuss the size of the patient cohort and 

the respective severity of illness. For physicians, critically ill patients are of the utmost priority 

since such patients need an urgent intervention that could improve their outcome. For this 
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reason, Sepsis-3 definitions are favored over Sepsis-2 definitions. Sepsis-3 definitions consist of 

the desired cohort of patients with higher mortality risk (41.5% vs. 35.8% for the entire cohort 

and 77% vs. 63% for the “at most three days stay in ICU” cohort) and save resources and time 

for physicians by focusing on the treatment of severely ill patients. Nevertheless, in order to 

identify patients with the updated definitions, enormous efforts must be spent in changing the 

structure of the hospitals. It is believed that while the practice of identification with Sepsis-2 

definitions has gained some traction in healthcare, changing these definitions could “set back 

decades of work and could be interpreted to de-emphasize intervention at earlier stages when 

the syndrome is most treatable” [61].      

A further contribution is obtaining individual mortality risk estimation for septic shock patients. 

This method may help doctors identify the severity of the illness and align the type of 

treatment for that ill patient accordingly, which has a direct impact on a patient’s survival. Since 

the early detection of illness in septic shock patients results in lower mortality [16], the 

developed prediction tool may assist clinicians in this regard.  

To conclude, in this project, we have analyzed and presented a model for predicting the 

mortality risk of critically ill patients identified with Sepsis-3 definitions, which constitutes a 

relatively new research approach for the medical field. We also compared the results with the 

mortality risk of Sepsis-2 patients and presented the relevance of new definitions in a 

mathematical way. We believe that the developed model generates reliable results to help 

clinicians select the appropriate treatment for each individual patient. It is important to note, 

however, that this tool cannot be used alone and must be treated as a complementary tool to a 

well-developed clinical assessment and other laboratory results. 

5.1 Limitations and Future Work 
 

In this section, the observed limitations of our implemented framework and the possibilities for 

future research within the septic shock mortality risk prediction domain are presented. Four 

major directions are identified and presented below. 

5.1.1 Data Quality 
 

The first limitation is related to the quality of data. During the data preprocessing steps, the 

missing values were analyzed and imputed if the data was not recorded for unidentifiable 

reasons, such as electricity or hardware failure. However, this approach adds bias to the 

prediction results, whereas deleting the missing values causes both bias and a loss of statistical 

power [55]. Thus, while collecting the data, it is important to prevent circumstances that affect 

the number of missing values. 
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5.1.2 Data Relevancy 
 

The second limitation of our method is related to the relevancy of the data. The hospital, 

particularly Maastricht University Medical Center+, was not recording the patient data explicitly 

for mortality risk prediction but as a general practice within the Intensive Care Unit. Hence, 

collecting the specific data, which includes all relevant variables of the updated definitions, is of 

the utmost importance. After that, the direct comparison of models built upon Sepsis-2 and 

Sepsis-3 definitions may be carried out, and the most promising definition in terms of results 

may be employed for the identification of septic shock patients.  

5.1.3 Medical Expert 
 

The third important aspect of future work is related to the study of prepared models by a 

medical expert. Due to the fact that our analysis was conducted outside of a medical 

environment, the crucial constant feedback sessions with the doctors were not possible for 

numerous reasons. Such analysis, however, requires extensive input by professional physicians 

in order to obtain the most accurate and relevant prediction results. For example, during the 

data-cleaning process, six variables were removed from the analysis due to many missing values 

of patients. The importance of those variables was not discussed with medical experts, and 

thus, in the future, it is essential that this step is made obligatory in order to ensure the 

alignment between data analysis professionals and healthcare experts. 

5.1.4 The Diagnosis of Sepsis 
 

Since the introduction of Sepsis-3 definitions, numerous discussions have circulated within the 

sepsis domain. The updated definitions were introduced by the task force convened by the 

European Society of Intensive Care Medicine and the Society of Critical Care Medicine. The task 

force recommendations and the supporting evidence were endorsed by 31 medical societies. 

However, this document was not endorsed by all medical societies (i.e., Latin American Sepsis 

Institute, American College of Chest Physicians and American College of Emergency Physicians). 

According to these opposing societies, newly introduced qSOFA and SOFA criteria are not the 

actual diagnosis of sepsis but rather predictors of mortality. Furthermore, there is still no 

known precise pathophysiological feature that defines sepsis [62], thus discrediting the validity 

of these criteria. In our project, however, we are interested in predicting the mortality risk of 

septic shock patients rather than the mortality risk of sepsis patients. Thus, for the MUMC+ 

(Sepsis-3) data set, the diagnosis of sepsis was carried out using Sepsis-2 definitions, namely, 

SIRS criteria. Later, the serum lactate level was used to select the cohort of septic shock 

patients according to the updated definitions. This approach was taken in consultation with Dr. 

Ronny Schnabel, an anesthetist-intensivist within the ICU of MUMC+ hospital since not all 
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variables of newly adopted SOFA were available for the diagnosis of sepsis at the time. 

Therefore, future work should focus on the reclassification of patients using the SOFA score and 

serum lactate to identify sepsis and septic shock patients respectively. Following the 

identification of septic shock patients, the applicability of newly established definitions may be 

analyzed.  
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