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Abstract

Workflow management and analysis in clinical settings have been studied extensively. However,

due to the limitations of cost and data sources, traditional methods of recording and analyzing

workflow events, especially for a long period of time in the hospitals in large scales are not feasible.

In addition, currently it is not possible to track workflow events automatically and continuously

using existing hardware and software technologies.

In recent years, Real-time Location Systems (RTLS) has became more and more popular among

hospitals. Current application scope of RTLS is still narrow. However, RTLS can potentially be a

great tool to breakthrough the current limitations in workflow analysis as it can provide accurate

indoor location tracking for different types of entities and produce streaming location data in

real-time. This streaming data has great potential in many applications of workflow analysis and

prediction.

In this thesis, a set of novel approaches for analyzing, identifying and predicting clinical work-

flow events using the combination of Machine Learning and Real-time Location Systems (RTLS)

is introduced. Using this combination, we tackle four clinical use cases: (1) Create a dynamic visu-

alization to playback historical workflows by displaying animations of tag movements; (2) Analyze

the location sequence of staff tags to find patterns in particular workflow events; (3) Automatically

identify workflow events using RTLS data; (4) Predict the remaining time for ongoing workflow

events.

The four use cases are converted into three data analytics tasks, including map and parallel

coordinates visualization, machine learning based classification and regression.

The thesis is focused on how to properly train machine learning, especially deep learning models

using historical RTLS, machine log and Case Report Form (CRF) data to give classifications and

predictions purely based on future RTLS data. The models will be compatible to make online

predictions in real clinical settings where we do not have other data sources.

The evaluation result collected from a series of experiments shows that the proposed approach

of automatically identifying workflow events is feasible. The deep learning model: LSTM based on

sequential RTLS data yields 0.87 in AUC, 0.63 in Kappa and 0.84 in accuracy on test data. The

approach of automatically predicting the remaining time of ongoing event yields 14 minutes Mean

Absolute Error (MAE) in predicting the remaining time of exam events which in average last

about 3 hours. We conclude that our models are applicable in automatically detecting workflow

events and predicting event remaining time in real-time in clinical environments where staffs are

tracked by RTLS.
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Chapter 1

Introduction

This master thesis project is carried out within Data Science group of Philips Research Eind-

hoven and Data Mining group of the Mathematics and Computer Science department of Technical

University of Eindhoven (TU/e). The thesis is for the Business Information Systems master at

TU/e.

Firstly in this chapter, the business context is discussed to motivate our research. Secondly,

the identified business use cases and related data analytics tasks are described in the research

objectives section. Thirdly, the main contributions of this thesis is summarized. Lastly, the

outline of this thesis is introduced.

1.1 Business Context

Workflow can be defined as the flow of work through space and time [3]. In the clinical context,

workflow involves the flow of the clinical staff, patients and the information. Clinical workflow can

be formed voluntarily by the clinical staff, for example physicians and nurses or can be regulated

by the hospitals.

Measuring and understanding existing workflows give the management insights about the ef-

ficiency and effectiveness of the entire hospital, or of a particular department and allow them

to find potential spaces to improve the workflows. Nowadays, clinical resources, including staffs,

rooms and equipment are commonly limited. Effectively planning of the resources are crucial for

improving hospital productivity and reducing costs.

Identifying and measuring clinical workflows can be challenging. Firstly, workflows are not

always obvious and consistent. Secondly, it is usually expensive to label the workflow events.

There are several commonly used conventional approaches [4] for measuring clinical staff works. In

these approaches, there is usually a trade-off between cost and precision. The commonly accepted

”gold standard” in labeling clinical workflow events: the direct observation method suffers from

high cost and is not feasible to be applied for an indefinite period. Some cheaper methods, for

instance provider interview and self-administered report result in high variation [5] and bias [4]

[6] [7].

In recent years, more and more hospitals have incorporated RTLS (Real-time location sys-

tems) to monitor the locations of personnel and assets. Different from GPS (global positioning

system)-like systems which are successful in outdoor locating, RTLS is capable of locating entit-
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ies in complex indoor environments in real-time. Hospitals benefit from this technology in many

applications [8], for instance: fast locating of medical equipment, fast locating of available clinical

staff in case of medical emergencies and monitoring patient location to ensure patient safety.

However, the potential of RTLS is yet to be discovered. As a real-time and reliable source of

locations of all tracked clinical resources including clinical staffs, equipment and patients, RTLS

data can possibly provide insights about the real-time operational status of the hospital. In this

study, we assume that the location of the clinical resources is influenced by the ongoing workflow

events. We will try to exploit the RTLS data to explore whether RTLS data can enable us to

visualize, identify and predict clinical workflow events.

1.2 Research Objective

In this study, we aim to combine the power of RTLS with data mining and machine learning

technologies. We present novel approaches of doing predictive workflow analysis with the support

of RTLS using various visualization, machine learning and deep learning algorithms to achieve

intuitive visualization, workflow event identification and prediction with high precision in low

cost.

We have collected data from the radiology department of a hospital in The Netherlands from

different sources, including RTLS, interventional X-Ray (iXR) machine log and Case Report Form

(CRF). We firstly clean and combine the data from these three sources. Secondly, we build

visualization tools to visualize the relation between workflow and location in an intuitive and

interactive way. Lastly, we build machine learning models to identify workflow events and predict

the remaining time of ongoing workflow events based on historical and streaming RTLS data.

We assume that the existing workflow is already defined by the hospital. Thus, constructing

existing workflows from the logged clinical activities or events is not one of our research objectives.

All the analysis and prediction tasks will be based on the predefined workflow and events from

the workflow.

1.2.1 Business Use Cases

There are two main goals of this study in the business perspective. The first goal is to validate

whether RTLS can enable hospitals to better observe, analyze and optimize existing workflows.

The second goal is to validate the capability of doing automated workflow event prediction by

combining RTLS and machine learning. Based on the two goals, we have identified four use cases.

They are listed below:

1. Workflow playback. Generating rich and interactive visualization of the workflow to intuit-

ively show the correlation between staffs’ movements and workflow events.

2. Transition sequence analysis. Generate visualization to show the transition pattern between

different types of zones during a workflow event.

3. Workflow event identification. Build predictive model to automatically identify workflow

events using RTLS data.

4. Event remaining time prediction. Automatically predict how long time is remaining for the

ongoing workflow event, based on real-time streaming RTLS data.

2 RTLS-Enabled Clinical Workflow Predictive Analysis
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The four business use cases can be categorized into two main types: offline batch analysis

based on historical data and online prediction based on real-time streaming data.

1.2.2 Data Analytics Tasks

To address these four business use cases, we have identified the matching data analytics tasks.

The two business use cases related to offline batch analysis can be converted into two interactive

visualization tasks to help the analysts to get an intuitive idea of the tag transition patterns and

correlation between workflows.

For the two business use cases related to online prediction, we propose a methodology to

generate features based on RTLS data and labels based on the machine log and the CRF data, to

build classification and regression models based on the generated data set to capture the correlation

between staff locations and workflow events. These models are later applied on the test RTLS data

to evaluate the feasibility and predictive performance. The detailed definition of the converted

data analytics tasks are listed below:

1. Visualization. Visualizing dynamic indoor location and workflow data using map animations

and parallel coordinates.

2. Machine learning binary classification. Using classification models to classify RTLS data to

give labels on whether the RTLS information indicates an ongoing workflow event.

3. Machine learning prediction. Using prediction / regression models to give prediction on the

remaining time of the ongoing workflow event based on current RTLS data.

Figure 1.1 is made to better illustrate the matching between the business use cases and the data

analytics tasks. From the figure, the two business use cases related to offline analysis are combined

to map and parralel coordinates visualization task. The use cases of automated workflow event

identification and event remaining time prediction have their own corresponding data analytics

tasks.
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Workflow playback

Transition sequence analysis

Automated workflow event identification

Map and parallel coordinates visualization

Machine learning binary classification

Machine learning prediction (regression)

Event remaining time prediction

Business use cases Data analytics tasks

Figure 1.1: Correspondence between business cases and data analytics tasks

1.3 Main Contributions

There are four main contributions in this study: (1) I have built an interactive visualization based

on D3 which intuitively shows the relation between workflow progress and tag locations by anima-

tions; (2) I have built an interactive visualization tool based on D3’s Parallel Coordinates package

to visualize the general patterns of tag transitions in different workflow events; (3) I proposed a

methodology to incorporate RTLS and machine learning to automatically identify workflow events

in real-time and carried out experiments to validate the methodology; (4) I proposed a method-

ology to predict the remaining time of ongoing workflow events automatically using RTLS and

machine learning. Experiments are done to verify whether this methodology is feasible.

1.4 Thesis Outline

The context, research objective, main contributions and thesis outline are introduced in this

chapter. Chapter 2 introduces the preliminary studies prior to this thesis. Chapter 3 describes the

pipeline of implementing the data analytics tasks in this study. In Chapter 4, the methodologies

used in cleaning the RTLS and CRF data are described. Chapter 5 introduces the framework and

the implementation of visual analysis tasks including workflow playback and transitioin sequence

diagram. In Chapter 6, framework, strategy and experiments of identifying workflow events using

machine learning models based on RTLS are introduced. Chapter 7 describes the methodology

of predicting event remaining time using machine learning models based on RTLS data and the

corresponding experimental results. Lastly, Chapter 8 concludes the study outcome, describes the

limitations of the study and the future works that can be done to improve this study.
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Background and Related Work

In this chapter, existing approaches for clinical workflow analysis related to our study are intro-

duced. Including workflow event labeling, studies on clinical workflow analysis using data mining

and process mining approaches, RTLS and its application and existing machine learning models.

2.1 Conventional Workflow Event Labeling Approaches

In this section, three conventional approaches for recording workflow events are introduced.

2.1.1 Direct Observation

In this approach, trained observers are asked to follow clinical staffs for their entire shifts, recording

the behaviors of the staffs at a certain minute interval. This approach yields a high accuracy,

however, the drawback is obvious: it has significant high costs, including human resource costs

for observers, intrusion of clinical staffs’ normal workflows [4]. It is often considered unfeasible for

large scale projects [6].

In addition, a study by Kazdin [9] shows that direct observation can lead to the observer

effect. An observer effect is a type of reactivity in which individuals modify an aspect of their

behavior in response to their awareness of being observed [10]. This can affect the precision of

direct observation.

2.1.2 Provider Interviews

In this approach, clinical staffs are given interviews at the end of their shifts. The interview

includes questions regarding to their work: what types of services have they provided during the

shift. For each type of the services, average duration of patient contact are estimated by the clinical

staff. In addition, questions are also asked about the time the clinical staff spent on activities that

are not related to direct patient care.

Although the provider interviews approach has a lower cost compared with direct observation,

the result comes out of it is particularly weak as because it substantially overestimated contact

time while underestimating non-productive time [4] [6].
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2.1.3 Self-administered Report

Log books are distributed to clinical staffs. During the shift, a clinical staff needs to note down

all the activities he or she has done in a form, as well as some descriptions about each activity.

For instance activity start time, end time and a short description.

Assessments have been carried out by Hunting et al. [5] about the validity of self-administered

reports. The result shows that the utilization estimated from self-administered reports is highly

variable. The estimation result from self-administered reports and direct observation are compared

by Burke et al. [11] . A study of Donaldson & Grant-Vallone [7] concludes that potential response

bias exists in this approach, the subjects in the experiments tend to record more utilization on

socially desirable activities.

For the conventional approaches introduced above, in addition to the drawbacks described,

the provider interviews and self-administered report methods do not apply on estimating the

utilization of clinical equipment. Also, for provider interviews, only the duration of each type of

activities is recorded, we cannot know at which exact time did each activity happen and end.

2.2 Workflow Mining from Clinical Activities

One challenge for workflow analysis in hospital is to construct the workflow from recorded clinical

activity logs. This is a typical process mining task. Langab [2] et al. have done a survey on varies

of process mining approaches to construct clinical workflow using log data from Radiology Inform-

ation System (RIS), Hospital Information System (HIS) and logs from Computer Tomography

(CT), Magnetic Resonance Imaging (MR), ultrasound (US), and X-ray (XR) machines.

Various algorithms are surveyed in this study, including α algorithm introduced by van der

Aalst et al. [12], the α++ algorithm by to Wen et al. [13], the heuristic mining algorithm by

Weijters et al. [14], the DWS algorithm by Greco et al. [15][16], the multiphase algorithm by van

Dongen and van der Aalst et al. [17], the genetic-mining algorithm by de Medeiros et al. [18], and

the theory-of-regions-based algorithm by van Dongen and Busi et al. [19]

Table 2.1 shows the summary of evaluation result for the process mining algorithms listed int

the previous paragraph. In the table, “+” stands for met, “-”stands for unmet and “+/-” stands

for partly met.
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Table 2.1: Evaluation of various process mining algorithms by Longab [2]

completely, especially if only a few iterations are performed. We noticed artificial 
behavior also in the multiphase approach of van Dongen and van der Aalst, which e.g. 
would generate artificial process start and end points. The �- (see Figure 1) and the -
region-miner-algorithm did generate none or incomplete models. The evaluation 
resulted in the following weighted and averaged ICS values for the mined CT, US, MR 
and XR models. –1,249 for van der Aalst et al., -1,305 for Wen et al., 0,683 for 
Weijters et al. and Greco et al., -0,733 for van Dongen et al., 0,919 for de Medeiros et 
al., and –1,294 for van der Aalst and Rubin et al. All algorithms except the �- and the 
region-miner-algorithm were able to derive forks, joins, as well as sequential and 
parallel behavior from the input data. Here the problem is that the �- and region-miner-
algorithm require absolutely noise-free and complete input data, which cannot be 
assured when clinical data from log files is used, despite elaborate ETL (extraction, 
transformation and loading) methods used in this study. Four of seven algorithms (�++-,
heuristic-, DWS- and genetic-algorithm) were able to correctly detect arbitrary and 
block-structured loops. One algorithm (van Dongen and van der Aalst et al.) derived 
loops, which did not correspond with the input data, whereas the �- and region-miner 
again did not produce sensible mining results in this task. The differentiation between 
repeated activities and activities in loops is an issue for the majority of the algorithms. 
Only de Medeiros et al. propose a variant of its genetic-mining algorithm, which is 
(partly) able to handle these constructs, by using the sets of successors and 
predecessors to distinguish between repeated activities and activities in loops. This 
implies a limitation to activities and excludes repetitive sub-processes, because the 
predecessors and successors within these sub-processes are not distinguishable from 
each other. All other investigated approaches were not able to handle these constructs, 
neither repeated activities, nor repetitive sub-processes. The efficient handling of fuzzy 
process entry and endpoints is another challenge for the approaches. Again, the �- and 
region-miner algorithm did generate insufficient results. In contrast, both heuristic- and 
DWS-miner perform well in this regard by counting successor frequencies globally. 
But this straightforward computation of relative successor frequencies (using activity 

Table 1. Summary of the evaluation results (“+” for met, “-“ for unmet, and “+/-“ for partly met)
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Truth to reality in contents - + + + +/- - -

Noise and incompleteness - +/- + + + - -
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Repetitive activities - - - - +/- - -

Fuzzy entry and end points - +/- + + + - -

Process types and variants - - - + - - -

M. Lang et al. / Process Mining for Clinical Workflows: Challenges and Current Limitations232

2.3 Real-time Location Systems

Real-time location systems provide continuous and immediate indoor location tracking for entities,

such as staff, patient and assets.

2.3.1 Hardware Infrastructure

There are two main categories of technologies to implement RTLS: Infrared (IR) based and active

Radio Frequency Identification (RFID) based.

IR based localization is achieved by 3 main hardware components: monitors, tags and stars.

An example of the components is shown in Figure 2.1. Monitors are placed in interesting locations,

typically on the ceiling. The monitors emit IR signals to the tags, telling the tag which particular

monitor it is under. Tags are equipped with IR receivers which pick up the IR signal from the

monitor and convert the signal to the monitor’s ID. A tag can report its status as well as the ID

of the monitor to the star through radio. A tag may have different appearances and can be worn

by a person or attached on equipment. For instance a badge clipped on a physician’s uniform, a

wristband worn on the wrist of a patient. The star can receive tags’ location reports and forward

the reports to the RTLS servers for streaming and storage.

(a) Centrak monitors and tags (b) Centrak Star

Figure 2.1: Example of hardware components in IR based approach

In contrast, RFID based locating is achieved by 2 components: receivers and tags. Similar to
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the monitors in IR based approach, receivers are placed in interesting locations. Tags are equipped

with microchips and each tag can transmit a unique signal which can be received and identified

by the receivers. This is usually done with RFID (radio-frequency identification) technology. By

reading the signal transmitted by the tags, a receiver can identify and report when a tag is in the

location (e.g. a room) where the receiver is installed.

Each technology has its own advantages and shortcomings. In this study, we use the IR based

technology mainly because it can give up room-level precision. Active-RFID based technologies,

on the other hand, only give us a proximate location because the RF signal can travel through

walls which can be problematic because it will sometimes be hard to decide which side of the wall

is a tag actually located at.

2.3.2 Precision of RTLS

The IR based RTLS system used in this study achieves room/sub-room level precision depending

on the installation of the monitors. This means we will only know in which zone is a tag located

at. Within the same zone, which can be a room or a part of the room depending on the installation

of monitors, it is impossible to tell where exactly a tag is located at. For instance, we can get

location report Tag TA is in room ZA, however it is impossible to know whether TA is standing

next to the patient bed in the room or sitting in the chair next to the desk.

2.4 Machine Learning Classification and Prediction

Machine learning can be categorized into supervised learning and unsupervised learning. This

thesis will involve supervised learning algorithms as we define targets for the learning tasks. We

will face two supervised learning problems: classification and prediction. Classification problem is

a problem where we identify which category a new data point belongs to given the machine learning

model trained by training data. The prediction problem, also known as regression problem, is a

type of problem where we predict a continuous value based on the features of a new data point

using the machine learning model trained by training data.

2.4.1 Conventional Machine Learning Techniques

A set of conventional machine learning models is used in this study. In this section, we give a brief

introduction of each conventional machine learning technique involved.

Logistic regression [20] is a special case of a regression model which gives a categorical pre-

diction, usually a binary prediction. In this study, the prediction is a binary value, i.e. we model

the conditional probability Pr(Y = 1|X = x) as a function of x.

Decision tree is a tree-like structure that describes the strategy of generating a conclusion

based on the data features. There are several decision tree generation algorithms. In this study,

Classification And Regression Tree (CART) [21] is used. This algorithm supports both classi-

fication and regression tasks, which match the needs of this study for event identification and

remaining time prediction.
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Random Forest [22] is an ensemble learning algorithm for both classification and regression.

It constructs multiple sub decision trees and makes predictions based on the ensemble of the sub

trees. It is believed to be able to correct the over fitting problem [23].

Naive Bayes [24] is a type of simple probabilistic classifier based on Bayes’ theorem with

independence assumptions between the features. In this study, Gaussian Naive Bayes model is

adopted.

Multilayer Perceptron is a class of feed forward artificial neural network (ANN). An multilayer

perceptron consists of three or more layers of nodes. The nodes, except for the input layer, use

nonlinear activation functions. Backpropagation is used for weight training [25].

Support Vector Machine [26] is a discriminative classifier which separates data according to

a trained hyperplane. SVMs are especially good at non-linear classifications as it uses kernel trick

which maps the inputs into high-dimensional feature spaces.

2.4.2 Deep Learning Models

In this section, two deep learning algorithms are introduced.

Recurrent Neural Networks

Recurrent neural network (RNN) is a type of artificial neural network in which the perceptrons

have cyclical connections. Unlike traditional neural networks which consider the input data to be

independent of each other, RNN structure enables the network to have a memory of the history,

which is very useful in context-sensitive prediction tasks such as natural language processing

(NLP), speech recognition and handwriting recognition. RNN network has several architectures.

For instance Elman network [27] and Jordan network [28].

The drawback of RNN is that it suffers from the problem of vanishing gradient. In theory

RNN can learn the dependencies between data in any intervals, but practically, it is not feasible

to train a traditional RNN network to learn the long term dependencies. So usually it is only

feasible able to look back in history for a few steps.

Long Short-term Memory

Long Short-term Memory (LSTM) was introduced by Hochreiter et al. in 1997 [29]. Unlike

the traditional RNN architectures, LSTM does not suffer from the vanishing gradient problem

introduced in the previous section. The LSTM structure is very similar to RNN, the difference is

that the nonlinear units are replaced by memory blocks with recurrent gates.

Figure 2.2 depicted the structure of LSTM memory block in a cell. Different from RNN, the

LSTM cell contains an input gate, an output gate and a forget gate. The input gate will decide

whether to let a new input in. The output gate decides whether let the state impact the output

and the forget gate decides whether to erase the cell’s present state.

The advantage of this structure is that the added gates allow the network to control the status

of the cells. Thus it can decide which information to discard or “forget”. This makes it possible

to find long term dependencies without suffering from the exploding of backpropagated errors.
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Figure 2.2: LSTM memory block structure

In our application of identifying workflow events and predicting event remaining time using

RTLS data, this quality of LSTM can be of great help because it is able to look back a long period

of history to find sequential patterns.

LSTM is suitable for both classification and regression tasks.
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Research Framework

In this chapter, the framework of implementing the data analytics tasks in this study and the

steps in the framework are introduced. The framework is designed to carry out the data analytics

tasks defined in Section 1.2.2 based on the business use cases introduced in Section 1.2.1.

3.1 Framework Overview

Figure 3.1 depicts the overall framework of this research study.

Machine learning binary classification Machine learning prediction

Data cleaning

Business / Data 

understanding

Map and parallel coordinates 

visualization
Feature processing

Figure 3.1: The overall framework of the implementation

The framework consists of four levels from the top to the bottom. The basic level is the

understanding of the current business logic and how to relate the collected data to the business

logic. The second level is to improve the data quality and convert the data in a unified format.

The third level consists of three parts of work based on the cleaned data. The last level of work

will be carried out based on the extracted features from the third level.
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3.2 Business and Data Understanding

Understanding the business logic and data is the fundamental work in our study. This study’s

research object is the workflow in the interventional X-ray (IXR) section of the radiology depart-

ment of a hospital. In the section, several X-ray machines are installed in separate exam rooms.

We have chosen a particular exam room as the subject of this study. Thus, we study all the

workflows related to the procedures that are performed in this room.

Different procedures are performed in the X-ray exam room, however, they follow the same

general workflow. The workflow is predefined by the hospital.

3.2.1 Scope of the Data Set

We have collected data from 3 different sources: the RTLS data, the machine logs and the CRF

data.

RTLS Data

We have collected RTLS data for 12 months. In this study, we only tagged the clinical staffs

involved in the workflows. Staffs are mainly divided into 2 roles: physician and nurse. Although

there is a more detailed role classification for the nurses, for instance, there can be sterile nurse

and normal nurse in an exam, they will have the same type of tag so we do not know whether a

tag is used by a sterile nurse or a normal nurse.

Meanwhile, we do not track individual staff to lessen privacy concerns. A staff will pick up a

tag which corresponds to his/her role when his/her shift start, thus a same tag can be used by

different staffs in different shifts.

Patients and assets are not tracked in this study.

iXR Machine Log

We have access to the machine log of the interventional X-Ray machine which is installed in the

target exam room. The raw machine log has the following information including but not limited

to:

1. UI interactions

2. Table positions and adjustments

3. Acquisitions

4. Software logs

The machine log is semi-structured. It follows certain data structure but the description of an

event can be in free text. The Philips iXR team has developed a machine log cleaner to extract

information from the raw machine log and generate features in different aspects into different

tables. In this study, we use the exam acquisitions table which is generated by this cleaner. This

table contains information regarding:

1. Exam properties
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(a) System information

(b) Exam ID

(c) Exam time period

2. Acquisition properties

(a) Acquisition time period

(b) Acquisition application type

(c) Acquisition parameters

There can be multiple acquisitions during one exam.

Case Report Form

During the same period when the RTLS data was collected, we also collected the CRF data of

the workflow procedures. The date and time of 15 types workflow events are collected for each

procedure.

The 15 workflow events are listed below:

1. Patient is registered

2. Patient arrived in waiting room

3. Patient arrived in exam rom

4. Patient laid on table

5. Physician is called

6. Physician arrives in the exam room

7. Patient is clear for procedure

8. Start incision

9. Close incision point

10. Called to retrieve the patient

11. Physician leaves the exam room

12. Physician leaves the control room

13. Patient retrieved from table to bed

14. Patient dismissed

15. End of research

The workflow is patient oriented. In a procedure, only one patient is treated. Thus a procedure

matches a patient visit. In other words, if a patient visits again, he will have a new procedure for

this new visit.
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For each procedure, one workflow event can appear at most once. Some events can be missing in

a procedure. Workflow events do not necessarily follow a particular order. For example, physicians

can be called before the patient is laid on the table.

In addition, several procedures may take place at the same time. A procedure does not only

cover the duration of the actual exam in the exam room, but also cover the time when a patient

is admitted, waiting in the waiting room etc., thus it can be the case that while one patient is

waiting, the second patient is being treated in the exam and the third patient is being dismissed,

i.e. there are three procedures ongoing in the same time.

3.3 Data Cleaning

Due to technical limitations of the RTLS system used, the RTLS data collected can contain missing

and erroneous records. To improve the data quality and avoid making visualization and predictions

based on missing and erroneous data, several data cleaning approaches are adopted to improve

the quality of the RTLS data. These approaches will be introduced in Chapter 4.

The CRF data also has data quality problems. One main reason is that the input of the data

is done by the nurses for the first months. This is an additional work for them while they already

need to focus on the exams. Thus it can be the case that they missed to input several events, or

input error events date time by mistake. Strategies are to clean the CRF data are described in

Chapter 4.

The machine log data, on the other hand, does not need cleaning because cleaning is already

done when we retrieve the data. Thus the cleaning for machine log data is not discussed in this

thesis.

3.4 Analysis Based on Clean Data

The cleaned data is considered to be accurate and reliable. We firstly carry out visual analysis

based on this data. Feature processing is also done based on the cleaned data. It will then be

used in the two machine learning predictive tasks in the fourth level.

3.4.1 Visualization

The main purpose of visualization is to explore the correlation between different data sources. We

develop a visualization platform to provide interactive and intuitive visualization of the historical

location and workflow aligned according to the timestamp.

The scope of the visualization is only with the RTLS data and the CRF data. We did not take

the machine log data into account because there is an ongoing study on visualizing the machine

log data. Also, the machine log data is much more complex and detailed.

3.4.2 Feature Processing

The objective of feature processing is to prepare structured data as features and labels for the

machine learning predictive tasks in the fourth level.
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The reason why we cannot use the cleaned data directly as features is that the cleaned data is

still in the log format. In the cleaned data, one data point contains only information about where

is a tag located in a given timestamp as well as the tag and the zone properties. This data just

gives us a micro point of view and this provides little value for the prediction.

Thus, in other words, the goal of feature processing is to build this data which contains the

overall status of the system using the micro information from the RTLS location reports. This

work is introduced in Section 6.2.

3.5 Predictive Analysis based on Machine Learning

The two tasks in the fourth level are about machine learning based predictive analysis. The

purpose of this part is to address the two business use cases mentioned in Section 1.2: workflow

event identification and event remaining time prediction.

3.5.1 Classification vs. Prediction

Machine learning tasks can be classified in many categories. The most popular classification is

supervised learning vs. unsupervised learning [30]. Supervised learning tasks can be classified

as classification or prediction tasks [30]. In classification, we use our model to predict a discrete

label while in prediction we predict a continuous value. In our study, it is obvious that the event

identification task is a classification task and the remaining time prediction task is a prediction

task as we want to estimate a continuous remaining time.

3.5.2 Sequence learning

Most machine learning prediction algorithms, for instance logistic regression, decision tree etc.

are designed for independent data. They do not consider the correlation between data points.

Sequence labeling a is a type of sequence learning task. It tries to predict labels using sequences of

data. It exploits the correlation between data points in that sequence to improve the classification

performance [31]. Sequence learning can also be used in value prediction.

In this study, besides the classical machine learning algorithms, a deep learning based sequence

learning algorithm Long Short Term Memory (LSTM) is used to mine the location sequences

to achieve workflow event identification and remaining time prediction. This approach will be

compared with the classical machine learning algorithms.
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RTLS and CRF Data Cleaning

In this chapter, we introduce the RTLS and Case Report Form (CRF) data, their respective data

quality problems and our approach of cleaning RTLS and CRF data to improve the data quality.

4.1 RTLS Data Introduction

Data structure used in this study is introduced in this section. RTLS data is in the form of

streaming data, which contains information of the location reports.

4.1.1 Properties of RTLS Data

RTLS data is structured data. In addition, RTLS data is time based and is sequential, the rows

of data are correlated according to the time.

The time interval of RTLS data is not fixed, i.e. tags do not report their time in fixed intervals.

This can be caused by:

• Tag fail to report their location to the star due to weak radio signal. This can be caused by

a weak battery, block of radio signal and excessive distance between the tag and the star

• Tag has “fallen asleep”. In some RTLS solutions, for instance Centrak [32], the tag will

report to the star less frequently when a tag is not in motion for a certain period of time to

save battery

4.1.2 Raw RTLS Data Structure

Raw RTLS data comes directly from the RTLS server. When the RTLS server receives a tag

location report, a row of data is generated.

The data structure of raw location report is described in Table 4.1.
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Table 4.1: Properties of raw RTLS location report

Property Comment

Epoch time

The epoch time indicates when was this tag report

generated. The time comes from the star. The

Epoch time is in UNIX timestamp format, i.e. the

number of seconds since 1970-01-01

Tag ID The ID of the RTLS tag, which is an integer value

Monitor ID
The ID of the monitor this RTLS tag detected. It is

also an integer

Motion status

This is a boolean field. There are motion sensors

equipped in Centrak RTLS tags. When the sensor

detects a movement, this field will be set as true in

the next location report.

Button status

including boolean values for each button. If a button

is pressed, then the corresponding boolean value will

be true

Battery level
which is a boolean value. This field will be true if

the current tag has low battery

Table 4.2: Properties of RTLS monitor metadata

Property Comment

Monitor ID The ID of the monitor in integer

Zone ID The ID of the zone where the monitor is installed

Name The name of the monitor

4.1.3 RTLS Metadata Structure

RTLS metadata can be considered as a dictionary to understand the meanings of the ID values

in raw RTLS data. It also contains the configuration information of the system. It consists of the

following parts:

Monitor Information

Monitor information includes monitors’ hardware IDs and their configuration. The important

fields are listed in Table 4.2.

The zone ID is important because it indicates us in which zone or room is a monitor installed.

The monitor ID to zone ID map will be used to lookup the zone ID from the raw location report.

Zone Information

Zones are the units to measure tag locations. A zone can be a room or a section of a room when

a room is divided into multiple zones. Room division is done mostly for long corridors which

connect multiple rooms. It can also be done for big wards for different beds, so that the system
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Table 4.3: Basic properties of a RTLS zone

Property Comment

Zone ID The ID of the zone in integer

Type
The type of the zone, for instance: “ward”, “exam

room” and “corridor”

Name The name of the zone

Coordinate

The (x, y) coordinate of the zone. This coordinate

can be the in meters or feet, or just be the pixel

coordinate of the center point of the zone in the floor

plan

can provide bed level accuracy.

Zone information consists of two parts:

• Basic Information: The basic information includes the properties of the zones themselves,

some important properties are listed in Table 4.3.

• Zone Connectivity: From the basic zone information, we know the coordinates of the zones.

However, we cannot decide the walking distance between zones based on only coordinates as

there are physical walls separating rooms. Thus we need information on whether/how are

different zones connected.

Figure 4.1: An example floor plan consists of 4 zones

Figure 4.1 shows an example of a floor plan of a part of a hospital. Suppose we have 4 zones

monitored in this case: the ward, the exam room, the control room and the corridor. It is obvious

that a tag cannot travel directly from the ward to the exam room as there does not exist a door

which connects the two zones. To travel from the ward to the exam room, a tag needs to travel

to the corridor first before it can enter the exam room. On the contrary, a tag can travel directly

from the exam room to the control room, as there exists a door connecting these two rooms.

This information is important for the lateral workflow analysis as we will need to identify the

actual walking path of the tags.

The zone connectivity information consists of two elements: the door coordinates between two

zones and the walking distance between them.

An example of the connectivity matrix is shown in Table 4.4. The matrix contains in-

formation on the coordinates of the connecting door and the walking distance in the format
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Table 4.4: Example of connectivity matrix based on the example floor plan shown in Figure 4.1

Ward Exam room Control room Corridor

Ward - (187, 320), 467

Exam room - (602, 258), 378 (340, 320), 340

Control room (602, 258), 378 - (825, 320), 546

Corridor (187, 320), 467 (340, 320), 340 (825, 320), 546 -

of (Xdoor, Ydoor), Distw. The calculation of walking distance between two connected zones Z1

and Z2 is as follows:

Distw = DistZ1 to door +Distdoor to Z2

Where

DistZ1 to door =
√

(XZ1 −Xdoor)2 + (YZ1 − Ydoor)2

and

Distdoor to Z2 =
√

(Xdoor −XZ2)2 + (Ydoor − YZ2)2

In rare cases, there can be more than one door connecting two zones directly. As IR based

RTLS only provide zone level precision, it is impossible for the system to tell which particular

door did a tag go through. Thus we pick the door which brings us the shortest walking distance

between these two zones.

4.1.4 Tag Information

RTLS tag plays an important role in the system. It receives the infrared signal from the monitors

and report its identity and the received infrared ID to the system. For the RTLS system adopted

in this study, there are 3 types of tags, shown in Figure 4.2.

(a) Staff tag (b) Asset tag (c) Patient tag

Figure 4.2: Examples of different types of RTLS tags

The tags are in different shapes in order to be easily attached to different types of entities,

despite the difference in shape, they have the same features.

Tag information consists of two parts: hardware configuration and tag assignment. As the

hardware configuration is trivial for this study, only the tag assignment information will be intro-

duced.

For privacy concerns, we do not track to a particular person in this study, i.e. we do not match

a tag to a person. Instead, we only record the tag holder’s role if the holder is a staff.

The tag assignment data format is simple, stated in Table 4.5.

The tag assignment data needs to be manually recorded.
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Table 4.5: Properties of tag assignment data

Property Comment

Effective date The date from when is this assignment effective

Tag ID The ID of the tag

Tag role

The assigned role of the RTLS tag. For instance,

“nurse”, “physician” or “technician”. This informa-

tion is retrived from the tag assignment

Tag type
The type of the tag. It can be “staff”, “asset” or

“patient”

4.2 RTLS Data Cleaning

In this section, we firstly introduce the causes of data quality problems in the RTLS data. Secondly,

we introduce the strategy of cleaning the RTLS data. The strategies of cleaning the RTLS data

are existing works, we introduce how we implement the strategies in our RTLS data cleaner.

4.2.1 Problems Causing Missing or Erroneous Data

Although the IR based RTLS we adopted in this study can achieve zone level precision, it has

several shortcomings which may lead to missing or erroneous data.

Weak or blocked IR signal

Unlike radio signal, the infrared signal has shorter wavelength in the electromagnetic spectrum.

Infrared signal has less penetration power. Although this less penetration power can avoid troubles

of telling which side of the wall is a tag located at, it introduces difficulties for the tags to receive

signals when the tag is blocked, for instance by a thick jacket, blanket, medical equipment etc.. In

this case, the tag will report 0 as the monitor ID to the star. This is called “zero-location report”

Zero-location reports can also be caused by weak IR signals, for instance, when there is only

one monitor installed in the middle of the ceiling of a big zone, the tag may not be able to pick

up signal when it is located at the corners of the zone. We try to avoid this by installing multiple

monitors in the same zone using monitor groups. In a monitor group, there is one master monitor

and one or more slave monitors, the tag will always report the monitor ID of the master when the

tag is in this zone, even if it picks up the IR signal from the slave monitor.

Missing reports

The tags are programmed to report their location in variate intervals, for instance, when they are

“busy” - there are continuous motions in a certain period, they report themselves to the stars

every 6 seconds. When there are no motions for a period of time, they will report themselves less

frequently to reduce battery use.

However, there can be two types of missing reports under this mechanism: firstly, the tag may

have two or more transitions in one interval. Suppose a tag reports itself in the exam room (see

the example floor plan in Figure 4.1) at the first second, and then it moved to the corridor in the
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third second and then entered the ward in the sixth second and stayed there. As the next location

report will be made at the seventh second, this next location report will show that the tag is in the

ward. In this way the tag did not get a chance to report its location when it was in the corridor,

thus this report was missing.

Secondly, as the tag location report is based on radio, sometimes the radio signal can be weak

and the report can be lost, especially when the distance between the tag and the star is too far or

there are many walls between them.

IR signal interference

Another problem of the IR based RTLS is that the infrared light emitted by the monitors can

bounce off walls or penetrate transparent glasses and possibly be picked up by a tag when the

tag is located outside the zone but nearby the opening door or outside of the transparent glass

window. This can get more tricky when both sides of the door have RTLS monitor installed. This

can possibly lead to hopping in location reports. For example, using the floor plan in Figure 4.1,

a tag is stationary outside of the opening ward door, it may report itself in the ward and then in

the corridor alternatively.

4.2.2 Null Location Report Interpolation

Null location report interpolation is done to address the data quality problem caused by weak or

blocked IR signal introduced in Section 4.2.1. When the location of a location report is missing,

the following strategy is used to fill in the missing location.

For a continuous set of missing location reports {LOC(Ti, tmmin) = ∅, LOC(Ti, tmmin+1) =

∅, · · · , LOC(Ti, tmmax) = ∅}, we find the two nearest valid location reports: LOC(Ti, ta) = L1

and LOC(Ti, tb) = L2 where a < mmin is the maximal timestamp when LOC(Ti, ta) 6= ∅ before

the missing location reports and b > mmax is the minimal timestamp after the missing location

reports when LOC(Ti, tb) 6= ∅. If

L1 = L2,

then we fill the missing location reports with this location:

{LOC(Ti, tmmin) = L1, LOC(Ti, tmmin+1) = L1, · · · , LOC(Ti, tmmax) = L1}

Otherwise, if their locations disagree, then we consider the missing location reports as outside of

monitored area

{LOC(Ti, tmmin) = ∅, LOC(Ti, tmmin+1) = ∅, · · · , LOC(Ti, tmmax) = ∅}

In this case, we fill the missing location reports with a code which indicates “out of monitored

area”.

4.2.3 Path Interpolation

Path interpolation is done to address the data quality problem caused by missing reports intro-

duced in Section 4.2.1. The step consists of two parts: detection of missing location reports and

interpolating location reports.
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To detect missing location reports, we iterate the location reports and check every 2 adjacent

location reports R1, R2 to investigate whether the zones reported in the two reports are connected.

This is done using the connectivity matrix introduced in Section 4.1.3.

If there does not exist a path which connects the two zones directly, then there are missing

report/reports between the two adjacent reports. To fill in the missing reports, we use Dijkstra’s

algorithm [33] to find the shortest path between R1 and R2.

Suppose the detected shortest path has n nodes or zones except the start and end nodes, the

zones in the shortest path are Ri1, Ri2, . . . , Rin along the path. For any zone in the path, we

create a mock up location report with this zone and add it between the two location reports R1

and R2. Thus the interpolated path is:

{R1, Ri1, Ri2, . . . , Rin, R2}

4.2.4 Hopping Detection and Removal

Hopping detection and removal is used to address the data quality problem caused by IR signal

interference introduced in Section 4.2.1.

To detect “hopping” reports, for each tag, starting from the first location record, we detect for

every 3 adjacent location records R1, R2, R3 whether they match the pattern

{LOC(Ti, tm) = L1, LOC(Ti, tm+1) = L2, LOC(Ti, tm+2) = L1}

where L1 6= L2.

If such set of continuous location records series exists, then we check whether

tm+2 − tm < k

where k is a parameter which indicates the time threshold for defining “hopping”. The definition

of k depends on how often the tags should report themself, i.e. how many signals it transmits

every second. We note this transmition frequency as f . Typically k is equal or slightly greater

than 2
f .

If,

tm+2 − tm ≤ k,

then we decide that there is a hopping in {R1, R2, R3} and R2 is considered as noise and thus will

be removed, the next checking will be performed on {R3, R4, R5} as R2 is removed. Otherwise, if

tm+2 − tm > k,

then R2 is considered correct and no change will be done to {R1, R2, R3}, so the next checking

will be performed on {R2, R3, R4}.

4.3 Enriching the Processed RTLS Data

To make the processed data more readable and intuitive, we enrich the raw data according to the

metadata. The important fields added during this process are listed in Table 4.6
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Table 4.6: Added properties of in the enriched RTLS location log data

Property Comment

Tag type

The type of the tag. It can be “staff”, “asset” or

“patient”, this is derived from the tag ID and the

tag metadata

Zone ID

The ID of the zone where the detected monitor is in-

stalled. This information is derived from the monitor

ID to zone ID mapping in monitor metadata

Tag role

The role of the RTLS tag. For instance, “nurse”,

“physician” or “technician”. This information is re-

trieved from the tag assignment

Zone name
The name of the zone, from zone information

metadata

Zone type
The type of the zone, from zone information

metadata

Zone center coordinates
The coordinates of the zone, from zone information

metadata

From door coordinates

The coordinates of the door from which the tag

entered the current zone, this value will be the same

as zone center coordinates if the previous tag location

reports the same zone, i.e. no transition happened

since last report

Tag type and tag role are filled by looking up tag assignment metadata using tag ID. Zone

ID is filled by looking up monitor information metadata using monitor ID. Zone name, zone type

and zone center coordinates are generated by looking up zone information metadata using zone

ID. From door coordinates are calculated using zone connectivity metadata when the zone ID of

the previous location report is different from the current location report. Otherwise the from door

coordinates are set to be the same as the zone center coordinates.

4.4 RTLS Data Zipping

Tags report their location periodically even when they are not moving. This generates large volume

of duplicate RTLS data. We apply data zipping strategies to reduce the storage use and boost

query speed.

In this study, zipping means to group adjacent similar location reports and to form report

intervals instead of storing all the full reports. In our study, we consider adjacent similar location

reports as location reports that are next to each other for a specific tag along the epoch time whose

properties are identical except the epoch time. Suppose we have a series of location reports:

{La1, La2, . . . , Lan, Lb1}

Where the properties of La1, . . . , Lan are identical except their time stamps and Lb1 has differ-

ent properties than La1, . . . , Lan, then a zipped location report Lza is generated where the start
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Table 4.7: Example of cleaned RTLS reports(the content is mocked up)

No. Epoch time Tag ID Zone Name Motion Buttons . . .

1 2017-01-01 08:00:00 TAG A Corridor yes no . . .

2 2017-01-01 08:00:06 TAG A Corridor yes no . . .

3 2017-01-01 08:00:12 TAG A Control room yes no . . .

4 2017-01-01 08:00:18 TAG A Control room no no . . .

5 2017-01-01 08:00:24 TAG A Control room no no . . .

Table 4.8: Example of zipped clean RTLS reports based on the location reports in Table 4.7

Start time End time Tag ID Zone Name Motion Buttons . . .

2017-01-01 08:00:00 2017-01-01 08:00:12 TAG A Corridor yes no . . .

2017-01-01 08:00:12 2017-01-01 08:00:18 TAG A Control room yes no . . .

2017-01-01 08:00:18 . . . TAG A Control room no no . . .

time of Lza is the epoch time of La1 and the end time of Lza is the epoch time of Lb1.

For instance, consider the location reports shown in Table 4.7:

Cleaned location reports 1 and 2 are similar, 4 and 5 are similar. The zipped RTLS reports

based on them are shown in Table 4.8:

4.5 CRF Data Introduction

The Case Report Form (CRF) data is collected by observers in the hospital using an iPad app.

CRF has a fixed structure, describing the start time of a fixed set of events in procedures.

4.5.1 CRF Data Structure

The CRF data consists of 2 parts. The first part is the case properties and the second part is the

event times of the cases.

• Case properties

– Case ID

– Case Date

– Procedure Type

– Comments

• Event times

– Patient registration time

– Patient registration type

– Patient arrive at waiting room time

– Patient arrive at waiting room type
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– . . .

For each event, there is a type for the recorded event time. It indicates whether the event time

is inputted when the event starts, filled later or missing.

4.5.2 Data Quality Problems

Missing Procedures

Some procedures may not be found in the CRF data because the recording of CRF data is not

mandatory in the hospital’s regulations. For instance, when there is an emergency exam happened

at midnight when the observer is not at work, then this procedure will not be recorded although

the RTLS data for this procedure is automatically collected.

Missing or Erroneous Event Time

Recording CRF data is only a part of the observer’s work. It is possible that several events in a

procedure are missing in the CRF data. It can also be the case that the observer inputted the

same event time for multiple events.

4.6 CRF Data Cleaning

As introduced in the previous section, CRF data suffers from two categories of problems. We

apply data cleaning methods to improve the quality of the CRF data. The goal of CRF cleaning

is not to fill out the missing procedures or events, but to detect erroneous event times and filter

them out to guarantee the accuracy of the event times.

Two strategies are used to clean the CRF data based on process mining models.

4.6.1 Process Model Conformance

The idea of this strategy is to first construct a “correct” process model and then apply conformance

check between this model and CRF event logs and filter out the non conforming events.

The reason behind this strategy is: we suppose all the events should take place according to a

process model. For instance, the “first incision” event cannot happen before the “patient is clear

for procedure” event.

4.6.2 Outlier in Event Time Intervals

In this strategy, we check the time interval between two adjacent events. If the absolute difference

between the time interval and the mean time interval of that two types of events is higher than a

threshold, usually 2 or 3 times of the standard deviation, then the events are filtered out.
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Visual Analysis of RTLS and

Workflow

In this chapter, visual analysis tasks on the workflow based on RTLS and CRF data is introduced.

The introducing of RTLS technology in this study enables the hospital to not only know when did

each event in workflows happens but also know staffs’ locations when the events are taking place.

The tasks in this chapter address two of the business use cases: workflow playback and trans-

ition sequence analysis. These two tasks belong to the visualization task in the data analytics

tasks.

5.1 Workflow Playback

The objective of this task is to correlate the RTLS data and the CRF data to intuitively show the

correlation between staffs’ movements and the ongoing workflow events.

5.1.1 Data for Workflow Playback Visualization

As stated above, workflow playback requires two sources of data. The RTLS data adopted is the

cleaned and zipped RTLS data produced following the data cleaning steps introduced in Chapter

4.

5.1.2 Design and Implementation

User Interface Design

The workflow playback feature is a single page visualization with different modules.

Figure 5.1 depicts the layout design of the workflow playback page. The page consists of 4

parts.

Time axis Time axis is a control block where the playback time is displayed. It also allows user

to drag to jump to a specific time point.
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Time axis

Dynamic map of the research area Workflow progress Options

Figure 5.1: The layout design of the user interface

Dynamic map Dynamic map shows not only the floor plan of the research area, but also

intuitively shows known tag locations of a specific time point. It also supports animation to

demonstrate the transition path of the tags.

Workflow progress Workflow progress shows the progress of ongoing procedures given a time

point. Different events of the workflow will be marked and shown according to the time when did

each event happen.

Options Options enables the users to configure the visualization or load new location data in it.

The configurations include tag filter where users can select particular tags according to keywords,

a slider to change the playback speed and buttons to clear playback cache in the database and

show/hide the time axis.

Implementation of Workflow Playback

The tool is built with browser / server (B/S) architecture. The visualization is implemented using

D3 [34]. The data comes from the relational database (RDB). The back end is implemented using

Java Web. JSON is used to convey data from the back end to D3.

The visualization for workflow progress is relatively easy as the data structure for workflow

itself is simple, the related workflows in a playback can be pre-loaded into javascript. However,

the difficult part is the map visualization. Because we not only show the current locations of the

tags on the map, but also visualize the location change in animation when a transition is detected,

i.e. for a tag, the location has changed since last report.

The strategy for the map visualization is: while the current playback time is flowing along the

time axis, the browser continuously requests data from the back end using the current playback

time. The tags are shown in the map according to the position they are at the given the specified

time stamp.

The data structure for the tag location is listed in Table 5.1. When the front end submits a

request for tag locations to the back end over Ajax, the back end server generates a JSON array
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of tag locations and send back to the front end.

Every time when a new list of tag locations is requested, the D3 script will check whether there

has been a change for each tag location, including entering / updating /exiting. The logic for

entering / updating tag location is depicted in algorithm 1.

for tag loc ∈ tag loc list do

if is a new tag then

draw the tag on the map according to tag (X,Y);

add the tag to known tags;

add current coordinates to the tag’s last known coordinates;

else if is an existing tag then

if the location has changed then

initiate animation from the last known coordinates to the door coordinates;

initiate animation from the door coordinates to the new coordinates;

else

continue;

end

end

Algorithm 1: D3 logic for displaying tag locations on the map

Exiting is not implemented because the back end server will always return the location of each

tag. When a tag is not inside the monitored area, then the tag will be shown in a particular

location in the map meaning they are temporarily out of the bounds. These tags will not be

removed from the map.

5.1.3 Result

An example screen shot of the workflow playback tool is shown in Figure 5.2.

Figure 5.2: An example screen shot of the workflow playback tool
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Table 5.1: Added properties of in the enriched RTLS location log data

Property Comment

Epoch start time

The start time of this zipped tag location record.

The Epoch start time is in UNIX timestamp format,

i.e. the number of seconds since 1970-01-01

Epoch end time

The end time of this zipped tag location record. The

Epoch start time is in UNIX timestamp format, i.e.

the number of seconds since 1970-01-01

Tag ID The ID of the RTLS tag, which is an integer value

Monitor ID
The ID of the monitor this RTLS tag detected. It is

also an integer

Motion status

This is a boolean field. There are motion sensors

equipped in Centrak RTLS tags. When the sensor

detects a movement, this field will be set as true in

the next location report.

Button status

including boolean values for each button. If a button

is pressed, then the corresponding boolean value will

be true

Battery level
which is a boolean value. This field will be true if

the current tag has low battery

Tag type

The type of the tag. It can be “staff”, “asset” or

“patient”, this is derived from the tag ID and the

tag metadata

Zone ID

The ID of the zone where the detected monitor is in-

stalled. This information is derived from the monitor

ID to zone ID mapping in monitor metadata

Tag role

The role of the RTLS tag. For instance, “nurse”,

“physician” or “technician”. This information is re-

trieved from the tag assignment

Zone name
The name of the zone, from zone information

metadata

Zone type
The type of the zone, from zone information

metadata

Zone center coordinates
The coordinates of the zone, from zone information

metadata

From door coordinates

The coordinates of the door from which the tag

entered the current zone, this value will be the same

as the zone center coordinates if the previous tag

location reports the same zone, i.e. no transition

happened since last report
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5.2 Transition Sequence Visualization

In transition sequence visualization, we target to display an overview of the tags’ movement

sequence during procedures. The difference between this tool and the workflow playback tool

is that this tool shows the transition patterns for multiple exams in the same plot while the

playback tool shows the transitions for each individual exam. Also we do not use the floor plan

in this visualization. A snapshot of the playback tool shows only the tag location status and

procedure progresses at a given time point, however, in the transition sequence visualization, the

visualization is static and shows the frequent transition patterns of a time window.

5.2.1 Visualization Framework

In this tool, parallel coordinates [35] is used. Parallel coordinates are frequently used for high-

dimensional geometry and multivariate data.

Figure 5.3: An example of using parallel coordinates visualization on Iris data set [1]

Figure 5.3 shows an example of parallel coordinates visualization using the Fisher’s Iris data

set [1]. In this visualization, the columns are different variables while each polyline represents a

data point in the iris data set. Using this visualization, we can intuitively observe the correlations

between different variables for different iris flower species.

In our visualization, the x-axis will be the different timestamps while the y-axis represents

different zones or zone types.

5.2.2 Data Preparation

As we want to plot tags’ transitions during exams, our study object here is a tag’s transitions

during an exam. Starting from the first second, we collect this tag’s location every n seconds until

the exam finish.

Besides the tag’s location sequence, the tag’s ID, role and the exam ID are added in the first

three columns. This will enable us to easily filter the visualization according to tag ID, tag role or
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Table 5.2: Mapping between zone types to zone type IDs codding

Zone type Zone type ID

Out of reach and observation room 0

Corridor 1

Target control room 2

Target exam room 3

Storage room 4

Other exam & control rooms 5

according to particular exam cases. And it enables us display traces in different colors according

to the tag type, assuming different roles have different transition patterns.

Data Alignment

Before preparing the transition sequence visualization, the target procedure time span needs to

be chosen. For instance, we want to visualize the transitions from the time when a patient steps

in the exam room (event Ea) to the time the patient leaves the exam room (event Eb), we will

need to prepare the time stamp of the two events Ta and Tb for all the procedures first. Then, for

each procedure, starting from the time Ta until Tb, we query the tag locations for each involved

tag in the procedure and add them into the tags location sequence. A resolution parameter is set

to decide the time interval between two location records in the location sequence. This process is

described in pseudo code 2.

seq[ntags] = empty list ;

for (loop time = Ta ; loop time < Tb ; loop time = loop time+ resolution) do

for tagt in tags do

loct = location query(tagt, loop time);

seq[ntags].append(loct)

end

end
Algorithm 2: Tags sequence data generation for a procedure

Zone Coding

In studies where many zones are defined, the visualization can become chaotic and not intuitive.

To keep a clean visualization, in this case we use the type of the zone instead of the zone id as the

y-axis value.

In this study, we use the coding mapping listed in Table 5.2.

5.2.3 Visualization Implementation

Similar to the playback tool, the transition sequence visualization tool is also implemented with

browser / server architecture. We use D3 to implement the browser end of this visualization tool.

An existing sequence coordinates visualization package Parallel Coordinates [36] is adopted. The

server end is implemented by Java Web. JSON is used to convey data from the server to the
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browser.

Figure 5.4: An example of the transition sequence visualization

An example of the transition sequence visualization is shown in Figure 5.4. This visualization

depicts all tag transitions between “patient enters the exam room” and “patient leaves the exam

room”. The trace of a main physician in a procedure is highlighted in this diagram, we can observe

that the physician was first in the corridor, then he went to the storage room and came back to

the corridor. Later he entered the exam room and was walking back and forth between the exam

room and the control room. Finally he exited the exam room and left the monitored area.

Data Jittering

To avoid overlapping of the same transition traces made by different tags or in different procedures,

we apply data jittering to the zone type codes. By adopting this method, frequent transition paths

will appear thicker in the visualization.
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Chapter 6

Event Identification using

Machine Learning

In this chapter, the problem of identifying workflow events is defined and the approach of building,

training and evaluating a machine learning model based on the RTLS, CRF and machine log data

to solve this problem, as well as the approach to deploying this machine learning model onto a

real-time setting to provide online automated event identification are introduced.

6.1 Problem Formulation

The objective for event identification is to use the RTLS data to automatically identify the workflow

events in procedures. There are different types of workflow events in a procedure. For instance,

in our study, there are 15 workflow events listed in Table 6.1.

To simplify this problem, we convert the problem from “What workflow event is ongoing at

the moment?” to “Whether workflow event e is ongoing at the moment?”. In other words, we

convert the multiclass classification problem to a binary classification problem.

There are several purposes for this simplification. Firstly, in the cases where different types of

events are not mutually exclusive, we cannot apply a multiclass classification algorithm as we may

need to give more than one class labels for each data instance. A combination of multiple binary

classification algorithms can solve this problem. Secondly, we may not be interested in predicting

all events, especially in workflows which consist of tens or hundreds of events. It is difficult to model

and evaluate multiclass classification models when the number of classes are large. Lastly, as we

want to tackle this problem by attempting various machine learning algorithms, this simplification

would enable us to use machine learning algorithms that are not naturally suitable for multiclass

classification problem for instance SVM and logistic regression.

Thus, the problem can be formulated as: given the location information of all the tags loctags,

predict a label about whether an event s is ongoing or not ongoing.
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Table 6.1: List of events in our CRF dataset

Event number Event name

1 Patient is registered

2 Patient arrived in waiting room

3 Patient arrived in exam room

4 Patient laid on table

5 Physician is called

6 Physician arrives in the exam room

7 Patient is clear for procedure

8 Start incision

9 Close incision point

10 Called to retrieve the patient

11 Physician leaves the exam room

12 Physician leaves the control room

13 Patient retrieved from table to bed

14 Patient dismissed

15 End of research

6.2 Feature Preparation

As discussed in Section 3.4.2, it is not feasible to use the cleaned RTLS data directly for training

the prediction model. In the beginning of this section, we discuss why merely the cleaned RTLS

does not provide us enough information to predict a workflow event.

Table 6.2 shows an example fragment of the cleaned RTLS data. From the data structure,

we can observe that although the columns are structured, the rows can be in different orders and

there are dependencies between data from different rows. For instance, the location of “TAG A”

at “2017-01-01 08:00:06” highly depends on the location of the same tag at “2017-01-01 08:00:00”.

In addition, not all tags report their location in the same interval, in this case 6 seconds. For

instance “TAG B” did not report its location at “2017-01-01 08:00:06” is possibly lost. It can also

be the case that the tag was in sleeping mode due to inactivity and increased its report interval.

One row of the cleaned RTLS data only tells us about the location of a tag at a time point,

Table 6.2: Example of the data structure of the RTLS data (the content is mocked up)

Epoch time Tag ID Zone Name Other features

2017-01-01 08:00:00 TAG A Corridor . . .

2017-01-01 08:00:00 TAG B Exam room . . .

2017-01-01 08:00:00 TAG C Control room . . .

2017-01-01 08:00:06 TAG C Control room . . .

2017-01-01 08:00:06 TAG A Control room . . .

2017-01-01 08:00:12 TAG B Exam room . . .
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Table 6.3: Example of the aggregating transient location status by zone

Ward Exam room Control room Corridor

n1 p1, n2, n3 f1 p2

Table 6.4: Example of transient location status aggregated by tag

n1 n2 n3 p1 p2 f1

Ward Exam room Exam room Exam room Corridor Control room

however it does not contain a macro information about the overall tracked entities. For example,

to predict at a time point whether there is a workflow event ongoing, we would like to aggregate

and use the status of all the tags instead of making the prediction based on merely the transient

location of a single tag.

6.2.1 Aggregated Transient Location Status

The purpose of aggregating location reports is to form a data point which can represent the

transient location status of all the tags tracked in the RTLS system. There are two ways to

aggregate: by zones and by tags.

Figure 6.1: An example of tags’ locations in the example floor plan

Figure 6.1 shows an example of tags’ locations in the example floor plan. In this example,

there are 6 tags in 3 different roles, distributed in 4 zones. To represent the location status of all

the tags, we can either break down the location status by zones so that we describe the tags in

each zone, alternatively we can break down the by tags so that we describe the location of each

tag. Two examples are given in Table 6.3 and Table 6.4. Here we use abbreviation n as nurse, p

as physician and f as fellow.

Table 6.3 gives an example of representing transient location information by aggregating by

zones. In this approach, we have 4 columns representing the 4 monitored zones. For each column,

tags in the zone represented by this column are listed.

On the contrary, we can represent the transient location information by aggregating by tags.

An example is shown in Table 6.4.

Practically it is advisable to aggregate by zones instead of by tags because in the real world
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Table 6.5: Example of a transient location status aggregated by zone and tag role

Ward Exam room Control room Corridor

Nurse Phy. Fellow Nurse Phy. Fellow Nurse Phy. Fellow Nurse Phy. Fellow

1 0 0 2 1 0 0 0 1 0 1 0

settings, zones settings are relatively static. It is uncommon to add/remove or change the floor

plan. In contrast, it is common for hospitals to add new tags or replace old tags with new tags.

Especially there are RTLS tags designed for one time use for the patients. Another reason for not

advising aggregation by tag is, the number of tags in the system is usually much higher than the

number of zones. A big number of columns will increase the model complexity and may lead to

“the curse of dimensionality”.

However, in the example shown in Table 6.3, the data structure is more complex than aggreg-

ating by tags because the values for each column is a list of tag IDs. We address this problem by

further aggregating the data by roles and only keep the numbers of tags of each role of each zone.

Table 6.5 shows an example of the updated data structure. This data structure is relatively

stable. Firstly, the floor plan and staff role classifications of a hospital do not change often.

Secondly, the data structure will remain the same when new tags are added, existing tags are

replaced or removed. An extra benefit of this data structure is that the values are the counts of

the tags. This avoids the privacy concerns because it will be not possible to track individual tags

from this aggregated data.

6.2.2 Single Point Vs. Sequence Prediction

The aggregated data in Section 6.2.1 gives only the system state at a single time point. While

we can train machine learning models on this data, we also explore the possibility of making

predictions (including classification) based on a sequence of system states. For instance, we can

make predictions based on the sequence of transitions made by the tags in a 10 minutes window.

The reason is, a sequence of tag locations over time gives insights on the trend of the system.

This trend could provide powerful features for predicting workflow events. For instance, when

a nurse tag leaves the ward together with a patient tag to the corridor followed by entering the

exam room, the chances that this patient is going to be examined is high. On the contrary, if we

only know the patient and the nurse’s location in a single time point we lack the context which

contains information on the what has happened in the past.

Table 6.6 depicts an example of an aggregated location status sequence by zone and tag role

for a 1 minute time window. In this sequence, there are 6 transient location status records. The

time interval is constantly 10 seconds.

The data structure of the location sequence is similar with the transient location status. The

difference is that one sequence consists of a fixed number of transient location status items and

the items are ordered by time and have a fixed time difference between each other.

In Section 6.3, when we train the sequence mining model, we feed the each sequence to the

model in the form of a matrix. The entire matrix, for example from Table 6.6, will be considered

as one training sample instead of six.
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Table 6.6: Example of a location status sequence aggregated by zone and tag role for a 1 minute

time window

Seq.

No.

Ward Exam room Control room Corridor

Nurse Phy. Fellow Nurse Phy. Fellow Nurse Phy. Fellow Nurse Phy. Fellow

1 1 0 0 2 1 0 0 0 1 0 1 0

2 1 0 0 2 0 0 0 1 1 0 1 0

3 0 0 0 2 1 0 0 1 1 1 0 0

4 0 0 0 2 1 0 0 1 1 1 0 0

5 0 0 0 3 2 0 0 0 1 0 0 0

6 0 0 0 3 2 0 0 0 1 0 0 0

Table 6.7: Example of sequential RTLS data with motion information

Seq.

No.

Ward . . . Corridor Motion

Nurse Phy. Fellow . . . Nurse Phy. Fellow Nurse Phy. Fellow

1 1 0 0 . . . 2 1 0 4 2 1

2 1 0 0 . . . 2 1 0 5 3 0

3 0 0 0 . . . 2 0 0 2 4 1

4 0 0 0 . . . 2 0 0 3 1 1

5 0 0 0 . . . 3 0 0 3 2 2

6 0 0 0 . . . 3 0 0 4 1 1

6.2.3 Adding Tag Motion Information

As introduced in Section 4.1, the RTLS data contains not only the location information, but also

the motion information detected by tags’ motion sensors. We include the motion information as

addition features to the existing location features.

As in Section 6.2.1 we choose to aggregate location information by zones and roles, we also

aggregate the motion information of roles. Suppose we have r roles, r columns will be added to

the data structure to indicate for each role the number of motions detected since the last time

stamp.

Motion information will be added to both transient and sequential data. Table 6.7 shows an

example of sequential RTLS data with motion information.

6.2.4 Adding Hour of the Day

In addition to the movement and motion data, we also add the hour of the day as an ex-

tra feature. This feature is normalized to a float value between 0 and 1. It is calculated by

hour(epoch time)/24.

The numbers in the motion columns do not mean the number of tags which had motion since

the last time stamp because a single tag can report multiple motions.
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Table 6.8: Example of constructing the tag location buffer

Streaming RTLS location reports Tag location buffer

Epoch time Tag ID Zone name TAG A TAG B TAG C

2017-01-01 08:00:00 TAG A Corridor Corridor - -

2017-01-01 08:00:00 TAG B Exam room Corridor Exam room -

2017-01-01 08:00:00 TAG C Control room Corridor Exam room Control room

2017-01-01 08:00:06 TAG C Control room Corridor Exam room Control room

2017-01-01 08:00:06 TAG A Control room Control room Exam room Control room

2017-01-01 08:00:12 TAG B Exam room Control room Exam room Control room

6.2.5 Time Alignment

Cleaned RTLS data is a type of streaming data. Any tag can report themselves to the system at

any time. However, we want to get the location status of the entire system given a time stamp.

Thus time alignment is required. The strategy adopted in this study to align the time and produce

training data is: firstly define a main time line, it starts with the time when we get the first location

report in RTLS and ends with the time when we get the last location report. As the collection

of the RTLS data is continuous during the data collection period, we always can get the updated

tag location given any time along the main time line.

To get the most recent tag location given any time, we firstly construct a tag location buffer.

This buffer stores the most recent location of each tag. To construct this, we firstly sort all location

reports according to the epoch time and then continuously feed the tag locations into this buffer.

Table 6.8 demonstrates the process of updating the tag location buffer.

Using this tag location buffer, we can then construct the aggregated data along the main time

line. From the start time of the time line, we advance it every r seconds suppose r is the resolution

in time and take all the tag locations in the buffer to construct the transient location data for this

time.

6.3 Model Training

6.3.1 Event Class Labeling

As formulated in Section 6.1, the problem of predicting workflow events from RTLS data can

be converted to multiple binary classification problems for identifying each event. Thus we have

multiple labels for each data point for different events.

Suppose we aim to identify i events, we produce i event labels for each data point. In the

training process, we train i binary classification models for each of the i labels. An event label can

either be 0, which represents the event is not ongoing or 1, which represents the event is ongoing.

Table 6.9 shows an example of created event labels for the exams. Suppose we aim to identify

3 events: “Exam preparation”, “Exam” and “Wrap up”, we create 3 labels respectively. For data

point 1 and 2, event “Exam preparation” was ongoing, for data point 5, no event from the 3 target

events was ongoing.

The event labels for one data point does not need to be mutually exclusive. This is because
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Table 6.9: Example of created event labels

ID RTLS features Exam preparation Exam Wrap up

1 ... 1 0 0

2 ... 1 0 0

3 ... 0 1 0

4 ... 0 0 1

5 ... 0 0 0

A workflow event is an continuous action performed by multiple people. It has a start time

and an end time.

Transient Location Data Labeling

The transient location data describes the location status for tags for given time points. To assign

a label regarding to event e to a transient location data item, we take the time stamp of the

transient location data item and look up CRF data in the database to find:

{x|Tstart(x) 6 T (l) < Tend(x), type(x) = e}

Where Tstart(x) and Tend(x) are the start and end time of event x, type(x) stands for the type

of the event.

If,

{x|Tstart(x) 6 T (l) < Tend(x), type(x) = e} = ∅,

which means no events are found given the criteria, then we set the event label of e as 0,

otherwise the label will be set to 1.

Sequential Location Data Labeling

Labeling a sequence is more complex because a sequence is about a time window. Different from

transient location data which can only be in the target event or outside of the target event, the

time window of a sequence can be partly overlapping with the event.

Figure 6.2 listed 5 possible relations between a location sequence time window and an event

time span. For relation a and b it is obvious that the event label is 1 and while for relation c the

label is 0. In cases d and e where an event took place only in part of the time window, a threshold

t is set for deciding whether the label should be 1 or 0. The calculation in this case is:

Le =


1 if Overlap(s, x) > t

Discard if 0 < Overlap(s, x) < t

0 if Overlap(s, x) = 0

(6.1)

In the case where the overlap is less than t but greater than 0, then this window is discarded.
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Figure 6.2: Possible relations between a location sequence time window and an event time span

6.3.2 Algorithm Selection

As stated in Section 6.1, the event identification task in this study is converted to multiple binary

classification problems. Thus we choose binary classification algorithms to address this problem.

We carry out experiments for both single point and sequential data using different algorithms.

Most conventional machine learning classification algorithms do single point classification:

making class label predictions based on isolated data points without considering the correlation

between different points. The single point classification algorithms are listed below:

• Logistic regression

• Decision tree. CART tree is adopted in this study

• Random forest

• Gaussian naive Bayes

• Neural network. Multilayer perceptron (MLP) is adopted in this study

• Support vector machine (SVM)

For predicting event labels using sequential RTLS data, long short term memory (LSTM)

network is used.

6.4 Experiments and Results

This section describes the objectives, setups and results of the experiments related to the data

analytics task of workflow event identification introduced in this chapter.

6.4.1 Experiment Objectives

There are three objectives that we aim to achieve in this experiment:
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Table 6.10: Introduction of roles involved in the study

Role name Description Count

Physician
A physician the person who is in charge of the oper-

ation
4

Fellow

A fellow can be considered as a junior physician, they

can be in charge of the operation if a physician is not

present

3

Nurse

Nurses provide help to physicians or fellows in exams,

provide care to the patients and do administration

related works

6

Circulating nurse

Circulating nurses make preparations for the exams,

monitor the patient and staff status and make re-

cords of the procedures, equipment etc.

3

• Verify that the concept and methodology of using RTLS data to automatically identify

workflow events are correct and feasible.

• Compare the performance between models trained on single point data and models trained on

sequential data to see whether the information about the movement sequences can improve

the performance of the prediction.

• Investigate how close the performance of our event identification models is compared with

the “gold standard” - the machine log data.

6.4.2 Data Set Specification

We have collected data from a radiology department of a hospital in the Netherlands. The data

collection was done in 2 periods: before and after installing the next generation of interventional

X-Ray (iXR) machine. For the event identification experiment, we use the data from the first

period while in the experiment for the remaining time prediction we mainly focus on only the

second period when the new iXR machine is in use. The first period lasted for 6.5 months and

the second period lasted for 5 months.

RTLS Data

13 RTLS tags are monitored continuously during the first period and 16 RTLS tags are monitored

continuously during the second period. The tags are divided into 4 roles. The roles are described

in Table 6.10. In the first period, there are 3 of the 4 roles present: physician, fellow and nurse.

All the 4 roles are present in the second period.

CRF Data

In parallel with the collection of RTLS data, CRF data is manually produced in the data collection

phase. Dedicated observers are sent to the hospital to manually record the CRF data. 276 exam

procedures which took place in the target exam room are observed and recorded.
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Although there are 15 workflow events in the CRF data. These 15 events are not time lasting

events, meaning that they are the only recorded with one time stamp when the events finish.

As introduced in Chapter 6 and 7, the events we want to identify and predict need to be time

lasting events that have start and end time stamp. Thus we choose two events in CRF data to

form one time lasting event. In the experiment, we choose the “first incision” to “close incision

point” events from CRF data and form a new event “exam” as the target event. The start time of

the “exam” event is the time stamp of “first incision” while the end time of the “exam” event is

the time stamp of “close incision point”. The reason for choosing this event is that, this event is

more difficult to identify than the other events, for example “physician enters exam room” event.

Instead, the exam event is more complex and requires staffs with different roles to perform in

collaboration.

The CRF data is comprehensive and relatively accurate. However, as stated in Section 4.5.2,

it suffers from the problem that not all the workflow events are recorded in the CRF log.

Machine Log Data

The disadvantage of CRF data introduced in 6.4.2 causes difficulty in training and evaluating event

identification models because the labels can be erroneous. For instance, the label will be 0 for the

exam event when it is supposed to be 1 when the situation in the previous chapter happens. Thus,

for the event identification experiment, we derive the exam event from the machine log instead.

We have access to the interventional X-Ray machine log database. The database stores all

the event logs collected when the machines were used, including UI interaction, geometry move-

ments, imaging etc., in this study we only use the imaging part of the machine log which includes

interventional X-Ray exam acquisitions.

The exam start / end date time for all the exams done with the iXR machine in the target

exam room happened in the first period of RTLS data collection are used. There were 660 exams

matching this criteria.

Feature Preparation Strategy

This section introduces the approaches of preparing the features for the workflow event identific-

ation task described in Section 6.2.

Point Location Data Preparation Along the main time line we use a time resolution of 5

seconds, which means we take a snapshot of transient location states every 5 seconds. Using this

strategy, we prepared 3,352,320 transient data items for the first period and 1,952,640 transient

data items for the second period.

Sequential Location Data Preparation To form sequential location data, the length of the

time window and the sliding window interval need to be set. The sliding window interval specifies

the time difference between two adjacent windows. The two parameters are demonstrated in

Figure 6.3.

In this study, we set the sliding interval to 1 minute / 60 seconds and we attempt different

values of window lengths.
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9:00:00 9:00:30 9:01:00 9:01:30 9:02:00 9:02:30 9:03:00

60s

30s

Sliding interval

Window length

Figure 6.3: Forming sequential data

Table 6.11: Distribution of positive and negative samples in the exam identification data set

Data set Size Num. pos. Num. neg. %Pos.

Single point data 80,067 30,557 49,510 38.16%

Sequential data (5 minutes window) 74,389 29,513 44,876 39.67%

Sequential data (10 minutes window) 77,801 30,224 47,577 38.85%

Sequential data (15 minutes window) 80,067 30,557 49,510 38.16%

Sequential data (20 minutes window) 81,972 30,876 51,096 37.67%

Sequential data (25 minutes window) 83,451 31,068 52,383 37.23%

Sequential data (30 minutes window) 89,793 31,990 57,803 35.63%

6.4.3 Experiment Setup

This section introduces the setup of this experiment, including an introduction to the experiment

data set, data set splitting and evaluation metrics.

Experiment Data Set

The event label of the exam identification data set is imbalanced. This is because the RTLS

system is continuously collecting tag movement data even in non-working hours or weekends. We

have done statistics of total exam time versus total monitoring time. The total exam time during

the first period is 742 hours while the total monitoring time is 4,729. Thus the chance of having

an exam at a random time point is lower than the chance that there is no exam going on.

We have removed duplicate data items especially in non-working hours and weekends when

there is no tag movement at all for several hours. However, the label is still imbalanced.

Table 6.11 depicts the data sizes of the data sets for different type of models and distributions

of positive and negative samples.
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Training, Test, Validation Splitting

As discussed in Section 6.4.2, RTLS data items can be correlated, for instance, the transient RTLS

data at 9:00:00 am can be highly correlated with RTLS data at 9:00:05 as they are near to each

other in time and are likely to be in the same event, if there are events going on at this period.

Thus we cannot split the data randomly because we do not want correlated data items to be split

into different sets which may lead to falsely high performance.

The strategy used in our experiment is to split the sets according to time. So that RTLS data

items from the same short time ranges will be always allocated into the same set.

The proportion of splitting is set to 0.7:0.15:0.15 for training test and validation.

Evaluation Metrics

Although simple metrics for instance accuracy, precision, recall etc. are of the most intuitive

metrics that can be used in our event identification task, we have to be careful with using them

because the samples in our data set is skewed. It is important to rely more on evaluation metrics

that are not sensitive to label skewness and use accuracy etc. as references.

Receiver Operating Characteristics (ROC) Curve The Receiver Operating Characteristics

(ROC) Curve is a type of plot which diagnosis the performance of a binary classifier when the

classification threshold changes. The ROC plot has two axis: the false-positive rate or fall-out

axis and the true-positive rate or sensitivity / recall axis.

By shifting the classification threshold, we get points in the ROC plot regarding to false-positive

rate (fpr) and true-positive rate (tpr), by connecting these points we get a curve. When the points

are away from the diagonal line to the upper part of the plot, they represent good classification

performance. In contrast, when the points are away from the diagonal line to the bottom part of

the plot, they represent poor classification performance. If the curve is very near to the diagonal

line, then the classifier produces nearly no predictive power.

Area Under Curve (AUC) Based on the ROC curve, the Area Under Curve (AUC) metric

represents the area below the ROC curve, it can be considered as the probability that the classifier

will rank a randomly chosen positive example higher than a randomly chosen negative example

[37], i.e.

P (score(x+) > score(x−))

The AUC metric lies between 0.5 and 1.0. The more the AUC close to 1.0, the better the

classifier performs. AUC is suitable to measure binary classifier’s performance when the label of

the data set is imbalanced.

Cohen’s Kappa Cohen’s kappa measures the agreement between two raters who each classify

N items into C mutually exclusive categories [38]. It is computed as

k =
p0 − pe
1− pe

= 1− 1− p0
1− pe

,

where p0 is the relative observed agreement or the accuracy and pe is the expected agreement.
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Table 6.12: Comparison of performances between different models

Model Type AUC Kappa Accuracy F1

DecisionTree single point 0.584 0.203 0.656 0.455

Naive Bayes single point 0.671 0.263 0.708 0.451

LogisticRegression single point 0.757 0.265 0.718 0.432

MLP single point 0.703 0.314 0.710 0.521

RandomForest single point 0.703 0.275 0.700 0.482

LSTM single point 0.796 0.488 0.776 0.646

LSTM30m sequential 0.870 0.632 0.835 0.757

The advantage of Kappa is that it is also suitable for data with unbalanced labels. This is

especially useful in our experiment. The drawback of Kappa is that it is difficult to interpret the

indices of agreement. Cohen’s Kappa metric lies between 0 and 1. The more the value is close to

1, the better the classifier performs.

The calculation for other metrics: F1 score and accuracy are fundamental and not introduced

in this thesis.

Accuracy can be regarded as the closeness to the baseline as the label of our data set is generated

from the machine log data, which we consider as the baseline data. Accuracy lies between 0 and

1. The more this value is close to 1, the closer the model is to the baseline.

6.4.4 Evaluation Results

In this section, evaluation results are showed and compared for the workflow event identification

task.

Results Overview

Table 6.12 shows the performances of all the models. For the sequential LSTM model, we have

prepared sequential data set with window length 5, 10, 15, 20, 25 and 30 minutes. We have selected

the model with the best AUC as the representative of sequential LSTM model. The sequential

LSTM model achieves the best performance compared with the other models.

Table 6.13 lists the performances of LSTM models built on sequential data with various win-

dows lengths. The LSTM model trained on the sequential data with 30 minutes window yields

the best performance.

ROC Comparison

Figure 6.4a compare the ROC curves between different models. From this figure, it is obvious

that the sequential data based LSTM model performs significantly better than LSTM and the

conventional models based on single point data. Among the conventional algorithms, logistic

regression yields the best ROC curve.

Figure 6.4b compare the ROC curves between LSTM models built on sequential data of different

window lengths. From this figure, we observe that the classification performance of LSTM models
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Table 6.13: Comparison of performances between LSTM with different window lengths

Model Window length AUC Kappa Accuracy F1

LSTM 5 minutes 0.797 0.473 0.757 0.660

LSTM 10 minutes 0.810 0.546 0.799 0.692

LSTM 15 minutes 0.841 0.579 0.812 0.720

LSTM 20 minutes 0.840 0.554 0.805 0.697

LSTM 25 minutes 0.865 0.626 0.833 0.753

LSTM 30 minutes 0.870 0.632 0.835 0.757
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Figure 6.4: Comparison of ROC curves

with 25 and 30 minutes windows are similar and better than the other models. LSTM model

with 5 minutes window yields the worst result among all the LSTM models. Generally, when the

window length increases, the model achieves higher AUC.

6.5 Real-time Event Identification

One advantage of RTLS is that it can provide raw streaming location data in real-time. We

have developed an online RTLS data cleaner based on HBase which can produce a cleaned RTLS

location report in real-time after receiving a raw RTLS location report from the RTLS server.

The cleaned data then is sent to the online feature processing server which generates transient

or sequential location data periodically. The generated data is then sent to the online event

identification server in which the trained model for event identification is deployed. The identified

events will then be sent to the applications for different uses.

Figure 6.5 depicts the pipeline of real-time event identification.
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Chapter 7

Event Remaining Time Prediction

using Machine Learning

In this chapter, the problem of predicting the remaining times of ongoing workflow events is defined

in the first section. The other sections introduce the approaches to build a machine learning model

based on the existing RTLS and CRF data and to apply this model in a real world clinical settings.

7.1 Problem Formulation

Event remaining time prediction task is an extension of the event identification task depicted in

Chapter 6. In this task, instead of identifying what workflow event is going on, we suppose a

specific type of workflow event is already ongoing and the goal is to predict how much time is

remaining before this event ends.

Two parts of input data are required. In addition to the RTLS data, which is also needed for

identifying ongoing workflow event, the information for the ongoing event itself is also required.

This data will tell the model what type of event is it trying to predict and for how long has it

been ongoing.

Similar to the approach that we convert the multiclass classification problem to multiple binary

classification problems in Chapter 6, we also build the prediction model for each of the event types

that we want to predict.

The target of the prediction is the remaining time for the ongoing event before it ends. It can

either be a continuous number of minutes / seconds or a time range, for instance 10 20 minutes.

In this study, we give continuous values as the estimations of events remaining time.

7.2 Feature Preparation

The features used in event remaining time prediction is nearly the same as the event identification.

However, as stated in Section 7.1, additional information about the ongoing event is also required.

Also, we add a filter to keep only RTLS data that are related to ongoing events.
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7.2.1 Event Related RTLS Data Filtering

As we aim to predict the remaining time of ongoing events, we do not make a prediction when

there are no target events ongoing.

Filtering Single Point RTLS Data

Filtering single point RTLS data is simple as the RTLS data item has a single time stamp. We

query this time stamp in the CRF events database and check at this time stamp whether an event

with type e is ongoing. If not, the RTLS data at this time stamp is discarded.

Filtering Sequential RTLS Data

Filtering sequential RTLS data can be more tricky than filtering single point RTLS data as se-

quential RTLS data contains location information in a fixed length time window.

(S)equence time window

E includes S

b

E outside of S

c

E overlaps S

d

S includes E

e

(E)vent time span

S coincides E

a

𝑇𝑒𝑛𝑑 𝑠 − 𝑇𝑒𝑛𝑑 𝑒

𝑇𝑒𝑛𝑑 𝑠 − 𝑇𝑒𝑛𝑑 𝑒

𝑡

𝑡

Figure 7.1: Filtering sequential RTLS data according to event time span

Figure 7.1 listed 5 possible relations between RTLS data sequence and target workflow events.

For case a and b, we keep the RTLS data sequences because at the end of the sequence, an event

has just ended or still ongoing. For case c, it is obvious that we discard this sequence, as it does

not have relation with any events regarding to time. Case d and e are tricky because they both

have overlapping with events. In these cases, we set a threshold t and check whether the difference

between the end time of the sequence’s time window Tend(s) and the event’s end time Tend(e) is

equal or greater than t.

If Tend(e)− Tend(s) < t then this RTLS sequence is discarded.

7.2.2 Adding Event Elapsed Time

In addition to the location and motion aspects, we also add the elapsed time of the ongoing event

as one extra feature.
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Adding Elapsed Time for Single Point Data

Calculating the elapsed for single point data is relatively straightforward as the single point data

represents the transient status at a specific time stamp. We take the time stamp of the transient

location data item and look up CRF data in the database to find:

{x|Tstart(x) 6 T (l) < Tend(x), type(x) = e}

As in the filtering process introduced in 7.2.1, we already filtered out the single point data

items which do not have relationships with ongoing events and according to Section 6.1 there can

be only one event of a specific type going on at the same time point, thus this query will always

return one and only one event.

Suppose the event we have found is x, the calculation of event elapsed time of the single point

data is depicted in equation 7.1.

elapsed timel = Tend(l)− Tstart(x) (7.1)

Adding Elapsed Time for Sequential Data

For defining target for sequential data, as introduced Section 7.2.1, there can be different relations

between the sequential data item and ongoing events. According to the situations listed in Figure

7.1, we list the method of calculating elapsed event time for each of the cases.

Figure 7.2: Calculating elapsed event time for sequential RTLS data

According to Figure 7.2, we do not need to take case c and e into consideration because they

are already filtered out in the filtering process introduced in 7.2.1. For the other cases, suppose

the matching event is x we calculate using equation 7.2

elapsed timel = Tend(l)− Tstart(x) (7.2)

In addition, different from defining target for single point data, a sequential data item can

possibly relate to multiple events. We select the latest event that the RTLS sequence related to

in this case for the calculation.
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7.3 Model Training

Event remaining time prediction is a prediction or regression task. While the input data has similar

structure compared with event identification, the goal of the prediction is to give a continuous

output value of the time left.

7.3.1 Defining Prediction Target

The target of the prediction is the remaining time of the ongoing event. For model training, this

information is extracted from CRF data as we have the event intervals in the CRF data.

For example, suppose we aim to predict the remaining time of event type e, we have a RTLS

data with time stamp 9:00:00 am if it is single point data or with window end time stamp 9:00:00

am if it is sequential data. At 9:00:00 am there is an event of type e ongoing, which started at

8:40:00 am and is going to finish at 9:20:00 am, then the prediction target here is 20 minutes or

1200 seconds.

However, the target definition for sequential data can be tricky. The approach of defining

target for single point data and sequential data is introduced in the following sections.

Defining Target for Single Point Data

For the same reason as adding event elapsed time, target definition for single point data is relatively

straightforward. We take the time stamp of the transient location data item and look up CRF

data in the database to find:

{x|Tstart(x) 6 T (l) < Tend(x), type(x) = e}

Similarly, As in the filtering process introduced in 7.2.1, we already filtered out the single point

data items which do not have relationships with ongoing events and according to Section 6.1 there

can be only one event of a specific type going on at the same time point, thus this query will

always return one and only one event.

Suppose the event we have found is x, the calculation of the remaining time for the single point

data is depicted in equation 7.3

remaining timel = Tend(x)− Tend(l) (7.3)

Defining Target for Sequential Data

However, for defining target for sequential data, as introduced Section 7.2.1, there can also be

situations other than the example given above. According to the situations listed in Figure 7.1,

we list the method of defining target for each of the cases.

According to Figure 7.3, we do not need to take case c and e into consideration because they

are already filtered out in the filtering process introduced in 7.2.1. For the other cases, suppose

the matching event is x we calculate using equation 7.4
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Figure 7.3: Defining Prediction Target for sequential RTLS data

remaining timel =

{
Tend(x)− Tend(l) if Tend(x)− Tend(l) > 0

0 otherwise
(7.4)

In addition, different from defining target for single point data, a sequential data item can

possibly relate to multiple events. We select the latest event that the RTLS sequence related to

in this case for the calculation.

Target Normalization

Depending on the distribution of the remaining time of a specific type of event, we choose whether

to apply normalization or how to apply normalization to the prediction target. The goal is to

make the distribution of the normalized target as even as possible.

7.3.2 Algorithm Selection

We select commonly used regression algorithms which can be applied on single point data and

sequential data.

The regression models to apply on single point data are listed below:

• Decision tree regressor

• Random forest regressor

• Linear regression

• Neural network regressor. Multilayer perceptron (MLP) is adopted in this study

For predicting event remaining time using sequential RTLS data, long short term memory

(LSTM) network is used.
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7.4 Experiments and Results

This section describes the objectives, setups and results of the experiments related to the data

analytics task of event remaining time prediction introduced in this chapter.

7.4.1 Experiment Objectives

The objectives of event remaining time prediction are similar to that of workflow event identific-

ation. The objectives in this experiment are listed below:

• Verify that the concept and methodology of using RTLS data to automatically predict the

remaining time of ongoing workflow events are correct and feasible.

• Compare the performance between models trained on single point data and models trained on

sequential data to see whether the information about the movement sequences can improve

the performance of the remaining time prediction.

• Compare the machine learning approach with a baseline to investigate if there is an im-

provement using the machine learning approach based on RTLS data and how much the

improvement is.

7.4.2 Data Set Specification

The data set used in this experiment is similar to the data set used in the event identification

experiment. The data sources are described in Section 6.4.2.

The only differences are:

• In the event remaining time prediction task, we only keep the RTLS data collected during

the target events.

• Elapsed time of the ongoing event is added as a new feature. The method of calculating this

feature is described in Section 7.2.2

• Event remaining time is set as the prediction or regression target instead of event type. The

method of deriving this target is described in Section 7.3.1

7.4.3 Experiment Setup

This section introduces the setup of the experiment for event remaining time prediction. It in-

cludes an introduction to the experiment data set, data set splitting, evaluation metrics and the

calculation of baseline.

Experiment Data Set

As introduced earlier in this chapter, the data structure of event remaining time prediction is

very similar to the data structure of the event identification problem. However, the data set is

extracted from the second period and the prediction targets are derived from the CRF data.
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Table 7.1: Sizes of data in different formats

Data set Window length Size

Single point data - 12,338

Sequential data 5 minutes 9,812

Sequential data 10 minutes 11,103

Sequential data 15 minutes 12,338

Sequential data 20 minutes 13,563

Sequential data 25 minutes 14,716

Sequential data 30 minutes 15,886

As discussed in the Section 6.4.2, the CRF data has problem of missing events. However, as

in the event remaining time prediction task we only do prediction on known ongoing events. This

problem will not affect the quality of the target of the data set. Thus we use the CRF data’s “first

incision” and “close incision point” events to form the target exam event.

The size of the data set is smaller than the data set for event identification because we only

keep the portion of RTLS data which is related to ongoing exam events. Table 7.1 describes the

data sizes for different formats of data.

Training Test, Validation Splitting

Although the size of the data set is smaller compared with the data set for the event identification

experiment, we use the same splitting strategy as stated in Section 6.4.3.

Evaluation Metrics

The metrics for event remaining time prediction is relatively simple compared with the binary

classification problem. The main metric we adopted is the Mean Absolute Error (MAE) because

it shows the average error in seconds when we predict the remaining time of an event. The second

main metric: mean improvement is introduced to compare the performance of our models with

the baselines.

Mean Absolute Error . MAE is the average of the absolute difference between the predicted

finish time and the actual finish time.

MAE is calculated by

MAE =
1

n

n∑
i=1

|yi − ŷi| =
1

n

n∑
i=1

|ei|

Where yi is the actual remaining time and ŷi is the predicted remaining time.

Standard Deviation of Absolute Error The standard deviation of the absolute prediction

errors is adopted as a secondary metric to measure the stability of the predictions.
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Mean Improvement Compared with Baseline As the baseline MAE can be different for

single point data and sequential data, we adopt mean improvement compared with baseline as an

additional metric which can compare the performance of all the models involved.

The mean improvement compared with baseline is calculated as:

MIm = MAEbaseline −MAEm

Where m is a model for predicting event remaining time.

Experiment Baseline

The baseline for this experiment is the Mean Absolute Error (MAE) when we just use a constant

remaining time as the predicted remaining time. This constant remaining time is optimized using

the training data.

7.4.4 Evaluation Results

In this section, evaluation results are showed and compared for the event remaining time prediction

task. In the experiment, we predicted the remaining time of ongoing exams using 5 algorithms

based on single point data and LSTM based on both single point and sequential data. The

prediction is only done for the processed RTLS data when there the exam events were ongoing.

Thus, the size of the data set is much smaller compared with the event identification data set.

The 6 algorithms in single point data prediction are decision tree regressor, Bayesian ridge

regressor, SVM regressor, stochastic gradient descent regressor, multilayer perceptron regressor

and LSTM.

Baseline MAE

We have set up grid search to find the optimal constant prediction value and the corresponding

MAE.

Firstly we compute the baseline for single point data. The result is shown in Figure 7.4.

The result shows that when the constant prediction value is set to 1,145 seconds, we achieve

optimal MAE which is 1,268.82 seconds. Thus 1,268.82 is the baseline of the event remaining time

prediction.

For sequential data, as the size of the windows change, the size of data changes and there are

more data with 0 as remaining time. Thus the baselines of sequential data are different. The

baseline computation process is described in Figure 7.5

Performance Comparison Between Different Models

We have evaluated the 6 models listed above. Figure 7.6 and Table 7.2 shows the comparison of

the 6 models. Note that the single point data is extracted from the 15 minutes sequential data.

So they share the same baseline and are comparable.

From the result, we can observe that the LSTM model based on sequential data performed

better than conventional machine learning algorithms in the event remaining time prediction task.
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Figure 7.4: MAE when changing the constant prediction value

Table 7.2: Performance comparison between different models

Model name Type MAE std MI

Decision Tree Regressor single point 1742.88 1669.61 -492.40

MLP Regressor single point 1333.77 1219.41 -83.29

SVM Regression single point 1277.94 1197.24 -27.46

Baseline - 1250.48 1165.25 -

Bayesian Ridge single point 1227.67 1134.67 22.81

SGD Regressor single point - - -

LSTM single point 1245.21 1069.49 5.27

LSTM(15m window) sequential 1063.21 1126.09 187.27

It improved the prediction accuracy by 187.27 seconds, which is roughly 3 minutes, also the stand

deviation is smaller than the baseline. Among the regression models trained with single point

data, only Bayesian Ridge Regressor and LSTM performed slightly better than the baseline. SGD

Regressor failed to produce meaningful remaining time predictions.

Performance Comparison Between LSTM Models with Different Window Length

We have also carried out experiment on evaluating the performance of LSTM models trained with

sequential data of different window lengths. As discussed in the previous section, the baselines for

data of different window lengths are different. Thus we put the focus of the comparison on the

MAE improvement.

The evaluation result is shown in Figure 7.7 and Table 7.3.

According to the MAE improvement metric, we can observe that when the length of sequential

data window increase, the prediction performance becomes higher. When the window length is 30

minutes, we yield mean absolute error of 814.42 seconds (13.6 minutes) which is 301.36 seconds

(5.02 minutes) better than the corresponding baseline.
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Figure 7.5: Baseline MAE computation for sequential data with different window lengths

Model Test MAE Standard deviation \te+B1xtbf{MI} \textbf{Model name}

Decision Tree 1742.88 1669.61 -492.4 LSTM

MLP 1333.77 1219.41 -83.29 LSTM

SVM 1277.94 1197.24 -27.46 LSTM

Baseline 1250.48 1165.25 - LSTM

Bayesian Ridge 1227.67 1134.67 22.81 LSTM

LSTM single 1245.21 1069.49 \textbf{187.27} LSTM

SGD 0 0

LSTM 15m 1063.21 1126.09 \textbf{187.27}
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Figure 7.6: MAE and standard deviation comparison on test data for different models
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Model Test MAE Standard deviation \te+B1xtbf{MI} \textbf{Model name}

Decision Tree 1742.88 1669.61 -492.4 LSTM

MLP 1333.77 1219.41 -83.29 LSTM

SVM 1277.94 1197.24 -27.46 LSTM

Baseline 1250.48 1165.25 - LSTM

Bayesian Ridge 1227.67 1134.67 22.81 LSTM

SGD 0 0 - LSTM

LSTM 15m 1063.21 1126.09 \textbf{187.27}
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Figure 7.7: MAE, baseline MAE and mean improvement comparison on test data for LSTM

trained with sequential data with different window lengths

Table 7.3: Performance comparison between LSTM with different window lengths

Model name Window Length MAE std Baseline MAE MI

LSTM 5 minutes 1257.14 1273.92 1262.81 5.67

LSTM 10 minutes 1145.09 1174.42 1268.82 123.73

LSTM 15 minutes 1063.21 1126.09 1250.48 187.27

LSTM 20 minutes 940.38 1263.87 1213.96 273.58

LSTM 25 minutes 938.03 1400.45 1168.58 230.55

LSTM 30 minutes 814.42 1248.91 1115.78 301.36
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7.5 Combining the Power of Event Identification and Re-

maining Time Prediction

As introduced in the overview of this chapter, the prerequisite for predicting event remaining

time given streaming RTLS data is to first know the type of the ongoing event and for how long

has the event been ongoing. In the model training and evaluation we construct this data using

the existing CRF data. However, our ultimate goal is to build a system which can give hospital

real-time predictions on the remaining time of the ongoing events fully automatically. In this case

we will not have CRF data to give us the prerequisites because CRF data is manually recorded

after events finish.

Fortunately, the works introduced in Chapter 6 could give us the exact prerequisite data we

want for making event remaining time prediction. As the event types are automatically identified

using machine learning algorithms and we know when is the first time that the current ongoing

event is identified, we can calculate for how long has the current event been ongoing. Thus we can

adopt the output of the online event identification model to feed event remaining time prediction

model. This powerful combination will enable hospitals to not only identify the ongoing workflow

events automatically but also predict when is the ongoing event going to finish in real-time.
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Chapter 8

Conclusion and Future Work

This chapter concludes the study regarding the three data analytics tasks and the four use cases

defined in Chapter 1 and describes the current limitations met in the process of this study. Lastly,

future works which could improve this study are discussed.

8.1 Conclusion

Conclusions for the three data analytics tasks are described in this section.

8.1.1 Workflow Playback and Transition Sequence Visualization

With the workflow playback tool, analysts can see an animated tag transitions on a floor plan as

well as the progresses of related workflows given a specified time span on an integrated view. The

tool has brought intuitive and interactive insights to analysts to understand transition patterns

made by staffs in different roles for different types of events. This tool is not only useful for

getting an idea of how staffs move around during procedures in an overall picture but also useful

for finding interesting transition patterns in particular past procedures.

Different from the workflow playback tool, which only shows the animation of tag transitions

in specified short time periods, for example one hour, or an entire shift, the transition sequence

visualization tool gives a less intuitive (tag locations are shown on y axis instead on a floor plan)

but more general view of how different roles transit and collaborate on in a set of workflow events.

Analysts can find interesting common patterns from this visualization which can help them to

find potential defects in the current workflows which cause inefficiencies and to find solutions on

how to optimize these workflows. For instance, if an analyst observes that nurses are frequently

walking back and forth between room A and room B in the middle of percutaneous transluminal

angioplasty (PTA) exams, then it might be wise to seek ways to combine the two rooms or shorten

the distance between them.

These tools also provided valuable insights for developing the automated workflow event iden-

tification and event remaining time prediction models. For instance, we played back a set of exam

procedures using the workflow playback tool and observed that physicians are frequently moving

back and forth between the control room and the exam room, thus this pattern can be useful

for identifying the exam event and we can incorporate these sequential patterns in the features
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for workflow identification. Another example is, after the physicians and fellows leave the control

room and exit the research area through the corridor, then it is likely that the exam is in wrap-up

phase and will end soon. Catching this pattern can be useful for predicting the finish time of

ongoing exam events.

Thus, although these two visualization tools are not the main focus of the thesis, they have

provided powerful capabilities to clinical analysts and gave us valuable guidance to develop the

prediction models.

8.1.2 Automated Workflow Event Identification

The challenge of making classification on RTLS data is that the RTLS data is a type of streaming

event data which is not suitable for training machine learning models. To address the challenge,

firstly we have proposed an approach of processing and transforming cleaned streaming RTLS data

to features to support the machine learning algorithms for making classifications. Secondly, we

have proposed an approach to build sequential RTLS data to preserve tag transition information

in a time window.

The evaluation results presented in Section 6.4 show that the machine learning models, espe-

cially the deep learning model (LSTM) based on sequential RTLS data has achieved high perform-

ance on identifying workflow events. After comparing the performances of conventional machine

learning and deep learning models based on transient RTLS data and the performances of deep

learning models based on sequential RTLS data, we can confirm our assumption that the sequential

data contains more predictive power regarding to identify workflow events than transient states.

In addition, we observe that when the window length of the sequential data increase, the

performance becomes gradually better. This can be the result of the fact that sequential data

with a longer window contains more information in the transition histories. We benefit from this

because LSTM has the ability to look back in a large number of steps back in the history.

From the evaluation metrics overview which compares all the machine learning models involved

we can conclude that our proposal of identifying workflow events using machine learning models

based on RTLS data is feasible. Firstly, AUC and Kappa scores show that the prediction per-

formance is strong. Secondly, the accuracy of 0.84 shows that our model is relatively close to the

”gold standard” in identifying a specific workflow event.

The evaluation results imply that our model can be used to identify clinical workflow events

based on new RTLS data and achieve relatively reliable result. This model can be potentially

deployed in the hospitals with RTLS installed and the staffs tracked to automatically indicate the

type of ongoing workflow events in real-time.

8.1.3 Event Remaining Time Prediction

We have proposed a methodology of predicting remaining time of ongoing workflow events. Firstly

we proposed an approach of preparing features for event remaining time prediction combining the

strategy of producing RTLS features for workflow event identification and features of ongoing

events. Secondly we introduced the approach of preparing the prediction target.

The experiments on event remaining time prediction mentioned in Sectioin 6.4 show that

machine learning and deep learning algorithms trained with single point data perform poorly

in predicting remaining time of ongoing events. However, the deep learning algorithm (LSTM)

trained with sequential RTLS data was able to outperform the baseline and provide relatively
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accurate predictions on event remaining time.

The evaluation results show that our approach of predicting event remaining time is feasible if

we adopt LSTM model with sequential data. The results shown in Section 7.4.4 double confirms

that sequential data a longer time window can contribute to better prediction results. The best

performing LSTM model improved the MAE by 27% compared with the baseline.

Thus, we conclude that, the LSTM model based on sequential data can be adopted in hospitals

with staffs tracked by RTLS and provide better remaining time predictions in real-time. However,

there is still space to further improve the prediction precision as the current mean absolute error

is still relatively large (13.6 minutes).

8.2 Limitations and Future Work

Firstly, due to the limited data collection period, the prepared data set, especially the data set

for remaining time prediction is relatively small considering the need for a large training set for

deep learning models. From the result we can observe that there is a positive correlation between

the size of the data set and the performance, for instance the MAE improvement in remaining

time identification. However, we cannot be sure that an increase in size of the training data will

directly lead to a performance increase.

In the future studies, we can collect a longer period of CRF data about more types of workflow

events so that we will have a larger data set for training. We could also set up experiments to

explore the relationship between data size and prediction performance.

Regarding the data sources, currently we are using only RTLS data because it is the only

source from which we can get real-time streaming data. The machine log data, on the other hand,

has a few days of delay between the time when logs are produced and the time when we receive

them. However, the machine log data contains very comprehensive data about the usage of the

iXR. It can add strong predictive power in identifying and predicting exam related events.

The RTLS system we adopted provides zone level precision, thus it is not possible to know the

tag’s movement inside the zones. In the future, we would like to incorporate RTLS systems which

can provide in-room locating capability. This capability can potentially improve the prediction

performance because then we will be able to know patterns for instance physician moves from

the operation table to the monitor. This information combining the machine log could provide

powerful predictive capabilities.

In the future, we could attempt to identify predict remaining time of more types events.

After having a complete set of models, we could try to build an online workflow identification and

prediction system which can automatically identify new workflows and which steps are the ongoing

workflows at and predict the finish time of each remaining step of the ongoing workflows. In

addition, the system could be interfaced with the hospital information system to provide scheduling

assistance. This feature could improve the efficiency of the hospitals.
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