EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

BACHELOR

Capacity planning in a call center

Meyfroyt, T.M.M.

Award date:
2011

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/07d075f7-03e5-4f00-92a5-9198ad4e6374

Bachelorproject:
Capacity planning in a Call Center

Thomas Meyfroyt, 0649268

Bachelor Technische Wiskunde
TU Eindhoven

December 22, 2011

Contents

1

2

ﬂ

g aQa @ »

Introduction
Problem Description

The queueing model

3.1 Assumptions about the model
3.2 M/M/c ...
3.3 M/M/c with abandonments
3.4 M/M/c with abandonments and call blending

Results of the queueing model

4.1 Sensitivity analysis oo

Schedule generation

Scheduling results

Conclusion

[Table of incoming call rates during the week]
[Table of number of needed agents and threshold]
[Numerical results of determining ¢ and c*]

[Mathematica script]

24

27

29

30

31

34

1 Introduction

In this document the bachelorproject ” Capacity planning in a call center” will be discussed.
The goal of the project is to make a workforce schedule for a call center in such a way that
certain performance targets will be met. These performance targets deal with the number of
abandoned calls and the waiting time of customers. An important aspect of the call center in
question is that besides having to serve incoming calls, also outbound calls have to be made
by the agents. Two different policies for dealing with these outbound calls are compared.
The first policy assumes that whenever an outbound call has to be made, that this is done
immediately. The second policy is the so called call blending policy, where an outbound call
is made by an agent only when a predetermined number of agents is idle. Both policies are
modeled by an extension of the widely used M /M /c queueing model. With the information
about the number of needed agents that is gotten from the queueing models a workforce
schedule is made. This is done by solving a mixed integer program. We find that the call
blending policy is an efficient way to make efficient schedules for call centers that have to deal
with outgoing calls.

In the next chapter we will first formally describe the problem. Then a queueing model
based on the widely used M /M /c queueing model will be developed that is applicable to our
call center. This will be followed by some results of the queueing model and a sensitivity
analysis of the used parameters. After that a mixed integer program will be discussed that
we will use to make the actual workforce schedule. Finally some results of this MIP will be
presented and a conclusion is given.

2 Problem Description

As mentioned in the introduction, the goal of the project is to make a workforce schedule for
a call center in such a way that certain performance targets will be met. The call center we
will be looking at serves as a helpdesk. People call the center with a question and an agent
tries to answer this question. If it is a simple question this can be done immediately. For
more difficult questions the agent might have to make some calls first or look some things up
before he can answer the question. There is no difference in the skills of the agents, they are
all capable of answering all questions. Because only a fixed number of agents are working at
a given time, they can only serve a fixed number of calls at a time. This means certain callers
have to wait in a queue until an agent becomes free, before their call is answered. This queue
has infinite capacity, but customers have finite patience and will abandon the system if they
are put into the queue or are waiting in the queue for too long.

Of course the call center wants to deliver good service to their customers, which means
minimizing their time in the system. This includes queueing time and service time. This can
easily be done by always having a lot of agents scheduled, but this is very costly for the call
center. That is why a balance needs to be found between the performance of the call center
and the number of agents scheduled to work at a certain time. The performance of the call
center is measured by so called performance measures. The following performance measures
apply to the call center we will be looking at:

- The percentage of abandoned calls should be smaller than 1.5%.

- The number of calls served within 25 seconds should be bigger than 95%.

- The average speed of answer should be smaller than 10 seconds.

We split the problem of making the workforce schedule into three parts:

1. The first part is to make a mathematical model of the call center which has all the
relevant aspects in it. It is clear that a queueing model can and should be used here.

2. Secondly we then need to use this model to calculate how many agents we need at each
moment of our planning horizon.

3. Lastly we need to use these calculations to make the actual workforce schedule so that
all the performance targets will be met. For this part we need to keep in mind how
many agents the call center has available at a given time and also that agents work in
shifts. This is the scheduling aspect of the project.

Each of these aspects will be discussed in their own chapter. The goal is to eventually create
a workforce schedule for a typical workday of our call center. We will start by making a
queueing model that is applicable to our call center.

3 The queueing model

3.1 Assumptions about the model

A lot has already been written about call center modeling and mathematics. A model that is
widely used to model how a call center functions is the so called M /M /c queueing model. In
[3] for example, Koole discusses this model and how call center managers can and should use
it. We will use the M /M /c queueing model as a basis for our queueing model. The M/M/c
queueing model assumes that the following statements apply to our call center:

1. The arrival process (incoming calls) is Markovian. This means that incoming calls follow
a Poisson process and we also only have one type of calls.

2. The service time distribution is Markovian. This means that we have exponential service
times.

3. There are ¢ parallel working servers (agents).
4. The queue has infinite capacity.

5. Customers can only leave the system when they have been serviced. In other words,
there are no abandonments.

The assumptions of Markovian distributed interarrival and service times are in general rela-
tively good assumptions for a call center. Of course this model does not completely fit our
call center, but it serves as a good start. We need to adjust this model so it also includes the
following two aspects of our call center:

- Customers that are put into the queue upon arrival have a probability of abandoning the
system immediately or after they have spent some time in the queue.

- The call center also has to process outgoing calls, like answers to earlier received questions
from a customer.

Under certain assumptions about these aspects, the M /M /c model can be nicely extended to
include them as shown in [2]. But let us first take a closer look at the M /M /c model.

3.2 M/M/c

We shall now focus on mathematically describing the M /M /c model and fully understanding
it, so we can later extend the model in a way such that it fits our call center. In this chapter
we will use the same structure as is used for the chapters of [5] to explain and understand our
models. Like said earlier we assume that the arrival process is Markovian and let us denote
the arrival rate by A. For our call center this A shall denote the rate at which it receives
incoming calls. Furthermore we also assume that the service time distribution is Markovian,
we shall denote the service rate by p. In our model this p will be the rate at which agents
finish incoming calls. We shall denote the number of servers (or agents) by c. Note that to
avoid that our queue will grow to infinity, we require that the amount of work per agent per
time unit is smaller than the amount of work an agent can process per time unit. So we
require % < p, which gives the stability condition for an M/M/c queue: A <.

cp
A way to now describe our system at some time ¢ is to count the number of customers in

the system. We will denote this state of our system by the state variable X(¢). So X(¢)
is the total number of inbound calls in the system at time ¢. Under the made assumptions
{X(t);t > 0} is a so called continuous-time Markov chain (CTMC), with state space S =
{0,1,...}. Furthermore it is also a birth-death process because our state variable can only
change by 1 with each transition. This allows us to look at state-dependent birth and death
rates, from which we can calculate important quantities of our system. If X (¢) = k, then the
birth rates A\ and death rates p; are state-dependent as follows:

e =\, k=0, 1,2, ...

kp, k=0,1,..,¢c—1

M =
cp, k=c,c+1, ...

The flow diagram of Figure 1 shows this.

>
b
>
>
=

(0) (1) e (e—1) (e) ‘ |
N AN A N N A N A

H 24 cl cp cl

/ = _7__, _*--—_r?/"*" \i.\«--*_’--:a ,/-_ o \,\,’ _*--;?/7"\/:-* e /‘_‘\,f—-’ — ’--—_?/’
| e |
b

Figure 1: Flow diagram of an M/M/c model.

Now let us define 7, as the so called equilibrium probability that there are n customers in
the system. This is the fraction of the time the system will be in state n on the long run i.e.
T, = limy_00 P(X (t) = n). We can calculate these probabilities by equating the flow between
two neighboring states, because for the system to be in equilibrium the net flow between two
states should be zero. So we have:

Ap—1 = min(n, ¢) umy,.

If we then define p = %, iterating gives us:
Ty = (Czl)nwo, n=0,1,...,c

c c
Tetn = chn = Pn%ﬂo 7’L:0,1,...

Finally we can use the fact that the sum of all our equilibrium probabilities should be 1. This
gives us:

c—1
_ (cp)™ | (ep)® 1 4
WO_(Z n! + c! 'l—p) ’
n=0

These equilibrium probabilities are important because they allow us to calculate useful quan-
tities like the probability an arriving customer is put into the queue, the mean queue length,
the average waiting time and even the distribution of the waiting time. Let us first look at
the probability an arriving customer is put into the queue and call it II,,. Then from the
PASTA property, which states that the probability of the system state as seen by an outside

random observer is the same as the probability of the state seen by an arriving customer, it

is clear that:
TR - VN o Y (LS () e - S
w—zﬂ'n—zp ol o = ol 7TOZP =
n=c k=0 k=0

Calculating the mean number of waiting customers is not difficult either:

00 00 0 0
=St =S = e =T
n=0 n=0

With this quantity we can easily calculate the mean waiting time with Little’s Law:

E(W) =11, - 11
1—p cu
Calculating the waiting time distribution is a bit more difficult. Let us denote the waiting
time in the queue experienced by the I’th customer by W (l). Also let us denote the state
the I’th customer finds the system in by X'(I). We shall calculate the following limiting
distribution:
P(W >t) = lim P(W(l) > t).

=00

If we condition on the system state X'(l) and use the PASTA property, we get[2]:

P(W > t) = lim ZIP’) > tX'(1) = c+n)P(X (1) = c+n) = Y P(W > t[X' = c+n)mein.
—>oo =0

Note that the conditional probabilities in the expression above do not depend on [because
the process X'(-) is Markovian and stationary. Accordingly we simplified the notation by
dropping ”!” with the understanding that conditioning is with respect to the stationary,
random system state. Furthermore because the service times are independent, the stochastic
quantities (W|X’ = c¢+n) follow an Erlang(n+1, c¢u) distribution, because if a customer finds
n people waiting in the queue upon arrival, he will have to wait until n 4+ 1 customers have
received complete service before he can receive service. So if we use the CDF of an Erlang
distribution we get:

t)k t)k - t)*
P>~ 33 0 i, S5 5S O T SR o

p

n=0k=0 k=0 n=Fk =0
This yields for the following conditional probability:
P(W >t P(W >t
POV > W > 0) = BV 20 _EW =D _ oo

P(W >0) I,

Hence, the conditional waiting time W|W > 0 is exponentially distributed with parameter
cp(l = p).

These calculations have helped us to understand the M /M /c model. We shall now try to
extend the model in such a way that it includes customers abandoning the system.

3.3 M/M/c with abandonments

In the model we currently have all customers have infinite patience. This means that every
customer that is put into the queue, will stay in the queue until he/she is served. Of course
this is not a realistic assumption. Some customers do not want to wait at all and abandon
the system immediately when they are put into a queue. Others will stay in the queue for
some time until they are fed up with waiting and then they will leave the queue. We will now
try to include this kind of behavior in our model. Let us assume that customers that arrive
in the system when all agents are busy leave the system immediately with probability (1 —-).
Secondly because of the Markovian nature of the model it might be practical to assume that
the time people are willing to wait in the queue also follows an exponential distribution.
When compared to reality this also often seems to be a relatively good assumption [1]. So we
will assume that these patience times are exponentially distributed with mean n~!. Under
these assumptions {X(t);¢ > 0} is still a continuous-time Markov chain. Also it is still a
birth-death process, so we can again look at the state-dependent transition rates:

A, k=0,1,..,¢c—1

cu+ (k—com, k=c,c+1, ..

The flow diagram of Figure 2 shows this.

)\)\)\ f'\ /\ ,.\f)\
/—-,.\i__,_—f--—-;?/"_"\,\;—f--f'-f:-l / IY 57/ \\ /’_‘?,--—-'*'-—:?/‘_"\‘
{0 L1 e e=1) ((1) ([n |
A AN S A\ A

1 24 L Cp+T) r,'.r+(()?]

Figure 2: Flow diagram of an M/M/c model with abandonments.

Again we will determine equilibrium probabilities by equating the flows between two neigh-
bors:
ATp—1 = numy, n=0,1, .. c

VAT eyn—1 = (et + 1) Teqn, n=1,2, ...

Again using p = ﬁ, iterating gives us:

ilo Okt n=0

‘9n7r()7 n:1, 2’

where the 6,, are as follows:

(cp)" n=0,1,...,c

0, =

N - A
@ (%), n=c+1c+2, ..

Notice that by this small extension of the M /M /c model, our expressions for the equilibrium
probabilities have become more complex. This also means that expressions for quantities like
the mean queue length will be more complex. But calculating these should not be a problem
for a computer though so let us proceed. We will again start with the probability that an
arriving customer has to wait:

00 00 0o n A
Hw :Zﬂ'n :Zenﬂo :WC(l"i'ZH[w’:_ikn])

n=1 k=1

The mean queue length is given by the following expression:

oo oo)\
B(L) = 3 nesn = Trc@lnkﬂl[w1)

We will now try to find the waiting time distribution in the same way as we did in the last
section. However because now customers may leave the system by either abandonment or
service we will make a distinction in waiting times. Let us by W% denote the waiting time in
the queue experienced by a customer which may leave the system by either abandonment or
service. And let us by W* denote the waiting time in the queue experienced by a customer
which will surely receive service. Like before by X’(l) we denote the state the I’th customer
finds the system in when entering the system. Note that because e~ is the probability that
the patience of a customer is at least ¢, we have the following relationship between W% and
W
P(W® > t) =e "P(W* > t).
Now let us denote the waiting time in the queue experienced by the I’th customer by We(1)
(which may be terminated by either abandonement or service). We calculate the following
limiting distribution:
P(W* > t) = lim P{W(l) > t}.
=00

If we condition on the system state X'(1) like before and use the PASTA property, we get:

P(W*>t) = ll_iglOZP{W“(l) > t|X'(1) = c+n}P{X'(l) = c+n} = Z}P’{W“ > t| X' = c+nlmepn.
n=0

n=0

This time the conditional probabilities are more difficult, because we have to take into account
that people abandon the queue now. The following expression for these probabilties is given
by Riordan (1962) [4]:

]P)(Wa > t|X/ =c+ TZ) — e~ m(1+) ZZ:O (w)k(llz!eint)k’ n>0

where § = cu/n, (W)o = 1 and (¥)g = () (% +1) -+~ (b + k — 1) for k > 1.

This is how he derived it. Let us denote the conditional probabilities we are interested
in by w?(t), that is the probability that the waiting time of a customer which on arrival finds
n other customers waiting is at least ¢t. Note again that this waiting time may be terminated
either by service or by abandonment. Write w; (¢) for the similar probability of a customer
which is sure not to abandon the system. Then again the following relation holds:

w(t) = e Mwi (t).

a
n
Now let us look at these w(t) more closely by considering eventualities in an infinitesimal

small interval 6. One out of three things can happen:

1. Nobody leaves the system. This can happen with probability e~ (1temd — 1 — (nn +
cp)d + O(6?).

2. A customer has received service and leaves the system. This can happen with probability
1 — e = cud + 0(62).

3. A customer is tired of waiting and abandons the system. This can happen with proba-
bility 1 — e = nnd + O(62).

Note that we do not take into account the events that more than one customer leaves, because
these are very unlikely (=O(6?)) during our small time interval. We now have the following
relation:

wy (t) = (1= (n + cp)d)wy, (t — 6) + (nn + cp)wy,_ (t — 8) + O(6%).

Moving w; (t — ¢) to the lefthand side, dividing by 0 and letting ¢ go to zero gives us the
following differential recurrence relation:

(wp)'(t) = (nn + cp)wy 1 (8) — wy (B)]-

We can solve this recurrence iteratively. We start by looking at w(¢):

(wp)'(t) = (ep)[—w5 (2)].

Which gives us w§(t) = e~ ', since w$(0) = 1 for all n. With this we have a differential
equation for wj(t):

(w)'(t) = (ep +m)[wg(t) — wi(t)].
This is an inhomogeneous first-order linear equation, which we can easily solve. We start by
finding the general solution wg(t) to the homogeneous differential equation:

(wr)'(t) = —(cp +m)[wr (£)]-

This gives us wg(t) = Ae™(#+M! where A is a constant. We now need to find a solution
wp(t) to the inhomogeneous differential equation:

(wp)'(t) + (cpe +n)wp(t) = (cu+m)e” .

One might try a solution of the form wp(t) = Be™** to find that choosing B = % gives a
solution. Combining these solutions gives us the complete solution:
HAN —cut

w3 (t) = wy(t) + wp(t) = Ae~(H+mt 4 .

10

Finally using the fact that w$(0) = 1 gives us A = —%. And by setting ¢ = % we can write
the solutions we are interested in as follows, which are easily verified by the expression given
by Riordan:
wi(t) = —gpe” T 4 (14 p)e ™1,
wi(t) = e Mwi(t) = —e M) 4 (1 4 y)e),
Using wj(t) we can now find a differential equation for wj(t), which again will be an inho-
mogeneous first-order linear equation which can be easily solved. Repeating this process of

recursively solving differential equations leads to the expression given by Riordan. Putting
all this together gives us:

P(W* >t) = e~ Mt(1+Y) i Tein i (V)e(1 — e*nt)k.

k!
n=0 k=0

IP)(WS > t) _ e—mj;t i Tein zn: (w)k(l — e_nt)k‘

k!
n=0 k=0
where 1 = cu/n, (W)o = 1 and (W) = W)@ +1) - (+k—1) for k> 1.

We have now successfully extended our model to include abandonments. As mentioned earlier
the call center also has to process outgoing calls, like answers to earlier received questions
from a customer. So our task now is to extend our model even further so that it also includes
this aspect of our call center.

3.4 M/M/c with abandonments and call blending

Before we can include outgoing calls in our model we need to decide how our call center will
handle these calls. A way to deal with the outgoing calls could be by assigning a fixed number
of agents to only the outgoing calls and the rest to the incoming calls. It can be shown though
([3]) that a better way to deal with incoming and outgoing calls is by so called call blending.
Instead of assigning a fixed number of agents to ingoing or outgoing calls, they are assigned
dynamically. A free agent should obviously be assigned to a waiting incoming call if any are
present. A way to maximize productivity is by assigning free agents to outgoing calls if there
are no waiting incoming calls. However, then every incoming call has to wait for an agent
to finish their call. The solution is to keep a number of agents free for incoming calls when
none are waiting. This is also known as a threshold-type policy. Let us try to include this
policy into our model. We will denote our threshold by c¢*. This means that an agent will
make an outgoing call if there are at most ¢* agents busy. We will assume that an agent will
immediately make this outgoing call as soon as the system state reaches ¢*. This implies that
X(t) > c¢* for every t. Note that we are now assuming that there are always outgoing calls
that can be made. Furthermore let us assume that outbound calls are served with rate y, (and
let us from now on call the service rate for inbound calls u;). Note that by including these
outbound calls in our model the state variable X (¢), which is the total number of inbound
and outbound calls in the system at time ¢, does not completely describe our system anymore,
because inbound and outbound calls have different service rates. A way to solve this would
be to make a two-dimensional state-space, but this will make the calculation of important

11

quantities extremely difficult. An other intuitive solution would be to use a mean service time
p~! for all calls. This would be a weighted average of ui_l and p; 1
1

1—
1_» (-9
2 Hi Ho

Here p is the long-run proportion of calls that are inbound and receive service. If we use this
effective service rate u the state variable X (t) again fully describes our system and we have
a one-dimensional state space. As we shall see however the fraction p depends on p in this
system and is unknown. To be able to calculate this fraction p and the effective service rate
1 we have to define the following three quantities. Define R* to be the rate at which inbound
calls are lost due to abandonment. We then have:

R* = \(1 —’)’)Zﬂ’n +172(n— C)Tp.

Secondly define R* to be the steady-state rate of calls (inbound and outbound) served. Then
it is easy to understand that:

[e.e]
R = Zmin(n,) Uiy,
n=0

Lastly define R° to the steady-state rate of outbound calls served. Note that the rate of
inbound calls accepted into the system that are served is A — R®. So we get:

R° =R’ — (A—R").
So the long-run proportion of calls that are inbound and served is given by:

RO
p(p) =1~ i
This depends on p because the steady state probabilities 7, depend on p© and they apppear in
the expressions for R* and R®. The exact expressions for the probabilities 7, for this system
will follow shortly.
We can now conclude that finding our effective service rate p is equivalent to finding a root

of the following function:

h(y) = p(p) n A-pk) 1

i Mo H
From the continuity of R® and R? it follows that the function A(-) is also continuous. And be-
cause 0 < p(p;) < 1 and also 0 < p(pe) < 1 we have that h(min(u;, 1)) < 0 < h(max(p;, fo))-
So we know that h(u) has at least one root in (min(u;, o), max(u, to)). Finding a root can
be done with root-bracketing methods as is discussed in [2]. For this project the software
package Mathematica was used for finding a root. Figure 3 shows a typical plot of the func-

tion h(p) in the interval (min(u;, po), max(p;, fo))

Like mentioned earlier, in order for us to be able to find this root we first need to define what
the m, exactly are for this system, since they apppear in the expressions for R* and R®. If

12

B —
e
0.010 | T
- ____-"'-
0.005 -
: __,.-'FFI-.
.-""{l
~
|{ "-.: 1 1 1 'IJ:
i - 30 35 40
-
-
o
L
~0.005 |~

Figure 3: A typical plot of h in (min(u;, ito), max(fi, to))-

X(t) = k, then the birth rates Ay and death rates pj are state-dependent as follows (again
note that because of our treshhold-type policy we have X (t) > ¢* for all ¢):

A, k=c*+1,..,c—1
A =
YA, otherwise

ki, k=c"+2,c"+3,..,c—1
M =
cu+ (k—cm, k=c,c+1, ..

The flow diagram of Figure 4 shows this.

A A A A A
(1) (o) o (=) (5) ()
NP AN N S N A\ A N
[+ 2)p € +3)p . cut cp+(n—c)n

Figure 4: Flow diagram of the M/M/c model with abandonments and call blending.

Again we will determine equilibrium probabilities by equating the flows between two neigh-
bors:

ATp—1 = NUT,, n=c*+2, ..., c

YA etn—1 = (et + n)Teqn, n=1, 2, ...

13

Iterating gives us:

Doriepa O™ n=c"+1

Ty =
On e 41, n=c*+2,c+3,..
where the 6,, are as follows:
1, n=c* + 1.
0, = (C*:!l)! (%)”_(C*“), n=c*+2,...c—1

(C*+1)!(A)c—(c*+1)_ n—C(YA)

d \n k=1\ctfor) otherwise

These equilibrium probabilities again allow us to calculate some important quantities like
before. Note that they are very similar in appearence compared to the previous section. We
will again start with the probability that an arriving customer is put into the queue:

© n
w—zﬂ—n—zenﬂ—c*—s—l—ﬂ—c 1+211;[+k77

The mean queue length is now given by the following expression:

Znﬂc—l-n—ﬂc ZH Cﬂ+k77

n=1k=1

The deriviation of the waiting time distribution can be done in exactly the same way as in
the previous section. So we again we have:

P(Wa > t) — e*ﬁt(ler) io: Tetn zn: (w)k(l — e—nt)k)

k!
n=0 k=0
o0 n 1— —nt\k
P(WS > t) = e~ Z”CJF”Z (V) (- e) .
n=0 k=0)

where § = cu/n, (6)o = 1 and (V) = (W) (¥ +1) - Y+ k —1) for k> 1.
This completes our model.

An alternative policy: Outgoing call directly after an incoming call

In the last section we extended our model so that it includes call blending. One might
wonder how well call blending actually works in comparison to a different policy for dealing
with outgoing calls. For this reason we introduce a different policy. Whenever an agent
finishes an incoming call which needs an outgoing call, he will immediatelly make this call.
We will model this policy by using the model from the section M/M/c with abandonments
with a service rate p = (p; "va- ;1) 7! where a is the average amount of outgoing calls an
incoming call generates. Note that by doing so we are appromixating the sum of exponential
distributed service times of an incoming call and a stochastic number of outgoing calls by a
single exponential distributed service time with mean ,u;l +a-pyt, where a is the expected
number of outgoing calls per incoming call.

14

4 Results of the queueing model

In the previous chapter we created a mathematical model of the call center we are interested
in. We should now be able to calculate, given an inbound call rate A, how many agents we
need to schedule and what threshold we should take, so we can reach our performance targets
as cheap as possible. Remember that we are interested in the following performance measures:

- The percentage of abandoned calls.
- The percentage of calls served within 25 seconds.
- The average speed of answer.

We already know from the last chapter that the rate at which inbound calls are lost due to
abandonment, R* is as follows:

R* =)\(1 —V)an +772(n—)Ty,

And so the percentage of abandoned calls is given by: % -100%.

For the other two performance measures we can use the waiting time distribution P(W* > t)
we derived earlier. We use the distribution of W* and not the distribution of W%, because
about the customers that abandon the queue we can not really say much with respect to the
last two performance measures. The percentage of calls served within 25 seconds is given by
the following formula:

The percentage of calls served within 25 seconds = (1 — P(W?* > 25 seconds)) - 100%

The average speed of answer is simply the expectation of W?#:
(0.9}
The average speed of answer = E(W?®) = / P(W?* > t)dt.
0

There is another performance measure we should look at though. In the last chapter we
introduced an effective service rate pu. Here u~! was a weighted average of u; and i, as
1

follows:)

1_» (-9

K Hi Ho
Where p was the long-run proportion of calls that are inbound and receive service. This u
could be calculated for a given ¢ and ¢*, which would also give us this proportion p. In the

case of our call center, each incoming call on average generates % outgoing calls. So in order
to be sure that the call center is able to make all these calls we require p < %.

With these formulas we should now be able to determine the minimum number of agents
required at a given time during a typical workday of our call center. We will determine
this number ¢ for each individual interval of 30 minutes during the day and denote it by s;
(t =1,...,48). Also the threshold ¢* that is to be used should be calculated. Before we can
do this however we will first need data about the inbound call rate. This rate is given for
each interval of 30 minutes during the day and can be found in Appendix A. Furthermore we
need estimators for u;, po, n and . We shall assume that these parameters do not change

15

during the course of a day. For the call center that we are looking at incoming calls have an
average duration of 2.5 minutes. So we have p; = 24 calls per hour. Outgoing calls have an
average duration of 1.5 minutes, u, = 40 calls per hour. We do not know the values of v and
7 though. We will assume that 90 percent of the customers are prepared to wait if necessary,
which seems reasonable, so v = 0.9. Furthermore we will assume that the average patience
of a customer is 3 minutes, so 7 = 20 abandonments per hour.

A good way to now determine s; is to calculate the ¢ and ¢* for different values of A and
put them in a table. One can then just look in this table to determine s; by looking at the
value for ¢ that is needed for the inbound call rate during the corresponding time interval.
To calculate the ¢ and ¢* a value of A one can naively start with ¢ = 2 and ¢* = 0 and keep
increasing ¢ and checking all ¢* for that ¢ until the performance targets are met. This could
probably be done in a smarter way, but it only has to be done once, so it is not of great
importance. In Appendix B such a table corresponding to our call center can be found for all
integer values of A between 1 and 100. In Appendix C some numerical results of this process
of finding ¢ and ¢* for two specific values of A can be found. In the first case we have A = 40
and in the second case we have A = 80. For each combination of ¢ and ¢* the performance
measures are put into a table and have been made bold if the corresponding performance
target is met. These results are generated with the Mathematica script that can be found in
Appendix D. There are a few things we can learn from these results:

First of all notice that in the case of A = 80 the percentage of abandoned calls for a fixed
value of ¢ is not always monotonically increasing with ¢*. Note that this is only the case
for small values of ¢*. This also holds for the average speed of answer and the percentage
of calls served within 25 seconds. We expect this to be monotonically increasing, because if
you increase your threshold you will on average have less people available for incoming calls,
which means the average waiting time increases. However, this unexpected behavior might
be explained by the use of our effective service rate u. If we lower our threshold we will do
less incoming calls and therefore the effective service rate u becomes smaller. And apparently
for very small threshold values this decrease in p is more significant than the fact that on
average you have more agents available for incoming calls, which causes the expected waiting
time to go up instead of down. We can test this theory by doing the same calculations for
the case with A = 80, but with p; = p, = 32. Because in this case we know that the effective
service rate u = 32 for all possible values of ¢ and ¢*. The numerical results for this case can
also be found in Appendix C. Here we find that the percentage of abandoned calls for a fixed
value of ¢ is indeed monotonically increasing with ¢*. This is also true for the average speed
of answer and the percentage of calls served within 25 seconds.

Secondly we can note that in both cases the performance target of having an average speed
of answer smaller than 10 seconds is of low importance compared to the other targets. It is
easily met before the other targets are met. The performance targets for the percentage of
abandoned calls and the percentage of calls served within 25 seconds appear to be of equal
importance.

Furthermore from the tables for the effective service rate we see that the requirement of mak-
ing enough outgoing calls is the most difficult to meet, especially in the case of A = 80. There
the first time p is large enough gives us the values for ¢ and ¢* we are looking for, which is
at ¢ = 8 and ¢* = 5. The other performance targets are met for the first time at ¢ = 7 or ¢ = 6.

We can now easily determine the values for s; with the table we generated. But before we do
that one might wonder how important the parameters A, u;, o,y and n are with respect to

16

the amount of needed agents. So we will first investigate this.

4.1 Sensitivity analysis
The inbound call rate A\

To investigate the importance of the inbound call rate A we plot the values of ¢ and ¢* are
against A. This plot can be found in Figure 5.

Plot of needed agents as a function of A

14

12

10

0 10 20 30 40 50 60 70 80 80 100

o — C_noBlending

Figure 5: A plot of the needed agents against .

Notice that also the amount of agents corresponding with our alternative method without
call blending is plot. There are a few things we can learn from this plot. Notice that for low
values of A both methods need the same amount of agents, this is what we expect, because
during these non-busy periods there should be enough time to do outgoing calls directly after
an incoming call without building up a queue. Furthermore for increasing values of A the call
blending policy seems to be increasingly better than the alternative method. For A = 100
the call blending policy needs 3 agents less than the alternative method. Also if we look at
the threshold c¢* this always seems to be 3 less than the amount of needed agents, with a few
exceptions. This could be used as a nice rule of thumb. Also the amount of agents for the
call blending method increases by 1 for roughly an increase of 14 calls per hour in the rate A.

Inbound call service rate p;

We will now look at the effects of changing the service rate p;. We will do this for two cases.
For the first case we set A to 50, which corresponds to an averagely busy period. For the

17

second case we set A to 80, which corresponds to a busy period with many callers. We will
vary the average incoming call duration ui_l and calculate the amount of needed agents and
the threshold. The results can be found in Figures 6 and 7.

Plot of needed agents as a function of u! (A = 50)

fiiii Atk
z w-
1
a

0,0 1,0 2,0 30 4.0 5,0 6,0

==C —d—C*

Figure 6: A plot of the needed agents against ;' (A = 50).

From the plots we can see that the effect of increasing the average service time is bigger

Plot of needed agents as a function of p7! (A = 80)

14

12

10

0,0 10 2,0 3,0 4,0 3,0 6,0

=l —y—C*

Figure 7: A plot of the needed agents against ;' (A = 80).

during a busy period. The amount of needed agents increases faster than during an averagely
busy period. During a busy period we see that an average service time of 5 minutes compared
with 1 minute doubles the amount of needed agents, it increases from 6 to 12. During an
average busy period it also doubles, but the difference is only 4 agents.

18

Outbound call service rate p,

We can make the same plots for the service rate of outgoing calls p,. These can be found in
Figures 8 and 9.

Plot of needed agents as a function of x! (A = 50)

12

10

4 g4
i H—-—M
Q

0,0 1,0 2,0 3,0 40 5,0 6,0

=l C = C*

Figure 8: A plot of the needed agents against u, (A = 50).

Again we see that the effect of increasing the average service time are bigger during a busy

Plot of needed agents as a function of u! (A = 80)

16

14

12

10
5 o,
4 u

0,0 1,0 2,0 3.0 4.0 5,0 6,0

=l —y—C*

Figure 9: A plot of the needed agents against u;!(\ = 80).

period. But we also see that if we compare these plots with the previous plots that pu, is of
greater importance than p;. This is also logical, because 5 out of 9 calls are outgoing. If we
now compare an average service time of 5 minutes with 1 minute during a busy period we see
that this makes a difference of 7 agents. The amount of needed agents again doubles. For an
averagely busy period this makes a difference of 5 agents.

19

The abandonment rate n and vy

To investigate the importance of the rate n we let it vary from 10 to 300 abandonments per
hour, which is equivalent with letting the average patience of customers range from 6 minutes
to 12 secondes. Again we do this for an averagely busy period and a busy period. The results
can be found in Table 1.

n | c(A
10
20
30
40
50
300

w
S
N/
[}
*
—~
>
|
(S}
S
=
[}
—~
>
®©
=)
=
Q)
*
~
>
Il
o
=)
=

| O Ut| Ot Ot Ot

Table 1: Number of agents needed for different values of 7

From the table we can see that in the averagely busy case when 7 is 40 or larger we need
7 agents instead of 6. This means that only when the average patience of customers drops
beneath 1.5 minutes we need to schedule an extra agent, but it may drop to even 12 secondes
without further influencing the number of needed agents. We find a similar result for the
busy case, where the turning point appears to be an average patience of 3 minutes. This tells
us that the abandonment rate 7 is of relatively low importance. This can be easily explained
with our performance targets; The number of calls served within 25 seconds should be bigger
than 95%. This means that almost everyone should get service within 25 seconds. So people
rarely get the chance to abandon the queue, except when they are really impatient.

To investigate the importance of -, the probability that someone is willing to wait in the
queue, we let it vary from 1 to 0.05. Again we do this for an averagely busy period and a
busy period. The results can be found in Table 2. For the averagely busy case we find similar
results as for . Only when + drops beneath 0.9 do we need to schedule an extra agent, but
it may drop to 0.05 without further influencing the number of needed agents. For the busy
case 7 is of slightly bigger importance. In that case there are two turning points, one at 0.9
and one at 0.35. Again these results can be explained with our performance targets. Since
we want an average waiting time of 10 seconds, we need to schedule a lot of agents and make
sure that a queue rarely occurs. Therefore the probability to be put into a queue becomes
very small and customers rarely get the chance to abandon the system. But when A becomes
larger this probability becomes bigger, in which case v becomes of greater importance.

20

ot
=}
=
3
*
—
>
|
ot
=}
=
o
—
>
®
S
=
S
*
—
>
I
®
=}
=

vy c (A
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

=] =

—_
o

—_
o

—_
=]

—_
o

NI R TN TR RN TN RN TES IES RN RS TS R RS

W W W W W W W W W W W WWWwWwwwww
O O O Ot Ot Ot Ot Ot Ot Ot Ov| O O O] Ot Ot Ot| Ot Otf Ot

—_
o

Table 2: Number of agents needed for different values of

21

5 Schedule generation

With all the calculations done, we know for each interval of 30 minutes in the period we are
interested in how many agents should be working at the call center. This does not yet give
us a workforce schedule though, because agents need to work in shifts. Also we need to keep
in mind that the costs of shifts might differ, and we want to keep our costs as low as possible.
In [1] Koole shows that this problem can easily be translated to a MIP problem as follows:

K
min Z CLT)-
k=1
under the following constraints:
K
D k1 AtkTE > St t=1,....T

In < mes, Tm S up, Sp Cl K, n=1,..,N

zr > 0 and integer, k=1,..,K

Let us first look at the first constraint. Here z; is the decision variable that denotes the
number of shifts of type k to be used. The cost of shift k is denoted by c¢;. The parameter a
equals 1 if shift k falls in interval ¢ and 0 otherwise. As said earlier, s; denotes the amount of
agents needed in interval £. So this constraint models that we need at least s; agents working
during each interval .

In the second constraint S,, denotes a subset of shifts and [,, is the minimum combined num-
ber of agents that need to work these shifts (think of contracts). Likewise u; denotes the
maximum combined number of agents that can work these shifts. So this constraint models
that all contracts are followed and that no more than the available number of agents are
scheduled.

The last constraint models that we can only plan a positive integer number of shifts.

This MIP can also be extended in a way such that it also determines which agent works
which shift. This will give it a longer running time but is also necessary if there are extra
constraints like an agent may not work a morning shift after a night shift, which are not
unrealistic. This extension can be done as follows:

K FE
min Z Z CkThe-

k=1e=1

under the following constraints:

,

K E
D k1 Qe QtkThe = St t=1,....T7
E
lnSZkeSn Ze:lxke Sun; Sn C].,,K, n:17...7N

One S Zkesn xk‘e S bn67 Sn C 17 "'7K; n= 17 "'7N; €= 17 "'7E

Tre€{0, 1}, k=1,...,.K;e=1,..,FE,

22

Now the decision variable xp. also depends on the employee and is binary and denotes if
an employee works a certain shift. The rest of the model has not really changed. The only
addition is the third constraint. Here o0, is the minimum number of shifts from S,, that
should be assigned to an employee. Likewise b, denotes the maximum number of shifts from
S, that can be assigned to an employee. So this constraint enables us to model things like
that a morning shift should not be assigned after a night shift. Or that a certain worker can
not work on Fridays.

We can extend this even further to also let the program choose a maximum number of differ-
ent shifts it can assign. This is also a realistic constraint because if employees can be assigned
30 different shifts, confusion about at what time their shift starts might be the result. This
extension results in the following MIP:

K FE
min Z Z CkThe-

k=1 e=1
under the following constraints:
(25:1 ype < A
25:1 Tpe < B yg, k=1,...,.K
Zi(:l 25:1 Atk Tke = St, t=1,...T

E
I, < Z,%Sn Yoe1 The SUp, S Cl, Kin=1,..,N

One < D pes,, The < bne, Sp.cl,..K;n=1,..,.N;e=1,...FE
yre{0, 1}, k=1,...K
Tre€{0, 1}, k=1,...K;e=1,...,.FE

Here y; now is the decision variable which is 1 if shift k£ can be assigned and 0 otherwise.
The first constraint then models that a maximum of A different shifts may be assigned to
the employees. The second constraint models that indeed only shifts from this selection are
assigned to the employees.

A problem like this can be solved by a software package like AIMMS. We now have all

the ingredients to actually generate a workforce schedule. We will discuss some results in the
following section.

23

6 Scheduling results

In this section we will generate a workforce schedule for a typical workday of our call center.
The values of the inbound call rate during such a day can be found in Appendix A as is
mentioned in chapter 4. In chapter 4 we also determined the corresponding values for s;.
Before we can now use the MIP we just discussed, we first need to choose which shifts we
have and which shifts can be assigned to the same agent. We will work with shifts of three
different lengths: 7, 7.5 and 8 hours. These shifts can start every 30 minutes, which gives
us a total of 144 different shifts. We assume that out of these 144 shifts a maximum of 6
different shifts may be assigned to the agents. This means that we will need to use the last
MIP that was discussed in the previous chapter. Furthermore we assume that the call center
has 30 employees and they are paid by the hour, so the shift of 8 hours costs % times as much
as the shift of 7 hours.

If we now look again at the last MIP discussed in the previous chapter, the just defined
scheduling problem translates itself in the following way. Since we have a total of 144 differ-
ent shifts and 30 employees we have K = 144 and E = 30. The maximum number of different
shifts that may be assigned is 6, so A = 6. Furthermore because employees are paid by the
hour, we can define ¢; to be 7, 7.5 or 8 depending on the length of shift k. Also like discussed
in the last chapter the parameter a;, equals 1 if shift £ falls in interval ¢ and 0 otherwise.
So for example if shift k is of length 7 hours and starts at 6:00am we have that a; = 1 for
13 <t < 27 and 0 otherwise. Since we do not have any contractual agreements concerning the
number of agents that can or must work certain shifts, we do not need the fourth constraint.
We could however demand that no agent does more than 1 shift on a single day. The fifth
constraint models this if we define N =1, S1 = {1, ..., 144}, 01 = 0 and by = 1.

If we run our MIP with these shifts and constraints it outputs a schedule within a few minutes.
The shifts that are assigned and how many times they are assigned can be found in Table 3.

Shift Shifttime #hours | #planned
1 05:00-12:00 7 4
2 08:00-15:00 7 4
3 12:00-19:30 7,5 3
4 15:00-22:00 7 4
5 16:00-23:00 7 1
6 22:00-05:00 7 3

Table 3: Assigned shifts (Call blending policy)

We see that the schedule needs 19 different agents, assuming that every agent can only work
one shift per day. The total amount of working hours that are assigned is 134,5, this is simply
the total number of scheduled hours of work. This can be compared with the total amount of
working hours we actually need to reach our performance targets, by this we mean 3 s;-0.5
hours, which is 122. This means we have a gap of 10.2%. In Figure 10 the total number of
scheduled agents and the number of needed agents are plotted for every half an hour.

We can again compare the call blending policy with the alternative policy. The shifts that
are assigned in the optimal schedule when using the alternative policy can be found in Table
4.

Notice that the chosen shifts are almost identical to the shifts that are used when making a
schedule for the call blending policy. This schedule 25 different agents, which is 6 more than

24

Weekday Schedule (Call blending)

Agents
-

1 3 5 7 5 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Timeslots

Needed m Planned

Figure 10: The number of scheduled and needed agents (Call blending policy)

Shift Shifttime #hours | #planned
1 05:00-12:00 7 5

2 07:30-15:00 7,5 5
3 12:00-19:30 7,5 4
4 15:00-22:00 7 6
5 16:00-23:00 7 1
6 22:00-05:00 7 4

Table 4: Assigned shifts (Alternative policy)

when using the call blending policy. The total amount of working hours that are assigned is
179,5 and this 33% more than the schedule with call blending. This can again be compared
with the total amount of working hours we actually need, which in this case is 158. This
means we now have a gap of 13.6%. In Figure 11 the total number of scheduled agents and
the number of needed agents are plotted for every half an hour.

25

Weekday Schedule (No call blending)

e
[=}

=

o
|
|

Agents

[= T N -

1 3 5 7 95 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Timeslots

Needed m Planned

Figure 11: The number of scheduled and needed agents (Alternative policy)

26

7 Conclusion

The goal of this project was to make a workforce schedule for a typical working day of a call
center. This had to be done as cheap as possible while still meeting the following performance
targets:

- The percentage of abandoned calls should be smaller than 1.5%.
- The number of calls served within 25 seconds should be bigger than 95%.

- The average speed of answer should be smaller than 10 seconds.

An important aspect of the call center was that besides having to serve incoming calls, also
outbound calls had to be made. We have compared two different policies for dealing with
these outbound calls. The first policy assumes that whenever an outbound call has to be
made, that this is done immediately. The second policy is the so called call blending policy,
where an outbound call is made by an agent only when a predetermined number of agents is
idle. Both policies are modeled by an extension of the widely used M /M /c queueing model.
When comparing these two policies for different values of the inbound call rate A, the call
blending policy clearly is cheaper than the alternative policy. For A = 100 the call blending
policy needs 9 agents, while the alternative policy needs 12.

A sensitivity analysis of the model that includes call blending shows that the service rate of
outbound calls has the most influence on the number of needed agents. This influence be-
comes bigger when A increases. The average patience of customers as well as the percentage
of people that are willing to wait in the queue are both of relatively low importance.
Numerical results show us that the performance target dealing with the average speed of
answer is easily met compared to the other two performance targets which seem to be of
equal importance. However when using the call blending policy the requirement that enough
outbound calls are made appears to be the most difficult to meet.

The actual workforce schedules are made by solving a mixed integer program. If we work
with shifts of three different lengths: 7, 7.5 and 8 hours which can start every 30 minutes
and we assume that out of these shifts a maximum of 6 different shifts may be assigned to
the agents, we find a day schedule that schedules a total of 134,5 working hours when call
blending is used. The total amount of needed working hours is 122. This means there is a
gap of 10,2%. When using the alternative policy a total amount of 179,5 hours are scheduled,
while 158 hours are needed. This is a gap of 13,6%. When comparing the two polices the
alternative policy needs to schedule 33% more hours than the call blending policy. We can
conclude that call blending is a very efficient way to make cheap schedules for call centers
that have to deal with outgoing calls.

27

Literature

1

Koole, G. 2007. Call Center Mathematics: A scientific method for understanding and
improving contact centers. http://www.cs.vu.nl/ koole/ccmath/book.pdf

Deslauriers, A., L’Ecuyer, P., Pichitlamken, J., Ingolfsson, A. and Avramidis, A. N.
2007. Markov chain models of a telephone call center with call blending.
http://apps.business.ualberta.ca/aingolfsson/documents/PDF /ctmcl.pdf

Koole, G. and Bhulai, S. 2003. A queueing model for call blending in call centers. IEEE
Transactions on Automatic Control 48:1434-1438.

Riordan, J. 1962. Stochastic Service Systems (SIAM Series in Applied Mathematics).
Wiley, New York.

Adan, I. and Resing, J. 2002. Queueing Theory. Lecture notes, Eindhoven University
of Technology. http://www.win.tue.nl/ iadan/queueing.pdf

28

A [Table of incoming call rates during the week]

t A t A
1 |13 25| 63
2 |12 || 26 | 54
3 | 11 || 27 | 57
4 | 10 || 28 | 60
5 9 29 | 67
6 9 30 | 70
7 9 31 | 71
8 9 32 | 72
9 |10 || 33 | T4
10 | 11 || 34 | 71
11 | 13 || 35 | 68
12 | 16 || 36 | 63
13 | 19 || 37 | 59
14 | 21 || 38 | 54
15 | 24 || 39 | 50
16 | 30 || 40 | 44
17 | 49 || 41 | 38
18 | 59 || 42 | 34
19 | 64 || 43 | 31
20 | 68 || 44 | 27
21 169 || 45 | 24
22 | 70 || 46 | 20
23 | 71 || 47 | 17
24 | 74 || 48 | 16

29

[Table of number of needed agents and threshold]

B

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25

30

C [Numerical results of determining ¢ and |

Inbound call rate A = 40

Percentage of abandoned calls

c\c" 0 1 2 3
2 22,02

3 7,07 | 10,00

4 1,92 2,46 | 5,33

5 0,45 | 0,52 | 1,05 | 3,27

Effective service rate u
c\c* 0 1 2 3
2 26,85
3 26,46 | 30,00
4 26,34 | 29,68 | 32,33
5 26,31 | 29,61 | 32,15 | 33,90

Average speed of answer(sec)
c\c* 0 1 2 3
2 57,40
3 16,00 | 21,71

4 | 3,98 | 4,90 | 10,37
5 | 0,88 | 0,97 | 1,91 | 5,90

Percentage served within 25 seconds
c\c* 0 1 2 3

2 47,09

3 17,69 | 26,03

4 | 521 | 6,77 | 14,75

5 | 1,25 | 1,43 | 2,85 8,79

31

Inbound call rate A = 80

Percentage of abandoned calls
c\c* 0 1 2 3 4 5 6
2 45,63
3 25,75 | 27,26
4 12,95 | 13,36 | 15,95
5 5,84 5,84 | 6,66 | 9,71
6 2,38 | 2,30 2,49 | 3,45 | 6,32
7 0,88 | 0,82 | 0,84 | 1,10 | 1,93 | 4,39
8 0,30 | 0,26 | 0,26 | 0,32 | 0,53 | 1,17 | 3,23
Effective service rate u
c\c* 0 1 2 3 4 5 6
2 24,61
3 24,47 | 25,89
4 24,42 | 25,64 | 27,58
5 24,39 | 25,562 | 27,30 | 29,28
6 24,37 | 25,47 | 27,18 | 29,04 | 30,76
7 24,37 | 25,45 | 27,14 | 28,95 | 30,57 | 31,96
8 24,37 | 25,44 | 27,12 | 28,92 | 30,51 | 31,82 | 32,92
Average speed of answer(sec)
c\c" 0 1 2 3 4 5 6
2 137,12
3 65,36 | 67,67
4 29,49 | 29,88 | 34,78
5 12,30 | 12,12 | 13,52 | 19,25
6 4,72 | 4,49 | 4,77 | 6,47 | 11,65
7 1,66 1,52 | 1,53 | 1,97 | 3,40 | 7,63
8 0,54 | 0,47 | 0,45 | 0,55 | 0,90 | 1,96 | 5,33
Percentage served within 25 seconds
c\c¢* 0 1 2 3 4 5 6
2 81,31
3 56,14 | 61,13
4 32,31 | 33,99 | 41,71
5 15,76 | 15,95 | 18,45 | 27,14
6 6,64 | 644 | 6,99 | 9,64 | 17,50
7 | 2,46 | 2,28 | 2,31 | 2,97 | 5,10 | 11,38
8 0,81 | o,71 | 0,67 | 0,81 | 1,31 | 2,79 | 7,49

32

Inbound call rate A =80 and p; = p, = pu = 32

Percentage of abandoned calls
c\c¢* 0 1 2 3 4
2 36,30
3 16,97 | 21,13
4 6,94 | 8,74 | 13,17
5 2,53 | 3,20 | 4,86 | 8,82
6 0,83 | 1,05 1,60 | 2,92 | 6,28
Average speed of answer(sec)
c\c" 0 1 2 3 4
2 98,94
3 39,40 | 49,07
4 14,57 | 18,34 | 27,63
5 | 4,94 | 6,24 | 9,49 | 17,20
6 1,53 | 1,94 | 2,95 | 5,39 | 11,57

Percentage served within 25 seconds ‘
c\c* 0 1 2 3

2 | 72,43

3 | 41,35 | 51,51

4 18,80 | 23,68 | 35,65

5 7,11 8,99 | 13,65 | 24,75

6 | 2,30 | 2,91 | 4,44 | 8,09 | 17,38

33

D

[Mathematica script]

n=20;
w=90,/100;
wi=24;
w0 = 40;
max = 30;
For[j=1, 3 =100, j++, lambda[j] = j:]
For[m=1, mz 100, m++,
check = 0;
oc=2;
A = lambda[m]
'Hhile[c‘.hec‘.k =0,
For[c‘.star =0, catar < c -1, catar++,
Clear[u]:
Table[s[n] =0, {n, 0, catar}];

Gleatar +1] = 1;

It’[cstar<c‘.—2.Table[B[n] = . {n,c‘.sta‘r+2.c‘.—1}]]:

{catar+ 1)t [A]'—'i:’“’-“'l]
ni

I
(catar + 1) ¢ [}_] o- [catarsl) Lo A

Table[s[n] = . In, c, max}];

= 71 kel CH+ET

Table[pi[n] =0, {n, 0, catarl]:

mas -1
pifcatar + 1] =[Z B[n]] H

nesgtarel

Table[pi[n] = &[n] «xpi[catar+1];, {n, catar+ 2, max}];
=1 maw =1
Ra=a(l-7y) [1- Z pi[n] +q2npi[n]-qc 1- Z pi[n]|:
NefEtarel NmZ NetEtarel
=1 =1
Ba=cu|l- Z. pi[n] | + Z. nppiln]:
Nefatarel Netatarel
Fo =Ra- (A-Ra);
(. N Ro
pla = - —
- Ea
1- 1
B[z] =p“f] yroplel ot
ui o H
aane o [(M (22+5)) @-Expl-nen®
W[t] =Expl-cut]w Z pi[n+c‘.]wz ! —
n=0 k=0 £
dW[t] =8 (1-W[t]):
w4+ i
p=p /. FindRoot[h[u], {u, T}. WorkingPrecision + 60 [[1]]
4 5 -1 15 2 25 5
Il'[;.!:— [+—] &&Ra « &&[[FW[t]d]t]tSEDD] {1n&&w[—]{ —— && check = 0,
9pi 90 1000 o 3600 100
check++;

ACENTSthias = c;
THRESHOLDthis = catar;
c++]:
AGENTS[m] = AGENTSthia;
THRESHOLD[m] = TRESHOLDthia;

34

	Contents
	1 Introduction
	2 Problem Description
	3 The queueing model
	4 Results of the queueing model
	5 Schedule generation
	6 Scheduling results
	7 Conclusion
	Literature
	A [Table of incoming call rates during the week]
	B [Table of number of needed agents and threshold]
	C [Numerical results of determining c and c*]
	D [Mathematica script]

