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Abstract

The study of waves on a water surface is involved with a great number of different
models. In this report an overview is provided for the major ones of these equations.
The most general equation will be derived by means of the Euler equation. The essential
parameters are identified and these will be used to qualify the common assumptions of
small waves and shallow water.
For small waves the non-dispersive wave equation and the linear dispersive equations
will be derived by means of a Dirichlet-Neumann operator. This operator will be used to
supply the exact solution of the linear system for small waves.
For shallow water the Green-Naghdi equations are derived and will be simplified further
to the standard shallow water equations.
Lastly, some alternative methods and tools which do not fit in the framework of this report
are discussed. These are unidirectionalization (leading to the Korteweg-de Vries equa-
tion) the tidal wave approximation and Boussinesq-type approximations. Also, an intro-
duction to Hamiltonian theory on water waves is given. The report is concluded with an
overview of the discussed models and with some remarks.

Cover ilustration:

The graph of a soliton traveling to right. This is a solution for the Boussinesq equations (Section 5.4)
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T. NIJHUIS CATEGORIZING MODELS FOR WATER WAVES

1 Introduction

1.1 Problem description and goal

We are concerned with water flow in a two-dimensional basin. The width of the basin stretches
to infinity and the height can be any number. The lower bed of the basin is level and flat1.
Furthermore, there are no external sources of flow. The restoring force is provided by gravity
alone.
The upper boundary will be the wave profile itself. Thus we are dealing with a varying bound-
ary. We are mostly concerned with the wave profile, the actual water flow will be eliminated
from the problem wherever possible.
The goal of this report is to provide an overview of the major equations that can be used to
model the wave profile under certain circumstances. It is not in our interest to actually solve
or numerically implement the equations.

1.1.1 Mathematical description

The surface profile of the water can be modelled by a single function η(x, t ) to describe the
difference between the average and the actual water height. Although the basin does stretch
to infinity on both sides (as to not having to be concerned with boundary effects), we do
assume periodicity on x. This is quite a natural assumption for waves.
The basin will be called Ω(t ) and is the set of points occupied by water, so Ω(t ) = {(x, z)|0 <
x < 2πL,−h0 < z < η(x, t )} with h0 the average water depth and 2πL the spatial period. The
water itself will be modelled by a vector field v(x, z, t ) which describes the direction and speed
of the particles at any point (x, z) ∈Ω. Figure 1 shows a typical description the situation.

x

z

z=-h0

z=0
ΗHx,tL
WHtL

Figure 1: Graphical representation of the problem description.

1Most authors also investigate a three-dimensional basin with a bed which is not necessarily flat.
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CATEGORIZING MODELS FOR WATER WAVES T. NIJHUIS

1.1.2 Goal

There are three main reasons to manipulate a system of equations. One, the original system
may be too hard to implement numerically. For example because of an irregular domain or
unknown scale effects. Two, a similar but easier model might provide some theoretical insight
which is impossible to notice from the original system. Three, the original problem might be
too much involved with information we do not care about. In this report, for example, we are
interested in the surface profile. Therefore, we try to reduce additional information. For all
reasons, a suitable model would be an evolution equation of the form:(

∂t v
∂tη

)
(x, t ) =F

(
v
η

)
(x, t ) (1)

In this description the heighth variable z would be eliminated and thus the only spatial vari-
able would be x. Such models make no explicit use of the water flow in the interior of Ω and
only require and yield information about the surface.
Mind that not only numerical calculations or simulations are favored, equations in some
other form can also provide theoretical insights on the problem. An example of such an in-
sight is dispersion (see Section 3.3).
Apart from showing how to derive some of the models, in this report we try to find unification
between various models. The ultimate goal would be to provide some procedure of generat-
ing models that are valid in various parameter regions.

2 TU/e
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2 Deriving the equations of motion

The equations of motion for water in a domain with a free upper boundary are derived in
almost all introductory literature [3, 9, 12]. In this report, we will derive them from the Euler
equation.

2.1 Assumptions on flow

To derive the governing equations four main assumptions are used. The flow, described by a
vector field v(x, z) is

• irrotational (∇×v = 0),

• incompressible (∇·v = 0) and

• inviscid.

The last one, no viscosity, means that the flow is not subject to shear stress. Lastly, we also
assume that there is no surface tension. That means that no additional forces due to the
irregularity of the boundary occur. These assumptions are reasonable since the viscous effects
of water are very small and surface tension has no influence on the scale we are concerned
with.
The first assumption, ∇×v = 0, makes v a so called potential flow2. This means that the vector
field is the gradient of a certain scalar function: v =∇φ= (∂xφ,∂zφ)T.
We can now always use φ instead of v, then no more vector equations will be encountered.
Also, the desired system (1) can be simplified to:(

∂tφ

∂tη

)
(x, t ) =F

(
φ

η

)
(x, t ) (2)

2.2 The interior PDE

Water flow is described by the incompressibility condition. In this, substitute the potential:

div(v) = 0

∇·v = 0

∇· (∇φ) = 0

∇2φ= 0 (3)

This is the well-known Laplace equation.

2In a simply connected domain, which is the case forΩ

TU/e 3
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2.3 Boundary conditions

2.3.1 Lower boundary

On the bottom z = −h0 we have an impermeable boundary. This means that the flow in the
normal direction n is zero

v ·n = 0

The bottom is level and flat, so v ·n = v · (0,−1)T =−vz . Further, we use the potential:

vz = 0

∂zφ= 0 (4)

2.3.2 Upper boundary

On top, we have two distinct boundary conditions. First, the kinematic condition which states
that the normal particle velocity on the surface equals the normal velocity of the surface it-
self. This is really just a non-permeable boundary condition which includes the fact that the
boundary is moving. Second, we have the pressure condition which states that the water pres-
sure equals the atmospheric pressure on the surface.
For the kinematic condition, we start by finding the vector normal to the surface via the gra-
dient of the contour which describes the surface (Figure 2)

z-ΗHxL=0
W z-ΗHxL<0

z-ΗHxL>0

n

Figure 2: The normal of the boundary is found via the gradient of z −η(z).

n · (4x;4z)T = 0

n = ∇(z −η(z))

|∇(z −η(z))|
n = 1√

1+ (∂xη)2

(−∂xη

1

)

4 TU/e
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Now we use n to equal the normal change in the surface profile to the normal particle velocity.
Observe that the velocity of the surface is given by (0;∂tη)

(0;∂tη)T ·n = vT ·n(
(0;∂tη)−vT

) ·n = 0

(−∂xφ;∂tη−∂zφ) · (−∂xη;1)T = 0

∂tη+∂xφ∂xη−∂zφ= 0 (5)

For the pressure condition, we make use of the Euler equation. This is the main tool when
modeling inviscid, incompressible flows. The vector equation as given below represents con-
servation of momentum in differential form [9]. The external force, i.e. gravity, is uniform and
downwards: F =−ρg eZ

ρ (∂t v+ (v ·∇)v) =−∇p +F

ρ
(
∂t v+ 1

2∇(|v|2)+v× (∇×v)
)=−∇p −ρg ez

∂t∇φ+ 1
2∇(|∇φ|2) =− 1

ρ
∇p − g ez

∇∂tφ+ 1
2∇

[
(∂xφ)2 + (∂zφ)2]+ g ez =− 1

ρ
∇p

∇[
∂tφ+ 1

2

[
(∂xφ)2 + (∂zφ)2]+ g z

]=∇
[
− 1
ρp

]
In the last equation we use that the density is constant, which is the case for incompressible
flows. On the surface the fluid pressure equals the atmospheric pressure. Equality of the
gradients implies that the functions differ only a constant C (which may depend on time).

∂tφ+ 1
2 (∂xφ

2 +∂zφ
2)+ gη=− 1

ρ
p0 +C (t ) = 0 (6)

In the last step, the constant of integration C (t ) is chosen to equal 1
ρp0. This freedom is avail-

able since there are no further conditions on the pressure. Conceptually, this freedom implies
that the behavior of the fluid is independent of both the atmospheric pressure p0 and the
density ρ.
Equation (6), known as the Bernoulli equation, gives the second upper boundary condition of
the problem.

2.4 Combining the equations of motion

Combining the equations (3), (4), (5) and (6) gives:

∂xxφ+∂zzφ= 0 inΩ(t ) (7)

∂zφ= 0 on z =−h0 (8)

∂tη+∂xη∂xφ−∂zφ= 0 on z = η(x, t ) (9)

∂tφ+ 1
2

[
(∂xφ)2 + (∂zφ)2]+ gη= 0 on z = η(x, t ) (10)

TU/e 5
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This is a partial differential equation with non-linear boundary conditions on a free boundary.
No solutions in closed form can be given for any general initial conditions. After defining the
Dirichlet-Neumann operator in Section 3.2.1, we will try to recast the system as the desired
evolution system (2) as much as possible.

2.5 Dimension analysis, scaling and essential parameters

2.5.1 Dimension analysis

Equations (7) to (10) involve quantities and variables with a certain dimension (lenght in m,
time in s and potential speed in m2s−1). We start with making the problem independent of
these dimensions.
First, we substitute dimensionless variants of the variables and quantities. These are indi-
cated by the hats:

x = Lx̂ t = T t̂
z = h0ẑ φ=Λφ̂
η= aη Ω= h0Ω̂

h0

L
a

Figure 3: The three typical scales in the problem.

With h0 the average water depth in meters, a the typical difference between the actual and
the average water level and L is some typical horizontal length scale, given by the periodicity
condition (see Figure 3). T is some time and Λ is some potential speed. These are to be
specified later. Substituting these in (7) to (10).

Λ
L2∂x̂ x̂φ̂+ Λ

h0
2∂ẑ ẑφ̂= 0 in Ω̂

Λ
h0

(∂ẑφ̂) = 0 on h0ẑ =−h0

a
T ∂t̂ η̂+ aΛ

L2 ∂x̂ η̂∂x̂φ̂− Λ
h0
∂ẑφ̂= 0 on h0ẑ = aη̂

Λ
T ∂t̂ φ̂+ 1

2
Λ2

L2 (∂x̂φ̂)2 + 1
2
Λ2

h0
2 (∂ẑφ̂)2 + g aη̂= 0 on h0ẑ = aη̂

6 TU/e
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These equations are obtained with nothing but substituting. These can be cleaned up by
dividing. Also, the hats are dropped which means that henceforth every variable and quantity
is dimensionless:

h0
2

L2 ∂xxφ+∂zzφ= 0 inΩ (11)

∂zφ= 0 on z =−1 (12)
a
T ∂tη+ aΛ

L2 ∂xη∂xφ− Λ
h0
∂zφ= 0 on z = a

h0
η (13)

Λ
T ∂tφ+ 1

2
Λ2

L2 (∂xφ)2 + 1
2
Λ2

h0
2 (∂zφ)2 + g aη= 0 on z = a

h0
η (14)

2.5.2 Balancing and scaling

Scaling is used to simplify the order of magnitude of various quantities in a problem. It then
provides a natural way of comparing, or balancing, independent quantities with one another.
In the problem are various length scales available, they are pointed out in Figure 3. These will
be used in a balancing argument to defineΛ and T .
The balancing is started on (14). This is because it is an equation with all the scales present.
Equation (14):

Λ
T ∂tφ+ 1

2
Λ2

L2 (∂xφ)2 + 1
2
Λ2

h0
2 (∂zφ)2 + g aη= 0

There are four quantities balancing each other to zero. We can force one of them to be O (1)
by dividing by its factor. Since the wave profile is going to be studied, this factor is chosen to
be the one in front of η. So dividing by g a gives:

Λ
T g a∂tφ+ 1

2
Λ2

L2g a
(∂xφ)2 + 1

2
Λ2

h0
2g a

(∂zφ)2 +η= 0

Now, there is still some freedom in chosing Λ and T . We can use this to balance one of the
other three terms with η. We want to consider timescales in which the solution changes not
too slow nor too rapid, that is ∂t =O (1). Therefore we choose the factor of ∂tφ to be 1. This is
done by setting T = g a

Λ :

∂tφ+ 1
2
Λ2

L2g a
(∂xφ)2 + 1

2
Λ2

h0
2g a

(∂zφ)2 +η= 0

Observe that the two terms in the center are actually coupled because they both originate
from |∇φ|2. To not override the O (1)-terms we just defined, force these terms to be small, say
O (γ) ¿ 1.
Thus:

γ= Λ2

L2g a

TU/e 7



CATEGORIZING MODELS FOR WATER WAVES T. NIJHUIS

And the full set looks like:

h0
2

L2 ∂xxφ+∂zzφ= 0

∂zφ= 0

∂tη+γ∂xη∂xφ−γ L2

h0
2∂zφ= 0

∂tφ+ 1
2γ(∂xφ)2 + 1

2γ
L2

h0
2 (∂zφ)2 +η= 0

The parameter γ is yet to be defined. This is done in the next section.

2.5.3 Essential parameters and dynamic scaling

In the previous section, note that the fraction h0
L pops up. This is a ratio between two of the

inherent length scales and is therefore known as an essential parameter of the problem. We
shall define: δ := h0

L . There are three inherent length scales (a, h0 ,L), so we would at least
need one more essential ratio to account for a. Define ε := a

h0
.

Choosing the ratios for the essential parameters is arbitrary from a strict mathematical view-
point. However, the choice as given has some physical meaning: ε is the ratio between the
surface variation and the water depth, δ is the ratio between the water depth and the wave
length. Thus ε and δ will be small for small waves and shallow water respectively. These are
the two main regions we will be considering (in Section 3 and Section 4)
Although it has no parameter assigned to it, the ratio a

L has physical meaning as well. It is a
measure for the steepness of the waves. This steepness will be adressed for the wave equation
in Section 3.2.3 and for the Boussinesq approximation in Section 5.4.
The small parameter γ turns out to be a mere placeholder. We can pick it equal to either ε
or δ for small waves and shallow water respectively. But since we want to consider as many
models as possible from one general system, we do not want to rescale halfway through. This
problem is solved by a method from [10] which we shall call dynamic scaling. Set:

z = νž

γ= ε
ν

with ν= tanh(δ)
δ

Heuristically, the factor ν supplies a smooth transition between scaling z by L for small waves
and by h0 for shallow water.
Finally, the fundamental dimensionless, scaled problem looks like this:

ν2δ2∂xxφ+∂zzφ= 0 inΩ (15)

∂zφ= 0 on z =− 1
ν

(16)

∂tη+ ε
ν∂xη∂xφ− 1

δ2ν2∂zφ= 0 on z = ε
νη (17)

∂tφ+ 1
2

[
ε
ν

(∂xφ)2 + ε
δ2ν3 (∂zφ)2

]
+η= 0 on z = ε

ν
η (18)

8 TU/e
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This system will form the basis for all approximations.
With these choices, we can make the definitions ofΛ and T explicit:

Λ= aL

√
g

h0ν

T = L√
g h0ν

Note:

TU/e 9
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3 Small waves

In this section the domain of small waves is analyzed. More accurately, the ratio between
the typical elevation and the water depth is assumed to be small. In terms of the essential
parameters, this means that ε¿ 1. An example of waves in this domain can be found in the
middle of oceans. Here the wave height is in the order of meters and the water depth is in the
order of kilometers (thus ε∼ 10−3). For now δ is kept a constant of order one.
In the conclusion of this section, it will be clear that all regular models considering small
waves are linear. Hence small waves also go by the name of linear waves.

3.1 Linearization

Fourier analysis is very suitable for linear problems. To make use of this it is convenient to
work in a rectangular domain. This is obtained by a domain transform before the actual lin-
earization starts. For using Fourier series, we will also need the periodicity on x. The end-
points x = 0 and x = 2π are identified.

3.1.1 Domain transform

The domain Ω is a rectangle apart from the irregular upper boundary z = η. In this section it
is transformed to a rectangle Ω̄. This is done by a suitable transformation on (x, z). Note that
z ∈ (− 1

ν , ενη). Choose z̄ =−εη−νz
εη+1 then z̄ ∈ (−1,0). No transformation is applied to x. Isolating

z gives the following transformation:(
x
z

)
=

(
1 0

0 εη+1
ν

)(
x̄
z̄

)
+

(
0
ε
νη

)
And inverting the Jacobian gives: (in operator notation)(

∂x

∂z

)
=

(
1 0

−ε ν∂x̄η
εη+1

ν
εη+1

)(
∂x̄

∂z̄

)

So ∂z = ν
εη+1

(
1−ε∂x̄η

)
∂z̄ and ∂zz =

(
ν

εη+1

)2 (
1−ε∂x̄η

)2
∂z̄ z̄

The effect of the transformation applied toΩ is shown in Figure 4.
Substitute this in (15) to (18):

ν2δ2∂x̄ x̄φ+ ν2

(εη+1)2

(
1−ε∂xη

)2
∂z̄ z̄φ= 0 in Ω̄

ν
εη+1

(
1−ε∂xη

)
∂z̄φ= 0 on z̄ =−1

∂tη+ ε
ν
∂x̄η∂x̄φ− ν

εη+1

(
1−ε∂xη

) 1
δ2ν2∂z̄φ= 0 on z̄ = 0

∂tφ+ 1
2

[
ε
ν

(∂x̄φ)2 + ε
δ2ν3

ν2

(εη+1)2

(
1−ε∂xη

)2 (∂z̄φ)2
]
+η= 0 on z̄ = 0

10 TU/e
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W

Ε
Η

+
1�

Ν W

1

Figure 4: Ω and Ω̄with some contours for z̄

Rewrite and drop the bars:

(εη+1)2δ2∂xxφ+ (
1−ε∂xη

)2
∂zzφ= 0 inΩ (19)

∂zφ= 0 on z =−1 (20)

(εη+1)∂tη+ ε
ν

(εη+1)∂xη∂xφ− 1
δ2ν

(
1−ε∂xη

)
∂zφ= 0 on z = 0 (21)

(εη+1)2∂tφ+ 1
2

[
ε
ν

(εη+1)2(∂xφ)2 + ε
δ2ν

(
1−ε∂xη

)2 (∂zφ)2
]
+ (εη+1)2η= 0 on z = 0 (22)

Now the new domainΩ is rectangular and has no free boundaries. This simplification goes at
the expense of additional non-linear terms. However, note that the nonlinearities are O (ε). It
can be expected that these vanish for the small wave approximation ε¿ 1.

3.1.2 Expansion in ε

For the most fundamental equations (7) to (9) it can immediately be seen thatφ0 ≡ 0, η0 ≡ 0 is
a solution. We will expand in a neighbourhood of this solution by using the small parameter
ε:

φ=φ0 +εφ1 +ε2φ2 + . . . = εφ1 +O (ε2)

η= η0 +εη1 +ε2η2 + . . . = εη1 +O (ε2)

After substituting this in (19) to (22), the terms of O (ε) are :

δ2∂xxφ1 +∂zzφ1

∂zφ1

∂tη1 − 1
δ2ν

∂zφ1

∂tφ1 +η1

Ignore higher order terms and drop the indices. We obtain:

δ2∂xxφ+∂zzφ= 0 inΩ (23)

∂zφ= 0 on z =−1 (24)

∂tη− 1
δ2ν

∂zφ= 0 on z = 0 (25)

∂tφ+η= 0 on z = 0 (26)

TU/e 11
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This system lies at the base of the first order small-wave approximations. It is linear and is
defined on a rectangle. Therefore it can be solved by a Fourier technique.

3.2 The Dirichlet-Neumann operator

A useful tool when we are only interested in the behavior at the boundaries of PDE’s is the so
called Dirichlet-Neumann operator (DN operator). Before we consider its approximation via
the linearized system, a definition is given.

3.2.1 General definition and properties

Given the stationary version of (15) to (18) with a Dirichlet boundary condition on the surface.

ν2δ2∂xφ+∂zφ= 0 for − 1
ν
< z < ε

ν
η

φ=ψ for z = ε
νη

∂zφ= 0 for z =− 1
ν

Then the Dirichlet-Neumann operator A is an operator defined on the surface such that:

Aψ= ∂nφ|z= ε
ν
η

Where φ solves the given PDE.

A is a global operator which means that it cannot be calculated in the restriction of any arbi-
trary interval (x0, x0 +d).
To stress that A acts on the boundary we will keep using the symbol ψ(x) = φ(x, z)|z= ε

ν
η

to

indicate the surface potential.
Note: Heuristically the operator A transforms Dirichlet conditions to Neumann conditions.

3.2.2 The DN operator on small waves

In this linear case we solve the system for any ψ:

δ2∂xxφ+∂zzφ= 0 inΩ (27)

φ=ψ in z = 0 (28)

∂zφ= 0 in z =−1 (29)
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As noted, Fourier techniques are very suitable for this problem. We substitute the common
ansatz. (Summations are over k ∈Z):

φ(x, z) =∑
φ̂k (z)e i kx

⇒
{
∂xxφ=−∑

k2φ̂k e i kx

∂zzφ=∑
φ̂′′

k e i kx

ψ(x) =∑
ψ̂k e i kx

Then, for φ̂k holds:

−k2δ2φ̂k + φ̂′′
k = 0

φ̂k (0) = ψ̂k

φ̂′
k (−1) = 0

Note that φ̂k are functions of z and ψ̂k are just numbers. The first equation is a second order
ODE which is solved by.

k = 0 : φ̂0(z) =C 1
0 z +C 2

0

k 6= 0 : φ̂k (z) =C 1
k ekδz +C 2

k e−kδz

Including the boundary conditions:

φ̂0(0) =C 2
0 = ψ̂0

φ̂′
0(−1) =C 1

0 = 0

φ̂k (0) = (C 1
k +C 2

k ) = ψ̂k

φ̂′
k (−1) = kδ(C 1

k e−kδ−C 2
k ekδ) = 0

Which gives:

C 1
0 = 0 and C 2

0 = ψ̂0

C 1
k = ekδ

ekδ+e−kδ
ψ̂k and C 2

k = e−kδ

ekδ+e−kδ
ψ̂k

So:

φ̂0(z) ≡ ψ̂0

φ̂k (z) = ekδ(z+1) +e−kδ(z+1)

ekδ+e−kδ
ψ̂k = cosh(kδ(z +1))

cosh(kδ)
ψ̂k

Because of the rectangular domain, the surface normal derivative is found to be only ∂z which
makes the decoupling of z and x very convenient. Thus the Fourier symbol Âk of the DN
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operator is found to be.

Aψ=∑
Âkψ̂k e i kx

= ∂nφ|z=0 = ∂zφ|z=0∑
Âkψ̂k e i kx =

[
∂z

∑
φ̂k e i kx

]
z=0

=
[
∂z

(∑ cosh(kδ(z +1))

cosh(kδ)
ψ̂k e i kx + ψ̂0

)]
z=0

=∑ kδsinh(kδ)

cosh(kδ)
ψ̂k e i kx (30)

Note: The constant term ψ̂0 plays no role. That means that A (ψ+ c) = Aψ for any constant c. This is

not surprising due to the fact that ψ is actually a potential.

The Fourier symbol of the DN operator follows from (30).

Âk = kδ tanh(kδ) (31)

Operator A now contains all information from the interior of Ω we need. Furthermore, it
takes functions on the boundary as an argument and it yields functions on the boundary.
This is a huge advantage since we can replace every occurence of ∂zφ on z = ε

ν
η by Aψ. For

the first term we would still need z whereas in the second this variable is eliminated. This
reduction goes at the expense of explicit information about the flow in the interior of Ω, but
since we are studying the surface we are not concerned with this.
Making use of this for the linearized system (23) to (26)

∂tη= 1
δ2ν

Aψ for x ∈ (0,2π) (32)

∂tψ=−η for x ∈ (0,2π) (33)

As announced, the dependence on z has completely vanished. Including any more of the
four original equations would be redundant since any information they carry is included in
A . Finally, we have arrived at the desired evolution equation (2).
Since we are especially interested in the wave profile η, it would make sense to eliminate ψ.
This is done by differentiating (32) with respect to t and substituting (33):

∂t tη=− 1
δ2ν

A η (34)

3.2.3 The wave equation

A natural first approach for modelling water waves would be to consider the wave equation.
This model actually forms the base of equation (34) and can be obtained by expanding the
Fourier coefficients of A in a Taylor series. Although δ was initially kept O (1), we will now
investigate for δ¿ 1. This means that the wave length is much larger than the water depth,
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thus δk ¿ 1. Using the Taylor expansion for the symbol.

Âk = kδ tanh(kδ) = (δk)2 + 1
3 (δk)4 + 2

15 (δk)6 + . . .

and thus:

A =−δ2∂xx − 1
3δ

4∂4
x − 2

15δ
6∂6

x + . . .

Applying this to (34):

∂t tη= 1
ν
∂xxη+ 1

3νδ
2∂4

x − 2
15νδ

4∂6
x + . . . (35)

By ignoring terms from O (δ2) onwards, we arrive at the wave equation.
We already assumed ε¿ 1. When simultaneously considering δ¿ 1 it is necessary to regard
the order relation between the both of them. Recall ε= a

h0
and δ= h0

L . If both parameters are
small, this implies L À h0 À a.
As stated in Section 2.5.3, the relation between a and L, given by εδ = a

L , is a measure for
∂xη, the steepness of the wave. Therefore the wave equation holds when εδ¿ 1. This kind of
waves is known as very long and flat .

3.2.4 Alternative approximations of A

The approximating A by its first term shows to be poor because we do not expect water to
behave the way solutions of the wave equation do. One could argue that including more terms
of the Taylor series would improve the solution, but really better options are, among others:

Âk ≈ (δk)2 (
1+ 1

6 (δk)2)2

Âk ≈ (δk)2 (
1− 1

3 (δk)2)−1

These choices seem somewhat arbitrary, but they have the advantage that they yield equa-
tions with a squared simple operator and an inverted simple operator respectively:

∂t tη≈−δ2

ν
G2∂xxη

∂t tη≈−δ2

ν
H−1∂xxη⇒ ∂t t Hη≈−δ2

ν
∂xxη

with:

G = 1− 1
6δ

2∂xx

H = 1+ 1
3δ

2∂xx

This kind of operators allows for some numerical convenience whereas the truncation of the
Taylor series does not necessarily. However, numerics are not investigated in this report. A
more in-depth analysis involving the operator kernels of G and H can be found in [1].
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3.3 Dispersion

Dispersion is the effect that the frequency of the wave is dependent of its wave number. In
this case, a wave profile composed of several frequencies will be dispersed along the surface
as the wave propagates. To find this relation we substitute η(x, t ) = e i k(x−ct ) = e i (kx−ωt ) (a
single simple wave with speed c, wave number k and frequency ω) in equation (34). Then
only the kth term of the Fourier series will be extracted

∂t tη=− 1
δ2ν

A η

−k2c2e i k(x−ct ) =− 1
δ2ν

kδ tanh(kδ)e i k(x−ct )

A relation between the speed and the wave number is then given by (recall ν= tanh(δ)
δ

):

c2 = 1

ν

tanh(kδ)

kδ
= tanh(kδ)

k tanh(δ)

Thus, the wave speed and the frequency would be given:

c =±
√

tanh(kδ)

k tanh(δ)

ω= kc =
√

k tanh(kδ)

tanh(δ)

To get a feeling of the effects of dispersion, review the limiting cases for deep water and shal-
low water:

lim
δ→∞

c =± 1p
k

lim
δ→0

c =±1

From which we conclude that dispersive effects increase as the depth increases.
The speed c is known as the phase speed. This is the propagation speed of a simple wave. For
waves composed of several frequencies, a group speed is defined as well. This is the speed of
the enveloping profile and is given by dω

dk . For small waves, the group speed is:

vg = dω
dk =

p
tanh(δk)

2
p

k tanh(δ)
+ δ

p
k

2
p

tanh(δk) tanh(δ)

= 1
2 c

(
1+ δk

sinh(δk)cosh(δk)

)
Once again, we consider the limiting cases for deep water and shallow water:

lim
δ→∞

vg =± 1
2
p

k
(= 1

2 c)

lim
δ→0

vg =±1 (= c)
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From these limits we conclude that the group speed is equal to the phase speed in shallow
water and equal to half the phase speed in deep water.
Some graphs of the results from this section are provided in Figure 5.
Note: If we would not have used the dynamical scaling with ν in Section 2.5.3, some of the limits would

be indeterminate.

∆

1

1
2

1
2

c

∆

1

1
2

1
4

vg

Figure 5: Plots of the phase speed c and the group speed vg as function of δ for values k =
1, . . . ,5

3.4 The exact solution

In this linear case we can, unlike in the other discussed models, actually provide an exact
solution in terms of Fourier series. This is not a goal of this report and, if nothing else, the
derivation is just a showcase for the DN operator.

We will solve the following evolution system with initial conditions:

∂t tη=− 1
δ2ν

A η for x ∈ (0,2π), t > 0

η(x,0) =µ(x) for x ∈ (0,2π), t = 0

∂tη(x,0) =σ(x) for x ∈ (0,2π), t = 0

With η̂k (t ), µ̂k and σ̂k the Fourier coefficients of the various functions, we can write:∑
η̂′′k e i kx = 1

δ2ν

∑
η̂k kδ tanh(kδ)e i kx

⇒ η̂′′k =−k tanh(kδ)

tanhδ
η̂k

This is a second order ODE which is solved by:

η̂k (t ) =C 1
k e iωk t +C 2

k e−iωk t
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With ωk =
√

k tanh(kδ)
tanhδ , as found in the previous section.

The initial conditions:

η̂k (0) =C 1
k +C 2

k = µ̂k

η̂′k (0) = iωk (C 1
k −C 2

k ) = σ̂k

⇒
C 1

k = 1
2 (µ̂k − σ̂k

ωk
i )

C 2
k = 1

2 (µ̂k + σ̂k
ωk

i )

Which gives the solution in its fullest:

η=∑[
1
2 (µ̂k − σ̂k

ωk
i )e iωk t + 1

2 (µ̂k + σ̂k
ωk

i )e−iωk t
]

e i kx

=∑[
µ̂k cos(ωk t )+ σ̂k

ωk
sin(ωk t )

]
e i kx
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4 Shallow water

In this section we shall review shallow water. That is, δ ¿ 1. Now we will keep ε at O (1).
The orignal scaled system (15) to (18) had nonlinearities of O (ε), therefore the small wave
approximations were linear. In this case we do not expect to get linear models.

4.1 The general Dirichlet-Neumann operator

Before any approximations occur. We will define a new DN operator. It will, however, not
work out quite as nice as before because of the lack of linearity. We cannot expect to find the
operator (or its Fourier symbol) explicitly. To stress that the operator we will be using now is
no longer a linear approximation as in Section 3.2.2, the symbol G is assigned to it. This is the
actual DN operator for the original problem (15) to (18).
Again, G is defined by means of the normal derivative:

Gψ := [−νδ2ε∂xη∂xφ+∂zφ
]

z= ε
ν
η

(36)

With φ solving the PDE related to (15) to (18):

ν2δ2∂xφ+∂zφ= 0 for − 1
ν
< z < ε

ν
η (37)

φ=ψ for z = ε
ν
η (38)

∂zφ= 0 for z =− 1
ν

(39)

Now once again, we use the equality (36) to eliminate all occurrences of ∂zφ in (15) to (18)

∂tη− 1
δ2ν2 G ψ= 0 (40)

∂tψ+ ε
2ν (∂xψ)2 + ε

δ2ν2

(
Gψ+νδ2ε∂xη∂xψ

)2 +η= 0 (41)

And we arrive at an evolution system as desired in (2). It is only defined on the boundary and
thus does not depend on z.

4.2 Depth-averaged horizontal velocity

First, we set ν= 1. For shallow water, this gives the desired scaling.
The depth-averaged horizontal velocity v̄ is defined as the average horizontal velocity over
some vertical column of water.

v̄(x) := 1

h(x)

∫ εη(x)

−1
∂xφ(x, z)dz
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Now, we consider ∂x(hv̄). We have, by making use of both the continuity equation (15) and
the non-permeable lower boundary (16).

∂x(hv̄) =∂x

[∫ εη(x)

−1
∂xφ(x, z)dz

]
=

∫ εη

−1
∂xxφdz + [

∂x(εη)∂xφ
]

z=εη

(15)=
∫ εη

−1
− 1
δ2∂zzφdz +ε[

∂xη∂xφ
]

z=εη

=
[
− 1
δ2∂zφ

]
z=εη−

[
− 1
δ2∂zφ

]
z=−1

+ε[
∂xη∂xφ

]
z=εη

(16)= ε∂xη∂xψ− 1
δ2∂zψ

Now note the similarity with definition (36). Evidently we have:

Gψ=−δ2∂x(hv̄) (42)

This is an unexpected result and one might reject the earlier statement that we cannot find G

explicitly. Result (42) sure seems explicit enough. This is not true, though. Note that v̄ requires
information from the full range of z and thus does not qualify for our desirable evolution
system (2).
It would make sense if we had a certain depth, say z∗, at which the horizontal velocity equals
v̄ . But in general, this depth is hard to point out. For shallow water, however, we would be
always close to this depth in the sense that | ενη−z∗| < δ¿ 1. So |v̄ −∂xψ| ≤ δ∂zφ(x, z∗)|ψ(x)−
φ(x, z∗)|. Therefore it will be useful to examine v̄ after all.

4.3 Expansion in δ: Shallow water and Green-Naghdi

Now we get to the actual approximation of δ¿ 1. As before, we will expand the quantities with
respect to the small parameter. Different from the former case is that we will not try to find
the solution φ immediately. This is because the domain is not rectangular, and the equations
are not linear.
Therefore, the operator G will be approximated, and then approximating equations for v̄ are
found by the coupling of (42).
Start with the perturbation:

φ=φ0 +δφ1 +δ2φ2 + . . .

Plug it in the Dirichlet problem (37) to (39):

δ2∂xxφ+∂zzφ= 0 for z ∈ (−1,η)

φ=ψ for z = η
∂zφ= 0 for z =−1
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This gives a recurrent relationship linking the different orders of δ:

∂xxφi−2 +∂zzφi = 0 for z ∈ (−1,εη)

φ0 =ψ for z = εη
φi = 0 for z = εη, i 6= 0

∂zφi = 0 for z =−1

The even and odd terms of the sequence are decoupled. Also, the odd terms are fully homoge-
nous. Therefore we can pick the trivial solution φi ≡ 0 for odd values of i . By convention, we
also set φ−2 ≡ φ−1 ≡ 0. For even values, the system is solvable up to any order. Starting with
φ0:

∂zzφ0 = 0

⇒φ0 =C 1
0 (x)z +C 2

0 (x)

The boundaries for φ0

φ0(εη, z) =C 1
0εη+C 2

0 =ψ
∂zφ0(−1, z) =C 1

0 = 0

⇒φ0 =ψ

Using this solution for the next term, φ2:

∂zzφ2 =−∂xxφ0 =−∂xxψ

⇒φ2 =−1
2∂xxψz2 +C 1

2 z +C 2
2

And its boundaries

φ2(εη, z) =−1
2∂xxψz2 +C 1

2 z +C 2
2 = 0

∂zφ2(−1, z) = ∂xxψ+C 1
2 = 0

⇒φ2 =
[
( 1

2ε
2η2 +εη)− ( 1

2 z2 + z)
]
∂xxψ

Combining φ0 and φ2 gives the approximation up to O (δ4):

φ=φ0 +δ2φ2 +O (δ4)

=ψ+δ2 [
( 1

2ε
2η2 +εη)− ( 1

2 z2 + z)
]
∂xxψ+O (δ4)

It would be possible to repeat this procedure as often as desired for higher orders but in this
report we will restrict to a maximal accuracy of O (δ4).
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4.3.1 Up to O (δ4): Green-Naghdi

For the Green-Naghdi equations the derivation from [10] follows. These result in a system on
v̄ and η which is not the original formulation from [5].
As announced, the surface potential is used to approximate v̄ (recall: h = εη+1):

v̄h =
∫ εη(x)

−1
∂xφ(x, z)d z +O (δ4)

=
∫ εη(x)

−1
∂x

[
1+δ2( 1

2ε
2η2 +εη)−δ2( 1

2 z2 + z)∂xx
]
ψd z +O (δ4)

= h∂xψ+
[∫ εη(x)

−1
δ2( 1

2ε
2η2 +εη)d z −

∫ εη(x)

−1
δ2( 1

2 z2 + z)d z

]
∂3

xψ+O (δ4)

= h∂xψ+ [
hδ2( 1

2ε
2η2 +εη)−δ2( 1

6ε
3η3 + 1

2ε
2η2 − 1

3 )
]
∂3

xψ+O (δ4)

⇒
v̄ = ∂xψ+ δ2

h

[
h( 1

2ε
2η2 +εη)− ( 1

6ε
3η3 + 1

2ε
2η2 − 1

3 )
]
∂3

xψ+O (δ4)

= ∂xψ+δ2 [
( 1

2 h2 − 1
2 )− ( 1

6 h2 − 1
2 )

]
∂3

xψ+O (δ4)

= ∂xψ+ 1
3δ

2h2∂3
xψ+O (δ4) (43)

To simplify the way this last equations will be inverted, define the operator T := 1
3 h2∂xx . Then

(43) reads:

v̄ = (1+δ2T)∂xψ+O (δ4)

⇒
(1+δ2T)−1v̄ = ∂xψ+O (δ4)

(1−δ2T)v̄ = ∂xψ+O (δ4)

⇒ ∂xψ= [
1− 1

3δ
2h2∂xx

]
v̄ +O (δ4) (44)

In the last step the operator is inverted by means of a Neumann series. This introduces an
extra error of O (δ4). Therefore the choice to restrict to this order was a convenient one.
To arrive at th Green-Naghdi model, we manipulate the system of (40) and (41). First, use (42)
to eliminate G from (40). Then it reads:

∂tη+∂x(hv̄) = 0 (45)

This is known as the classical formulation of the kinematic condition.
Now in (41) first replace G by means of (42), then take the derivative to x and finally replace
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∂xψ by means of (44). Throughout, terms of O (δ4) will be collected on the right hand side.

∂tψ+ 1
2ε(∂xψ)2 + ε

δ2

(
Gψ+δ2ε∂xη∂xψ

)2 +η=O (δ4)

∂tψ+ ε
2 (∂xψ)2 + ε

δ2

(−δ2∂x(hv̄)+δ2ε∂xη∂xψ
)2 +η=O (δ4)

∂t∂xψ+ε∂xψ∂xxψ+εδ2∂x
(−∂x(hv̄)+ε∂xη∂xψ

)2 +∂xη=O (δ4)

∂t
[
(1−δ2T )v̄

]+ε[
(1−δ2T )v̄

]
∂x

[
(1−δ2T )v̄

]
+εδ2∂x

(−∂x(hv̄)+ε∂xη
[
(1−δ2T )v̄

])2 +∂xη=O (δ4)

(1−δ2T )∂t v̄ +εv̄∂x v̄ −εδ2 [v̄T∂x v̄ +∂x v̄T v̄]

+εδ2∂x
[
(∂x(hv̄))2 +ε2(v̄∂xη)2 −2ε∂x(hv̄)∂xηv̄ −2εδ2∂xηv̄T v̄

]+∂xη=O (δ4)

(1−δ2T )∂t v̄ +εv̄∂x v̄ +εδ2 [1
3 h2∂x(v̄∂xx v̄)

]−εδ2 [
∂x(h∂x v̄)2]+∂xη=O (δ4)

(1− 1
3 h2δ2∂xx)∂t v̄ +εv̄∂x v̄ − εδ2

3h ∂x
[
h3v̄∂xx v̄ − (∂x v̄)2]+∂xη=O (δ4) (46)

Now the Green-Naghdi equations are those for v̄ and η with ignoring O (δ4):

∂tη+∂x(hv̄) = 0 (47)

(1− 1
3 h2δ2∂xx)∂t v̄ +εv̄∂x v̄ − εδ2

3h ∂x
[
h3v̄∂xx v̄ − (∂x v̄)2]+∂xη= 0 (48)

These are very similar to the desired system (2). Differences are the fact that they use v̄ instead
of φ and the system has an operator (1− 1

3 h2δ2∂xx) in front of ∂t v̄ . In fact, this operator is
desirable for it appears to give some numerical regularisation. (Remark 3.3 in [10])

4.3.2 Up to O (δ2): Standard shallow water

The standard shallow water equations are not yet discussed. This is because the derivations
are easy after those of the Green-Naghdi equations. Shallow water follows the same deriva-
tion, but then up to O (δ2) instead of O (δ4). The model can be obtained from (47) and (48) by
ignoring O (δ2) terms:

∂tη+∂x(hv̄) = 0 (49)

∂t v̄ +εv̄∂x v̄ +∂xη= 0 (50)

Note: By ignoring O (ε) effects and eliminating v̄, the wave equation is obtained.
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5 Other methods

This section analyzes some other methods used for finding various models. About half of the
authors use a Hamiltonian framework to approach water waves. We will give an introduction
to this method.
Apart from this completely alternative approach, there are also three ad hoc methods that are
applicable in specific cases. The first one being uni-directionalisation which is the main tool
towards the Korteweg-de Vries equation. The second method is the tidal wave approximation
in which vertical fluid motion is ignored. And lastly, we have the Boussinesq approximations.

5.1 Hamiltonian description

The theory of Hamiltonians is applicable in a great range of physical applications. In the case
of water waves, [6] and [1] provide an excellent view of the possibilties. In this report, the gen-
eral idea is given.
Note: Hamiltonian considerations are concise and formal. They do, however, not provide any new results

unobtainable from the methods in the rest of this report. A very important reason for using them is the

fact that the Hamiltonian structure can be used to yield discretisation schemes that are guaranteed to be

numerically stable.

The framework is defined by the following:
Define a Hamiltonian scalar H(φ,η) as the total energy in the basin. That is, the sum of po-
tential and kinetic energy.

H(φ,η) = P (η)+K (φ,η)

These energies can be found (observe that g and ρ have been scaled out of the problem):

P =
∫ ∫

Ω
z dz dx =

∫
1
2 h2 dx =

∫
1

2ν (εη+1)2 dx

K =
∫ ∫

Ω

1
2 |∇φ|2 dz dx

With φ solving (37) to (39).
Now a Hamiltonian system is described by (proof in [6]):(

∂tφ

∂tη

)
=

(
0 −1
1 0

)(
δφH
δηH

)
With δφ and δη indicating functional derivatives and now using conjugate variables φ and η.
Of the two functionals, the kinetic energy K is the most difficult since it depends implicitly (via
the Laplace-system) on η. Approximating K is done via approximating φ in a similar fashion
as in this report.
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5.2 Uni-directionalisation and the Korteweg-de Vries

5.2.1 Uni-directionalisation

The technique of uni-directionalisation is derived from an order argument. First, assume sim-
ilarity between ε and δ2. Then in leading order, the solution of the Green-Naghdi equations
((47) and (48)) is zero, that is v̄ −η = O (ε,δ2). In the next order, that of ε ∼ δ2, the solution is
given by the wave equation. The wave equation is solved by travelling waves. If we pick out
one direction, say increasing x, then we have a solution F , such that ∂xF =−∂t F . The higher
orders of δ4, ε2 and εδ2 will be collected in one term. The uni-directional ansatz sums up
these order arguments.
The trick is to consider the travelling waves of O (ε) and those of O (δ2) seperately.

v̄ = η+εF +δ2G +O (ε2,δ4,εδ2) (51)

With v̄ and η satisfying the wave equation and with F and G travelling waves in increasing
direction.
Equation (51) is called the uni-directional ansatz. This is a useful form because the first order
wave equation allows to easily equate derivatives to t with derivatives to x.

5.2.2 Korteweg-de Vries equation

We apply the uni-directional ansatz (51) to the Green-Naghdi equations (47), (48). Starting
with (47):

∂tη+∂x(hv̄) = 0

∂tη+∂x
(
(1+εη)(η+εF +δ2G)

)=O (ε2,δ4,εδ2)

∂tη+∂x
(
η+εη2 +εF +δ2G

)=O (ε2,δ4,εδ2)

∂tη+∂xη+ε
(
2η∂xη+∂xF

)+δ2∂xG =O (ε2,δ4,εδ2) (52)

And then in (48):

(1− 1
3 h2δ2∂xx)∂t v̄ +εv̄∂x v̄ − εδ2

3h ∂x
[
h3v̄∂xx v̄ − (∂x v̄)2]+∂xη= 0

(1− 1
3 (εη+1)2δ2∂xx)∂t

(
η+εF +δ2G

)+ε(
η+εF +δ2G

)
∂x

(
η+εF +δ2G

)+∂xη=O (ε2,δ4,εδ2)

∂tη+ε∂t F +δ2∂tG − 1
3δ

2∂xxtη+εη∂xη+∂xη=O (ε2,δ4,εδ2)

∂tη+∂xη+ε
(
∂t F +η∂xη

)+δ2 (
∂tG − 1

3∂xxtη
)=O (ε2,δ4,εδ2)

∂tη+∂xη+ε
(
∂t F +η∂xη

)+δ2 (
∂tG + 1

3∂xxxη
)=O (ε2,δ4,εδ2)

(53)

In the very last step we have used that that ∂tη=−∂xη. This is a consequence of the fact that
η satisfies the wave equation and is a travelling wave in negative direction.
Subtracting (53) from (52) and dropping the higher order terms gives:

ε
(
∂t F −∂xF −η∂xη

)+δ2 (
∂tG −∂xG + 1

3∂xxxη
)= 0
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This should hold for al ε and δ2 in the region, so we can decouple this equation in O (ε) en
O (δ2).

∂xF −∂t F +η∂xη= 0

∂xG −∂tG − 1
3∂xxxη= 0

Now use the first order wave equation for F and G :

2∂xF =−1
2∂x(η2)

2∂xG =+1
3∂xxxη

⇒
F =−1

4 (η)2 +CF (t )

G =+1
6∂xxη+CG (t )

To not violate the wave equation, CF (t ) and CG (t ) should be constant in t . They can be chosen
zero because F and G are defined up to a constant.
Replacing F and G in the uni-directional ansatz gives:

v̄ = η− 1
4εη

2 + 1
6δ

2∂xxη+O (ε2,δ2,εδ2)

Now, this equation can be used to eliminate v̄ by substituting it in (47) and collecting higher
order terms.

∂tη+∂x(hv̄) = 0

∂tη+∂xη
(
(1+εη)(η− 1

4εη
2 + 1

6δ
2∂xxη)

)=O (ε2,δ2,εδ2)

∂tη+∂xη+ 3
2η∂xη+ 1

6δ
2∂xxxη=O (ε2,δ2,εδ2) (54)

Equation (54), without the higher order terms, is essentially the Korteweg-de Vries equation.
But its common form is different. This is a result of translating and scaling. First we translate:
η= η̃− 2

3ε

∂t η̃+∂x η̃+ 3
2 (η̃− 2

3ε )∂x η̃+ 1
6δ

2∂xxx η̃= 0

∂t η̃+∂x η̃+ 3
2εη̃∂x η̃+ 1

6δ
2η̃= 0

Next, we rescale η̃ and t :

η̄= δ
ε η̃ and t̄ = 1

δ t

⇒ ∂t̄ η̄+ 3
2 η̄∂x̄ η̄+ 1

6∂x̄ x̄ x̄ η̄= 0

Dropping the bars gives the final form of the Korteweg-de Vries equation:

∂tη+ 3
2η∂xη+ 1

6∂xxxη= 0 (55)
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5.3 Tidal wave approximation

The tidal wave approximation is the result of the assumption that ∂zφ = 0. That is, vertical
fluid motion is ignored [6]. Thus, φ(x, z, t ) =ψ(x, t ) for all z. Substituting this in the surface
conditions (16) and (17) gives:

∂tη+ ε
ν∂xη∂xψ= 0

∂tψ+ 1
2
ε
η

(∂xψ)2 +η= 0

It is unclear in which regions the assumption of negligible vertical fluid motion is justified.

5.4 Boussinesq

The parametric region of the Boussnesq approximation is ε ∼ δ2 small. This domain lies
somewhere between the small waves and shallow water.
Starting with the upper boundary conditions (17), (18). We set δ2 = ε:

∂tη+ ε
ν
∂xη∂xφ− 1

εν2∂zφ= 0

∂tφ+ 1
2

[
ε
ν (∂xφ)2 + 1

ν3 (∂zφ)2
]
+η= 0

In these equations, still a term ∂zφ is present. This term is defined in the interior ofΩ. Boussi-
nesq found a way to approximate ∂zφ in terms of the horizontal velocity at the bottom by
means of a Taylor expansion [4].
Expand φ(x, z, t ) around the bed z =− 1

ν .

φ(x, z, t ) =φ(x,− 1
ν

, t )+ (z + 1
ν

)∂zφ(x,− 1
ν

, t )+ 1
2 (z + 1

ν
)2∂2

zφ(x,− 1
ν

, t )

+ 1
6 (z + 1

ν )3∂3
zφ(x,− 1

ν , t )+ 1
24 (z + 1

ν )4∂4
zφ(x,− 1

ν , t )+ . . .

Now, with (15) the derivatives can be rewritten. This gives a distinction between the even and
odd terms. For orders one to four:

∂zφ= 0

∂zzφ= ν2δ2∂xxφ

∂zzzφ= ν2δ2∂zxxφ= ν2δ2∂xx∂zφ= 0

∂4
zφ= ν2δ2∂zzxxφ= ν2δ2∂xxzzφ= ν4δ4∂4

zφ

Repeating the argument gives ∂2n
z φ= (νδ)2n∂2n

x φ and ∂2n+1
z φ= 0

Now substitute the surface z = ε
ν
η This gives (with height h = 1

ν
(εη+1) and a bottom potential:

β(x, t ) :=φ(x,− 1
ν

, t )):

φ(x, ε
ν
η, t ) =β− 1

2ν
2εh2∂2

xβ+ 1
24ν

4ε2h4∂4
xβ+ . . . (56)
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We managed once again to eliminate z from the problem.
Substituting (56) in (17), (18) and ignoring O (ε2) gives:

∂tη+ ε
ν
∂xη∂xβ= 0

∂tβ+ 1
2ε∂xxtβ+ 1

2
ε
ν (∂xβ)2 +η= 0

These are the original Boussinesq equations. The last approximation would be between β

and φ. Since we have δ2 ∼ ε¿ 1, the water depth is small and thus the difference between the
water speed at the bottom and at top would not introduce larger errors.
Approximating ∂zφ in terms of some other velocity below the surface are known as Boussinesq-
type approximations. An overview of the options is provided in [11]
The graph of a singleton solution, travelling to the right, for the Boussinesq equations is given
on the cover of this report.
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6 Conclusion

To obtain most of the models for water waves available, we have used two main entrance
points: small waves and shallow water. These models are entirely different from one-another.
The differences start already with scaling: the problem of having to scale z different for deep
water and shallow water is solved by introducing the dynamic scaling. Throughout the report,
this eased comparing the orders of δ and ε.
The Dirichlet-Neumann operator has shown great value for problems like these in which we
are only interested in the boundary.
The desired goal of trying to find a unifying theory to generate wave models has only partially
been reached. A lot of models are obtained by specific methods, some of which described in
Section 5, and by different similarity choices between ε and δ. Including these in this report
would not contribute to the main goal of finding a general method of generating these models.

6.1 Small waves

The case of small waves is easily adressed because the O (ε) approximations are linear. This
even allows, by means of the Dirichlet-Neumann operator for a theoretical exact solution
(Section 3.4). The different approximations in this region are all involved with numerically
smart choices of approximating this operator.
Exact small wave equation:

∂t tη=− 1
δ2ν

A η

Possible approximations:

∂t tη=−[
1− 1

6δ
2∂xx

]2 1
ν
∂xxη[

1− 1
3δ

2∂xx
]
∂t tη=−∂xxη

The DN operator A is easily found and provides much more insight than the original system.
It is used to find the dispersive relation.

6.2 Shallow water

The equations from the assumption of shallow water are more interesting and challenging
than the former. The non-linear DN operator G is, as if by some marvellous coincidence,
accessable through the depth-averaged horizontal velocity v̄ . This provides a way to recast the
system into an O (δ4) evolution system of η and v̄ called the Green-Naghdi equation. Further
simplification to O (δ2) yield the standard shallow water equation.
Green-Naghdi:

∂tη+∂x(hv̄) = 0

(1− 1
3 h2δ2∂xx)∂t v̄ +εv̄∂x v̄ − εδ2

3h ∂x
[
h3v̄∂xx v̄ − (∂x v̄)2]+∂xη= 0
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Shallow water:

∂tη+∂x(hv̄) = 0 (57)

∂t v̄ +εv̄∂x v̄ +∂xη= 0 (58)

6.3 Other methods

We showed a completely aternative approach to water waves, namely the Hamiltonian struc-
ture. Further, there are a lot of ad hoc methods to arrive at various models. We considered
three of them: uni-directionalisation, the tidal wave approximation and the Boussinesq ap-
proximations.
Hamiltonian framework
It is possible to rewrite the complete theory in a Hamiltonian structure like this:(

∂tφ

∂tη

)
=

(
0 −1
1 0

)(
δφH
δηH

)
With φ and η as conjugate variables and using the energy as Hamiltonian:

H(φ,η) = P (η)+K (φ,η) =
∫

1
2ν (εη+1)2 dx +

∫ ∫
Ω

1
2 |∇φ|2 dz dx

No extra results can be obtained from this formulation, but discretisation schemes that make
use of the Hamiltonian structure are guaranteed to be numerically stable.
Uni-directionalisation and Korteweg-de Vries
The method of uni-directionalisation restrict solutions to travelling waves in one direction by
starting wih the ansatz (51):

v̄ = η+εF +δ2G +O (ε2,δ4,εδ2)

Korteweg-de Vries is obtained by using this ansatz for Green-Naghdi and order arguments.
After eliminating v̄ and translating and rescaling on t and η, this results in (55):

∂tη+ 3
2η∂xη+ 1

6∂xxxη= 0

Boussinesq approximation
Boussinesq is applicable in the specific domain of weakly non-linear dispersive waves (δ2 ∼
ε¿ 1). The Boussinesq approximation is used to eliminate z from the problem and by ignor-
ing O (ε2) we have:

∂tη+ ε
ν∂xη∂xβ= 0

∂tβ+ 1
2ε∂xxtβ+ 1

2
ε
ν

(∂xβ)2 +η= 0
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6.4 Unresolved questions and remarks

Major issues

• Some important models have not been adressed in this report. Most notably Camassa-
Holm and Benjamin-Bona-Mahony. In [10] it is sugested that these should follow fairly
easily from Green-Naghdi, but these derivations seem too much involved compared to
the straightforward ones.

• Does there really exist a unifying theory to acces every model from our main entrance
points of small waves and shallow water? Can we unify the ad hoc methods from Section
5 in some large scheme?

• Dispersion, as reviewed in Section 3.3, is not only applicable to linear waves. For all
wave equations some relation between c and k can be found. This is usually not done
by one general method. Does such a general method for finding dispersion relations
exist?

• Numerics are mentioned a couple of times without any in depth analyses. Since wave
models are very applicable, it is important to get a better feeling of the problems arising
in numerics.

Minor issues

• The parameter δ only appears in squared form in the equations (15) to (18). Virtually

every author therefore identifies h0
2

L2 as a parameter.

• A factor δ2∂xx can be extracted from A . Many authors favor this convention [1, 2, 6, 10]

• Would it be possible to use Fourier integrals as opposed to Fourier sums in Section 3.1
for non-periodic domains? If so, there is no longer a maximum wavelength, what is then
the meaning of L?

• Korteweg-de Vries rescales time with 1
δ

. It thus supplies solutions on a timescale differ-
ent fromt that of Green-Naghdi. What is the physical significance?

• The tidal wave approximation is almost exclusively mentioned by E.M. Groesen without
statements about its feasibility. Is it a plausible approximation?

• The jargon is inconsistent and confusing. Does ‘fairly long waves’ mean the same as
‘rather long waves’? Is the ‘non-linear effect’ just ε and the ‘dispersive effect’ just δ2?
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A Glossary

Variables and sets:

x the horizontal location

z the vertical location

t time

Ω the set of points occupied by water

Inherent lengths and parameters:

h0 the average water depth

a the typical difference between the actual and the average water height

L the typical (maximum) wave length

ε the essential parameter a
h0

δ the essential parameter h0
L

ν the dynamic scaling factor tanh(δ)
δ

Quantities and graphs:

η the graph describing the surface profile

v the velocity field denoting the local particle speed

φ the potential of v

ψ the restriction of φ to the surface

β the restriction of φ to the bottom

h the water height at point x, h = 1
ν (εη+1)

p the scalar field describing the pressure

g the acceleration due to gravity

ρ the scalar field describing the density

Operators:

∂s differentiation with respect to a variable s

∂n directional differentiation along a unit normal vector n
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∇ an operator-vector: (∂x ,∂z)

∇2 the Lapace operator: ∂xx +∂zz

G the general Dirichlet-Neuman operator, acting on the surface

A the DN operator for linear waves, acting on the surface

Miscellaneous:

f̂k the kth Fourier coefficient of f

∼ an infix operator to indicate order similarity, f ∼ g ⇔ f =O (g )∧ g =O ( f )

O ( f , g ) simultaneous order: O ( f , g ) =O ( f )+O (g )

C an integration constant
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