
 Eindhoven University of Technology

BACHELOR

Deterministic primality testing

Weenink, T.J.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e26b7d16-832b-48e3-b859-54149ea6b160

Deterministic Primality Testing

Tim Weenink
0775602

t.j.weenink@student.tue.nl

May 18, 2015
Bachelor eindproject: 2WH40

TU Eindhoven

Chapter 1

Deterministic primality testing

1.1 Introduction

Prime numbers have been fascinating people for a really long time. The numbers, only divisi-
ble by one and itself, are used in many fields of mathematics. One of those fields is cryptology,
which uses large numbers for computing encryption keys. What’s nice about prime numbers,
is that they are relatively easy to compute but that large numbers are much harder to factor
into primes. This makes prime numbers extremely useful. But how would we know if numbers
are prime or not?

The ancient Egyptians started wondering about ways to find prime numbers. One of the
most intuitive ways to find prime numbers is to cancel out all numbers that cannot be prime.
This method is also known as the sieve of Eratosthenes: it simply cancels out all multiples
of 2, 3, 5, . . . ,

√
n where n is the number of integers you want to test. You can imagine that

this method will give you 100% certainty whether or not an integer is prime, but also that it
will take a lot of time to compute when n is big.

Many years later, important discoveries about the identities of prime numbers were made.
One of these discoveries is also known as Fermat’s little theorem: ap ≡ a (mod p) for a a
positive integer and p prime. Because of the fact that this theorem holds for every prime it
can be used to exclude numbers from potential primes. However, the theorem only holds one
way. This means that this test cannot tell with certainty whether or not a number is prime.
There are more probabilistic primality tests, like the Miller-Rabin test. This test also relies
on an identity that holds for primes but this identity also holds for some composite numbers.
This means that the accuracy of the test can become high, but never 100%. The same holds
for the Solovay-Strassen test, which is based on a theorem proved by Euler.

In the 1930s Lehmer improved a primality test that had been invented by Lucas before:
the Lucas-Lehmer test was born. Although this primality test is deterministic, it only works
for a small group of numbers: the so-called Mersenne numbers Mp = 2p−1 where p is a known
prime number. We can use this test to find a group of primes, but we prefer to know all prime

1

numbers. This test has been improved by Riesel to improve the set of possible primes that
can be found with this test to numbers of the form h2p − 1. This is an improvement to the
Lucas-Lehmer test, but we would preferably see a test for which the input number does not
have to meet strict requirements.

About 50 years later, the elliptic curve algorithm was published. Although this algorithm
is not deterministic, it is used very often in primality proving. The main reason for this is that
the algorithm is the fastest for general numbers, i.e. there are no restrictions on the input
number other than having to be a positive integer. The algorithm has been improved, so that
it will return a prime certificate which can be verified. However, this made the algorithm
much slower and thus less attractive to use in practice. [7]

In the 21st century however, there was a breakthrough. It was only a few years ago, in
2002, that a document (”PRIMES is in P”) was published in which a new primality testing
algorithm was introduced. This algorithm was named after the 3 Indians who had produced
it: Agrawal, Kayal and Saxena. Unlike the prime tests mentioned earlier, this algorithm can
tell with 100% certainty whether or not a number n is prime. The nice things about this
algorithm are that it is relatively simple, it works for all integers greater than 0 and it runs
in polynomial time. The latter is a huge improvement to the previously mentioned sieve of
Eratosthenes, which runs in exponential time.

The main topic of this paper will be the AKS test. You can find the general algorithm,
the correctness and the complexity of the algorithm. Also, there is an implementation with
corresponding results in which you can see the actual run time compared to other implemen-
tations of the AKS algorithm. In the end, two other algorithms are explained and analysed
for their complexity: the Lucas-Lehmer test and the Pocklington test.

2

1.2 The AKS test

Quite recently (2002) a deterministic test on primality testing has been published by Agrawal,
Kayal and Saxena [1]. The main idea of this test is to check whether or not a number n satisfies
an identity for prime numbers:

(X + a)n = Xn + a (mod n) (1.1)

where a ∈ Z, n ∈ N, n ≥ 2 and gcd(n, a) = 1. The proof of this identity can be found as the
proof of theorem 1.1.

1.2.1 The algorithm

Input: integer n > 1

1. If n = ab for integers a > 1 and b > 1, return composite.

2. Find the smallest integer r such that the multiplicative order of n (mod r) is greater
than log22 n.

3. If 1 < gcd(a, n) < n for any integer a ≤ r, return composite.

4. If n ≤ r, return prime.

5. For a = 1 to l =
⌊√

φ(r) log2 n
⌋
, if (X + a)n 6= Xn + a (mod Xr − 1, n), return

composite.

6. Return prime.

The entire algorithm to test the primality of input number n consists of 6 steps.

In the first step, we check if n is a so-called perfect power, i.e. n = ab for a ∈ N and
b > 1. We can do this by simply taking the bth root of n for b = 2 until log2 n and flooring it.
Call this floored root a. Now check whether or not ab = n. If so, we have found that n is a
perfect power.

If n is not a perfect power, we proceed to the second step in which we search for the
smallest number r, such that the multiplicative order of n modulo r is bigger than log22 n.
This number r is used in step 3, 4 and 5. In step 3, we calculate the GCD of n and a, where
a ∈ N+, a ≤ r, and check if it’s greater than 1. If so, n is composite. The 4th step is to check
if n ≤ r. If this holds, n is prime. The 5th consists of checking identity (1.1) for a = 1 to⌊√

φ(r) log2 n
⌋
. If it does not hold for all a, n is composite. If it does hold however, we can

say with 100% certainty that n is prime.

At first sight, the algorithm seems a bit long which makes you ask yourself if all steps are
really necessary. Concerning the first step of the algorithm, it seems that perfect powers will

3

also be detected in step 3: if you can write n as ab with a minimal, then you can also write n
as a ab−1. However, a ≤

√
n, and the r ≤ max{3,

⌈
log52(n)

⌉
}. So when r < a, perfect powers

will not be sorted out in step 3. This means that in step 1 b < logn
log r .

The r calculated in the second step is used in all remaining steps. In the next section,
you can read why this specific value of r is necessary. Step 3 and 4 obviously filter out some
composite numbers and primes. However, not all numbers can be tested on primality in these
steps. Step 5 and 6 do give a result for every number, so step 3 and 4 would actually be
redundant if it weren’t for the run time.

4

1.2.2 Correctness

The underlying idea of the AKS algorithm is a specific property that only holds for prime
numbers. When we look at Pascal’s triangle, it seems as if all numbers in the pth row are
multiples of p, except for the first and last number, for p prime. In fact, this is true and we
can prove it.

Theorem 1.1. (X + a)n = Xn + a (mod n)∀a > 0 holds only for n prime.

Proof. The expansion of (X + a)n is given by
n∑
k=0

(
n
k

)
Xn−kak = Xn +

n−1∑
k=1

(
n
k

)
Xn−kak + an.

We distinguish between two possibilities:

1: n is prime. We see that (X + a)n = Xn + an +
n−1∑
k=1

(
n
k

)
Xn−kak, which holds for

all n. We also know for k = 1, . . . , n − 1 that
(
n
k

)
≡ 0 (mod n) for n is prime, because(

n
k

)
= n(n−1)...(n−k+1)

k(k−1)...1 is a natural number, in which the numerator contains n and the de-

nominator does not. Also, according to Fermat’s little theorem, an = a (mod n). So the
identity holds.

When n is composite, we see that Fermat’s little theorem also holds for Fermat liars.
Furthermore, we see that (X + a)n 6= Xn + a (mod n), because

(
n
k

)
6≡ 0 (mod n): let p be

the smallest prime factor of n, so that n = pk. Then
(
n
p

)
= n(n−1)...(n−p+1)

p(p−1)...1 = k(n−1)...(n−p+1)
(p−1)(p−2)...1 .

This is not congruent with 0 (mod pk), because otherwise n would divide the numerator,
so (n − 1) . . . (n − p + 1) would be divisible by p. Since p divides n, it does not divide
(n− 1), (n− 2), . . . , (n− p+ 1) individually and hence p does not divide the product.

Now that we know that the main idea is correct, we want to prove that our algorithm
gives the correct output for every positive integer n. The rest of this section will be filled
with lemmas and theorems that complete the proof of our algorithm’s correctness.

In step 5 we want to check whether the polynomial (X − a)n − (Xn − a) is equal to
zero for different values of a. Computing these equations for one a would take O(log(n))
multiplications (using exponentiation by squaring) in which the number of coefficients grows
exponentially, so we would like to reduce the number of coefficients we have to multiply every
time. This can be done by reducing our polynomial modulo Xr − 1, n for some number r.
There is a specific name for this action in our terminology:
Let l be the same number as in step 5 of the algorithm.
If ∀a : 1 ≤ a ≤ l: (X − a)m = Xm − a (mod Xr − 1, p) , we call m introspective.

Lemma 1.2. If m1 and m2 are introspective, then m1m2 is also introspective.

Proof. We know that (X − a)m2 = (Xm2 − a) (mod Xr − 1, p). We can also write this as
(X − a)m2 − (Xm2 − a) = (Xr − 1)f(X) with f(X) a polynomial. Likewise, we see that
(Xm1 − a)m2 − (Xm1m2 − a) = (Xm1r − 1)f(Xm1), which equals 0 (mod Xr − 1, p). So
(X − a)m1m2 = (Xm1 − a)m2 = Xm1m2 − a (mod Xr − 1, p).

5

Suppose we have a number n which is composite, but fails the test in step 5 ∀a : 1 ≤ a ≤ s
for some bound s. We obviously don’t want to let the output be prime, so we will try to find
a bound such that only prime numbers will pass step 5. If we have 2 numbers n (composite)
and p (prime) which are both introspective, each m of the form pinj is also introspective.

We need to prove one more property of introspective numbers.

Lemma 1.3. If m is introspective for f(X) and g(X), then m is also introspective for
f(X)g(X).

Proof. f(X)m = f(Xm) (mod Xr−1, p) and g(X)m = g(Xm) (mod Xr−1, p), so (f(X)g(X))m =
f(X)mg(X)m = f(Xm)g(Xm) (mod Xr − 1, p).

When we combine the last two lemmas, we see that the group I = {(np)ipj |i, j ≥ 0} is

introspective for every polynomial in the set P = {
∏l
a=0(X + a)ea |ea ≥ 0}.

In order to complete our proof for correctness, we need to look at two groups. The first
group G consists of all residues of numbers in I modulo r, which is a subgroup of Z∗r . Let
t be the order of G, i.e. t = |G|. Since the element of a finite group divides the order, and
since or(n) > log22 n, we know that t > log22 n.

The second group has to do with cyclotomic polynomials over Fp. Let Qr(X) be the
rth cyclotomic polynomial, i.e. the unique irreducible polynomial that only divides Xr − 1
and thus does not divide Xk − 1 for any k < r. Qr(X) also factors Xr − 1 into irreducible
polynomials of or(p). Let h(X) be such a polynomial. We know that the degree of h(X)
is greater than 1, since or(p) > 1. Let G̃ be our second group, consisting of all residues of
the polynomials from P (mod h(X), p). This means G̃ is generated by X,X + 1, . . . , X + l
(mod h(X), p) and it is a subgroup of F = Fp(X)/(h(X)). Now we want to find a lower

bound for the order of G̃.

Lemma 1.4. |G̃| ≥
(
t+l
t−1
)
.

Proof. We want to show that there are no distinct polynomials of degree ¡ t in P that map
to the same element in G̃. Let f(X) and g(X) be two distinct polynomials in P and suppose
they do map to the same element in F , so f(X) = g(X) and thus (f(X))m = (g(X))m in F for
m ∈ I. Since m is introspective for both f(X) and g(X) and since F = Fp(X)/(h(X)), where
h(X) divides Xr − 1, we see that (f(X))m = f(Xm) (mod Xr − 1, p) = f(Xm) = g(Xm) in
F . This means that Xm is a root of the polynomial Q(Y) = f(Y) − g(Y)∀m ∈ G. Since G
is a subgroup of Z∗r , we know that gcdm, r = 1, so all Xm are primitive roots, which means
that Q(Y) will have |G| = t distinct roots in F , but since we chose both the degree of f(X)
and g(X) to be smaller than t, the degree of Q(Y) is also smaller than t. This means that
we have a contradiction, so all distinct polynomials in P will map to different elements in F .

We know that all elements X,X+1, . . . , X+ l are distinct in F because l =
⌊√

φ(r) log2 n
⌋
<

√
r log2 n < r < p. We also know that the degree of h(X) is greater than 1, so X + a 6= 0

in F∀a : 0 ≤ a ≤ l. This means that we have at least l + 1 distinct polynomials of degree
one in G̃. In order to make a polynomial of degree < t, we look at the product of all distinct

6

elements in F : (X + a0)
b0(X + a1)

b1 . . . (X + al)
bl where b0 + b1 + · · · + bl = n. This is also

known as the egg colouring problem. The number of solutions for this equation is given by(
t−1+l+1
t−1

)
=
(
t+l
t−1
)
.

We can also say something about the size of G̃ if n is not a power of p.

Lemma 1.5. If n is not a power of p, then |G̃| ≤ n
√
t.

Proof. For this proof, we take a look at the subset of I: Î = {(np)ipj |0 ≤ i, j ≤
⌊√

t
⌋
}. If n

is not a power of p, then there are (
⌊√

t
⌋

+ 1)2 > 1 distinct numbers in Î. We know that at

least 2 numbers in Î must be equal modulo r, because |G|, the number of residues of numbers
in I modulo r, is t. Let m1 and m2 be such numbers with m1 > m2, such that: Xm1 = Xm2

(mod Xr−1). Let f(X) ∈ P , then (f(X))m1 = f(Xm1) (mod Xr−1, p), but this is the same
as f(Xm2) (mod Xr − 1, p) = (f(X))m2 . So f(X) ∈ G̃ is a root of Z(Y) = Y m1 − Y m2 in F .

Z(Y) has at least |G̃| distinct roots in F and the degree of Z(Y) is m1 ≤ (npp)
b√tc ≤ n

√
t, so

|G̃| ≤ n
√
t.

When we combine the two lemmas above, we can prove that our algorithm gives the
correct output.

Theorem 1.6. If the algorithm returns prime then n is prime.

Proof. Suppose that the algorithm returns prime. We still use the same t and l from the

lemmas above and we see that |G̃| ≥
(
t+l
t−1
)
≥
(l+1+b√t log2 nc
b√t log2 nc

)
, because t >

⌊√
t log2 n

⌋
.

Now
(l+1+b√t log2 nc
b√t log2 nc

)
≥
(2b√t log2 nc+1

b√t log2 nc
)
, since l =

⌊√
φ(r) log2 n

⌋
≥
⌊√

t log2 n
⌋
. Because⌊√

t log2 n
⌋
> log22 n ≥ 1, we see that

(b√t log2 nc+1

b√t log2 nc
)
> 22b

√
t log2 nc+1 ≥ n

√
t.

From the lemma above, we know that |G̃| ≤ n
√
t if n is not a power of p, so n = pk for

some positive k. But if k > 1, the algorithm would already have returned composite in the
first step (perfect prime testing). Therefore, n = p.

To be even more complete, we can prove that theorem 1.6 also works the other way around:

Theorem 1.7. If n is prime, the algorithm returns prime.

Proof. Suppose n is prime. This means that n has no divisors, so gcd(n, z) = 1 for z =
1, . . . , n− 1. Also suppose that the algorithm returns ”composite”. This can only happen in
step 1, 3 and 5. Since n has no divisors, it can never be a perfect power so step 1 will never
return ”composite”. If the r computed in step 2 is smaller than n, all a’s in step 3 will also
be smaller than n and thus have no common divisor bigger than 1 with n. So step 3 will
never return ”composite” either. We also know that (X + a)n = Xn + a (mod n) holds for
n prime and a = 1, . . . , l, so it will never return ”composite”. Therefor, the algorithm will
return ”prime” in step 4 or 6.

7

1.2.3 Complexity

We’ll retrieve the complexity of the AKS test step by step.
Testing whether or not n is a perfect power has to be done by calculating d b

√
ne (call this

number a) for b = 2 to b = log2 n and checking if ab equals n. In order to determine the bth

root of n, we use an algorithm that computes
⌊
n

1
b

⌋
in time O(log22 n). Computing it at most

log2 n times, shows us that the total order of this step is O(log32 n).

The calculation of r in step 2 can be done quite efficiently. We are looking for the smallest
r for which the smallest k implies nk ≡ 1 (mod r), where k > log22(n). This means that we
only have to calculate nk (mod r) for k ≤ log22(n), starting with r = 2. As soon as we find a
k ≤ log22(n) such that nk ≡ 1 (mod r), we compute all powers again for r+1. If every output
is greater than 1, we know that the order k is higher than log22(n), which means we have found
our r. In the worst case, we have to compute nk (mod r) for every r. Computations can be
made using the right-to-left method, which are O((log(log n))3), and according to lemma 1.9
r < log52 n, so the total order is O((log n)5+ε).

Calculating the GCD of two numbers a and b has complexity O(log max{a, b}). In step
3, we have to calculate GCD(a,n) r − 1 times. Since r < log52 n, the complexity is given by
O(log max{a, n} log52 n) = O(log62 n). Note that step 4 only takes 1 calculation, so O(log2 r).

In step 5, we have to check
⌊√

φ(r) log2 n
⌋

equations. O(log2 n) multiplications have to

be done for each equation, the polynomials are of order r and all coefficients in the equations
are O(log2 n). Hence the total order of step 5 is O(r log22 n

√
φ(r) log2 n) = O(r

3
2 log32 n) =

O(log
21
2
2 n).

When we add all complexities, we find that the total complexity of our algorithm is

O(log
21
2
+ε

2 n).

Lemma 1.8. Let LCM(m) denote the least common multiple of first m numbers. For m ≥ 7:
LCM(m) ≥ 2m.

Lemma 1.9. There exists an r ≤ max{3,
⌈
log52(n)

⌉
} such that or(n) > log22(n).

Proof. For n = 2, we see that the equation holds for r = 3. For n > 2, we see that
⌈
log52(n)

⌉
>

10. We now use the LCM lemma 1.8 (with m =
⌈
log52 n

⌉
). The largest value for k to satisfy

mk ≤ B =
⌈
log52(n)

⌉
,m ≥ 2 is blog2Bc. Now take a look at the smallest number r that does

not divide nblog2Bc
∏blog22 nc
i=1 (ni − 1). The GCD of r and n cannot be divisible by all prime

divisors of r at the same time, because otherwise r would divide n and also nblog2Bc. This
means that r

GCD(r,n) will not divide nblog2Bc either. We know that r is the smallest number not

dividing the product, so GCD(r, n) = 1. From the second part of the product we know that r
does not divide any of the ni−1 for 1 ≤ i ≤

⌊
log22 n

⌋
, so the order or(n) > log22 n. Now we want

8

to find an upper bound for the product: nblog2Bc
∏blog22 nc
i=1 (ni−1) < nblog2Bc+

1
2
log22 n(log

2
2 n−1) ≤

nlog
4
2 n ≤ 2log

5
2 n≤2B . By filling in B for the LCM lemma, we see that LCM(B) ≥ 2B, so

r ≤ B.

Note that this lemma is only necessary for step 4 when n ≤ 5690034. When n > 5690034,
we see that r ≤

⌈
log52 n

⌉
< n.

1.2.4 Run time

In order to confirm our predicted run time, we test the algorithm for a number of primes.
The results can be found in the table and graph below.

Prime number n Run time (sec.)

47 0.257

499 1.542

4999 11.185

49999 63.871

499979 236.324

4999999 461.847

49997999 2106.061

499979999 4695.661

(a) Comparing our implementation with 2
other versions found online. The solid lines
consist of the gathered data. The dashed lines
are trend lines made using the data points.

Figure 1.1: The average run time: each number has been tested three times.

Comparing our implementation of the AKS algorithm to others, we find out that there is
a huge difference in run times an that our implementation is neither slow nor fast. For some
examples of other implementations, please see [2] and [3]. The slope of the line of the results of
our implementation is 5.5, which is slightly different from what we expected in our complexity
analysis (10.5). This difference can be explained by the small amount of test numbers I used
and secondly by the fact that the complexity is an upper bound, which describes the run time
in the worst case. Our test numbers are not necessarily the worst cases, so that’s why the
run time that we found is smaller than the complexity.

9

1.3 Improvements

In July 2005, Hendrik Lenstra Jr. and Carl Pomerance published a draft version of an article
in which they showed how the run time of the AKS algorithm could be reduced. In 2009,
they published the final version of the article [4] in which they claimed to have reduced the
algorithm’s complexity to O(log2 n)6(2 + log2 log2 n)c for some effectively computable real
number c. This is a great improvement compared to the run time proposed in the document
by Agrawal, Kayal and Saxena: O(log2 n)

21
2 (2 + log2 log2 n)c = O(log2 n)

21
2
+ε. The main

difference between this algorithm and the one published by Agrawal, Kayal and Saxena is
that Lenstra and Pomerance have their rings generated by Gaussian periods rather than by
roots of unity.

Another algorithm that can be used to reduce the run time was published in 1998 by Daniel
Bernstein [6]. This algorithm is about detecting perfect powers, with run time O(log2 n)1+o(1).

10

1.4 Lucas-Lehmer test

Another algorithm to test an integer’s primality is described by Édouard Lucas and later on
it has been improved by Derrick Henry Lehmer. Even though there is also a Lucas-Lehmer
test which only works for Mersenne numbers, this test works for every positive integer.[7]

1.4.1 The algorithm

Input: integer n > 1. Let 1 < a < n and q be positive integers.

1. Check if an−1 ≡ 1 (mod n). If not, return ”composite (step 1 (a))”.

2. Check if a
n−1
q 6≡ 1 (mod n) for every prime q|n−1. If so, return ”prime (a)”. If not,

repeat the algorithm for another a if possible, otherwise return ”composite (step 2
(a))”.

If an appropriate a is found to meet the conditions in step 2, this a can be used as a prime cer-
tificate. This certificate is a very short proof of the input number’s primality, in the shape of
an a that suffices both equations. This way, one can use the certificate to verify the equations
very efficiently for the given a. The proof of the algorithm will complete the input number’s
primality proof.

Furthermore, it has to be said that this test for n is only useful when the factorisation of
n− 1 is known. This is due to the need of knowing all prime divisors of n− 1 in step 2. The
problem of not knowing can be solved by invoking the algorithm recursively, i.e. running the
algorithm for possible prime divisors qi of n − 1 when checking for n’s primality, and then
checking for possible prime divisors of qi − 1 by running the algorithm again for qi, etc. This
affects the complexity of the algorithm drastically: in the worst case, you would have to check

primality for about
√
n
2 numbers. However, you can also use a prime factorisation algorithm

to find the prime divisors of n− 1, which has a smaller complexity than recursively invoking

the algorithm
√
n
2 times.

1.4.2 Correctness

From the first step of the algorithm, we see that the order of a in Z∗n is a divisor of n − 1.
However, in the second step we see that the order of a is not a divisor of n− 1, which means
that it is equal to n − 1. Since the order of an element in a group divides its group’s order
we see that n − 1 divides φ(n), so n − 1 ≤ φ(n). Let’s take a look at the definition of φ(n).
This function represents the number of integers relatively prime to n. Now suppose that n is
composite and it has prime factor p. This would mean that p and n are not coprime to n, so
φ(n) ≤ n− 2. This contradicts n− 1 ≤ φ(n), which means that n is prime.

1.4.3 Complexity

In the worst case we have to check the 2 steps for all prime divisors of n − 1, which
means that the factorisation of n − 1 has to be known. The corresponding complexity is

11

O(exp(C(lnn)
1
3 (ln lnn)

2
3)). The first step can be computed with the right-to-left method,

which is O((log n)3). Checking the equation in the second step has to be done for every prime

factor q of n−1. This means that the complexity of this step isO((exp(C(lnn)
1
3 (ln lnn)

2
3))(log a)3).

So the total complexity of this algorithm is O((exp(C(lnn)
1
3 (ln lnn)

2
3))((log n)3+(log a)3)) =

O((exp(C(lnn)
1
3 (ln lnn)

2
3))((log n)3)).

1.4.4 Test for Mersenne primes

There is also a test especially for Mersenne numbers. A Mersenne number is of the form
Mp = 2p − 1 where p is a known prime number. The main idea of this variant is to create a
recurrence relation and use it to check equalities. The test is as follows:

Input: prime number p.

1. Compute Mp = 2p − 1.

2. Construct the sequence {si} as follows:
si = s2i−1 − 2 with s0 = 4 until i = p− 2.

3. If sp−2 ≡ 0 (mod Mp), return ”Mp prime”. Else, return ”Mp composite”.

Note that the sequence is always the same, but the number of terms that have to be
computed depends on the size of p. This means that in step 2, we start with s0 = 4 and
repeat si = s2i−1 − 2 (mod Mp) p− 2 times.

Correctness

In order to prove that sp−2 ≡ 0 (mod Mp) ⇐⇒ Mp prime, we define ω = 2 +
√

3 and
ω = 2 −

√
3. We now define Ln as ω2n + ω2n , such that L0 = ω1 + ω1 = 4. Furthermore,

Ln+1 = ω2n+1
+ ω2n+1

. Note that ωω = (2 +
√

3)(2 −
√

3) = 1, so the last equation can be
rewritten as ω2n+1

+ ω2n+1
+ 2ω2nω2n − 2 = (ω2n + ω2n+1

)2 − 2 = L2
n − 2. This means Ln

and si must be the same sequence. Now we can use this Ln to prove both sides of the theorem.

”⇐”: Consider the group of numbers of the form a+ b
√

3 (mod Mp) where Mp = 2p − 1.

We know from the AKS algorithm’s proof that (1 +
√

3)Mp ≡ 1 +
√

3
Mp

(mod Mp) =

1+
√
3√
3

√
3
Mp

(mod Mp) = 1+(
√

3)3
Mp−1

2 (mod Mp). From quadratic reciprocity we know that

3
Mp−1

2 ≡ ±1 (mod Mp). Now we have to find out what the correct sign is. Mp and 3 are con-
gruent to −1 (mod 4), so the law of quadratic reciprocity tells us that either Mp is a quadratic
residue (mod 3) or that 3 is a quadratic residue (mod Mp). We know that Mp ≡ 1 (mod 3),

so Mp is a quadratic residue (mod 3) and as a result we see that 3
Mp−1

2 ≡ −1 (mod Mp).
This means that (1+

√
3)Mp ≡ 1−

√
3 (mod Mp). We now multiply both sides with (1+

√
3),

which gives us (1+
√

3)Mp+1 ≡ −2 (mod Mp). We also know that (1+
√

3)2 = (4+2
√

3) = 2ω,

which we use to rewrite (1 +
√

3)Mp+1 as (2ω)
Mp+1

2 = 2
Mp+1

2 ω
Mp+1

2 = 212
Mp−1

2 ω
Mp+1

2 ≡ −2

(mod Mp). We know that 2
Mp−1

2 ≡ 1 (mod Mp) because of the fact that 2 is a quadratic
residue of primes congruent to ±1 (mod 8). The last equation can now be rewritten as

12

2ω
Mp+1

2 ≡ −2 (mod Mp). The inverse of 2 (mod Mp) is
Mp+1

2 , so by multiplying both sides

with this inverse, we get ω
Mp+1

2 ≡ −Mp−1 ≡ −1 (mod Mp). We can write the left-hand side

of the equation as ω
2p−1+1

2 = ω2p−1
= ω2p−2

ω2p−2
, which is equivalent to −1 (mod Mp). Now

we multiply both sides with ω2p−2
, which results in ω2p−2

+ ω2p−2 ≡ sp−2 ≡ 0 (mod Mp).

”⇒”: Mp divides sp−2 implies that there exists an integer C such that Lp−2 = ω2p−2
+

ω2p−2
= CMp. By multiplying with ω2p−2

, we can rewrite this equation to ω2p−1
= CMpω

2p−2−
1. By squaring both sides, we get ω2p = (CMpω

2p−2 − 1)2. Assume that Mp is composite,
which means that there is a prime divisor q <

√
Mp. We now look at the group G of all

numbers a + b
√

3 which are invertible mod q and we see that |G| ≤ q2 − 1 (because 0 does
not have an inverse). We can now look back at the equations with ω, only this time mod q.
Recall that q divides Mp, so we derive that ω2p−1

= −1 and ω2p = 1 (mod q) which means
that the order of ω in G is 2p. We also know that the order of an element divides the order
of the group, which means that the order of an element is at most the order of the group.
However, we see that 2p ≤ q2 − 1 < q2 ≤ Mp = 2p − 1. This contradiction completes our
proof.

Complexity

In order to check sp−2, we have to compute Mp = 2p − 1 once and then use modular expo-
nentiation and substraction p − 2 times. The corresponding complexity is O(log(2)3 + (p −
2)(log(Mp)

3 + log(Mp))) = O((p− 2)(log(Mp)
3) + ε).

13

1.5 Pocklington primality test

Another way of testing numbers for primality is called the Pocklington(-Lehmer) primality
test [7]. As the name suggests, the test was devised by Henry Cabourn Pocklington and
Derrick Henry Lehmer. Although this test is used to check whether or not an input number
is prime, it has a different result from the AKS test. Where the AKS test provided ”prime”
or ”composite” as output, the Pocklington test will return a prime certificate: a proof that
the input number is prime or not. That is, if the input is not prime the output will be the
step number which can not be met. The algorithm is as follows:

1.5.1 The algorithm

Input: integer n > 1. Let 1 < a < n and q be positive integers.

1. If there does not exist a prime q >
√
n− 1 such that q|n− 1, return ”indeterminate

(step 1)”.

2. Check if an−1 ≡ 1 (mod n). If not, return ”composite (step 2: a)”.

3. Check if gcd{a
n−1
q −1, n} = 1. If so, return ”prime (a)”. If not, repeat the algorithm

for another q.

1.5.2 Correctness

Suppose n is composite. This implies that n has a prime divisor p ≤
√
n. Since we choose

q >
√
n, we know that q > p − 1 and therefore gcd{q, p − 1} = 1, which means that q has

a modular multiplicative inverse x modulo p − 1: xq ≡ 1 (mod p − 1). Now suppose that
we find an a such that an−1 ≡ 1 (mod n). (Note that if we find an a such that an−1 6≡ 1
(mod n), this is a Fermat witness for n being composite.) Since p divides n, we see that
an−1 ≡ 1 (mod n) ≡ 1 (mod p). We can rewrite the first part of the equation as follows:

an−1 ≡ (an−1)x ≡ ax(n−1) ≡ a
xq n−1

q ≡ (axq)
n−1
q . We also know from Fermat’s little theorem

and using that xq ≡ 1 (mod p− 1) that axq can be rewritten in an easier form. xq is of the
form c(p − 1) + 1, so axq = ac(p−1)+1 = (ap−1)ca1 ≡ 1ca ≡ a (mod p). This means we get:

(axq)
n−1
q ≡ a

n−1
q (mod p), so a

n−1
q ≡ 1 (mod p). We now know that p divides n and p divides

a
n−1
q − 1, so the greatest common divisor in step 3 is not 1. This completes the proof.

1.5.3 Complexity

In the worst case, we have to loop through the algorithm for every q that divides n − 1.
This means that we have to compute the factorisation of n − 1, which has complexity
O(exp(C(lnn)

1
3 (ln lnn)

2
3)). The computation in step 2 can be done using the right-to-

left modular exponentiation with complexity O(log(n)3). Calculating the GCD in step 3
is O(log(n)3 log(n)2) = O(log(n)5). So the total complexity of this algorithm is

O((exp(C(lnn)
1
3 (ln lnn)

2
3))(log(n)5+ε)).

14

1.5.4 Prime number generation

Once we know that an input number n0 is prime we can use it again in the algorithm, only
this time as q1. This means that we are able to use the certificate of n0’s primality (together
with its corresponding q0) to construct bigger prime numbers. The new input number n1 has
some limitations though. Since it uses q1 and q >

√
n− 1, we infer that n < q2 + 2q + 1.

An example: we know that 3 is prime. This means that we can use 3 as q0 in our quest
to find bigger primes, so n0 < q20 + 2q0 + 1 = 16. An n0 that also satisfies q0|n0 − 1 is 13.
We verify step 2 for a0 = 2 and use this same a0 to see that we can conclude from step 3
that n0 is indeed prime. So our certificate would look like {q0, n0} = {3, 13}. Next, we can
use n0 as q1 in order to find more prime numbers. This way, we accumulate the certificates
which can all be verified extremely easy. An implementation of this algorithm in Mathematica
returns the following start of a sequence of prime numbers: 3, 13, 157, 24179, 583535987. The
Mathematica code in the appendix can be used to find even more prime numbers!

15

1.6 Conclusion

The AKS primality test has its pros and cons. The nice thing about it, is that it is a deter-
ministic test that works for every input number and runs in polynomial time. It gives you
100% certainty about the primality of the number you want to test, contrary to other prime
tests like Miller-Rabin, which relies on the unproven generalised Riemann hypothesis.

However, timewise it seems more efficient to use other tests. The original AKS algorithm’s
complexity is O(r

3
2 log62 n log12 5r) and its improved version has complexity O(log2 n)6(2 +

log2 log2 n)c, whereas Miller-Rabin’s complexity is O(R(log n)3). So in practice the AKS al-
gorithm will not be very useful, as you can tell by the results from our own implementation.

The Lucas-Lehmer test can be useful in practice, but only if you know the factorisation
of n − 1. In that case, the algorithm has a complexity of O(n2 log2(a) + n log3(n)). If the
factorisation is not known, the algorithm will invoke itself recursively, resulting in a much
higher complexity. The Lucas-Lehmer test for Mersenne numbers has a lower complexity,
namely O((p− 2)(log(Mp)

3) + ε). This variant’s main drawback is that the amount of input
numbers is much more restricted, as they have to be of the form 2p − 1 with p prime.

When the prime factorisation is not known, the Pocklington test is a better way to test
for a number’s primality as the complexity is O(n(log(n)5+ε)). This method returns prime
certificates, which can be accumulated when used in order to find new prime numbers: a nice
result, as two consecutive prime numbers that are found with the algorithm can differ hugely
in length. This way, you can construct large prime numbers relatively easy.

Test Input number type Complexity

AKS Z+ O(r
3
2 log62 n log12 5r)

Improved AKS Z+ O(log2 n)6(2 + log2 log2 n)c

Lucas-Lehmer Z+ O((exp(C(lnn)
1
3 (ln lnn)

2
3))((log n)3)

Lucas-Lehmer for Mersenne primes Mp = 2p − 1, p prime O((p− 2)(log(Mp)
3) + ε)

Pocklington {n ∈ Z+|∃q : q|n− 1} O((exp(C(lnn)
1
3 (ln lnn)

2
3))(log(n)5+ε))

Table 1.1: A schematic overview of the tests discussed in this paper.

For further information about the AKS primality test, please see the original document
by Agrawal, Kayal and Saxena [1] or Shoup’s book on number theory and algebra [5]. Also,
for the AKS test, the Lucas-Lehmer test, the Pocklington test and everything you want to
know about prime numbers, I’d like to refer to the book ”Prime Numbers: A Computational
Perspective” by Crandall and Pomerance [7].

16

Bibliography

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781793, 2004.

[2] R.G. Salembier, and P. Southerington. An Implementation of the AKS Primality Test.

[3] C. Rotella. An Efficient Implementation of the AKS Polynomial-Time Primality Proving
Algorithm.

[4] H. W. Lenstra jr. and C. Pomerance. Primality testing with Gaussian periods.

[5] V. Shoup. ”Deterministic primality testing”. In A Computational Introduction to Number
Theory and Algebra (Version 2).

[6] D. Bernstein, Detecting perfect powers in essentially linear time. Mathematics of compu-
tation, Volume 67, Number 223, July 1998, Pages 1253-1283, S 0025-5718(98)00952-1

[7] R. Crandall, and C. Pomerance. ”Recognizing primes and composites” and ”Primality
proving”. In Prime Numbers. A Computational Perspective (Second Edition).

17

1.7 Appendix

1.7.1 Java code

Please note that I split the code into two separate classes: AKS.java and Polynomial.java.

import java.math.BigInteger;

import java.util.Scanner;

import javax.swing.Timer;

public class AKS {

BigInteger n, input, m, g, B, z, polPower;

int length, k;

Boolean isPerfectPower, stap34, notComp;

static BigInteger convert(int x) {

return BigInteger.valueOf(x);

}

public static double logBigInteger(BigInteger val, int e) {

double doubN = val.doubleValue();

return Math.log(doubN)/Math.log(e);

}

public BigInteger BinSqrt(BigInteger n) {

length = (int) Math.floor(Math.log(n.doubleValue())/Math.log(2))+1;

k = (int) Math.floor((length-1)/2);

m = convert(2).pow(k);

for(int i=k-1; i>=0; i--){

if((m.add(convert(2).pow(i)).pow(2)).compareTo(n) <= 0){

m.add(convert(2).pow(i));

}

}

return m;

}

public BigInteger ESqrt(BigInteger n, int e){

length = (int) Math.floor((logBigInteger(n, e)))+1;

k = (int) Math.floor((length-1)/2);

m = convert(2).pow(k);

for(int i=k-1; i>=0; i--){

if((m.add(convert(2).pow(i)).pow(e)).compareTo(n) <= 0){

m.add(convert(2).pow(i));

}

}

return m;

}

18

public BigInteger GCD(BigInteger a, BigInteger b){

if(b.equals(convert(0))) return a;

return GCD(b, a.mod(b));

}

public int totient(BigInteger n){

int count=0;

for(int a=1; n.compareTo(convert(a))>0; a++){

if(GCD(n,convert(a)).equals(convert(1))){

count++;

}

}

return(count);

}

public BigInteger R2L(BigInteger x, BigInteger a, BigInteger m){

BigInteger z = BigInteger.ONE;

BigInteger s = x;

BigInteger a1 = a;

while(a1.compareTo(BigInteger.ZERO) > 0){

if(a1.mod(convert(2)).equals(BigInteger.ONE)){

z = z.multiply(s).mod(m);

}

a1 = ((a1.divide(convert(2))));

if(a1.compareTo(BigInteger.ZERO) > 0){

s = s.multiply(s).mod(m);

}

}

return z;

}

public void isPerfectPower(BigInteger n){

isPerfectPower = false;

outerloop:

for(int k=2; k<=Math.floor(Math.log(n.doubleValue())/Math.log(2)); k++){

BigInteger wortel = ESqrt(n,k);

if(wortel.pow(k) == n){

isPerfectPower = true;

System.out.println(n+" = "+wortel+"^"+k);

break outerloop;

}

}

}

public void multOrd(BigInteger n){ //Bereken de kleinste r met o_r(n) > log^2(n)

System.out.println("Stap 2");

int log2n = ((int) Math.pow(logBigInteger(n,2),2));

19

int log5n = ((int) Math.pow(logBigInteger(n,2),5)); //Volgens lemma 4.3

System.out.println("log^2("+n+") = "+log2n+"; log^5("+n+") = "+log5n);

outerloop:

for(int r = 2; r <= log5n ; r++){

int k = 2;

while(R2L(n,convert(k), convert(r)).compareTo(convert(1)) > 0){

k++;

if(log2n == k && R2L(n,convert(k), convert(r)).

compareTo(convert(1)) > 0){

System.out.println("r = "+r);

stap34(n, convert(r));

break outerloop;

}

}

}

}

public void stap34(BigInteger n, BigInteger r){

System.out.println("Stap 3/4");

stap34 = false;

if(n.compareTo(r) > 0){

loop:

for(int a = 1; r.compareTo(convert(a)) >= 0; a++){

if((GCD(convert(a), n).compareTo(convert(1)) > 0) &&

(GCD(convert(a), n).compareTo(n) < 0)){

stap34 = true;

System.out.println("Samengesteld (stap 3): "+n+" =

"+GCD(convert(a), n)+"*"+n.divide(GCD(convert(a), n)));

break loop;

}

if(convert(a).compareTo(r) == 0 && !(GCD(convert(a), n).

compareTo(convert(1)) > 0) && (GCD(convert(a), n).compareTo(n) < 0)){

stap5(n, r);

}

}

}

else if(n.compareTo(r) <= 0){

stap34 = false;

System.out.println("Priem! (stap 4)");

}

}

public void stap5(BigInteger n, BigInteger r){

notComp = true;

System.out.println("Stap 5");

int a = 2;

BigInteger sqrtot = convert((int) (Math.sqrt(totient(r))*

20

(logBigInteger(n,2)))); //Floor

System.out.println(Math.sqrt(totient(r))*(logBigInteger(n,2)));

System.out.println(notComp);

System.out.println(convert(a).compareTo(sqrtot));

System.out.println(GCD(convert(a), n).compareTo(BigInteger.ONE));

while(notComp = true && convert(a).compareTo(sqrtot)<=0 &&

GCD(convert(a), n).compareTo(BigInteger.ONE) == 0){

polMult(convert(a),r,n);

a++;

if(a>Math.floor(Math.sqrt(totient(r))*(logBigInteger(n,2)))){

if(notComp = true){

System.out.println("Priem! (stap 5)");

}

else {

System.out.println("Samengesteld (stap 5)");

}

}

}

}

public void polMult(BigInteger a, BigInteger r, BigInteger n){

notComp = true;

BigInteger power = n;

Polynomial p1 = new Polynomial(convert(1));

Polynomial pkeer = new Polynomial(convert(1),a);

while(power.compareTo(convert(1)) > 0){

if(power.mod(convert(2)).compareTo(convert(1)) == 0){

//Vermenigvuldig

p1 = p1.multiply(pkeer).mod(r, n);

}

power = convert((int) Math.floor(power.divide((convert(2))).

doubleValue()));

pkeer = pkeer.multiply(pkeer); //Kwadrateer

pkeer = pkeer.mod(r, n);

}

p1 = p1.multiply(pkeer).mod(r, n);

//Controleer coefficienten

BigInteger p1coeff[] = p1.getCoeff();

int countPol = 0;

outerloop:

for(int i = 0; r.compareTo(convert(i)) > 0; i++){

if(p1coeff[i].compareTo(convert(0)) != 0){

if(p1coeff[i].compareTo(convert(1)) == 0){

countPol++;

}

21

else if(p1coeff[i].compareTo(a) == 0){

countPol++;

}

else {

System.out.println("Coefficient ongelijk aan 1 of

"+a+" gevonden.");

notComp = false;

break outerloop;

}

}

}

if(countPol != 2){

System.out.println("Aantal coefficienten ongelijk aan 0

is niet gelijk aan 2.");

notComp = false;

}

System.out.println(p1);

System.out.println("Not composite: "+notComp);

}

public void AKS(BigInteger n){

//Stap 0: Kijk of n even is

if(n.mod(convert(2)).compareTo(convert(0)) == 0){

System.out.println(n+" is even (stap 0)");

}

else{

//Stap 1: Kijk of n een perfect power is

System.out.println("Stap 1");

isPerfectPower(n);

if(isPerfectPower){

System.out.println("Samengesteld (stap 1)");

}

else{

//Stap 2 t/m 6

multOrd(n);

}

}

}

public void main(){

Scanner reader = new Scanner(System.in);

System.out.println("Voer een getal in om te testen: ");

input = reader.nextBigInteger();

long startTime = System.nanoTime();

AKS(input);

long estimatedTime = System.nanoTime() - startTime;

System.out.println("Looptijd programma: "+estimatedTime+" nanosec.");

22

}

public static void main(String[] args){

new AKS().main();

}

}

import java.math.BigInteger;

import java.util.Arrays;

public class Polynomial {

private final BigInteger[] coeff;

static BigInteger convert(int x) {

return BigInteger.valueOf(x);

}

public Polynomial(BigInteger... coeff) {

this.coeff = coeff;

}

@Override

public String toString() {

return Arrays.toString(coeff);

}

public BigInteger[] getCoeff(){

return coeff;

}

public Polynomial multiply(Polynomial polynomial) {

int totalLength = coeff.length + polynomial.coeff.length - 1;

BigInteger[] result = new BigInteger[totalLength];

for(int k=0; k<totalLength; k++){

result[k] = BigInteger.ZERO;

}

for (int i = 0; i < coeff.length; i++)

for (int j = 0; j < polynomial.coeff.length; j++) {

result[i + j] = result[i + j].add(coeff[i].

multiply(polynomial.coeff[j]));

}

return new Polynomial(result);

}

public Polynomial mod(BigInteger r, BigInteger n) {

int totalLength = r.intValue();

BigInteger[] result2 = new BigInteger[totalLength];

23

for(int k=0; k<totalLength; k++){

result2[k] = BigInteger.ZERO;

}

for (int i = coeff.length-1; i >= 0 ; i--){

result2[((i-coeff.length)%totalLength+totalLength)%totalLength]

= result2[((i-coeff.length)%totalLength+totalLength)%totalLength].

add(coeff[i].mod(n));

result2[((i-coeff.length)%totalLength+totalLength)%totalLength]

= result2[((i-coeff.length)%totalLength+totalLength)%totalLength].

mod(n);

}

return new Polynomial(result2);

}

}

1.7.2 Implementation of Pocklington

q = 3;

n0 = 0;

n = 0;

i = q^2 + 2 q;

While[n == 0,

While[n0 == 0 , If[MemberQ[Divisors[i - 1], q], n0 = i]; i--];

If[PowerMod[2, n0 - 1, n0] == 1 && GCD[2^((n0 - 1)/q) - 1, n0] == 1,

n = n0; Print[n], n0 = 0; i--]]

24

	Deterministic primality testing
	Introduction
	The AKS test
	The algorithm
	Correctness
	Complexity
	Run time

	Improvements
	Lucas-Lehmer test
	The algorithm
	Correctness
	Complexity
	Test for Mersenne primes

	Pocklington primality test
	The algorithm
	Correctness
	Complexity
	Prime number generation

	Conclusion
	Appendix
	Java code
	Implementation of Pocklington

