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Abstract

This paper concerns two aspects of the simulation of fracture. First analysis
is done of the energy distribution within a lattice at different points during
the fracture process by calculating several of its moments for different lattice
sizes. The energy moments are hypothesized to exhibit multifractal scaling
with the lattice size. Only for the point right before mechanical breakdown
of the system, a deviation from monofractality is concluded.

Another aspect builds on the conclusion that random percolation can
model strong-disorder fracture with respect to several properties that exhibit
fractality. Analysis is done whether modifying random percolation into gradi-
ent percolation based on the damage profile from the fracture simulation can
improve the similarity to strong-disorder fracture with respect to these prop-
erties. It is concluded that gradient percolation based on fracture’s damage
profile provides little improvement, but surprisingly, exaggerating this profile
does improve the similarity.
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Chapter 1

Introduction

One area of physics that is not yet very well understood is fracture. When
strenuous force is applied to a material, which eventually breaks, it is not
clear what happens on a microscopic scale. While it is investigated in the lab,
the process is analyzed theoretically as well. When the material is reduced
to a 2D lattice (square or otherwise), predictions of the breaking process
can be attempted using percolation theory. A lattice for this purpose could
be a square lattice with resistors for bonds. The resistors have different
resistivities which simulates the disorder of strength in materials. A voltage is
applied on opposite sides of the lattice, and the currents are calculated in each
resistor. If the current is above a certain threshold the resistor is removed
from the lattice. This is the fuse model, and a lot is known about this model
from percolation theory. However, it fails to incorporate an important aspect
of fracture: in a material, forces are vectorial in nature, while currents are
scalar. A modified lattice, where bonds are replaced by springs with different
stiffnesses and thresholds, and nodes are not stationary but move according
to the springs’ will, does a better job. However, it is too complex to analyze
by hand, which calls for the aid of computer simulation. In such a computer
simulation, forces on each spring are calculated at each stage in the process,
and springs are broken when the stress on them exceeds a certain threshold.

An alternative simulation is based on the same lattice, but instead of cal-
culating whether any bond exceeds its strain threshold bonds are randomly
broken. As it turns out, this random percolation resembles the fracture sim-
ulation in the case of high disorder. When fracture and random percolation
are compared based on different properties, several, especially some fractal
ones, coincide fairly well in the case of strong disorder.

In fracture however, the concentration of broken bonds is not constant
along the axis parallel to the direction of the applied strain. A possible al-
ternative to random percolation rises from this observation: break the bonds
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randomly according to a non-uniform distribution. This is one question this
paper answers: does this modified percolation simulate fracture better than
uniform random percolation?

Another aspect of fracture analyzed in this paper is the fractality of energy
moments during the process of fracture. During the applied displacement,
forces and thus energies are imparted upon the bonds in the lattice. The
distribution of these energies can be described by its moments. It is expected
that the qth order moments of the energy distribution at a particular point
in the fracture process scale with the lattice size L approximately as L to
the power a constant times q. If this constant is not integer-valued, there
is mention of fractality. The hypothesis in this paper, however, is that such
a relation does not hold, and that there is in fact a non-linear dependence
on q in the exponent of L. The other aim of this paper, therefore, is to
show whether or not this “multifractality” appears in the fracture simulation,
which may indicate the existence of multifractality of energy moments in
fracture itself.

1.1 Fracture simulation

The simulation of fracture in a two-dimensional lattice in this paper takes
a central-force spring lattice of unit length and L nodes on each edge. The
nodes within the lattice are randomly distributed, and connected by the
Delaunay tesselation criterion. Each bond is assigned a breaking threshold,
distributed according to

P (t) = (1− α)τα−1t−α, t ∈ [0, τ ], (1.1)

where α is the disorder parameter. α is 0.7 for most of the research, since it
compromises a high disorder (close to 1) with the fact that higher disorder is
computationally very demanding. The top and bottom edges of the lattice
are connected by a periodic boundary condition in order to eliminate their
influence, and the left and right nodes are quasi-periodic in the sense that
the difference in displacement of a left node and its corresponding right node
is fixed.

In each step of the breaking process a prescribed displacement, or strain,
is applied in the x-direction. A finite-element problem is solved to determine
if any bonds experience a strain larger than their threshold. If so, the bond
is removed from the lattice by setting the bond’s stiffness to (for calculation
reasons) nearly 0. Then the stiffness matrix is modified, and a new set of
linear equations is solved. This continues until the boundary conditions are
satisfied or the system falls apart.
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Chapter 2

Fractality of Energy Moments
in fracture

2.1 Introduction

Scaling, or size dependence, of extensive properties systems can in many
cases be written as a simple relation:

S(L2)

S(L1)
= (

L2

L1

)m,

where m is a scaling exponent. For common systems and properties such as
area’s dependence on length, m is integer valued. If you look at, for example,
a snowflake and look at a window of linear size L, the mass in it will scale with
Ldf , with df some non-integer value. A geometry which has such a property
is called fractal, and df its fractal dimension. In some cases, this exponent
is a different fractal dimension for different L, in which case it is called
multifractal. An example of multifractality is found in [Schmittbuhl]. Here,
a material is fractured, and the height profile in one dimension is measured
by a needle crossing over the surface. The q-th order moment of the crack
roughness is then defined as < |∆hl|q >, where ∆hl = h(x) − h(x + l). In
monofractal behavior, values of this property would be proportional to lζq.
Instead, the exponent on l is a non-linear function of q, as seen in figure 2.1.

In this section, a property of the fracture process is analyzed that is
hypothesized to show multifractality as well.
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Figure 2.1: Exponents on l for the different moments q of the roughness
profile. The deviation from linearity implies multifractality.

2.2 Theory

Energy moments within the lattice are defined as af function of the energies
of the separate bonds as follows:

Zq =
1

nint

nint∑

i=1

Eq
i , (2.1)

where int stands for “intact.” Scaling of these moments with lattice size L
in the monofractal case is Zq ∝ Lζ·q. However, in the case of multifractality,
this exponent is not linear in q, but contains higher order terms that can be
generalized as

Zq ∝ Lζ·q+K(q) ≡ Lµ(q), (2.2)

with K(q) = 0 in the case of monofractality.
An estimate of what can be expected is derived as follows. Denoting the

average energy of a single bond as Ē, Zq can be estimated as

Zq ≈ Ēq (2.3)

Ē can be related to L by the following reasoning. For each L at a specific
point in the breaking process, perhaps the point of maximum stress, the
displacement applied to the lattice is approximately the same, namely ∆x.
Subsequently each bond is stretched in the x direction so that the length of

5



each bond increases by a length proportional to ∆x/L. The energy of a bond
in this state is then approximately proportional to (∆x/L)2. Thus we get:

Zq ≈ c1L
−2q (2.4)

log Zq ≈ c2 − 2q log L (2.5)

µ(q) ≈ −2q (2.6)

Of course there are several factors ignored in this approximation that
will change the exponent or even introduce multifractality. For example, the
bonds in the volume of the lattice may have different energies than on the
edge, and the ratio of volume bonds to edge bonds is proportional to L−1.
Furthermore, when clusters form, energies will be rearranged in a manner
which may or may not depend on L, but certainly might since the number
of bonds affected scale with L in a similar manner as edge bonds. This goes
without even mentioning the crudeness of the approximation in (2.3).

2.3 Methods

To calculate the energy moments in a lattice, the central-force lattice sim-
ulation calculated and output data for several moments of the energy dis-
tribution. This is done by comparing the length of each bond while strain
is applied to its rest length (i.e. the length of the bond when no strain is
applied; by definition there is no energy in the bonds in this state), and
calculating Ei = 1/2 · ki(xi − xi0)

2, where ki is the stiffness of bond i. The
energy moments are then defined as in (2.1). This is done for four points in
the process, namely

Random Percolation regime (RP) The first point where the fractality
is investigated is at a point in the regime where random percolation
closely approximates fracture1. For practical purposes, it is observed
that at the midpoint of the random percolation regime for L = 50
the stress is 52% of the maximum stress, and it is assumed that this
percentage is independent of L, i.e. the fraction of broken bonds p scales
similarly with L for the midpoint of the random percolation regime and
the point at which 52% of the maximum stress is attained.

Maximum stress (MS) This is the point at which the stress response to
the applied strain is maximal.

1Specifically, with respect to scaling properties of correlation length and the second
moment of cluster size distribution.
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Maximum energy per bond (ME) This is the point at which the aver-
age energy in the remaining bonds is maximal. This is in fact the point
of the maximum of the first moment of the energy distribution. This
point often coincides with the point of maximum stress.

Stress drop (SD) By prediction, multifractality is most likely to be ob-
served beyond the maximum stress point, since the fragile state of the
system may make energies exhibit grand-scale redistribution. For this
reason the point right before mechanical breakdown is investigated for
its fractality. In the calculation, the stress drop point is defined as the
first point beyond the maximum stress point where the stress of the
whole lattice drops below 5% of maximum stress. Since there is hardly
any energy left here, the energy moments are calculated right before
the bond breaks that mechanically breaks down the system.

The fracture simulation is run for system sizes L = [16, 24, 32, 48, 64, 96, 128],
for several repetitions each. A log-log plot of Zq vs. L is then made for each
value of q (= moment order). The slopes of these lines are equal to µ(q) (see
(2.5) and (2.6)). From this a plot can be made of µq vs. q. If this plot is
linear, no multifractality can be concluded.

2.4 Results

The log-log plot of the energy moments Zq vs. L look like figure 2.2 in each
case. The slopes of these lines are then plotted vs. q to obtain the graphs
in figure 2.3. For all four of the curves, a linear fit and a linear fit through
the origin are shown. Each of these curves can be accurately fit linearly.
This strongly indicates monofractality. However, it is noteworthy that the
lines do not pass straight through zero, which must happen by definition
(Z0 = 1 ∝ L0, see (2.1)). In the case of RP, MS, and ME, the y-intercepts
are insignificant, with absolute values between 0.2 and 0.3 in each case. For
SD however, the y-intercept is−0.60, which is significant, as can be confirmed
by eye in the deviation of the fit from the fit through origin in figure 2.3.

A closer look at SD is then appropriate. Zooming into the SD graph to
the enclosed region in figure 2.3, figure 2.4 shows that there is a bend in the
line. There seems to be significant deviation from a linear curve. However,
in the region q = 2..8 this deviation is gone, and a straight line can be fit for
q > 2, albeit with a y-intercept unequal to zero.

A remark that should be made concerns the error bars. In the log-log
graph of moments vs. lattice size they indicate 95% confidence intervals of
the log of the means of the moments over all the samples at each lattice
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Figure 2.2: The calculated energy moments at the point of maximum stress
for different lattice sizes L. Each line represents a different moment q.

size. These errors are taken into account when fitting the lines to obtain
slopes that correspond to µ(q). While there is too much room implied by
these bars to prove either linearity or non-linearity, the near-perfect lining-
up of the points (and the points in the derivative of this graph) makes the
error bars seem out of proportion. The explanation is that the points are
correlated. All the moments were calculated from the same set of samples.
The expectation is that redoing the experiment with an entirely new set of
samples will produce a similar graph with a slope that is slightly different
but fits inside the error bars in figure 2.4.
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Figure 2.3: The plots of µq vs. q. In each plot, a linear fit is shown in blue
and a linear fit through the origin in red. The enclosed portion can be found
in figure 2.4
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Figure 2.4: A closer look at the region enclosed in dotted lines in figure 2.3.
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Chapter 3

Gradient Percolation

3.1 Introduction

This section deals with the ability of percolation in simulated lattices to
model fracture. In [Malakhovsky] a comparison is made between fracture and
random percolation (RP). For the latter, bonds in the lattice are sequentially
broken, chosen entirely at random. As is explained more in detail below, some
properties of RP matched those of fracture, while others did not. The aim of
this part of the project is to observe whether using random percolation where
not all bonds have an equal probability of being broken can improve the
similarity between fracture and percolation. “Gradient percolation” (GP)
is the term used for percolation where the probability of a bond breaking
depends on its location in the lattice. We assess how well GP matches fracture
on account of several properties.

3.2 Damage profile/distribution

The choice of the distribution that is used to assign breaking probabilities
to each bond in the lattice is based on the damage profile obtained from the
fracture simulation in [Malakhovsky]. To generate a damage profile, vertical
lines are dropped at 200 x-coordinates in the lattice, and the fraction of bonds
crossed by this line that are broken is recorded. This is done at different
points in the breaking process, but the focus lies at the point of maximum
stress. A typical (normalized and averaged over all samples) damage profile
looks like figure 3.1, for L = 50, α = 0.7, and fraction of broken bonds
p = 0.181, which is the point of maximum stress. Since the shape of the
damage profile is that of a bell curve, an obvious candidate to emulate this
profile is a Gaussian distribution. It is elevated in the sense that the pdf is
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Figure 3.1: A typical damage profile from a fracture simulation for L = 50,
α = 0.7, and p = 0.181.

raised by some constant (and the pdf is accordingly normalized) and cropped
in the sense that only the part of the distribution between x = 0 and x = 1
is considered. The pdf therefore becomes

f(x) =





1−c
Z

e
−(x−1/2)2

2σ2 + c 0 ≤ x ≤ 1
0 elsewhere

(3.1)

where Z normalizes the cropped Gaussian distribution (c = 0). There are
two main drawbacks to using this function to generate breaking probabilities.

1. There are two parameters (σ and c). While they can be estimated from
the fracture damage profiles, both fluctuate as the lattice size L and
the disorder parameter α change, in an unapparent fashion.

2. Any analytical predictions of gradient percolation are unlikely since the
function is so complex.

A simpler function that matches the density profile sufficiently well is the
elevated tent. This is an upside down absolute value function, centered at
1/2 and elevated by a constant c, while maintaining normalization. Its pdf
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is

f(x) =

{
4(1− c)[−|x− 1

2
|+ 1

2
] + c 0 ≤ x ≤ 1

0 elsewhere
(3.2)

where c = f(0) = f(1).
The value of c is estimated from the damage profile for each L and α by

minimizing the Kolmogorov-Smirnov statistic. This function is preferable to
the elevated cropped Gaussian distribution for the following reasons:

1. There is only one parameter.

2. There already is some knowledge of gradient percolation from a linear
profile, which is similar to each of the two halves of the tent function.
It is more likely that some properties can be derived if the tent profile
is assumed than if more complex elevated cropped normal distribution
is considered.

While it is possible to use the corresponding estimate of c for each lattice
size L for the disorder α = 0.7, c has been fixed at c = 6

7
; since the results

that are sought after are qualitative, varying c over its range of about 0.15
(17 ≤ L ≤ 200, α = 0.7) will not alter the results in a manner that out-
weighs the luxury of eliminating one factor from the experiment. 6

7
has been

chosen rather arbitrarily around the middle of the aforementioned range. It
is slightly lower than the estimated value at L = 50, α = 0.7, which are
the parameters for the simulation on which most of the analysis is based.
The experiment is also carried out for c = 3

5
, which gives a tent function

that exaggerates the damage profile found in fracture. It is conceivable that
applying a gradient that is larger than the gradient found in fracture will
increase the effect of matching percolation to fracture.

3.3 Comparison of GP and fracture

In gradient percolation, lattice bonds are assigned probabilities based on the
x-coordinate of their midpoints, according to the tent distribution. At each
stage, a bond is broken according to these probabilities, after which a new
set of probabilities is calculated.

3.3.1 Properties for comparison GP and fracture

In [Malakhovsky] a comparison was made between fracture and random per-
colation on account of the comparison of several properties. Some proper-
ties, such as the relationship between cluster weight and gyration radius, the
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joining probability, and cluster-size distribution all showed similarity for frac-
ture and RP and matched the predictions for RP. However, some properties
matched in certain regimes, or showed no similarity at all. For some of these
properties, it is investigated whether GP data more closely matches fracture
data, or over a broader regime. The investigated properties are:

Young’s modulus This property is one with explicit physical meaning.
When the material obeys Hooke’s law, Young’s modulus measures the
ratio of response force of the lattice as a whole (stress) to displacement
(strain). Denoting σ the stress and ε the strain,

Y =
σ

ε
. (3.3)

Scaling of ξ and M2 These properties say something about the formation
of clusters during the different processes. At several values of p (the
fraction of broken bonds) the various clusters of broken bonds are iden-
tified, and several properties are calculated. Calling ns the number of
clusters of size s divided by the total number of sites in the lattice, the
moments of their distribution are defined by

Mi =
∑
s

nss
i, (3.4)

where the second moment, denoted by M2, is of interest here. The
correlation length is a measure of the radius of clusters which give the
main contribution to M2, defined by

ξ2 =
2

∑
s R2

ss
2ns∑

s s2ns

, (3.5)

where the gyration radius Rs is defined by

R2
s =

〈
s∑

i=1

|ri − rcm|2
s

〉

(all s clusters)

. (3.6)

For RP in an infinite 2D lattice, M2 and ξ exhibit universal scaling
laws

M2 ∝ |p− pc|−γ, γ =
43

18
(3.7)

ξ ∝ |p− pc|−ν , ν =
4

3
(3.8)
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which are universal in the sense that the exponents do not depend
on the lattice details, although the proportionality factors and pc, the
percolation threshold1, do.

Survival probability For percolation, survival is defined as not containing
a spanning cluster. The survival probability is the fraction of lattice
samples that survive with fraction of broken bonds p. Specifically,
we look at p50, the fraction of broken bonds at which 50% of lattices
survive, as a function of L. With an infinite lattice, p50 = pc, and for
finite lattices p50 is a good estimate of pc. In RP, a spanning cluster
coincides with ξ approaching L, so (3.8) can be used to derive a relation
for the finite-size scaling of p50:

|p50 − pc| ∝ L−
1
ν , ν = 4/3. (3.9)

The prediction matches the RP data well, but does not match the
fracture data at all.

Anisotropy Anisotropy measures the tendency of clusters to form in one di-
rection more than another. In the case of fracture, the displacement is
applied in the x-direction, causing different behavior in crack propaga-
tion along the x- and y-directions. In RP, there is no difference between
behavior in the x- and y-directions, so no anisotropy is expected, and in-
deed, only anisotropy within the bounds of white noise is found. In GP,
varying probabilites are assigned to bonds based on their x-coordinates
but not their y-coordinates, possibly causing anisotropy.

Anisotropy is defined as

Φ =
ξ⊥ − ξ||
ξ⊥ + ξ||

(3.10)

with ξ|| and ξ⊥ the x- and y-components of ξ:

ξ2
|| =

2
∑

s X2
s s2ns∑

s s2ns

, X2
s =<

s∑

i=1

|xi − xcm|2
s

>(all s clusters)

ξ2
⊥ =

2
∑

s Y 2
s s2ns∑

s s2ns

, Y 2
s =<

s∑

i=1

|yi − ycm|2
s

>(all s clusters)

(3.11)

1The percolation threshold is defined as the lowest fraction of broken bonds which cause
an infinite spanning cluster to form in an infinite lattice.
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Figure 3.2: Young’s Modulus as a function of fraction of broken bonds p for
the different processes, and its derivative.

3.4 Results

3.4.1 Young’s Modulus

Young’s Modulus is a property that will show whether GP improves the
similarity of percolation to fracture in a physical sense. While of course in
a percolation simulation there is no displacement and no force, a strain can
be applied to the lattice and its stress response can be measured. Data for
Young’s modulus is shown in figure 3.2. It is apparent that for GP with
the tent function that matches the fracture damage profile (fracture profile
GP, or GPFP, c = 6/7) there is no improvement over RP regarding matching
fracture’s Young’s modulus progression. However, exaggerated profile GP
(GPEP, c = 3/5) clearly has a Young’s modulus curve deviating from the
RP curve in the direction of fracture. To make sure this effect is based on
more than the fact that GPEP has a lower percolation threshold, i.e. that
the system breaks apart sooner than RP, the derivative is analyzed, and it
turns out that while GPFP follows RP in having a linearly decreasing Young’s
modulus up until the breaking point, GPEP shows behavior similar to fracture
when its Young’s modulus declines more steeply near the end of the process
before the breakdown.
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Figure 3.3: Scaling of correlation length as a function of fraction of broken
bonds p (left) and distance from the percolation treshold (right), at lattice
size L = 50.

3.4.2 Correlation length and second moment of cluster-
size distribution

Figure 3.3 shows the evolution of the correlation length along the processes
of fracture, RP, and GP for each selected value of c. The results of GPFP lie
right on top of the results of RP, indicating no improvement of GP over RP.
However, GPEP results clearly choose a middle road between the RP (and
GPFP) and fracture.

The same pattern can be found in the cluster-size distribution data. Fig-
ure 3.4 shows that GPFP results are hardly different than RP results, and
clearly suggest no improvement over RP. However, the GPEP results deviate
from this in the direction of the fracture data.

While it can be conjectured that the decrease in percolation threshold
solely accounts for this improvement, it is not the case. This can be seen in
the right graphs in figures 3.3 and 3.4, where the behavior near the percola-
tion threshold is analyzed independent of the particular thresholds. Here it
can be seen that GPEP matches fracture data better than RP and GPFP in
both cases.

3.4.3 Survival Probability

The survival threshold p50, which characterizes the survival probability, is
shown for each of the processes in figure 3.5. In fracture, different conditions
for not surviving are shown: having reached maximum stress (MS), having
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Figure 3.4: Scaling of second moment of cluster-size distribution as a func-
tion of fraction of broken bonds p (left) and distance from the percolation
threshold (right) for lattice size L = 50.

reached stress drop (SD), and containing a spanning cluster (SC). For phys-
ical systems the MS and SD criteria are important, while the SC criterion is
interesting to include in the comparison between the different processes.

On the one hand, the survival thresholds of GPFP and GPEP as a function
of lattice size L do not exhibit a shape that matches fracture data any better
than RP. Like RP and unlike fracture, p50 is a linear function of L−3/4,
whereas this property for all fracture criteria is certainly not. Moreover, the
trend in GP as well as RP is that the threshold increases with increasing
lattice size, while fracture features the opposite trend. This is of course
devastating evidence that RP and GP do not simulate fracture with reference
to lattice size scaling.

On the other hand, GPFP and GPEP do have perolation thresholds more
like fracture than RP. Like fracture, GP concentrates its breaking, causing a
spanning cluster or crack earlier.

3.4.4 Anisotropy

From figure 3.6 it can be seen that fracture and RP obey the predictions
made in section 3.3: for RP, the anisotropy stays at 0 plus some white noise.
For fracture, we see that the beginning is similar to RP in that there is no
significant preference for cluster formation in one direction more than the
other, which is because cluster formation has not yet started. As the process
progresses, localization takes place, and clusters are formed. Clearly the

18



Figure 3.5: Survival threshold. This shows at which fraction of broken bonds
50% of samples of lattice size L survive, i.e. do not form spanning clusters.
For fracture, three different criteria are used for not surviving: having reached
maximum stress (MS), having reached stress drop (SD), and containing a
spanning cluster (SC).

clusters tend to grow into the y-direction.
The GP results are similar to those in section 3.4.2. Up until the fraction

of broken bonds where fracture endures a stress drop, GPFP shows similar
behavior to RP, i.e. no anisotropy. While the process is forced into concen-
trating its broken bonds in the center, there is no rule to encourage breaking
onto a cluster of broken bonds, so cluster formation only really starts to
happen after a certain fraction of bonds is broken, which is indicated by the
increase after p = 0.25. When the finite size of the cluster saturates the
growth in the y-direction, the further growth in the x-direction evens out the
anisotropy, causing Φ to decrease.

In GPEP the anisotropy clearly matches the fracture data better than RP
and GPFP do. Because the the breakings are forced towards the horizontal
center even more than in GPFP, clusters are more quickly given a chance
to grow, creating a crack along the horizontal middle, which has positive
anisotropy according to the definition (3.10).
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Figure 3.6: Anisotropy Φ of the various processes as it develops over the
range of broken bond fractions p. The lattice size is L = 50.
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Chapter 4

Discussion and Conclusions

4.1 Fractality of Energy Moments in fracture

At the maximum stress, maximum energy, and random percolation points, no
conclusion can be drawn about the nature of the fractality of energy moments.
While the dependence of µ on q can be well fitted linearly, the uncertainties in
the points and the possibility that the y-intercept is significantly unequal to
0 after all (given the significant deviation in the y-intercept in the SD graph)
discourage concluding monofractality. In any case, there is no multifractality
of polynomial order greater than 1, as in [Schmittbuhl] (figure 2.1).

At the stress drop point, monofractality can be rejected. For low values
of q, there is deviation from the line that characterizes the fractality for
q > 2, and a certain curvature. What this curve is and why it appears will
be left for further research. Again, however, multifractality of the form as in
[Schmittbuhl] is not observed.

The results are consistent with those found in [Herrmann]. There energy
moment analysis was done of the fuse model. While this model exhibits short-
comings with respect to the forces involved as mentioned before, the energy
moments display the same multifractality as in this experiment and likewise,
this multifractality occurs only near the mechanical breakdown point. Of
course the calculation of energy ignores the vectorial nature of the forces in
the lattice, but it is still remarkable that the energy moments display similar
multifractal behavior in the two models.

4.2 Gradient Percolation

In almost all properties measured, similar results are found: gradient per-
colation assuming the tent function based on the damage profile of fracture
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Figure 4.1: The damage profile of GP using c = 6/7 for one sample (top left)
and averaged over 50 samples (top right), and of GP using c = 3/5 for one
sample (bottom left) and averaged over 100 samples (bottom right).

does not improve the similarity to fracture with respect to random percola-
tion. However, when the tent function that is used in gradient percolation is
exaggerated, i.e. preferring the horizontal center more than fracture does and
breaking less bonds at the horizontal edges than fracture, there is significant
improvement of the similarity.

A main contributor to this surprising conclusion is the fact that a single
GPFP simulation does not show enough dissimilarity to a single random per-
colation simulation, but a single GPEP simulation does. The tent function is
too close in distribution to a uniform distribution to overrule the white noise,
as seen in figure 4.1. However, averaged over many samples, the tent function
is clearly visible. Using the exaggerated tent function, however, the profile is
visible in a single sample (see figure 4.1). Still, the fact that all the measured
properties tend towards the fracture results and away from random percola-
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tion results could not be predicted beforehand but gives rise to possibilities
to model fracture by percolation. It raises the question whether exaggerat-
ing the profile even more will make percolation approach the fracture process
even more or distort the improvement seen thus far. Of course, one obvious
property that will not be improved this way is the damage profile.

On the other hand, choosing the distribution based on the fracture pro-
cess’s own distribution, and then finding that the processes are dissimilar on
account of several properties supports the idea that fracture processes, and
physical processes in general, are not random. The anisotropy encountered
in fracture is not inherent, but caused by the process, evident by observing
that applied anisotropy does not produce the same results.

4.3 Recommendations

Fractality of energy moments in percolation Now that the fractality
of energy moments is analyzed in fracture, and it is concluded that
gradient percolation in some form or another can match fracture, the
question that is raised is what sort of fractality energy moments show in
the various percolation processes. The distribution of energy moments
is a physical property which says a lot about a process; therefore, it will
certainly help support or reject the notion of substituting percolation
for fracture. In any case, it is interesting to see whether percolation
will show clear multifractality or clear monofractality.

Analyze distribution of energies Now that it is determined that near
the mechanical breakdown of the system the energy moments as a func-
tion of length start to display deviant behavior, it is easy to wonder
what the energy distribution looks like. The histogram of the energies
of the bonds may change over the course of the process, especially near
the stress drop point, a critical point.

Determine the shape of µ vs. q graph for q = 0..2 Especially in the SD
graph there is apparent nonlinearity at least for small moments (q < 2).
To discover the nature of this nonlinearity will be interesting.

More exaggerated tent profile As mentioned in section 4.2, a hypothesis
that results from the conclusion drawn about GPFP and GPEP is that
a further exaggerated tent profile (or perhaps Gaussian, cf. 3.1) will
tend its properties towards those of fracture or start to distort them,
denying further improvement. A possible choice is selecting a value for
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c for which the percolation threshold is the same as in fracture, for each
different lattice size.

Analyze avalanche-like behavior around and beyond maximum stress
It is concluded that the final crack localization and mechanical break-
down cannot be modelled by a random process, so to find out what the
driving force is behind the formation of the crack is an important step
towards understanding the process of fracture.
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