
 Eindhoven University of Technology

BACHELOR

ASIP : asymmetric simple inclusion process

Suijkerbuijk, C.A.W.M.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/08a1363c-3bd4-489a-90ce-3630658d37c8

ASIP:

Asymmetric Simple Inclusion Process

Corné Suijkerbuijk
Student number: 0808814

c.a.w.m.suijkerbuijk@student.tue.nl

05-02-2015

Bachelor final project (2WH40)
Industrial and Applied Mathematics
University of Technology Eindhoven

Supervisor: Prof. dr. ir. O.J. Boxma

1

mailto:c.a.w.m.suijkerbuijk@student.tue.nl

1 Abstract

An ASIP is an queueing system which will be introduced in the introduction.
In the literature study some properties of an homogeneous ASIP will be investigated using Monte
Carlo simulation. The properties are: number of particles, load, draining time, interexit time and
coalescence time. Then the traversal time will be discussed. The number of particles in an ASIP
is a Markov process which gives the opportunity to investigate the expected number of particles
in steady state. Using the Markovian dynamics the probability generating function for number of
particles in the system will be determined. In the next section some asymptotic analysis about the
traversal time, overall load, busy period, first occupied queue and draining time will be done. In
the final section of the literature study some generalizations on the ASIP model will be discussed.
The first generalization is that the order in which gates open is a Markov process instead of gates
that open independently of each other. The second generalization is that the time between two
consecutive gate openings is according to a general random variable instead of being exponentially
distributed. The third generalization is that particles may enter the system at all queues instead
of only entering the system via the first queue.
In my own research part the ASIP with queue capacities will be introduced. The purpose is to
allocate a total capacity C over the queues of the ASIP such that the throughput of particles is
maximized. In order to determine the throughput the limiting distribution of number of particles
in the queues will be determined. Then we will take a look at the number of possibilities of
allocating C capacity over n queues. Then a lemma follows which says that a small subset of
all solutions contains an optimal solution. By this reduction it will be possible to solve the
optimization problem by trying all solutions in this small subset. For allocating a total capacity
of around 100 or less this can be done in short time. In the next section a general formula for the
throughput will be derived in the case when the capacity of each queue is one. My own research
part will be concluded by examples of allocating total capacity over an ASIP with 20 queues for
certain gate opening intensities.

2

Contents

1 Abstract 2

2 Introduction 5

3 Literature Study 6
3.1 Monte Carlo simulation homogeneous ASIP . 6

3.1.1 Number of particles . 6
3.1.2 Load . 6
3.1.3 Draining time . 7
3.1.4 Interexit time . 7
3.1.5 Coalescence time . 7

3.2 Traversal time . 7
3.3 Markovian dynamics . 8
3.4 Dynamics of expected number of particles . 8

3.4.1 Dynamics expectation of X(t) . 9
3.4.2 Dynamics expectation of Y(s) . 9
3.4.3 Expected number of particles in steady state 10

3.5 Probability Generating Function . 11
3.5.1 Probability Generating Function of X(t) . 11
3.5.2 Probability Generating Function of Y(s) . 12
3.5.3 Probability Generating Function in steady state 12
3.5.4 Steady state analysis for ASIP with one queue 13
3.5.5 Steady state analysis for ASIP with two queues 13

3.6 Asymptotic analysis of ASIP . 14
3.6.1 Traversal time . 14
3.6.2 Overall load . 14
3.6.3 Busy period . 16
3.6.4 First occupied queue . 17
3.6.5 Draining time . 17

3.7 ASIP where particles may arrive at all queues . 18
3.7.1 Model description . 18
3.7.2 Analysis . 18

3.8 Summary of literature study . 20

4 Own research 21
4.1 ASIP model with capacities . 21
4.2 Optimization problem . 22

4.2.1 Parameters . 22
4.2.2 Variables . 22
4.2.3 Constraints . 22
4.2.4 Objective function . 22

4.3 Determining number of particles in steady state . 22
4.3.1 Number of particles in steady state in first queue 23
4.3.2 Number of particles in rest of the queues 24
4.3.3 Determining limiting probability of zero particles in each queue 25

4.4 Number of possibilities of allocating C capacity over n queues 26
4.5 Determining throughput of homogeneous ASIP where every queue has one capacity 27

4.5.1 Throughput of general ASIP where every queue has one capacity 27
4.5.2 Throughput of homogeneous ASIP where every queue has one capacity . . 29

4.6 The optimal solution of homogeneous ASIP with 20 queues 29
4.6.1 homogeneous ASIP with 20 queues with λ = µ = 1 29
4.6.2 homogeneous ASIP with 20 queues with λ = 10 and µ = 1 33

3

4.6.3 homogeneous ASIP with 20 queues with λ = 1 and µ = 10 33
4.7 The optimal solution of inhomogeneous ASIP with 20 queues 34

4.7.1 Optimal solution of monotone decreasing ASIP with 20 queues 34
4.7.2 Optimal solution of monotone increasing ASIP with 20 queues 35

4

2 Introduction

The ASIP (= Asymmetric Simple Inclusion Process) is a system with a number of sequential
queues, say n queues. The queues have unbounded capacity. Particles will enter the system
according to a Poisson process with parameter λ. After each queue there is a gate which is closed
most of the time. Gate i will open according to a Poisson process with parameter µi. At the
moment gate i opens, all the particles which are located in queue i will move to queue i+1 and
after that gate i will close immediately. At the moment gate n opens, all the particles which are
located in queue n leave the system. If µ1 = µ2 = ... = µn, then we call it an homogeneous ASIP.
Figure 1 [2] shows a visual representation of the ASIP model.

Figure 1: Visual representation of ASIP model

The ASIP is Asymmetric because the direction of movement of the particles is uniform. Particles
can only move to queues with a higher index and not the other way around.
The ASIP is Simple because the queues are in a sequence; there is only one way to go through the
system.
The ASIP is an Inclusion Process because all particles go to the next queue simultaneously when
the gate opens. In an Exclusion Process one particle goes to the next queue if the gate opens and
the next queue is empty. So in the Exclusion Process there is only one or zero particle in each
queue. In an Inclusion Process it doesn’t matter whether the next queue is empty.

5

3 Literature Study

This chapter is organized as follows. In Section 3.1 more insights will be given about a homogeneous
ASIP in steady state. In Section 3.2 the traversal time of a particle in the system will be analyzed.
In Section 3.3 the Markovian dynamics of the number of particles in the system will be given.
This Markovian dynamics will be used in Section 3.4 in order to analyze the expected number
of particles in the system. In Section 3.5 the Probability Generating Function of the number of
particles will be formulated and analyzed in steady state. In Section 3.6 some asymptotic analysis
about ASIP’s observations will be done. Finally, in Section 3.7 the ASIP model will be generalized
in the sense of having a general random variable for the time between two gate openings and having
the possibility that particles may arrive at all queues.

3.1 Monte Carlo simulation homogeneous ASIP

This section is a based on the journal article ”Asymmetric Inclusion Process as a Showcase of
Complexity” [2]. In this section the homogeneous ASIP with λ = µ1 = ... = µn = 1 in steady
state will be considered where n is large. First a definition of the number of particles and some
asymptotic analysis will be given by using Monte Carlo simulation. Then four characterizations
of the ASIP will be defined: load, draining time, interexit time and coalescence time. For each of
these characterizations a stochastic approximation will be done using Monte Carlo Simulation.

3.1.1 Number of particles

Define Xk(t) as the number of particles in queue k at time t. Define X(t) = (X1(t), ..., Xn(t)) as
the vector of these random variables. Also define Xk = limt→∞Xk(t) as the number of particles
in queue k at steady state. Finally define X = (X1, ..., Xn) as the vector of these random variables
at steady state.
Monte Carlo Simulation of this homogeneous ASIP gives the following result:

P(Xk > 0) ≈ k− 1
2 . (1)

This sounds logic because each time a gate opens a cluster of particles will merge with a cluster
of particles in the next queue, so clusters of particles will be greater in the last queues than in
the first ones and particles enter the system only via the first queue. So larger clusters means less
queues occupied so the probability that some particles wait in queue k decreases as k becomes
larger. This also clarifies that the number of particles in queue k increases as k becomes larger
which is also a result of the Monte Carlo simulation:

E[Xk|Xk > 0] ≈ k 1
2 (2)

The final result of the Monte Carlo simulation is about the standard deviation of Xk:

σ(Xk)

E[Xk]
≈ k 1

4 (3)

When k is large, most of the time there is no particle in the kth queue and if there are particles
in the kth queue it is a relative large cluster of particles as mentioned above. So the standard
deviation on the number of particles increases as k becomes larger.

3.1.2 Load

Load is defined as the total number of particles in the system (=|X|). The load can be approxi-
mated by:

|X| ∼
√

2n ·Θ + n. (4)

Here Θ is a Gaussian random variable with mean zero and variance one.

6

3.1.3 Draining time

Draining time is defined as time that is takes until all particles in steady state have left the system
where no particles enter the system. More formally: If λ = 0 and X(0) = X, then the draining
time is defined as inf{t ≥ 0||X(t)| = 0}. The draining time can be approximated by:

inf{t ≥ 0||X(t)| = 0} ∼
√
n ·Θ + n. (5)

Here Θ is again a Gaussian random variable with mean zero and variance one.

3.1.4 Interexit time

The interexit time IT is defined as the time between two consecutive moments where particles
leave the system. The Interexit time can be approximated by:

IT ∼
√
πn ·Θ. (6)

Here Θ is a Rayleigh distribution with mean one and tail probability:

P(Θ > t) = e−
πt2

4 for t > 0. (7)

3.1.5 Coalescence time

Assume that the ASIP is circular. This means that leaving particles of the last queue will enter
the first queue. Further assume that all queues are occupied at time t = 0. During this process
particles will cluster with each other and there comes a moment that all particles in the system
have been merged to one single cluster. The time till this happens is defined as the coalescence
time CT . The coalescence time can be approximated by:

CT ∼ n2

6
·Θ. (8)

Here Θ is an inverse Gaussian random variable with mean one and density:

d

dt
P(Θ ≤ t) =

1√
4π
5

· t− 3
2 · e

− (t−1)2

4t
5 . (9)

3.2 Traversal time

This section is based on page 3 of the journal article ”Asymmetric Inclusion Process” [3].

The traversal time T is defined as the time between the moment a particle enters the system
and the moment the particle leaves the system by leaving the last queue. During the progress a
particle has to visit each queue once. By the fact that gate k opens according to a Poisson Process
with parameter µk the waiting time between two consecutive openings of gate k is exponentially
distributed with parameter µk. Because of the memoryless property of the exponential distribu-
tion the time for a particle staying in queue k is exponentially distributed with parameter µk.
Because the gates open independently of each other the traversal time is the sum of the waiting
times in each queue:

T = E1 + ...+ En with Ei ∼ Exp(µi). (10)

The expected traversal time and his variance are then:

E[T] =
1

µ1
+ ...+

1

µn
. (11)

V ar(T) =
1

µ2
1

+ ...+
1

µ2
n

. (12)

Note that the traversal time of an homogeneous ASIP is an Erlang distribution: Thom ∼ Erlang(µ1, n).

7

3.3 Markovian dynamics

This section is based on page 4 of the journal article ”Asymmetric Inclusion Process” [3].

The openings of the gates follow a Markov Process. The number of particles in the system at
time t is X(t) = (X1(t), ..., Xn(t)). In order to investigate the dynamics of the number of particles
it is interesting to look at X(t+ ∆) where ∆ is very small. According to the Markovian dynamics
X(t+ ∆) is:

X(t+ ∆) =

X(t) w.p. 1− (λ+ µ)∆ + o(∆)

(X1(t) + 1, X2(t), X3(t), ..., Xn(t)) w.p. λ∆ + o(∆)

(0, X1(t) +X2(t), X3(t), X4(t), ..., Xn(t)) w.p. µ1∆ + o(∆)

(X1(t), 0, X2(t) +X3(t), X4(t), ..., Xn(t)) w.p. µ2∆ + o(∆)

: :

(X1(t), X2(t), ..., Xn−2(t), 0, Xn−1(t) +Xn(t)) w.p. µn−1∆ + o(∆)

(X1(t), X2(t), ..., Xn−1(t), 0) w.p. µn∆ + o(∆).

(13)

In this equation µ = µ1 + ...+µn and w.p. means with probability. The first line is the case when
nothing happens. The second line is the case when one particle enters the system. The third line
is the case when gate 1 opens. etc.

The number of particles and their positions in the system only change when a particle enters the
system or a gate opens. Call these proceedings Poissonian events. Define Yk(s) as the number of
particles in queue k after the sth Poissonian event took place. Also define Y (s) = (Y1(s), ..., Yn(s)).
In order to investigate the dynamics of Y (s) it is interesting to look at the number of particles
after the (s+ 1)th Poissonian event. According to the Markovian dynamics you get the following:

Y (s+ 1) =

(Y1(s) + 1, Y2(s), Y3(s), ..., Yn(s)) w.p. λ
λ+µ

(0, Y1(s) + Y2(s), Y3(s), Y4(s), ..., Yn(s)) w.p. µ1

λ+µ

(Y1(s), 0, Y2(s) + Y3(s), Y4(s), ..., Yn(s)) w.p. µ2

λ+µ

: :

(Y1(s), Y2(s), ..., Yn−2(s), 0, Yn−1(s) + Yn(s)) w.p. µn−1

λ+µ

(Y1(s), Y2(s), ..., Yn−1(s), 0) w.p. µn
λ+µ .

(14)

The first line is the case when a particle enters the system. The second line is the case when the
first gate opens. The third line is the case when the second gate opens. etc.

3.4 Dynamics of expected number of particles

This section is based on page 5 and 6 of the journal article ”Asymmetric Inclusion Process” [3].

The expectation of the number of particles in the system will be investigated in this section.
First by finding a differential equation for X(t) and a difference equation for Y (s) and finally
investigating the expected number of particles in steady state.

8

3.4.1 Dynamics expectation of X(t)

Denote E[X(t)] = (E[X1(t)], ...,E[Xn(t)])>. Now we are going to look at E[X(t + ∆)] by condi-
tioning on X(t). According to the Markovian dynamics in (13) you get the following:

E[X(t+ ∆)] = E[E[X(t+ ∆)|X(t)]] =

(1− (λ+ µ)∆)E[X(t)]

+(λ∆)E[X(t) + (1, 0, ..., 0)>]

+(µ1∆)E[X(t) + (−X1(t), X1(t), 0, ..., 0)>]

+(µ2∆)E[X(t) + (0,−X2(t), X2(t), 0, ..., 0)>]

+...+

+(µn−1∆)E[X(t) + (0, ..., 0,−Xn−1(t), Xn−1(t))>]

+(µn∆)E[X(t) + (0, ..., 0,−Xn(t))>]

+o(∆).

(15)
Note that 1 − (λ + µ)∆ + λ∆ + µ1∆ + µ2∆ + ... + µn∆ = 1. So we can take 1 · E[X(t)] to the
other side and divide both sides by ∆:

E[X(t+ ∆)]− E[X(t)]

∆
=

λ · (1, 0, ..., 0)>

+µ1 · (−E[X1(t)],E[X1(t)], 0, ..., 0)>

+µ2 · (0,−E[X2(t)],E[X2(t)], 0, ..., 0)>

+...+

+µn−1 · (0, ..., 0,−E[Xn−1(t)],E[Xn−1(t)])>

+µn · (0, ..., 0,−E[Xn(t)])>

+ o(∆)
∆ .

(16)

Now taking ∆→ 0:

d E[X(t)]

dt
=

−µ1

µ1 −µ2

µ2 .
. .
. −µn−1

µn−1 −µn

 · E[X(t)] +

λ
0
:
0

 = M · E[X(t)] +

λ
0
:
0

 . (17)

Note that the empty elements in matrix M mean zeros. So the mean dynamics of X(t) can be
characterized by this differential equation which has the following solution:

E[X(t)] = M−1(eMt − I)

λ
0
:
0

 . (18)

Here I is an identity matrix of size n.

3.4.2 Dynamics expectation of Y(s)

In the same way Y(s) can be analyzed. Denote E[Y (s)] = (E[Y1(s)], ...,E[Yn(s)]). Now we are
going to look at E[Y (s + 1)] by conditioning on Y (s). According to the Markovian dynamics in

9

(14) you get the following:

E[Y (s+ 1)] = E[E[Y (s+ 1)|Y (s)]] =

λ
λ+µ · E[Y (s) + (1, 0, ..., 0)>]

+ µ1

λ+µ · E[Y (s) + (−Y1(s), Y1(s), 0, ..., 0)>]

+ µ2

λ+µ · E[Y (s) + (0,−Y2(s), Y2(s), 0, ..., 0)>]

+...+

+µn−1

λ+µ · E[Y (s) + (0, ..., 0,−Yn−1(s), Yn−1(s))>]

+ µn
λ+µ · E[Y (s) + (0, ..., 0,−Yn(s))>].

(19)

Note that λ
λ+µ + µ1

λ+µ + + µ2

λ+µ + ...+ + µn
λ+µ = 1. So we can take 1 · E[Y (s)] to the other side and

multiply both sides with (λ+ µ):

(λ+ µ) · (E[Y (s+ 1)]− E[Y (s)]) = M · E[Y (s)] +

λ
0
:
0

 . (20)

In this equation M is the same matrix as in Section 3.4.1. So the mean dynamics of Y (s) can be
characterized by this difference equation which has the following solution:

E[Y (s)] = M−1[(I +
M

λ+ µ
)s − I]

λ
0
:
0

 . (21)

Here I is again an identity matrix of size n.

3.4.3 Expected number of particles in steady state

The expected number of particles in steady state is E[X]. In steady state the expected number of

particles is a constant, so d E[X(t)]
dt = 0. Substituting this in (17) gives:

0 = M · E[X] +

λ
0
:
0

 . (22)

The expected number of particles in steady state is also E[Y]. In steady state the expected number
of particles is a constant, so E[Y (s+ 1)]− E[Y (s)] = 0. Substituting this in (20) gives:

0 = M · E[Y] +

λ
0
:
0

 . (23)

This is the same result as in (22) which is not surprising, because E[X] is the number of particles
at time t with t → ∞ and infinitely many Poissonian events took place between time zero and
time infinity.
Solving (22) and (23) leads to the following result:

E[Xi] = E[Yi] =
λ

µi
∀i ∈ {1, ..., n}. (24)

Note that this is the same result as when you have n independent ASIP’s where ASIP i has one
queue where particles come into ASIP i with intensity λ and the gate opens with intensity µi. So

10

in steady state the expected number of particles in queue i is independent of the gate opening
intensities of the other queues.

If we combine (11) and (24) we can find a formula for the number of particles in the system
in steady state:

E[

n∑
k=1

Xk(t)] = E[

n∑
k=1

Yk(s)] =

n∑
k=1

λ

µk
= λE[T]. (25)

This formula says that the mean number of particles in steady state is the intensity of incoming
particles λ multiplied by the mean traversal time of one particle E[T]. This can be recognized as
a version of Little’s law in queueing theory.

3.5 Probability Generating Function

This section is based on pages 7 to 10 of the journal article ”Asymmetric Inclusion Process” [3].

In order to analyze the dynamics of the number of particles in the system in more detail, we
want to find the probability generating functions of X(t) and Y (s). When we have an explicit for-
mula for the probability generating functions, then we are able to calculate the expected number
of particles in the system.

3.5.1 Probability Generating Function of X(t)

The probability generating functions of X(t) is defined as follows:

GX(t, z1, z2, ..., zn) = E[z
X1(t)
1 · zX2(t)

2 · ... · zXn(t)
n]. (26)

Now we are going to look at the probability generating function at time t + ∆ by conditioning
on the number of particles at time t. According to the Markovian dynamics in (13) you get the
following:

E[

n∏
k=1

z
Xk(t+∆)
k] = E[E[

n∏
k=1

z
Xk(t+∆)
k |X(t)]] =

(1− (λ+ µ)∆)E[
∏n
k=1 z

Xk(t)
k]

+(λ∆)E[z1

∏n
k=1 z

Xk(t)
k]

+(µ1∆)E[z
X1(t)
2

∏n
k 6=1 z

Xk(t)
k]

+(µ2∆)E[z
X2(t)
3

∏n
k 6=2 z

Xk(t)
k]

+...+

+(µn−1∆)E[z
Xn−1(t)
n

∏n
k 6=(n−1) z

Xk(t)
k]

+(µn∆)E[
∏n
k 6=n z

Xk(t)
k]

+o(∆).

(27)

Using the notation of probability generating function in (26) gives:

GX(t+ ∆, z1, z2, ..., zn) =

(1− (λ+ µ)∆)GX(t, z1, z2, ..., zn)

+(λ∆)z1GX(t, z1, z2, ..., zn)

+(µ1∆)GX(t, z2, z2, ..., zn)

+(µ2∆)GX(t, z1, z3, z3, z4, ..., zn)

+...+

+(µn−1∆)GX(t, z1, z2, ..., zn−2, zn, zn)

+(µn∆)GX(t, z1, z2, ..., zn−1, 1)

+o(∆).

(28)

11

By taking 1 ·GX(t, z1, z2, ..., zn) from the right side to the left, dividing both sides by ∆ and taking
∆→ 0 you get the following result:

d GX
dt

(t, z1, z2, ..., zn) =

(λ(z1 − 1)− µ)GX(t, z1, z2, ..., zn)

+µ1GX(t, z2, z2, ..., zn)

+µ2GX(t, z1, z3, z3, z4, ..., zn)

+...+ +µn−1GX(t, z1, z2, ..., zn−2, zn, zn)

+µnGX(t, z1, z2, ..., zn−1, 1).

(29)

Note that in the last line of this equation GX(t, z1, z2, ..., zn−1, 1) appears which is equal to
GX(t, z1, z2, ..., zn−1). So we have an equivalent generating function without the last variable
zn. In steady state the left side of this equation is zero, so in steady state we see a way to
determine probability generating functions recursively.

3.5.2 Probability Generating Function of Y(s)

The probability generating function Y (s) is defined as follows:

GY (s, z1, z2, ..., zn) = E[z
Y1(s)
1 · zY2(s)

2 · ... · zYn(s)
n]. (30)

Now we are going to look at the probability generating function after the (s + 1)th Poissonian
event by conditioning on the number of particles after the sth Poissonian event. According to the
Markovian dynamics in (14) you get the following:

E[

n∏
k=1

z
Yk(s+1)
k] = E[E[

n∏
k=1

z
Yk(s+1)
k |Y (s)]] =

λ
λ+µE[z1

∏n
k=1 z

Yk(s)
k]

+ µ1

λ+µE[z
Y1(s)
2

∏n
k 6=1 z

Yk(s)
k]

+ µ2

λ+µE[z
Y2(s)
3

∏n
k 6=2 z

Yk(s)
k]

+...+

+µn−1

λ+µ E[z
Yn−1(s)
n

∏n
k 6=(n−1) z

Yk(s)
k]

+ µn
λ+µE[

∏n
k 6=n z

Yk(s)
k].

(31)

Using the notation of probability generating function in (30) gives:

GY (s+ 1, z1, z2, ..., zn)−GY (s, z1, z2, ..., zn) =

λ(z1−1)−µ
λ+µ GY (s, z1, z2, ..., zn)

+ µ1

λ+µGY (s, z2, z2, z3, ..., zn)

+ µ2

λ+µGY (s, z1, z3, z3, z4, ..., zn)

+...+

+µn−1

λ+µ GY (s, z1, ..., zn−2, zn, zn)

+ µn
λ+µGY (s, z1, ..., zn−1, 1).

(32)

3.5.3 Probability Generating Function in steady state

In steady state the probability generating function is time-homogeneous: GX(t, z1, ..., zn) ≡
GX(z1, ..., zn) and d GX

dt (t, z1, ..., zn) = 0. Substituting this in (29) gives:

(λ(1− z1) + µ)GX(z1, z2, ..., zn) =

µ1GX(z2, z2, z3, ..., zn)

+µ2GX(z1, z3, z3, z4, ..., zn)

+...+

+µn−1GX(z1, ..., zn−2, zn, zn)

+µnGX(z1, ..., zn−1, 1).

(33)

12

Also holds in steady state: GY (s, z1, ..., zn) ≡ GY (z1, ..., zn) andGY (s+1, z1, z2, ..., zn)−GY (s, z1, z2, ..., zn) =
0. Substituting this in (32) gives:

(λ(1− z1) + µ)GY (z1, z2, ..., zn) =

µ1GY (z2, z2, z3, ..., zn)

+µ2GY (z1, z3, z3, z4, ..., zn)

+...+

+µn−1GY (z1, ..., zn−2, zn, zn)

+µnGY (z1, ..., zn−1, 1).

(34)

Note that (33) and (34) have the same structure. So in steady state the distributions of X(t)
and Y(s) are the same. This is called the PASTA phenomenon. ”The PASTA phenomenon is a
central concept in queueing theory, which implies that arriving customers find, on average, the
same workload in the queueing system as an outside observer looking at the system at an arbitrary
point in time.” [3] The PASTA phenomenon holds for queueing systems with Poisson arrivals, but
not for queueing systems in general.
Another thing what you can observe from (33) and (34) is that an observation of the first m queues
in an ASIP with n queues is the same as an observation of an ASIP with m queues. This can be
seen in (33) and (34) by taking zm+1, ..., zn equal to 1. Then at both sides of the equations you
have the sum

∑n
i=m+1 µiG(z1, ..., zm, 1, ..., 1). Subtract this term on both sides of the equations

and you get the same equations (33) and (34) where n is replaced by m.

3.5.4 Steady state analysis for ASIP with one queue

Consider the ASIP consisting of only one queue. According to (33) you get in steady state the
following result:

(λ(1− z1) + µ)GX(z1) = µ1 ·GX(1). (35)

Note that GX(1) = E[1X] = 1. Then:

GX(z1) =
µ1

λ(1− z1) + µ1
=

µ1

λ+µ1

1− (1− µ1

λ+µ1
)z1

. (36)

This can be recognized as a geometric distribution with parameter µ1

λ+µ1
which means that:

P(X1 = j) = P(Y1 = j) = (1− µ1

λ+ µ1
)j · µ1

λ+ µ1
. (37)

That the number of particles in the queue in steady state is geometric distributed sounds logical.
Namely the probability that the gate (=gate 1) opens as next Poissonian event is µ1

λ+µ1
and the

probability that a particle arrives as next Poissonian event is λ
λ+µ1

= 1− µ1

λ+µ1
. So the probability

of having j particles in the queue is the probability that j particles arrive first (= (1− µ1

λ+µ1
)j) and

then multiplied by the probability that the gate opens (= µ1

λ+µ1
).

3.5.5 Steady state analysis for ASIP with two queues

By using (33) you get the following formula for GX(z1, z2):

GX(z1, z2) =
µ2

1µ2

(λ(1− z2) + µ2)(λ(1− z2) + µ1)(λ(1− z1) + µ1 + µ2)
+

µ1µ2

(λ(1− z1) + µ1)(λ(1− z1) + µ1 + µ2)
.

(38)
Even the probability generating function of an ASIP with only two queues becomes rather complex.
The solution’s complexity increases drastically when an ASIP has more queues, which makes
finding probability generating functions for numbers of particles in ASIP’s with a lot of queues
practically impossible.

13

3.6 Asymptotic analysis of ASIP

This section is based on the journal article ”Limit laws for the asymmetric inclusion process” [4]

In this section we do asymptotic analysis of the following observables of the ASIP: Traversal
time, Overall load, Busy period, First occupied queue and Draining time. Also the homogeneous
system will be analyzed.

3.6.1 Traversal time

As we saw in Section 3.2 the traversal time T is sum of independent random variables Ti with
i = 1, ..., n. Ti is the waiting time in the ith queue which is exponentially distributed with
parameter µi. In order the analyze the mean traversal time we want to find the Laplace Transform
of T:

E[e−ΘT] = E[e−ΘT1 · e−ΘT2 · ... · e−ΘTn] = E[

n∏
k=1

e−ΘTk] =

n∏
k=1

E[e−ΘTk]. (39)

The expectation of the product is equal to the product of expectations because the waiting times
in the queues are independent of each other. Waiting time Tk is exponentially distributed with
parameter µk which has the following Laplace Transform:

E[e−ΘTk] =

∫ ∞
0

e−Θt · µke−µkt dt =

∫ ∞
0

µke
−(µk+Θ)t dt =

µk
µk + Θ

. (40)

The Laplace Transform of the traversal time is then:

E[e−ΘT] =

n∏
k=1

µk
µk + Θ

. (41)

3.6.2 Overall load

The Overall load is defined as the total number of particles in the system. In section 3.4.3 we
derived the ASIP version of Little’s law:

E[L] =

n∑
k=1

λ

µk
= λ

n∑
k=1

1

µk
= λE[T]. (42)

In order to analyze the overall load further, denote X(k)(t) as the number of particles in the first
k queues in steady state at time t. Now we want to find the number of particles in the first k
queues in steady state at time t+∆ where ∆ is very small. According to the Markovian dynamics
in (13) you get the following:

X(k)(t+ ∆) =

X(k)(t) w.p. 1− (λ+ µk)∆ + o(∆)

X(k)(t) + 1 w.p. λ∆ + o(∆)

X(k−1)(t) w.p. µk∆ + o(∆)

. (43)

Here the first line is the situation when nothing happens, the second line is the situation when
a particle enters the first gate and the last line is the situation when gate k opens such that all
particles in the kth leave the number of particles in the first k queues.
Now define GX(k)

(t, z) as the probability generating functions of the number of particles in the
first k queues at time t:

GX(k)
(t, z) = E[zX(k)(t)] (44)

Note that GX(k)
(t, z) = GX(t, z, ..., z, 1, ..., 1) where z1 = ... = zk = z and zk+1 = ... = zn = 1.

Now we are going to look at the probability generating function at time t + ∆ by conditioning

14

on the number of particles at time t. According to the Markovian dynamics in (13) you get the
following:

GX(k)
(t+ ∆, z) =

(1− (λ+ µ)∆)GX(k)
(t, z)

+(λ∆)zGX(k)
(t, z)

+(µ1∆)GX(k)
(t, z)

+...+

+(µk−1∆)GX(k)
(t, z)

+(µk∆)GX(k−1)
(t, z)

+(µk+1∆)GX(k)
(t, z)

+...+

+(µn∆)GX(k)
(t, z)

. (45)

By taking GX(k)
(t, z) to the left and dividing both sides by ∆ you get the following:

GX(k)
(t+ ∆, z)−GX(k)

(t, z)

∆
= (λ(z − 1)− µk)GX(k)

(t, z) + µkGX(k−1)
(t, z) + o(∆). (46)

Taking ∆→ 0 gives the following:

d GX(k)

dt
(t, z) = (λ(z − 1)− µk)GX(k)

(t, z) + µkGX(k−1)
(t, z). (47)

In steady state the probability density function is time homogeneous. This yields thatGX(k)
(t, z) =

GX(k)
(z) and

d GX(k)

dt (t, z) = 0. Equation (3.6.2) results then in:

GX(k)
(z) =

µk
µk + λ(1− z)

GX(k−1)
(z). (48)

By doing this step recursively gives:

GX(k)
(z) =

µk
µk + λ(1− z)

· ... · µ2

µ2 + λ(1− z)
·GX(1)

(z). (49)

Note that GX(1)
(z) is equal to GX(z1) in the situation of one ASIP with only one queue. In

equation (36) we derived that GX(z1) = µ1

λ(1−z1)+µ1
. This gives the following result:

GX(k)
(z) =

µk
µk + λ(1− z)

· ... · µ1

µ1 + λ(1− z)
=

k∏
i=1

µi
µi + λ(1− z)

=

k∏
i=1

µi
λ+µi

1− (1− µi
λ+µi

)z
. (50)

Note that the probability generating function of the number of particles in the first k queues is a
product of k geometric distributions on non-negative integers with parameter µi

λ+µi
. This results

that the total number of particles in the first k queues is a sum of k geometric distributions with
parameter µi

λ+µi
and the total number of particles in the system is then:

L =

n∑
i=1

Gi with Gi ∼ Geo(
µi

λ+ µi
). (51)

So the the number of particles in the first k queues behaves the same as the total number of
particles in k independent ASIP’s with one queue where the arrival intensity is λ and the gate
opening of the ith ASIP is exponentially distributed with parameter µi.
A geometric distribution with parameter p has mean 1−p

p and variance 1−p
p2 . The mean number

of particles in the first k queues is:

E[X(k)(t)] =

k∑
i=1

1− µi
λ+µi
µi

λ+µi

=

k∑
i=1

λ
λ+µi
µi

λ+µi

=

k∑
i=1

λ

µi
= λ · (1

µ1
+ ...+

1

µk
). (52)

15

Note that the ASIP’s version of Little’s law holds for the first k queues of an ASIP. This sounds
logic because what happens in queue k + 1 up to and including queue n does not influence the
number of particles in the first k queues because the ASIP is asymmetric. So you might feel in
advance that Little’s law still holds for the first k queues.
The variance of the number of particles in the first k queues is:

V ar(X(k)(t)) =

k∑
i=1

1− µi
λ+µi

(µi
λ+µi

)2
=

k∑
i=1

λ
λ+µi

µ2
i

(λ+µi)2

=

k∑
i=1

λ · λ+ µi
µ2
i

= λ · (λ+ µ1

µ2
1

+ ...+
λ+ µk
µ2
k

). (53)

Finally note that changing the order of the elements in the product of the probability generating
function of the number of particles in the first k queues won’t change the result. This means that
changing the order of the first k queues in the ASIP won’t change the dynamics of the number of
particles in the first k queues. So the ASIP’s load is invariant to gate permutations.

Now we can find with equation (51) the probability that the system is empty:

P(L = 0) = P(G1 = 0, ..., Gn = 0) =

n∏
i=1

P(Gi = 0) =

n∏
i=1

µi
λ+ µi

(54)

Note that for this probability the ratio between the µi’s and λ is important. If λ is proportional
larger than the µi’s then the probability of having an empty system is quite small. On the other
hand if λ is proportional smaller than the µi’s then the probability of having an empty system is
larger. Note that if the number of queues in an ASIP increases the probability of having an empty
system will decrease.

3.6.3 Busy period

Busy period B is defined as the random variable of the duration where the system is continuously
non-empty. So this is the time between an instant that a particle enters an empty system and the
first time the system becomes empty again.
Suppose a particle enters an empty system and has traversal time T. Then two cases can happen:
(i) this particle leaves the system before another particles enters the system; (ii) another particle
enters the system before this particle leaves the system.
Denote the time between the arrivals of the two particles by ∆0. Because the arrivals of the system
is Poisson distributed with parameter λ, then ∆0 is exponentially distributed with parameter λ.
Note that the traversal time T and the time between two arrivals ∆0 are independent of each
other.
In the first case where T < ∆0 the busy period is equal to the traversal time of the first particle:
B = T . In the second case where T ≥ ∆0 the busy period is equal to the time between the two
arrivals plus busy period B′ where B′ is exactly an independent identically distributed copy of
busy period B. This leads to the following formula for B:

B =

{
T if T < ∆0

∆0 +B′ if T ≥ ∆0

. (55)

Note that B′ can be regarded as beginning with a particle that enters an empty system again
and has traversal time T ′. This busy period B′ does not depend on traversal time T because
∆0 + T ′ ≥ T , namely all particles in a queue go in a batch to the next queue, so a particle
that enters the system later than the first particle will not leave the system earlier than the first
particle.
The time period during the ASIP’s process can be seen as an alternating sequence of empty and
non-empty moments. The empty moments are independent identically distributed copies of ∆0.
The non-empty moments are independent identically distributed copies of busy period B. When
the time period during ASIP’s process tend to infinity the fraction of time that the system is empty

16

is E[∆0]
E[∆0]+E[B] . Because the time period tends to infinity this fraction is equal to the probability

that the system is empty in steady state given in equation (54):

P(L = 0) =

n∏
i=1

µi
λ+ µi

=
E[∆0]

E[∆0] + E[B]
(56)

The expectation of the empty time periods is 1
λ . Filling this in and rearranging the terms gives

the following result for the expected busy period:

E[B] =
1

λ
(

n∏
k=1

[1 +
λ

µk
]− 1) (57)

3.6.4 First occupied queue

Let I be the index of the first occupied queue. Consider the ASIP in steady state. Then:

I =

{
min{k|Xk > 0} if system is non-empty

∞ if system is empty
(58)

The probability that the first queue is occupied is P(X1 > 0). When the kth queue is the first
occupied queue then the first k − 1 queues are empty and kth queue is non-empty. Then:

P(I = k) =

P(X1 > 0) if k = 1

P(X1 = 0, ..., Xk−1 = 0)− P(X1 = 0, ..., Xk = 0) if 1 < k ≤ n
P(X1 = 0, ..., Xn = 0) = P(L = 0) if k =∞

(59)

Filling in the results of equations (37) and (54) gives:

P(I = k) =

1− P(X1 = 0) = 1− µ1

λ+µ1
= λ

λ+µ1
if k = 1∏k−1

i=1
µi

µi+λ
−
∏k
i=1

µi
µi+λ

= λ
µk

∏k
i=1

µi
µi+λ

if 1 < k ≤ n∏n
i=1

µi
λ+µi

if k =∞
(60)

Note that the probability that the first occupied queue is k decreases when k increases.

3.6.5 Draining time

Consider the ASIP in steady state. At a time instance particles that enter the system will be
blocked. The time between the instance of blocking the incoming particles and the instance that
all the particles have left the system is called draining time D. At the moment where entering
particles are blocked the draining time is zero when the system is already empty. The draining
time is equal to the traversal time through queues k to n when the first occupied queue is k
(I = k). This traversal time can be derived from (10) is Ek + ...+ En where Ei ∼ Exp(µi). This
gives the following result for the draining time:

D =

{∑n
i=k Ei if I = k for 1 ≤ k ≤ n

0 if I =∞
(61)

The expected draining time according to the law of total chance is then:

E[D] =

n∑
k=1

P(I = k)E[traversal time|I = k] =

n∑
k=1

[
λ

µk
(

k∏
i=1

µi
µi + λ

)(

n∑
i=k

1

µi
)] (62)

Note that the first part is the probability that the first occupied queue is the kth queue as given
in equation (60) and the second part is the expected traversal time through queues k to n.

17

3.7 ASIP where particles may arrive at all queues

This section is based on the article ”An ASIP model with general gate opening intervals.” [5]

3.7.1 Model description

The model description is the same as the ASIP model description in Section 2 with some extensions.
If gate i opens at time t, then the following gate that opens is gate j with probability pi,j according
to a Markov Process. The time between gate i and gate j opens is a random variable Oi,j . Assuming
that the Markov chain of gate openings is irreducible and aperiodic, the steady state distribution
can be determined and will be denoted by πi with i = 1, ..., n. In the time period Oi,j particles
may arrive at all queues. The number of arrivals in each queue is independent of each other but
may depend on which gate is gate i and which gate is gate j. The number of arrivals in each queue
is captured by the following probability generating function:

Ai,j(z1, ..., zn) = E[z
X1(i,j)
1 · zX2(i,j)

2 · ... · zXn(i,j)
n]. (63)

Here Xk(i, j) is the number of particles that arrive in the kth queue in period Oi,j .
We also define the probability generating function of the cumulative number of arrivals in the first
k queues during period Oi,j by:

Ai,j,k(z) := Ai,j(z, .., z, 1, ..., 1) = E[zX1(i,j) · ... · zXk(i,j) · 1Xk+1(i,j) · ... · 1Xn(i,j)]. (64)

3.7.2 Analysis

Define X(k)(m) := X1 + ...+Xk as the number of particles in the first k queues right after the mth

gate opening and define M as the gate that has just opened. By conditioning on which gate has
just opened the probability generating function of the number of particles in the first k queues is:

Gk,i(z,m) := E[zX(k)(m) · I(M = i)] = P(M = i) · E[zX(k)(m)|M = i]. (65)

Here I means the indicator function. The simplest case G1,1(z,m) gives the following result:

G1,1(z,m) = P(M = 1) · E[zX(1)(m)|M = 1] = P(M = 1) · E[z0|M = 1] = P(M = 1) = π1. (66)

This is right because the first queue is immediately empty right after the first gate has been
opened.
By the fact that particles in the (k−1)th queue only move to the kth queue, there is a possibility to
write Gk,i(z,m) in terms of Gk−1,j(z,m) and after repeating this trick Gk,i(z,m) can be written
in terms of G1,j(z,m). By conditioning which was the previous gate that opened we obtain for
G1,j(z,m):

G1,j(z,m) =

n∑
i=1

pi,j ·G1,i(z,m− 1) ·Ai,j,1(z) for j 6= 1. (67)

HereAi,j,1(z) is the generating function of number of particles arriving at the first queue. Rewriting
equation (67) gives:

G1,j(z,m) =

n∑
i=2

pi,j ·G1,i(z,m− 1) ·Ai,j,1(z) + p1,j ·G1,1(z,m− 1) ·A1,j,1(z) for j 6= 1. (68)

In steady state this equation reduces to:

G1,j(z) =

n∑
i=2

pi,j ·G1,i(z) ·Ai,j,1(z) + p1,j ·G1,1(z) ·A1,j,1(z) for j 6= 1. (69)

Now introduce the vectors:
Ḡ1(z) := (G1,2(z), ..., G1,n(z)). (70)

18

R1(z) := (p1,2A1,2,1(z), ..., p1,nA1,n,1(z)). (71)

Now we can rewrite equation (69) into this:

Ḡ1(z) = Ḡ1(z)P1(z) +G1,1(z)R1(z). (72)

Here P1(z) is a squared matrix of size n − 1 which has on place (i, j) in the matrix the value
pi−1,j−1Ai−1,j−1,1(z). Rewriting this equation gives:

Ḡ1(z) =
G1,1(z)R1(z)

I − P1(z)
. (73)

Here I is the identity matrix of size n−1. We already know from equation (66) that G1,1(z) = π1.
So all the terms on the right side of equation (73) are known. So we have determined the functions
of G1,1(z), G1,2, ..., G1,n(z).
Now we are going to determine the terms Gk,j(z) for j = 1, .., n and k = 2, ..., n by expressing
Gk,j(z) into terms of Gk−1,i(z) where i = 1, ..., n. By doing this step recursively we can determine
Gk,j(z) in terms of G1,i where i = 1, .., n which we have already determined.
In order to express Gk,j(z) in terms of Gk−1,i(z) where i = 1, ..., n consider two consecutive gate
openings in steady state. Gate i opens first and gate j opens second. Now we can determine
Gk,j(z) by conditioning on all possible gate openings i. Then:

Gk,j(z) =

{∑n
i=1Gk,i(z)pi,jAi,j,k(z) for j 6= k∑n
i=1Gk−1,i(z)pi,kAi,k,k−1(z) for j = k.

(74)

In the case that gate k opens as the jth opening then right thereafter there are no particles in
the kth site. So the total number of particles in the first k sites is equal to the total number of
particles in the first k-1 sites right after the previous gate opening plus the number of new arrivals
in the first k-1 queues in the time period Oi,j . Rewriting equation (74) gives:

Gk,j(z) =
∑
i 6=k

Gk,i(z)pi,jAi,j,k(z) +Gk,k(z)pk,jAk,j,k(z). (75)

Now introduce the vectors:

Ḡk(z) := (Gk,1(z), ..., Gk,k−1(z), Gk,k+1(z), ..., Gk,n(z)). (76)

Rk(z) := (pk,1Ak,1,k(z), ..., pk,k−1Ak,k−1,k(z), pk,k+1Ak,k+1,k(z), ..., pk,nAk,n,k(z)). (77)

Now we can rewrite equation (75) into this:

Ḡk(z) = Ḡk(z)Pk(z) +Gk,k(z)Rk(z). (78)

Here Pk(z) is a squared matrix of size n − 1 of elements pi,jAi,j,k(z). Rewriting this equation
gives:

Ḡk(z) = Gk,k(z)Rk(z)(I − Pk(z))−1. (79)

Here I is the identity matrix of size n − 1. With this equation we can determine Gk,j(z) for
j = 1, ..., n in terms of Gk,k(z) and in equation (74) we have seen how to determine Gk,k(z) in
terms of Gk−1,i with i = 1, ..., n. By doing these two steps we can determine Gk,j(z) in terms of
G1,i(z) where i = 1, ..., n which are determined in equation (73). So we can theoretically determine
the probability generating function Gk,j for all k, j ∈ {1, ..., n}.

19

3.8 Summary of literature study

In this literature study the number of particles in each queue of the ASIP in steady state has
been analyzed. First by determining the Markovian dynamics of the number of particles in each
queue of the ASIP and then using these dynamics for determining the probability generating
function of the number of particles in the ASIP. Probability generating functions are very useful
because summation of merging batches translates into a multiplication of probability generating
functions. This probability generating function is useful for doing asymptotic analysis, because
the in absolute value smallest pole in the probability generating function determines the behavior
of the probability that there are n particles in the ASIP when n becomes large according to Abel’s
theorem. Other observables of the ASIP which are asymptotically analyzed in this literature study
are the traversal time, overall load, busy period, first occupied queue and the draining time.
The ASIP can be generalized by the possibility that a particle entering the system can enter
all queues instead of only the first queue. Another generalization is that the period between
two consecutive gate openings is generally distributed. For both generalizations it is possible to
determine the probability generating function of number of particles in the system and this is
again useful for doing asymptotic analysis when the number of particles in the system becomes
large.

20

4 Own research

In every queue of the ASIP model there may stay infinitely many particles. But what if you have
a limited capacity available? How do you distribute the limited capacity over the queues of an
ASIP in order to maximize the number of particles that complete the system? First I describe the
ASIP model with capacities.

4.1 ASIP model with capacities

The ASIP model with capacities is quite the same as the ASIP model without capacities described
in section 2. So the arrival process is a Poisson process with parameter λ and the time between two
consecutive openings of gate i is exponentially distributed with parameter µi. The only difference
is that there is a limited capacity C. This capacity has to be distributed over the queues in an
ASIP. The capacity of the ith queue in the ASIP has capacity ci. Thus,

∑n
i=1 ci = C. Figure 2

show a visual representation of the ASIP model with capacities.

Figure 2: Visual representation of ASIP model with capacities

When a gate opens and a batch of particles merges with the batch of particles in the next queue
it may happen that the number of particles of this merged batch is larger than the capacity of
that specific queue. In this case I assume that the particles above the capacity will leave the
system directly and are considered to be lost. A particle has completed the ASIP when it has
passed all the queues and gates of the ASIP. The goal is to distribute capacity C over the queues
in such a way that the number of particles that complete the system is maximized. Logically
when a capacity of one of the queues is zero no particle will complete the system at all, so ci ≥ 1
for i = {1, ..., n}. This means directly that C ≥ n in order to let some particles complete the ASIP.

Define Pi,j as the fraction of time in steady state that there are j particles in the ith queue
where i ∈ {1, ..., n} and j ∈ {0, ..., C − n + 1}. Because ci ≥ 1 the maximum capacity a queue
can be assigned is C − n + 1. The number of particles that complete the system is equal to the
number of particles in the nth queue at the moment the nth gate opens. The PASTA property
says that for queueing systems with Poisson arrivals the number of particles in a queue at a time
of a gate opening is on average equal to the number of particles in this queue at an arbitrary point
in time. So according to the PASTA property the number of particles in the nth queue at the
moment the nth gate opens is equal to the number of particles in the nth queue at steady state.
So the number of particles that complete the ASIP per time unit can be expressed in terms of
Pn,j where j = {0, ..., cn}. This will give the following objective function Fobjective:

Fobjective = µn · (0 · Pn,0 + 1 · Pn,1 + ...+ cn · Pn,cn) = µn ·
cn∑
j=0

j · Pn,j (80)

Fobjective is also called the throughput (= the number of particles that complete the ASIP per
time unit).

21

4.2 Optimization problem

In the previous section I set up an optimization problem. An optimization problem has four
aspects, namely parameters, variables, constraints and an objective function. In this section these
four aspects are summarized below.

4.2.1 Parameters

The following parameters are used in the ASIP model with capacities:

• n, this is the number of queues in the ASIP

• C, the total capacity which has to be distributed over the queues.

• λ, the arrival process of the particles in the ASIP is a Poisson process with intensity λ.

• µi, the time between two consecutive gate openings of the ith gate is exponentially distributed
with intensity µi.

This problem becomes interesting when total capacity C is greater than number of queues n.

4.2.2 Variables

The variables in this optimization problem is ci where i = {1, ..., n}. Here ci is the capacity of the
ith queue in the ASIP.

4.2.3 Constraints

This optimization problem has the following constraints:

• λ, µi ∈ R+, the intensities of arrivals of particles and gate openings are positive.

• n,C ∈ N+, the number of queues and the total capacity are positive integers. The optimiza-
tion problem becomes interesting when C ≥ n.

•
∑n
i=1 ci = C, the sum of the assigned capacities of each queue has to be equal to total

capacity C.

• ci ∈ N, the assigned capacities to the queues have to be nonnegative integers. The optimiza-
tion problem becomes interesting when ci ≥ 1 for all queues.

4.2.4 Objective function

The goal of this optimization problem is maximizing the throughput. So the objective function is:

Fobjective = µn · (0 · Pn,0 + 1 · Pn,1 + ...+ cn · Pn,cn) = µn ·
cn∑
j=0

j · Pn,j (81)

4.3 Determining number of particles in steady state

First I investigate the number of particles in the first queue of the ASIP at steady state. Then I
use this result for determining the number of particles in the ith queue for i = {2, ..., n} in steady
state.

22

4.3.1 Number of particles in steady state in first queue

The number of particles in the first queue is dependent on two events, namely an arrival of a
particle in the system and an opening of the first gate. In the case of an arrival one of two things
may happen: the particle enters the first queue so the number of particles in the queue is increased
by one or the queue is already full so the arriving particle is considered to be lost. In case the first
gate opens all the particles in the first queue move towards the second queue so the first queue
becomes empty again. The event of an arrival of a particle happens with intensity λ and the event
of an opening of the first gate happens with intensity µ1. The flow diagram of number of particles
in the first queue is illustrated in figure 3.

Figure 3: Flow diagram of number of particles in the first queue of the ASIP.

This leads to the following balance equations:
λP1,0 = µ1P1,1 + µ1P1,2 + ...+ µ1P1,c1

(λ+ µ1)P1,j = λP1,j−1 for j ∈ {1, ..., c1 − 1}
µ1P1,c1 = λP1,c1−1.

(82)

These balance equations have (c1 +1) unknown variables, namely P1,j for j ∈ {0, ..., c1}. Together
with the constraint that P1,0 + ... + P1,c1 = 1 we can calculate the distribution of number of
particles in the first queue in steady state. Rewriting the first equation of (82) gives:

λP1,0 = µ1 · (P1,0 + P1,1 + ...+ P1,c1)− µ1P1,0. (83)

Using that P1,0 + P1,1 + ...+ P1,c1 = 1 gives the following expression for P1,0:

P1,0 =
µ1

λ+ µ1
. (84)

For P1,j where j ∈ {1, ..., c1 − 1} you get the following:

P1,j =
λ

λ+ µ1
P1,j−1 = ... = (

λ

λ+ µ1
)j · P1,0 = (

λ

λ+ µ1
)j · µ1

λ+ µ1
=

λjµ1

(λ+ µ1)j+1
. (85)

This gives the following expression for P1,c1 :

P1,c1 =
λ

µ1
P1,c1−1 =

λ

µ1
· λc1−1µ1

(λ+ µ1)c1
= (

λ

λ+ µ1
)c1 . (86)

Summarizing this gives the following result for the distribution of number of particles in the first
queue in steady state:

P1,j =

µ1

λ+µ1
· (λ
λ+µ1

)j for j = 0, ..., c1 − 1

(λ
λ+µ1

)c1 for j = c1

0 for j > c1.

(87)

23

Note that P1,c1 is the fraction of time in steady state that the queue is full. This fraction is
relatively high when λ is high compared to µ1 and relatively low when λ is low compared to µ1.
An incoming particle is considered to be lost when the first queue is full, so P1,c1 is also the fraction
of particles that don’t fit in the queue and are considered to be lost. When c1 becomes higher, the
probability P1,c1 decreases because λ

λ+µ1
< 1, so more incoming particles fit in the first queue.

Also note that the result in (87) is a geometric distribution with parameter λ
λ+µ1

. Suppose that
there is no restriction on capacity. Then the probability of having j particles in the queue is
µ1

λ+µ1
· (λ
λ+µ1

)j . However the queue has capacity c1. Then the limiting probability of having c1
particles in the queue is equal to the probability of having c1 or more particles in the queue in the
situation where there is no restriction on the capacity. Then:

P(X1 ≥ c1) = 1−P(X1 < c1) = 1−
c1−1∑
n=0

µ1

λ+ µ1
(

λ

λ+ µ1
)n = 1− µ1

λ+ µ1

1− (λ
λ+µ1

)c1

1− λ
λ+µ1

= (
λ

λ+ µ1
)c1 .

(88)
So (87) is a geometric distribution with parameter λ

λ+µ1
where the probability of having c1 parti-

cles in the queue is equal to the probability of having c1 or more particles in the situation where
there is no restriction on capacity of queues.

At the moment the first gate opens a batch of particles moves to the second queue. The size
of the batch can range from 0 to c1. The intensity of moving batches from the first queue to the
second is then µ1. Thanks to the PASTA property the number of particles in the first queue at the
moment the first gate opens is in distribution equal to the number of particles in the first queue
at an arbitrary point in time. So in steady state a batch moving to the second queue has size j
with probability P1,j .

4.3.2 Number of particles in rest of the queues

Knowing the steady state distribution of number of particles in the first queue we know that with
intensity µ1 a batch of size j with probability P1,j arrives at the second queue. In the rest of the
queues batches of particles arrive at the queue and batches of particles leave the queue. Consider
queue i where i ∈ {2, ..., n}. A batch arrives at queue i when gate i − 1 opens, so batches arrive
with intensity µi−1. The distribution of the size of an arriving batch at queue i is equal to the
steady state distribution of number of particles in the previous queue, queue i− 1. So an arriving
batch at queue i has size j with probability Pi−1,j . The number of particles in queue i can range
from 0 to capacity ci. The flow diagram of number of particles in the ith queue is illustrated in
figure 4.

Figure 4: Flow diagram of number of particles in queue i for i ∈ {2, ..., n}.

24

The number of particles in the ith queue increases with the size of a batch with intensity µi−1.
When the old number of particles in the ith queue plus the size of the incoming batch is greater
than capacity ci then some particles are considered to be lost and the new number of particles in
the ith queue is equal to capacity ci. With intensity µi gate i opens and queue i becomes empty
again.

This leads to the following balance equations:

µi−1(Pi−1,1 + Pi−1,2 + ...+ Pi−1,ci−1)Pi,0 = µi(Pi,1 + Pi,2 + ...+ Pi,ci)

(µi−1(Pi−1,1 + Pi−1,2 + ...+ Pi−1,ci−1) + µi)Pi,1 = µi−1Pi−1,1Pi,0

(µi−1(Pi−1,1 + Pi−1,2 + ...+ Pi−1,ci−1
) + µi)Pi,2 = µi−1(Pi−1,2Pi,0 + Pi−1,1Pi,1)

: :

(µi−1(Pi−1,1 + Pi−1,2 + ...+ Pi−1,ci−1
) + µi)Pi,ci−1 = µi−1(Pi−1,ci−1Pi,0 + ...+ Pi−1,1Pi,ci−2)

µiPi,ci = µi−1((1− Pi−1,0)Pi,ci−1 + (1− (Pi−1,0 + Pi−1,1))Pi,ci−2 + ...+ (1− (Pi−1,0 + ...+ Pi−1,ci−1))Pi,0).

(89)
By using that Pi−1,0 + ...+ Pi−1,ci−1 = 1 and Pi,0 + ...+ Pi,ci = 1 these balance equations reduce
to:

(µi−1(1− Pi−1,0) + µi)Pi,0 = µi

(µi−1(1− Pi−1,0) + µi)Pi,j = µi−1

∑j−1
k=0 Pi−1,j−kPi,k for j ∈ {1, ..., ci − 1}

µiPi,ci = µi−1

∑ci−1
k=0 (1−

∑k
m=0 Pi−1,m)Pi,ci−1−k.

(90)

Rewriting this gives:

Pi,j =

µi

(1−Pi−1,0)µi−1+µi
for j = 0

µi−1

(1−Pi−1,0)µi−1+µi

∑j−1
k=0 Pi,kPi−1,j−k for 0 < j < ci

µi−1

µi

∑ci−1
k=0 (1−

∑k
m=0 Pi−1,m)Pi,ci−1−k for j = ci

0 for j > ci.

(91)

By the convolution part in the case j = ci it is very difficult to write these limiting probabilities
explicitly. What we can do is putting these recursive equations of (87) and (91) in a computer
and together with certain values of parameters λ, µi and certain allocation of total capacity C
the limiting probabilities can be calculated for each queue. Knowing the limiting probabilities the
value of the objective function given in (81) can be calculated.

Suppose now that parameters λ and µi for i ∈ {1, ..., n} are known. If you calculate for each
possible allocation of total capacity C over n queues the limiting probabilities and then the value
of the objective function, then an allocation of capacity with the highest value of the objective
function is an optimal solution.
Now the questions arises: how many possibilities are there of allocating C capacity over n queues?
Here we require that C ≥ n and ci ≥ 1 for all i ∈ {1, ..., n} otherwise the objective function has
value zero. This question will be answered in section 2.4.

4.3.3 Determining limiting probability of zero particles in each queue

It is possible to write Pi,0 for i ∈ {1, ..., n} explicitly. If we say that µ0 = λ, then after some trying
I suspect the following:

Pi,0 =
µi

1∑i−1
j=0

1
µj

+ µi
for i ∈ {1, ..., n}. (92)

For i = 1 we have the following:

P1,0 =
µ1

1
1
µ0

+ µ1

=
µ1

µ0 + µ1
=

µ1

λ+ µ1
. (93)

25

This corresponds to equation (84) which means that (92) holds for i = 1. Suppose now that (92)
holds for some i with 1 ≤ i < n. Now to proof:

Pi+1,0 =
µi+1

1∑i
j=0

1
µj

+ µi+1

. (94)

We know from (91) that Pi+1,0 = µi+1

(1−Pi,0)µi+µi+1
, then:

Pi+1,0 =
µi+1

(1− µi
1∑i−1

j=0
1
µj

+µi
)µi + µi+1

. (95)

It remains to show that (1− µi
1∑i−1

j=0
1
µj

+µi
)µi is equal to 1∑i

j=0
1
µj

:

(1− µi
1∑i−1

j=0
1
µj

+ µi
)µi =

1∑i−1
j=0

1
µj

· µi
1∑i−1

j=0
1
µj

+ µi
=

µi

1 + µi
∑i−1
j=0

1
µj

=
1

1
µi

+
∑i−1
j=0

1
µj

=
1∑i

j=0
1
µj

. (96)

So we have proved by induction that (92) holds for all i ∈ {1, ..., n}.

4.4 Number of possibilities of allocating C capacity over n queues

The number of possibilities of allocating a capacity C over n queues with the requirement that
ci ≥ 1 for all i ∈ {1, ..., n} is equal to the number of possibilities of allocating a capacity C − n
over n queues without a requirement. You can see the ASIP with n queues as n bins divided
by n − 1 gates. Now see total capacity C as C balls and you have to throw each ball in a bin.
Suppose a ball is displayed as a 0 and a gate is displayed by a 1. Then the number of possibilities
of allocating capacity C over n queues with the requirement that ci ≥ 1 for all i ∈ {1, ..., n} is
equal to the number of different sequences containing C − n zeros and n − 1 ones. This is equal
to
(

(C−n)+(n−1)
n−1

)
=
(
C−1
n−1

)
.

We are interested in finding an allocation of capacity C which maximizes the objective func-
tion. In order to save calculation time I want to proof that for most of the allocations of capacity
C there is another solution which has minimally the same value of the objective function. This
will be done by the following lemma.

Lemma 2.1 In the set of allocations of capacity C where ci ≥ ci−1 for all i ∈ {2, ..., n} there is
an optimal solution.

Proof. Suppose you have an allocation of capacity C over n queues where ci > cj for some
i, j where 1 ≤ i < j ≤ n. Define ∆ = ci − cj which is the extra capacity that has queue i more
than queue j. Then there are two situations: this extra capacity will be used or will not be used.

In the situation where the extra capacity will not be used then this solution has the same through-
put as the solution of allocating a total capacity C −∆ over n queues where queue i has capacity
cj and keeping the rest of the capacities the same.

In the situation where the extra capacity will be used then at some time there are k particles
in queue i where k > cj . We call these k particles the initial batch. At the moment gate i opens
the initial batch moves to the next queue and eventually merge with another batch of particles.
Every time that the initial batch moves to the next queue some particles may considered to be lost
in case the next queue is or becomes full. There comes a moment when the remaining particles of
the initial batch moves to queue j. Because k > cj minimally k − cj particles of the initial batch
are considered to be lost during the movement of the initial batch from queue i to queue j. Lost

26

particles don’t complete the ASIP completely so they do not have a positive contribution to the
objective function. So again this solution has the same throughput as the solution of allocating
a total capacity C −∆ over n queues where queue i has capacity cj and keeping the rest of the
capacities the same.

So for every solution of allocating capacity C over n queues where not for all i ∈ {2, ..., n} holds
that ci ≥ ci−1 the throughput is the same as the throughput of a solution of allocating C − ∆
capacity over n queues for some ∆ ∈ N+ where ci ≥ ci−1 for all i ∈ {2, ..., n}. The throughput of
this solution is smaller than the throughput of an optimal solution of allocating C capacity over
n queues where ci ≥ ci−1 for all i ∈ {2, ..., n}. This finishes the proof of the lemma.

�

Now we know that in the set of allocations of capacity C where ci ≥ ci−1 for all i ∈ {2, ..., n} there
is an optimal solution. How many of these solutions are there with the requirement that ci ≥ 1 for
all i ∈ {1, ..., n}? This number of possibilities is equal to the number of possibilities of allocating
C − n capacity over n queues where ci ≥ ci−1 for all i ∈ {2, ..., n} and ci ≥ 0 for all i ∈ {1, ..., n}.
Determining the possibilities of allocating C − n capacity over n queues can be seen in rounds
where in each round you assign 1 extra capacity to the last k queues. In the second round you
have to allocate C − n− k capacity over k queues. k can take values between 1 and the minimum
of the remaining capacity and the remaining number of queues. Making this more formal gives:

Define f(a, b) as the number of possibilities of allocating b capacity over a queues such that
ci ≥ ci−1 for all i ∈ {2, ..., n}, then:

f(a, b) =

min{a,b}∑
k=1

f(k, b− k). (97)

There are some easy situations: allocating b capacity over 1 queue or 0 capacity over a queues
or 1 capacity over a queues. There is only one possibility to allocate capacity in all these easy
situations. The number of possibilities of allocating b capacity over a queues can be reduced to a
sum of number of possibilities of easy situations for all a, b ≥ 1. So by dynamic programming you
can determine f(a,b) for any a, b ≥ 1.

f(n,C −n) gives the answer on the number of possibilities of allocating C capacity over n queues
with the requirement that ci ≥ ci−1 for i ∈ {2, ..., n} and ci ≥ 1 for i ∈ {1, ..., n}. Take C = 30
and n = 10, then the number of possibilities is f(10, 20) = 530. The number of possibilities of
allocating 30 capacity over 10 queues without the requirement that ci ≥ ci−1 for i ∈ {2, ..., n} is
10015005. This gives an impression that this massively reduces the number of solutions for which
we have to determine the value of the objective function in order to find an optimal solution. This
will also massively decrease the running time for determining an optimal solution.

4.5 Determining throughput of homogeneous ASIP where every queue
has one capacity

Suppose you have an ASIP where the total capacity C is equal to n and the capacity is allocated in
such a way that every queue has one capacity. In this case I’m going to determine the throughput
for a general ASIP first and then look what is means for an homogeneous ASIP.

4.5.1 Throughput of general ASIP where every queue has one capacity

Now it holds that Pi,1 = 1 − Pi,0 for all i ∈ {1, ..., n} because ci = 1 for all i ∈ {1, ..., n}. We
already found an expression for Pi,0 in equation (92). Now the objective function (= throughput)

27

can be rewritten in the following way:

Fobjective = µn ·
cn∑
j=0

j · Pn,j = µn · Pn,1 = µn · (1− Pn,0) = µn · (1−
µn

1∑n−1
j=0

1
µj

+ µn
). (98)

Using that µ0 = λ, the throughput can be further rewritten as follows:

Fobjective = µn·(1−
µn

1
1
λ+

∑n−1
j=1

1
µj

+ µn
) = µn·(1−

µn · (1
λ +

∑n−1
j=1

1
µj

)

1 + µn · (1
λ +

∑n−1
j=1

1
µj

)
) =

µn

1 + µn · (1
λ +

∑n−1
j=1

1
µj

)
.

(99)
When we divide (99) by µn the throughput can be further rewritten as follows:

Fobjective =
1

1
µn

+ 1
λ +

∑n−1
j−1

1
µj

=
1

1
λ +

∑n
j=1

1
µj

=
1∑n

j=0
1
µj

. (100)

From (100) you can see that the throughput only depends on λ, n and
∑n
j=1

1
µj

. This implies that

in an ASIP with n queues with ci = 1 for all i ∈ {1, ..., n} every permutation of the gate opening
intensities has the same throughput.

The result in (100) can also be explained intuitively by determining the throughput using an
integrated circuit. The integrated circuit of an ASIP is as follows:

Figure 5: Integrated circuit of ASIP with n queues.

Particles move on this circuit. Define C as the time that a particle does exactly one cycle in the
integrated circuit. Then:

E[C] =
1

λ
+

1

µ1
+ ...+

1

µn
. (101)

Then the throughput is the average number of particles that come along a certain point in the
circuit during the average time a particle does one cycle. So:

Throughput =
number of particles in circuit

E[C]
. (102)

We are interested in the throughput in steady state. In order to become in steady state particles
are moving through the integrated circuit for an infinite amount of time. Because every queue has
one capacity an arriving particle will be lost when it arrives at a queue that is already occupied
by another particle. So there comes a moment that there is only one particle left in the integrated
circuit. So the throughput in steady state is equal to 1

E[C] = 1
1
λ+ 1

µ1
+...+ 1

µn

which is exactly the

same as in (100).

28

4.5.2 Throughput of homogeneous ASIP where every queue has one capacity

In an homogeneous ASIP the gate opening intensities are the same for all gates, say µi = µ for all
i ∈ {1, ..., n}. Then we can rewrite (100) as follows:

Fobjective =
1∑n

j=0
1
µj

=
1

1
λ +

∑n
j=1

1
µ

=
1

1
λ + n · 1

µ

. (103)

In this result of the throughput we see that the throughput becomes smaller when n becomes
larger. In fact, the throughput will go to zero when the number of queues tends to infinity. This
sounds logic because of the following: When a particle want to complete the ASIP it has to gone
through all queues. When a particle arrives at queue i the probability that queue i is not occupied
is thanks to the PASTA property equal to Pi,0. So the probability that a particle completes the
ASIP is equal to the probability that all queues are not occupied when a particle arrives at each
queue which is

∏n
i=1 Pi,0. This probability will go to zero when n tends to infinity. Now we

have seen another way of deriving (103), namely from equation (92) we can derive that in the
homogeneous case the following holds:

Pi,0 =
µi

1∑i−1
j=0

1
µj

+ µi
=

µ
1

1
λ+(i−1) 1

µ

+ µ
=

µ
λ + (i− 1)

1 + µ
λ + (i− 1)

= 1− 1
µ
λ + i

. (104)

The probability of completing the ASIP is then:
∏n
i=1 Pi,0 =

∏n
i=1 1− 1

µ
λ+i =

µ
λ

n+µ
λ

. So the prob-

ability that a particle completes the ASIP is
µ
λ

n+µ
λ

. Do we multiply this probability with arrival

intensity λ you get the expression for the throughput which is exactly the same as (103).

From (103) we can also see the relation between the arrival intensity of particles in the system λ
and gate opening intensity µ. When λ = µ then the throughput will be µ

1+n . When λ > µ then the
throughput will increase compared to the situation when λ = µ, but it will have an upper-bound,
because the throughput goes to µ

n when λ tends to infinity, so in this case µ
n+1 < Fobjective <

µ
n .

When λ < µ then the throughput will be smaller than µ
n+1 . When λ tends to zero the throughput

will go to zero. This sounds logic because it can’t be that particles complete the ASIP successfully
when the intensity of incoming particles is zero, what makes the throughput zero.
So it can be concluded that in an homogeneous ASIP with n queues where every queues has one
capacity the throughput will always be smaller than µ

n no matter what the intensity of incoming
particles is.

4.6 The optimal solution of homogeneous ASIP with 20 queues

Putting the equations (87) and (91) in a java program, computing the value of the objective
function for every possible allocation of capacity C where ci ≥ ci−1 for all i ∈ {2, ..., n} and ci > 0
for all i ∈ {1, ..., n} and returning the solution where the objective function is maximized is a
method for finding an optimal solution. In order to give an impression of the optimal solution of
allocating capacity over queues I studied the homogeneous ASIP with 20 queues where µ = µi for
all i ∈ {1, ..., n}. Total capacity C will range from 20 to 100.

4.6.1 homogeneous ASIP with 20 queues with λ = µ = 1

Optimal solutions with corresponding throughput for an homogeneous ASIP with λ = µ = 1 are
shown in tables 1, 2 and 3.

29

total capacity C Optimal allocation of capacities throughput
20 1 0.0476
21 2 0.0499
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 0.0522
23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 0.0544
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 0.0567
25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0.0590
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0.0612
27 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 0.0635
28 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 0.0658
29 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 0.0680
30 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 0.0703
31 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 0.0726
32 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 0.0748
33 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0771
34 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0794
35 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0816
36 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0839
37 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0862
38 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0884
39 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0907
40 2 0.0930
41 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 0.0952
42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 0.0975
43 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 0.0998
44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 0.1020
45 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 0.1043
46 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 0.1065
47 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 0.1088
48 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 0.1110
49 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 0.1133
50 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0.1155
51 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 0.1178
52 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 0.1200
53 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 0.1223
54 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0.1245
55 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0.1267

Table 1: The optimal solution of allocating a total capacity C over a homogeneous ASIP with 20
queues where arrivals of particles and gate openings have capacity 1 and the total capacity ranges
from 20 to 55.

In these tables we can see that allocating total capacity of 55 or less over the queues is quite deter-
ministic, namely distribute C − (C mod n) capacity equally over the queues and then assign one
extra capacity to each of the C mod n rightmost queues (= queues j where j ∈ {n− (C mod n) +
1, ..., n}).

In the situation where total capacity C is larger than 55 the optimal solution of allocating to-
tal capacity C is not such deterministic anymore.

30

total capacity C Optimal allocation of capacities throughput
56 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 0.1289
57 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 0.1311
58 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 0.1333
59 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 0.1355
60 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 0.1377
61 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 0.1399
62 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 0.1421
63 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 0.1443
64 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 0.1465
65 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 0.1487
66 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 0.1509
67 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 0.1531
68 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 0.1553
69 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 0.1574
70 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 0.1596
71 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 0.1617
72 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 0.1638
73 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 0.1660
74 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 0.1682
75 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 0.1703
76 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 0.1725
77 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 0.1746
78 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 0.1768
79 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 0.1789
80 2 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 0.1810
81 2 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 0.1831
82 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 0.1852
83 2 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 0.1873
84 2 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 0.1894
85 2 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 0.1915
86 2 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 0.1936
87 2 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 0.1957
88 2 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 0.1977
89 2 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 0.1998
90 2 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 0.2019

Table 2: The optimal solution of allocating a total capacity C over a homogeneous ASIP with 20
queues where arrivals of particles and gate openings have capacity 1 and the total capacity ranges
from 56 to 100.

Looking at table 2 and 3 you can observe that in an optimal solution not only ci ≥ ci−1 for
i ∈ {2, ..., n} holds but more strongly: ci−1 + 1 ≥ ci ≥ ci−1 for i ∈ {2, ..., n}. By this observation
we see in the case of an homogeneous ASIP another way for determining an optimal solution for
allocating total capacity C over n queues. Suppose you have an optimal solution c1, ..., cn for
allocating total capacity C − 1 over n queues. By looking at the pattern in tables 1, 2 and 3
we only have to add 1 extra capacity to a certain queue in order to gain an optimal solution of
allocating a total capacity C. The set of indexes of possible queues for adding 1 extra capacity is
{i|ci < ci+1, 1 ≤ i < n} ∪ {n}.

31

total capacity C Optimal allocation of capacities throughput
91 2 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 0.2039
92 2 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 0.2060
93 2 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 0.2080
94 2 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 0.2101
95 2 3 3 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 0.2121
96 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 0.2142
97 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 0.2162
98 3 3 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 0.2183
99 3 3 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 6 0.2204
100 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 0.2224

: : :
∞ all queues have infinite capacity 1

Table 3: Continuation of the optimal solution of allocating a total capacity C over a homogeneous
ASIP with 20 queues where arrivals of particles and gate openings have capacity 1 and the total
capacity ranges from 56 to 100.

The other way around also holds. When you have an optimal solution c1, ..., cn for allocating
total capacity C over n queues, then we only have to remove 1 capacity from a certain queue in
order to gain an optimal solution of allocating a total capacity of C − 1. The set of indexes of
possible queues for removing 1 capacity is {i|ci > ci−1, 1 < i ≤ n} ∪ {1}.

Suppose you have an optimal solution c1, ..., cn for allocating total capacity C − 1. We have
seen that an optimal solution for allocating total capacity C one queue has capacity ci + 1 and
the rest of the assigned capacities is the same. It remains a suspicion that this always holds for
all n ∈ N+, for all C ≥ n and for all λ, µ ∈ R+, not a fact.

The relation between total capacity C and the throughput of the optimal solution of allocating
total capacity C is shown in figure 6.

Figure 6: The throughput in particles per time unit for the optimal solution of allocating total
capacity C (blue line); the black line is a linear line for showing that the throughput is asymptotic

32

In this figure can be seen that the throughput grows between C = 20 and C = 100 almost linearly.
The black line is the linear line between the throughput for C = 20 and the throughput for
C = 100. Using this black line we can see that the slope of the throughput slowly decreases. This
is what we expect because the throughput converges to 1 when total capacity C tends to infinity.

4.6.2 homogeneous ASIP with 20 queues with λ = 10 and µ = 1

When we study the homogeneous ASIP with 20 queues with λ = 10 and µi = 1 for all i ∈ {1, ..., n}
the optimal solution for allocating capacity C where C varies from 20 to 100 is more equally spread
than in the case of an homogeneous ASIP with λ = 1 and µi = 1 for all i ∈ {1, ..., n}. The optimal
solution for some values of total capacity C can be seen below in table 4. The exact value for the
throughput when C = 20 is according to (103) equal to 1

1
10 +20· 11

= 10
201 particles per time unit.

total capacity C Optimal allocation of capacities throughput
20 1 0.0498
30 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 0.0745
40 2 0.0993
50 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0.1240
60 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 0.1487
70 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 0.1735
80 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 0.1981
90 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 0.2227
100 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 0.2473

: : :
∞ all queues have infinite capacity 10

Table 4: Optimal solution of allocating a total capacity C over the homogeneous ASIP with 20
queues where λ = 10 and µi = 1 for i ∈ {1, ..., n}.

4.6.3 homogeneous ASIP with 20 queues with λ = 1 and µ = 10

When we study the homogeneous ASIP with 20 queues with λ = 1 and µi = 10 for all i ∈ {1, ..., n}
the optimal solution of allocating capacity C where C varies from 20 to 100 is less equally spread
than in the case of an homogeneous ASIP with λ = 1 and µi = 1 for all i ∈ {1, ..., n}. The exact
value for the throughput when C = 20 is according to (103) equal to 1

1
1 +20· 1

10

= 1
3 particles per

time unit. The optimal solution from some values for total capacity C can be seen below in table
5.

total capacity C Optimal allocation of capacities throughput
20 1 0.3333
30 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 0.4444
40 2 0.5556
50 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0.6481
60 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 0.7215
70 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 0.7810
80 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 0.8291
90 2 3 3 3 4 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 0.8673
100 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 0.8970

: : :
∞ all queues have infinite capacity 1

Table 5: Optimal solution of allocating a total capacity C over the homogeneous ASIP with 20
queues where λ = 1 and µi = 10 for i ∈ {1, ..., n}.

33

So in an homogeneous ASIP the following can be concluded: the higher the arrival intensity of
particles in comparison with the gate opening intensities, the more capacity has to be assigned to
the first queues, the more the total capacity is equally allocated over the system.

4.7 The optimal solution of inhomogeneous ASIP with 20 queues

An ASIP is inhomogeneous when there is at least some i, j ∈ {1, ..., n} with µi 6= µj . There are two
special subsets of the set of inhomogeneous ASIP’s, namely monotone increasing and decreasing
ASIP’s. A monotone increasing ASIP has the property that µi ≥ µi−1 for all i ∈ {2, ..., n} and
analogously a monotone decreasing ASIP has the property that µi ≤ µi−1 for all i ∈ {2, ..., n}.
For both subsets I give an impression for the optimal solution of allocating capacity C over an
ASIP with 20 queues.

4.7.1 Optimal solution of monotone decreasing ASIP with 20 queues

An example of a monotone decreasing ASIP with 20 queues is an ASIP with intensities: λ = 1
and µi = i−1 for i ∈ {1, ..., 20}.The exact value for the throughput when C = 20 is according to
(100) equal to 1

1
1 +

∑20
j=1 i

= 1
211 particles per time unit. The optimal solutions of allocating a total

capacity of 20, 30, ..., 100 are shown table 6.

total capacity C Optimal allocation of capacities throughput
20 1 0.0047
30 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 0.0084
40 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 0.0116
50 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 0.0146
60 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 5 5 6 6 0.0176
70 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 6 6 7 7 0.0206
80 1 1 1 2 2 2 3 3 3 3 4 4 5 5 5 6 7 7 8 8 0.0235
90 1 1 2 2 2 2 3 3 4 4 4 5 5 6 6 7 7 8 9 9 0.0265
100 1 1 2 2 2 3 3 4 4 4 5 5 6 6 7 7 8 9 10 11 0.0294

: : :
∞ all queues have infinite capacity 1

Table 6: Optimal solution of allocating a total capacity C over the monotone decreasing ASIP
with 20 queues where λ = 1 and µi = i−1 for i ∈ {1, ..., n}.

From this table you can see that the allocation of capacity C is less equally distributed than in the
homogeneous case. This sounds logic because gate i opens less frequently when i becomes larger.
Still it holds that ci−1 + 1 ≥ ci ≥ ci−1 for all i ∈ {2, ..., n}, but this will not hold anymore if we
choose the intensities more extreme as we see in the next example.

In the next example of a monotone decreasing ASIP with 20 queues is the arrival intensity λ = 1
and gate opening intensity µi = 2−(i−1) for i ∈ {1, ..., n}. So the first gate has a gate opening
intensity of 1 opening per time unit and every following queue opens on average twice as much as
the previous one. The exact value for the throughput when C = 20 is according to (100) equal to

1
1
1 +

∑20
j=1 2j−1 = 1

1048576 particles per time unit. The optimal solutions of allocating a total capacity

of 20, 30, ... , 100 are shown table 7.

34

total capacity C Optimal allocation of capacities throughput
20 1 9.54×10−7

30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 4 6 3.95×10−6

40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 4 6 11 6.46×10−6

50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 6 9 15 8.83×10−6

60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 7 11 19 1.12×10−5

70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 5 8 14 24 1.35×10−5

80 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 6 10 16 26 1.59×10−5

90 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 7 11 18 32 1.82×10−5

100 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 5 8 13 21 35 2.05×10−5

: : :
∞ all queues have infinite capacity 1

Table 7: Optimal solution of allocating a total capacity C over the monotone decreasing ASIP
with 20 queues where λ = 1 and µi = 2−(i−1) for i ∈ {1, ..., n}.

In this example you can see that the allocation of capacity C is even less equally allocated than
in the previous example. So in the case of a monotone decreasing ASIP you have to assign more
and more capacity to the rightmost queues when the gate opening intensities drop.

4.7.2 Optimal solution of monotone increasing ASIP with 20 queues

An example of a monotone increasing ASIP with 20 queues is an ASIP with intensities λ = 1 and
µi = i for i ∈ {1, ..., n}. The exact value for the throughput when C = 20 is according to (100)
equal to 1

1
1 +

∑20
j=1

1
j

= 15519504
71354639 particles per time unit. The optimal solutions of allocating a total

capacity of 20, 30, ..., 100 are shown in table 8.

total capacity C Optimal allocation of capacities throughput
20 1 0.2175
30 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 0.2491
40 2 0.3877
50 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0.4176
60 3 0.5209
70 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 0.5481
80 4 0.6251
90 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 0.6492
100 5 0.7066

: : :
∞ all queues have infinite capacity 1

Table 8: Optimal solution of allocating a total capacity C over the monotone increasing ASIP
with 20 queues where λ = 1 and µi = i for i ∈ {1, ..., n}.

In this table you can see that the allocation of capacity is more equally spread than in the homo-
geneous case. This sounds logic because gate i opens more frequent when i becomes larger. In the
homogeneous case there was till a total capacity of 55 a deterministic way to get the optimal solu-
tion, namely allocate C − (C mod n) capacity equally over the queues and then assign one extra
capacity to each of the C mod n rightmost queues (= queues j where j ∈ {n−(C mod n)+1, ..., n}).
In this example this deterministic way holds even for a total capacity of 100.

When we take the gate opening intensities more extreme, namely µi = 2i−1 for i ∈ {1, ..., n}
we can predict that the optimal solutions of allocating a total capacity of 20, 30, ..., 100 are the
same as in table 8, because gates which open faster need less capacity and lemma 2.1 tells us that

35

in the set of distributions of capacity C where ci ≥ ci−1 for all i ∈ {2, ..., n} there is an optimal
solution. After computing the optimal solutions for this case the optimal solutions are actually
what we expected to be. The exact value for the throughput when C = 20 is according to (100)
equal to 1

1
1 +

∑20
j=1

1

2i−1
= 524288

1572863 ≈ 0.3333 particles per time unit.

So in the case of a monotone increasing ASIP you have to spread the total capacity more and
more evenly over the queues when the gate opening intensities increase.

36

References

[1] S. Reuveni, ”Tandem Stochastic Systems: The Asymmetric Simple Inclusion Process,” PhD
Thesis, Tel Aviv University, 2014.

[2] S. Reuveni, I. Eliazar, and U. Yechiali, ”Asymmetric Inclusion Process as a Showcase of Com-
plexity,” Physical Review Letters, vol.109, no. July, pp. 1-4, 2012.

[3] S.Reuveni, I. Eliazar, and U. Yechiali, ”Asymmetric inclusion process,” Physical Review E,
vol.84, no. 4, pp. 1-16, 2011.

[4] S.Reuveni, I. Eliazar, and U. Yechiali, ”Limit laws for the asymmetric inclusion process,”
Physical Review E, vol. 86, no. 6, pp. 1-17, 2012.

[5] O.J.Boxma, O. Kella, and U. Yechiali, ”An ASIP model with general gate opening intervals,”
2014, Paper in preparation.

37

	Abstract
	Introduction
	Literature Study
	Monte Carlo simulation homogeneous ASIP
	Number of particles
	Load
	Draining time
	Interexit time
	Coalescence time

	Traversal time
	Markovian dynamics
	Dynamics of expected number of particles
	Dynamics expectation of X(t)
	Dynamics expectation of Y(s)
	Expected number of particles in steady state

	Probability Generating Function
	Probability Generating Function of X(t)
	Probability Generating Function of Y(s)
	Probability Generating Function in steady state
	Steady state analysis for ASIP with one queue
	Steady state analysis for ASIP with two queues

	Asymptotic analysis of ASIP
	Traversal time
	Overall load
	Busy period
	First occupied queue
	Draining time

	ASIP where particles may arrive at all queues
	Model description
	Analysis

	Summary of literature study

	Own research
	ASIP model with capacities
	Optimization problem
	Parameters
	Variables
	Constraints
	Objective function

	Determining number of particles in steady state
	Number of particles in steady state in first queue
	Number of particles in rest of the queues
	Determining limiting probability of zero particles in each queue

	Number of possibilities of allocating C capacity over n queues
	Determining throughput of homogeneous ASIP where every queue has one capacity
	Throughput of general ASIP where every queue has one capacity
	Throughput of homogeneous ASIP where every queue has one capacity

	The optimal solution of homogeneous ASIP with 20 queues
	homogeneous ASIP with 20 queues with = = 1
	homogeneous ASIP with 20 queues with =10 and =1
	homogeneous ASIP with 20 queues with =1 and =10

	The optimal solution of inhomogeneous ASIP with 20 queues
	Optimal solution of monotone decreasing ASIP with 20 queues
	Optimal solution of monotone increasing ASIP with 20 queues

