
 Eindhoven University of Technology

BACHELOR

Fractals

Mieras, W.

Award date:
2006

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7d670d82-4031-4933-81ec-402c3ee0009e

Bachelorproject - Fractals

W. Mieras (0537945)

August 23, 2006

Abstract

In this report an introduction into the study of fractals is given. Some intuition is given
of what fractals are and how to construct them. One can create fractals by looking at the
attractor of a special type of contraction mapping, the so called Iterated Function System
(IFS). In this report two algorithms are given that generate pictures of fractals using an
IFS. Also a collage theorem is given that helps one to construct an IFS for a fractal when
some target picture is given. A more general class of functions is also discussed, so called
Iterated Random Functions, that will also converge to some image if they contract on the
average. Lindenmayer systems give another way to look at fractals and construct them, some
definitions, results and examples are discussed in this report. This report aims to show that
fractals can be quite beautiful, also in a purely mathematical sense, and therefore an exiting
topic to study.

Contents

1 Introduction 3

2 Iterated Function Systems 7
2.1 Introduction . 7
2.2 The space of fractals . 7
2.3 Contraction Mappings . 10

2.3.1 Transformations . 10
2.3.2 Contraction mappings . 11

2.4 The IFS . 13
2.4.1 The IFS . 13
2.4.2 A graphical example . 13
2.4.3 The Collage Theorem . 17
2.4.4 Implementation in Java . 22

3 A closer look at the IFS 26
3.1 Introduction . 26
3.2 The addresses of points on fractals . 26
3.3 Dynamical systems . 30

3.3.1 Deterministic dynamical systems . 30
3.3.2 Random dynamical systems . 32
3.3.3 The shadow theorems for dynamical systems 33

3.4 Why the Random Iteration Algorithm works 34

4 Iterated Random Functions 37
4.1 Introduction . 37
4.2 Iterated random functions . 37
4.3 Main theorem . 39
4.4 Applications . 40

4.4.1 A simple example . 40
4.4.2 G/G/1 queue . 41

5 Lindenmayer Systems 42
5.1 Introduction . 42
5.2 Basic Lindenmayer . 44
5.3 Extensions . 50
5.4 Implementation in Java . 52
5.5 Growth functions of stochastic L-systems . 54

1

5.5.1 Some definitions . 54
5.5.2 Properties of Growth Functions . 55
5.5.3 Growth equivalence . 56
5.5.4 Symbol Reduction . 57

6 Conclusion 58
References . 58

2

Chapter 1

Introduction

The main topic of study of this report are fractals. Different ways to look at fractals are
explained and different ways to generate fractals are given. This report can be seen as an
introduction into the field of study of fractals.

But what is a fractal exactly? The strict mathematical definition of a fractal is quite difficult
and does not provide much intuition. To start with, a simple example of a fractal is the
Cantor set, which is obtained by starting with the interval [0, 1] and successively deleting
the middle part of every subinterval. This gives:

I0 = [0, 1]
I1 = [0, 1

3] ∪ [23 , 1]
I2 = [0, 1

9] ∪ [29 ,
3
9] ∪ [69 ,

7
9] ∪ [89 , 1]

I3 = ...

And we define the Cantor set C =
⋂∞
n=0 In, see also figure 1.1.

Figure 1.1: Construction of the Cantor set.

To provide some more insight in fractals, figures 1.2, 1.3 and 1.4 give a few more examples.
Note the apparent repetitive structure in the pictures, on different scales the same patterns
seem to emerge. This is a main property of fractals.

Fractal theory is an appealing field of study, not in the least bit because graphics of frac-

3

tals can be quite beautiful. Fractals turn up everywhere in nature and there are also many
practical applications besides the artistic value of fractals, like modelling chaotic events, com-
pressing pictures to very small sizes and modelling plant growth. Some examples of how
one can use fractals to model plant growth will be given in this report. I hope you will enjoy
reading this report and maybe get interested enough in fractals to read even more about them.

In chapter 2 we define a so called Iterated Function System (IFS) which can be used
to study and to generate fractals. Two practical algorithms are given to generate pictures of
fractals with an IFS: the deterministic algorithm and the random iteration algorithm. The
collage theorem at the end of the chapter gives some insight in how to create an IFS given a
picture of a fractal. Chapter 3 continues on the concept of an IFS and provides some more
insights into fractals. Points of the fractal are given an address and dynamical systems are
associated with fractals. The way the random iteration algorithm works is explained at the
end of the chapter. In chapter 4 a generalization of the IFS is studied, in a more probabilistic
setting. An IFS is a special kind of iterated random function, and the main theorem
in this chapter says that if the random functions contract ’on the average’ then the iterated
images converge to some stationary probability distribution. Finally, in chapter 5 another
way of looking at fractals and generating fractals is considered, the so called Lindenmayer
systems. This way of looking at fractals is especially useful in a biological context, for plant
modelling and studying the growth of a colony of bacteria for example.

Chapters 2 and 3 are loosely based on the book ’Fractals Everywhere’ [1] by Michael Barnsley,
chapter 4 contains mainly theory from the article ’Iterated Random Functions’ [4] by Persi
Diaconis and David Freedman, and chapter 5 makes frequent use of the book ’The Algo-
rithmic Beauty Of Plants’ [2] by Przemyslaw Prusinkiewics and Astrid Lindenmayer. Some
references will be made to this material in the different chapters, and for some more insight
in fractal theory this material is recommended. Most of the pictures in this report were gen-
erated using a practical implementation of the theory presented in this report. A description
of this implementation is given in the relevant chapters.

4

Figure 1.2: A Sierpinski fractal, generated using an IFS.

Figure 1.3: A fern fractal, generated using an IFS.

5

Figure 1.4: A Koch curve, generated using a L-System.

6

Chapter 2

Iterated Function Systems

2.1 Introduction

In this chapter a so called iterated function system (IFS) will be defined, which can be used
to describe and to generate fractals.

An IFS is essentially a contraction mapping in the metric space (H(X), h). In section 2.2
metric spaces and several other mathematical structures are defined, some basic results are
derived, and the space (H(X), h) is introduced, this is the space in which fractals ’live’. The
main result is that this space is complete, which will be needed in later sections. In section
2.3 is defined what a contraction mapping is, and some properties of contraction mappings
are derived. Finally, in section 2.4 the IFS is defined, and two algorithms are given to create
pictures of fractals using an IFS. A collage theorem is given which allows one to construct
an IFS based on a picture of a fractal. At the end of the section a practical implementation
of the algorithms defined before is given. This implementation was used to generate most of
the pictures in this chapter.

The main source of information for this chapter are chapters 2 and 3 from the book ’Fractals
Everywhere’ [1] by Michael Barnsley.

2.2 The space of fractals

In order to study fractals and fractal geometry, we need to define the space in which fractals
live. First some general definitions and properties are stated which are used further on.

• A space X is a set. The points of the space are the elements of the set. Examples of
spaces are Rn, Cn, {1, 2, 3}.

• A metric space (X, d) is a space S with a real-valued function d : X ×X → R which
measures the distance between two points ofX. d needs to fulfil the following conditions:

1. ∀x, y ∈ X : d(x, y) = d(y, x)

2. ∀x, y ∈ X,x 6= y : 0 < d(x, y) <∞
3. ∀x ∈ X : d(x, x) = 0

4. ∀x, y, z ∈ X : d(x, y) ≤ d(x, z) + d(z, y)

7

An example of a metric space is R2 with the Euclidean metric d(x, y) =
√
x2 + y2.

• A sequence {xn} of points in a metric space (X, d) is a Cauchy sequence if for all
ε > 0 there exists an integer N > 0 such that ∀n,m > N : d(xn, xm) < ε.

• A sequence {xn} of points in a metric space (X, d) is called convergent to a point x ∈ X
if for all ε > 0 there is an integer N > 0 such that ∀n > N : d(xn, x) < ε. This is written
as x = limn→∞ xn. Take for example xn = 1

n in the metric space (R2,Euclidean), then
limn→∞ xn = 0.

• If a sequence {xn} of points in a metric space (X, d) converges to a point x ∈ X then it
is a Cauchy sequence. But if {xn} is a Cauchy sequence it doesn’t automatically follow
that {xn} converges:

A metric space (X, d) is called complete if every Cauchy sequence {xn} converges
to a point x ∈ X.

• Let S ⊂ X be a subset of the metric space (X, d). x ∈ X is called a limit point
of S if there exists a sequence xn of S \ {x} with limn→∞ = x. Note that the limit
point does not need to lie in S: take for example S = (0, 1] ⊂ R then the sequence
xn = 1

n converges to 0 /∈ S. Not also that not every element of S is a limit point: take
S = {1, 2, 3} then S does not contain any limit points.

• Let S ⊂ X be a subset of the metric space (X, d). The closure of S is S = S ∪ {Limit
points of S}. If S = S then S is called closed.

• Let S ⊂ X be a subset of the metric space (X, d). S is called bounded if there exists
a point a ∈ X and an R > 0 such that d(a, x) < R for all x ∈ S.

• Let S ⊂ X be a subset of the metric space (X, d). S is called totally bounded if for
each ε > 0 there exists a finite number of points {y1, y2, ..., yn} ⊂ S such that for every
x ∈ S there is a yi ∈ {y1, y2, ..., yn} such that d(x, yi) < ε.

• Let S ⊂ X be a subset of the metric space (X, d). S is called compact if every infinite
sequence (xn) contains a subsequence with a limit in S. If (X, d) is a complete metric
space, then S is compact if and only if S is closed and totally bounded.

Now we can define the space H(X) in which fractals live:

Let (X, d) be a complete metric space. H(X) is the space whose points are the compact
subsets of X besides the empty set.

Next, we need to define a useful metric on the space H(X) to be able to say when two fractals
resemble each other, lie close to each other in some sense. First we define the distance from
a point x ∈ S to a set B ∈ H(X):

d(x,B) = min{d(x, y) : y ∈ B}

So d(x,B) is the distance from x to the point y ∈ B which is closest to x under the metric d.
Now we can define the distance from A ∈ H(X) to B ∈ H(X):

d(A,B) = max{d(x,B) : x ∈ A}

8

Figure 2.1: The distance from A to B is defined as the distance to the set B from the point
in A that is the farthest away from the set B. Note that the distance from A to B is not the
same as the distance from B to A in general.

The meaning of d(A,B) is intuitively less obvious. It is the distance to the set B of the point
x ∈ A which is the farthest from the set B, see figure 2.1. But one can imagine that if A and
B lie closer to each other in H(X) that d(A,B) becomes smaller. Note that d(A,B) is not a
metric, because d(A,B) 6= d(B,A) in general. For example, let A ⊂ B such that B contains
a point x /∈ A. Then d(A,B) = 0, but d(B,A) 6= 0.

The concept of d(A,B) can be extended to a metric: The Hausdorff distance between
A,B ∈ H(X) is defined by h(A,B) = max{d(A,B), d(B,A)}. For any a ∈ A, the distance
from a to the nearest point b ∈ B is less than or equal to h(A,B), and for any b ∈ B the
distance from b to the nearest point a ∈ A is also less than or equal to h(A,B).

In order to show that the Hausdorff distance is a metric we need to show the following:

1. h(A,B) = h(B,A): since A and B are symmetrical in the definition of the Hausdorff
distance, this is trivial.

2. If A 6= B then 0 < h(A,B) < ∞: Since h(A,B) = d(a, b) for some a ∈ A and b ∈ B,
0 ≤ h(A,B) <∞. Because A 6= B we can assume without loss of generality that there
exists an a ∈ A with a /∈ B, and d(a,B) > 0. So h(A,B) > 0.

3. h(A,A) = 0 is trivial, since d(a,A) = 0 for all a ∈ A.

4. h(A,B) ≤ h(A,C) + h(C,B): First show that d(A,B) ≤ d(A,C) + d(C,B):

d(a,B) = min{d(a, b) : b ∈ B}
≤ min{d(a, c) + d(c, b) : b ∈ B}∀c ∈ C
= d(a, c) + min{d(c, b) : b ∈ B}∀c ∈ C.

Thus

d(a, b) ≤ min{d(a, c) : c ∈ C}+ max{min{d(c, b) : b ∈ B} : c ∈ C} = d(a,C) + d(C,B).

And d(A,B) ≤ d(A,C) + d(C,B) follows. Similarly it can be shown that d(B,A) ≤
d(B,C)+d(C,A). Then we have h(A,B) = max{d(A,B), d(B,A)} ≤ max{d(B,C), d(C,B)}+
max{d(A,C), d(C,A)} = h(B,C) + h(A,C) = h(A,C) + h(C,B).

9

So the Hausdorff distance is a metric and (H(X), h) is a metric space. Under certain circum-
stances this metric space is complete:

Let (X,D) be a complete metric space. Then (H(X), h) is a complete metric space.
Moreover, if {An ∈ (H(X))} is a Cauchy sequence then A = limn→∞An ∈ H(X) can be
described as: A = {x ∈ X : there is a Cauchy sequence {xn ∈ An} which converges to x}.
The proof of this theorem is complex and will be omitted here, see [1] for the proof.

In the following section we will need a property of the Hausdorff distance:

• For all A, B, C and D in H(X) we have h(A ∪B,C ∪D) ≤ max(h(A,C), h(B,D)).

proof: First note that d(A ∪B,C) = max(d(A,C), d(B,C)) since

d(A ∪B,C) =
max{d(x,C) : x ∈ A ∪B} =
max(max{d(x,C) : x ∈ A},max{d(x,C) : x ∈ B}) =
max(d(A,C), d(B,C)).

Similarly, d(A,B ∪ C) = max(d(A,B), d(A,C). Now we have

h(A ∪B,C ∪D) =
max(d(A ∪B,C ∪D), d(C ∪D,A ∪B)) =
max(d(A,C ∪D), d(B,C ∪D), d(C ∪D,A), d(C ∪D,B)) =
max(h(A,C ∪D), h(B,C ∪D)).

Since h(A,C ∪ D) ≤ h(A,C) + h(C,C ∪ D) = h(A,C) and similarly h(B,C ∪ D) ≤
h(B,D)+h(D,C∪D) = h(B,D), it follows that h(A∪B,C∪D) ≤ max(h(A,C), h(B,D)).

2.3 Contraction Mappings

In this section we look at contraction mappings. First we define what a transformation is and
give several definitions related to transformations which will be used later on. Then we define
when a transformation is a contraction mapping, and give some properties of contraction
mappings, with the Contraction Mapping Theorem as the main result. The IFS is essentially
a special kind of contraction mapping on the space of fractals (H(X), h), and will be defined
in the next section.

2.3.1 Transformations

Let (X, d) be a metric space. A transformation on X is a function f : X → X which assigns
a point f(x) to every point x ∈ X.

An example of a transformation is the affine transformation, w : R2 → R2, defined by

w(x) = w

(
x1

x2

)
=

(
a b
c d

) (
x1

x2

)
+

(
e
f

)
, where a, b, c, d, e, f ∈ R and x ∈ R2. This

transformation maps parallelograms into parallelograms, see figure 2.2.

10

Figure 2.2: The affine transformation maps parallelograms into parallelograms.

There are several useful definitions for transformations which will be used later on. Let f be
a transformation on the metric space (X, d):

• Let S ⊂ X, then f(S) = {f(x) : x ∈ S}.

• f is one-to-one if for all x, y ∈ X f(x) = f(y) implies x = y.

• f is onto if f(X) = X.

• f is called invertible if it is one-to-one and onto, then it is possible to define the
transformation f−1 : X → X, the inverse of f , as f−1(y) = x where x ∈ X is the
unique point such that y = f(x).

• The forward iterates of f are transformations f◦n : X → X which are defined by
f◦0(x) = x,f◦1(x) = f(x), f◦n+1(x) = f ◦ f◦n(x).

• And the backward iterates of f are transformations f◦(−n) : X → X which are defined
by f◦(−1)(x) = f−1(x), f◦−n(x) = (f◦n)−1(x).

2.3.2 Contraction mappings

A transformation f : X → X on a metric space (X, d) is a contraction mapping if
d(f(x), f(y)) ≤ s · d(x, y) for a number 0 ≤ s < 1 and for all x, y ∈ X. s is called a con-
tractivity factor for f . Take for example f(x) = 0.5x + 1 in the metric space (R,Euclidian).
Then d(f(x), f(y) = (0.5x + 1) − (0.5y + 1) = 0.5(x − y) = 0.5d(x, y). So f is a contraction
mapping with contractivity factor 0.5.

Let f be a contraction maping on a metric space (X, d). A point xf ∈ X such that f(xf) = xf
is a fixed point of f .

Contraction Mapping Theorem:
Let (X, d) be a complete metric space and let f : X → X be a contraction mapping on
(X, d). Then f has exactly one fixed point xf ∈ X, and the sequence {f◦n(x) : n = 0, 1, 2, ...}
converges to xf : limn→∞ f◦n(x) = xf for all x ∈ X.

proof :

11

Take an x ∈ X, let f be a contraction mapping and let 0 ≤ s < 1 be a contractivity factor
for f . It is easy to see that d(f◦n(x), f◦m(x)) ≤ smin(n,m)d(x, f◦|n−m|(x)).
Furthermore, we have d(x, f◦k(x)) ≤ d(x, f(x)) + d(f(x), f◦2(x)) + ...+ d(f◦(k−1)(x), f◦k(x))
≤ (1 + s+ s2 + ...+ sk−1)d(x, f(x)) ≤ 1

1−sd(x, f(x)), using the triangle inequality.
Substituting the second result in the first, we get d(f◦n(x), f◦m(x)) ≤ smin(n,m) 1

1−sd(x, f(x)).
Now it follows that {f◦n} is a Chauchy sequence, and since X is complete this sequence
converges to a limit xf ∈ X: limn→∞ f◦n(x) = xf .
Because f(xf) = f(limn→∞ f◦n(x)) = limn→∞ f◦(n+1)(x) = xf it follows that xf is a fixed
point of f . Finally, we need to prove that xf is unique. Suppose there are two fixed points
xf , yf ∈ X. Then d(xf , yf) = d(f(xf), f(yf)) ≤ sd(xf , yf). This implies d(xf , yf) = 0 and
thus xf = yf .

Next, some properties of contraction mappings are derived. These properties will be used
in the next section, where a special contraction mapping, the IFS, will be defined.

• Let w : X → X be a contraction mapping on the metric space (X, d). Then w is con-
tinuous.

proof :
Let ε > 0 and let s be the contractivity factor for w. Let δ = ε

s and take d(x, y) < δ.
Then d(w(x), w(y)) ≤ sd(x, y) < ε, so w is continuous.

• Let w be a continuous mapping on (X, d). Then w maps H(X) into itself.

proof :
Let S be a nonempty compact subset of X. It is easy to see that w(S) = {w(x) : x ∈ S}
is nonempty. We need to show that w(S) is compact. Let {yn = w(xn)} be an infinite
sequence in w(S). Then {xn} is an infinite sequence in S, and because S is compact this
sequence contains a convergent subsequence {xNn} which converges to a point x̂ ∈ S.
But since w is continous it follows that {yNn = f(xNn)} converges to ŷ = w(x̂) ∈ w(S).

• Let w : X → X be a contraction mapping on the metric space (X, d) with contractivity
foctor s. Then w : H(X) → H(X) defined by w(B) = {w(x) : x ∈ B} for all B ∈ H(X)
is a contraction mapping on (H(X), h(d)) with contractivity factor s.

proof :
From the fist lemma above we know that w is continous. So by the second lemma w is a
map fromH(X) toH(X). LetB,C ∈ H(X). Then d(w(B), w(C)) = max{min{d(w(x), w(y)) :
y ∈ C} : x ∈ B} ≤ max{min{s · d(x, y) : y ∈ C} : x ∈ B} = s · d(B,C). Equivalently,
d(w(C), w(B)) ≤ s·d(C,B). So h(w(B), w(C)) = max(d(w(B), w(C)), d(w(C), w(B))) ≤
s ·max(d(B,C), d(C,B)) ≤ s · h(B,C).

• Let (X, d) be a metric space and let {wn : n = 1, 2, ..., N} be contraction mappings
on (H(X), h). sn is the contractivity factor for wn. Define W : H(X) → H(X) by
W (B) = w1(B) ∪ w2(B) ∪ ... ∪ wN (B) =

⋃N
n=1wn(B) for all B ∈ H(X). Then W is a

contraction mapping with contractivity factor s = max{sn : n = 1, 2, ..., N}.

proof :

12

Let N = 2. Take B,C ∈ H(X). Then h(W (B),W (C)) = h(w1(B) ∪ w2(B), w1(C) ∪
w2(C)) ≤ max(h(w1(B), w1(C)), h(w2(B), w2(C))) ≤ max(s1h(B,C), s2h(B,C)) ≤ sh(B,C),
where the first inequality follows from the last property of h from the previous section.
A general proof is obtained by induction on N .

2.4 The IFS

In this section a so called Iterated Function System (IFS) will be defined, which is essentially
a contraction mapping in (H(X), h) and can be used to create pictures of fractals for example.

2.4.1 The IFS

An iterated function system (IFS) consists of a complete metric space (X, d) and a finite
set of contraction mappings wn : X → X with contractivity factors sn for n = 1, 2, ..., N . The
IFS is denoted by {X : wn, n = 1, 2, ..., N} and has contractivity factor s = max{sn : n =
1, 2, ..., N}.

From previous sections the following results about a IFS can be derived:

Let {X : wn, n = 1, 2, ..., N} be a IFS with contractivity factor s. Then the transforma-
tion W : H(X) → H(X) defined by W (B) =

⋃N
n=1wn(B) for all B ∈ H(X) is a con-

traction mapping on the complete metric space (H(X), h) with contractivity factor s, so
h(W (B),W (C)) ≤ sh(B,C) for all B,C ∈ H(X). It has a unique fixed point A ∈ H(X) with
A = W (A) =

⋃N
n=1wn(A), and is given by A = limn→∞W ◦n(B) for any B ∈ H(X). This

point is called the attractor of the IFS. This attractor is a fractal.

Before some examples of IFS’s are given, we note that there is an extension possible to
the definition of the IFS, namely the IFS with condensation:

• Let (X, d) be a metric space and let C ∈ H(X). Define w0 : H(X) → H(X) by
w0(B) = C for all B ∈ H(X). w0 is called a condensation transformation and C is
the associated condensation set.

• Let {X,w1, w2, ..., wN} be an IFS with contractivity factor s and let w0 be a conden-
sation transformation. Then {X,w0, w1, ..., wN} is called an IFS with condensation
with contractivity factor s.

It is not difficult to check that the properties mentioned before for an IFS also hold for an IFS
with condensation: it is a contraction mapping and has a unique fixed point A ∈ H(X). The
IFS with condensation is another important way of making contraction mappings on H(A)
and will be used in some theorems in the next chapter.

2.4.2 A graphical example

In this section pictures of the attractor of the IFS will be created using two different algo-
rithms: the deterministic algorithm and the random iteration algorithm.

The deterministic algorithm is straightforward: we calculate a sequence of sets {An =

13

W ◦n(A)} where An+1 =
⋃N
j=1wj(An), starting from a randomly chosen initial set A0. Since

limn→∞An = A where A is the attractor of the IFS, for large n An will approximate the
attractor A.

As a first example, consider the cantor set discussed in the introduction. We can use an
IFS to get better and better approximations to this set. Consider the IFS {R : w1, w2} with:

w1(x) =
1
3
x

w2(x) =
1
3
x+

2
3

And let A0 be the interval [0, 1]. The first few iterations of the deterministic algorithm are
displayed in figure 2.3.

For a more advanced and two-dimensional graph, consider the IFS {R2 : w1, w2, w3} with:

Figure 2.3: The first few iterations of the deterministic algorithm using an IFS for the cantor
set.

w1

(
x1

x2

)
=

(
0.5 0
0 0.5

) (
x1

x2

)
+

(
1
1

)

w2

(
x1

x2

)
=

(
0.5 0
0 0.5

) (
x1

x2

)
+

(
1
50

)

w2

(
x1

x2

)
=

(
0.5 0
0 0.5

) (
x1

x2

)
+

(
50
50

)
The results of calculating An for various values of n and starting sets A0 are displayed in
figures 2.4 and 2.5. A is a Sierpinski triangle, a famous fractal.

14

Figure 2.4: The first 9 sets An calculated with the deterministic algorithm for the IFS defined
above. A0 is a filled square.

15

Figure 2.5: The first 9 sets An calculated with the deterministic algorithm for the IFS defined
above. A0 is an open disc. Note that the figures converge to the same attractor as in figure
2.4 following the theorem that there is a unique attractor for the IFS.

16

A second algorithm to calculate pictures of the attractor of the IFS {X : wn, n = 1, 2, ..., N}
is the random iteration algorithm. The algorithm works as follows: with every wi a prob-
ability pi is associated such that pi ≥ 0 and

∑N
i=1 pi = 1. Take x0 ∈ X and xn ∈

{w1(xn−1), w2(xn−1), ..., wN (xn−1)} where the probability that xn = wi(xn−1) is pi. This
way a sequence {xn : n = 0, 1, ...} is constructed. Under certain conditions this sequence op
points will represent the attractor of the IFS. The numbers pi do not influence the attractor,
only how fast the sequence of points converges to the attractor. In figure 2.6 pictures of
approximations of the Sierpinski triangle calculated with the random iteration algorithm are
shown for increasing numbers of iterations.

Figure 2.6: Graphical views of the Sierpinski triangle, calculated with the random iteration
algorithm for increasing numbers of iterations.

2.4.3 The Collage Theorem

The next theorem if useful when one wants to find an IFS whose attractor looks like a given
set L ∈ H(X). If one can find a set of contraction mappings for which the union of images
of L under the transformations is near the original L, under the Hausdorff metric, then the
attractor of the IFS which consists of those contraction mappings will be close to L.

The Collage Theorem
Let (X, d) be a complete metric space, let L ∈ H(X) and let ε ≥ 0. Choose an IFS

17

{X;w1, w2, ..., wN} with contractivity factor 0 ≤ s < 1, such that

h(L,
N⋃
n=1

wn(L)) ≤ ε.

Then h(L,A) ≤ ε
1−s , where A is the attractor of the IFS. Equivalently,

h(L,A) ≤ (1− s)−1h(L,
N⋃
n=1

wn(L)) for all L ∈ H(X)

The proof follows immediately from the following lemma:

Let (X, d) be a complete metric space. Let f : X → X be a contraction mapping with
contractivity factor 0 ≤ s < 1 and let xf ∈ X be the fixed point of f . Then

d(x, xf) ≤ (1− s)−1 · d(x, f(x)) for all x ∈ X

proof:
d(x, f) = d(x, limn→∞ f◦n(x)) = limn→∞ d(x, f◦n(x))
≤ limn→∞

∑n
m=1 d(f

◦(m−1)(x), f◦(m)(x))
≤ limn→∞ d(x, f(x))(1 + s+ ...+ sn−1) ≤ (1− s)−1d(x, f(x)).

Looking at figures 2.7, 2.8 and 2.9 might make this theorem more clear.

18

Figure 2.7: The collage of the three transformations of the original picture is equal to the
original picture.

19

Figure 2.8: The collage of the four transformations of the original picture is equal to the
original picture.

Figure 2.9: A more advanced collage, build from an IFS containing 19 transformations. See
figure 2.10 for the specifics.

20

Figure 2.10: This figure shows the different transformations in the IFS that was used to build
this fractal.

21

2.4.4 Implementation in Java

In this section an implementation in Java of the algorithms given before in Java is given.
This is mostly straightforward from the definition of the algorithms, the main difficulty in
the implementation is to take into account the different coordinate systems: the IFS’s use
arbitrary cartesian coordinates, while we will use some grid of size x by y with coordinates
in the integer set [0, x− 1]× [0, y − 1] to represent the fractal on the computer.

In this section we only look at how to fill this grid and dispense with the actual drawing
details. We define one abstract class Fractal which contains all functions for building the
fractal, and the extensions of this class will contain the data needed to build the fractal. The
following code gives the skeleton code for the class Fractal, the details will be shown later:

public abstract class Fractal

{

public double[][] data; // IFS transformations

public double[] fs; // Window size for transformations

public byte[][] fractal; // The fractal grid

BufferedImage fractalImage; // The image output

public Fractal (int complexity)

{

...

}

// deterministic algorithm

private void buildFractal (int complexity)

{

...

}

// random iteration algorithm

private void buildFractalRIA (int complexity)

{

...

}

// Build image of fractal

private void buildFractalImage ()

{

...

}

// extension classes need to define this

public abstract void initData (int xRes, int yRes);

// accessor function

public BufferedImage get () { return fractalImage; }

}

The extension of this abstract class will fill the data[][] and fs[] fields and defines a starting
point for the fractal (A0):

public class SierpinskiFractal extends Fractal

{

public SierpinskiFractal (int complexity) { super (complexity); }

22

public void initData (int xRes, int yRes)

{

double[][] initData = { {0.5, 0, 0, 0.5, 0 ,0 ,0.33},

{0.5, 0, 0, 0.5, 0 ,50 ,0.33},

{0.5, 0, 0, 0.5, 50 ,50 ,0.34}};

fs = new double[4];

fs[0] = 0.0;

fs[1] = 0.0;

fs[2] = 100.0;

fs[3] = 100.0;

data = initData;

fractal[xRes/2][yRes/2] = 1;

}

}

The data[][] fields contain the transformations in the IFS. Only affine transformations
are allowed: the first four coordinates in every row of data[][] describe the multiplication
matrix, coordinates 5 and 6 describe the translation vector and the 7th coordinate gives the
probability used for the random iteration algorithm. The fs[] fields give the size of the
area in which the transformations are taking place: the coordinates in fs[] describe the left
position, bottom position, width and height of the area respectively. fractal[][] will be
used to store A0, A1, A2 and so on in different iterations of the algorithm. In this case, A0 is
set to one point in the middle of the screen. Next, we will look at the actual implementation
of the algorithms.

public Fractal (int complexity)

{

int xRes = 500;

int yRes = 500;

fractal = new byte[xRes][yRes];

fractalImage = new BufferedImage (xRes, yRes, BufferedImage.TYPE_INT_RGB);

initData (xRes, yRes);

buildFractal (complexity);

buildFractalImage ();

}

The constructor first defines the size of the grid which will contain the fractal, in this case
we use a 500 by 500 pixel grid. fractal[][] will store temporary data, the A0, A1 and so
on, while fractalImage will contain the final image which will be used to put the picture
on the screen. Next, the constructor calls initdata () which initializes fractal specific data.
Then fractal[][] is calculated by calling buildFractal () which will iterate the algorithm
complexity times. Finally a call to buildFractalImage() creates the output image. In case
one wants to use the random iteration algorithm, the call to buildFractal () is replaced by
a call to buildFractalRIA () and now complexity gives the number of points drawn. But
first we discuss buildFractal ():

// deterministic algorithm

private void buildFractal (int complexity)

{

double oldx, oldy, newx, newy;

23

int xRes = fractal.length;

int yRes = fractal[0].length;

byte[][] s = new byte[xRes][yRes];

for (int N = 0; N < complexity; N++)

{

for (int x = 0; x < xRes; x++)

for (int y = 0; y < yRes; y++)

if (fractal[x][y] == 1)

for (int n = 0; n < data.length; n++)

{

// convert to local coordinates

oldx = fs[0] + x * fs[2] / xRes;

oldy = fs[1] + y * fs[3] / yRes;

// apply transformations in local coordinates

newx = data[n][0] * oldx + data[n][1] * oldy + data[n][4];

newy = data[n][2] * oldx + data[n][3] * oldy + data[n][5];

// transform back to grid coordinates

s[(int)Math.floor ((newx - fs[0]) * xRes / fs[2])][(int)Math.floor ((newy - fs[1]) * yRes / fs[3])]

= 1;

}

// update the fractal and clear the temporary grid.

for (int x = 0; x < xRes; x++)

for (int y = 0; y < yRes; y++)

{

fractal[x][y] = s[x][y];

s[x][y] = 0;

}

}

}

The algorithm works as follows: In every iteration we look at every point in fractal[][].
If there is a point on a specific position (fractal[x][y] == 1), then we apply all transfor-
mations to it and store the resulting points. Because the transformations are defined for an
arbitrary cartesian coordinate system, the point (x, y) is first transformed to a point in this
coordinate system, using the constants in fs[] defined before. Then the transformations are
applied and the coordinates are transformed back to their position in the fractal grid. The
new positions are first saved in a temporary array, s[][]. After all points in fractal[][] are
checked, fractal[][] is replaced by s[][] and s[][] is set to the zero array. The random
iteration algorithm is more simple to implement:

// random iteration algorithm

private void buildFractalRIA (int complexity)

{

double oldx, oldy, newx, newy, r;

int x, y;

int i;

int xRes = fractal.length;

int yRes = fractal[0].length;

// start in the middle

x = xRes / 2;

y = yRes / 2;

newx = x / (xRes / fs[2]) + fs[0];

newy = y / (yRes / fs[3]) + fs[1];

24

for (int N = 0; N < complexity; N++)

{

// select transformation

r = Math.random (); i = -1;

while (r > 0) { r -= data[i+1][6]; i++; }

// apply transformation

oldx = newx;

oldy = newy;

newx = (data[i][0] * oldx + data[i][1] * oldy + data[i][4]);

newy = (data[i][2] * oldx + data[i][3] * oldy + data[i][5]);

// add point to the fractal

fractal[(int)((newx - fs[0]) * (xRes / fs[2]))][(int)((newy - fs[1]) * (yRes / fs[3]))] = 1;

}

}

Starting with one point in the grid, here chosen to be the point in the middle, repeatedly a
transformation is chosen at random and applied to that point. Because we only work with
one point at a time, we always represent that point in the cartesian coordinate system of the
IFS and we only need to transform the points to fractal grid coordinates when we add them
to fractal[][]. The last function in the class Fractal is almost trivial:

// Build image of fractal

private void buildFractalImage ()

{

int xRes = fractalImage.getWidth ();

int yRes = fractalImage.getHeight ();

for (int x = 0; x < xRes; x++)

for (int y = 0; y < yRes; y++)

if (fractal[x][y] == 1) fractalImage.setRGB (x, y, new Color (0, 0, 0).getRGB ());

else fractalImage.setRGB (x, y, new Color (255, 255, 255).getRGB ());

}

Points on the fractal are just copied on fractalImage.

25

Chapter 3

A closer look at the IFS

3.1 Introduction

In this chapter we will try to understand why the random iteration algorithm works and look
more closely at fractals and IFS’s in general. We need to look at fractals from a different
perspective, associate points on fractals with addresses in code space, and define so called
dynamical systems on fractals.

The random iteration algorithm generates a certain orbit on the fractal. The so called
shadowing theorem assures us that we can account for numerical errors during the com-
putation of this orbit with a computer: there exists a real orbit on the fractal that is ’close
to’ the orbit generated by the random iteration algorithm with numerical errors. It can be
shown that this orbit is very likely to be dense in the fractal hence a good approximation for
the fractal.

This chapter is loosely based on chapter 4 of the book ’Fractals Everywhere’ [1] by Michael
Barnsley.

3.2 The addresses of points on fractals

In this section we look at a special way to view points in fractals, namely by associating
addresses with points. Let A be the attractor of an IFS, then we can associate an address
with a point by looking at the sequence of transformations applied to A which lead to it.
But there are different types of IFS: for one type of IFS all points have only one address,
this type of IFS is called totally disconnected, for another type of IFS ’a few’ points have
multiple addresses, this type of IFS is called just-touching, and for yet another type of IFS
a large proportion of points have more than one address, this type of IFS is called overlapping.

As an example, look at the Sierpinski triangle generated with the IFS {R2;w1, w2, w3}, where
the wi’s are defined as:

w1

(
x1

x2

)
=

(
0.4 0
0 0.4

) (
x1

x2

)
+

(
1
50

)

26

w2

(
x1

x2

)
=

(
0.4 0
0 0.4

) (
x1

x2

)
+

(
1
1

)

w2

(
x1

x2

)
=

(
0.4 0
0 0.4

) (
x1

x2

)
+

(
50
1

)
We can divide the attractor A of this IFS in three parts: w1(A), w2(A) and w3(A). All points
in part w1(A) have an address starting with ’1’, all points in part w2(A) have an address
starting with ’2’ and all points in part w3(A) have an address starting with ’3’. We can make
a further subdivision of the attractor by noting that w1(A) = w1(w1(A)∪w2(A)∪w3(A)). All
points in w1(w1(A)) get an address starting with ’11’, all points in w1(w2(A)) get an address
starting with ’12’ and so on. See figure 3.1. Note that in this case every point has a unique
address, but this is not true in general.

Figure 3.1: One can associate an address with each point on the attractor of the IFS that
generates this Sierpinski triangle.

27

Now we first define the code space, a convenient space to describe addresses, and then asso-
ciate it with the attractor of the IFS.

The Code space Σ on N symbols is a space on N symbols {1, 2, ..., N} such that for σ ∈ Σ
we can write σ = σ1σ2σ3σ4σ5σ6...

Let {X : w1, w2, ..., wN} be an IFS. The Code space associated with this IFS, (Σ, dC) is
the code space onN symbols {1, 2, ..., N} with the metric dC , where dC(ω, σ) =

∑∞
n=1

|ωn−σn|
(N+1)n for all ω, σ ∈

Σ.

Next, we will define a function φ : Σ → A, that maps an element from code space to a
point of the attractor. This function is continuous and onto. To proof existence, continuity
and surjectivity, we need the following results first:

• Let (X, d) be a complete metric space. Let {X;w1, w2, ..., wN} be an IFS. Let K ∈
H(X). Then there exists a K̃ ∈ H(X) such that K ⊂ K̃ and wn : K̃ → K̃ for
n = 1, 2, ..., N . So {K̃;w1, w2, ..., wN} is an IFS where the underlying space is compact.

proof :
Let W : H(X) → H(X) be defined by W (B) =

⋃N
n=1wn(B) for all B ∈ H(X). To

construct K̃ look at the IFS with condensation {X;w0, w1, ..., wN} where w0 is asso-
ciated with the condensation set K. The attractor of this IFS belongs to H(X). By
writing K̃ = (K ∪W ◦1(K) ∪W ◦2(K) ∪W ◦3(K) ∪ ...) it is easy to see that K ⊂ K̃ and
W (K̃) ⊂ K̃.

• Let (X, d) be a complete metric space. Let {X;w1, w2, ..., wN} be an IFS with con-
tractivity factor s. Let (Σ, dC) denote the code space associated with the IFS. De-
fine φ(σ, n, x) = wσ1 ◦ wσ2 ◦ ... ◦ wσn(x) for all σ ∈ Σ, n ∈ N and x ∈ X. Let
K be a compact nonempty subset of X. Then there is a real constant D such that
d(φ(σ,m, x1), φ(σ, n, x2)) ≤ Dsmin(m,n) for all σ ∈ Σ, all m,n ∈ N and all x1, x2 ∈ K.

proof :
Construct K̃ as in the lemma above. Supposem < n. Then φ(σ, n, x2) = φ(σ,m, φ(ω, n−
m,x2)) where ω = σm+1σm+2... ∈ Σ. Let x3 = φ(ω, n − m,x2). Note that x3 ∈ K̃.
So d(φ(σ,m, x1), φ(σ, n, x2)) = d(φ(σ,m, x1), φ(σ,m, x3)) ≤ sd(wσ2 ◦ ... ◦wσm(x1), wσ2 ◦
... ◦wσm(x3)) ≤ s2d(wσ3 ◦ ... ◦wσm(x1), wσ3 ◦ ... ◦wσm(x3)) ≤ smd(x1, x3) ≤ smD, where
D = max{d(x1, x3) : x1, x3 ∈ K̃}. Since K̃ is compact we know that D is finite.

Now we can state the theorem linking code space to the attractor A of the IFS:

Theorem: Let (X, d) be a complete metric space. Let {X;w1, w2, ...wN} be a IFS with
attractor A. Let (Σ, dC) be the code space associated with this IFS. For each σ ∈ Σ, n ∈ N
and x ∈ X, let φ(σ, n, x) = wσ1 ◦ wσ2 ◦ ... ◦ wσn(x). Then φ(σ) = limn→∞ φ(σ, n, x) exists,
belongs to A, and is independent of x ∈ X. If K is a compact subset of X then the conver-
gence is uniform over x ∈ K. The function φ is continuous and onto.

proof :

28

• φ exists: Let x ∈ X. Let K ∈ H(X) be such that x ∈ K. Construct K̃ as de-
scribed above. Let W : H(X) → H(X) be defined as W (B) =

⋃N
n=1wn(B) for all

B ∈ H(X) as usual. W is a contraction mapping on the metric space (H(X), h) and
A = limn→∞{W ◦n(K)}. So {W ◦n(K)} is a Cauchy sequence in (H(X), h)). Notice that
φ(σ, n, x) ∈ W ◦n(K), and from the previous theorem about the space (H(X), h) it fol-
lows that if limn→∞ φ(σ, n, x) exists, it belongs to A. That this limit exists follows from
the fact that {φ(σ, n, x)} is a Cauchy sequence: d(φ(σ,m, x), φ(σ, n, x)) ≤ Dsmin(n,m)

which goes to zero if n,m go to infinity.

• φ is continuous: Let ε > 0 and choose n such that snD < ε and let σ, ω ∈ Σ be such
that dC(σ, ω) <

∑∞
m=n+2

N
(N+1)m = 1

(N+1)n+1 . Then it is easy to see that σ and ω must
be equal in the first n terms: σ1 = ω1, σ2 = ω2, ..., σn = ωn. So for each m ≥ n we can
write d(φ(σ,m, x), φ(ω,m, x)) = d(φ(σ, n, x1), φ(σ, n, x2)) for some x1, x2 ∈ K̃. Now we
have d(φ(σ, n, x1), φ(σ, n, x2)) ≤ snD < ε. Let m→∞, then d(φ(σ), φ(ω)) < ε.

• φ is onto: Let a ∈ A. Then there exists a sequence {ω(n) ∈ Σ : n = 1, 2, 3, ...}
such that limn→∞ φ(ω(n), n, x) = a. Since (Σ, dC) is compact, {ω(n)} has a convergent
subsequence with limit ω ∈ Σ. Assume limn→∞ ω(n) = ω without loss of generality. Let
a(n) be the number of elements in {j ∈ N : ω(n)

k = ωk for 1 ≤ k ≤ j}, then a(n) →∞ as
n→∞. So d(φ(ω, n, x), φ(ω(n), x)) ≤ sa(n)D. Let n→∞ then we have d(φ(ω), a) = 0
which implies φ(ω) = a.

Now we can formally define what the address of a point of an attractor is, and make a dis-
tinction between the totally disconnected, just-touching and overlapping type of IFS:

Let {X;w1, w2, ..., wN} be a IFS with code space Σ. Let φ : Σ → A be the continuous
function from code space onto the attractor of the IFS constructed before. An address of a
point a ∈ A is any member of the set φ−1(a) = {ω ∈ Σ : φ(ω) = a}. This set is called the set
of addresses of a ∈ A.

The IFS is called totally disconnected if each point of its attractor has exactly one address.
The IFS is called just-touching if it is not totally disconnected but its attractor contains an
open set O such that

• wi(O) ∩ wj(O) = ∅ for all i, j ∈ {1, 2, ..., N} with i 6= j.

•
⋃N
i=1wi(O) ⊂ O.

The IFS is called overlapping if it is not totally disconnected and not just-touching.

Some further remarks:

• Let {X;w1, w2, ..., wN} be an IFS with invertible transformations and attractor A. Then
the IFS is totally disconnected if and only if wi(A)∩wj(A) = ∅ for all i, j ∈ {1, 2, ..., N}
with i 6= j.

• Let ω = ω1ω2ω3... be an address of a point x ∈ A. Then ω̃ = jω1, ω2, ω3... is an address
of wj(x) for each j ∈ {1, 2, ..., N}.

29

Now we will define what a periodic point a ∈ A is, and show that the set of periodic points is
dense in A. Let A be the attractor of a IFS {X;w1, w2, ..., wN}. A point a ∈ A is called a pe-
riodic point of the IFS if there exists a finite sequence of numbers {σ(n) ∈ {1, 2, ..., N})pn=1

such that a = wσ(P) ◦ wσ(P−1) ◦ ... ◦ wσ(1)(a). If a is periodic, then the smallest number P
such that the relation above holds is called the period of a. Thus a point on the attractor
is periodic if there is a finite sequence of transformations that one can apply on that point
to get back to exactly the same point. Consider the point σ in the associated code space,
defined by σ = σ(P)σ(P − 1)...σ(1)σ(P)σ(P − 1)...σ(1).... Then φ(σ) = a.

A point in code space whose symbols are periodic is called a periodic address. A point
in code space whose symbols are periodic after a finite set is omitted is called eventually
periodic. We have the following result for periodic points:

• The attractor of an IFS is the closure of its periodic points

proof :
Code space is the closure of its periodic points. Since φ is a continuous mapping from
the code space to A, it also holds that A is the closure of its periodic points.

3.3 Dynamical systems

In this section we will introduce dynamical systems. The random iteration algorithm produces
an orbit of a special type of dynamical system, the shift dynamical system.

3.3.1 Deterministic dynamical systems

First, some general definitions for dynamical systems are needed:

• A dynamical system is a transformation f : X → X on a metric space (X, d) and is
denoted by {X : f}. The orbit of a point x ∈ X is the sequence {f◦n(x)}.

• Let {X : f} be a dynamical system. A periodic point of f is a point x ∈ X such that
f◦n(x) = x for some n ∈ N. This n is called a period of x. The smallest period of x is
called the minimal period of x. The orbit of a periodic point of f is called a cycle
of f . The minimal period of a cycle is the number of different points which it contains,
and a period of a cycle of f is the period of a point in the cycle.

• Let {X : f} be a dynamical system and let xf ∈ X be a fixed point of f . xf is
called an attractive fixed point of f is there exists an ε > 0 such that f maps the
ball B(xf , ε) = {y ∈ X : d(xf , y) ≤ ε} into itself, and f is a contraction mapping on
B(xf , ε). The point xf is called a repulsive fixed point of f is there exist numbers
ε > 0 and C > 1) such that d(f(xf), f(y)) ≥ Cd(xf , y) for all y ∈ B(xf , ε).

• A periodic point of f of period n is called attractive if it is an attractive fixed point
of f◦n. A cycle of period n is an attractive cycle of f if it contains an attractive
periodic point of f of period n. A periodic point of f of period n is called repulsive if
it is a repulsive fixed point of f◦n and a cycle of period n is called a repulsive cycle
of f if it contains a repulsive periodic point of f of period n. A point x ∈ X is called
eventually periodic if there exists a m ∈ N such that f◦m(x) is periodic.

30

After the following result, we can define a dynamical system on a (totally disconnected)
fractal, the so called shift dynamical system.

• Let {X;w1, w2, ..., wN} be an IFS with attractor A. If this IFS is totally disconnected,
then wn is one-to-one for each n ∈ {1, 2, ..., N}.

proof :
Suppose that there exist a1, a2 ∈ A such that wn(a1) = wn(a2) = a ∈ A for some
n ∈ {1, 2, ..., N}. If a1 has address ω and a2 has address σ than a has the two addresses
nω and nσ. But this is impossible since the IFS is totally disconnected.

Let {X;w1, w2, ..., wN} be a totally disconnected IFS with attractor A. The associated shift
transformation on A is the transformation S : A → A defined by S(a) = w−1

n (a) for all
a ∈ wn(A). This definition is good according to the lemma above. The dynamical system
{A;S} is called the shift dynamical system associated with the IFS. In figure 3.2 an orbit
of a shift dynamical system on the Sierpinski fractal is shown as an example.

Next, we will associate the shift dynamical system on a fractal with a shift dynamical

Figure 3.2: An orbit of a shift dynamical system on the Sierpinski fractal.

system on the associated code space. These systems are topologically equivalent using the
following definitions:

31

• Two metric spaces (X1, d1) and (X2, d2) are called topologically equivalent if there
exists a homeomorphism f : X1 → X2. Two subsets S1 ⊂ X1 and S2 ⊂ X2 are
topologically equivalent or homeomorphic if the metric spaces (S1, d1) and (S2, d2)
are topologically equivalent. S1 and S2 are metrically equivalent if (S1, d1) and
(S2, d2) are equivalent metric spaces.

• Two dynamical systems {X1; f1} and {X2; f2} are said to be equivalent or topologi-
cally conjugate if there exists a homeomorphism θ : X1 → X2 such that

– f1(x1) = θ−1 ◦ f2 ◦ θ(x1) for all x1 ∈ X1.
– f2(x2) = θ ◦ f1 ◦ θ−1(x2) for all x2 ∈ X2.

Let {X;w1, w2, ..., wN} be a totally disconnected IFS and let {A;S} be the associated shift
dynamical system. Let Σ be the associated code space of N symbols and let T : Σ → Σ be
defined by T (σ1σ2σ3σ4σ5σ6...) = σ2σ3σ4σ5σ6... for all σ = σ1σ2σ3σ4σ5σ6... ∈ Σ. Then the
two dynamical systems {A;S} and {Σ, T} are equivalent. The homeomorphism which gives
this equivalence is φ : Σ → A. Also, {a1, a2, ..., ap} is a repulsive cycle of period p for S if and
only if {φ−1(a1), φ−1(a2), ..., φ−1(ap)} is a repulsive cycle of period p of T .

3.3.2 Random dynamical systems

Let’s extend the shift dynamical system for a totally disconnected IFS to the just-touching
and overlapping cases: the random shift dynamical system.

Let {X;w1, w2} be an IFS with attractor A. Assume that w1 : A → A and w2 : A → A
are invertible. A sequence {xn} of points in A is called an orbit of the random shift dy-
namical system associated with the IFS if:

xn+1 =


w−1

1 (xn) when xn ∈ w1(A), and xn /∈ w1(A) ∩ w2(A),
w−1

2 (xn) when xn ∈ w2(A), and xn /∈ w1(A) ∩ w2(A),
one of {w−1

1 (xn), w−1
2 (xn),when xn ∈ w1(A) ∩ w2(A),

for all n ∈ {0, 1, 2, ...}. This is defined as xn+1 = S(xn). {A;S} is the collection of possible
orbits defined here, and {A;S} is called the random shift dynamical system associated
with the IFS.
If w1(A) ∩ w2(A) = ∅ then the IFS is totally disconnected and the orbits defined for the
random shift dynamical system for this IFS are equal to the orbits of the shift dynamical
system {A;S} defined earlier.

By adding an additional variable the random dynamics of the random shift dynamical sys-
tem can be described by a totally deterministic dynamical system, the lifted shift dynamical
system. This deterministic dynamical system is totally disconnected, and one can derive
properties of the random dynamical system from this. A totally disconnected dynamical sys-
tem is in a way ’nicer’ then a just-touching or an overlapping dynamical system, this is the
reason why we define the lifted shift dynamical system.

The lifted IFS associated with an IFS {X;w1, w2} is the IFS {X × Σ; w̃1, w̃2} where Σ
is the code space on two symbols {1, 2} and

w̃1(x, σ) = (w1(x), 1σ) for all (x, σ) ∈ X × Σ

32

w̃2(x, σ) = (w2(x), 2σ) for all (x, σ) ∈ X × Σ

For the attractor of the IFS {X ×Σ; w̃1, w̃2} we have Ã = {(φ(σ), σ) : σ ∈ Σ}, and A = {x ∈
X : (x, σ) ∈ Ã for some σ ∈ Σ} = φ(Σ). So A is simply the projection of the attractor of the
lifted IFS into the original space X. And the projection of Ã into Σ is Σ. For the lifted IFS
we now have the following result:

• Let {X;w1, w2} be an IFS with attractor A and let the transformations w1 and w2 be
invertible. Then the associated lifted IFS is totally disconnected.

Let {X;w1, w2} be an IFS and let the transformations w1 and w2 be invertible. Let Ã be the
attractor of the associated lifted IFS. Then the shift dynamical system {Ã, S̃} associated with
the lifted IFS is called the lifted shift dynamical system associated with the IFS. Note
that S̃(x, σ) = (w−1

σ1
(x), T (σ)) for all (x, σ) ∈ Ã, with T (σ1σ2σ3σ4σ5σ6...) = σ2σ3σ4σ5σ6... for

all σ = σ1σ2σ3σ4σ5σ6... ∈ Σ.

3.3.3 The shadow theorems for dynamical systems

The following theorem shows why the lifted shift dynamical system is useful: orbits of the
random shift dynamical system can be described by orbits in a higher dimensional determin-
istic shift dynamical system.

The Shadow Theorem: Let {X;w1, w2} be an IFS of invertible transformations w1 and
w2 and with attractor A. Let {xn} be any orbit of the associated random shift dynamical
system {A;S}. Then there exists an orbit {x̃n} of the lifted dynamical system {Ã; S̃} such
that the first component of x̃n is xn for all n.

The next theorem shows that when one calculates an orbit of a (random) shift dynamical
system with a computer, which will contain numerical errors, there still exists an orbit in the
dynamical system which is ’close’ to the calculated orbit. It also shows that if one manipulates
an orbit by making small adjustments, for example to force the orbit to visit a large amount
of different points, then there will be an orbit which is ’close’ to this orbit.

The Shadowing Theorem: Let {X;w1, w2, ..., wN} be an IFS with contractivity factor s.
Let A be the attractor of the IFS and suppose that each of the transformations wn : A→ A
is invertible. Let {A;S} be the associated random shift dynamical system (or the associated
shift dynamical system if the IFS is totally disconnected). Let {x̃n} ⊂ A be an approx-
imate orbit of S, such that d(x̃n+1, S(x̃n)) ≤ θ for all n and for some fixed constant θ,
0 ≤ θ ≤ diam(A). Then there exists an exact orbit {xn = S◦n(x0)} for some x0 ∈ A, such
that (x̃n+1, xn+1) ≤ sθ

1−s for all n.

proof :
Choose σn ∈ {1, 2, ...N} such that w−1

σ1
, w−1

σ2
, ... is the sequence of inverse maps used to com-

pute S(x̃0), S(x̃1), Let φ : Σ → A denote the code space map associated with the IFS.
Define x0 = φ(σ1σ2σ3...). Then we can compute the exact orbit of x0, {xn = S◦n(x0) =
φ(σn+1σn+2...)}, and compare this orbit with the orbit {x̃n}.

33

LetM be a large positive integer. Since xM and S(x̃M−1) are both inA, we have d(S(xM−1), S(x̃M−1)) ≤
diam(A) < ∞. Because S(xM−1) and S(x̃M−1) are both computed with the same in-
verse map w−1

σM
it follows that d(xM−1, x̃M−1) ≤ s · diam(A). So d(S(xM−2), S(x̃M−2)) =

d(xM−1, S(x̃M−2)) ≤ d(xM−1, x̃M−1) + d(x̃M−1, S(x̃M−2)) ≤ θ + s · diam(A). Analogously
we can derive d(xM−2, x̃M−2) ≤ s(θ + s · diam(A)). Repeating this argument k times:
d(XM−k, x̃M−k) ≤ sθ + s2θ + ... + sk−1θ + sk · diam(A). So for any integers M and n with
0 < n < M we have d(xn, x̃n) ≤ sθ + s2θ + ... + sM−n−1θ + sM−n · diam(A). Take the limit
M →∞ to get d(xn, x̃n) ≤ sθ(1 + s+ s2 + ...) = sθ

1−s for all n.

To show how the Shadowing theorem works an example is given below. We look again
at the following IFS for the Sierpinski triangle: {R2;w1, w2, w3}, where the wi’s are defined
as:

w1

(
x1

x2

)
=

(
0.5 0
0 0.5

) (
x1

x2

)
+

(
0

0.5

)

w2

(
x1

x2

)
=

(
0.5 0
0 0.5

) (
x1

x2

)
+

(
0
0

)

w2

(
x1

x2

)
=

(
0.5 0
0 0.5

) (
x1

x2

)
+

(
0.5
0

)
One can define the shift as S(x1, x2) = (2x1 mod 1, 2x2 mod 1). Starting with the point
x0 = (0.2147, 0.0353) we calculate an exact orbit and an errorful orbit. At the errorful orbit
errors of size 0.0001 are introduced at each step. The shadowing theorem says that there ex-
ists an exact shadowing orbit that has distance less then 0.5∗0.0001

1−0.5 = 0.0001 from the errorful
orbit. The following table shows this:

Errorful Exact Shadowing distance
(0.2147, 0.0353) (0.2147, 0.0353) (0.214773, 0.0353358) 0.00010
(0.4295, 0.0706) (0.4294, 0.0706) (0.429546, 0.0706717) 0.00011
(0.8591, 0.1413) (0.8588, 0.1412) (0.859091, 0.141343) 0.00005
(0.7182, 0.2827) (0.7176, 0.2824) (0.718182, 0.282687) 0.00003
(0.4363, 0.5653) (0.4352, 0.5648) (0.436364, 0.565373) 0.00014
(0.8727, 0.1307) (0.8704, 0.1296) (0.872728, 0.130747) 0.00008
(0.7454, 0.2614) (0.7408, 0.2592) (0.745456, 0.261494) 0.00015
(0.4909, 0.5229) (0.4816, 0.5184) (0.490913, 0.522987) 0.00010
(0.9818, 0.0459) (0.9632, 0.0368) (0.981825, 0.045975) 0.00010
(0.9636, 0.0919) (0.9264, 0.0736) (0.96365, 0.09195) 0.00010
(0.9273, 0.1839) (0.8528, 0.1472) (0.9273, 0.1839) 0.00000

3.4 Why the Random Iteration Algorithm works

In this section some more intuition is given why the random iteration works.

Suppose we have an IFS {R2;w1, w2}, let a ∈ A and let σ ∈ Σ be the address of a: φ(σ) = a.

34

Generate a large amount of random numbers: 112221...12, and compute the following se-
quence of points:
a = φ(σ)
w1(a) = φ(1σ)
w1 ◦ w1(a) = φ(11σ)
w2 ◦ w1 ◦ w1(a) = φ(211σ)
w2 ◦ w2 ◦ w1 ◦ w1(a) = φ(2211σ)
w2 ◦ w2 ◦ w2 ◦ w1 ◦ w1(a) = φ(22211σ)
w1 ◦ w2 ◦ w2 ◦ w2 ◦ w1 ◦ w1(a) = φ(122211σ)
...
w2 ◦ w1 ◦ ... ◦ w1 ◦ w2 ◦ w2 ◦ w2 ◦ w1 ◦ w1(a) = φ(21...122211σ)
This is roughly equivalent to what the random iteration algorithm does. Now look at the
calculated points in reversed order, these points form an orbit of the shift dynamical system
{A;S}, namely {S◦n(φ(21...122211σ))}. We need to show that this orbit is very likely to be
dense in the fractal, that it is a good approximation for the fractal. One way to get some
intuition for this is to use the shadowing theorem. By making small adjustments in the orbit
one can force the orbit to come close to every point in the attractor of the fractal. And
the shadowing theorem now says that there is an actual orbit that is close to this adjusted
orbit, and this orbit also comes close to every point in the attractor. This suggests that most
orbits are dense in the attractor. To show that, we can use the following lemma for totally
disconnected IFS’s:

• Let {A;S} be a shift dynamical system associated with a totally disconnected IFS
{X;w1, w2, ..., wN}. Let N (p) denote the number of distinct cycles of minimal period p
for p ∈ {1, 2, 3, ...}. Then

N (p) = (Np −
p−1∑

k=1,k divides p

kN (k))/p for p = 1, 2, 3, ...

proof :
We show that the lemma holds for N = 2. For p = 1 the cycles of period 1 are the
fixed points of T . T (σ) = σ, σ ∈ Σ implies σ = 11111... or σ = 22222... so N (p) = 2.
For p = 2 we have T ◦2σ = σ, so σ = 11111...., 121212...., 212121.... or 22222. The only
cycles that are not of period two must have minimal period 1. Also, we have two distinct
points on a cycle of period 2, so N (2) = (22 − N (1))/2 = 1. Induction on p gives the
result for N = 2.

This lemma basically says that a large amount of cycles has a large period. Using N = 2 we
get for example N (2) = 1, N (3) = 2, N (4) = 3, N (5) = 6, N (6) = 9, N (7) = 18, N (8) = 30,
N (9) = 56, N (∞′) = 99, N (11) = 186, N (12) = 335, N (13) = 630, N (14) = 1161, N (15) =
2182, N (16) = 4080, N (17) = 7710, N (18) = 14532, N (19) = 27594, N (20) = 52377. In
particular, (1− 1+3+6+99

52377) ∗ 100 = 99.8 percent of all points lying on cycles of length 20 lie on
cycles of minimal period 20.

We know that the set of all periodic cycles is dense in the attractor of the IFS. So the
attractor can be approximated by cycles of a finite period, for example period 1000000. Then
we can approximate A with Ã, which consists of roughly 21000000 points. If we pick a point on
Ã it is very likely that this point has minimal period 1000000, due to the lemma above, and

35

that the orbit of this point consists of 1000000 distinct points on Ã. It is possible to show
that a statistically random sequence of symbols contains every possible finite subsequence.
So it is to be expected that the set of 1000000 distinct points on A is very likely to contain at
least one representative of every part of the attractor. For the orbit produced by the random
iteration algorithm we thus have found two important properties:

• It is very likely that all points of the orbit are different.

• It is very likely that the points of the orbit represent every part of the attractor.

And from this follows that it is very likely that the random iteration algorithm produces a
good approximation to the attractor.

For just-touching and overlapping IFS the lemma used above doesn’t hold, but since we
then have a lifted dynamical system that is totally disconnected, we can still derive the same
result.

36

Chapter 4

Iterated Random Functions

4.1 Introduction

In earlier chapters we studied the Iterated Function System (IFS), which can be seen as a
contraction mapping in the metric space (H(X), h). It was proved that after repeatedly ap-
plying these contraction mappings on an element of H(X) the images will converge to an
element of H(X) which can loosely be called a ’fractal’. In this section we study a more
general class of mappings, the so called iterated random functions, of which the IFS’s are
a subclass. The main theorem of this chapter shows that if these iterated random functions
contract ’on the average’ then the sequence of images produced by repeatedly applying these
random functions will converge to a unique stationary distribution. This theorem has many
applications, some applications in stochastics will be discussed.

This chapter contains mainly theory from the article ’Iterated Random Functions’ [4] by
Persi Diaconis and David Freedman.

4.2 Iterated random functions

We will iterate random functions to construct a Markov chain. Let {fθ : θ ∈ Θ} be a family
of functions that map the state space S into itself, fθ : S → S for all θ ∈ Θ. Let µ be a
probability distribution on Θ. If the current state is x ∈ S, we move to state fθ(x), where θ is
chosen at random from µ. Let θ1, θ2, ... be independent draws from µ. We can write X0 = x0,
X1 = fθ1(x0), X2 = (fθ2 ◦ fθ1)(x0),..., so Xn+1 = fθn+1(Xn). It is clear that the chain that is
generated this way is a Markov chain, states Xn+1, Xn+2, ... depend only on Xn.

We call this the forward iteration starting from X0 = x0 where Xn+1 = fθn+1(Xn) =
(fθn+1 ◦ ... ◦ fθ2 ◦ fθ1)(x0). Similarly, we can define the backward iteration as Yn+1 =
(fθ1 ◦ fθ2 ◦ ... ◦ fθn+1)(x0). Although it is easy to see that Xn has the same distribution as Yn,
the forward process {Xn;n = 0, 1, 2, ...} behaves very differently from the backward process
{Yn;n = 0, 1, 2, ...}.

An important question is if there is a stationary probability distribution π on S such that
P{Xn ∈ A} → π(A) as n → ∞. The main theorem in the next section will give sufficient
conditions for this to be true.

37

As a simple example of an iterated random function, let S be R and define f+(x) = ax+1 and
f−(x) = ax− 1, where 0 < a < 1. Let Θ = {+,−} and suppose µ(+) = µ(−) = 1

2 . In figures
4.1 and 4.2 a typical output is shown for the forward and backward processes respectively,
where a is set to 0.5. The forward process appears to move almost randomly between -2 and
2, while the backward process appears to converge to a limit. Let ξn = ±1 with probabil-
ity 1

2 . Then Xn+1 = aXn + ξn+1. So we have Xn =
∑n

k=0 a
kξn−k and Yn =

∑n
k=0 a

kξk,
where we define ξ0 = X0. Using this notation the stationary distribution can be written
as X∞ = ξ1 + aξ2 + a2ξ3 + This series converges because 0 < a < 1. Multiplying this
distribution with a and adding a new ξ does not change the distribution, so the distribution
of Xn with X0 =d X∞ is stationary.

Figure 4.1: Output of the forward process Xn of the iterated random function f(x) = ax± 1.

Figure 4.2: Output of the backward process Yn of the iterated random function f(x) = ax±1.

38

4.3 Main theorem

Before the main theorem is stated we define a metric on probabilities and give some other
definitions.

• Let P and Q be probabilities on the state space S. Define ρ(P,Q), the Prokhorov
metric, to be the infimum of the δ > 0 such that P (C) < Q(Cδ) + δ and Q(C) <
P (Cδ) + δ, for all compact C ⊂ S and Cδ the set of all points on S with distance less
than δ from C.

Note that from the definition it is clear that 0 ≤ ρ(P,Q) ≤ 1.

• Let S be a complete separable metric space with metric ρ. A function fθ is called
Lipschitz if there exists a Kθ such that for all x, y ∈ S we have ρ(fθ(x), fθ(y)) ≤
Kθρ(x, y)

As an example, take f+(x) = ax + 1 from the previous section with the standard Euclidian
metric on R. We have |f+(x) − f+(y)| = |ax + 1 − (ay + 1)| = |a(x − y)| = |a||x − y|, so
Kθ = |a| works. Note that if we can find a |Kθ| < 1 for a Lipschitz function, the function
is a contraction: the images of the function are closer together then their originals. In this
section, we are looking for families of Lipschitz functions that are contractions ’on the average’.

A final notation we need before stating the main theorem is the kernel Pn(x, dy), which
is the distribution of Xn given that X0 = x. This distribution will be compared with the
stationary distribution under the Prokhorov metric to be able to say something about the
rate of convergence to the stationary distribution.

Main Theorem: Let (S, ρ) be a complete separable metric space. Let {fθ : θ ∈ Θ} be
a family of Lipschitz functions on S. Let µ be a probability distribution on Θ. Assume∫
Kθµ(dθ) <∞,

∫
ρ[fθ(x0), x0]µ(dθ) <∞ for some x0 ∈ S and

∫
logKθµ(dθ) < 0. Then

1. The Markov chain generated by {fθ : θ ∈ Θ} and µ has a unique stationary distribution
π.

2. ρ[Pn(x, .), π] ≤ Axr
n for constants Ax and r with 0 < Ax < ∞ and 0 < r < 1, this

bound holds for all times n and starting states x.

3. The constant r does not depend on n or x, the constant Ax does not depend on n and
Ax < a+ bρ(x, x0) where 0 < a, b <∞.

The condition
∫

logKθµ(dθ) < 0 makes sure that Kθ < 1 for typical θ and makes ’contrac-
tions on the average’ formal. Under this condition and several other regularity conditions, the
theorem states that there exists a stationary distribution π for the Markov chain generated
by {fθ : θ ∈ Θ}, and that convergence is exponential.

We give a sketch of the proof, leaving out much of the technical details. The main step
is to prove that the backward iterations converge almost surely to a limit which has the
stationary distribution π. But first we derive some results on the forward proces:

• ρ[Xn(x), Xn(y)] ≤ [
∏n
j=1Kfj

]ρ(x, y): This can easily be proven by induction: for
n = 0 and n = 1 it is clear, and for n > 1 we have ρ[fn+1(Xn(x)), fn+1(Xn(y))] ≤
Kfn+1ρ[Xn(x), Xn(y)].

39

• If ε > 0 is small enough, there exist positive and finite constants A and r < 1 such that
P{

∑n
i=1 logKfi

> −nε} < Arn for all n = 1, 2, A and r depend on ε but not on n.
The proof of this uses mainly some probability theory.

• For small enough ε > 0 we have ρ[Xn(x), Xn(y)] ≤ exp(−nε)ρ(x, y) for all x, y ∈ S,
except for a set of f1, f2, ..., fn of probability less than Arn. A and r depend on ε but
not on n. This statement follows from the previous two statements.

Now it follows that if there exists an invariant probability, it is unique: Suppose that π and π′

are invariant. Pick x from π and x′ from π′ independently. Let Yn = Xn(x) and Y ′
n = Xn(x′).

We have ρ(Yn, Y ′
n) ≤ exp(−nε)ρ(Y0, Y

′
0) except for a set of exponentially small probability.

So the distributions of Yn and Y ′
n will be almost the same for large n, but Yn has distribution

π and Y ′
n has distribution π′. Therefore, π and π′ must have the same distribution.

Now we come to the proof that the backward iterations converge to a limit in a station-
ary distribution. First note that we have ρ[(f ◦ g)(x), x] ≤ ρ[f(x), x] +Kfρ[g(x), g], using the
triangle inequality: ρ[(f ◦ g)(x), x] ≤ ρ[f(x), x] + ρ[(f ◦ g)x, f(x)] ≤ ρ[f(x), x] +Kfρ[g(x), g].
We can repeatedly apply this argument to get:

• Let {gi} be mappings of S into itself and let x ∈ S. Then ρ[(g1 ◦ g2 ◦ ... ◦ gm)(x), x)] ≤
ρ[g1(x), x] +Kg1ρ[g2(x), x] +Kg1Kg2ρ[g3(x), x] + ...+Kg1Kg2 ...Kgm−1ρ[gm(x), x].

Now consider the backward iterations Yn(x) = (f1◦f2◦...◦fn)(x). We have ρ[Yn+m(x), Yn(x)] ≤
Kf1 ...Kfnρ[(fn+1◦fn+2◦...◦fn+m)(x), x]. Using the previous result, we get ρ[Yn+m(x), Yn(x)] ≤∑∞

i=0(
∏n+i
j=1Kfj

ρ[fn+i+1(x), x]). By using the previous result,
∏n+i
j=1Kfj

≤ e−(n+i)ε except for
a set of small probability, and the initial conditions of the theorem we can now find finite
positive constants c0, r0 < 1, r1 < 1 such that for all n0 and all n ≥ n0 and m = 0, 1, ... we
have ρ[Yn+m(x), Yn(x)] ≤ rn1 except for a set of probability c0rn0

0 . This says that Yn(x) is a
Cauchy sequence and thus converges to a limit in S.

Since the backward iterations converge to a limit in a stationary distribution, the forward
iterations will converge to a stationary distribution since the marginal distributions are the
same. For more details see [4]. In the next section some examples are given that use this
theorem.

4.4 Applications

4.4.1 A simple example

Consider a Markov chain with state space S = (0, 1), the open unit interval. If the chain
is at state x the next state is in (0, x) or (x, 1) with equal probability 1/2 and it as-
sumes a random position in the chosen interval. So k(x, y) = P (Xn+1 = y|Xn = x) =
1
2

1
xχ(0,x)(y) + 1

2
1

1−xχ(x,1)(y) where χA(y) = 1 if y ∈ A and χA(y) = 0 if y /∈ A.

This Markov chain can be constructed using random iterated functions: Let φu(x) = ux, ψu(x) =
x + u(1 − x) with u chosen uniformly on (0, 1) and φ, ψ chosen with equal probability 1/2.
The assumptions of the theorem apply:

∫
logKθµ(dθ) < 0 is clear since Kφ = u < 1 and

Kψ = 1 − u < 1, and the conditions
∫
Kθµ(dθ) < ∞ and

∫
ρ[fθ(x0), x0]µ(dθ) < ∞ for some

40

x0 ∈ S also apply since we are working with nice non-degenerate functions that occur with
probability 1

2 . Thus the theorem shows that there is a unique stationary distribution. After
some calculations, one can find its density. First assume that the stationary distribution
has a density f(x). Then we have f(y) =

∫ 1
0 k(x, y)f(x)dx = 1

2

∫ 1
y
f(x)
x dx + 1

2

∫ y
0
f(x)
1−xdx.

Differentiating this gives f ′(y) = −1
2
f(y)
y + 1

2
f(y)
1−y so f ′(y)

f(y) = 1
2(− 1

y + 1
1−y), so f(y) = 1

π
√
x(1−x)

.

4.4.2 G/G/1 queue

Consider a G/G/1 queue with customers arriving at a queue with independently and identi-
cally distributed interarrival times U1, U2, So the arrival times are the sums U1, U1+U2,
Customer j has service time Vj , where the Vj ’s are also independent and identically distributed
and independent of the arrival times. Let Wj be the waiting time of customer j, where the
waiting time denotes the time until service starts. We have W0 = 0. For j > 0 we have
Wj+1 = (Wj+Vj−Uj+1)+. This is easy to see: If customer j arrives at time Tj = U1 + ...+Uj
and waits time Wj , his service is finished at time Tj + Wj + Vj . Customer j + 1 arrives at
time Tj + Uj+1. If Tj + Uj+1 > Tj +Wj + Vj then Wj+1 = 0, else Wj+1 = Wj + Vj − Uj+1.

In order to generate a sequence of waiting times {Wj : j = 0, 1, 2, ...} we can the it-
erate random functions fθ(x) = (x + θ)+, where θ should be chosen from the distribu-
tion of V − U . For the functions fθ the Lipschitz constant is 1, so the main theorem
does not apply. But in this case, the use of random iterated functions is still useful: the
backward iteration still gives the stationary distribution. For this distribution we have:
(fθ1 ◦ ... ◦ fθn)(0) = (θ1 + (θ2 + ... + (θn−1 + θ+

n)+)+)+ = max1≤j≤n(θ1 + ... + θj)+. The
last equality can be proven easily using induction. Now set Xj = Vj −Uj+1, then we have an
expression for the stationary distribution: limn→∞ max1≤j≤n(X1 + ...+Xj)+, provided that
this limit exists almost surely. Under certain regularity conditions it can be shown that this
stationary distribution indeed exists, for example when E(X1) < 0.

41

Chapter 5

Lindenmayer Systems

5.1 Introduction

In this section an alternative way to look at fractals is presented, including how to make pic-
tures of fractals. This alternative way is to use rewriting as a way to define complex objects,
in this case fractals. Starting with a simple object, parts of it are successively replaced using
a set of rewrite rules or productions. A simple example is the snowflake curve, see figures 5.1
and 5.2. Starting with a simple triangle consisting of three edges ,the initiator, one replaces
in each iteration every edge with a curve called the generator.

There are many ways to define and use rewriting. One way is to look at the rewriting of
character strings, and in this section we look at one special type of rewriting character strings,
the so called Lindenmayer systems, developed by the biologist Lindenmayer. Characteristic
for this type of rewriting is to replace all characters in the character strings simultaneously.
This makes this type of rewriting ideal for modelling biological phenomena, for example plant
development or bacteria growth.

In the next section some basic definitions are given. Section 5.3 gives some extensions on
Lindenmayer systems. In section 5.4 a practical implementation of Lindenmayer systems is
given, and this implementation was used to generate most of the pictures in this chapter.
The last section looks at the growth function of stochastic lindenmayer systems. Sections
5.2 and 5.3 are based on the book ’The Algorithmic Beauty Of Plants’ [2] by Przemyslaw
Prusinkiewics and Astrid Lindenmayer. The last section makes use of the article ’Growth
Functions of Stochastic Lindenmayer Systems’ [3] by Peter Eichhorst.

42

Figure 5.1: Successive iterations of the snowflake curve.

Figure 5.2: The rewrite rule of the snowflake curve. The curve on the right is called the
generator.

43

5.2 Basic Lindenmayer

In this section the basic definition of a Lindenmayer system is given, including some examples.
Lindenmayer systems will be called L-systems, and in this section we look at a simple type
of L-system: the (Deterministic) OL-system which is a context-free version of a Lindenmayer
system. Context-free means here that in every iteration of the system every character in the
string is treated individually without considering the influence of neighbour characters.

• OL-system: An OL-system is a triple (Σ, R, ω), with Σ a finite set of symbols called
the alphabet, R a finite set of rewrite rules called productions of the form Σ → Σ∗,
and ω ∈ Σ+ called the axiom. For every a ∈ Σ there must be at least one production
in R which maps a to α ∈ Σ∗. If there is exactly one production in R for every a, then
the system is deterministic, and is called a DOL-system

As a first simple example of a DOL-System, let Σ = {a, b}, R = {a → ab, b → a} and let
the axiom be b. Now one can iteratively replace the axiom with a new string by applying the
productions on every character in the string:
b→ a→ ab→ aba→ abaab→ abaababa→ ...

Some more definitions are needed:

• derivation in an 0L system: Let x and y be in Σ∗. y directly derives x (y ⇒ x) if
y = a1a2...an, ai ∈ Σ for all i = 1, .., n and x = α1α2...αn, αi ∈ Σ∗ for alli = 1, ..., n and
ai → αi is a production in R for all i = 1, ..., n.

A derivation of x from y of length n is an ordered pair d = (T, σ). T , called the
trace of d, is a sequence {wi}ni=0 of n + 1 words in Σ with w0 = y, wn = x and
wi ⇒ wi+1, i = 1, ..., n. σ is a function from {(i, j)|0 ≤ i < n, 1 ≤ j ≤ |wi|} to R.
If wi = a1a2...am and wi+1 = α1α2...αm then σ(i, j) = aj → αj for j = 1, ...,m. |x|
denotes the number of symbols in x, so for example if w = a1a2...an, ai ∈ Σ, i = 1, ..., n
then |w| = n.

For example, in the previous example abaab directly derives abaababa. Already these simple
definitions have some practical applications, they are for example useful for modelling bacte-
ria growth.

There are many ways to interpretate the strings generated by L-systems. A graphical in-
terpretation is to look at the string as controlling a turtle, a kind of drawing tool. The most
basic idea of the turtle is that it has a state (x, y, α), where (x, y) represents the position of
the turtle in cartesian coordinates and the angle α represents the heading of the turtle, the
direction the turtle is facing. Let a step size d and an angle increment δ be given, then we
can associate commands for the turtle with the following symbols:

• F: Move forward with step d and draw a line. The state of the turtle is changed from
(x1, y1, α) to (x2, y2, α) with x2 = x1 + d cosα and y2 = y1 + d sinα. A line is drawn
between (x1, y1) and (x2, y2).

• f: Move forward with step d without drawing a line.

• +: Turn left with angle δ. The state of the turtle is changed from (x, y, α) to (x, y, α+δ).

44

• -: Turn right with angle δ.

Using only these four symbols it is already possible to draw some nice fractal objects. As a
first example, consider the following L-System, called a Koch island:
ω: F-F-F-F
R: F->F-F+F+FF-F-F+F
The trivial productions + -> + and - -> - which are technically part of R are omitted here.
δ is set to 90 degrees. Successive iterations of this L-System are shown in figure 5.3. Several
other examples of Koch islands are shown in figures 5.4, 5.5 and 5.6. The pictures might give
some intuition about the power of L-system: using some simple rules very complex objects
can be created.

Figure 5.3: Successive iterations of the Koch island generated using the following L-System:
ω : F − F − F − F ,
R : F− > F − F + F + FF − F − F + F

45

Figure 5.4: The second iteration of the Koch island generated using the following L-System:
ω : F + F + F + F ,
R : F− > F +f −FF +F +FF +Ff +FF −f +FF −F −FF −Ff −FFF, f− > ffffff

Figure 5.5: The third iteration of the Koch island generated using the following L-System:
ω : F + F + F + F ,
R : F− > F +f −FF +F +FF +Ff +FF −f +FF −F −FF −Ff −FFF, f− > ffffff
Note the enormous increase in complexity compared to the second iteration shown in the
previous figure.

46

Figure 5.6: The fourth iteration of the Koch island generated using the following L-System:
ω : F − F − F − F ,
R : F− > FF − F − F − F − F − F + F

47

L-Systems are also ideal to represent branching structures like trees. By adding two symbols
to the L-system which represent new commands for the turtle it is possible to generate nice
pictures of trees:

• [: Push the current state of the turtle on a pushdown stack.

•]: Pop a state from the pushdown stack and make this the current state of the turtle.

This allows the turtle to draw a branch of the tree and then return to the original position
on the tree. For example, with F[+F]F[-F]F the turtle first draws a line of length d, then
turns left and draws a second line at the endpoint of the first line, then the turtle returns
to the endpoint of the first line and draws a third line extending the first line, then the
turtle turns right and draws a fourth line at the endpoint of the third line, and finally re-
turns to endpoint of the third line and draws a fifth line extending the third line, see figure 5.7.

Using the bracket extension, many nice pictures of trees can be generated, see figures

Figure 5.7: Example of using the bracket symbols: this result is obtained from the command
string F [+F]F [−F]F . The numbering shows the order in which the lines are drawn by the
turtle.

5.8 and 5.9. There are many more extensions possible to this turtle model. One can define
the turtle in 3d-space to generate three dimensional pictures. The turtle model is also used
to generate space filling curves.

48

Figure 5.8: This tree is generated using the following L-System: ω : F ,
R : F− > F [+F]F [−F]F . δ is 25 degrees and this is the fifth iteration.

Figure 5.9: This tree is generated using the following L-System: ω : F ,
R : F− > FF − [−F +F +F]+ [+F −F −F]. δ is 22 degrees and this is the fourth iteration.

49

5.3 Extensions

In this section we mention some further extensions of the L-system defined in the previous
section. We start by defining a stochastic L-system, whose definition is analogous to the
previous definition of the L-system.

• S0L system: A stochastic 0L system, S0L system, is a four tuple (Σ, R, ρ, ω). Σ is a
finite alphabet, R is a finite set of productions as defined for 0L systems, ρ is a mapping
from Σ to the interval (0, 1] of real numbers with for all a ∈ Σ that

∑
α∈Σ∗ ρ(a→ α) = 1,

and ω, called the axiom distribution, is a mapping from Σ+ to the interval [0, 1] of real
numbers with only finitely many x ∈ Σ+ with ω(x) > 0 and such that

∑
x∈Σ+ ω(x) = 1.

ω(x) is the probability that x is the axiom for the system and ρ(a→ α) is the probability
that a is rewritten by α.

• derivation in a S0L system: A derivation in a S0L system is defined exactly the same
as in 0L system with the addition that a probability is assigned to every possible deriva-
tion. Let S = (Σ, R, ρ, ω) be a S0L system and let d = (T, σ) be a derivation as defined
for 0L systems. P (ωi ⇒ ωi+1) is the probability that ωi ⇒ ωi+1. Let ωi = a1a2...an,
then P (ωi ⇒ ωi+1) =

∏m
j=1 ρ(σ(i, j)). Now one can define the probability of the deriva-

tion d, P (d), as P (d) =
∏n−1
i=1 P (ωi ⇒ ωi+1).

Let x, y ∈ Σ∗ and let Tny (x) be the set of all derivations of x from y of length n. Now
one can define the probability of deriving x from y in n steps as P yx (x) =

∑
d∈Tn

y (x) P (d).
Let y1, y2, ..., ym be an enumeration of all yi ∈ Σ+ with ω(yi) > 0 and let x ∈ Σ∗. The
probability of deriving x from ω in n steps is defined by Pnω (x) =

∑m
i=1 ω(yi)Pnyi

(x).

A simple example of a stochastic L-system is given by an extension of the tree example given
before:
ω: F
R: F->F[+F]F[-F]F (0.33), F->F[+F]F (0.33), F->F[-F]F (0.34)
Where the number behind each production gives the probability for that production. The
result is shown in figure 5.10 for 5 different applications of the algorithm. Note that the trees
all look different, but appear to come from the same family of trees.

50

Figure 5.10: These trees are generated using the following stochastic L-System: ω : F ,
R : F− > F [+F]F [−F]F (0.33), F− > F [+F]F (0.33), F− > F [−F]F (0.34). δ is 22 degrees
and this is the fifth iteration. The trees look different, but appear to come from the same
family of trees.

51

There are many other extensions of the L-system introduced before. Up till now, we have
considered context-free L-systems. But to model some types of plant development, the growth
of one part of the tree might depend on its surroundings. One could also introduce parameters
in L-systems, for example to model the growth of flowers or the transport of fluids in a plant.
[2] is a good place to start exploring these extensions.

5.4 Implementation in Java

In this section a way to implement the L-system introduced in previous sections is described.
This is actually quite straightforward from the definition of an L-system. A problem is how
to choose the parameter d, since this depends exponentially on the number of iterations. As
with the implementation of IFS’s defined in a previous chapter, we start with an abstract
class, although in this case the most code will be in the extended classes:

import java.awt.*;

import java.util.*;

public abstract class LSystem

{

public String fractalDescriptor; // a string describing the fractal

public double d; // length of each line drawn by the turtle

public LSystem (int complexity) // complexity is the number of iterations

{

d = 1.0;

init (complexity);

for (int i = 0; i < complexity; i++)

fractalDescriptor = rewrite (fractalDescriptor);

}

// set an appropriate value for d and set the initial value of the

// string fractalDescriptor.

public abstract void init (int complexity);

// describes the productions applied to the string fractalDescriptor

public abstract String rewrite (String input);

// generate output by interpreting the string fractalDescriptor as

// commands for a turtle.

public abstract void render (Graphics g, int xPos, int yPos);

}

This class is pretty much self-explanatory. First the function init() is called, which sets
values for the length of each line drawn by the turtle (d) and the initial value of the string de-
scribing the fractal, which is the axiom (fractalDescriptor). Then the function rewrite()
is called a number of times which applies the productions to (fractalDescriptor). The re-
sulting descriptor of a fractal, fractalDescriptor, is interpreted and drawn by the function
render(). Next we look at an extended class to see how this works in practice. The class
KochIsland generates the Koch island discussed before, see also figure 5.3:

import java.awt.*;

import java.util.*;

public class KochIsland extends LSystem

{

52

public KochIsland (int complexity) { super (complexity); }

public void init (int complexity)

{

d = 200.0 / (Math.pow (4.0, complexity));

fractalDescriptor = "F-F-F-F";

}

Of the function init() only the assignment of d needs explanation. For the Koch island, in
one iteration of the algorithm the number of lines drawn (the number of ”F”’s in the string)
grows by a factor 4 so the value of d is decreased by a factor 4 for each iteration. Note that
in general it is not trivial to find the growth factor, there could be complicated productions
and the L-system could even be stochastic. The function rewrite is defined next:

// implements the productions on the string.

public String rewrite (String input)

{

String output = "";

for (int i = 0; i < input.length (); i++)

{

switch (input.charAt (i))

{

case ’F’: output += "F-F+F+FF-F-F+F";

break;

case ’+’: output += "+";

break;

case ’-’: output += "-";

break;

default:

break;

}

}

return output;

}

Also this function is straightforward. Every character in the string is replaced by its unique
production. Finally, the function render is defined:

// interpretate the string as commands for a turtle.

public void render (Graphics g, int xPos, int yPos)

{

double[] turtle = {0.0, 0.0, 0.0};

double t = Math.PI / 2.0;

double[] dTurtle = {0.0, 0.0, 0.0};

g.setColor (Color.BLACK);

for (int i = 0; i < fractalDescriptor.length (); i++)

switch (fractalDescriptor.charAt (i))

{

case ’F’:

dTurtle[0] = turtle[0] + d * Math.cos (turtle[2]);

dTurtle[1] = turtle[1] + d * Math.sin (turtle[2]);

g.drawLine (xPos + (int)turtle[0], yPos + (int)turtle[1], xPos + (int)dTurtle[0], yPos + (int)dTurtle[1]);

turtle[0] = dTurtle[0];

turtle[1] = dTurtle[1];

53

break;

case ’+’:

turtle[2] += t;

break;

case ’-’:

turtle[2] -= t;

break;

default:

break;

}

}

}

The state of the turtle is stored in three double variables. Again, every character in the string
is analyzed, and the turtle executes a command according to the value of the character. A
temporary variable dTurtle[] is used to draw the lines.

The discussion above shows that the code to generate graphical output of L-systems is quite
easy and follows almost immediately from the definitions. Also more complicated extensions
like stochastic L-systems are easy to implement. One problem is which value must be chosen
for d. Another problem not mentioned before is the speed: After only a few iterations the
string will become quite large, and it will take quite some time to draw the resulting picture.

5.5 Growth functions of stochastic L-systems

In the theory on L-systems a lot of results are known on growth functions, functions that
describe the number of symbols in a word in terms of its derivation length. These functions
can describe for example how fast a plant grows or how fast a colony of bacteria is expanding.
Another question is how much symbols there are of a certain type. Note that in OL-systems
the growth functions are independent of the ordering of the symbols in the words. In this
section we look at growth functions on stochastic L-systems. Here the growth functions give
the expected length of a word after a certain derivation length. Without going into too
much detail, some theorems are stated about growth functions in stochastic L-systems to give
an impression of the work in this field. For more proofs and references to work in this field,
see [3].

5.5.1 Some definitions

In this subsection we define the growth function and some useful vectors and matrices that
will be used later.

Growth function: The growth function fS of a S0L system S is defined by fS =
∑

x∈Σ∗ |x|Pnω (x), n ≥
0. So fS(n) is the expected length of words that are generated after n derivations.

For the following four definitions, let S = (Σ, R, ρ, ω) be a S0L system and let a1, a2, ..., at
with ai ∈ Σ be an enumeration of the elements of Σ.

Parikh vector: Let x ∈ Σ∗. Let #aj (x) denote the number of occurrences of aj in x.

54

Now the Parikh vector of x is defined as πx = (#a1(x),#a2(x), ...,#at(x)).

Growth matrix: The growth matrix GS of S is a t by tmatrix where element (i, j) equals the
expected number of occurrences of aj when ai is rewritten by a production in R: GS = (gij)
with gij =

∑
α ρ(ai → α)#aj (α), where the sum is taken over all α such that ai → α ∈ R.

Initial vector: Let y1, y2, ..., ym be an enumeration of all yi ∈ Σ+ with ω(yi) > 0. The
initial vector of S is πω =

∑m
i=1 ω(yi)πyi . Therefore, the initial vector can be seen as a special

Parikh vector which denotes the expected number of occurences of aj .

Final vector: The final vector ηS is a t-dimensional column vector with all components
equal to 1.

As a simple example to make these definitions more clear, we consider a deterministic L-
system discussed earlier: let Σ = {a, b}, R = {a → ab, b → a} and let the axiom be b. This
gives the following sequence of derivations: b→ a→ ab→ aba→ abaab→ abaababa→ ...

For the growth function we have fS(0) = 1, fS(1) = 1, fS(2) = 2, fS(3) = 3, fS(4) = 5,
fS(5) = 8. The Parikh vector of x = abaababa is πx = (5, 3). The growth matrix is equal to

GS =
(

1 1
1 0

)
. The initial vector is πω = (0, 1).

5.5.2 Properties of Growth Functions

Several theorems describing useful properties of the growth function can be derived and are
stated below.

• For all S0L systems S = (Σ, R, ρ, ω) and all n ∈ N one can calculate fS(n) with
fS(n) = πω · GnS · nS . Note that this theorem is clear for the deterministic example
discussed before: πω · GnS is the Parikh vector of the word derived after n derivations,
and multiplying with nS just sums every coordinate in this vector, giving the total
length of the word.

• Let f be a growth function of a S0L system with at most t symbols. Then there exists
an algorithm which, given the first 2t values of f , can compute a lineair recurrence
equation for f such that all values of f can be computed from these initial values and
the recurrence formula.

Some more definitions on growth functions of S0L systems are given below.

Let fS be a growth function of a S0L system. The growth rate of S is called terminat-
ing if there is a N ∈ N such that fS(n) = 0 for all n > N . The growth rate of S is called
limited if there is a polynomial p(n) such that p(n) ≥ fS(n) for all n. The growth rate
of S is called explosive if it is not limited. A S0L schema is a S0L system without an
axiom distribution, S = (Σ, R, ρ). A S0L schema has limited growth rate if for all axiom
distributions ω over Σ+ the S0L system (Σ, R, ρ, ω) has limited growth. Analogue, a S0L
schema has explosive growth rate if for all axiom distributions ω over Σ+ the S0L system
(Σ, R, ρ, ω) has explosive growth. If there exists axiom distributions ω1 and ω2 over Σ+ such

55

that (Σ, R, ρ, ω1) has limited growth rate and (Σ, R, ρ, ω2) has explosive growth rate, then the
S0L schema has mixed growth rate.

One can determine the growth rate of an S0L system by considering the roots of the character-
istic polynomial of the growth matrix GS : Let p(z) = det(GS−zI) so p(z) is the characteristic
polynomial of GS . If all roots of p(z) are zero then S has terminating growth rate. If all roots
of p(z) are less than or equal to one in absolute value, then S has limited growth rate. If at
least one of the roots of p(z) is greater then one then S has explosive growth rate.

5.5.3 Growth equivalence

In this subsection we compare the growth functions of different stochastic L-systems.

Let S = (Σ, R, ρ) be a S0L schema and let ω1 and ω2 be axiom distributions for S. Let
fS1 and fS2 be growth functions for the S0L systems S1 = (Σ, R, ρ, ω1) and S2 = (Σ, R, ρ, ω1)
respectively. ω1 is k growth equivalent with ω2, ω1 ∼k ω2, if fS1(n) = fS2(n) for 0 ≤ n ≤ k.
ω1 is growth equivalent with ω2, ω1 ∼ ω2 if fS1(n) = fS2(n) for all n ≥ 0. The following
theorem makes it easier to determine of two axiom distributions are growth equivalent:

• Let S be a S0L schema with t symbols and let ω1 and ω2 be two axiom distributions
for S, then ω1 and ω2 are growth equivalent if and only if they are t growth equivalent.

Now we define when two S0L systems are growth equivalent:

Two S0L systems S1 and S2 are growth equivalent, S1 ∼ S2 if fS1(n) = fS2(n) for all
n ≥ 0.

Let S1 = (Σ1, R1, ρ1) and S2 = (Σ2, R2, ρ2) be S0L schemas. S1 covers S2, S1 ≥ S2, if
for every axiom distribution ω2 over Σ+

2 there is an axiom distribution ω1 over Σ+
1 such that

S1 = (Σ1, R1, ρ1, ω1) and S2 = (Σ2, R2, ρ2, ω2) are growth equivalent. S1 and S2 are axiom
growth equivalent, S1 ∼ω S2, if S1 ≤ S2 and S2 ≤ S1. S1 and S2 are symbol growth
equivalent, S1 ∼s S2, if

1. For every a ∈ Σ1 there is an b ∈ Σ2 such that S1 = (Σ1, R1, ρ1, ω1) and S2 =
(Σ2, R2, ρ2, ω2) are growth equivalent with ω1(a) = ω2(b) = 1 and ω1 and ω2 are zero
elsewhere.

2. For every b ∈ Σ2 there is an a ∈ Σ1 such that S1 and S2 defined as above are growth
equivalent.

To complete this section, the following result is stated: there exist algorithms to decide for
S0L schemas S1 = (Σ1, R1, ρ1) and S2 = (Σ2, R2, ρ2):

• Let ω1 and ω2 be two axiom distributions over Σ+
1 . Determine if ω1 ∼ ω2 for S1.

• Let S and S′ be two S0L systems. Determine if S ∼ S′.

• Determine if S1 ∼s S2.

• Determine if S1 ≥ S2.

• Determine if S1 ∼ω S2.

56

5.5.4 Symbol Reduction

Let S = (Σ, R, ρ) be a S0L schema. For all a ∈ Σ, ωa is the axiom distribution with ωa(a) = 1
and ωa(x) = 0 for all x 6= a. Sa = (Σ, R, ρ, ωa). Two symbols a, b ∈ Σ are growth equivalent
for S, a ∼ b, if Sa ∼ Sb. S is reduced if there are no distinct symbols in Σ which are growth
equivalent for S. S is reduced to the S0L system S′ if S′ is reduced and S′ ∼s S. The
following theorem can now be formulated: For every S0L schema S there exists an algorithm
which gives a S0L schema S′ such that S is reduced to S′. This result says that every S0L
system is symbol growth equivalent to another S0L system that is reduced in the way that
all symbols have a different growth rate.

57

Chapter 6

Conclusion

In this report an introduction into the study of fractals was given. There are many different
ways to look at fractals, one can for example consider them as attractors of Iterated Function
Systems, or more generally as a stationary probability distribution of an Iterated Random
Function, but also as products of Lindenmayer Systems.

It turns out that there exist algorithms to generate fractals that are quite easy to implement.
Surprisingly, although fractals can look extremely complex, it is often possible to describe
them in a very simple way. For example, an initial axiom and a set of reproduction rules for
a Lindenmayer System can sometimes be written in only one line but can generate trees and
plants that resemble nature quite good. But the mathematical background of fractals is quite
extensive, understanding why the random iteration algorithm for IFS’s works is not easy for
example.

In short, fractal theory is an interesting field of study and not only for the artistic value
of fractals. One can model plant growth using fractals for example, but there are many other
applications. Since fractals appear quite often in nature, even in unexpected places, they will
probably get an increasingly important role in mathematics in the future.

58

Bibliography

[1] Michael Barnsley, Fractals Everywhere, Academic Press, Inc, 1998

[2] Przemyslaw Prusinkiewics and Astrid Lindenmayer, The Algorithmic Beauty Of Plants,
Springer-Verlag, 1996

[3] Peter Eichhorst, Growth Functions of Stochastic Lindenmayer Systems, Information and
control 45, p.217-228, 1980

[4] Persi Diaconis and David Freedman, Iterated Random Functions, SIAM Review, Vol 41,
No.1, p45-76, 1999

59

	Abstract
	Contents
	1. Introduction
	2. Iterated Function Systems
	3. A closer look at the IFS
	4. Iterated Random Functions
	5. Lindenmayer Systems
	6. Conclusion
	Bibliography

