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Chapter 1

Introduction

1.1 Formalities

This project was done as a required internship for the physics and mathe-
matics study at the University of Technology in Eindhoven. My coaches were
Peter Bobbert(physics) at Polymer Physics and Frank Redig(mathematics) at
Stochastics and Decision Analysis. I worked on this from April 2004 to June
2005, although only very part time from July 2004 to April 2005.

1.2 Problem background

Since the 1970s there has been extensive research into the conducting properties
of conjugated polymers. Although at first the focus was on achieving metallic
conductivity by using high doping, in the past years the focus has shifted to the
semiconducting properties observed with little or no doping.
Polymer-based logic circuits have some large advantages over tradition silicon-
based circuits[1]. In the first place they can be processed at relative low tem-
peratures, of the order of 200 degrees Celsius, leading to significantly lower
production costs. Also, the components keep their semiconducting properties
when deformed, i.e. a polymer chip can be bent without impeding functionality.
However, their is also a large disadvantage: the carrier mobility is still signifi-
cantly lower than in silicon-based semiconductors, and so the switch frequency
will never approach those of traditional components.
It is even possible to make electroluminescent devices such as LEDs and LCDs[2].
These are two-carrier devices which generate light by the recombination of holes
and electrons. Although only single-carrier devices will be considered here, two-
carrier device characteristics can be calculated once both carrier mobilities are
known.
To calculate performance characteristics of these devices it is important to know
the charge mobility as a function of the electric field, the temperature and the
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amount of doping, i.e. the carrier density. Although the field and temperature
dependence has been extensively studied[3, 4, 5, 6], these were unable to fully
explain device characteristics without extra assumptions. However, these did
not take into account that a higher voltage over the device increases not only
the electric field but also the carrier density. To fully understand these devices
we therefore need a unified theoretical description of the mobility dependence
on all three factors listed[7]. This then is the problem that will be tackled here.

1.3 General approach

The generally accepted model for polymer conductance is that there are conju-
gated polymer chain segments which allow a localized electron wave function.
These segments are referred to as sites. The energy levels for these wave func-
tions are site dependent and follow a Gaussian distribution. This distribution
has in fact been approximately confirmed by recent experiments[8].
An electron can tunnel from one site to another with a certain jump rate.
This process is called hopping, and for the rate at which it occurs the Miller-
Abrahams rate is used[9]. The field is taken into account by adding a field-
assisted term to the energy difference between sites. Doping is also important
because no two electrons can occupy one site due to Coulomb repulsion.
What we will now do is calculate or approach the distribution of charge carri-
ers over the sites, and calculate the mobility from this distribution. Once the
mobility is known as a function of field, carrier concentration and temperature,
device characteristics can be computed.

1.4 Report structure

Chapter 2 will discuss the theory behind our solution. First, the model used
will be described fully(2.1), followed by a dimensional analysis(2.2). We will
then consider ways to describe the distribution or approximate distribution of
electrons in the polymer(2.3). Then the way to calculate the mobility from
this distribution will be described(2.4). The zero-field case(2.5) and a way to
visualize the effect of the field on the distribution using the electrochemical
potential(2.6) will then be discussed. The chapter on theory will conclude with
a description of the application to single-carrier devices(2.7).
After this, in chapter 3, the implementation, i.e. ways to actually calculate
the approximate charge carrier distributions, will be discussed. First the gen-
eral iteration scheme will be presented(3.1), followed by some details of the
implementation(3.2).
After that the results will be presented in chapter 4. First the main results of
the project, field(4.1), density and temperature dependence(4.2) of the mobility
will be shown. After that the validity of the approximation of the distribution,
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essentially a mean-field approach, will be demonstrated(4.3). Also, it will be
shown that it is necessary to take the influence of the field on the distribution
into account(4.4). Finally, the graphs of the electrochemical potential(4.5) and
results for single-carrier devices(4.6) will be presented.
Finally, the conclusions of this project will be discussed in chapter 5.
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Chapter 2

Theory

2.1 Model

We imagine the polymer as an infinite cubic lattice of sites. Any site may be
occupied by an electron or not; there can never be more than one. The distance
between two sites in this lattice will be referred to as R0. To make calcula-
tions possible the lattice is limited to a cube of L sites in length, with periodic
boundary conditions. Of course, for results to be valid we must consider the
limit where L tends to infinity.
Now, an electron occupying a site will possess a certain energy. This energy is a
property of the site in question and will be referred to as εi. The index i identi-
fies the site being considered. The εi are taken from some random distribution;
in the remainder of this report they are considered independent and normally
distributed with mean 0 and variance σ2, where σ is a measure for the disorder
of the system.
To have mobility we need conduction, i.e. a way for the electrons to move.
An electron occupying site i can tunnel to some unoccupied site j. The rate
at which these jumps occur will be written as Wij and is the product of three
factors. The first is simply a constant, ν0. The second factor is determined by
the overlap of the electron wave functions at the sites, causing it to depend ex-
ponentially on the distance between them. It is given by exp(−α|~rj− ~ri|). Here,
α is a constant, the inverse localization length, and ~ri and ~rj are the locations
of the sites.
The third factor is determined by the energy difference ∆ε between the two
sites. Without an electric field this is simply εj − εi. However, we can only have
mobility with a field. Taking it into account, the energy difference becomes
εj − εi − e ~E · (~rj − ~ri). Here, e is the charge of an electron and ~E the electric
field. Note that we cannot take the field into account by simply subtracting
e ~E · ~ri from each εi since we are using periodic boundary conditions.
Now, an electron jumping to a site with a lower energy(as given by ∆ε above)
will not be hindered by this energy difference. To reach a site with a higher en-
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ergy, the electron will need thermal fluctuations. This yields a Boltzmann term
exp(−∆ε/kT ) with k Boltzmann’s constant and T the temperature, applicable
only when ∆ε ≥ 0.
Combining all of this yields the following equation for the jump rates:

Wij =















ν0 exp(−α ∗ |~rj − ~ri|) exp(−(εj − εi − e ~E · (~rj − ~ri))/kT )

if (εj − εi − e ~E · (~rj − ~ri)) ≥ 0
ν0 exp(−α ∗ |~rj − ~ri|)

if (εj − εi − e ~E · (~rj − ~ri)) ≤ 0

(2.1)

Keep in mind that this jump rate only applies to an occupied site i and an
unoccupied site j; otherwise no jumps are possible.
Note that, due to the periodic boundary conditions, ~ri and ~rj are not uniquely
defined. They should be chosen so that the distance |~rj − ~ri| is minimal.
There are two important parameters that still need to be defined. These are
the electron density per site n and the charge mobility µ. The electron density
per site n is defined as the asymptotic (in time) probability that a randomly
chosen site is occupied. In the case of our finite lattice with periodic boundary
conditions this simplifies to the number of electrons divided by the number of
sites, L3. The charge mobility is defined as the average velocity of an electron
in the direction of the electric field divided by the size of the field.

2.2 Dimensional analysis

In section 2.1 all parameters relevant to the model were introduced. These are
summarized in table 2.2.
This is quite a list of parameters, each of which(except for the constants of

Symbol Description Unit
α Tunneling rate m−1

T Thermal energy J
E Electric field V/m
n Electron density 1
σ Energy spread J
ν0 Jump rate prefactor s−1

R0 Distance between sites m
L Size of the sample considered 1
e Electron charge C
k Boltmann’s constant J/K

Table 2.1: List of parameters in our model. A full description of these parame-
ters can be found in section 2.1.

course) can influence the charge mobility. However, we can decrease the size of
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this list considerably. In the first place, we always consider the limit of large L,
so it can be removed. Furthermore, k and T only occur as each other’s product.
Taking this into account and rewriting the remaining parameters yields the list
shown in table 2.2.
Simple dimensional analysis now tells us that the charge mobility depends on

Parameter Unit
ν0 s−1

R0 m
e C
σ J
eER0/σ 1
σ/kT 1
n 1
αR0 1

Table 2.2: Reduced list of parameters in our model.

these parameters as:

µ = f(eER0/σ, σ/kT, n, αR0)
R20ν0e

σ
(2.2)

From now on the respective arguments of the function f will be referred to
as the dimensionless field, inverse temperature, density and inverse localization
length. The value of the function itself will be referred to as the dimensionless
mobility.

2.3 Balance equations

2.3.1 Definitions

In this section a set of equations will be derived to approximately describe the
distribution of charge carriers.
First, let us consider the general method of finding the distribution in this
model. We define a configuration of the system as a full description of its state.
Let η be such a configuration. It can be represented as a list of bits, each one
representing an empty site or one occupied by an electron. ηi = 0, 1 describes
whether site i is occupied. Finally, use Π to refer to the set of all possible con-
figurations.
A distribution on the system is some probability measure on Π. If ζ is such a
distribution, we write ζ(η) for the probability that the system is in some state
η. If f is some real function on Π, we define its expectation value < f >ζ using
the familiar equation:
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< f >ζ=
∑

η∈Π

f(η)ζ(η) (2.3)

The dynamics of the system can be formalized using the infinitesimal generator
Gt. This operator maps sufficiently smooth functions on Π onto this same set
of functions and is defined by:

< Gtf >ζ=
d

dt
< f >ζ (2.4)

which must hold for all functions f and distributions ζ.
Now let us try to find this generator explicitly for our system. Write ηi↔j for
configuration η with the occupation numbers of sites i and j switched. If the
system is in some configuration η with site i occupied, it will change to ηi↔j

with rate Wij(as defined in equation 2.1), for all i and j. Note that the condi-
tion that site j is empty is implicit in this, since otherwise ηi = ηj = 1 and so
ηi↔j = η. We now have:

(Gtf)(η) =
∑

i,j

Wij(f(ηi↔j)− f(η))ηi (2.5)

Finally, we need to define a limiting distribution in terms of the infinitesimal
generator. A limiting distribution α is defined as one to which the system can
converge in time. In other words, all expectation values of functions on Π must
be constant for this distribution, leading to the condition(using equation 2.4):

< Gtf >α= 0 (2.6)

for all functions f . More on this can be found in [10].
We can now proceed to derive the equations to describe such a limiting distri-
bution. Its existence and uniqueness must of course also be shown.

2.3.2 Full balance equations

Consider a limiting distribution α and some configuration η. Define the function
fη on Π by fη(η) = 1 and fη(x) = 0 for x 6= η. Evaluating the result of applying
Gt to this function will yield the formulas describing α. Using equation 2.5, we
find:

(Gtfη)(η) =
∑

i,j

Wij(fη(ηi↔j)− fη(η))ηi = −
∑

i,j

Wijηi(1− ηj)

(Gtfη)(x) =
∑

i,j

Wij(fη(xi↔j)− fη(x))xi = Wjiηi(1− ηj), x = ηi↔j

(Gtfη)(x) = 0, otherwise

(2.7)
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Now, α is a limiting distribution, so we may apply equation 2.6 to find:

0 =< Gtfη >α=
∑

x

(Gtfη)(x)α(x) =
∑

i,j

(Wijηi(1−ηj)α(η)−Wjiηi(1−ηj)α(ηi↔j))

(2.8)
When applied to every configuration η this yields a set of equations which, com-
bined with the normalization condition, can be used to determine α.
This result would also have been found by considering our model as a finite-state
continuous Markov process. The above method was used because it will allow
the simplifications applied later on to be explained more clearly. However, for
existence and uniqueness we will simply use results from Markov theory. These
state that the limiting distribution exists and is unique if the process is ergodic,
i.e. every configuration must be reachable(not necessarily directly) from every
other one. This last condition is satisfied in our case if we fix the number of
electrons by specifying the electron density n.
Unfortunately, for typical sample sizes like 50x50x50, there are 2125000 possible
configurations. This means that actually solving equation 2.8 is impractical;
instead we should concentrate on finding distributions that approach α.

2.3.3 Approaching the limiting distribution

A standard approach now is to assume that the occupation of a site is indepen-
dent of the occupation of any other site, a mean-field approximation. Here, we
consider a more general approach, where we take clusters of sites and assume
them to be independent of each other.
First, some definitions. Let X be any partitioning of all sites, and take x ∈ X.
Let Πx be the set of all possible configurations of the cluster of sites x. If η
is a configuration of the whole system, then let ηx be the configuration of the
cluster x. Define the function fx,g for x ∈ X and g ∈ Πx by fx,g(η) = 1 if
ηx = g and fx,g = 0 otherwise. For i ∈ x let gi be the number of electrons at
site i in configuration g, 0 or 1. Finally, let Ng be the total number of electrons
in x in configuration g.
Consider a distribution ζ. It is called a product distribution over X if it satisfies:

ζ(η) =
∏

y∈X

< fy,ηy
>ζ (2.9)

Define ζx,g by ζx,g =< fx,g >ζ . These numbers specify ζ if it is a product
distribution.
We now want to find a product distribution α over X that is close to the limiting
distribution. Of course, we can’t expect it to satisfy equation 2.6 completely.
Instead, we want it to satisfy:

< Gtfx,g >α= 0 (2.10)
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for all x ∈ X and g ∈ Πx. This set of equations is not yet sufficient to fully
determine α.,.. We also need the following(trivial) conditions:

∑

h∈Πx

αx,h = 1 (2.11)

0 ≤ αx,g ≤ 1 (2.12)

again for all x ∈ X and g ∈ Πx.
Finally, we need to set the number of electrons in the system. Note that it is
impossible for non-trivial product distributions to have this constant. Instead,
we want its expectation value to match the condition set by the electron density,
yielding:

∑

y∈X

∑

h∈Πy

Nhαx,h = nL3 (2.13)

We will find that this set of equations(2.10 through 2.13) is sufficient to describe
α. They can be considerably worked out for the general case, but we will leave
them in this form for now and work them out fully only for the case of parti-
tioning into clusters of one or two sites each.

2.3.4 Clusters of one or two sites

Let the partitioning X consist of partitions of one element each. So, we are
now simply considering each site to be independent from all other sites. We are
looking for the product distribution over X α satisfying equations 2.10 through
2.13. Following standard notation, we write pg = α{g},{1}, and so, by equation
2.11, α{g},{0} = 1− pg. Furthermore, let fg = f{g},{1}, so fg(η) = ηg. We have,
using equation 2.5:

(Gtfg)(η) =
∑

i,j

Wij(fg(ηi↔j)− fg(η))ηi =
∑

i

(Wigηi(1− ηg)−Wgiηg(1− ηi))

(2.14)
Now, using equation 2.10:

0 =< Gtfg >α=
∑

η∈Π

(Gtfg)(η)α(η) =
∑

η∈Π

∑

i

((Wigηi(1− ηg)−Wgiηg(1− ηi))
∏

j(ηjpj + (1− ηj)(1− pj))) =
∑

i

(Wigpi(1− pg)−Wgipg(1− pi))

(2.15)
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Multiplying by −1, renaming indices and including equations 2.12 and 2.13
yields a very familiar set of equations:

∑

j

(Wijpi(1− pj)−Wjipj(1− pi)) = 0

0 ≤ pi ≤ 1
∑

j

pj = nL3
(2.16)

This is of course the well known Master equation, and it is the one we will mostly
be solving. However, we must still check whether this one-site simplification is
justified; to do this we consider clusters of two sites. If the results do not differ
greatly then we can expect them to be approximately equal to those obtained by
solving the full balance equation 2.8. How to derive the equivalent of equation
2.16 for the case of two-site clusters is shown in appendix A.

2.4 Calculating charge mobility

We have been discussing the limiting distribution for some time, but it is gen-
erally not this distribution we want to know; we are interested in the charge
mobility in this distribution. So, let’s examine how we can evaluate it, working
from the definition given in section 2.1. First, let’s calculate the total veloc-
ity of all electrons in some distribution α, not yet taking into account periodic
boundary conditions:

(~vT )α = d
dt
< ~rT >α=< Gt~rT >α

~rT (η) =
∑

i

ηi~ri (2.17)

Note that ~vT is necessarily equal to 0 if α is a product distribution by equation
2.9. However, this is only because we haven’t taken periodic boundary condi-
tions into account yet. Writing out equation 2.17 using equation 2.5 yields:

(~vT )α =
∑

η,i,j

α(η)Wijηi(1− ηj)(~rj − ~ri) (2.18)

Periodic boundary conditions can now be taken into account by choosing ~rj and
~ri in the same way as for equation 2.1, i.e. by taking them so that |~rj − ~ri| is
minimal. To calculate the mobility from this, we assume that the current is
in the direction of the field. We must divide by the field and the number of
electrons. This yields, for the one-site cluster case(using the notation of section
2.3.4):

µ =

∑

i,j

Wijpi(1− pj)(~rj − ~ri) · Ê

nL3| ~E|
(2.19)

The equivalent of equation 2.19 for the case of two-site clusters can be found in
appendix A.
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2.5 The zero-field case

Consider one-site clusters with ~E = 0. Fermi statistics apply and we have:

pi =
1

exp((εi − εF )/kT ) + 1
(2.20)

where εF is the Fermi level, which should be chosen so that the third part of
equation 2.16, the density condition, is satisfied. Note that the first two parts
of this equation are also satisfied, as was to be expected.
Using equation 2.19 without dividing by the field, it can easily be checked that
the current evaluates to 0 for this distribution(each term is cancelled out by the
one in which i and j are interchanged), i.e. there is no current in the zero-field
case. This too was of course to be expected.
There is one less trivial characteristic of the zero-field case: it satisfies equation
2.8, i.e. the one-site product distribution is completely accurate in this case.
Unfortunately, this result does not hold when a field is applied, as we will find
later.
Note that instead of solving equation 2.16 to approximate the limiting distri-
bution we could also take the distribution specified by equation 2.20 above, i.e.
pretend the field is not there. We then use the actual jump rates, taking the
field into account, in equation 2.19 to find the mobility. This approach was
used by Roichman and Tessler[11]; we will see later that this approximation,
although computationally efficient, is too crude.

2.6 The electrochemical potential

In the case of one-site clusters, there is a nice way to visualize the influence
of the electric field on the movement of the electrons. This is done using the
electrochemical potential µi, defined for every site i by:

pi =
1

exp(εi − εF − eE~ri − µi) + 1
(2.21)

First, note that in the case of εi = C for all i, i.e. no disorder in the energy
levels, we find:

µi = −e ~E · ~ri (2.22)

So, we see that electrons move in the direction of decreasing potential, as we
would expect. Furthermore, note that increasing pi implies increasing µi. This
is what we would expect: if the field causes an increase in the chance of being
occupied for a certain site, electrons will have more difficulty entering it because
no site can be doubly occupied; this translates into a higher potential for that
site.
This can be made clearer by considering the form of the electrochemical poten-
tial in first order(in the electric field):
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µi(E) =
kT (pi(E)− pi(0))

pi(0)(1− pi(0))
− eE~ri +O(E2) (2.23)

where we treat pi and µi as functions of the electric field E. Note that low-
field fluctuations of occupation probability are linearly related to those of the
potential.
Finally, to make the definition clearer, consider figures 2.1 and 2.2. They show
the electrochemical potential in the low-field limit for a two-dimensional sample
with no energy disorder, but with some impenetrable barriers. Note in the
second case that between the barriers the electrons have no choice but to move
against the field, so the potential decreases from right to left there.

2.7 Single-carrier devices

To make comparison with experimental results possible it is important to trans-
late mobility calculations into a J − V characteristic for a device, with J the
current density and V the applied voltage. Consider a polymer layer of thick-
ness L sandwiched between two electrodes. Using the definition of the mobility,
ignoring diffusion, and assuming the current is space charge limited, we have:

J = n(x)E(x)qµ(T, n(x), E(x)) for all x with 0 ≤ x ≤ L
dE
dx = en(x)

ε0εr

V =
∫ L

0
E(x)dx

(2.24)

with x the distance from the injecting electrode, ε0 the vacuum permeability
and εr the relative dielectric constant of the polymer. We take εr = 3, a typical
value for these polymers[7].
A problem with solving these equations is that the spread in site energies σ, the
distance between sites R0 and the tunnelling rate ν0 are generally not known
for specific polymers. They will be chosen to obtain the best overall fit.
One final note: in the single-carrier devices we consider the carriers are generally
holes, not electrons. However, this has no consequences except for some sign
changes.
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Figure 2.1: Electrochemical potential in the low-field limit for a two-
dimensional sample without energy disorder and with some impenetrable bar-
riers(represented by white rectangles). The field is in the +X direction. Only
a part of the sample is shown(namely with X from 40 to 60 out of 100 and the
same for Y). The dimensionless inverse localization length is 20, the density 0.1
and the inverse temperature 4.
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Figure 2.2: Electrochemical potential in the low-field limit for a two-
dimensional sample without energy disorder and with some impenetrable bar-
riers(represented by white rectangles). The field is in the +X direction. The
dimensionless inverse localization length is 20 ,the density 0.1 and the inverse
temperature 4. The same situation, but with energy disorder, is shown in figure
4.5.
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Chapter 3

Implementation

3.1 Iteration scheme

3.1.1 One-site clusters

It is time to find a method to solve the Master equation 2.16:
∑

j

(Wijpi(1− pj)−Wjipj(1− pi)) = 0

0 ≤ pi ≤ 1
∑

j

pj = nL3

Note that the first part of this equation can be rewritten as follows:

pi =

∑

j Wjipj
∑

j(Wij(1− pj) +Wjipj)
(3.1)

Note that pi does not occur on the right-hand side of this equation. Therefore,
we can use it as an iteration scheme, by applying it to every site. Following
[12], implicit iteration is used, i.e. new values for pj are used in equation 3.1
if they have already been calculated. As initial distribution we use the Fermi
distribution found in the zero-field case, as discussed in section 2.5.
Now, since all we have done is rewrite the first part of equation 2.16, it is clear
that whatever our iteration scheme converges to will satisfy this part of the
equation. However, we also would like it to satisfy the other two parts. It can
easily be seen that if the initial distribution satisfies the second part, then so
will every step of the iteration. However, finding a solution that also satisfies
the third part, the density condition, is more subtle.
A very simple solution would be to let it be. We can just let the iteration con-
verge to some distribution and accept whatever density we find. We can expect
a higher density for the initial distribution to lead to a higher density in the
converged distribution, so making plots of the mobility as a function of density
is still possible. However, this approach has three major drawbacks.
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In the first place, if we want to make a plot of the mobility as a function of
some other variable, keeping density constant, we have no easy way to do this.
Also, we can’t calculate the mobility multiple times, for different realizations of
the energy disorder, for the same density. Most importantly, even density plots
won’t come out right, as can be seen in figure 3.1.1.
The above method is still not impossible; we can try different values of the

Figure 3.1: Mobility(for multiple realizations of the energy disorder), with di-
mensionless inverse temperature 3.6, inverse localization length 10 and field
10−3. The crosses are data acquired by choosing the density in the initial dis-
tribution equal to 10−8, without rescaling between iterations. The squares are
data acquired by setting the density in the final distribution, by rescaling be-
tween iterations, to 2∗10−7, 3∗10−7, 5∗10−7 and 9∗10−7. We can see that there
is a false density dependence visible in the crosses, showing that this method is
incorrect.

initial density until we get the final density we want. However, this is very inef-
ficient. Another option is to use an alternative iteration scheme that simulates
the time evolution from the initial distribution. The density is then guaranteed
to remain constant. However, the convergence speed of this method was found
to be vastly inferior.
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The solution is to rescale between iterations. An easy way to do this is simply
multiplying every pi by some constant factor chosen so that the desired density
is found; however, this might lead to pi’s greater then 1, violating the second
part of equation 2.16.
Instead, we use the electrochemical potential, as defined in equation 2.21 in sec-
tion 2.6. Using the pi resulting from the iteration up to the moment of rescaling,
µi is calculated for every site. Then, we can find new pi satisfying the density
condition by changing the Fermi level εF and applying equation 2.21 again.

3.1.2 Two-site clusters

Just like for clusters of one site(equation 3.1), it is possible to write the prob-
ability that a cluster of two sites is in a certain state as an explicit function of
the occupation probabilities of all other clusters. This can then be used as an
iteration scheme as described above. The formula’s are found by solving the first
four parts of equation A.2 for αx,.; they are very cumbersome and completely
uninteresting, and so they will not be included here. As initial distribution we
use the result of one-site iteration. Only clusters of adjacent sites parallel to the
field will be considered.
One important difference is that our rescaling method doesn’t work here. This
isn’t really a problem, since we need results for two-site clusters only to com-
pare them with those found for one-site clusters; we can simply accept whatever
density we find and compute the one-site cluster mobility for that density.

3.2 Implementation details

There are some issues left to be addressed. In the first place, we need a way to
know when to stop iterating. Since we are only interested in the mobility, not
the distribution itself, we can calculate it every n iterations and estimate the
relative error, assuming approximately exponential convergence:

err =

∣

∣

∣

∣

1−
µi − µi−n

µi−n − µi−2n

∣

∣

∣

∣

−1

(3.2)

Here, µi is the mobility after i iterations, not to be confused with the elec-
trochemical potential at site i. This formula is only valid if |µi − µi−n| ≤
|µi−n − µi−2n|; otherwise we are not yet converging exponentially and we don’t
stop iterating.
Typically, n is taken around 30, and a relative error of 10% is tolerated. This
may seem like a high error, but generally the mobility runs through several
orders of magnitude for the ranges of input parameters we consider, so this is
acceptable.
Of course, equation 3.2 may be satisfied by accident long before convergence is
achieved, so we require that it is satisfied a number(typically 3) of times in a
row.
Once convergence has been achieved, we check whether the charge density is
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within a certain margin of the desired density(typically a relative error of 10−4

is tolerated). If not, we rescale as described in section 3.1.1, and wait for con-
vergence again. This is repeated as often as necessary.
Note that for typical sample sizes(100x100x100) evaluating equation 3.1 for all
i would take a very long time(of the order of L6, 1012 in this case). This is why
we only consider jumps from sites to sites within a cubic so-called springbox
around it. Typically, this cube is 3 or 5 sites in length. This length is chosen so
that increasing it does not significantly influence the mobility.
Note that there is a random element in that the energy levels of the sites are nor-
mally distributed. Of course, if we take the sample size to infinity as we should,
this will not be a problem as the spread in the mobility will go to 0. However,
due to memory constraints, taking a very high sample size(above 150x150x150)
is impossible. This means we have to do multiple runs, for different realizations
of the energy disorder. Typically, we do between 10 and 50 runs, stopping when
the estimated standard deviance is smaller than 10%.
It is important to note that this doesn’t completely simulate taking the limit
of infinite sample size, so it is necessary to take the sample size large enough,
so that increasing it doesn’t change the average mobility found. Typically this
requires a sample size so that there are at least a few electrons present(i.e. nL3

should be of the order of at least unity), especially for low temperatures.
One final note: for all calculations the one-site approximation is used. The
two-site equations are used only to check the validity of this approximation.
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Chapter 4

Results

4.1 Field dependence of the mobility

Figure 4.1: Mobility as function of field, with dimensionless inverse localization
length 20, density 10−6 and various temperatures as shown.

Field dependence results for different densities and temperatures are shown
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Figure 4.2: Mobility as function of field, with dimensionless inverse localization
length 20, density 5 ∗ 10−2 and various temperatures as shown.

in figures 4.1 and 4.1. Some characteristics of these dependencies can be de-
rived.
First, let’s consider what happens in the low field limit. Since the only orien-
tation in our model is the direction of the field, reversing it should not change
the mobility. The mobility is therefore an even function of the electric field, and
assuming it is analytic its derivative must be zero at zero field. This can clearly
be seen in the results.
There is more to be said about this limit. We can assume that in the low field
limit the occupation probabilities of the sites pi change linearly with the field.
This can be used to rewrite equation 2.16 into a set of linear equations. These
can then be solved using standard techniques, yielding the mobility in the low
field limit. This approach will not be used here however.
The behavior of the mobility in the high field limit is also easily derived. After
all, in this case it becomes virtually impossible for an electron to jump against
the field, and all jumps in the direction of the field have the same rate, since
in the case of a lower energy for the destination site the jump rate does not
depend on the energy difference(equation 2.1). Since all sites are equal now,
we have pi = n. Using equation 2.19 then yields, using dimensionless parame-
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ters(equation 2.2):

µσ

R20ν0e
=

exp(−αR0)(1− n)

eER0/σ
(4.1)

4.2 Density and temperature dependence of the

mobility

Figure 4.3: Mobility as function of density, with dimensionless inverse localiza-
tion length 20, field 10−3 and various temperatures as shown.

Density dependence results for different temperatures are shown in figure
4.2. Again, some of its characteristics can be explained.
First, notice the existence of the low density limit(not visible for all tempera-
tures). This can easily be understood; after all, at some point the interaction
between electrons(due to Fermi exclusion) becomes negligible. Mathematically,
we exclude all terms that are second order in the occupation probabilities, i.e.
terms of the form pipj . Equation 2.16 then becomes:
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∑

j

(Wijpi −Wjipj) = 0
∑

j

pj = nL3
(4.2)

Note that the condition 0 ≤ pi ≤ 1 has been removed, since there is only one
solution to equation 4.2 anyway, and it should satisfy this condition automati-
cally in the low density limit.
Now, suppose we have a solution pi to equation 4.2 for some density n1. Write
this as pi(n1). It can easily be checked that:

pi(n2) =
n2
n1

pi(n1) (4.3)

Calculating the mobility, again excluding second order terms, now yields:

µ(n2) =

∑

i,j

Wijpi(n2)(~rj − ~ri) · Ê

n2L3| ~E|
=

∑

i,j

Wij
n2

n1

pi(n1)(~rj − ~ri) · Ê

n2L3| ~E|
= µ(n1)

(4.4)
Next, note that the mobility increases with increasing density(up to 0.5). To

Figure 4.4: Density of states, with Fermi levels and hopping ranges for both low
and high densities.

understand this, consider figure 4.2. This shows the approximate occupation
probability in the density of states. Note that large jumps up in energy will
hardly occur(equation 2.1), so significant hopping will only occur near the Fermi
level. Therefore, the mobility depends strongly on the density of states at the
Fermi level, which increases with increasing density.
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Finally, the density increases with increasing temperature, as can be seen in

Figure 4.5: Mobility as function of temperature, with dimensionless tunneling
rate 20, field 10−3 and density 5 ∗ 10−2.

more detail in figure 4.2. This can be understood using figure 4.2 as well. Af-
ter all, a high temperature means that jumps with a greater energy difference
become feasible, and the band in which hopping can occur becomes wider.

4.3 Effects of using one-site clusters

For the above results one-site clusters were used. To determine the validity of
this mean-field approximation, we compare the results with those using two-site
clusters. Unfortunately due to computation limitations only (reasonably) high
temperatures can be considered. By analyzing the trends we can still validate
the mean-field approximation however, except for very low temperatures and
high densities.
First, a word on how these results were obtained. The accuracy demanded in
convergence was raised from 10% for the values above to 10−5. This was nec-
essary to consistently observe the small differences in mobilities between the
one-site and two-site cluster methods. These differences are also smaller than
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the spread in mobilities for different instances of the energy disorder, but luckily
the difference itself exhibited a much smaller spread.
The results themselves can be seen in figures 4.3, 4.3 and 4.3. We see that
the mobility for two-site clusters is lower than that for one-site clusters, and
that the difference is small, typically around 0.02. Also, the difference increases
with decreasing temperature and decreases with decreasing density. Based on
the trends observed it seems that the mean-field approximation will only fail
significantly if the temperature is very low and the density quite high, around
0.1.
That the difference in mobilities decreases with decreasing density can be quite
easily understood. After all, the difference is due to correlation effects between
sites. Since these effects come into play when two electrons are on neighboring
sites, they scale with n2 and will quickly become negligible for low n.

Figure 4.6: Relative difference between one-site and two-site cluster mobility
(the two-site cluster mobility is always lower) as a function of carrier density.
The dimensionless field is 0.01, the inverse temperature 2 and the inverse local-
ization length 20. Note that the relative difference decreases with decreasing
density. The sudden drop in error at a density of 0.01 is because larger samples
were used here.
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Figure 4.7: Relative difference between one-site and two-site cluster mobility
(the two-site cluster mobility is always lower) as a function of field. The dimen-
sionless density is 0.05, the inverse temperature 3 and the inverse localization
length 20. No field dependence is visible until the high field limit described in
section 4.1 is reached.

4.4 Using the Fermi distribution instead of solv-

ing the Master equation

As noted in section 2.5 we can ignore the Master equation altogether and simply
use the Fermi distribution to calculate the mobility. Results for this method
are compared with those found by solving the Master equation in figure 4.4.
It can clearly be seen here that this approximation is too crude, unfortunately
invalidating the results found in [11].

4.5 Graphs of the electrochemical potential

Let’s have a look at what the distribution of charge carriers looks like, using
the electrochemical potential described in section 2.6. Results can be found in
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Figure 4.8: Relative difference between one-site and two-site cluster mobility
(the two-site cluster mobility is always lower) as a function of inverse temper-
ature. The dimensionless density is 0.05, the field 0.01 and the inverse local-
ization length 20. Note that the relative difference increases with decreasing
temperature.

figures 4.5 and 4.5 for high and low temperatures respectively. Also, the effect
of energy disorder in a system with impenetrable barriers is shown in figure 4.5.
Note that the potential landscape is characterized by plateaus of reasonably
constant potential, followed by cliffs where the potential drops off steeply. This
is caused by charge carriers lining up for a difficult jump. This also explains
why the effect is much smaller at higher temperatures: difficult jumps are much
less pronounced due to the exponential form of the jump rates(equation 2.1).

4.6 Results for single-carrier devices

The solution of the single-carrier device equation 2.24 for two polymers is com-
pared with experimental results in figure 4.6. The theoretical results were cal-
culated by Frank Pasveer and Peter Bobbert. Fitted values for σ, R0 and ν0
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Figure 4.9: Mobility as function of temperature, with dimensionless inverse
localization length 20, inverse temperature 6 and density 5 ∗ 10−2. Results are
shown both for using the solution of the Master equation and using the Fermi
distribution for zero field. Note that the latter vastly overestimates the mobility.

are shown in table 4.6. Note that R0 should be seen as an approximation, since
the actual lattice is not cubic. From the figure it becomes clear that both the
density and the field dependence play a role in determining device characteris-
tics.

Polymer σ(eV ) R0(m) ν0(s
−1)

NRS-PPV 0.14± 0.01 1.8± 0.1 (3.1± 0.6) ∗ 1018

C1C10-PPV 0.14± 0.01 1.6± 0.1 (3.5± 0.7) ∗ 1020

Table 4.1: Fitted values for σ, R0 and ν0 in NRS-PPV and C1C10-PPV.
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Figure 4.10: Electrochemical potential in the low-field limit for a two-
dimensional sample with energy disorder. The field is in the +X direction.
The dimensionless inverse localization length is 20 ,the density 10−3 and the
inverse temperature 2.
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Figure 4.11: Electrochemical potential in the low-field limit for a two-
dimensional sample with energy disorder. The field is in the +X direction.
The dimensionless inverse localization length is 20 ,the density 10−3 and the
inverse temperature 8.
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Figure 4.12: Electrochemical potential in the low-field limit for a two-
dimensional sample with energy disorder and with some impenetrable barri-
ers(represented by white rectangles). The field is in the +X direction. The
dimensionless inverse localization length is 20 ,the density 0.1 and the inverse
temperature 4. The same situation, but without energy disorder, is shown in
figure 2.2.
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Figure 4.13: Experimental (symbols) and theoretical (lines) current-density as a
function of voltage for polymer layers of NRS-PPV with thickness 560 nm (main
panel) and C1C10-PPV with thickness 275 nm (inset). The full line shows the
solution of equation 2.24 taking the dependency on the field and the density into
account. The dashed line ignores field dependence, and the dotted line (only
shown in the inset) ignores both field and density dependence.
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Chapter 5

Conclusions

The first and most important conclusion is that the model described can ac-
curately predict the dependence of the mobility on temperature, density and
field. This is based on the excellent fits with experimental data. This means
that our approximations are justified, like the simple Gaussian distribution of
sites, the cubic lattice and the mean-field approximation. Also, there is no need
to assume a correlation between site energies[12, 13, 14, 15] or multi-phonon
hopping rates[16].
Our other conclusion is that it is indeed the density dependence that is mostly
responsible for determining single-carrier device characteristics. The field depen-
dence does play a role, but only at large applied voltages and low temperatures.
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Appendix A

Equations for clusters of

two sites

The derivation of the balance equations for partitioning into clusters of two sites
is very similar to that of 2.16, but much more cumbersome. Therefore, only the
result, will be stated here. First, some notation issues. Let x be a cluster, then
write xa for the first site in x and xb for the second. Furthermore, write o, a, b
and ab for the configurations of x, with a letter showing that site occupied. So,
for instance, we now have that αx,a is the probability that xa is occupied but
xb is not. Some further definitions:

pxa
= αx,a + αx,ab

pxb
= αx,b + αx,ab

aix =
∑

i6∈x

(Wxai(1− pi)

bix =
∑

i6∈x

(Wxbi(1− pi)

aox =
∑

i6∈x

(Wixa
pi)

box =
∑

i6∈x

(Wixb
pi)

(A.1)

These can be seen as, respectively: the probabilities that site xa or xb is occu-
pied, the rate of flow to site xa or xb if it is empty and the rate of flow from
site xa or xb if it is occupied. Note that the rates of flow do not depend on αx,..
Writing out equations 2.10 through 2.13 now yields the equivalent of equation
2.16 for clusters of two sites:
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(aix + bix)αx,o = aoxαx,a + boxαx,b
(aox + bix +Wxaxb

)αx,a = aixαx,o +Wxbxa
αx,b + boxαx,ab

(aix + box +Wxbxa
)αx,b = bixαx,o +Wxaxb

αx,a + aoxαx,ab
αx,o + αx,a + αx,b + αx,ab = 1
0 ≤ αx,. ≤ 1
∑

y∈X

(αx,a + αx,b + 2αx,ab) = nL3

(A.2)

Note that these equations are linear in αx,. for fixed x, though not in α.,..
The equivalent of equation 2.19, the mobility as a function of the distribution,
for the case of two-site clusters is:

µ =

∑

i,j,{i,j}6∈X

Wijpi(1− pj)(~rj − ~ri) · Ê +
∑

x∈X

(Wxaxb
αx,a −Wxbxa

αx,b)(~rxb
− ~rxa

) · ~̂E)

nL3|E|
(A.3)

38


	Contents
	1. Introduction
	2. Theory
	3. Implementation
	4. Results
	5. Conclusions
	Bibliography
	Appendix A

