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Abstract

Nerve pulses are caused by flows of sodium and potassium through the membrane of
a neuron axon. This phenomena can be modelled by the Hodgkin-Huxley model, but
the equations of this model are quite difficult to solve. The Fitzhugh-Nagumo model is a
simplification of the Hodgkin-Huxley model. It appears to be a perturbed problem with
small variable ε, and solution methods will be discussed for the cases ε = 0 as well as
ε 6= 0. The problem discussed in this paper is whether the Fitzhugh-Nagumo model is a
good description of nerve pulses.
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1 Introduction

1.1 Historical overview

Modern scientists have always tried to combine great theoretical work with physical results.
Not only physics happened to be a pool of inspiration, but also increasingly chemistry, eco-
nomics and biology. The latter area came into the picture somewhere at the end of the 18th
century, when great progress was made in electrophysiology ([7]). Electrophysiology is the
science that studies the interaction between biology and electromagnetic fields. Examples of
electrophysiological results in the 19th century are the Leyden Jar, the frog experiment by
Galvan and the Voltaic Pile. At the beginning of the 20th century, A.V. Hill received the
noble prize for discovering that heat is produced during a nerve impulse. This gave him the
opportunity to establish his own research center: Hill’s interdisciplinary school at Cambridge.
Two alumni of Hill’s school were A.L. Hodgkin and A.F. Huxley. They published their model
for the electric signalling of individual nerve cells ([1]) in 1952, for which they received the
noble prize in 1963. They used a technique called ”voltage clamp” on a axon of a giant
squid named Loligo. The Hodgkin-Huxley system consists of a nonlinear partial differential
equation, coupled to three ordinary differential equations which makes the system rather
complicated. Various simplifications have been suggested, like the polyomial model, the van
Capelle-Durrer model and the Fitzhugh-Nagumo model ([8], [3], [11]), the latter probably
being the most famous. In the early 1960’s Richard Fitzhugh analyzed the Hodgkin Huxley
model and he applied some techniques he had learned from Russian applied mathematics
journals. His work, combined with that by Nagumo, Arimoto, and Yoshizawa, became known
as the Fitzhugh-Nagumo model which gave great insight in the complexity of the membrane
potential process.

1.2 Problem setting and paper setup

The neural system is the ”internet” of the human body, it sends all kinds of information
throughout the body. This is obviously a biological process, so you could wonder why a
mathematician would make an analysis of it. As a matter of fact, applied mathematicians
are trained to model real life problems from physics, chemistry, electrotechnics and biology.
Modelling of problems is important, because by using the right model the mathematician can
communicate with other scientists. For example, nerve signals can be modelled by waves.
The model Hodgkin and Huxley came up with was a rather complex one; calculation of these
waves happened to be quite difficult for this model. The Fitzhugh-Nagumo model is a sim-
plification of this model, but does it still give a good description of the nerve signals? To
answer this question we need to check the following statement:

Although the Fitzhugh-Nagumo model is a simplification of the Hodgkin-Huxley model, it
still maintains all important properties.

This report is structured as follows: in section 2 a biological description of the nerve sys-
tem is given. The neuron is analyzed and it becomes clear that sodium and potassium flows
through the membrane are important for nerve signals. In section 3 the permeability of the
membrane is analyzed, and the Nernst equation is derived which is of importance for the
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Hodgkin-Huxley model (HH model). In section 4 the membrane is modelled and the cable
equation is derived which forms the basis of the HH model. This is done by analyzing electri-
cal circuits. Also the importance of ionic batteries is discussed. In section 5 the HH model is
derived using the cable equation with ionic batteries and the experimental data Hodgkin an
Huxley found ([1]). In section 6 the Fitzhugh-Nagumo model (FN model) is derived which
appears to be a perturbed problem with small variable ε. The problem is analyzed for ε = 0
in section 7 and for ε 6= 0 in section 8. Conclusions drawn from both analysis are given in
section 9.

2 Biology of the nerve system

As stated before, the nerve system is the information source of the human body. Using our
nerves we can locate objects, feel temperature changes and be informed of pain throughout
our body. We are interested in the process how all these signals are transmitted to the right
target. An extended study of the nerve system can be found in [2], [3] and [4].

The nervous system consists of a central and a peripheral system. The central nervous sys-
tem, consisting of the brain and the spinal cord, is the place where all the information is
gathered and the peripheral system, containing neurons and nerve endings, is the source of
all information. The nerve endings gain the information, such as light, sound, chemicals, or
touch, which is transmitted by neurons. Since transmission is something mathematicians are
acquainted to modelling, neurons play an important rôle in this report. A neuron consists of
dendrites, a cell body (also called a soma), an axon and axon terminals, like in Figure 1. The
dendrites receive information from another neuron or from a nerve ending. This information
is then transmitted by the axon to the axon terminals. These axon terminals are connected
to either dendrites (they are separated by a thin gap containing neurotransmitters, called
synapse, as shown in Figure 2) or tissue, like for instance a muscle.

Figure 1: A schematic picture of a nerve cell

Nerve pulses transmitted by the axon are called nerve action potentials. This process appears
to be a chemo-electrical process. The nerve action potentials are electrical signals sent out
by the body, and their appearance depends on the concentration of ions around the nerve
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Table 1: Typical values for intracellular and extracellular concentrations in nmol ([3])

Squid Giant Frog Sartorius Human Red
Axon Muscle Blood Cell

Intracellular conc.
Na+ 50 13 19
K+ 397 138 136
Cl− 40 3 78

Extracellular conc.
Na+ 437 110 155
K+ 20 2.5 5
Cl− 556 90 112

cell, basically sodium (Na+) and potassium (K+) ions. Although ions like chloride (Cl−) and
calcium (Ca2+) have some importance, they turn out to yield only secondary effects. The
signals take part in an all-or-nothing process which means that the signals only occur if a
certain depolarization threshold is met. For example, a voltage of the order of 70 mV results
in a resting state, while a voltage of the order of 100 mV gives a nerve action potential. This
voltage does not depend on the strength of the incoming signal, but rather on factors like
temperature, fatigue of the nerve, drugs, etc.

The potential difference is governed by the influx and efflux of sodium and potassium through
the membrane of the axon which is a very thin shell (about 5 to 10 nm). Table 1 shows the
intracellular and extracellular concentrations of sodium, potassium and chloride for 3 different
cell types. The influx of sodium is responsible for the depolarization of the membrane. After
this depolarization, the neuron has to repolarize to its resting potential. This repolarization
is influenced by the efflux of potassium. The influx and efflux occur by diffusion, and the
depolarization/repolarization process is governed by protein gates .

There are three types of gates in the axon that influence the action potential: the m-, n- and

Figure 2: The synapse connections
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Figure 3: The protein gates

h-gate. The m- and h-gates regulate the sodium flow, while the n-gates regulate the potas-
sium flow. If the neuron is in resting state, both the m- and the n-gates are closed, and the
h-gate is open. Therefore the outer shell of the membrane is closed, so there is no ion-flow.
During depolarization, the n-gate is open, so the sodium can diffuse down its gradient. There
is no potassium flow. During the repolarization, the h-gate is closed and the m-gate is open,
so now there is a flow of potassium only. If the m-gate is open for too long, the potential of
the cell drops below the resting rate. This situation is called undershoot . Figure 3 shows the
different states of the protein gates: the normal state (A), the depolarization state (B), the
repolarization state (C), and the undershoot state (D).

3 Membrane permeability

In the previous section we saw that the flow of certain ions through the membrane caused an
action potential. Now we will try to calculate this action potential. See also [5]. Assume there
are 2 compartments with unequal ionic concentrations, compartment 1 and compartment 2,
and assume they have different electric potentials, V1 and V2 respectively. Also, assume that a
small quantity of δn moles moves from compartment 2 to compartment 1 carrying an electric
charge δnzF , where z is the valence of the material and F is Faraday’s constant. In addition,
assume that in this process the temperature T and the pressure p are constant. There are four
types of energy that change during the flow: internal energy (δn∆U), heat energy (δnT∆S),
work energy (−δnp∆(pϕ)), and electrical energy (−δnzF∆V ), with U the internal energy,
S the entropy, and ϕ the volume per mole of the solution. The change in internal energy is
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Table 2: Typical values for Nernst and resting potentials in mV ([3])

Squid Giant Frog Sartorius Human Red
Axon Muscle Blood Cell

Nernst potentials
VNa +56 +55 +55
VK -77 -101 -86
VCl -68 -86 -9

Resting potentials -65 -99 -8

equal to the sum of the change in the other energies:

δn∆U = δnT∆S − δn∆(pϕ)− δnzF∆V. (1)

For the enthalpy H and the Gibbs energy G we have H = U+pϕ and G = H−TS respectively.
Then we can write (1) as

∆G + zF∆V = 0. (2)

The Gibbs energy per mole of component p is denoted by µ[p]. For µ[p] we have

µ[p] = RT ln c[p], (3)

where R is the gas constant and c[p] is the concentration of component p. Applying (3) on
compartment 1 and 2, and combining the result with (2) gives the Nernst equation :

∆V =
RT

z(p)F
log

c[t2]
c[t1]

(4)

With this result equilibrium potentials can be calculated which will appear in the HH model.
Table 2 shows the Nernst potentials for three different cell types.

4 The cable equation

4.1 The axon model

To understand the structure of the HH model it is useful to study the cable equation, because
the HH equation is a special form of this equation. The cable equation was first derived by
William Thomson in 1854. It is based on the simple notion of transverse current leakage
between the inner and outer conductor due to an imperfect insulator as a consequence of the
longitudinal flow of current within the inner conductor. See also [5] and [6]. The insulator,
in this model the membrane, is modelled as a long cylindrical boundary which separates the
inner conductor from the outer conductor. The radius of the membrane is ρ. Since there are
three media (the membrane, the inner and the outer conductor) the variables and parameters
appearing in all media will be denoted by either m for the membrane, in for the inner conductor
and out for the outer conductor. The current in the longitudinal direction is called I(x, t) and
the potential is called V (x, t). We denote the current per unit length in the radial direction
K(x, t). r Is the resistance per unit length of the conductor. Figure 5 shows a fraction of an
electrical circuit model of the interaction between the membrane and the conductors. What
happens in the membrane is explained in subsection 4.3.
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Figure 4: The axon

rin∆x rin∆x rin∆x

rout∆x rout∆x rout∆x

Km(x,t)∆x Km(x+∆x,t)∆x

Kin(x,t)∆x

Kout(x,t)∆x

Kin(x+∆x,t)∆x

Kout(x+∆x,t)∆x

Iin(x,t)

Iout(x,t) Vout(x,t)

Vin(x,t) Iin(x +∆x,t) Vin(x +∆x,t)

Iout(x +∆x,t) Vout(x +∆x,t)

MEMBRANE

INNER
CONDUCTOR

OUTER
CONDUCTORx x +∆x

Figure 5: Electrical Circuit model of the membrane
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4.2 The core-conductor equation

Kirchhoff’s current law (conservation of current, (89)) applied to point x results in two balance
equations

Iin(x, t) + Kin(x, t)∆x = Iin(x + ∆x, t) + Km(x, t)∆x, (5)
Iout(x, t) + Km(x, t)∆x = Iout(x + ∆x, t) + Kout(x, t)∆x. (6)

These equations can be rewritten into

Iin(x + ∆x, t)− Iin(x, t)
∆x

= Kin(x, t)−Km(x, t), (7)

Iout(x + ∆x, t)− Iout(x, t)
∆x

= Km(x, t)−Kout(x, t). (8)

By taking the limit ∆x→ 0, two differential equations are formed

∂Iin(x, t)
∂x

= Kin(x, t)−Km(x, t), (9)

∂Iout(x, t)
∂x

= Km(x, t)−Kout(x, t). (10)

Such a derivation for the derivative of the current can also be done for the potential. Applying
Ohm’s law ((88)) on the network in figure 5 gives

Vin(x, t)− Vin(x + ∆x, t) = rin∆xIin(x + ∆x, t), (11)
Vout(x, t)− Vout(x + ∆x, t) = rout∆xIout(x + ∆x, t). (12)

Again, rewriting and taking the limit ∆x→ 0, two differential equations are formed

∂Vin(x, t)
∂x

= −rinIin(x, t), (13)

∂Vout(x, t)
∂x

= −routIout(x, t). (14)

Since Vm = Vin − Vout, the last two equations can be combined

∂Vm(x, t)
∂x

= routIout(x, t)− rinIin(x, t). (15)

If we take the derivative with respect to x of this equation allows the substitution of (9) and
(10) into this equation

∂2Vm(x, t)
∂x2

= (rout + rin)Km(x, t)− routKout(x, t)− rinKin(x, t). (16)

This result is called the core-conductor equation.

4.3 The cable equation

In this subsection the membrane will be modelled as well. It can be modelled as an electrical
circuit containing a capacitor and a resistor in parallel, like the one shown in Figure 6. Take
ĉm(∆x) to be the capacitance of a small section of the membrane with surface area equal to
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Vin(x,t)

Km(x,t)∆x

rm(∆x)
cm(∆x)

Vout(x,t)

Figure 6: The electrical circuit of the membrane

2πρ∆x and r̂m(∆x) to be the transmembrane resistance. Define ĝm(∆x) := 1
r̂m(∆x) , where ĝm

is the conductance of the membrane. Both Ohm’s law and the capacitor law ((90)) applied
to Figure 6 give

Km(x, t)∆x = ĉm(∆x)
∂Vm(x, t)

∂t
+

Vm(x, t)
r̂m(∆x

). (17)

To get rid of the ∆x term we make an assumption concerning both ĉm(∆x) and ĝm(∆x).
Take ĉm(∆x) = cm∆x and ĝm(∆x) = gm∆x, where cm and gm are the capacitance and the
conductance per unit length respectively. Now we can divide both sides of (17) by ∆x which
results into

Km(x, t) = cm
∂Vm(x, t)

∂t
+

Vm(x, t)
rm

. (18)

Substitution of this equation into the core-conduction equation gives the cable equation

rmcm
∂Vm(x, t)

∂t
=

rm

rout + rin
(
∂2Vm(x, t)

∂x2
+ routKout(x, t) + rinKin(x, t))− Vm. (19)

4.4 Adding ionic batteries

In section 2 we saw that the flux of certain ions have an impact on the potential difference.
This process can also be included in an electrical circuit model with so called ionic batteries
(Figure 7). Assume there are k ionic batteries. Let J be the current flow per unit area in the
radial direction, G the conductance per unit area and C the capacitance per unit area. E is the
equilibrium potential for a certain ion which is calculated by means of the Nernst equation (4).
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G1(x,t)

E1

Jm(x,t)

G2(x,t) G3(x,t)

Cm
E2 E3

Jc(x,t) J2(x,t)J1(x,t) J3(x,t)

Figure 7: The electrical circuit of the membrane including ionic batteries

From the definition it is clear that 2πρ∆xJ = ∆xK. Applying Kirchhoff’s current law
on the circuit in Figure 7 results in

Jm = Jc +
k∑

i=1

Ji. (20)

For each battery the potential energy can be calculated

Vin −
2πρJi(x)∆x

2πρGi(x)∆x
− Ei = Vout. (21)

Hence

Ji = (Vm − Ei)Gi. (22)

Now we can find two equations for Jm

Jm = Cm
∂Vm

∂t
+

∑
(Vm − Ei)Gi, (23)

Jm =
1

2πρ(rout + rin)
(
∂2Vm

∂x2
+ routKout + rinKin). (24)

Eliminating Jm and assuming rin � rout results in

1
2πρrin

∂2Vm

∂x2
= Cm

∂Vm

∂t
+

∑
(Vm − Ei)Gi + Jin. (25)
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5 The Hodgkin-Huxley model

In this section the membrane-model will be applied to the axon described in section 2 and for
the data Hodgin and Huxley found. Sodium and potassium did appear to be important for
the membrane potential. Therefore there will be three batteries in the HH-model: a sodium,
a potassium and a leakage battery. The leakage battery includes all ions excluding potassium
and sodium.

In (25) the dimension is current per unit area. If ` is the unit length, then 2πρ` is the
unit area, so (25) can also be written as

1
Rin

∂2Vm

∂x2
= ĉm

∂Vm

∂t
+ (Vm − ENa)ĝNa + (Vm − EK)ĝK + (Vm − EL)ĝL + Iapp, (26)

where Rin is the resistance per unit area of the inner conductor. We can also define the
membrane resting potential by

Veq :=
ĝNaVNa + ĝKVK + ĝLVL

ĝeff
, (27)

where ĝeff := ĝNa + ĝK + ĝL. The potassium and sodium conductances are found from
experimental data. For the potassium conductance Hodgkin and Huxley tried ĝK = ḡKn4,
where n is a function of ν and ν = Vm−Veq. n Obeys the differential equation nt = (n∞(ν)−n)

τn(ν) ,
in which τn and n∞ are experimentally determined. Usually, τn and n∞ are written in terms
of αn and βn

n∞(ν) =
αn(ν)

αn(ν) + βn(ν)
, (28)

τn(ν) =
1

αn(ν) + βn(ν)
, (29)

which gives

nt = αn(ν)(1− n)− βn(ν)n. (30)

The sodium conductance is described similarly, except that the sodium flow depends on both
the m-gate and the h-gate. Hodgkin and Huxley found that ĝNa = ḡNahm3, with m and h
depending on ν and obeying the same differential equation as n. This result completes the
Hodgkin-Huxley model:

νxx = R[ĉmνt + ḡKn4(ν − νK) + ḡNam
3h(ν − νNa) + ḡL(ν − νL)], (31)

nt = αn(ν)(1− n)− βn(ν)n, (32)
mt = αm(ν)(1−m)− βm(ν)m, (33)
ht = αh(ν)(1− h)− βn(ν)h, (34)
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where

αn = 0.01
10− ν

e
10−ν
10 − 1

, (35)

βn = 0.125e
−ν
80 , (36)

αm = 0.1
25− ν

e
25−ν
10 − 1

, (37)

βm = 4e
−ν
18 , (38)

αh = 0.07e
−ν
20 , (39)

βh =
1

e
30−ν
10 + 1

, (40)

ḡNa = 120, (41)
ḡK = 36, (42)
ḡL = 0.3, (43)

νNa = 115, (44)
νK = −12, (45)
νL = 10.6. (46)

6 The Fitzhugh-Nagumo model

The system of differential equations in the HH model is quite complicated, so many scientists
tried to find a simpler model. Fitzhugh came up with a model in which there is a distinction
between slow and fast variables. Both m and ν are fast variables which means that the po-
tential changes quickly, and the sodium channel activates fast. Additionally, both n and h are
slow variables which means that the sodium channel deactivates slowly, and the potassium
channel activates slowly. By fixing two variables the problem now becomes one with the other
two variables. The final FN model consists of a fast (ν) and a slow variable (w). It can be
constructed by analyzing the electrical circuit in figure 8.

This model has an additional coil with self-inductance Lm and conductance Gm which
represents the the slow transport of ions. The coil with the function F (V ) represents the
fast transport of ions, in which the function F (V ) is non-linear. Nagumo came up with the
idea to use a tunnel diode as the nonlinear element. Applying Kirchhoff’s current law on the
circuit in Figure 8 shows that

Jm = Jc + JL + JF . (47)

For JL we can use the equation for inductors ((91)) and Ohm’s law

Vm = Lm2π∆x
∂JL

∂t
+

JL

GL
. (48)

Using the cable equation and substituting Jc and JF gives the following system

1
2πρrin

∂2Vm

∂x2
= Cm

∂Vm

∂t
+ JL + Jin + F (Vm), (49)

Vm = Lm
∂JL

∂t
+

JL

GL
. (50)
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Jm(x,t)

Lm

JF = F(V) 

Cm

GL(x,t)

Jc(x,t) JL(x,t)

Figure 8: The electrical circuit of the Fitzhugh-Nagumo model

Setting Jin equal to zero and defining W := JL gives the differential equations in dimensional
form of the Fitzhugh-Nagumo model:

1
2πρrin

∂2Vm

∂x2
= Cm

∂Vm

∂t
+ W + F (Vm), (51)

Vm = Lm
∂W

∂t
+

W

GL
. (52)

We prefer this system to be dimensionless. To accomplish this we need a characteristic value
for the current and the voltage drop. The equilibrium potential can be calculated by taking
all derivatives equal to zero. This leads to the equation

VE +
F (VE)

GL
= 0. (53)

To find a characteristic value RE for the resistor we need to solve

RE = [(
df

dV
)V =VE

]−1 (54)
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Using VE and RE we find the dimensionless quantities

t∗ := (
1

CmRE
)t, (55)

x∗ := (

√
RE

2πρrin
)x, (56)

V ∗ := (
1

VE
)Vm, (57)

W ∗ := (
RE

VE
)W, (58)

f∗(V ∗) := −(
RE

VE
)F (Vm). (59)

Substitution of these quantities in the system yields:

1
2πρrin

∂2Vm

∂x2
= Cm

∂Vm

∂t
+ W + F (Vm) =⇒ (60)

1
2πρrin

2πρrinVE

RE

∂2V ∗

∂x∗2
= Cm

VE

CmRE

∂V ∗

∂t∗
+

VE

RE
W ∗ +

VE

RE
f∗(V ∗) =⇒ (61)

∂2V ∗

∂x∗2
=

∂V ∗

∂t∗
+ W ∗ + f∗(V ∗), (62)

and

Vm = Lm
∂W

∂t
+

W

GL
=⇒ (63)

VEV ∗ = Lm
VE

RE

1
CmRE

∂W ∗

∂t∗
+

VE

RE

W ∗

GL
=⇒ (64)

∂W ∗

∂t∗
= ε(V ∗ − γW ∗), (65)

where ε := CmR2
E

Lm
and γ := 1

GLRE
. If we substitute measured values for Cm, RE , L and GL we

find that ε � 1 and γ ≈ 1. Because ε is very small, the FN system is singularly perturbed.
In the next section the reduced problem will be discussed, with the assumption that ε = 0.

7 The reduced problem

The FN equations will now be analyzed further. In section 2, the nerve potential was dis-
cussed. This nerve potential was some kind of wave, which only propagates if a certain
threshold is met. This process is analyzed from a mathematical point of view in this section.

We take a look at the reduced problem. Since ε = 0, W ∗ is constant, so the FN system
reduces to (we omit the superscript)

∂V

∂t
=

∂2V

∂x2
+ f(V ) (66)
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If f(V ) = 0, then (66) becomes the heat equation. This equation can be solved with a
similarity approach. Now take f(V ) 6= 0. The nerve potential was a pulse shaped like a
wave, so we try to find solutions of the form of traveling waves. To accomplish this we need to
assume that V (x, t) = u(η), with η = x+ct. In this case, c is the wave speed. We choose c > 0,
since the problem is invariant for the substitution x→ −x. Define y := (y1, y2)T := (u, du

dη )T .
Then (66) becomes

ẏ =
(

y2

cy2 − f(y1)

)
. (67)

This system has the Jacobian matrix

J(y1) :=
(

0 1
−f ′(y1) c

)
. (68)

This matrix has eigenvalues

λ± :=
c

2
±

√
c2

4
− f ′(y1) (69)

and eigenvectors

v± :=
(

1
λ±

)
. (70)

In order to calculate wave solutions, the function f(u) has to be specified. Two examples of
such a function are discussed: Fisher’s f function and Nagumo’s f function.

7.1 Fisher’s f function

Fisher’s f function is the simplest case of the nonlinear reaction diffusion equation ([11], [8]).
The function reads

f(y1) = y1(1− y1). (71)

This system has two singular points, X1 = (0, 0)T and X2 = (1, 0)T . Substitution of these
points into (69) gives

X1 : λ± :=
c

2
±

√
c2

4
− 1, (72)

X2 : λ± :=
c

2
±

√
c2

4
+ 1. (73)

For point X2 we find that λ+ is positive and λ− is negative. Hence, X2 is a saddle point.
The stability of point X1 depends on the value of c. If c ≥ 2 then λ± is always positive,
which means that for those values of c, X1 is a unstable node. If c < 2 then λ± is a complex
number, with Re(λ±) > 0, so X1 is a unstable spiral. We neglect values of c < 2, because
an unstable spiral implies that the solution would spin around the origin, leaving the first
quadrant. This is not allowed, because concentrations can not be negative.
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X2

X3

y2

v+
v-

v+

v-

Q

X1 y1

Figure 9: Phase plane using Fisher’s function

1

35
η

u

du
dη

0

Figure 10: Wave solution of Fisher’s function for velocity c = 2.1
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The instability of the origin does not agree with the experimental data. The measured wave
should become completely flat and should vanish when η → ±∞. This means that the solution
in the phase plane should be homoclinic which means that it should start and finish at the
same singular point. This is impossible if the origin is an unstable node. There is, however,
a travelling wave possible starting at X1 and finishing at X2. The orbit corresponding with
this solution is called heteroclinic . To accomplish this result we need to define a new point
X3 := (1, b)T , also drawn in Figure 9. Q Will be defined as the triangle X1X2X3 and b is
the slope of the hypothenuse between X1 and X3 which must be steeper then v−. The vector
field along both lines starting at X1 points outwards of Q. This is very important, because
if we now start in X2 when η = ∞ and leave X2 in the v− direction the orbit has to go to
the left, and since it can not leave Q though X1X2 and X1X3 it has to converge to X1 for
η → −∞. So there is a heteroclinic wave possible if c ≥ 2. Figure 10 shows both u and du

dη as
functions of η for c = 2.1.

7.2 Nagumo’s f function

Nagumo’s function is a third degree polynomial ([11], [8]):

f(y1) = y1(y1 − 1)(a− y1), (74)

with 0 < a < 1
2 . This system has three singular points, X1 = (0, 0)T , X2 = (1, 0)T , and

X3 = (a, 0)T . Substitution of these points into (69) gives

X1 : λ± :=
c

2
±

√
c2

4
+ a, (75)

X2 : λ± :=
c

2
±

√
c2

4
− a + 1, (76)

X3 : λ± :=
c

2
±

√
c2

4
− a + a2. (77)

X1 and X2 are clearly saddle points, since
√

c2

4 + ζ > c
2 for 0 < ζ < 1. X3 acts the same as

point X1 in the Fisher case. The sign of ẏ1 is always positive in the first quadrant, so all orbits
move from the left to the right. Therefore, in this case there is also no homoclinic solution
possible, only a heteroclinic one. So we look for a solution starting at X1 and finishing at X2,
which is tangent to v+. The slope of v+ depends on the value of λ+, which is a monotonically
increasing function of c. Define point X5 := (1, b)T . Q is now defined as the triangle X1X2X5

and b is the slope of X1X5. If we take c very large, then the slope of v+ is bigger then b. Now
define the slope r of the vector field along X1X5

r(y1) := c− (a− y1)(y1 − 1)
b

. (78)

Hence, r(y1) > b if 0 ≤ y1 ≤ 1, which means that an orbit starting in A with slope bigger
then b will always stay above the line X1X5. This will never give the required solution. Now
take c = 0 instead. Then (67) becomes ÿ1 = −f(y1). This is an ordinary differential equation
of the Hamiltonian type. See [8] for more information on Hamiltonian equations. In this case
the Hamiltonian is the sum of the kinetic and potential energy

H :=
1
2
y2
2 + P (y1), (79)
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with potential

P (y1) :=
∫ y1

0
f(y)dy. (80)

In our starting point X1 we have H ≡ 0, so y2(y1) =
√
−2P (y1). The Nagumo function

makes sure that P (y1) is positive for small values of y1, but there is a point in the interval,
say ȳ1, where P (ȳ1) = 0, which implies that y2(ȳ1) = 0. Define X4 := ȳ1 and take c0 > 0 such
that the orbit that starts at X1 goes through X5 if y1 = 1. Since orbits with different values
cannot cross each other there must be a c1 with 0 ≤ c1 ≤ c0 such that the orbit finishes at
X2. This orbit must be tangent to v− in X2. So there exists a heteroclinic, solitary wave
traveling from X1 to X2.

X1 X2

X5

y2

y1

v+

v-

v+

v-

Q
v+

X4

X3

v-

Figure 11: Phase plane using Nagumo’s function

8 Miura’s approach

R.M. Miura ([10]) analyzed the problem without the assumption ε = 0. He took ε = 0.08,
γ = 0.8 and the f function f(V ) = 0.33V 3 − 1.20V 2 + 0.44V . The traveling wave approach,
with V (x, t) = u(η) and W (x, t) = w(η) (η = x + ct) , gives the following system

cu′ = u′′ − w − 0.33u3 − 1.20u2 + 0.44u (81)
cw′ = 0.08(u− 0.8w), (82)

with boundary conditions

lim
|η|→∞

u = 0 = lim
η→∞

w (83)
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There are 2 problems with this system. The first is that if one finds a solution for η, then
any translation in η is also a solution. The second problem is that c is unknown. This can
be solved by treating c as a variable and adding the equation c′ = 0 with boundary condition
u(0) = u0 6= 0. As a consequence, the trivial solution is now not longer possible. The u0

should be taken close to the maximum slope of u(η), because that will minimize the numerical
error. Miura discussed three different methods to compute the stable solitary wave solution
which is shown in Figures 12 and 13 for a certain wave speed, but they will not be discussed
in this paper. See [10] for details.

Figure 12: Stable wave solution for u with c = 0.8117656369181

Figure 13: Stable wave solution for w with c = 0.8117656369181
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9 Conclusion

The functions we examined for the reduced problem did not give very good results. Although
wave solutions are possible, they appeared to be heteroclinic, while the experiments done by
Hodgkin and Huxley required a homoclinic wave. Fisher’s f function has an additional flaw,
because we found infinitely many possible values for c, while, according to the experiments, an
unique wave velocity is necessary, like in the case of Nagumo’s f function. These results tell
us that the assumption ε = 0 was not a very good one. Miura’s study shows that homoclinic
solitary waves can be calculated for ε 6= 0. The choice of method depends on the result
wanted, such as speed, profile, and or initiation time of the wave. Miura’s results show that
the FN model is a quite good model to describe nerve pulses. Therefore we can conclude that
the research statement which says that the FN model maintains all important properties of
the HH model, is correct. In addition, the Fitzhugh-Nagumo equations have evolved into a
class of equations which are called the generalized Fitzhugh-Nagumo equations. This system
is given by

ε
dV

dt
= f(V,W ) + I (84)

dW

dt
= g(V,W ). (85)

A famous example of a variant of this system is the van der Pol equation which was of great
importance for the understanding of oscillations. The generalized system is an active area of
research, see e.g. [12] and [13].
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A Notations and equations

A.1 Notations

[̧p] = concentration of component p (mol)
ĉ, c, C = capacitance, per unit length, per unit area respectively (F, Fm−1, Fm−2)
E = equilibrium potential of a certain ion (V )
ϕ = volume per mole (m3mol−1)
F = constant of Faraday (9, 64853 · 104Cmol−1)
ĝ, g, G = conductance, per unit length, per unit area respectively (S, Sm−1, Sm−2)
H = enthalpy (J)
I = longitudinal current(A)
J = radial current density flow (Am−2)
K = radial current per unit length (Am−1)
L = inductivity per unit area (Hm2) µ[p] = Gibbs energy per mole of component p (Jmol−1)
p = pressure (Pa)
ρ = radius of the membrane (m)
r̂, r = resistance, per unit length respectively (Ω,Ωm−1)
R = gas constant: (8,3145 Jmol−1K−1)
S = entropy (JK−1)
T = temperature (K)
U = internal energy (J)
V = potential (V )
Z = valence of a certain ion
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A.2 Equations and physical law’s

Membrane potential:

Vm = Vin − Vout. (86)

Nernst equilibrium potential:

Em = −2, 3
RT

ZF
log

c[ionout]
c[ionin]

. (87)

Ohm’s law:

V = IR. (88)

Kirchhoff’s current law: ∑
I = 0. (89)

at any junction.

Capacitor law:

I = C
dV

dt
. (90)

Inductor law:

V = L
dI

dt
. (91)
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