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Summary

This document describes the problems that arise when the theory of Gröbner bases is applied to
theorems in non-commutative geometries.

Analytical geometry gives a means to rewrite geometric theorems into a set of hypothesis
polynomial equations and a thesis polynomial equation. If the geometry is commutative, then the
Gröbner basis of the hypothesis ideal can be computed. This basis can then be used to prove
that the thesis equation can be derived from the hypothesis polynomials. How such a proof is
constructed and why it is correct is explained in chapter 1.

The theory of Gröbner bases is limited to commutative polynomials. It is relatively easy to
generalize the theory to work for non-commutative polynomials as well. However, this generaliza-
tion has one severe problem: there exists no algorithm for computing a non-commutative Gröbner
basis. The non-commutative version of Buchberger’s algorithm however, can still be used to com-
pute the non-commutative Gröbner basis for some ideals. This and other differences between the
commutative and non-commutative Gröbner bases are discussed in chapter 2.

In chapter 3, we construct a geometry over a division ring and argue why non-commutative
Gröbner bases can not be used for proving theorems in geometries over division rings.

This document was written as part of the author’s bachelor project. This project was supervised
by Hans Sterk and is part of the bachelor’s program Applied Mathematics at the Eindhoven
University of Technology.
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Chapter 1

Geometric proofs using Gröbner
bases

By choosing a coordinate system strategically, Thales’ theorem can be proved by rewriting only a
single polynomial equation. This is shown in the first section. In general, a geometric theorem will
have more than one hypothesis equation. The theory of Gröbner bases can be used to program a
computer to rewrite these hypothesis equations into the thesis polynomial. This theory is shortly
explained in the sections 3, 4, 5 and 6. For a thorough explanation we refer to [1] and [6]. Using this
theory it is possible to programmatically generate proofs for certain classes of geometric theorems.
The structure of such a proof is given in the second section and an example in the last.

1.1 Introduction

In standard Euclidean geometry, we usually prove theorems using classical techniques, like inci-
dence, congruence and applying other theorems. Such proofs tend to require some creativity to
write. An alternative is parameterizing the Euclidean space, which allows us to apply algebraic
techniques for proving theorems. Here is a simple example:

Theorem 1.1.1 (Thales). Given a circle c, a line l through the center of the circle and a point
P on the circle, but not on the line. Let M1 and M2 being the two intersections of c and l (see
figure 1.1). Then the lines M1P and PM2 are perpendicular.

c

l

M1 M2

P

Figure 1.1: Geometric configuration of Thales’ theorem.

Proof. We choose a coordinate system. Let the center of the circle be the origin of this system.
Choose the x-axis, such that M1 = (−1, 0) and M2 = (1, 0). Choose the y-axis, such that it’s
perpendicular to the x-axis and intersects with the circle at (0, 1) and (0,−1). Point P has
coordinate (x, y).
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Chapter 1

Having chosen the coordinate system, we can now write down the algebraic equations for the
hypothesis and the thesis.

Hypothesis Because point P is on the unit circle, we have:

x2 + y2 = 1.

Thesis Two lines are perpendicular if their inner product is zero, hence we have to prove that

(x, y −−1) · (x, y − 1) = 0.

This follows from the hypothesis by simple rewriting:

(x, y −−1) · (x, y − 1) = x2 + y2 − 1 = 0.

1.2 Structure of a proof

In our proof of Thales’ theorem we use a standard recipe for obtaining the proof. The first step is
rewriting the theorem as a set of polynomial equations. The equations that describe what is given
are called the hypothesis. That what must be proven is the thesis. If we can derive the thesis
equation from the hypothesis equations, then the theorem is proved.

Thales’ theorem can be proved by rewriting only a single polynomial equation. In general,
a geometric theorem will have more than one hypothesis equation and rewriting these equations
into the thesis polynomial by hand can be both difficult and time consuming. One technique that
can be used is as follows:

• The equations are rewritten such that the right-hand side of all equations is zero. The left
hand side of the hypothesis equations are called the hypothesis polynomials, the left hand
side of the thesis equation is called the thesis polynomial.

• Then repeatedly, reduce the thesis polynomial modulo one of the hypothesis polynomials,
until the thesis polynomial can no longer be reduced.

• If the thesis polynomial end up being zero, the original thesis polynomial is a combination
of the hypothesis polynomials. The hypothesis polynomials all equal zero. Hence the thesis
polynomial also equals zero, which proves the theorem.

There are two important issues with this method. First, the definition of the modulo reduction
is unclear. We will solve this by using a monomial order, which we define in section 1.4. Second,
the thesis polynomial obtained by repeating the second step depends on the order in which the
hypothesis polynomials are chosen. Hence if the remaining thesis polynomial is not zero, it might
have been possible to reduce it to zero using the hypothesis polynomials in a different order. To
solve this problem, we need to rewrite the set of hypothesis polynomials into a Gröbner basis,
before doing the reduction.

1.3 Ideal

Before we can properly define ‘Gröbner basis’, we need to define ‘ideal’. In this chapter we only
use ideals of polynomials. Therefore, we only define it here for polynomials. We refer to definition
2.5.1 for the general definition that does not assume commutativity.

Definition 1.3.1 (Polynomial ideal). Let H = {h1, . . . , hn} be a finite set of polynomials. Then
the ideal generated by H is given by:

〈H〉 = 〈h1, . . . , hn〉 :=

{
n∑

i=1

aihi

∣∣∣∣∣ a1, . . . , an are n polynomials

}
.
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Geometric proofs using Gröbner bases

Hence an ideal is a set of polynomials. The set H is called a basis of 〈H〉. There are a few
operations that can be applied to a basis, such that the ideal it generates does not change:

• Add an element from the ideal to the basis: let v ∈ 〈h1, . . . , hn〉, then 〈h1, . . . , hn〉 =
〈h1, . . . , hn, v〉.

• Remove a zero element from the basis: 〈h1, . . . , hn, 0〉 = 〈h1, . . . , hn〉.

• Add a multiple of one of the polynomials to another: let i, j ∈ {1, . . . , n} and polynomial a
be given, such that i 6= j, then 〈h1, . . . , hj . . . , hn〉 = 〈h1, . . . , hj + ahi, . . . , hn〉.

• Multiply a polynomial by a constant.

We can now rewrite geometric theorems into ideal membership problems. Let T be a geometric
theorem. Let H be the set of hypothesis polynomials of T and let t be its thesis polynomial. The
theorem T is true if t ∈ 〈H〉.1

1.4 Monomial order

We still need to clear up the definition of modulo reduction. This definition requires a monomial
order to be chosen.

A monomial is a single term of a polynomial, without the constant factor. For example, x2yz5,
y3 and 1 are monomials and x + y, 0, −z and 12xy2 are not. Multiplying two monomials yields
another monomial. Having a monomial order allows us to sort the monomials.

Definition 1.4.1 (Monomial order). Let < be a relation on monomials. Then < is a monomial
order if and only if :

• the relation is a total ordering, for each distinct pair of monomials a and b either a < b or
b < a;

• the relation is invariant under multiplication, let a, b and c be monomials, then a < b =⇒
a · c < b · c;

• the relation is a well ordering, for each set of monomials S there exists an x ∈ S such that
{ a ∈ S | a < x } = ∅.

Most books about Gröbner bases then define the following three functions for polynomials:

• lm(p): the leading monomial. That is, the largest monomial in the polynomial p with respect
to the monomial ordering.

• lc(p): the coefficient of the leading monomial.

• lt(p): the term of p. That is the leading monomial with its coefficient. lt(p) = lc(p) · lm(p).

These functions can then be used to define divisibility and the module reduction operation.

Definition 1.4.2 (Divisibility). A polynomial p is said to be divisible by q if there exists a
polynomial r such that p = r · q.

Definition 1.4.3 (Modulo reduction). Let p and q be polynomials. Now we have that p ≡ p+r ·q
(mod q) for any polynomial r. Let s = p + r · q, for any polynomial r such that lm(q) does not
divide any of the terms in s, then s is the reduction of p modulo q, which we will denote as: p
mod q.

1There exists a stronger theorem, based on Hilbert’s nullstellensatz, that says that T is true if and only if
t ∈

√
〈H〉. Here

√
〈H〉 is the radical of 〈H〉, which is defined as

√
〈H〉 = { a | ∃n : an ∈ 〈H〉 }. A concise

description of this theorem and a proof can be found in [6, section 4.2].
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Chapter 1

1.5 Gröbner basis

Definition 1.5.1 (Gröbner basis). Let H = {h1, . . . , hn} be a basis. Then H is a Gröbner basis
if and only if for each p ∈ 〈H〉 there exist a q ∈ H, such that lm(q) divides lm(p).

This means that whenever we have a Gröbner basis H and a polynomial p ∈ 〈H〉 with p 6= 0,
we can find a q ∈ H, such that lm(p mod q) < lm(p). Note that p mod q ∈ 〈H〉, hence we can
use p mod q as the new value for p and repeat this procedure until p = 0.

If we apply this procedure to any polynomial p, once the procedure ends, p ∈ 〈H〉 if and only
if the last value of p was 0. So this procedure can be used to check whether a polynomial is a
member of an ideal.

1.6 Buchberger algorithm

A basis H = {h1, . . . , hn} is usually not a Gröbner basis. The Buchberger algorithm can be used to
convert a basis into a Gröbner basis. Let lcm(a, b) be the least-common-multiple of the monomials
a and b. The basic idea behind the Buchberger algorithm is as follows:

• Sort h1, . . . , hn, such that lm(h1) < . . . < lm(hn).

• For each i, replace hi with 1
lc(hi)

hi.

• For each pair hi, hj , add the following polynomial to the basis:

lcm(lm(hi), lm(hj))

lm(hi)
hi −

lcm(lm(hi), lm(hj))

lm(hj)
hj .

• For each i, j ∈ {1, . . . , n} (in arbitrary order), replace hi with hi mod hj .

• Remove polynomials that are 0.

These steps are then repeated until the basis no longer changes. Then it is a Gröbner basis.

The theory of Gröbner bases and the Buchberger algorithm gives a powerful tool, with which
we can easily test whether a given polynomial is in the ideal generated by a set of polynomials.
One can program a computer to do this testing. Combined with algebraic geometry, this can
be used to programmatically generate proofs for some geometric theorems. One program that
implements Gröbner bases and the Buchberger algorithm is Singular [2].

1.7 Example

We have proven Thales’ theorem in the first section of this chapter. This was easy because we
chose a specific coordinate system. If a coordinate system is given, we can still write down the
thesis and hypothesis polynomials. However, now we would need to use Gröbner bases for the
proof. To show how Gröbner bases can help with proving a geometric theorem, we will prove
Thales’ theorem again, but now with a given coordinate system.

Theorem 1.7.1 (Thales). Let (xc, yc) be the center of a circle with radius r. Let (x1, y1), (x2, y2)
and (x3, y3) be points on the circle. If the points (x1, y1), (xc, yc) and (x2, y2) are distinct and
collinear, then the vectors (x1 − x3, y1 − y3) and (x2 − x3, y2 − y3) are perpendicular.

4



Geometric proofs using Gröbner bases

Proof. Again we write down the algebraic equations for the hypothesis and thesis.
Hypothesis

(x1 − xc)
2 + (y1 − yc)

2 = r2

(x2 − xc)
2 + (y2 − yc)

2 = r2

(x3 − xc)
2 + (y3 − yc)

2 = r2

(x1 + x2) = 2xc

(y1 + y2) = 2yc

Thesis
(x1 − x3)(x2 − x3) + (y1 − y3)(y2 − y3) = 0

We run the Singular script in section A.1. This gives the following Gröbner basis: 〈2yc − y1 −
y2, 2xc−x1−x2, x1x2−x1x3−x2x3+x2

3+y1y2−y1y3−y2y3+y23 , x
2
1+x2

2−2x1x3−2x2x3+2x2
3+

y21 +y22−2y1y3−2y2y3+2y23−4r2, x3
2−3x2

2x3+3x2x
2
3−x3

3+x2y
2
1−x3y

2
1−x1y1y2+x3y1y2+x2y

2
2−

x3y
2
2 +x1y1y3−2x2y1y3+x3y1y3+x1y2y3−2x2y2y3+x3y2y3−x1y

2
3 +2x2y

2
3−x3y

2
3−4x2r

2+4x3r
2〉

Calculating the thesis polynomial modulo this Gröbner basis gives:

(x1 − x3)(x2 − x3) + (y1 − y3)(y2 − y3) = 0

Which proves the theorem.
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Chapter 2

Non-commutative Gröbner bases

The theory of Gröbner bases is limited to commutative fields. However, an extension to the theory
is available, known as non-commutative Gröbner bases, which makes it possible to use it with
division rings. In this chapter we will build up the algebraic structures used by non-commutative
Gröbner bases and investigate whether and how these non-commutative Gröbner bases can be
computed. For an introduction to non-commutative Gröbner bases, we refer to [3].

The first two sections are a refresher on various basic algebraic structures. The third section
addresses various problems encountered when defining skew polynomials. The solutions for these
problems impose a few restrictions on skew polynomials. In the forth section a method is shown
that allows us to circumvent these restrictions. Some examples of division rings that are modified
to meet the requirements are given in the sixth section.

In the fifth and seventh section we modify the definitions of ideals and monomial order such
that they no longer depend on commutativity. The required changes for the Buchberger algorithm
are discussed in the eighth section. In the last section it is noted that in general computing a
non-commutative Gröbner basis is not possible.

2.1 Commutativity

To understand what non-commutative Gröbner bases are, we first need to know what commuta-
tivity is.

Definition 2.1.1 (Commutativity). Let � : R × R → R be a binary operator, then � is said to
be commutative if ∀a, b ∈ R : a � b = b � a.

The commutativity property is usually part of an algebraic structure. The monoid and group
are two such structures that can be commutative. We will need these structures in the next
section, so here are their definitions.

Definition 2.1.2 (Monoid). Let R be a set and � : R×R 7→ R a binary operator, then (R, �) is
a monoid if and only if :

• the operator � is associative: ∀a, b, c ∈ R : a � (b � c) = (a � b) � c;

• there is an identity element: ∃e ∈ R : ∀a ∈ R : e � a = a = a � e.

We can prove that the identity element of a monoid is unique: let e and e′ be identity elements,
then e = e � e′ = e′. If the operator of a monoid is commutative, then it is called a commutative
monoid. The monomials from chapter 1 form such a commutative monoid. If we require that
every element in a monoid has an inverse, we get what is called a group.

7



Chapter 2

Definition 2.1.3 (Group). Let (R, �) be a monoid, then (R, �) is a group if and only if each
element has an inverse: ∀a ∈ R : ∃b ∈ R : a � b = e = b � a.

Much like the uniqueness of the identity element of the monoid, every element has an unique
inverse: let a ∈ R and let b, b′ be inverses of a, then b = b � e = b � (a � b′) = (b �a) � b′ = e � b′ = b′.
If the operator of a group is commutative, then it is called a commutative group or an abelian
group. If a group is not commutative, it’s said to be non-commutative.

2.2 Division ring

Commutative Gröbner bases consist of polynomials over a field. For non-commutative Gröbner
bases we want to use a division ring instead of a field.1 A field is a division ring with a commutative
multiplicative operator. This section lists the definitions of the ring, division ring and field. Some
properties of these structures are also given. We start with the ring, which is a combination of a
monoid and a group and therefore has two binary operators.

Definition 2.2.1 (Ring). Let R be a set and let +, · : R × R 7→ R be binary operators, then
(R,+, ·) is a ring if and only if :

• (R,+) is a commutative group;

• (R, ·) is a monoid;

• the distributive laws hold: ∀a, b, c ∈ R : a·(b+c) = (a·b)+(a·c) and (a+b)·c = (a·c)+(b·c).

The polynomials from chapter 1 form a ring. As we will be doing many calculations with rings,
here follow some notational definitions:

• the identity elements of the + and · operators will be written as 0 and 1 respectively;

• we will write −1 for the additive inverse of 1, hence 1 +−1 = 0;

• the · is often omitted and has higher precedence than +;

• formulas like a +−1 · b will be written as a− b;

• aa . . . a will be written as an, such that an = a · an−1 and a0 = 1.

This allows us to write more compact formulas. For example, we can rewrite (a · b) + (a · a · c) as
ab + a2c. Note that 0 = 0 · a = (1 + −1) · a = 1 · a + −1 · a = a + −a, hence −a is the additive
inverse of a. Also note that −1 · a = a · −1, even though · is not necessarily commutative.

One property of a ring is that anything multiplied by 0 yields 0 as a result. This is proven by
0 = a · 0− (a · 0) = a · (0 + 0)− (a · 0) = a · 0 + a · 0− (a · 0) = a · 0 and similarly for 0 = 0 · a. It
is possible that 0 = 1, but then ∀a ∈ R : a = 1 · a = 0 · a = 0 and thus R consists of only a single
element. As this case is uninteresting, we assume 0 6= 1. This assumption implies that there can
not exist a b ∈ R, such that 0 · b = 1. If we assume that for any a ∈ R, a 6= 0, there exists a b ∈ R
such that a · b = 1, we get what is called a division ring.

Definition 2.2.2 (Division Ring). Let (R,+, ·) be a ring, then (R,+, ·) is a division ring if and
only if (R \ {0}, ·) is a group.

A different name for division ring is ‘skew field’. If a is an element of a division ring and n
a negative integer, an denotes the multiplicative inverse of a−n. Obviously 0n is undefined for
negative n. A special case of division ring is when the operator · is commutative. This is called a
field.

Definition 2.2.3 (Field). Let (R,+, ·) be a division ring, then (R,+, ·) is a field if and only if ·
is commutative.

1When commutativity is dropped, we have to redefine the notion of polynomial. This gives some complications
concerning the use if a division ring. These complications are discussed in section 2.3 and 2.4.

8



Non-commutative Gröbner bases

2.3 Skew polynomials

For non-commutative Gröbner bases, we need something similar to polynomials, but without the
commutativity. Something like 3aca + 2b2a + 1 + ab. These will be called skew polynomials.
However, we first need to define them. Finding a definition for skew polynomials, such that we
can work with them similarly as with ordinary commutative polynomials, happens to be a bit
difficult. Here follows a first, but unsuccessful attempt at defining such skew polynomials.

Definition 2.3.1 (Ambiguous polynomial ring). Let k = (R,+, ·) be a ring and X = {x1, . . . , xn}
a set of indeterminate variables. Let A be the closure of R ∪ X under + and ·. Then (A,+, ·),
denoted as k[x1, . . . , xn], is a polynomial ring.

This definition is ambiguous, as we do not state the properties of the indeterminate variables
with respect to + and ·. We could solve this by saying that these variables follow the properties
of a ring, but then we would still be using the closure of a set, which makes it a bad definition.
However, even if we could remove the use of ‘closure’, there is still one problem left: we can’t define
the concept of monomial in a way that is similar to the commutative monomial definition. In the
commutative case, polynomials are sums of monomials multiplied by coefficients. The coefficients
could be separated from the monomials, because the underlying ring was commutative. In the
non-commutative case, the coefficients and monomial can be mixed, for example: x1ax2bx3, with
a, b ∈ R. Due to the lack of commutativity, we can’t separate the coefficient from the monomial.
Therefore, to solve this problem, we require R to be a field.2 We will first define the monomials.

Definition 2.3.2 (Skew monomial monoid). Let X = {x1, . . . , xn} a set of indeterminate vari-
ables. Let A be the set of finite lists of elements from X, including the empty list. Let the operator
· : A × A → A be defined, such that a · b is the concatenation of a and b, for all a, b ∈ A. Then
(A, ·) is the skew monomial monoid. The elements of A are called skew monomials. The set A
will be denoted as 〈x1, . . . , xn〉.

In computer science X is usually called an alphabet, the elements of A are called words and ‘·’
is known as the concatenation operator.

We can now define the skew polynomial ring. Here follows a successful attempt at defining
the skew polynomials. The definition is concise and probably useful for implementing the non-
commutative Buchberger algorithm discussed in section 2.8. However, the definition is a bit
artificial and therefore less useful for the understanding of skew polynomials.

Definition 2.3.3 (Skew polynomial ring). Let k = (R,+, ·) be a field. Let A = 〈x1, . . . , xn〉 and
(A, ·) be a skew monomial monoid. Let

B = { f | f : A→ R ∧ #{ x | x ∈ A ∧ f(x) 6= 0 } ∈ Z }.

Then k〈x1, . . . , xn〉 := (B,+, ·) is a skew polynomial field, with for all a, b ∈ B and x ∈ A:

(a + b)(x) = a(x) + b(x);

(a · b)(x) =
∑

y,z∈A
y·z=x

a(y) · b(z).

Elements from this ring are denoted as f(x1)x1 + . . . + f(xn)xn for f ∈ B and {x1, . . . , xn} =
{ x | x ∈ A ∧ f(x) 6= 0 }. The notational rules for ring formulas are applied here as well. So, for
example, we can write: 3aca + 2b2a + 1 + ab ∈ R〈a, b, c〉.

The skew polynomial ring is also known as a free algebra over k or a free ideal ring.

2Even if the indeterminate variables are non-commutative they still have commutative behavior when multiplied
by an element from the field. This allows the coefficient to be separated from the monomial. This is proven in the
next section.
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2.4 Field extraction

The requirement that R must be a field seems a too limiting requirement, especially when we
want to prove theorems in geometries over division rings. To work around this limitation we take
a division sub-ring of our division ring, that actually is a field. We use this field as the basis for our
skew-polynomial ring and add the elements missing from our sub-ring as indeterminate variables
(see section 2.6 for examples). Theorem 2.4.2 states that it is always possible to extract a field
from a division ring. This theorem also tells us that we can indeed separate the coefficient and
monomial of a polynomial’s terms and calculate with them.

Definition 2.4.1 (Division sub-ring). Let (R,+, ·) be a division ring, then (S,+, ·) is a division
sub-ring of (R,+, ·) if and only if S ⊂ R and (S,+, ·) is a division ring.

Theorem 2.4.2. Every division ring (R,+, ·) has a division sub-ring (S,+, ·) that is a field.
Additionally ∀s ∈ S, r ∈ R : s · r = r · s.

Proof. We will prove this theorem by constructing a set S, such that (S,+, ·) is a field.
Let S1 = {0, 1} and for all i ∈ N let

Si+1 = Si ∪ { −a | a ∈ Si } ∪ { a−1 | a ∈ S∗i } ∪ { a + b | a, b ∈ Si } ∪ { a · b | a, b ∈ Si }

Let S =
⋃∞

i=1 Si, which is the closure of S1 under the operations of the division ring k. Now
(S,+, ·) is a division sub-ring.

We will prove that s ∈ Si+1, r ∈ R implies that s · r = r · s by induction to i. For i = 0 we
have s = 0 or s = 1. So for any r ∈ R we have 0 · r = 0 = r · 0 and 1 · r = r = r · 1. Hence for
i = 0 the theorem holds. For i ≥ 1 let s ∈ Si+1 and r ∈ R. Now we have 5 different cases.

• ∃a ∈ Si : s = a: It follows from the induction hypothesis that s · r = r · s.

• ∃a ∈ Si : s = −a: From the induction hypothesis we have that −s · r = r · −s. It follows
that s · r = r · s.

• ∃a ∈ Si : s = a−1: If r = 0 then s · r = 0 = r · s, otherwise it follows from the induction
hypothesis that r−1 · s−1 = s−1 · r−1, which implies that s · r = r · s.

• ∃a, b ∈ Si : s = a+b: From the induction hypothesis we have a·r = r·a and b·r = r·b. Adding
them yields a ·r+b ·r = r ·a+r ·b. Applying the distributive laws gives (a+b) ·r = r ·(a+b),
hence s · r = r · s.

• ∃a, b ∈ Si : s = a · b: From the induction hypothesis we have a · r = r · a and b · r = r · b.
Using these properties we can rewrite s · r = (a · b) · r = a · (b · r) = a · (r · b) = (a · r) · b =
(r · a) · b = r · (a · b) = r · s.

This completes the induction, which proves that ∀s ∈ S, r ∈ R : s · r = r · s. Since S is constructed
such that + and · are closed under S and S ⊂ R, we have that (S,+, ·) is a field.

This result allows us to think of division rings as generated by a field with some non-commu-
tative elements added. The extracted field will be used as the set of coefficients of the polynomial
ring. The non-commutative elements are added as indeterminate variables. Properties of the
non-commutative elements are added to the ideal. This gives a quotient ring (see section 2.6) that
behaves the same as the original division ring.

2.5 Ideal

Like the polynomials, the ideals must also be adapted to work without commutativity. Here we
have to make a choice as well. In an ideal we can multiply an element with a scalar and obtain a
new element in the ideal. In the non-commutative case it matters whether the scalar is multiplied
at the left or the right side. We choose to multiply on both sides. This means that we will get a
so called ‘two-sided ideal’. Here is the definition:

10



Non-commutative Gröbner bases

Definition 2.5.1 (Ideal). Let (R,+, ·) be a ring and I ⊂ R, then I is an ideal if and only if (I,+)
is a group and for all a ∈ R and x ∈ I we have a · x ∈ I and x · a ∈ I.

Similarly to what we did in chapter 1, we can convert any H ⊂ R into an ideal by taking the
set of all linear combinations (of a finite number) of elements from H. We define:

〈H〉 :=

{
n∑

i=1

aihi + hibi

∣∣∣∣∣ a1, . . . , an, b1, . . . , bn ∈ R, h1, . . . , hn ∈ H

}
.

2.6 Quotient ring

The algebraic structure created by (R,+, ·) modulo the ideal I is called a quotient ring.

Definition 2.6.1 (Quotient Ring). Let (R,+, ·) be a ring and let I ⊂ R be an ideal. Let≡I∈ R×R
be an equivalence relation with a ≡I b ⇐⇒ a − b ∈ I. Now we define R/I as the equivalence
classes of ≡I : R/I := { { a + x | x ∈ I } | a ∈ R }. We define the binary operators + and · on
R/I as a + b = { x + y | x ∈ a, y ∈ b } and a · b = { x · y + z | x ∈ a, y ∈ b, z ∈ I } for a, b ∈ R/I.
Note that both operators are closed, which means that a + b ∈ R/I and a · b ∈ R/I. The ring
(R/I,+, ·) is called the quotient ring of (R,+, ·) modulo I.

Examples of quotient rings are the complex numbers and the quaternions.

Example 2.6.2 (Complex numbers). The complex numbers C are generated by R and i, with
the property i2 = −1. This is written down as: C = R〈i〉/〈i2+1〉. Commutativity of the element i
follows from it being the only indeterminate variable.

Example 2.6.3 (Quaternions). The quaternions H are generated by R and i, j and k, with the
property i2 = j2 = k2 = ijk = −1. This is written down as: H = R〈i, j, k〉/〈i2+1,j2+1,k2+1,ijk+1〉.

2.7 Skew monomial order

Computing a commutative Gröbner basis requires a monomial order to be chosen. We will adapt
the definition of a monomial order to no longer require commutativity.

Definition 2.7.1 (Skew monomial order). Let < be a relation on skew monomials. Then < is a
skew monomial order if and only if :

• the relation is a total ordering, for each distinct pair of monomials a and b either a < b or
b < a;

• the relation is invariant under multiplication, let a, b and c be monomials, then a < b =⇒
a · c < b · c ∧ c · a < c · b;

• the relation is a well ordering, for each set of monomials S there exists an x ∈ S such that
{ a ∈ S | a < x } = ∅.

One example of a skew monomial order is sorting by length first and then lexicographically.
The functions lm, lt and lc can trivially be modified to work for skew polynomials. Reduction of a
mod b is done by repeatedly finding terms in a that can be written as v · lm(b) ·w and subtracting
v · b · w from a, until no such term is left. Divisibility can be defined as b divides a if and only if
(a mod b) = 0.

11
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2.8 Non-commutative Buchberger algorithm

The non-commutative Buchberger algorithm is a basically the same as the original algorithm (see
section 1.6). Commutative algebraic structures are replaced by the non-commutative ones. The
least common multiple requires some work though.

The algorithm has a step where it uses the least common multiple. (In this step new polynomials
are added to the basis that are in the basis’ ideal, but might not be reducible to 0 with the current
basis.) The least common multiple is not clearly defined for skew monomials. For example:
axa and aya have the multiples axaya and ayaxa. We can disambiguate this by using a skew-
monomial order. However, using only the least common multiple for generating the Gröbner basis
is insufficient.[3] For example, consider the ideal 〈abb − a, bba〉. If we use only the least common
multiple, we would get abb−a, bba, aa as basis. However, aba = ab(bba)− (abb−a)ba is an element
of the ideal, but its leading monomial is not divided by any of the leading monomials of the basis.
Hence the generated basis is not a Gröbner basis. Therefore the step that uses the least common
multiple must be modified such that it adds the following set of polynomials for each ordered pair
of polynomials (x, y) (including the pairs x = y) already in the basis:

S(x, y) := { vx− yw | v · lm(x) = lm(y) · w ∧ |w| < |lm(x)| ∧ |v| < |lm(y)| },

with v, w being monomials and |a| denoting the degree of monomial a.
The non-commutative Buchberger algorithm has been implemented in GBNP[4], which is a

package for the computer algebra system GAP 4. We will use this software and package for
computing non-commutative Gröbner bases.

2.9 Uncomputability

Non-commutative Gröbner bases can be used to solve an undecidable problem known as the
word problem.[5] That means that an algorithm that computes non-commutative Gröbner bases
can not exist. Hence an algorithm that claims to compute non-commutative Gröbner bases is
either incorrect or does not always terminate. The latter is the case with the non-commutative
Buchberger algorithm. Here follows an example in which a badly chosen skew monomial order
results in computing an infinite Gröbner basis. The algorithm was terminated after a few iterations.

Example 2.9.1 (Infinite Gröbner basis). Consider the ideal < x2 − xy >. With the monomial
ordering y � x, this gives the Gröbner basis < xy − x2 >. However, by using the ordering x � y,
we end up with the infinite Gröbner basis < x2−xy, xyx−xy2, xy2x−xy3, xy3x−xy4, . . . >. See
appendix A.2 for the GAP code.
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Geometry over a division ring

Without a specification of non-commutative geometry, we can’t use non-commutative Gröbner
bases to prove non-commutative geometric theorems. In the last section of this chapter we will
argue why, regardless of the geometry specification, proving will not work. However, we still give
the definition of a non-commutative geometry.

3.1 Definitions

There does not seem to be a generally accepted definition for non-commutative geometries. Hence,
we define one that is similar to Euclidean geometry. This geometry will use the division ring
k = (R,+, ·) as its basis and will be n dimensional. We will not consider projective geometry,
because we will not use our specification for proving theorems anyway.

An Euclidean geometry is also a vector space. The definition of a vector space does not assume
commutativity of the multiplication operator, hence we can simply copy the definition.

Definition 3.1.1 (Vector Space). kn = (Rn,+, ·) is the n-dimensional vector space of k and has
the following operators:

• operator + : Rn ×Rn 7→ Rn, given by (a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn);

• operator · : R×Rn 7→ Rn, given by a · (b1, . . . , bn) := (a · b1, . . . , a · bn).

Just like in Euclidean geometry, a point is just an element from the vector space.

Definition 3.1.2 (Point). An element p ∈ kn is called a point.

We can think of points as if they are vectors. If the vector does not point to the origin, then
it has a direction. Scaling this vector does not affect its direction. Hence given the vectors a and
b, having the same direction, there is a unique v ∈ R, v 6= 0 such that a = v · b. Note that v can
be equal to −1, hence a and −a both have the same direction. If we now take the set of points
that are the origin or have the same direction as a, then we have something that resembles a line
through the origin. This line can be translated to get lines that go through other points than the
origin. We will use this as the definition of a line.

Definition 3.1.3 (Line). For any a, t ∈ kn and a 6= 0, the set L(a, t) ⊂ kn, given by L(a, t) =
{ v · a + t | v ∈ k }, is called a line.

Euclidean geometry has a notion of parallelism. We will also define a notion of parallelism for
our non-commutative geometry.

Definition 3.1.4 (Parallel). Let L(a, t) and L(b, s) be two lines. If there exists a p ∈ kn, such
that L(a, t) = { p + q | q ∈ L(b, s) }, then the two lines are parallel.

We also define the concept of intersection.
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Definition 3.1.5 (Intersection). Two lines L(a, t) and L(b, s) intersect if and only if L(a, t) ∩
L(b, s) 6= ∅.

With these definitions, a line both intersects with itself and is parallel to itself.

3.2 Properties

There are a few basic properties about affine geometries we could verify. These properties are:

• for every distinct pair of points there exists a unique line that contains these two points;

• for every distinct pair of lines, the lines have at most one point in common;

• for every line l and point p there is a unique line through p parallel to l.

If we could prove these properties using non-commutative Gröbner bases, we would do that
here. However these properties are about existence and uniqueness, therefore it is difficult or
even impossible to formulate the properties as hypothesis and thesis polynomials. As proving
these properties by other means, does not help proving other properties using non-commutative
Gröbner bases, we will not prove them. However we will give some equations for denoting the
special lines and points mentioned. In these equations z is an auxiliary variable. Also we give how
the primitives can be constructed to have the given property.

Property Equation Construction
Lines L(a, t) and L(b, s) are parallel. ∀i ∈ {1, . . . , n} : z · ai = bi L(a, t) and L(a, s)
Line L(a, t) goes through point p ∀i ∈ {1, . . . , n} : z · ai + ti = pi L(a, p)

3.3 Problems

As we mentioned earlier, non-commutative Gröbner bases can probably not be used for proving
theorems in geometries over division rings. This is due to some unresolved problems, that we will
discuss here. The first problem is encountered when trying to do division.

In the commutative case, if we have an equation containing divisions, we can always rewrite that
equation such that the division is removed. This is done by rewriting the fractions: a

b + c
d = ad+bc

db
and a

b ·
c
d = ac

bd and removing the denominator: a
b = 0 =⇒ a = 0. In the non-commutative

case, we have left and right sided fractions. Not all sums and products of theses fractions can be
rewritten, such that the division is removed.

To work around this problem, an auxiliary variable can be introduced that will represent the
inverse. For example, if something is divided by x, the auxiliary variable z and the equation
xz = 1 is added. Instead of dividing by x we can now multiply by z. However, this workaround
only moves the problem, because zx − 1 is not in the ideal 〈xz − 1〉. We can decide to add the
equation zx− 1 to the ideal as well and hope that this solves the problem, but investigating why
this problem occurs might prove more insightful.

We have that ∀x, z ∈ k : xz−1 = 0 =⇒ zx−1 = 0. The reason that, despite this implication,
zx − 1 6∈ 〈xz − 1〉 is because x and z are indeterminate variables and not elements of k. They
do not even represent elements from k. The problem is that we assumed that we can represent
geometric objects as polynomial equations, while in they are actually sets of the solutions of these
equations. Such sets are known as varieties.

Definition 3.3.1 (Variety). Let S be a set of polynomials. The set { x | ∀f ∈ S : f(x) = 0 } is a
variety.

In the commutative case we could get away with using the polynomial equations, because of the
Hilbert nullstellensatz. This theorem states that radical ideals and varieties are interchangeable.1

In the non-commutative case this theorem does not hold. We believe that this is the reason why
we did not succeed in using non-commutative Gröbner bases for proving theorems in geometries
over division rings.

1This is explained and proven in both [1] and [6].
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Listings

A.1 Thales

For proving Thales’ theorem for the second time in section 1.1.1 we used Singular[2]. The following
script shows that the hypothesis polynomial is in the thesis ideal.

1 ring f=0,(x(0..3) ,y(0..3) ,r),dp;

2 setring f;

3

4 poly c1 = (x(1)-x(0))^2+(y(1)-y(0))^2-r^2;

5 poly c2 = (x(2)-x(0))^2+(y(2)-y(0))^2-r^2;

6 poly c3 = (x(3)-x(0))^2+(y(3)-y(0))^2-r^2;

7 poly m1 = x(1)+x(2) -2*x(0);

8 poly m2 = y(1)+y(2) -2*y(0);

9 ideal thesis = c1 ,c2 ,c3 ,m1 ,m2;

10 poly hypothesis = (x(1)-x(3))*(x(2)-x(3))+(y(1)-y(3))*(y(2)-y

(3));

11

12 printf ("## grobner basis :");

13 ideal basis = groebner(thesis);

14 basis;

15

16 printf ("## hypothesis modulo grobner basis :");

17 reduce(hypothesis ,basis);
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A.2 Finite and infinite non-commutative Gröbner basis

This script shows that a badly chosen monomial order can cause the Gröbner basis to be infinite.
The function test computes the Gröbner basis of xx − xy using a skew monomial order based
on the order of the arguments. The algorithm is terminated if a Gröbner basis is not computed
within 10 iterations.

1 LoadPackage ("GBNP");;

2

3 test := function(arg)

4 local A,x,y,gb;;

5 A:= FreeAssociativeAlgebraWithOne(Rationals ,arg);;

6 GBNP.ConfigPrint(A);;

7 x:=A.x;; y:=A.y;;

8 gb:= SGrobner(GP2NPList ([x*x-x*y]) ,10);;

9 PrintNPList(gb.G);;

10 if not gb.completed then

11 Print("and more ...\n");;

12 fi;;

13 end;;

14

15 test("x","y");;

16 test("y","x");;

Output:

gap> test("x","y");;

xy - x^2

gap> test("y","x");;

x^2 - xy

xyx - xy^2

xy^2x - xy^3

xy^3x - xy^4

xy^4x - xy^5

xy^5x - xy^6

xy^6x - xy^7

xy^7x - xy^8

xy^8x - xy^9

xy^9x - xy^10

xy^10x - xy^11

and more ...
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