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1 Introduction - Problem sketch

Let Ω be an open connected bounded subset of Rn and let Γ denote the boundary of Ω. We
consider the perturbation of Γ in the sense of an ε order oscillations, henceforth denoted
by Γε. Furthermore, these oscillations are assumed to be periodic. Let there be a partial
differential equation defined in Ωε with boundary conditions defined on Γε. The problem
is the following:

Definition 1.1.

−4uε = fε in Ωε

−νε · ∇uε = kuε on Γε.

Problem: Can we define a problem P defined in Ω such that the solution u is close to uε

in a certain norm, say in H1(Ω)?

Intuitively, one can think of several approaches of defining P in Ω. For instance, one can
think of defining a diffeomorphism mapping Ψ of domain Ωε into Ω (Ψ : Ωε 7→ Ω) such that
the equations are modified according to the mapping Ψ. Even though this approach looks
pretty much intuitive, it is clear that the derivatives of Ψ enter into the equations. If we
are not careful about the appropriate mapping, the equations become more complicated.
We will show the instances of resulting equations of such scalings in Section 4.

Alternatively, one can use upscaling arguments whereby one retains the equation defined
in Ω similar to Ωε and introduces a new (modified) boundary condition at Γ so that the
problem P is defined in Ω with boundary conditions defined at Γ. The approach becomes
more clear if one assigns a physical picture to the model. Let uε denote the concentration
of some chemical species and we consider a stationary situation. fε denotes the reaction
term (rate of generation or depletion) in Ωε. The boundary conditions are of Robin type
and denote the balance between the normal component of the flux incoming to the bound-
ary and the rate of depletion of the chemical species through the boundary. When we
replace the oscillating boundary Γε by a straight boundary Γ, essentially, we need to take
into account the change in length that has taken place because of this replacement as the
rate of depletion through the boundary (or the incoming flux) depends on the measure
of the boundary. Thus, during the upscaling procedure, we need to modify the boundary
conditions accordingly to account for the change in the incoming flux. Similar analogies
can be given for other physical variable, be it the stationary temperature distribution or
the stationary potential distribution.

The advantages of such an approach are clear if we would like to compute the solution.
The discretization of the domain containing the boundary Γε needs to be fine enough to
compute the solution and hence the size of the matrices required to solve the problem be-
comes very large as the oscillations become fast enough. Instead if the problem is defined
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on the domain having flat boundaries, the numerical solution is much easier to compute.
Moreover, often we are not interested in the exact details of the oscillatory behaviour near
the boundary and the efforts required to compute the fine enough solution near the bound-
ary are not of much use. Actually, one can go a bit further and argue that in the case of
very fine oscillations, there is a clear scale separation and one can use upscaling techniques
(for example, defining the cell problem) to obtain the solution on a fine scale. Here, we
have not dealt with the problem of refining solution at the finer scale.

Such problems can be easily put into the category of multiscale problems with the finer scale
being represented by the oscillations and the coarse scale represented by the flat boundary.
One specific example of such problems is in the chemical vapor deposition processes with
substrates having trenches in it. To enhance the surface area, the trenches are etched on
the surface of the silicon substrate. The gases flow over the surface and diffuse through the
trenches and deposit on the boundaries. If we neglect the change in the geometry because
of the deposition of various layers, we have the setting of the problem identical to the one
defined above. The semi-conductor industry hence especially deals with such problems.

To provide an overview of the work that has been done in this regard we primarily refer
to [CFP99] and [NNRM06] and the references therein. Further references in the analysis
for the upscaling of oscillating boundary including the non-linear boundary conditions are
[AB07], [ABDMG04] and [BG03]. For a general overview of the homogenization, we refer
to [HJ91]. For a different application of the formal asymptotic technique being used here
see [vN08] and [vN09]. In this direction, [vNPEH10] deals with the upscaling for the case
of reactive flow describing the growth of bio-film in a porous media. See [Neu08] for nu-
merical computations for the case of comparison between the upscaled equation and the
original equations.

The report is organized in the following way. In Section 2 we deal with the formal asymp-
totics approach to identify the modified boundary conditions following the approach of
Gobbert and Ringhofer [GR98]. The rigorous proof for such an upscaling for a simpler
problem is given in Section 2.2. This is followed by numerical computations in Section 3.
We provide an instance of domain rescaling in Section 4. We then conclude the report with
conclusions and possible future extensions.

2 Formal Asymptotics

2.1 Asymptotic Analysis

Consider the following domain Ωε ⊂ R2:

4



On Ωε define the following equation:

Definition 2.1.
∂tρ = −divx,yF +R(ρ, x, y, t) (2.1)

F = −D(x, y, t)∇x,yρ (2.2)

ρ(x, y, t) = ρb(x, y, t), (x, y) ∈ Γt (2.3a)

ν · F (x, y, t) = 0, (x, y) ∈ Γw (2.3b)

ν · F (x, y, t) = k · ρ(x, y, t), (x, y) ∈ Γa, k ∈ R

where the surface Γa is given by:

y = εh(x,
x

ε
)

Introduce parameters ξ = x
ε

and η = y
ε
. Assume h is periodic in the variable ξ, so

h(x, ξ + 1) = h(x, ξ)

Now asymptotic analysis is used to derive a boundary condition such that the oscillating
boundary can be replaced by a flat boundary. For this purpose make the assumption that
the solution can be split in an outer solution and an inner solution, where the outer so-
lution is valid in the area away from the oscillating boundary, and the inner solution in a
small layer close to this boundary. Intuitively, the inner and outer solutions should have
matching conditions. This hopefully will result in an asymptotic boundary condition for
the outer solution.

The following Ansatz is made, where ρ̄ε and F̄ε represent the solution and flux of the inner
solution, and ρ̃ε and F̃ε represent the solution and flux of the outer solution.
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Ansatz 2.1.

ρ(x, y, t) = ρ̃ε(x, y, t) + ρ̄ε(x,
x

ε
,
y

ε
, t) (2.4a)

ρ̃ε =
∞∑
j=0

ρ̃j(x, y, t)ε
j, ρ̄ε =

∞∑
j=0

ρ̄j(x,
x

ε
,
y

ε
, t)εj (2.4b)

F (x, y, t) = F̃ε(x, y, t) + F̄ε(x,
x

ε
,
y

ε
, t) (2.5a)

F̃ε =
∞∑
j=0

F̃j(x, y, t)ε
j, F̄ε =

∞∑
j=−1

F̄j(x,
x

ε
,
y

ε
, t)εj (2.5b)

The expansion for F̄ε starts with an order 1
ε

as it contains the gradient of ρ̄ε. Because
the expectation is that the inner solution will only have a contribution close to Γa, the
following properties should hold:

lim
η→∞

ρ̄j(x, ξ, η, t) = 0 ∀x, ξ, t, j = 0, 1, 2... (2.6a)

lim
η→∞

F̄j(x, ξ, η, t) = 0 ∀x, ξ, t, j = −1, 0, 1... (2.6b)

On top of that, assume ρ̄j and F̄j are periodic in ξ (just like the boundary):

ρ̄j(x, ξ + 1, η, t) = ρ̄j(x, ξ, η, t)

F̄j(x, ξ + 1, η, t) = F̄j(x, ξ, η, t)

The expansion can be written as:

0 = ε−1
(
−divξ,ηF̄−1

)
+ ε0

(
∂tρ̃0 + ∂tρ̄0 + divξ,ηF̄0 + divx,yF̃0 −R(ρ̃, x, y, t)

)
+ ε1

(
∂tρ̃1 + ∂tρ̄1 + divξ,ηF̄1 + divx,yF̃1

)
+ O(ε2) (2.7)

If in equation (2.4a), ε → 0 and η → ∞, all the ρ̄ and ρ̃ disappear except for ρ̃0. Since
equations (2.1) and (2.2) must hold, the following equations are resulting:

∂tρ̃0 = −divx,yF̃0 +R(ρ̃0, x, y, t) (2.8)

F̃0 = −D(x, y, t)∇x,yρ̃0 (2.9)

The leading-order term of the layer correction, determined by the pair (ρ̄0, ¯F−1), can be
obtained by letting ε→ 0 and fixing η:
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divξ,ηF̄−1 = 0

F̄−1 = −D(x, 0, t)∇ξ,ηρ̄0

So combining these two equations gives

divξ,η(D(x, 0, t)∇ξ,ηρ̄0) = 0 (2.10)

Before it is possible to see what the boundary condition on Γa (given by equation 2.3c)
will become, first the normal vector ν should be rewritten. Therefore ν is given by

ν =
1

σ
(εν̃ + ν̄)

where

ν̃ =

(
∂xh

0

)
, ν̄ =

(
∂ξh

−1

)
σ =

√
1 + (ε∂xh+ ∂ξh)2

Now the boundary condition becomes (in leading 1
ε

order):

ν̄ · F̄−1 = 0

So
ν̄D∇ξ,ηρ̄0 = 0 for η = h(x, ξ) (2.11)

When combining equations (2.10) and (2.11) with the boundary conditions on the wall,
and with the conditions given by (2.6a) and (2.6b):

ρ̄0(x, ξ, η, t) = 0 and F̄−1(x, ξ, η, t) = 0 for all x, ξ, η, t

This is important, since it makes sure needed correction of the density close to the surface
Γa is depending on ε in such a way that it gets smaller when ε → 0. On top of that, the
flux will stay bounded as ε→ 0. However, there still can be a significant correction to the
flux F close to the surface Γa as nothing is known yet with respect to F̄0.
Therefore the next order term of the layer expansion is brought into play:

divξ,ηF̄0 = 0 (2.12a)

F̄0 = −D(x, y = 0, t)∇ξ,ηρ̄1 (2.12b)

Boundary condition (2.3c) becomes:
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ν̄

σ0

· (F̄0 + F̃0) = S(ρ̃0, x, y = 0, t)

where

σ0 =
√

1 + (∂ξh)2

The goal is now to decouple the bars from the tildes, so there will be 2 separate problems,
one for the outer solution and one for the inner solution. For this purpose the following 2
lemmas are necessary:

Lemma 2.1. All solutions ρ(x, ξ, η, t) of the diffusion equation

∆ξ,ηρ = 0

which are periodic with period 1 in the variable ξ and satisfy limη→∞ ρ = 0, are of the form

ρ(x, ξ, η, t) =
∑
n∈Z

gn(x, t)exp[2πiξ − 2πη]

For the proof of Lemma 2.1, see [GR98].

Lemma 2.2. If ∫ 1

0

dξf(x, ξ, t) = 0

holds for all values of x and t then

∇ξ,ηρ(x, ξ, h(x, ξ), t) = f(x, ξ, t)

where f(x, ξ, t) is periodic with period 1 in the variable ξ, has a solution of the form

ρ(x, ξ, h(x, ξ), t) =
∑
n∈Z

gn(x, t)exp[2πiξ − 2πh(x, ξ)].

For the proof of Lemma 2.2, see [GR98].

Suppose equations (2.12a) and (2.12b) have some solution ρ̄1 found with the help of Lemma
2.1. Then the boundary condition will become

−∇ξ,ηρ̄1(x, ξ, h(x, ξ), t) = kσ0ρ̃0 − ν̄ · F̃0 (2.13)

Apply Lemma 2.2 to get
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∫ 1

0

dξ(−∇ξ,ηρ̄1(x, ξ, h(x, ξ), t)) = 0

Then the boundary condition (2.13) will become, after integrating over ξ:

F̃0 =

(∫ 1

0

dξσ0(x, ξ)

)
kρ̃0

So, now the solution of the following problem is the outer solution (ρ̃0, F̃0):

∂tρ̃0 = −divx,yF̃0 +R(ρ̃0, x, y, t) , F̃0 = −D(x, y, t)∇x,yρ̃0

ρ̃0(x, y, t) = ρb(x, y, t), (x, y) ∈ Γt

ν · F̃0(x, y, t) = 0, (x, y) ∈ Γw

F̃0(x, y, t) =

(∫ 1

0

dξσ0(x, ξ)

)
kρ̃0, (x, y) ∈ Γa (2.14)

The boundary layer correction given by the correction term (ρ̄1, F̄0) is the solution the
following problem:

divξ,ηF̄0 = 0 , F̄0 = −∇ξ,ηρ̄1

ν̄

σ0

· (F̄0 + F̃0) = kρ̃0

lim
η→∞

ρ̄j(x, ξ, η, t) = 0 , lim
η→∞

F̄j(x, ξ, η, t) = 0 ∀x, ξ, t, j

and periodicity in the ξ variable of ρ̄0 and F̄0.

It is possible to derive higher order terms in this expansion in the same way, these can be
used for higher-order correction to the found solution.

2.2 Rigorous proof for Poisson equation

Suppose that the following equation holds for domain Ωε:
−∆u = f in Ωε

−ν∇u = ku on Γε
−nu∇u = 0, on Γnf ,

u = 0, on ΓD.

(2.15)

Here, the subscript nf in Γnf refers to no-flux condition.

Theorem 2.1. Suppose Ω ⊂ Ωε and u0 is satisfying:
−∆u0 = f in Ω

−ν∇u0 = k̃u0 on Γ
−nu∇u0 = 0, on Γnf ,

u0 = 0, on ΓD.

(2.16)
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Then u0 can be extended to Ωεand furthermore difference u0 − u is small i.e.

||u0 − u||H1(Ωε) ≤ C
√
ε (2.17)

for some C that does not depend on ε.

For the proof of this theorem, we need the following two lemmas:

Lemma 2.3. There exist constants C1, C2 such that for any v ∈ H1(Ωε,Γε) the following
estimates hold

||v(x, εh(x,
x

ε
))− v(x, 0)||L2(Γε) ≤ C1

√
ε||v||H1(Ωε)

||v||L2(Ωε\Ω) ≤ C2

√
ε||v||H1(Ωε)

hold.

For a proof, see [CFP99].

Lemma 2.4. Let h(x, ξ) be 1-periodic in ξ and Lipschitz such that∫ 1

0

h(x, ξ)dξ = 0

Then the following equality is satisfied (with C4 depending only on the Lipschitz constant
of h): ∣∣∣∣∫

Γ

h(x,
x

ε
)u(x)v(x)dx

∣∣∣∣ ≤ C4

√
ε||u||

H
1
2 (Γ)
||v||

H
1
2 (Γ)

(2.18)

For a proof, see [CFP99].

Proof of Theorem 2.1. The weak form for the equations read:∫
Ω

∇u0∇v =

∫
Ω

fv −
∫

Γ

kuv

for all v ∈ H1
0,ΓD

(Ω). ∫
Ωε
∇u∇v =

∫
Ωε
fv −

∫
Γε
kuv

for all v ∈ H1
0,ΓD

(Ωε).

Note that under the assumption that has been made here, namely, Ω ⊂ Ωε, Equation
(2.16) can be extended to Ωε by reflection (See [HJ91]), because of u0 ∈ H1

0,ΓD
(Ω) and the

smoothness of the boundary ∂Ω.

10



We obtain using the weak forms for the equations for u and u0:

∫
Ωε

∇(u0 − u)∇vdx+

∫
Γε

k(u0 − u)v = −
∫

Ωε

fvdx+

∫
Γε

ku0vds+

∫
Ωε

∇u0∇vdx

= −
∫

Ωε

fvdx+

∫
Γε

ku0vds+

∫
Ω

∇u0∇vdx+

∫
Ωε\Ω
∇u0∇vdx

= −
∫

Ωε

fvdx+

∫
Γε

ku0vds+

∫
Ωε\Ω
∇u0∇vdx+

∫
Ω

fvdx−
∫

Γ

k̃u0vdx

=

∫
Ωε\Ω
∇u0∇vdx−

∫
Ωε\Ω

fvdx+

∫
Γε

ku0vds−
∫

Γ

k̃u0vdx (2.19)

The first integral of the right-hand side of (2.19) can be estimated as:∣∣∣∣∫
Ωε\Ω
∇u0∇vdx

∣∣∣∣ ≤ ||∇u0||L2(Ωε\Ω)||∇v||L2(Ωε\Ω)

≤ ||∇u0||L2(Ωε\Ω)||v||H1(Ωε\Ω)

≤ ||∇u0||L2(Ωε\Ω)||v||H1(Ωε)

≤ c
√
ε||∇u0||H1(Ωε)||v||H1(Ωε)

≤ c
√
ε||u0||H2(Ωε)||v||H1(Ωε) (2.20)

where Lemma 2.3 is used.
The second integral of the right-hand side of (2.19) can be estimated as:∣∣∣∣∫

Ωε\Ω
fvdx

∣∣∣∣ ≤ ||f ||L2(Ωε\Ω)||v||L2(Ωε\Ω)

≤ ||f ||L2(Ωε)||v||L2(Ωε\Ω)

≤ c
√
ε||f ||L2(Ωε)||v||H1(Ωε) (2.21)

where again Lemma 2.3 is used.
Now we estimate the last two integrals of the right-hand side of (2.19):∣∣∣∣∫

Γε

ku0vds−
∫

Γ

k̃u0vdx

∣∣∣∣ .
Note that ∫

Γ

k̃u0(x, 0)v(x, 0)ds =

∫
Γε

ku0(x, 0)v0(x, 0)dx

using ds =
√
{1 + (∂ξh(x, ξ))2}dx and definition of k̃. Next,∫

Γε

ku0vds−
∫

Γ

k̃u0vdx

11



=

∫
Γε

ku0(x, εh)v(x, εh)−
∫

Γε

ku0(x, 0)v(x, εh)

+

∫
Γε

ku0(x, 0)v(x, εh)−
∫

Γε

ku0(x, 0)v(x, 0),

Now, ∣∣∣∣∫
Γε

ku0(x, εh)v(x, εh)−
∫

Γε

ku0(x, 0)v(x, εh)

∣∣∣∣
≤ C
√
ε||u0||H1(Ωε)||v||H1(Ωε)

and ∣∣∣∣∫
Γε

ku0(x, 0)v(x, εh)− Γεku0(x, 0)v(x, 0)

∣∣∣∣
≤ C
√
ε||u0||H1(Ωε)||v||H1(Ωε)

≤ C
√
ε||v||H1(Ωε)

where Lemma 2.4 and the trace theorem are used.

When combining (2.20), (2.21), and (2.2), it yields:∣∣∣∣∫
Ωε

∇(u0 − u)∇vdx+

∫
Γε

k(u0 − u)v

∣∣∣∣ ≤ C
√
ε||v||H1(Ωε)

Substituting v = u0 − u gives∫
Ωε

(∇(u0 − u))2dx ≤ c
√
ε||u0 − u||H1(Ωε)

Poincaré inequality gives us that:∫
Ωε

(u0 − u)2dx ≤ C

∫
Ωε

(∇(u0 − u))2dx

Division by ||u0 − u||H1(Ωε) shows that

||u0 − u||H1(Ωε) ≤ C
√
ε

2.3 Rigorous proof for heat equation

Suppose that the following equation holds for domain Ωε:{
ut −∆u = f in Ωε

−ν∇u = ku on Γε
(2.22)
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Theorem 2.2. Suppose u0 is satisfying:{
(u0)t −∆u0 = f in Ω

−ν∇u0 = k̃u0 on Γ
(2.23)

Also assume that the initial data satisfies the estimate

||u(x, 0)− u0(x, 0)||2L2(Ωε)
= O(ε),

then the difference u0 − u is small i.e.

||u0 − u||L2(0,T ;H1(Ωε)) ≤ C
√
ε (2.24)

for some C that does not depend on ε.

Proof of Theorem 2.2.
We carry out the proof in the same spirit as in the elliptic case (2.1). What differs here is
the treatment of the term:∫

Ωε

∂

∂t
(u0 − u)(u0 − u)dx+ ||∇(u0 − u)||2Ωε ≤ C

√
ε||u0 − u||H1(Ωε)

which implies after integrating over t ∈ (0, T )

||∇(u0 − u)||2L2(0,T ;L2(Ωε))
≤ C(T )

√
ε||u0 − u||L2(0,T ;H1(Ωε)) + ||u0 − u||2L2(Ωε)

and using Poincare inequality and bounds on the initial data, we obtain the assertion of
the theorem.

3 Numerical results with COMSOL

In this section it is tried to identify results from the previous section in numerical exper-
iments. For this goal, the program COMSOL Multiphysics is used. It allows the user to
draw domains and define equations on the domain and its boundaries. The program uses
finite element method to compute the numerical solutions.

3.1 Domains

The error caused by an oscillating boundary is calculated in the last chapter and its H1-
norm is bounded by the

√
ε where ε represents the magnitude of the oscillation. We perform

the numerical experiments for the domain with oscillating boundary and the corresponding
effective equation in the domain with flat boundaries and compute the error involved in
the upscaling process.
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Figure 1: In an oscillating domain also the flux oscillates.

In order to be able to compute any error, first some domains have to be defined. Our
reference domain will be the unit square (with ε = 0, (0, 1) × (0, 1)). All other domains
will be an extension of this domain by changing the lower boundary y = 0 to:

y = hε(x) = h(
x

ε
) = ε

(
−1.1 ·+sin(π

x

ε
)
)

(3.1)

The ε-values that are used in the numerical models are respectively 0 (flat boundary), 0.01,
0.0125, 0.025, 0.04, 0.05, 0.06, 0.075, 0.09 and 0.1.
Also, in oscillating domains the flux will oscillate. An example can be found in Figure 1.
To get a good approximation for this flux, it is vital to discretize with enough elements in
order to catch these oscillations.

3.2 Laplace equation

The first equation for which numerical results are achieved is the Laplace equation. Specif-
ically, we consider the following equation defined in Ωε := ((0, 1)× (hε(x), 1)):

−∆uε = 0, in Ωε,

−ν · ∇uε = 0, on x = 0 ∪ x = 1,

−ν · ∇uε = uε, on y = hε(x),

uε = 1, on y = 1.
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Figure 2: Solution uε for the Laplace equation for ε = 0.1, relatively larger oscillations.

We compare the solution of uε with the solution u of the following equation defined in
Ω := ((0, 1)× (0, 1)).

−∆u = 0, in Ω,

−ν · ∇u = 0, on x = 0 ∪ x = 1,

−ν · ∇u =
{∫ 1

0
h(ξ)dξ

}
u, on y = 0, (3.2)

u = 1, on y = 1.

Note that the effective boundary condition for the flat boundary (3.2) contains the modifi-

cation factor
∫ 1

0
h(ξ)dξ, seen before in equation (2.14). Moreover, by construction we make

sure that Ω ⊂ Ωε. We compute ||uε−u||L2(Ω), ||∇uε−∇u||L2(Ω) and observe the variation
of this error with respect to ε. We obtain the error matrix at the grid points uniformly
spaced with discretization spacing 0.01. The finite element method provides the numerical
solutions for uε and u. The L2 error in the oscillations can be computed for every ε. To
obtain the L2 error we approximate the L2 norm by the sum of the squares of error at
the grid points multiplied by the inverse of square of discretization spacing. A plot of this
error against the values of ε can be found in Figure 11.

The meshing of the different domains has been shown in Figures 3, 6 and 8. For finer
oscillations note how fine discretization is needed to retrieve the oscillatory behaviour of the
solution near the boundary. This provides a clear advantage in favor of the upscaling where
such finer discretization is not required. In Figure 4 and 10 the solutions for the oscillating
domains are shown for two cases. Figure 4 refers to the solution for the case of domain
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Figure 3: Mesh and discretization of Ωε for the Laplace equation for ε = 0.1.

with oscillations with relatively larger amplitude. Notice that the relatively big error in
the gradient in the concentration near the oscillatory boundary and that these oscillations
decay pretty fast (see Figure 5). Away from the oscillatory regions, the solutions for the
flat domain and the oscillatory domains are pretty close. This explains why the formal
asymptotics work the way it has been constructed; namely that the solution near the
oscillatory domain is a function of x

ε
, y
ε
, x. This is a crucial information to consider the

formal asymptotics for different boundary conditions.
Also the H1 error can be computed. A plot of this (again against ε) can be found in

Figure 12.
As can be seen from these plots, the H1 error is significantly higher than the L2 error.

This can be explained due to the high difference of the (y)-gradient close to the oscillating
boundary (see Figure 5).

3.3 Heat equation

We consider the following equation defined in Ωε:


δtu

ε −4uε = 0, in Ωε,
−ν · ∇uε = 0, on x = 0 ∪ x = 1,
−ν · ∇uε = uε, on y = hε(x),

uε = 1, on y = 1.

(3.3)
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Figure 4: Solution uε for the Laplace equation defined in Ωε for ε = 0.1.

Figure 5: The error made in computing the gradient of the difference between u and uε.
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Figure 6: Mesh and discretization of Ω for the Laplace equation for ε = 0, an unperturbed
domain.

Figure 7: Solution u for the Laplace equation defined in Ω for ε = 0, an unperturbed
domain.
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Figure 8: Mesh and discretization of Ωε for the Laplace equation for ε = 0.01.

Figure 9: Mesh and discretization of Ωε for the Laplace equation for ε = 0.01, zoomed in
at the boundary.
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Figure 10: Solution uε for the Laplace equation for ε = 0.01, fine oscillations.

Figure 11: A plot of the L2 error of the Laplace equation against values of ε.
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Figure 12: A plot of the H1 error of the Laplace equation against values of ε.

We compare the solution of uε with the solution u of the following equation defined in Ω.
δtu−4u = 0, in Ω,
−ν · ∇u = 0, on x = 0 ∪ x = 1,

−ν · ∇u =
{∫ 1

0
h(ξ)dξ

}
u, on y = 0,

u = 1, on y = 1.

(3.4)

The domains that are used for the heat equation are equal to the domains used for the
Laplace equation in the paragraph before. Also, the meshing will be the same. However,
the errors differ significantly from those of the Laplace equation.
In Figure 13 one can see that the L2 error (which is computed exactly as before, but now
summed over all timesteps, and then divided over the number of timesteps) of the heat
equation on domains with an oscillating boundary with respect to domains with a flat
boundary is very small. Smaller even than the L2 error of the Laplace equation.
The H1 error however, shown in Figure 14, even though relatively small, is a lot larger
than in the case of the Laplace equation. Again, the difference of the (y)-gradient close to
the oscillating boundary is causing this.

4 Scaling the domain

Splitting the solutions in an outer solution and an inner solution is only one of the possible
techniques that can be used to solve the problem at hand. It is also possible to scale the
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Figure 13: A plot of the L2 error of the Heat equation against values of ε.

Figure 14: A plot of the H1 error of the Heat equation against values of ε.
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Figure 15: The original domain.

domain in such a way that the boundary is no longer oscillating and becomes flat. This
can be done in a lot of ways, but from a practical point of view a few methods have been
selected. The original domain is Ωx,y given by Figure 15, on this domain define the Laplace
equation:

∆x,yu = 0 (4.1)

4.1 Linear scaling

Since it is known that in the domain Ωx,y, y ∈ [h, 1] and x ∈ [0, 1], it is possible to define

ψ :=
y − h(x)

1− h(x)
and φ = x (4.2)

When converting x, y to φ, ψ, the new domain Ωφ,ψ will have ψ ∈ [0, 1] and φ ∈ [0, 1].
By this construction, equation (4.1), defined in domain Ωx,y, will no longer hold and a new
equation needs to be computed for Ωφ,ψ.
In order to compute the laplacian in the new coördinate system, first the derivatives should
be rewritten, using equation (4.2). The first derivative with respect to y becomes:

uy =
∂u

∂y
=
∂u

∂ψ

∂ψ

∂y
+
∂u

∂φ

∂φ

∂y
=

1

1− h(φ)
uψ

The second derivative with respect to y:

uyy =
∂uy
∂y

=
∂uy
∂ψ

∂ψ

∂y
+
∂uy
∂φ

∂φ

∂y
=

1

(1− h(φ))2
uψψ

The first derivative with respect to x:

ux =
∂u

∂x
=
∂u

∂ψ

∂ψ

∂x
+
∂u

∂φ

∂φ

∂x
=

(ψ − 1)h′(φ)

1− h(φ)
uψ + uφ
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The second derivative with respect to x is computed in the following steps:

∂ux
∂ψ

=
h′(φ)

1− h(φ)
uψ +

h′(φ)(ψ − 1)

1− h(φ)
uψψ + uφψ

∂ψ

∂x
=

h′(φ)(ψ − 1)

1− h(φ)

∂ux
∂φ

=
(h′′(φ)(1− h(φ)) + h′(φ)2)(ψ − 1)

(1− h(φ))2
uψ +

h′(φ)(ψ − 1)

1− h(φ)
uψφ + uφφ

∂φ

∂x
= 1

uxx =
∂ux
∂x

=
∂ux
∂ψ

∂ψ

∂x
+
∂ux
∂φ

∂φ

∂x

So

uxx =

(
h′′(φ)(1− h(φ)) + 2h′(φ)2(ψ − 1)

(1− h(φ))2

)
uψ+

(
h′(x)(ψ − 1)

1− h(φ)

)2

uψψ+
2h′(x)(ψ − 1)

1− h(x)
uψφ+uφφ

So, equation (15) is now converted to:

∆φ,ψu =

(
h′′(φ)(1− h(φ)) + 2h′(φ)2(ψ − 1)

(1− h(φ))2

)
uψ +

(
h′(φ)(ψ − 1) + 1

1− h(φ)

)2

uψψ

+
2h′(φ)(ψ − 1)

1− h(φ)
uψφ + uφφ

= 0

When looking at this equation, it is clear that its extra (and complicated) terms do not
provide a simplification of the problem.

4.2 Exponential scaling

In the domain Ωx,y, y ∈ [h, 1] and x ∈ [0, 1]. Now define:

ψ = c1e
y + c2e

−y and φ = x (4.3)

Because the desired result would be an Ωφ,ψ where φ ∈ [0, 1] and ψ ∈ [0, 1], it is obvious
that:

c1e
1 + c2e

−1 = 1, c1e
h + c2e

−h = 0

When solving these 2 equations, the result is:

c1 =
−1

e2h−1 − e1
, c2 =

1

e−1 − e1−2h
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Now define y = ln(z). Then:

c1z + c2
1

z
= ψ

c1z
2 − ψz + c2 = 0

Using the ABC-formula and the fact that x can only be a positive number,

z =
ψ +

√
ψ2 + 4c2

2c1

y = ln

(
ψ +

√
ψ2 + 4c2

2c1

)
Now, again, it is possible to express equation 4.1 in terms of our new variables φ and ψ.
For example:

uy =
∂u

∂y
=
∂u

∂ψ

∂ψ

∂y
+
∂u

∂φ

∂φ

∂y
=

(
−1

e2h−1 − e1
ey − 1

e−1 − e1−2h
e−y
)
uψ

This expression already has some complicated terms. Further calculations will not make
matters better, so that is left for the reader.

5 Conclusion and future extensions

The work refers to upscaling of the rough boundaries. We derive effective equations that
are posed in the domains having flat boundaries instead of oscillating boundaries. This
leads to, among others, advantages in the numerical computations. We have considered the
Laplace equation and the heat equation for the analysis and the numerical computations.
Following conclusions can be derived from the work considered here.

1. The upscaled equation approximates the original equations in L2 as well as H1 norm.
The formal asymptotics approach has been used to derive the effective boundary
conditions. The equations inside the new domain retain the original form and only
the boundary conditions are replaced.

2. The ideas from the proof of convergence between the effective equation and the
original equations for the elliptic case can be extended to the heat equation and we
derived the convergence proof for the heat equation using ideas from the elliptic case.

3. The numerical simulations suggest that the H1 norm of the error is much larger than
the L2 error and this is understandable since near the boundaries the derivatives are
much larger. More details are given in the section on numerical computations.
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4. The mapping of the domain containing oscillating boundary to a domain having
non-oscillating boundary is possible and the mapping is easy to define at least for
2-D case, however the resulting equations become much more complicated and the
oscillations enter into the coefficients of the equations. This approach is found to be
too complicated to handle.

5. The replacement of the oscillating boundary by a flat boundary in the way described
above also ensures that the total fluxes are also approximated well. Moreover, the
flux in the case of oscillating boundaries is oscillating. This means that we require
much more elements for the discretization to capture these oscillations. For the flat
boundary case, we do not need these many discretizations greatly simplifying the
numerical computations.

One can use these techniques for a wide variety of problems. For now we have assumed
the geometry to be fixed because of the reactions taking place at the boundaries, however
we can use the same techniques to find the effective boundary conditions for the moving
boundary situation. In this case, the effective boundary conditions become time dependent.
Furthermore, it would be interesting to obtain rigorous proofs for the moving boundary
case. Also, for an entirely different application of the coupling between the porous media
and the free flow regions, the same techniques can be used.
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