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Abstract: An efficient strategy to develop porous materials with potential for NO2 sensing was based
in the preparation of a metal-organic framework (MOF), UiO-66(Hf), modified with a very small
amount of meso-tetrakis(4-carboxyphenyl) N-methylpyrrolidine-fused chlorin (TCPC), TCPC@MOF.
Chlorin’s incorporation into the UiO-66(Hf) framework was verified by several characterization
methods and revealed that the as-synthesized TCPC@MOF brings together the chemical stability of
UiO-66(Hf) and the photophysical properties of the pyrrolidine-fused chlorin which is about five
times more emissive than the porphyrin counterpart. TCPC@MOF was further incorporated into
polydimethylsiloxane (PDMS) and the resulting TCPC@MOF@PDMS film was tested in NO2 gas
sensing. It showed notable sensitivity as well as a fast response in the range between 0.5 and 500 ppm
where an emission intensity quenching is observed up to 96% for 500 ppm. This is a rare example of
a chlorin-derivative used for gas-sensing applications through emission changes, and an unusual
case of this type of optical-sensing composites of NO2.

Keywords: N-methylpyrrolidine-fused chlorin; metal-organic framework; composite; optical sensor;
NO2 sensing

1. Introduction

Air pollution remains a major health concern worldwide. According to the 2021 Air
Quality Status briefing by the European Environment Agency, many European cities still
regularly exceed current Union’s emission limits for air pollutants [1]. Nitrogen oxides
(NOx) belong to one category of these air pollutants, and nitrogen dioxide (NO2) is the
most toxic and prevalent form of the NOx family. NO2 is a nose and throat irritant that
can cause serious respiratory problems [2], reduce respiratory defense mechanisms, and
increase infection rates [3], and was related to 55,000 premature deaths in 2018 in Europe
alone [4]. The early detection of NO2 has also shown to be a great asset for fire detection
and firefighting improvement [5]. Several colorimetric materials were shown to be quite
efficient for the detection of CO and NO2 gases produced in an early fire [6]. Given this
scenario, the detection of toxic gases plays an increasingly important role in keeping our
environment unpolluted and ourselves safe due to their dangerous effects on both the
ecosystem and human health.

Nowadays there is a wide variety of gas-sensing devices based on different materi-
als and operation mechanisms [7]. Some of those materials are based on metal-organic
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frameworks (MOF), which are a category of porous coordination polymers assembled by
the coordination of metal cationic centers with organic linkers. Given the wide range of
available metal ions and organic linkers used in an MOF assembly, these materials have
become increasingly attractive because of their wide-variety of topologies and broad-range
of chemical and physical properties. Excellent literature reviews and in-depth studies
have been reported regarding MOF applications as materials to capture and degrade toxic
chemicals [8–13], as well as luminescent sensors [14–21], enzyme biomimetics [22,23], and
catalysts [24,25]. One of the most studied and hydrothermal stable MOFs is the UiO-66(Zr)
that consists of hexanuclear, octahedral zirconium(IV) oxo clusters connected through
terephthalic acid linkers to form a 3D highly-porous rigid framework. This crystalline
framework has shown resistance to a wide range of different solvents including strong
acids and bases [26]. UiO-66(Zr) has been intensely studied as a fluorescent sensor in the
past decade although terephthalic acid and consequently UiO-66(Zr) both possess low fluo-
rescence intensities. Zirconium (Zr) MOFs are widely used; however, some characteristics
of hafnium (Hf) MOFs, namely their acidic nature, mechanical and higher chemical stability,
also make them promising materials for several applications [27,28]. Due to their same
d0 electronic configuration and identical ionic radius (78 pm), substituting Zr(IV) with
Hf(IV) in the UiO-66 synthesis results in an MOF with the same topology of UiO-66(Zr)
but with stronger acid sites. This property of UiO-66(Hf) was originally shown to have
applications as a radiation scavenger [26] and contrast agent for computed tomography [29].
Nevertheless, there are few examples of UiO-66(Hf) as a sensor to detect free chlorine in
waters [30], uric acid in biological fluids [31], and peroxynitrite in living cells [32].

A common strategy to endow the MOF with fluorescent properties is to dope it with a
lanthanide ion or to integrate (impregnate or incorporate) a fluorophore (such as rhodamine
or porphyrin derivatives) into the MOF structure [33–38], creating a luminescent MOF. This
strategy allows an optimization of several properties and broadens their application [39,40].
Luminescent MOF sensor characteristics/properties make them stand out in comparison
with other luminescent sensors [40–42], namely: (i) their porosity allows the adsorption
and pre-concentration of the analytes, increasing the host-guest interactions; (ii) they can be
easily functionalized and therefore more tunable to sense specific analytes; (iii) they produce
guest-dependent optical signals usually translated into vaporchromic or solvatochromic
responses; (iv) they make it possible to study the sensing mechanisms at the molecular level
due to their crystalline nature; (v) they possess stability in water even at the basic range;
and (vi) they can be used to prepare composites/hybrids that combine their advantages
with those of other compounds/materials.

One of the major advantages of incorporating fluorescent ligands into MOFs is to
prevent their aggregation and consequently their self-quenching. This can be attained
since MOFs open structures allow the separation of the fluorescent unit by relatively large
distances (>5 Å), while maintaining or even amplifying the sensing signals upon interaction
with analytes. The signal amplification can occur due to the existence of an efficient energy
migration (exciton hoping) along the composite, similar to that of conjugated polymers,
even when only a few analyte molecules interact with the composite [40]. Nevertheless,
working with powder materials may be challenging and their immobilization in solid
matrices like TiO2, PDMS (polydimethylsiloxane) or PMMA (poly(methyl methacrylate))
can improve the molecular recognition of analytes. These composites are also, in general,
property-tunable and possess better resistance to degradation and better flexibility, among
other advantageous properties [43]. This type of composite is immensely appealing when
the analytes are gases or volatile organic compounds (VOC) [42].

Porphyrins are very interesting fluorophores that can be incorporated into MOF frame-
works, either via chemical bonds or non-covalently [44,45]. The integration of porphyrins in
MOFs was shown to be advantageous to obtain multifunctional drug carriers [46], as well
as biomaterials [47]. A tremendous number of MOFs have been used as a host for the por-
phyrin’s incorporation, providing efficient platforms to encapsulate and deliver pharmaceu-
ticals, imaging agents, and enzymes [45,48]. Reduced porphyrins (7,8-dihydroporphyrins,
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also known as chlorins; Figure 1a–d,f) are much more interesting chromo- and fluorophores
for integrating into MOFs due to the enhanced absorbance of the QI (0-0) band centered
at 650 nm and high fluorescence quantum yield at the same region. The incorporation of
chlorins into MOF materials has been predominantly studied in the area of photodynamic
therapy (PDT) of cancer, where chlorin e6 (Figure 1a) stands out as the photosensitizer
of choice [49–52]. On the other hand, N-methylpyrrolidine-fused chlorins are more sta-
ble than the hydrogenated chlorins and have been studied mostly as photosensitizers in
the photodynamic inactivation of bacteria [53–55] and PDT of cancer [56–59], as well as
reaction [60], biomimetic [61], and oxidation [62] catalysts.

In the last years, our research group has been developing optical sensors for NO2 in-
cluding: (i) rosamine-based composite film sensors, immobilized on SiO2 [63] and TiO2 [64];
and (ii) a Tb(BTC) MOF material (BTC: benzene-1,3,5-tricarboxylate) embedded into trans-
parent polymeric matrices to produce mixed-matrix membranes [65–68]. In 2021, the first
use of an N-methylpyrrolidine-fused chlorin in an MOF was reported by Sakamaki et al.
for PDT application [69]. Meanwhile, we recently reported the first sensing application of
N-methylpyrrolidine-fused 5,10,15,20-tetrakis(4-carboxyphenyl)chlorin (TCPC, Figure 1f),
anchored to a nanostructured porous TiO2 substrate, as a fluorescent sensor of the ex-
plosive triacetone triperoxide (TATP) in the gas phase [70]. Following our interest in the
study and application of MOF-based materials for sensing [65–68], the pyrrolidine-fused
chlorin (TCPC) was incorporated into UiO-66(Hf) by a one-pot solvothermal synthesis
(TCPC@MOF) and this material was characterized in the solid state, using several tech-
niques. For comparison purposes, a porphyrinic material (TCPP@MOF) was further pre-
pared and characterized. Then, TCPC@MOF was embedded into a polydimethylsiloxane
(PDMS) matrix and used in the optical detection of NO2 gas, revealing good sensitivity.
This work is one of the few examples of a chlorin@MOF composite used in optical gas
sensing, particularly using fluorescence spectroscopy. In general, porphyrin derivatives
are the selected sensing probes [71–73] and the detection “mechanism” is based on the
chemiresistive or semiconducting nature of the materials/composites [74–76].
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boxylphenyl)-10,20-bis(pentafluorophenyl)chlorin) [69]. Structures (e,f) represent those used in this 
work: (e) TCPP (meso-tetrakis(4-carboxyphenyl)porphyrin) and (f) TCPC (meso-tetrakis(4-carboxy-
phenyl) N-methylpyrrolidine-fused chlorin) [70]. 
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2.1. Chemicals and Instruments 
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grade) ≥99.8%, and tetrahydrofuran (analytical reagent grade) were supplied by Fisher. 
Chloridric acid (HCl) 37% and sodium chloride (NaCl) were purchased from VWR Chem-
icals. Polydimethylsiloxane (Sylgard 184) was supplied by Dow Corning. All these chem-
icals were purchased as solvent or reagent-grade and used without further purification, 
unless otherwise stated. Flash chromatography was carried out using silica gel (Merck, 
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UV-Vis (at the corresponding λabs max), using calibration curves determined for TCPP and 
TCPC in DMF. Room temperature PXRD patterns were collected at The Institute of Phys-
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SmartLab diffractometer (Cu Kα1,2 radiation, λ1 = 1.540593 Å and λ2 = 1.544414 Å) using: 
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optics configuration; a D/teX Ultra 250 silicon strip detector; step counting method (step: 
0.01°) in continuous mode; 3.0° ≤ 2θ ≤ 50° range. FT-IR spectra were obtained neat with a 
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their inclusion in MOF materials: (a) chlorin e6 [49–52]; (b) TAPC (meso-tetrakis(4-
aminophenyl)chlorin) [77]; (c) H2DBC (5,15-bis(4-carboxylphenyl)chlorin) [78]; and (d) H2PFC (5,15-
bis(4-carboxylphenyl)-10,20-bis(pentafluorophenyl)chlorin) [69]. Structures (e,f) represent those used
in this work: (e) TCPP (meso-tetrakis(4-carboxyphenyl)porphyrin) and (f) TCPC (meso-tetrakis(4-
carboxyphenyl) N-methylpyrrolidine-fused chlorin) [70].

2. Materials and Methods
2.1. Chemicals and Instruments

Benzene-1,4-dicarboxylic acid (terephthalic acid or H2BDC) 98%, sodium hydroxide
(NaOH) >98%, meso-tetrakis(4-carboxyphenyl)porphyrin (TCPP) dye content 75%, and
anhydrous N,N-dimethylformamide (DMF) 99.8% were purchased from Sigma-Aldrich.
Hafnium (IV) chloride (HfCl4, metal basis) Zr < 0.5%, 99.9%, was obtained from Alfa Aesar.
Formic acid 98/100% (analytical reagent grade), ethanol (analytical reagent grade) ≥99.9%,
methanol (analytical reagent grade) ≥99.9%, dichloromethane (analytical reagent grade)
≥99.8%, and tetrahydrofuran (analytical reagent grade) were supplied by Fisher. Chloridric
acid (HCl) 37% and sodium chloride (NaCl) were purchased from VWR Chemicals. Poly-
dimethylsiloxane (Sylgard 184) was supplied by Dow Corning. All these chemicals were
purchased as solvent or reagent-grade and used without further purification, unless other-
wise stated. Flash chromatography was carried out using silica gel (Merck, 230–400 mesh).
The amount of TCPP and TCPC present in UiO-66(Hf) was assessed by UV-Vis (at the
corresponding λabs max), using calibration curves determined for TCPP and TCPC in DMF.
Room temperature PXRD patterns were collected at The Institute of Physics for Advanced
Materials, Nanotechnology and Photonics (IFIMUP) using a Rigaku SmartLab diffractome-
ter (Cu Kα1,2 radiation, λ1 = 1.540593 Å and λ2 = 1.544414 Å) using: zero-background
sample holder; 200 mA and 45 kV in a Bragg−Brentano para-focusing optics configuration;
a D/teX Ultra 250 silicon strip detector; step counting method (step: 0.01◦) in continuous
mode; 3.0◦ ≤ 2θ ≤ 50◦ range. FT-IR spectra were obtained neat with a FT-IR Perkin Elmer
Spectrum BX with an attenuated total reflectance (ATR) used for acquiring FT-IR spectra
(range: 400−4000 cm−1). Scanning electron microscope (SEM) images were acquired at
the Materials Centre of the University of Porto (CEMUP) using a FEI Quanta 400FEG
ESEM/EDAX Genesis X4M (15 keV). Thermogravimetric Analysis (TGA) was performed at
FCUP|DQB Lab&Services using a Hitachi (STA7200RV) thermal analyzer (Hitachi, Japan)
with a ramp of 5 ◦C/min under nitrogen (200 mL/min) from 30 to 600 ◦C. Shimadzu-UV
3600 UV-Vis-NIR spectrophotometer was used to record electronic absorption spectra, and
emission spectra were recorded with a Varian Cary Eclipse spectrofluorometer (Agilent
Technologies, Sta Clara, CA, USA), using 5 nm slits width. All measurements were per-
formed at 25 ◦C and the absorbance’s sample values were kept below 0.1. Stock solutions
of TCPP, TCPC, and suspensions of the MOFs (UiO-66(Hf), TCPP@MOF and TCPC@MOF)
were prepared in DMSO. The DMSO stock solution/suspension was diluted to the required
final concentration in the different solvents. Zeta potentials were obtained on a Malvern
Zetasizer Nano using suspensions of the MOFs in milli-Q water and ethanol, and solu-
tions of the ligands in ethanol, at 25 ◦C. Approximately 1 mg of the compounds (ligands
and materials) was dispersed in 3 mL of ethanol or milli-Q water and sonicated 5 min
prior to the measurement. The measurements were performed in triplicate, at 25 ◦C. N2
adsorption-desorption isotherms were determined at −196 ◦C on a Quantachrome Quadra-
sorb equipped with a turbomolecular pump, using helium and nitrogen of 99.999% purity.
Prior to the measurements, the samples were outgassed, under turbomolecular pump
vacuum, for 8 h at 80 ◦C using a heating rate of 1 ◦C min−1, and afterwards for further
12 h at 120 ◦C, with a heating rate of 2 ◦C min−1 to achieve this temperature. Photolumi-
nescence (PL) and excitation spectra of TCPC/TCPP@MOF@PDMS films were recorded
with a Hitachi F-7000 fluorescence spectrophotometer (Hitachi, Japan). Additionally, the
absorption spectra of the membranes were obtained after each FL measurement using an
Agilent Cary 100 UV-Vis spectrophotometer (Agilent Technologies, Sta Clara, CA, USA).
Scanning electron microscopy (SEM) images of the films were obtained at 5 kV using an
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FEI Teneo microscope. X-Ray diffraction (XRD) pattern of the membranes were collected
using a Discover D8 (Bruker) diffractometer in a with Cu Kα radiation (1.5406 Å, 50 kV,
1000 mA) in the range from 5◦ to 35◦ 2θ with a step of 0.02◦ per 0.5 s.

2.2. Synthesis

TCPC was synthesized from the 1,3-dipolar cycloaddition of meso-tetrakis(4-methoxy-
carbonylphenyl)porphyrin with azomethine ylide, and subsequent hydrolysis of the methyl
ester, following the procedure described in literature [70]. The MOFs were prepared
according to the literature with slight variations [79,80].

UiO-66(Hf). The solvothermal synthesis of UiO-66(Hf) was done based on one-pot
solvothermal reaction reported in the literature [79]. A mixture of H2BDC (42.3 mg,
0.25 mmol, 1.00 equiv.) and HfCl4 (82.1 mg, 0.26 mmol, 1.01 equiv.) was dissolved in
a solvent mixture (9:1, v/v, 10 mL) of N,N-dimethylformamide (DMF)/formic acid. Then
the mixture was transferred into a Teflon-lined autoclave and heated at 123 ◦C for 40 h.
The product was centrifuged (12.000 rpm, 3 min) and soaked in methanol for 2 h at room
temperature under stirring. After this time, the material was centrifuged and soaked
in dichloromethane for 2 h. The solid was recovered by centrifugation and dried under
vacuum (50 mbar) at 120 ◦C for 24 h (99 mg).

TCPC@MOF. This material was prepared by adapting the protocol existent in the
literature [80]. Briefly, we mixed 50 mg of H2BDC (0.30 mmol, 1.0 equiv.), 117 mg of HfCl4
(0.37 mmol, 1.2 equiv.), and 8.4 mg of TCPC (10 µmol, 0.03 equiv.) in a 13 mL glass vial
containing 10 mL of anhydrous DMF. After 5 min of magnetic stirring, the mixture was
heated at 120 ◦C for 24 h under solvothermal conditions (Teflon-lined reactor sealed in a
stainless-steel vessel). A reddish solid was collected by centrifugation (12.000 rpm, 2 min),
washed several times using DMF, methanol and THF, and ultimately dried under vacuum
(50 mbar) at 120 ◦C for 24 h; 134 mg.

TCPP@MOF. This material was prepared in the same manner as TCPC@MOF, with
slight variations. The material was prepared in a glass vial (13 mL) using a mixture of
H2BDC (51 mg, 0.31 mmol, 1.0 equiv.), HfCl4 (114 mg, 0.36 mmol, 1.2 equiv.), and TCPP
(8.8 mg, 11.1 µmol, 0.04 equiv.) in anhydrous DMF (10 mL). After 5 min of stirring the
mixture was heated under solvothermal conditions at 120 ◦C for 24 h. The brownish solid
was collected by centrifugation, washed several times using DMF and methanol, and dried
under vacuum at 120 ◦C for 24 h; 133 mg.

2.3. Film Preparation

Sylgard® 184 base and curing agent were combined in a 10:1 weight ratio (1 g and
0.1 g, respectively) and were vigorously stirred for 30 min. Then, 15 mg of TCPC@MOF
material was poured into the mixture under magnetic stirring until a complete dispersion
of the powder was reached. Next, the mixture was spin-coated on a petri dish at 1000 rpm
for 60 s and then placed in an oven at 60 ◦C overnight. Finally, the TCPC@UiO-66@PDMS
were cut and peeled off on demand.

2.4. Time-Resolved Photoluminescence (PL) Measurements

Photoluminescence lifetime measurements were carried out with the technique of
time-correlated single photon counting. The PL was excited with a PDL 828 Picoquant
Sepia diode laser delivering 50 ps pulses at 405 nm at a 10 MHz repetition rate. The
photoluminescence was collected in free-space and focused onto the slit of a SP2500, Acton
Research 1/2 m spectrometer. A Picoquant PMA Hybrid-Photomultiplier Assembly with a
transit time spread of less than 50 ps was employed as detector. Nanosecond PL decays were
recorded with a Picoquant Hydraharp time-correlated single-photon counting (TCSPC)
electronics. PL decay curves, deconvoluted from the instrumental response function,
were fitted to multi-exponential laws using Picoquant Fluofit analysis software which
provided individual decay components with their corresponding statistical weight as well
as amplitude-averaged PL decay values.
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2.5. NO2 Sensing Studies

For the sensing experiments, TCPC@MOF@PDMS films were placed into a purpose-
built gas chamber made with a 3-D printer, using polylactic acid (PLA) filaments. A gas
inlet and outlet, as well as two quartz windows compatible with the spectrophotometer,
were also mounted on the chamber. Two Bronkhorst® F-201FV mass flow controllers were
used to regulate the gas flow rates. A steady flow of dry N2 was kept during the sample
handling to avoid contamination. Different NO2 concentrations were obtained from 500, 50
and 5 ppm cylinders and their subsequent dilution with N2. The gas flow rate entering the
chamber was fixed at 1 L·min−1 in all cases. Once the toxic gas was introduced into the
chamber, the fluorescence (FL) was recorded until the complete saturation of the sample
was reached.

3. Results and Discussion
3.1. MOF-Based Materials

The incorporation of the chlorin and porphyrin molecules into the UiO-66(Hf) frame-
work was performed by using a one-pot solvothermal reaction, with a proportion in mass of
TCPC and TCPP relative to the total reactants mass of only 0.03 and 0.04, respectively. The
TCPC@MOF and TCPP@MOF materials were afforded in similar yield and the content of
TCPC and TCPP in the MOFs was determined as being 1.8% of TCPC and 2.0% of TCPP, for
TCPC@MOF and TCPP@MOF, respectively (more details about the content determination
in Supplementary Information, Section S1). An initial indication of the successful material
preparation was the color change from white, correspondent to UiO-66(Hf) (MOF), to the
brownish and reddish coloration of TCPC@MOF and TCPP@MOF, respectively (Figure 2a).
This color was retained after several washings with DMF and methanol (plus THF for
TCPC@MOF). The extent of the porphyrin derivatives incorporation (coordination) in the
MOFs’ matrix, or impregnation at the pores of UiO-66(Hf) framework, is a complex process
that demands an extended characterization of materials, including PXRD, SEM-EDS, FT-IR,
DLS, and zeta potential.

The successful preparation of crystalline UiO-66(Hf) and corresponding TCPP and
TCPC MOFs was initially verified by PXRD analysis. The similarity in the Bragg diffraction
peaks validates that the UiO-66-typed topology is retained after the one-pot reaction with
TCPC and TCPP (Figure 2b), in particular by the unequivocal observation of the two main
peaks associated with the (111) reflection [26]. Nevertheless, the diffraction patterns reveal
some loss of crystallinity for TCPC@MOF and TCPP@MOF, most probably suggesting
some interaction in the UiO-66(Hf) structure with TCPC and TCPP. In terms of morphology
and composition, the materials were further studied by SEM-EDS (Figure 2c–e), revealing
the expected regular polyhedral particles for UiO-66(Hf) [81] and more irregular particle
agglomerates for TCPC@MOF and TCPP@MOF (SEM of TCPC and TCPP and EDS infor-
mation are presented in Supplementary Information, Section S2, Figures S1 and S2). From
these analyses it can be inferred that the use of TCPC and TCPP affects the morphology of
the particles, comparatively to UiO-66(Hf).

The FT-IR spectra (Figure S3, in Supplementary Information) of the MOFs, TCPC@MOF
and TCPP@MOF revealed peak profiles much more like those of UiO-66(Hf) than of
the corresponding chlorin (TCPC) and porphyrin (TCPP). The most significant peaks
occur at 1700–1650 cm−1 (ν(C=O)), ≈1580 cm−1 (νas(COO−)), ≈1400 cm−1 (νs(COO−)),
≈1020 cm−1 (δ(C−H)ar) and ≈750 cm−1 (δ(C=C)). In particular, the weaker peaks cor-
responding to ν(C=O), observed in TCPC@MOF and TCPP@MOF in comparison with
UiO-66(Hf), could be evidence of the coordination between the hexa-hafnium nodes and
the porphyrin derivatives.
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Figure 2. (a) Photographs of the prepared ligands (TCPC and TCPP) and MOFs (UiO-66(Hf),
TCPP@MOF and TCPC@MOF), in the powder form; (b) PXRD patterns for MOF (UiO-66(Hf)) simu-
lated structure [82] and for the prepared MOFs: UiO-66(Hf), TCPC@MOF and TCPP@MOF prepared
by one-pot solvothermal reaction; (c–e) SEM images of UiO-66(Hf), TCPC@MOF and TCPP@MOF, re-
spectively (50,000 × ampliation); (f) TGA of UiO-66(Hf) (black), TCPC@MOF (blue) and TCPP@MOF
(red) from 30 to 600 ◦C performed with a heating rate of 5 ◦C/min in a 200 cm3/min N2 flow stream;
and (g) N2 adsorption-desorption isotherms determined at −196 ◦C for UiO-66(Hf), TCPC@MOF
and TCPP@MOF (empty and filled symbols correspond to adsorption and desorption, respectively).

The ζ (zeta potential) of the MOFs can give us some relevant information relative to
their surface functionalization. The differences observed in the ζ values, in milli-Q water
and ethanol, between UiO-66(Hf), TCPC@MOF and TCPP@MOF, show that UiO-66(Hf)
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surface is clearly changed in the presence of the TCPC and TCPP, particularly in ethanol
(Table S1 in Supplementary Information).

A simple way to confirm the presence of TCPC and TCPP in the UiO-66(Hf) materials
is through the study of their optical properties (the results in ethanol are summarized in
Table S2 and Figure S4 in Supplementary Information). TCPC and TCPP reveal the expected
Soret band and the four Q bands. The main difference between these two ligands occurs at
the latter band region (639 < λ < 649 nm), where TCPC absorbs about 25 times more light
(ε~1.14 × 105) than TCPP (ε~4.55 × 103). The UV-Vis spectra of UiO-66(Hf) dispersed in
ethanol, show the typical continuous rise of dispersions as the wavelength decreases where
an absorption band at approximately 265 nm can also be inferred as corresponding to the
absorption of the benzene ring of the BDC ligand where no emission band is observed.
On the other hand, TCPC@MOF and TCPP@MOF present the corresponding Soret and Q
bands associated to TCPC and TCPP (Figure S4 in Supplementary Information), although
they are red-shifted in comparison to the bands of the corresponding ligands (Table S2 in
Supplementary Information). The main emission peak of the pyrrolidine-fused chlorin and
porphyrin compounds and corresponding MOFs is around 649–660 nm followed by a lesser
intense peak centered around 715–719 nm. Noteworthily, the PL spectra of TCPC and TCPP
are similar to the corresponding loaded MOFs. The emission intensity of TCPC in ethanol
is five-fold higher than the one corresponding to TCPP; while in the MOFs (TCPC@MOF
and TCPP@MOF), the difference diminishes to less than two-fold higher.

The emission spectra comparison between TCPC/TCPP and the corresponding MOFs
(TCPC@MOF and TCPP@MOF) shows: (i) a shift in the λem max; and (ii) an increase
in the intensity of the longest wavelength emission band, particularly for TCPC@MOF.
These changes can be correlated with a certain degree of aggregation of the porphyrinic-
derivatives, a phenomenon observed both in solution and in solid matrices [83–85]. Nev-
ertheless, these spectral features are typical of porphyrin-incorporated MOFs [86] and do
not influence the materials’ emission properties as fluorescent sensors. The results clearly
show that the MOFs present the interesting photophysical characteristics of the chlorin and
porphyrin derivatives used.

The thermogravimetric analysis (TGA) of the MOFs revealed mass change profiles
similar to those previously reported for UiO-66(Hf) [79,80] (Figure 2f; the TGA related to
TCPC and TCPP is presented at Figure S5 in Supplementary Information). A decomposition
temperature of approximately 470 ◦C can be determined for all materials, a value close to
other reports on UiO-66(Hf) [80,87], suggesting that the materials thermal properties are
highly dependent of the UiO-66(Hf) framework.

The N2 adsorption-desorption isotherms determined at −196 ◦C are illustrated in
Figure 2g, and the values of volume adsorbed at 0.95 po and apparent specific surface
area resulting from the analysis of the adsorption by the BET method, using criteria
recommended by Rouquerol et al. [88] and subsequently endorsed by IUPAC [89], are
shown in Table 1. All the isotherms are type I of the IUPAC classification, which is
characteristic of microporous UiO-66 architectures. Nevertheless, the adsorption isotherms
of TCPC@MOF and TCPP@MOF are type I(a) of the IUPAC classification indicating that
the materials have mainly narrow micropores, while UiO-66(Hf) has narrow and wider
micropores as inferred from the type I(b) presented in Figure 2g. The BET area obtained for
UiO-66(Hf) is in close proximity to reported values [87,90], while the incorporation of either
TCPC or TCPP led to reduction in the BET area and microporosity. These observations
suggest that part of the microporosity is closed, probably due to the incorporation of
the chlorin or porphyrin, and/or that the bulky TCPC and TCPP ligands are partially
occupying the space inside the pores. Consequently, micropores become narrower and
less space is available for nitrogen adsorption. It can be noted that the differences between
TCPC@MOF and TCPP@MOF are not very significant, but the reduction of the BET area and
adsorbed N2 volume is slightly larger in the first, possibly relating to the higher bulkiness
of TCPC.



Chemosensors 2022, 10, 511 9 of 18

Table 1. BET area (ABET) and adsorbed N2 volume for UiO-66(Hf), TCPC@MOF and TCPP@MOF.

Material ABET/m2 g−1 Vads (0.95 po)/cm3 g−1

UiO-66(Hf) 940 0.43
TCPC@MOF 361 0.20
TCPP@MOF 414 0.24

3.2. MOF-Based Membranes

Considering our interest in MOF-based films toward the development of optical sensor
devices [65–68] and the various promising applications of thin porous MOF films [91,92],
we proceeded to the incorporation of TCPC@MOF and TCPP@MOF materials in PDMS
polymeric membranes. The SEM images of a cross-section of the TCPC@MOF@PDMS
based films (Figure 3a) reveal a constant thickness of 60 µm for the obtained membranes.
Figure 3b also shows the flexibility of the polymer-based films and confirms that the MOF
particles are totally embedded into the porous PDMS. Similar results were obtained for the
TCPP@MOF@PDMS.
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Figure 3. SEM images of (a) cross-section and (b) top view of TCPC@MOF@PDMS films.

The crystallinity of the TCPC@MOF and TCPP@MOF, once embedded in the PDMS
membrane, was confirmed by XRD as shown in Figure 4. As can be observed, the diffrac-
tograms of both TCPC@MOF@PDMS and TCPP@MOF@PDMS reveals that the MOF
particles are still crystalline after being processed into the PDMS membranes. In particular,
the two main peaks of UiO-66(Hf) at 7.3◦ and 8.5◦ (2θ) can be clearly distinguished (high-
lighted in pale green color) from the noise signal produced by our diffractometer when
analysing the mainly amorphous PDMS-based films. Other less intense peaks of the UiO-66
material can also be recognized at higher angles along with an amorphous phase around
12◦ (highlighted in pale pink color) corresponding to the polymeric matrix. It is noted that
the membranes were not measured with a grazing incidence X-ray beam (GIXRD) because
the signal coming from the amorphous phase (PDMS matrix) would be enhanced, thus
masking the peaks from the crystalline MOF.

The fluorescence amplitude-average lifetime values from TCPC, TCPP, and
TCPC(TCPP)@MOFs dispersed in the membrane are shown in Table 2, (PL decay curves
and fits are shown in supporting information, Figure S6). The increase in PL lifetime, upon
inclusion of TCPC and TCPP in UiO-66(Hf), is remarkable: a five-fold (nine-fold) lifetime
increase is found when comparing TCPC@MOF (TCPP@MOF) with TCPC (TCPP). This
observation underpins how porphyrin inclusion in UiO66(Hf) contributes to boosting the
PL efficiency of the included chlorin and porphyrin compounds.



Chemosensors 2022, 10, 511 10 of 18Chemosensors 2022, 10, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 4. XRD diffractograms of UiO-66 simulated, TCPC@MOF@PDMS and TCPP@MOF@PDMS. 

The fluorescence amplitude-average lifetime values from TCPC, TCPP, and 
TCPC(TCPP)@MOFs dispersed in the membrane are shown in Table 2, (PL decay curves 
and fits are shown in supporting information, Figure S6). The increase in PL lifetime, upon 
inclusion of TCPC and TCPP in UiO-66(Hf), is remarkable: a five-fold (nine-fold) lifetime 
increase is found when comparing TCPC@MOF (TCPP@MOF) with TCPC (TCPP). This 
observation underpins how porphyrin inclusion in UiO66(Hf) contributes to boosting the 
PL efficiency of the included chlorin and porphyrin compounds. 

Table 2. PL lifetime and values obtained for TCPC, TCPP, UiO-66(Hf), TCPC@MOF and 
TCPP@MOF using the materials-embedded membranes. 

Material τav/ns χ2 
TCPC 0.11 1.388 
TCPP 0.12 1.066 

UiO-66(Hf) 2.00 0.872 
TCPC@MOF 0.55 1.111 
TCPP@MOF 1.03 0.884 

Figure 5 shows the absorption (black solid lines) and emission (λexc = 415 nm, red 
solid lines) spectra of TCPP@MOF@PDMS (a) and TCPC@MOF@PDMS (b) films. The cor-
responding spectra for pristine TCPC and TCPP in ethanol solution (dashed lines) are also 
shown for comparison purposes. As can be seen, the absorption spectra of the films show 
significant differences with respect to those in solution for TCPC and TCPP. Although the 
typical Soret and Q bands of the porphyrinic-based molecules are clearly distinguished in 
the spectra of the films, the large offsets seen in the spectra are ascribed to scattering pro-
duced by the MOF particles embedded into the PDMS films. Also, as stated previously, 
the main bands of the TCPC and TCPP molecules in solution are red-shifted when incor-
porated into the UiO-66 material and subsequently processed into the PDMS films. This 
phenomenon can be attributed to π-π stacking of the conjugated rings of TCPC and TCPP 
after their incorporation in the MOF. On the other hand, the fluorescence spectra of both 
films are similar to those of pure TCPC and TCPP in solution, demonstrating that the 
emission profile of the macrocyclic molecules remains almost unaltered after being incor-
porated into the non-emissive MOF particle embedded into the PDMS films. Moreover, a 
comparison of the emission intensities of the different films (Figure S7 in Supplementary 
Information) reveals that TCPC@MOF@PDMS exhibit 2.5 times more fluorescence than 
TCPP@MOF@PDMS. This higher fluorescence comes from the more emissive TCPC mol-
ecules compared to TCPP, as stated previously (Figure S4 in Supplementary Information). 

Figure 4. XRD diffractograms of UiO-66 simulated, TCPC@MOF@PDMS and TCPP@MOF@PDMS.

Table 2. PL lifetime and values obtained for TCPC, TCPP, UiO-66(Hf), TCPC@MOF and TCPP@MOF
using the materials-embedded membranes.

Material τav/ns χ2

TCPC 0.11 1.388
TCPP 0.12 1.066

UiO-66(Hf) 2.00 0.872
TCPC@MOF 0.55 1.111
TCPP@MOF 1.03 0.884

Figure 5 shows the absorption (black solid lines) and emission (λexc = 415 nm, red
solid lines) spectra of TCPP@MOF@PDMS (a) and TCPC@MOF@PDMS (b) films. The
corresponding spectra for pristine TCPC and TCPP in ethanol solution (dashed lines) are
also shown for comparison purposes. As can be seen, the absorption spectra of the films
show significant differences with respect to those in solution for TCPC and TCPP. Although
the typical Soret and Q bands of the porphyrinic-based molecules are clearly distinguished
in the spectra of the films, the large offsets seen in the spectra are ascribed to scattering
produced by the MOF particles embedded into the PDMS films. Also, as stated previously,
the main bands of the TCPC and TCPP molecules in solution are red-shifted when incorpo-
rated into the UiO-66 material and subsequently processed into the PDMS films. This phe-
nomenon can be attributed to π-π stacking of the conjugated rings of TCPC and TCPP after
their incorporation in the MOF. On the other hand, the fluorescence spectra of both films are
similar to those of pure TCPC and TCPP in solution, demonstrating that the emission profile
of the macrocyclic molecules remains almost unaltered after being incorporated into the
non-emissive MOF particle embedded into the PDMS films. Moreover, a comparison of the
emission intensities of the different films (Figure S7 in Supplementary Information) reveals
that TCPC@MOF@PDMS exhibit 2.5 times more fluorescence than TCPP@MOF@PDMS.
This higher fluorescence comes from the more emissive TCPC molecules compared to TCPP,
as stated previously (Figure S4 in Supplementary Information). We then took advantage
of these improved emission properties of the chlorin molecules for their application as
more sensitive optical sensors using TCPC@MOF@PDMS films.
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in ethanol solution (dashed lines).

3.3. NO2 Sensing Assays

TCPC@MOF@PDMS films were exposed to different concentrations of NO2 gas,
i.e., 500, 350, 250, 100, 50, 5, and 0.5 ppm, and their absorption and emission spectra
were recorded. As shown in Figure 6a, exposure to increasing concentrations of the toxic
gas resulted in a progressive red shift of the TCPC Soret band while a change in the number
and position of the Q bands could also be inferred in the absorption spectra. These changes
are compatible with a charge transfer between the electron-rich system of the chlorin and
the strongly oxidizing NO2, as previously reported for several free-base porphyrins [93–98].
However, a more sensitive sensing signal can be obtained in this case by following the
emission changes as depicted in Figure 6b. As can be seen, a strong and progressive
fluorescence quenching is observed when the TCPC@MOF@PDMS films were exposed to
relatively low and increasing concentrations of NO2. In particular, 500 ppm of the toxic
gas produced a 96% quenching of the original emission of the complex film. Despite these
high spectral changes, the recovery of the system was not possible after heating the sample
or exposing it to a dry N2 flow (data not shown), probably due to a covalent interaction
between the NO2 molecules and the product from the TCPC oxidation [99]. Other recovery
strategies are in progress and deserve further research.
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exposed to different NO2 concentrations.

The fluorescent decay (quenching) in the presence of different concentrations of NO2
was quantified as Φ = 1 − I/I0, where I0 and I are the FL intensity at the wavelength of
maximum emission (650 nm) before and after NO2 exposure, respectively [93,100,101].
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Figure 7 shows the fraction of the fluorescence quenching Φ as a function of the NO2
concentration. The sensor exhibits a high response change at low concentrations of NO2
(0–50 ppm). However, a saturation is observed when it is exposed to concentrations above
50 ppm, reaching a maximum response (Φ × 100) of >96%. Quenching-based fluorescent
sensors in solution usually follow the Stern-Volmer model, where I0/I follow a linear
dependence with the analyte concentration [102]. However, a multi-site model is a better
approximation for fluorescence-based gas sensors that do not follow the expected linear
dependence [65,67,103,104]. In the two-site Stern-Volmer model, it is assumed that the
sensor possesses at least two different binding sites, with their respective Stern-Volmer
constants [65,105]. The equation of this model as a function of Φ can be written as:

Φ = 1 − f1

1 + K1sv
1 [Q]

− f2

1 + K1sv
2 [Q]

(1)

where f 1 and f 2 are the fractions of sites 1 and 2, respectively, where f 1 + f 2 = 1, K1sv
1 and K1sv

2
are the Stern-Volmer constants for each site, and [Q] is the quencher concentration; in our
case, NO2. Using this model, the experimental results showed a good fitting (R2 = 0.9837)
as can be seen in Figure 7. This good agreement with the experimental data could be
explained in terms of the structural heterogeneity of the film where the TCPC sensing
molecules must be occluded into the MOF cavities. This means that, in contrast to solution,
the accessibility of the NO2 molecules to the binding sites depends on many factors like
their specific distribution, or the crystal shape and size. More particularly, the numerical
fitting values of the proposed model for f 1 and f 2 were 0.9 and 0.1 respectively, and their
corresponding Stern-Volmer constants were 0.098 and 24 ppm−1. This means that around
90% of the available sites are less accessible, resulting in a lower binding energy, and
therefore only occupied at high NO2 concentrations.
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Finally, the speed of the response was analysed by monitoring the temporal evolution
of the FL emission intensity changes (Φ × 100) at different NO2 concentrations as shown in
Figure 8a. The corresponding spectra are shown in Figure S8 in Supplementary Information.
As can be seen, the kinetic curves are characterized by a fast increasing of the quenching,
followed by a stabilization of the curve until a complete saturation is reached. To evaluate
the speed of response we used the t50 parameter, calculated as the time taken for the FL de-
cay to reach 50% of its maximum change. Figure 8b shows the dependence of the t50 values
with the gas concentration. As expected, the t50 decreases with the [NO2], showing that a
few minutes are enough to obtain a measurable signal even for low analyte concentrations.
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4. Conclusions

In summary, a pyrrolidine-fused chlorin derivative (TCPC) was successfully incor-
porated into an MOF framework (UiO-66(Hf)) using a one-pot solvothermal synthesis.
The material characterization indicates that the interesting photophysical properties of the
chlorin derivative, even with a very small amount incorporated. were impressed in the
framework and that the structural and stability features of the framework are maintained
in the final material (TCPC@MOF). The composite was later embedded into a PDMS matrix
and used in NO2 sensing. Notably, despite the very low amount of chlorin incorporated in
the MOF framework, the sensing experiments reveal that the composite responds to NO2
in a range between 0 and 500 ppm, observing a 96% reduction of the original emission of
the complex film for 500 ppm (t50 = 5 min). This work uncovers a new series of potential
applications for chlorin derivatives usually associated to PDT applications, namely as
optical gas sensors based on fluorescence properties.
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