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CHAPTER

ONE

INTRODUCTION

In this project we study the performance of the Trickle algorithm introduced in [1]. Using Monte Carlo Simula-
tions we determine its performance in terms of propagation speed and hop count when propagating software
as well as transmission rates in the periods nothing is being propagated. Our simulations are validated us-
ing results from [5]. Results are obtained by comparing idealized network topologies with a data set of street
lights in the city of Eindhoven. More results are obtained by taking into account more parts of the devices and
comparing the results to [5].

1.1 TRICKLE

A wireless sensor network consists of Wi-Fi enabled devices (nodes) which operate autonomously and without
human intervention. Because of new knowledge or changing conditions of the network the software on the
devices may need to be updated. This means that new software must be propagated over the network. This is
done with the Trickle algorithm by propagating from nodes to neighbouring nodes. One of the advantages of
these devices is that they can remain unattended for a long time in different conditions with different instruc-
tions. This benefit is enhanced when the devices can operate on battery power, this is the reason that Trickle
was designed to propagate and maintain code with as few transmissions as possible.

The algorithm uses its nodes to form a ’polite gossip’ network. This means that the information, referred to
as ’gossip’, is propagated to the neighbours of one node at a time. We assume the entire network is connected,
so eventually the information reaches every node. It operates in a way where every once in a while, a node
gossips its software version. All nodes want to have the latest ’gossip’; if a node hears newer ’gossip’, it revise its
software, if it hears older ’gossip’, it responds with its own version shortly after. If a node hears its own ’gossip’
one or more times it will not gossip its own ’gossip’ for a while. To prevent ’gossip’ from not being heard a node
will not start speaking when a different node is already speaking within hearing range. Interference is the main
reason the intervals of our ’gossips’ are randomized instead of simply passing our ’gossip’ on when it arrives.

1.2 RESEARCH GOALS

The goal of this project is to obtain results on the performance of the Trickle algorithm and how this depends
on the topology of the network. We are interested in the propagation speed, the time it takes until the en-
tire network is updated, and the hop count, the number of nodes the information passes through to reach
a node. To obtain these performance measures we will simulate the Trickle algorithm on different networks
using Monte Carlo simulation.

First, results from simple networks consisting of nodes on a simple line or grid will be compared with
known theoretical solutions. Subsequently, we will simulate more complex and general networks. Finally, to
test how network layouts affects the propagation speed, we do this by running simulations on a data set with
street lights in the city of Eindhoven.

We now list the research questions we will be focusing on for this research:
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1. How do the transmission rates of the algorithm change with the size and topology of the network or the
settings of the algorithm?

2. How are the propagation speed and the hop count of the network affected by different topologies?

3. How accurate are the results of [5] when the processes on the MAC and physical layers are taken into
account?

These layers will be discussed in more detail later in this report.
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CHAPTER

TWO

DETAILED DESCIPTION OF THE TRICKLE ALGORITHM

As mentioned earlier, Trickle is an algorithm for propagating and maintaining software updates. The original
algorithm describes the actions that take place on the application layer, our model goes beyond that and also
tries to take the actions on the MAC and physical layer into account. These are the layers where the scheduling
of transmissions and the actual transmitting take place.

Each node operates on 3 mostly independent layers, the application layer, the MAC layer and the physical
layer. On the application layer the algorithm for scheduling transmissions takes place. We start by describing
assumptions we have made for this model, subsequently we describe the algorithms for the different layers.
Then we define some states the network can be in, these states will later be used to define performance mea-
sures like propagation speed. We show how the transitions between the different states are defined for a single
node. We finish with some examples.

2.1 APPLICATION LAYER

The algorithm on the application layer is the algorithm introduced and described in [1]. Each node has three
variables it tracks: a counter c, its current cycle length τ and possibly an upcoming transmission time t . Addi-
tionally there are five more parameters which are constant: k, the number of times an update must be heard
before a transmission is not scheduled, τmax , the largest cycle length, τmi n , the smallest cycle length, and η,
the portion of the cycle which is listen-only.

The algorithm consists of the following set of rules:

Event Action
t expires transmit if c < k.
τ expires double τ if τ< τmax , c = 0 and pick a new t .
Receive current version increment c.
Receive different version if τ is larger than τmi n : τ= τmi n and pick a new t .

Here t is always picked uniformly from (ητ,τ).

The parameter η is a listen-only parameter, introduced to prevent the so-called short-listen problem [1].
A fraction η of the cycle is made listen-only, the transmission time t will not be scheduled in this listen-only
period. In [1] η is always 1

2 , the generalisation to η was introduced in [5]. τ increases each cycle until τ≥ τmax

so fewer transmissions are being made when no new information has entered the network for a while.

When this algorithm dictates a transmission, a transmission with the current version number is scheduled
in the node its MAC layer.

4
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2.2 MAC AND PHYSICAL LAYER

The MAC layer handles the broadcasts it receives from the application layer. The MAC layer also has three
properties: Qmax , dmax and s. The MAC layer stores all transmissions in a queue. If the current size of the
queue of transmissions is below Qmax , it adds the new transmission to the queue, if the queue is full, i.e. the
size is Qmax , the transmission is dropped.

The MAC layer works with exponential backoffs to pick times for transmissions. For an exponential back-
off the MAC layer picks a number of time steps from {0,1, . . . ,2d −1} where d is the minimum of dmax and the
number of previous attempts to broadcast plus one. The length of one time step is s, and lasts 54µ seconds.
So an amount of time between [0, s(2d − 1)] is chosen. After this amount of time the MAC layer attempts to
start the broadcast. If no transmission can be started, i.e. a neighbor is currently transmitting, d is increased
and another exponential backoff is created with a larger expected amount of time. Otherwise the MAC layer
starts the transmission by sending a transmission to the physical layer which starts to transmit. When a new
transmission is send to the MAC layer a exponential backoff is set if the queue is empty.

When no neighbor is currently transmitting the transmission follows almost directly since the initial back-
off, which is very short, is the only delay. If the queue is not empty when the transmission finishes, another
backoff is created for a new transmission to start.

The physical layer is the physical receiver and transmitter of the node. When it receives a broadcast from
another node it is processed by the application layer. It starts broadcasting when asked by the MAC layer and
reports back when it finishes.

2.3 NODE STATES

A node has three possible states, listening, receiving and transmitting. We define transmitting as the period a
node is broadcasting software. Receiving is when one or more neighbors are currently broadcasting. A node is
listening when it does neither.

ListeningReceiving Transmitting

Figure 2.3.1: The three states and their transmissions

Note that in Figure 2.3.1 there are no links between receiving and transmitting. These are prevented be-
cause a node will not broadcast when another node is already broadcasting.

2.4 NETWORK STATES

For the entire network we define three different states: propagating, saturated and maintenance mode. The
different states differ in the current versions and the cycle lengths of the nodes in the network. We define the
network to be propagating when some nodes have a newer version than others and the new version is being
transmitted over the network. The network is saturated when every node has the newest version but not all
nodes have reached their maximum cycle length. And the final state is called maintenance, when all nodes
have the same version and all nodes have τmax as their cycle length.

The maintenance mode is defined like this, because it is a stable state in which the network ends when no
new software is introduced for a while. When a node (a seed) is injected with a new version, the network is
propagating until every node is updated and the network is saturated. After a while, it will then go to mainte-
nance mode again.

The time it takes for the network to go from entering propagating mode and going to saturated mode is
called the end-to-end delay, one of the performance measures of interest.
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2.5 INTERVAL SKEW

If all the nodes were in sync with each other all cycle resets would happen at the same time. The difference
between this situation and the asynchronous situation is called the interval skew. The interval skew is defined
as the differences in time until the next cycle resets for the different nodes in maintenance mode. Since all
nodes share the same cycle length in maintenance mode (τmax ), the times remain the same in respect to each
other. If all nodes have their cycle resets simultaneously, the network would be called synchronized. When the
network is not synchronized, the differences between the cycle resets and any given node will be somewhere
between 0 and τmax . The interval skew changes when the network state changes to propagating and nodes
are reset when new software versions are introduced. In most cases it can be assumed that the interval skew
is uniformly distributed. However, when a network starts synchronized the interval skew will depend on the
hop count of the previous propagation waves. In other words: nodes with a similar distance to the source will
tend to have cycle resets close to each other.

Using our simulation we will check whether this property affects the performance measures and whether
we need to take this into account with the rest of the simulations. We will check this by simulating types of
interval skew with the same parameters and comparing the results.

2.6 EXAMPLES

To get an impression of how this algorithm works we show how the algorithm works out in 2 different simula-
tions.

2.6.1 SITUATION 1

We have a network in maintenance mode with 3 nodes in a single cell network, i.e. all three nodes are neigh-
bours of each other. k is set at 2. Note: the time it takes to transmit a broadcast, M , is very large for example
purposes.

This is the timeline:

1
2

t2,1 t1,1 t3,1

The blue line signifies when a node is transmitting (since all nodes are connected only one node can be trans-
mitting at a time). Now we explain what happens at each moment.

Time Summary
t = 0 Node 1 is being updated. It sets a time t1,1 between [τmi nη,τmi n]. Nodes 2 and 3 have

already set times between [τmaxη,τmax ] with τmax an interval size larger than τmi n .
t = t2,1 Node 2 starts its transmission.
t = t2,1+M Node 2 ends its transmission. Node 1 realises its version is more recent than that of node

2 so it resets if τ> τmi n . This is not the case so it does nothing.
Node 3 also hears the broadcast, its version is equal to its own so it increments its c by
one.

t = t1,1 Node 1 starts its transmission,
t = t3,1 Node 3 is scheduled to transmit and c < k so a transmission is scheduled. Node 1 is

already transmitting so node 3 does not transmit and the transmission is delayed a few
times.

t = t1,1+M Node 1 ends its broadcast. Nodes 2 and 3 are updated and reset their period to τmi n and
pick new broadcast times from [τmi nη,τmi n].

2.6.2 SITUATION 2

Situation: 4 nodes, nodes 2 to 4 are on a circle around node 1. All are within range of node 1 but their mutual
distances are so big they are out of each others reach, see the next picture

6
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The events take place in the following order. The colored bars indicate whether a certain node is broadcasting.
Note that the red color in the broadcasts only indicate interference at node 1. The broadcast may still reach
other nodes without causing interference, as long as they do not also overlap with other broadcasts.

1
2
3
4

t2,1 t3,1 t1,1 τmi n t4,1 t1,1+ backoffs

Time Summary
t = 0 Node 1 is updated. It resets τ to τmi n and picks t1,1 from [τmi nη,τmi n]. Nodes 2 to 4 have

already set times t and have cycle lengths of τmax .
t = t2,1 Node 2 starts transmitting.
t = t3,1 Node 3, out of reach of node 2, starts transmitting.
t = t2,1+M Node 2 ends its broadcast, the signal was interfered so node 1 does not receive anything.
t = t1,1 Node 1 wants to transmit, but node 3 is still transmitting within range so node 1 delays

the transmission a few times.
t = t3,1+M Node 3 ends its broadcast but because of interference by node 2 it was not received

correctly by node 1.
t = τmi n Node 1 has finished its cycle so it increases its cycle length to 2τmi n and picks a time t1,2

from [2τmi nη,2τmi n].
t = t4,1 Node 4 starts transmitting. During this transmission the backoff set by node 1 ends. The

transmission still cannot be made so it is extended again.
t = t4,1+M Node 4 ends transmitting, there has been no interference so the signal came through

to node 1. Node 1 receives a version number lower than its own so node 1 resets its
τ to τmi n , removes the scheduled transmission at t1,2 and picks a new time a from
[τmi nη,τmi n] and sets an event at the current time +a = t1,3.

t = t1,1+
backoffs

Node 1 finally starts transmitting the transmission scheduled at t1,1.

t = t1,1+
backoffs
+M

Node 1 ends transmitting, nodes 2 to 4 receive the signal and update their version num-
ber. All reset τ to τmi n and pick new times t from [τmi nη,τmi n].

2.7 LITERATURE OVERVIEW

We have conducted a literature review focusing on the following 3 questions:

• Have any other adaptations of the Trickle algorithm been made?

• Has any previous research been done on attributes of the Trickle algorithm?

• How has Trickle been applied to real world solutions?

2.7.1 ADAPTATIONS OF THE ALGORITHM

The Trickle algorithm originated in [1] as an algorithm for code propagation and maintenance. Since then it
has been found so useful, that it has become a basic mechanism in wireless network technologies and used in

7
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numerous protocols and systems according to [2]. While the protocol was designed for propagating informa-
tion, it can also be used for data gathering where all individual nodes are able to generate data and distribute
this data through the network. The same paper describes how the techniques in Trickle are also applied for
route maintenance and neighbor discovery in different types of networks.

Adjustments to the algorithm have been made to take into account the number of neighbors of a node. A
broadcast of a node with a lot of neighbors is probably more effective than a broadcast from a node with fewer
neighbors [4]. Another algorithm, DIP ( [3]), was designed building on Trickle, but requires fewer transmissions
to determine whether an update is needed.

2.7.2 PERFORMANCE MEASURES

On the attributes of the Trickle algorithm some research has previously been done by Meyfroyt [5]. His work
is particularly relevant because it uses the same extended version of the Trickle algorithm as we do. In [5]
theoretical solutions are obtained for line and grid networks. The provided solutions will later be used to check
our own simulations. The behavior of the original algorithm was studied in more papers. In [8] an analytical
model is developed for the behavior for the time the algorithm takes to leave propagation mode and in [7] a
model for the message count in steady state is presented.

2.7.3 TRICKLE APPLIED IN REAL WORLD SITUATIONS

On applications of the Trickle algorithm and the networks it allows to create the paper [10] reports extensively.
Wireless sensor networks allow for applications which would not be allowed with regular wired networks since
they are much more expensive. Moore’s law says hardware will become less expensive but this does not apply
to the cost of wires for a wired network and the installation costs of a wired network. The paper mentions a
low of different applications: home applications, video surveillance monitoring, monitoring energy consump-
tion and building applications like fire detection and sprinkler networks. Also very interesting are industrial
applications like controlling a sensor grid of complex machines while reporting to a central control room and
urban applications like gathering meteorological data and dimming street lights when less light is required.

In [9] it is described how wireless sensor networks are deployed around a volcano to gather data on volcanic
events. An array of 16 nodes each equipped with seismological sensors. The obtained data was transmitted
through a multihop network to an observatory, where over the course of 3 weeks 230 events where gathered.

8
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CHAPTER

THREE

IMPLEMENTATION

In this chapter the implementation is discussed. In order to obtain the propagation speeds, hop counts and
transmission rates of the algorithm on different networks we will use Monte Carlo simulation in a Java pro-
gram. This program is written with very large networks in mind.

3.1 VARIABLES

In this section we introduce all variables needed to simulate the algorithm.

3.1.1 NODES

Each node indicates its own version by an integer V . Each node keeps track of a list of neighbors S which it is
able to reach by broadcasting software. To track the states a node can be in, some additional variables have to
be defined. When a node starts transmitting, it tracks its own state by a boolean T which is turned to true, T
set to false when the node finishes transmitting. A transmission takes a predetermined M seconds.

When a node receives the announcement a neighbor starts broadcasting, it increments the integer Re by
one. Consequently, when a neighbor stops broadcasting the node decreases Re by one. A node is in the state
of receiving when the integer Re is larger than zero. Since every transmission has to start before it ends, i.e.
an increment will always precede a decrease, and Re is initialised at zero, Re is always greater than or equal to
zero.

3.1.2 INTERFERENCE

Since interference is defined simplified for this simulation, i.e. if and only if a node receives 2 overlapping
broadcasts both broadcasts are lost, it can be tracked by a simple boolean I . This is turned true when more
than one neighbor is currently transmitting and is only turned false when the node goes in listening state. This
may take longer than it takes for the nodes to finish if more than 2 broadcasts overlap. As long as I is true, no
broadcasts can be received.

3.1.3 EVENTS

At any given time every node has a cycle reset scheduled and may have more events scheduled. There is also
a limited set of seed events where a node will be updated. The algorithm knows 5 types of events that have to
be executed at a certain time:

• Starting a broadcast

• Ending a broadcast

• End backoff

• Resetting a cycle

• Update node (seed)

9
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Events are objects in the simulation which can be one of these 5 types of events. All these events are stored
in a single eventqueue. The attributes of an event are the time it must execute, its type and the node where it
will take place.

3.1.4 PSEUDOCODE

All actions a node can execute are:

• Start transmitting

• End transmitting

• End backoff

• Start receiving
Hearing a neighbor start a broadcast

• Stop receiving
Hearing a neighbor end a broadcast

• Resetting a cycle

• Getting an update
Receiving a new version from a seed

Most of these actions are activated by events and are activated by the eventqueue. Some are activated by
neighbors starting or ending a transmission. We now describe the process of each action in pseudocode:

Start transmitting (Trickle Timer)

if c ≥ k then do nothing
(doing nothing)

else Schedule broadcast
if Q.si ze < Qmax then

add V to Q if Q.si ze > 1 then We are still waiting for the current transmission or backoff to finish
(doing nothing)

else create exponential backoff
d = 1
Pick random integer a from [0,2d −1]
d = d +1
b = s ∗a
Set event End backoff at tcur r ent +b

end
else do nothing

end
end

End transmitting

CV =Q.next tr ansmi ssi on
for every neighbor in S do

neighbor.stopreceiving(CV)
end
if Q.si ze > 0 then create exponential backoff

d = 1
Pick random integer a from [0,2d −1]
d = d +1
b = s ∗a
Set event End transmitting at tcur r ent +b

else
T = false

end

10
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End backoff

if Re> 0 then
Pick random integer a from [0,2d −1]
b = s ∗a
if d < dmax then

d = d +1
end
Set event End transmitting at tcur r ent +b

end
else Start transmitting

d = 1
for all neighbors in S do

neighbor.startreceiving
end
T = true
Set event End transmitting at tcur r ent +M

end

Start receiving

Re = Re + 1
if Re> 1 then

I = true
end

Stop receiving

Input: version number i
if I = false then

if i >V then
V = i
c = 0
τ= τmi n

Pick random a from [η∗τ,τ]
t = tcur r ent +a
Update event Start transmitting to t
Update event Reset cycle to tcur r ent +τ

else if i <V then
if τ> τmi n then

c = 0
τ= τmi n

Pick random a from [η∗τ,τ]
t = tcur r ent +a
Update event Start transmitting to t
Update event Reset cycle to tcur r ent +τ

end
else i =V

c = c +1
end

else do nothing

end
Re = Re - 1
if Re = 0 then

I = false
end

11
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Reset cycle

if τ< τmax then
τ= min(2τ,τmax )

end
Pick random t from [η∗τ,τ]
Set event Start transmission at tcur r ent + t
Set event Reset cycle at tcur r ent +τ

Get updated

Input: version number i
if i > V then

V = i
τ= τmi n

c = 0
Pick random a from [η∗τ,τ]
t = tcur r ent +a
Update event Start transmitting to t
Update event Reset cycle to tcur r ent +τ

end

With every update event the eventqueue will delete the previous event of this type by this node if present
and create a new event with the given time. Here the current time is given by tcur r ent .

3.2 INITIALISATION

Initializing all the different events as well as the counters directly would be complex to calculate directly. We
can avoid this by letting the network spent a few cycles. We assume the network starts in maintenance mode
and generate an interval skew. Then we can generate all first cycle resets at the start. After 2 cycles all broadcast
moments are initialised and the counters are set. From simulations it follows that from this point the rate of
transmissions stays constant so we assume the network enters a steady state at that point, see Figure 3.2.1.
Since the network is in maintenance mode, cycle lengths do not increase and the initiation skew remains
equal to what it was at the start.

(a) n = 3 and τmax = 1.6. (b) n = 10 and τmax = 6.4.

Figure 3.2.1: Networks are lines and simulated using 10 000 runs.
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3.3 TEST CASES

In this section we will introduce some network types. These networks we will later use to test the Trickle
algorithm in our simulations.

3.3.1 SINGLE CELL

In a single cell network all nodes are connected with each other. This means that in a network with n nodes ev-
ery node has n−1 neighbors. This type of network is interesting when looking for the behavior of the algorithm
in maintenance mode.

Figure 3.3.1: Nodes in a single cell where every node is connected to all other nodes.

3.3.2 LINE NETWORKS

A different network is in a line network. Visually this means all the nodes are on a line. We have n nodes spaced
1 step apart. Combined with a broadcast range R each node has a maximum of 2R neighbors, R to the left and
R to the right. This can be less if the node is at the beginning or the end of the network.

Figure 3.3.2: Nodes on a line.

3.3.3 GRID NETWORKS

The 2-dimensional variant of a line network is a grid network. Here, nodes are still 1 step apart but in 2 dimen-
sions. The neighbors of a node are the nodes within a circle with diameter 2R.

Figure 3.3.3: Nodes placed in a grid.

3.3.4 REAL-LIFE NETWORKS

To get a realistic image of what situations may occur in a real-life situation we have obtained a data set from
a real-life situation. We have obtained a data set containing the locations of all street lights of the city of
Eindhoven.

13
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Figure 3.3.4: The street lights of the city of Eindhoven

3.4 VALIDATION

In other to validate our simulation before we obtain results for our research questions we will compare our
simulation results with theoretical results obtained in [5] and [6]. The main results that can be compared are
as follows:

1. In a single-cell network, i.e. a network where all nodes can reach each other, in maintenance mode the
expected number of transmissions is approximated from below as n →∞ by

k

η
. (3.4.1)

2. In a multi-cell network, i.e. a network where not all nodes can hear each other, given by a n ×n grid
where nodes have a broadcasting range R in maintenance mode the number of broadcasts per interval
scales as

O

(
n2

R2

)
. (3.4.2)

3. In a multi-cell network in propagation mode, consisting of nodes placed on a line, if η= 1
2 and k = 1, we

have the following results:

(a) The mean number of hops can be approximated by:

3n

2R +1
. (3.4.3)

(b) The mean time until network consistency is approximated by:

3n

2R +1

(
M +τmi n

(
1

2
+

R +1−ΣR+1
j=1

1
j

R(R +1)

))
. (3.4.4)

We will simulate these cases in our own simulation and compare and discuss the results briefly. To obtain
these results we have simulated the networks with the following variables (unless specified otherwise):

Time Value
M 0
s 0.000054
τmi n 1
τmax 16
dmax 8
Qmax 4

Note that with these variables we do not simulate a realistic network but it does replicate the conditions in
the research done by Meyfroyt in [5].
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3.4.1 SINGLE CELL NETWORK

The first validation question was how many transmissions take place in a single cell network in maintenance
mode, where we varied k and η, and whether this matched up with (3.4.1).

For these results we have done simulations with 50 nodes and 1000 nodes, the results are shown in Figure
3.4.1. Since (3.4.1) describes a limit for very large values of n we expected the results to improve for larger
values of n which we see. For large values of η the results were spot on. For low values of η the results were
much below the expected value but they improved much with the larger network size, this was expected since
this is an asymptotic result.

(a) η= 0.3, data is shown in table 6.1.1. (b) η= 0.9, data is shown in table 6.1.2.

(c) k = 5, data is shown in table 6.1.3.

Figure 3.4.1: Single cell networks generated with 1000 runs.

3.4.2 MULTI CELL NETWORK

The second validation question was how the results scale for large values of n and R. For this we have run a
simulation on a grid network of n by n nodes.

The results are shown in Figure 3.4.2. In Figure 3.4.2a a quadratic trend line is shown, indicating that the
growth of the results is as expected. In Figure 3.4.2b the predictions of 1/R2 is shown. This also confirms that

the transmission rate per interval scales as O ( n2

R2 ).

3.4.3 PROPAGATION MODE

For the propagation mode we have 2 tests, (3.4.3) and (3.4.4): The first test is whether the hop count behaves as
expected and second test is whether the propagation speed is as expected. We have run a simulation on a line
network where we set a seed on the leftmost node and measure the time and number of hops it takes to get to
the rightmost node. We show the hop count and the propagation speed. In Figure 3.4.4 we see the hop count
and propagation speed of our simulations as well as the expectations. We see the results match the expected
values exept for the divergence for large values of η. We have no explanation for this.
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(a) k = 1, data is shown in table 6.1.6. (b) k = 5, data is shown in table 6.1.7.

Figure 3.4.2: Multi cell grid networks over 100 cycles.
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(a) Data is shown in table 6.1.4.

(b) Data is shown in table 6.1.5.
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(a) n = 10, data is shown in table 6.1.8. (b) n = 10, data is shown in table 6.1.8.

(c) n = 100, data is shown in table 6.1.9. (d) n = 100, data is shown in table 6.1.9.

Figure 3.4.4: Results of the validation on propagation speed and hop count.
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CHAPTER

FOUR

RESULTS

Like we did for our validation simulations we have kept most parameters constant. Unless specified otherwise
the values used in the simulation are:

Time Value
M 0.01
s 0.000054
τmi n 1
τmax 16
dmax 8
Qmax 4

In our simulations we have seen that the Trickle algorithm stops working properly for large values of M in
our networks. The number of scheduled transmissions per interval goes up to the number of nodes and the
nodes are continuously transmitting. This leads to all nodes scheduling their transmissions because they do
not receive any transmissions increasing their counters c. If the algorithm breaks down like this the value of
dmax and Qmax do not make much of a difference. If the algorithm works as intended, i.e. for small values of
M where the size of the queue never grows large and no transmissions are lost. Therefore we have chosen to
take to keep these parameters constant.

First we will look at research question 1, how do the transmission rates change when we take different
topologies into account? For this we want to compare our data set of Eindhoven with a grid network. We
set the size of the grid network on 224 by 224 so the size of this network is about the same size of our data set
(50176 nodes in the data set versus 50553 nodes in the grid network). Our data set of Eindhoven came with just
the points of street lights but without information on the scale of the network. We have matched our values
of R so that the average number of neighbours of each network roughly the same too. From this we picked 3
different couples of radii to focus on in our simulations. The network radii are:

City network Grid network
R mean number of neighbours R mean number of neighbours
0.0049 505.01 11.0 503.44
0.006 740.63 13.1 741.31
0.007 990.43 16.0 1013.87

These networks are similar in their average number of neighbours but they still have very different topolo-
gies. If we define center nodes as nodes with the maximum number of neighbours, i.e. their range does not
touch any of the edges of the network, we see that the grid network consist mostly of center nodes with a much
smaller group of edge nodes with less neighbours which drag the average number down to an average com-
parable to the city network. In the city network the distribution of the number of neighbours has more nodes
with a number of neighbours closer to the average.

In Figure 4.0.1 the results are shown from our comparison of a grid network and the city network. The
results of the different simulations in Figure 4.0.1b are shown separately in Figure 4.0.2. We see the algorithm
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shows very similar results in response to changes in k and η except the city networks shows many more broad-
casts for all values of k. This can be explained by the different distributions of numbers of neighbours for an
arbitrary node. The center nodes in the grid network are much more connected. Therefore they receive more
transmission which increases the probability a transmission is suppressed.

To answer research question 2, how are the propagation speed and the hop count affected by different
topologies? We would have liked to compare the hop count and propagation speed of the data set and grid
network like we did for transmission rates. In our previous tests we were working with line networks where we
could take the first and last node to compare their distance, in the city dataset we have no concept of a first
and last node in the city network. Therefore we can not make a direct prediction with any known results.

For research question 3: How accurate are the results of [5] when the processes on the MAC and physical
layers are taken into account? We have repeated the tests we have done before for our validation with larger
values of M . As discussed previously we do not take dmax and Qmax into account. We revisit the tests we have
done before for our validation in the order we have done them before.

We have simulated a single cell network of 1000 nodes. The results are shown in Figure 4.0.3. We see that
the algorithm stops working for large values of M . In Figure 4.0.4 we see the time of each cycle that is spent
transmitting. We see that the network is continuously broadcasting for M = 1 or τmax

16 . Note that this is not a
permanent situation for high values of η since no new transmissions are scheduled when ητmax > kM . The
network is heavily dependent on the way the network is initialized. We expect the network to stabilize after
a long time if no new transmissions are scheduled, i.e. if ητmax > kM . For smaller values of M as shown in
Figure 4.0.3a we see the network behaves the same as we have seen in our validation.

To test propagation mode we have simulated a line network of 100 nodes for different values of M . The
results are shown in Figure 4.0.5. The results for the hop count are shown in Figure 4.0.5a. As we have seen
before with the validation tests, our results on the hop count are a little bit below what is predicted. This is
caused because the prediction was based on the case where k = 1 and in the simulation k = 5 was used. How-
ever the value of M has no significant effect on the hop count.

The results for the propagation speed are shown in Figure 4.0.5a. The prediction shown in this graph is
made for a constant η= 0.5, other values of η are not taken into account. If we look at the place where η= 0.5
we see the value is a bit below the predicted value. The hop count was also below the expected value so this is
to be expected. We see the results for values of η behaves linearly with η.
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(a) Data is shown in table 6.2.3.

(b) Data is shown in table 6.2.4.

Figure 4.0.1: The transmission rates of our simulation of the city network and grid network.
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(a) Simulated city network. (b) Simulated grid network.

Figure 4.0.2: Transmission rates measured in city and grid networks. Data is shown in 6.2.3.

(a) Data is shown in table 6.2.5. (b) Data is shown in table 6.2.6.

Figure 4.0.3: Transmission rates of a single cell network.n = 1000 and k = 5.

Figure 4.0.4: Time spend transmitting each cycle. n = 1000 and k = 5. Data is shown in 6.2.7.
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(a) k = 5, data is shown in table 6.2.1. (b) k = 5 and η= 0.5. Data is shown in table 6.2.2

Figure 4.0.5: Results of propagation speed and hop count in a line network.
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CHAPTER

FIVE

CONCLUSIONS AND RECOMMENDATIONS

We have seen the topology of the network is highly important for the behaviour of the algorithm. We have
seen that networks with the same number of nodes with the same average number of neighbours still produce
very different results. Apart from the scale the behavior of the transmission rates for different values of k and
η stayed roughly the same.

Our second research question remains unanswered because we could not do a comparison of this data set
and a known network. We were unable to find a way to make a fair comparison between the different networks.

When we compared the results from [5] in situations with transmissions lengths larger than 0 we noticed
some predictions holding up and some failing. Most notably the algorithm stops working as intended for large
values of M , around M = τmax

16 we see the nodes are filling up all available bandwidth. If ητmax > kM holds we
expect the network to find a stable point after a long time.

The hop counts remain mostly unaffected by the changing transmission rates. Finally we have seen the
prediction for propagation speed hold up for different transmission rates. The propagation speeds behave
linearly to different values of η.

5.1 RECOMMENDATIONS

In order to be able to make a better comparison for city networks a good idea would probably be to look for
different networks with a distribution of the numbers of neighbours that is closer to our data set.

The way we worked with hop count and propagation speed, i.e. the amount of hops and the time it takes
to traverse from a given node to another given node, is hard to measure in a large dataset with no additional
information. Future research could focus on the average time spent in propagation mode from different start-
ing nodes.

As mentioned previously: from the results on the propagation speed for different values of η it might be
likely a simple formula can be found to predict the behavior in propagation mode for general η.
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CHAPTER

SIX

EXTENDED DATA

6.1 RESULTS OF VALIDATION

k 1 2 3 4 5 6 7 8 9
n = 50 2 4.82 7.12 9 11 13.26 16 17.39 18.93

n = 1000 2.96 5.95 9.01 11.98 14.88 17.9 20.77 23.64 26.44
Predicted 3.33333 6.66666 10 13.3333 16.6666 20 23.3333 26.6666 30

Table 6.1.1: Transmission rates measured in single cell networks in maintenance mode. This is the data used
in Figure 3.4.1a. η= 0.3.

k 1 2 3 4 5 6 7 8 9
n = 50 1 2 3 4.01 5 6.04 7.01 8.17 9.25

n = 1000 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.88
Predicted 1.11 2.22 3.33 4.44 5.56 6.67 7.78 8.89 10

Table 6.1.2: Transmission rates measured in single cell networks in maintenance mode. This is the data used
in Figure 3.4.1b. η= 0.9.

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n = 50 17 13.9 11 9.66 8.23 7 6.43 5.6 5

n = 1000 33.48 20.54 14.88 11.52 9.5 7.75 7 6 5.5
Predicted 50 25 16.66 12.5 10 8.33 7.14 6.25 5.56

Table 6.1.3: Transmission rates measured in single cell networks in maintenance mode. This is the data used
in Figure 3.4.1c. k = 5.

6.2 RESULTS OF SIMULATIONS
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N 10 20 30 40 50 60 70 80 90 100
Hop count
R = 1 mea-
sured

9 19 29 39 49 59 69 79 89 99

Hop count
R = 1 pre-
dicted

10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Hop count
R = 5 mea-
sured

2 5 7 9 12 14 16 19 21 23

Hop count
n = 5 pre-
dicted

2.73 5.45 8.18 10.91 13.64 16.36 19.09 21.82 24.55 27.27

Hop count
R = 9 mea-
sured

1 3 4 6 7 8 10 11 12 14

Hop count
n = 1 pre-
dicted

1.58 3.16 4.74 6.32 7.89 9.47 11.05 12.63 14.21 15.79

Table 6.1.4: Hop counts measured in line networks. This is the data used in Figure 3.4.3a.

n 10 20 30 40 50 60 70 80 90 100
Hop count
R = 1 mea-
sured

7 14 21 29 36 43 51 58 65 72

Hop count
R = 1 pre-
dicted

7 14 21 28 35 42 49 57 64 71

Hop count
R = 5 mea-
sured

2 3 4 6 7 9 10 11 13 14

Hop count
n = 5 pre-
dicted

1 3 4 5 6 8 9 10 12 13

Hop count
R = 9 mea-
sured

0.7483 2 2 3 4 5 5 6 7 8

Hop count
R = 1 pre-
dicted

0.66989 1 2 3 3 4 5 5 6 7

Table 6.1.5: Propagation speed measured in line networks. This is the data used in Figure 3.4.3b.

n 10 20 30 40 50 60 70 80 90
Transmission
rate average

22.91 85.86 187.95 328.17 511.4 732.55 990.94 1287.38 1626.59

Table 6.1.6: Transmission rates measured in grid networks. This is the data used in Figure 3.4.2a.

R 1 2 3 4 5 6 7 8 9
Transmission
rate average

2500.06 509.68 230.52 143.57 101.92 72.32 57.38 46.06 37.89

Transmission
rate ex-
pected

2500 625 277.78 156.25 100 69.44 51.02 39.06 30.86

Table 6.1.7: Transmission rates measured in grid networks. This is the data used in Figure 3.4.2b.
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R 1 2 3 4 5 6 7 8 9
Hop count
measured

9 5.01 3.46 3 2.30 2.08 2.00 2 1

Hop count
predicted

10 6 4.29 3.33 2.73 2.31 2 1.76 1.58

Propagation
speed mea-
sured

6.60 3.45 2.34 1.93 1.51 1.34 1.27 1.24 0.75

Propagation
speed pre-
dicted

7.07 3.54 2.27 1.65 1.29 1.05 0.88 0.76 0.67

Table 6.1.8: Hop counts and propagation speed measured in line networks of 10 nodes. This is the data used
in Figure 3.4.4a and Figure 3.4.4b.

R 1 2 3 4 5 6 7 8 9
Hop count
measured

99 51.92 36.67 28.48 23.31 19.75 17.17 15.18 13.62

Hop count
predicted

100 60 42.86 33.33 27.27 23.08 20 17.65 15.79

Propagation
speed mea-
sured

72.46 35.70 23.91 17.82 14.13 11.66 9.90 8.59 7.57

Propagation
speed pre-
dicted

70.71 35.36 22.73 16.50 12.86 10.49 8.84 7.63 6.70

Table 6.1.9: Hop counts and propagation speed measured in line networks of 100 nodes. This is the data used
in Figure 3.4.4c and Figure 3.4.4d.

η M=0 M=0.05 M=0.1 M=0.15 Prediction
0,1 12,22 12,42 12,01 11,97 14.29
0,2 11,85 12,36 11,76 11,75 14.29
0,3 11,63 12,25 11,49 11,60 14.29
0,4 11,44 12,19 11,37 11,52 14.29
0,5 11,28 12,00 11,25 11,37 14.29
0,6 11,25 12,02 11,21 11,30 14.29
0,7 11,17 12,02 11,19 11,28 14.29
0,8 11,15 11,98 11,22 11,26 14.29
0,9 11,10 11,93 11,22 11,24 14.29

Table 6.2.1: Hop counts measured in a line network of 1000 nodes, R = 10 and k = 5. This is the data used in
Figure 4.0.5a.
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η M = 0 Prediction M = 0 M = 0.05 Prediction M = 0.05 M = 0.1 Prediction M = 1.0
0.1 2.89 8.18 3.70 8.89 4.80 9.61
0.2 3.79 8.18 4.57 8.89 5.71 9.61
0.3 4.64 8.18 5.37 8.89 6.53 9.61
0.4 5.42 8.18 6.19 8.89 7.20 9.61
0.5 6.15 8.18 6.90 8.89 7.89 9.61
0.6 6.86 8.18 7.60 8.89 8.59 9.61
0.7 7.45 8.18 8.29 8.89 9.26 9.61
0.8 8.09 8.18 8.94 8.89 9.91 9.61
0.9 8.62 8.18 9.60 8.89 10.58 9.61

η M = 0.15 Prediction M = 0.15
0.1 5.95 10.32
0.2 6.92 10.32
0.3 7.77 10.32
0.4 8.48 10.32
0.5 9.24 10.32
0.6 9.90 10.32
0.7 10.49 10.32
0.8 11.11 10.32
0.9 11.73 10.32

Table 6.2.2: Propagation speeds measured in a line network of 1000 nodes, R = 10 and k = 5. This is the data
used in Figure 4.0.5b.

η Grid k = 1 City k = 1 Grid k = 5 City k = 5 Grid k = 9 City k = 9
0.1 1149.81 2041.62 3956.91 7078 6026.49 10783.5
0.2 802.71 1428.74 2892.69 5221.85 4622.63 8280.2
0.3 629.36 1119.12 2322.57 4250.62 3732 6844.86
0.4 524.52 934.69 1990.75 3681.33 3241.52 6013.63
0.5 429.48 796 1613.09 3108.38 2629.82 5067.22
0.6 458.25 788.7 1787.15 3273.98 2881.32 5362.52
0.7 321.56 601.4 1291.03 2432.43 2124.62 4047.85
0.8 309.68 562.58 1269.05 2378.24 2087.73 3973.78
0.9 304.65 556.47 1223.47 2305.17 2003.65 3822.67

Table 6.2.3: Transmission rates measured in the dataset and grid networks. The ranges are R = 11 in the grid
network and 0.049 in the city dataset. This is the data used in Figure 4.0.1a and Figure 4.0.2.

η Grid R = 11.0 City R = 0.0049 Grid R = 13.1 City R = 0.006 Grid R = 16.0 City R = 0.007
0.1 3956.91 7078 3082.06 5412.02 2369.05 4393.2
0.2 2892.69 5221.85 2185.36 3890.39 1634.93 3105.68
0.3 2322.57 4250.62 1735.3 3143.41 1283.95 2489.77
0.4 1990.75 3681.33 1474.01 2708.07 1091.42 2136.39
0.5 1613.09 3108.38 1209.68 2311.12 915.45 1849.54
0.6 1787.15 3273.98 1334.22 2379.99 968.96 1837.7
0.7 1291.03 2432.43 937.66 1758.76 682.55 1380.34
0.8 1269.05 2378.24 921.37 1702.35 660.79 1304.78
0.9 1223.47 2305.17 886.45 1655.28 640.91 1273.67

Table 6.2.4: Transmission rates measured in the dataset and grid networks. This is the data used in Figure
4.0.1b.
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η M = 0 M = 0.05 M = 0.1 M = 0.15 Prediction
0.1 33.46 33.55 33.97 34.48 50
0.2 20.68 20.95 21.32 22.26 25
0.3 14.98 15.23 15.30 16.95 16.67
0.4 11.54 13.22 13.20 13.08 12.5
0.5 10.00 10.25 9.31 9.88 10
0.6 5.62 5.41 6.33 10.24 8.33
0.7 5.03 5.40 6.24 7.36 7.14
0.8 9.80 8.66 7.18 8.09 6.25
0.9 5 5.99 7.92 11.23 5.56

Table 6.2.5: Transmission rates measured in single cell networks of 1000 nodes where k = 5. This is the data
used in Figure 4.0.3a.

η M = 0 M = 0.2 M = 0.5 M = 1 Prediction
0.1 33.42 35.07 32.00 16 50
0.2 20.71 23.26 24.39 16 25
0.3 14.97 17.51 20.98 15.93 16.67
0.4 11.45 14.58 18.64 15.95 12.5
0.5 10.00 13.81 17.29 16 10
0.6 5.63 14.57 16.25 15.99 8.33
0.7 5.03 12.17 17.02 16 7.14
0.8 9.78 10.13 19.16 16 6.25
0.9 5 13.64 20.18 16 5.56

Table 6.2.6: Transmission rates measured in single cell networks of 1000 nodes where k = 5. This is the data
used in Figure 4.0.3b.

η M = 0 M = 0.2 M = 0.5 M = 1
0.1 0 7.0132 15.9975 16
0.2 0 4.651 12.193 16
0.3 0 3.5022 10.491 15.93
0.4 0 2.915 9.3215 15.95
0.5 0 2.7612 8.6435 16
0.6 0 2.9136 8.124 15.99
0.7 0 2.4342 8.51 16
0.8 0 2.026 9.582 16
0.9 0 2.7274 10.088 16

Table 6.2.7: Time spend transmitting per cycle. This is calculated by multiplying the data from 6.2.6 by the
transmission rate. Measured in single cell networks of 1000 nodes where k = 5. This is the data used in Figure
4.0.4.
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CHAPTER

SEVEN

INDEX OF VARIABLES

The network has the following properties:

Symbol Summary
n The number of nodes in the network.
N A symmetric boolean n ∗n matrix where index (i , j ) indicates whether node i and node

j are connected.
τmi n The minimum cycle length.
τmax The maximum cycle length.
η The fraction of the cycle that is waiting period.
k An integer specifying how many previously heard transmissions it takes to suppress a

broadcast
M The length of one broadcast.
s The length of the smallest timestep (54 µs).
dmax The maximum number the backoff is extended.
Qmax The maximum number of planned transmissions.
Seeds A list of nodes and times where and when seed updates will take place.

The network has the following variables:

Symbol Summary
Nodes The set of nodes forming the network.
Eventqueue The queue containing all the events.
Currenttime The current time of the running simulation.

And each node keeps track of the following variables:

Symbol Summary
S A list of all the neighbors this node has.
τ the current cycle length.
c A counter, for every transmission with no newer or older software the node increments

c by one.
t The time for the next broadcast.
V The current software version.
Re An integer, the amount of neighbors currently transmitting.
T A boolean that is true when the node is currently transmitting.
I A boolean that is true when interference is currently occurring.
d A parameter for the exponential backoff, this integer increases every time a transmission

is delayed.
Q The list of planned transmissions.
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