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Abstract

In this thesis we consider the boolean elementary symmetric functions over a field with
characteristic p, with p an odd, large enough prime. We will determine the coefficients of the
symmetric functions. Also we will prove that it is possible to determine the coefficients with
a recurrence relation of which the order depends on the number of variables of the degree of
the smallest monomial in the symmetric polynomial.
The multiplicative complexity of the symmetric polynomials is the number of multiplications
needed to construct the polynomial. We will show the minimal number of multiplications
needed for elementary symmetric functions with eight or less variables.
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1 Introduction
In [2], research to the elementary symmetric functions over a field F2 has been done. In
this thesis we will consider the elementary symmetric functions over a field Fp, with p an
odd, large enough prime. This means that we work modp instead of mod2. Since prime p
is large enough, working with modp is in this thesis equal to working over Z.
A symmetric function is a function such that the value of the function is independent of
the order of the input variables. For a symmetric function f in three variables we have
f(x, y, z) = f(y, z, x) = f(z, x, y) for all x, y, z ∈ Fp.
The elementary symmetric functions that we will consider are functions in n boolean vari-
ables. We will write these functions as sums of monomials. A monomial of length j is a
product of j variables, say xi1 · xi2 · ... · xij−1 · xij . Thus, j ≤ n.
The elementary symmetric function eni is the sum over all the different monomials of degree
i when there are n variables. So for 1 ≤ i ≤ n,

eni (x1, ..., xn) =
∑

M⊆{1,...,n},|M |=i

∏
j∈M

xj

with eni : {0, 1}n → Z.
It is easy to see that the value of eni is equal to

(
j
i

)
when j variables have value 1. The

functions that we consider in this thesis are denoted as σni where σni = eni mod 2. We focus
on the evaluation of the boolean function σni , with σni : {0, 1}n → {0, 1}n ⊆ Fp.

The main goal in this thesis is to minimize the number of multiplications needed to
determine the value of σni . This because we assume that multiplications (also called
AND-gates) cost time while additions, which include subtractions, are ‘free’. We assume
that it is possible to reuse products. This means that if a · b is determined, determining a · b · c
only costs one additional multiplication. We also assume that multiplying a variable with a
constant is ‘free’. Also a = a2 = ak, k > 0 since a = 0 or a = 1.
As an example we consider the function σ32 . We can write σ32 in the two following ways:
σ32 = a · b + a · c + b · c − 2ab · c = (a + b − 2a · b) · c + ab. Figure 1 clearly shows the
number of multiplications in each of the two ways to write σ32 .

Figure 1: Illustration of σ3
2
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In Figure 1 the additions are black and the AND-gates are red. It is easy to see that in the
second way to write σ32 there are fewer AND-gates necessary than in the first way to write
σ32 . Since the degree of σ32 is three, we say that σ32 can be written with a minimum of two
multiplications.

We are mainly interested in the function σni for its use in secure multiparty computa-
tion, which is a way to compare secure data from various participants in such a way that the
only information that could be leaked is the output value of the comparison.

2 The structure of σni
As stated in Section 1, we want to determine σni in such a way that σni = eni mod 2 for all
n, i.

First we will consider some examples of σni for small values of n and i.
If n = 2 and i = 1, it is easy to see that σ21 = x1 + x2 − 2x1x2. When only one
variable is equal to one, e21(mod2) = 1 and so is σ21 . When both variables are equal
to one, e21(mod2) = 0 and so is σ21 . This means that σ21 is a sum of e21 and e22, namely
σ21 = e21 − 2e22.
In Section 1 we have shown that if n = 3 and i = 2 then σ32 = a · b+ a · c+ b · c− 2ab · c.
This shows that σ32 = e32 − 2e33.

We believe that σni is of the form eni + ani,i+1e
n
i+1 + ... + ani,ne

n
n. In order to find a

closed expression for σni we only have to determine the values of the coefficients ani,m with
i < m ≤ n.

Remark 1. The coefficients ani,j for j 6= i are even, and ani,i is odd. Since σni mod 2 = eni .

The coefficients will be dependent of the Hammingweight of the variables, since the value
of eni (mod2) is only dependent on the number of variables equal to one.

2.1 The coefficients ani,m of σni
To determine the coefficients ani,m we use the following theorem:

Theorem 1. For 1 ≤ i ≤ n, let {ani,j}nj=0 satisfy

∀nw=0

(
w

i

)
mod 2 =

n∑
j=0

ani,j

(
w

j

)
.

Then
(i) σni =

∑n
j=0 a

n
i,je

n
j ,

(ii) ani,j =


0, 0 ≤ j < i,
1, j = i,(
j
i

)
mod 2−

∑j−1
h=i a

n
i,h

(
j
h

)
, i < j ≤ n.
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Proof. This proof consists of two parts.
Part i Assume the input has Hammingweight w, for 0 ≤ w ≤ n.
Then σni = eni mod 2 =

(
w
i

)
mod 2 =

∑n
j=0 a

n
i,j

(
w
j

)
=
∑n

j=0 a
n
i,je

n
j

Part ii Assume the input has Hammingweight w, for 0 ≤ j ≤ n.
If 0 ≤ w < i it holds that σni =

(
w
i

)
mod 2 = 0. Thus

∑n
j=0 a

n
i,j

(
w
j

)
= 0. Since

(
w
j

)
= 0

for j > w, we have that
∑w

j=0 a
n
i,j

(
w
j

)
= 0. It follows that ani,j = 0 if j ≤ w < i.

If w = i it holds that σni =
(
w
i

)
mod 2 = 1. Thus

∑n
j=i a

n
i,j

(
w
j

)
= 1. Since

(
w
j

)
= 0 if

j > w it follows that ani,i
(
w
i

)
= 1, thus ani,i = 1.

If i < w ≤ n. Say w = i + 1, it holds that σni =
(
w
i

)
mod 2 =

∑n
j=i a

n
i,j

(
w
j

)
=(

w
i

)
+ ani,i+1

(
w
i+1

)
. It follows that

ani,i+1 =

(
i+ 1

i

)
mod 2−

(
i+ 1

i

)
Assume that ani,j =

(
j
i

)
mod 2 −

∑j−1
h=i a

n
i,h

(
j
h

)
holds for i + 1 < j < m < n. Now we

assume that the input has Hammingweight w with w = m + 1. σni =
(
m+1
i

)
mod 2 =∑n

j=i a
n
i,j

(
m+1
j

)
. Thus

ani,m+1 =

(
m+ 1

i

)
mod 2−

m∑
j=i

ani,j

(
m+ 1

h

)

Remark 2. The coefficients ani,j of σni with i < m ≤ n are unique.

Remark 3. The values of ani,j are independent of the value of n.

Now, we are able to construct σni for all n, i ∈ N.

As an example we show the calculations for σ52 . σ52 is of the form a52,2e
5
2 + a52,3e

5
3 +

a52,4e
5
4 + a52,5e

5
5. It is known that a52,2 = 1.

First we determine a52,3:

a52,3 =

(
3

2

)
mod 2−

(
3

2

)
= −2

Next we determine a52,4:

a52,4 =

(
4

2

)
mod 2−

(
4

2

)
+ 2

(
4

3

)
= 2

Lastly we determine a52,5:

a52,5 =

(
5

2

)
mod 2−

(
5

2

)
+ 2

(
5

3

)
− 2

(
5

4

)
= 0

So we find that σ52 = e52 − 2e53 + 2e54. The exact functions σni for n from 1 to 8 can be found
in Appendix A.

5



2.2 A closer look at the structure of σni for fixed i
In Appendix A we can see that the row of coefficients ani,m for a fixed i, 1 ≤ m ≤ n is a
subset of the row of coefficients an

′
i,m for the same i, 1 ≤ m < n′, when n < n′. We see

that if n increases, the length of the row becomes longer. For example we consider σn4 . The
coefficient rows of σ44 , σ54 , σ64 , σ74 and σ84 are prefixes {1}, {1, -4}, {1, -4, 10}, {1, -4, 10,
-20}, {1, -4, 10, -20, 34}.
In this subsection we will look at the rows of coefficients for some of the values of i.

σn1 The row of coefficients for σn1 , which can be found in Table 1, is a very well known
row. It is possible to rewrite this row to {(−2)0, (−2)1, (−2)2, (−2)3, (−2)4, (−2)5, (−2)6,
(−2)7}.
Keeping this row in mind, it is easy to determine the values of an1,9, n > 9, and an1,10, n > 10,
namely (−2)(9−1) = 256 and (−2)(10−1) = −512. A check with Theorem 1 confirms this.
Now we have found an easy way to compute an1,n; an1,n = (−2)(n−1) for n ≥ 1.
It is also possible to use the recurrence relation an1,n = −2an1,n−1 for n > 1 and an1,1 = 1.

σn2 The row of coefficients of σn2 , which can be extended using theorem 1, can be found in
Table 1. Using [5] we found that this row is the expansion of 1

1+2x+2x2
and that the recurrence

relations an2,n = −2(an2,n−1+an2,n−2) for n > 2 with an2,2 = 0, an2,2=1 and an2,n = −4an2,n−4
for n > 4 with an2,1 = an2,2 = an2,3 = 0, an2,4 = 1 hold. These recurrence relations give two
quick ways to compute an2,n.

σn3 The coefficient list of σn3 can be found in Table 1. Using Mathematica’s function
FindLinearRecurrence[] we find that the recurrence relation that describes the coefficient
list of σn3 is an3,n = −4an3,n−1−6an3,n−2−4an3,n−3 for n > 3 with an3,1 = an3,2 = 0, an3,3 = 1.
This recurrence gives an easy way to compute the coefficients an3,n.

The coefficient list of σn3 can also be generated by the function an3,n =

(−1)n−1(2n4 −
2
n
2 sinπ·n

4
2 − 0n

4 ) [4]. This provides a way to determine the coefficient
list of σn3 without the use of a recurrence relation.

σn4 Now we consider the coefficient list of σn4 , which can be found in Table 1. Using
Mathematica’s function FindLinearRecurrence[] we find the following linear recurrence re-
lation to determine an4,n; an4,n = −4an4,n−1 − 6an4,n−2 − 4an4,n−3 − 2an4,n−4 for n > 4 with
an4,1 = an4,2 = an4,3 = 0, an4,4 = 1. This gives an easy way to determine the coefficients of
σn4 .
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Table 1: Coefficient rows of σni , 1 ≤ i ≤ 4

i Coefficient rows σin
1 1 -2 4 -8 16 -32 64 -128 256 -512 1024 2048
2 1 -2 2 0 -4 8 -8 0 16 -32 32 0
3 1 -4 10 -20 36 -64 120 -240 496 -1024 2080 -4160
4 1 -4 10 -20 34 -48 48 0 -164 560 -1352 2704

Using Mathematica we also found the following linear recurrence relations for the coefficient
rows of σn5 , σn6 , σn7 , σn8 and σn9 . In Table 2 the linear recurrence relations are described.
I.e. the recurrence relation xn = cxn−1 + bxn−2 + axn−3, x1 = x2 = 0 and x3 = 1 is
described as {a, b, c}.

Table 2: The recurrence relation describing the coefficients of σni

i Coefficient rows σni
5 {-4,-10,-16,-14,-6}
6 {-4,-12,-22,-24,-16,-6}
7 {-8,-28,-56,-70,-56,-28,-8}
8 {-2,-8,-28,-56,-70,-56,-28,-8}
9 {-4,-18,-64,-140,-196,-182,-112,-44,-10}

We see that for the coefficient list of every σni an order i linear homogeneous recurrence
relation with with constant coefficients can be found. The following theorem follows.

Theorem 2. The row of coefficients of σni can be described by an order i linear homogeneous
recurrence relation with constant coefficients for n > i and ani,1 = ... = ani,i−1 = 0, ani,i = 1.

Proof. Say that a∗ni,j = (−1)jani,j . It follows from Theorem 1 that(
w

i

)
mod 2 =

w∑
j=0

(−1)ja∗wi,j
(
w

j

)

We see that
∑w

j=0(−1)ja∗wi,j
(
w
j

)
is the binomial transform of

(
w
i

)
mod 2.

Theorem 10 in [1] proves that if
(
w
i

)
mod 2 has an order i recurrence relation for fixed w

then (−1)ja∗wi,j also has an order i recurrence relation for fixed w.(
w
i

)
mod 2 has an order i recurrence relation for fixed w if and only if

(
w
i

)
has an

order i recurrence relation for fixed w. It is clear to see that
(
w
i

)
has an order i recurrence

relation since it
(
w
i

)
is a polynomial of degree i. One can assume that this is the character-

istic polynomial of the recurrence relation. Thus it follows that (−1)ja∗wi,j has an order i
recurrence relation.
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Now it is easy to see that awi,j has an order i recurrence relation, since it only differs
from (−1)ja∗wi,j by the term (−1)j . One can take the recurrence relation of a∗wi,j and multiply
this with (−1)j to obtain the order i recurrence relation of awi,j .

2.3 A closer look at the coefficient row ani,i+x for fixed x
In the previous subsection, subsection 2.2, we looked at σni for fixed i. This means we con-
sidered the horizontal lines in the overview in Appendix A. Now, we want to take a look at
the vertical lines in the overview in Appendix A. This means considering sequences ani,i+x,
the sequences for x between zero and three can be found in Table 3.

Table 3: Coefficient rows ani,i+x, 1 ≤ x ≤ 3

x Coefficient rows ani,i+x
0 1 1 1 1 1 1 1 1 1
1 -2 -2 -4 -4 -6 -6 -8 -8 -10
2 4 2 10 10 22 20 36 36 56
3 -8 0 -20 -20 -64 -48 -120 -120 -232

We have done some research on the case x = 1 and x = 2. We found the following functions
to determine the coefficients of ani,i+1 and ani,i+2:

ani,i+1 = i mod 2− i

ani,i+2 =
i(i− 1)

2
mod 2 +

i(i− 1)

2
− i((i− 1) mod 2)

We found these functions using Theorem 1. One can see that both ani,i+1 and ani,i+2 can be
determined without the use of an recurrence relation.

It would be very interesting to examine the coefficient rows of ani,i+x with x a con-
stant and n > 3. Only this study is not the focus of this thesis. Therefore we did not do
further research on this topic.

3 Simple cases of σni
In this section we will look at some simple cases of σni . We hope to find a relation between
the number of variables and the minimum number of multiplications needed in each of the
cases. In this section we will first consider σnn and second σn1 .
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3.1 Minimizing of the number of multiplications of σnn
The simplest case if σni is the case where i = n, n ≥ 1. This because σnn = x1 · x2 · ... ·
xn−1 · xn. It is not possible to rewrite this monomial in such a way that less multiplications
then n− 1 is used, since σnn has degree n.
We conclude that the minimal number of multiplication needed to write σnn is equal to n−1.

3.2 Minimizing of the number of multiplications of σn1
The degree of σn1 is equal to n, since the monomial x1 · x2 · ... · xn−1 · xn is included in σn1 .
We note that it is possible to write σn1 in the following way: σn1 = x1⊕x2⊕ ...⊕xn−1⊕xn.
Where ⊕ stands for the XOR-gate. It holds that A ⊕ B = A + B − 2AB. This shows that
the use of an XOR-gate implies the use of one multiplication.
We will first consider small cases of n and then derive a general form for σn1 .

Case n = 2 σ21 = x1 + x2 − 2x1x2. We see that x1 ⊕ x2 = x1 + x2 − 2x1x2. Since
the degree of σ21 is two, it is not possible to write σ21 without any multiplications. Thus, the
minimal number of multiplications needed for σ21 is one.

Case n = 3 It is possible to write σ32 using σ21 in the following way: σ31 = σ21 ⊕ x3. This
because σ21 = x1⊕x2 and σ31 = x1⊕x2⊕x3. Thus we can write σ31 = (x1+x2−2x1x2)+
x3−2(x1+x2−2x1x2) ·x3. One can see that the minimal number of multiplications needed
for σ31 is one more than the number of multiplications needed for σ21 . This means that σ31 can
be written with two (=3-1) multiplications.
It is not possible to write σ32 with less then two multiplications since the degree of σ32 is three.

Case n = 4 We can write σ41 in the following way using only three multiplications:
σ41 = σ31 + x4 − 2σ31x4. This equals to the following structure: σ41 = σ31 ⊕ x4. It is clear to
see that it is not possible to write σ41 with less than three multiplications, since the degree of
σ41 is four.

If we look at a more general case, we can see that σn1 can be written as
σn−11 ⊕ xn = σn−11 + xn − 2σn−11 · xn. Thus we conclude that it is possible to
write σn1 with a minimum of n− 1 multiplications for all n ≥ 1. This because when we start
with σ21 , which we can write with one (=2-1) multiplication, we can compute σ31 with only
one extra multiplication. If we repeat this step n− 2 times, we see that it is possible to write
σn1 with n− 1 multiplications.

4 Minimizing of the number of multiplications of σnn−1
In this section we will consider σnn−1. We assume that it is possible to compute σnn−1 with
n− 1 multiplications. This because the largest monomial has degree n. First we will look at
σnn−1 for n = 2, 3, 4.
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Equation for σ2
1 It is easy to see that it is possible to compute σ21 with only one multipli-

cation, since σ21 = a+b−2a·b. It is not possible to write σ21 with less than one multiplication
since the monomial ab has to be constructed.

Equation for σ3
2 We have already shown in the introduction that it is possible to write σ32

with only two multiplications. Namely; σ32 = a·b+a·c+b·c−2ab·c = (a+b−2a·b)·c+ab.
It is not possible to write σ32 with less multiplications, since the monomial with the highest
degree of σ32 is equal to 3.

Equation for σ4
3 It was not easy to find a way to compute σ43 using only three multipli-

cations. We have found a couple of ways to do so;

σ43 = (a · b+ (a+ b− 4ab) · c) · (d+ c− 1) + ab

σ43 = (a · b+ c · d) · (−4cd+ a+ b+ c+ d)− 2ab+ 2cd

σ43 = (a · b+ c · d) · (−2ab− 2cd+ a+ b+ c+ d)

We also tried to write σ43 in three multiplications with the term a · b · c. We came to the
conclusion that this is not possible using Mathematica. The method used will be described
in Subsection 4.1
It is not possible to write σ43 with less multiplications, since the monomial with the highest
degree of σ43 is equal to 4.

When we look at the ways to write σnn−1 and the structure of σnn−1 we see that σnn−1
can be written using σn−1n−2;

σ32 = σ21 · (c+ b− 1) + a (1)

σ43 = σ32 · (d+ c− 1) + a · b (2)

σ54 = σ43 · (e+ d− 1) + a · b · c (3)

σ65 = σ54 · (f + e− 1) + a · b · c · d (4)

Where σnn−1 means that the coefficient ann−1,n has to be multiplied by 2. I.e, σ32 = e32 − 4e33.

4.1 Equation for σ54
Since it seems difficult to find ways to write σ43 with only 3 multiplications, it is expected to
be very difficult to write σ54 with only four multiplications. Because it is not possible to write
σ43 with only three multiplications while including the term a · b · c we cannot use equation
3 to write σ54 with only four multiplications. Using the second way to write σ43 we can write
σ54 with five multiplications; σ54 = ((a ·b+c ·d) ·(a+b+c+d−4cd)−2ab+2cd) ·e+ab ·c.

In the process of finding a way to write σ54 with only four multiplications, we used
Mathematica. First we constructed a function red[], which made sure that when multiplying
a variable xi with itself the outcome would not become (xi)

2 but xi. This assumption has

10



been made in Section 1. red[] sees letters a,b,c etc. as variables. The Mathematica code
can be found in Appendix B. We also used the Mathematica functions MonomialList[] and
Solve[].
We used the function red[] in the following way; we always entered -σ54 first and then we
added a polynomial, a guessing polynomial, of which we believed that it could be an other
way to write σ54 . If the outcome of red[] is equal to zero, the second polynomial is a different
way to write σ54 . An example of how the function red[] was used is given in Figure 2.

Figure 2: Example of the function red[]

We call the output of the function red[] the ”left-over polynomial”. First we tried to find a
polynomial with only four multiplications that was equal to σ54 by hand. We have tried for
several hours but could not find such a polynomial. That is why we started a much broader
search.
We started using the function MonomialList[]. The input for this function was the same as
the input from red[], where our guessing polynomial consisted of variable coefficients. The
output was an equation for each of the monomials in the left-over polynomial. If we choose
all the coefficients in such a way that all the equations are equal to zero, we find a polynomial
in four multiplications that is equal to σ54 .
An example of the function MonomialList[] is given in Figure 3.

Figure 3: Example of the function MonomialList[]

We used the function Solve[] to find a solution for all the equations. In order to reduce
the number of equations that needed to be solved, we did not include the equations for the
monomials ab, cd, a, b, c, d and e. This is not a problem since we can always add or subtract
these monomials to the guessing polynomial.
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Using this method we did find ways to write σ54 with only four multiplications. The
equations below show how σ54 can be written with only four multiplications, where
A = a · b+ c · d.

σ54 = A · (2ab− 4cd− 2a− 2b+ 2c+ 2d+ e+ 1) · (−3ab+ 2a+ 2b+
1

2
e− 1) + cd

σ54 =
1

2
A · (−A+ 2e+ 1) · (−A+ a+ b+ c+ d+ 2e− 3)

σ54 =
1

2
A · (−A+ a+ b+ c+ d+ e− 5

2
) · (−3A+ a+ b+ c+ d+ e+

3

2
) +

3

8
A

The only problem with the equations is that the coefficients of the polynomials are not all
integers. I.e. one coefficient has the value 1

2 .
This will not be a big problem for implementations. This will be explained in section 5.

Equation for σ6
5 Using this method in Mathematica we also searched for other ways to

write various σni . Equation 5 shows how σ65 can be written with only five multiplications.

1

2
(a · b+ c ·d+ e · f) · (−2ab−2cd−2ef +a+ b+ c+d+ e+ f) · (ab+ cd+ ef −1) (5)

This way to write σ65 includes the factor 1
2 .

Equation for σ7
6 Equation 6 shows how σ76 can be written with only six multiplications,

where A = a · b+ c · d+ e · f .

1

3
(A− g) · (A− 3

4
(a+ b+ c+ d+ e+ f)− g + 2) · (A+ g − 1) · (A− 2(g + 1)) (6)

This way to write σ76 includes the factor 1
3 and the coefficient 1

4 .

We also tried to find a function to write σ76 with only six multiplications for which
not only the coefficients for ab, cd and ef are equal, but also the coefficients for a, b, c, d, e,
f and g. We came to the conclusion that there are only complex solution for this problem.
Equation 7 shows one of the possible solutions where B = a+ b+ c+ d+ e+ f + g.

1

4
A·( i

6
(15i+

√
15)A+B+

1

3
(3−i

√
15))·(− i

6
(−9i+

√
15)A+B+

i

3
(6i+

√
15))·(A−1)

(7)

Equation for σ8
7 Equation 8 shows how σ87 can be written with only seven multiplica-

tions, where A = a · b+ c · d+ e · f + g · h.

1

3
A · (−A+ 2) · (A− 1

2
(a+ b+ c+ d+ e+ f + g + h)) · (A− 1) (8)

This way to write σ87 includes the factor 1
3 and the coefficient 1

2 .

In the equations above we can see some kind of symmetry in the coefficients. We
see that in each factor of the product the coefficients of the monomials of the same degree
are equal.
This fact will make it relatively simple to find equations for σnn−1 for n > 8.
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Is it possible to construct a polynomial with integer coefficients such that it is
equal to σ5

4? After finding a way to write σ54 with only four multiplications but with
using a rational number as one of the coefficients the question rises wether it is possible to
write σ54 with only four multiplications and using only integers as coefficients.
We have thought of the following way to check wether this is possible or not:

First we established a guessing polynomial which was as broad as possible. We choose

Pl(a, b, c, d, e) = (αa·b+βc·d+γa+δb+εc+ηd+θe+x)·(ιab+κcd+λa+µb+νc+ξd+ζe+y)

·(ωab+ φcd+ ψa+ hb+ jc+ kd+me+ z) + lab+ ncd+ qa+ pb+ tc+ ud+ ve+w

as our guessing polynomial. We chose this polynomial because we have seen in previous
ways to write σnn−1 that the term ab, and if possible the term cd, is a recurring factor. Also,
this polynomial contains the largest multiplications as possible, since in each part of the
product every linear combination of a, b, c, d and e can occur.

There are two other guessing polynomials possible, which also have to be checked in
a similar way. These are the following polynomials:

Pl2(a, b, c, d, e) = (w1a·b+w2a+w3b+w4c+w5d+w6e+w)·(x1ab+x2a+x3b+x4c+x5d+x6e+x)·

(y1ab+ y2a+ y3b+ y4c+ y5d+ y6e+ y) · (z1ab+ z2a+ z3b+ z4c+ z5d+ z6e+ z)

+lab+ qa+ pb+ tc+ ud+ ve+ v

and

Pl3(a, b, c, d, e) = (v1a+v2b+v3c+v4d+v5e+v) · (w1a+w2b+w3c+w4d+w5e+w)·

(x1a+x2b+x3c+x4d+x5e+x)·(y1a+y2b+y3c+y4d+y5e+y)·(z1a+z2b+z3c+z4d+z5e+z)

+qa+ pb+ tc+ ud+ ve+ r

It might be possible to use a basis transformation on Pl2 and Pl2 to construct a polynomial
of the form Pl. If this is possible, one does not have to check Pl2 and Pl2. Further research
has te be done on this part.

We know that the variables a, b, c, d and e can only have the value 0 or 1. This
gives us 25 possible inputs. We have entered all the possible inputs in the polynomial Pl,
giving us 32 equations in the coefficients of Pl. We have also entered the possible inputs in
σ54 , giving us for each input the value of σ54 . Combining the two, we have found 32 equations
which we should be able to solve. The equations can be found in Appendix C.
If it is possible to solve this set of equations using only integers, we have found a way to write
σ54 with only integer coefficients. If it is not possible to solve this set of equations, using only
integers, we have to do the same thing for Pl2 and Pl2. If Pl2 and Pl2 also have no possi-
ble integer solutions we know that it is not possible to write σ54 with only integer coefficients.

σ54 can have the value zero or one, since it is a boolean function. First we will focus

13



on the equations which are equal to one. This because we know that choosing all the
variables equal to zero will solve all the equations equal to zero, but not the equations equal
to one.
There are 6 equations equal to one, these can be found in Figure 4.

Figure 4: Equations equal to 1

We want to solve these equations and see of the solutions of these functions also lead to
solving the equations equal to zero. To solve these functions we want to use the Mathematica
function Solve[].
The six equations,A1 through F1, are too large to be solved quickly by the function Solve[].
This is why we decided to use the following equations;

x1 = α+ γ + δ

x2 = ι+ λ+ µ

x3 = ω + ψ + h

x4 = β + ε+ η

x5 = κ+ ν + ξ

x6 = k + j + φ

x7 = x+ θ

x8 = ζ + y

x9 = m+ z

We chose these equations in such a way that the equations A1 through F1 would be as
small as possible. Using these equations, we have eliminated the following variables from
the equations; α, β, θ, ι, κ, ξ, ω, φ and m. But we have also added the variables x1 through
x9. Once a solution is found for the new set of variables, a unique solutions for the old set
of variables can be constructed. This because each variable xi contains one of the variables
that have been eliminated from the equations. The equations that we are left with are shown
in Figure 5.

14



Figure 5: Equations equal to 1 after adding x1 through x9

The equations A2 through F2 can be easily solved by the function Solve[] and only have
one solution. This solution contains a constraint on the variables n, p, t, v, l and q. All
of these variables do not exist in the product of Pl but are simply to correct some of the terms.

The last thing we have to do is solve the equations equal to zero with the constraints
given on the variables n, p, t, v, l and q.

Sadly enough, the solve function of mathematica has not yet given an answer whether or
not it is possible to solve the equations equal to zero using only integers. Also attempts
of choosing variables and checking if an integer solution exists did not gave an integer
solution.
When one solves the equations equal to zero, he will know wether an integer solution exists
or not.
Remember that the same procedure has te be done with Pl2 and Pl2 if Pl gives a negative
answer.

5 Small examples of σni
In this section we will focus on Table 4. This table shows the minimal number of multiplica-
tions needed to write σni for 1 ≤ n ≤ 8, 1 ≤ i ≤ 8.
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Table 4: The minimal number of multiplications for σni

σni i
n 1 2 3 4 5 6 7 8
1 0 - - - - - - -
2 1 1 - - - - - -
3 2 2 2 - - - - -
4 3 3 3 3 - - - -
5 4 3?/4 4 4 4 - - -
6 5 5? 5 5 5 5 - -
7 6 ?? 6? 6? 6? 6 6 -
8 7 ?? 7? 7? 7? 7? 7 7

The numbers in bold writing are the boundaries that have been discovered and/or proven in
this thesis. A question mark after an entry means that we expect the number of multiplica-
tions needed to be that entry only we have not found an equation to prove this. A double
question mark means that we do not have an idea of how much multiplications are needed to
describe the matching σni .
We will show the equations for σni which we have found and which have not been in previous
sections of this thesis.

σ4
2 The degree of σ42 is equal to four. This means that, using the degree lower bound, the

minimal number of multiplications needed is three. If we can show that it is possible to write
σ42 using only three multiplications, we know for certain that this is the minimal numbers of
multiplications needed.
We found the following polynomial that is equal to σ42: (a · b−2c ·d+ c+d) · (2cd+a+ b−
2c−2d)−ab+2c+2d−3cd. Thus, we conclude that the minimal number of multiplications
needed for σ42 is three.

σ5
2 The degree of σ52 is equal to four. Only, it is not possible to write σ52 of the form

(x1a · b+ x2c · d+ x3a+ x4b+ x5c+ x6d+ x7e+ x8) · (y1ab+ y2cd+ y3a+ y4b+ y5c+
y6d+ y7e+ y8) + z1ab+ z2cd+ z3a+ z4b+ z5c+ z6d+ z7e+ z8, since the terms abce,
abde, acde, ace, ade, bcde, bce and bde can not be created this way.
It might is possible that σ52 can be written as the form (w1a + w2b + w3c + w4d + w5e +
w)(x1a+x2b+x3c+x4d+x5e+x)(y1a+ y2b+ y3c+ y4d+ y5e+ y)(z1a+ z2b+ z3c+
z4d+ z5e+ z). Only we did not find a correct polynomial that describes σ52 with only three
multiplications. The reason that this is difficult is because of the structure of σ52 , namely it
holds that σ52 = e52 − 2e53 + 2e54 − 0e55. We believe that the zero coefficient is the reason that
it is hard to determine an equation.

We found the following polynomial that is equal to σ52: (a · b + c · d + 4
3e −

2
3) ·

(5ab+5cd−3a−3b−3c−3d+ 4
3e−

2
3) · (

1
4a+

1
4b+

1
4c+

1
4d−

1
2)+

2
9 +

7
18(a+ b+ c+d).
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Thus, we conclude that the minimal number of multiplications needed for σ52 might be three
but we have found an equation which describes σ52 in four multiplications.

σ5
3 We found the following polynomial that is equal to σ53: 1

2(a · b + c · d − 2e) · (2ab +
2cd− (a+ b+ c+ d) + e) · (−3ab− 3cd+ 1

2(a+ b+ c+ d+ e)− 1
2). Thus, we conclude

that the minimal number of multiplications needed for σ53 is four.

σ6
4 We found the following polynomial that is equal to σ64: (a · b+ c · d+ e · f) · ((−2−
2√
6
)(ab + cd + ef) + a + b + c + d + e + f − 1

2 + 3
√
6

4 ) · ((−1 + 1√
6
)(ab + cd + ef) +

(1/2)(a+ b+ c+ d+ e+ f)− 1
4 −

3
√
6

8 ) + 19
48(ab+ cd+ ef). Thus, we conclude that the

minimal number of multiplications needed for σ64 is five.

σ6
3 We found the following polynomial that is equal to σ63: (−103 (a · b + c · d + e · f) +

5−
√
15

3 (a+b+c+d+e+f)−4+
√
15) ·(ab+cd+ef− 1

2(a+b+c+d+e+f)) ·(ab+cd+
ef−(12+

√
15
10 )(a+b+c+d+e+f)+ 6

5+
3
√
15

10 )− 11
30(ab+cd+ef)+

11
60(a+b+c+d+e+f).

Thus, we conclude that the minimal number of multiplications needed for σ63 is five.

One can see that not all the polynomials found to describe σni , for certain values for
i and n, have integer coefficients. Some also have rational or real numbers as their
coefficients. For implementation of the polynomials, this is not a problem. Although, when
dealing with rational and real numbers there are some things one has to be aware of.
When dealing with rational numbers, one has to make sure the the denominator of all the
rational numbers in the polynomial and the prime number p have a greatest common divisor
of 1. This because when the greatest common divisor equals 1, the rational number has
an inverse number (modp). I.e. if the only rational number in the polynomial is a 1

2 , it is
sufficient to say that p has to be an odd prime.

When dealing with real numbers, say
√
x with x ∈ N, x has to be a quadratic

residue (modp). There are various ways to check whether x is a quadratic residue or a
quadratic nonresidue. One way is to determine x

p−1
2 (modp), if x

p−1
2 (modp) = 1 then x

is a quadratic residue. An other way to check if x is a quadratic residue is to determine the
value of the Legendre symbol, Section 4.1 and 4.2 of [3] describe how to do this.

In Table 4, the two bottom rows are mainly filled with approximations of the mini-
mal numbers of multiplications. We expect these number of multiplications because of the
symmetry in the equations found thus far. We have no reason to believe that this symmetry
does not hold when n increases. Only, we cannot say if the coefficients in the equations will
be pretty. This means that we do not know if we coefficients will be rational, real or even
complex.
In the case where i = 2, we are not sure what will happen with the minimal numbers of
multiplications needed. This because of the zero in the coefficient row that describes σn2 for
n ≤ 5.
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6 Conclusion
In this thesis we made a beginning of the elementary symmetric polynomials over a field
with characteristic p has been done in this thesis.

We have found a way to construct these polynomials, σni , using the elementary sym-
metric polynomials eni . Appendix A shows the exact functions σni for 1 ≤ n ≤ 8. We have
proven that the coefficients of σni can be determined using an order i linear homogeneous
recurrence relation with constant coefficients. This is more efficient then using all previous
coefficients to determine the next coefficient.

We have also shown equations for σni for numerous values of n and i minimizing the
number of multiplications needed to write σni . These results can be found in Section 5.

7 Open problems and discussion
Although this thesis answers a lot of questions it also leaves some problems and points for
further research.

Problems The first problem is whether it is necessary to use rational, real and possibly
complex numbers as coefficients of the polynomials to describe σni . We have already made
a beginning in answering this question, this can be found in Subsection 4.1. If one solves
the equations that are equal to zero and there is an integer solution, then it is not necessary
to write σ54 with rational coefficients. This would not mean that it is possible to write other
σni ’s with only integer coefficients. If an integer solution is found for these equations, this
may give new insight in how to look for integer solutions. On the other hand, if it is not
possible to write σ54 with only integer coefficients, then it is presumable that σni for n > 5
cannot be written with only integer coefficients.
If it is not necessary that σni : {0, 1}n → {0, 1} and it is also allowed that
σni : {0, 1}n → {0, x} with x ∈ R then it does not matter if the coefficients of σni
are integers or not. For example, one can compensate the rational coefficients by multiplying
the entire equation with the least common multiple, lmc, of the denominators. This results
in the function σni : {0, 1}n → {0, lcm} with lcm ∈ N and in integer coefficients.

The second problem which would be very interesting to look at is finding equations
for σni ’s which have zeros in their coefficient rows. We have found it very difficult to find
equations which described σ52 and σ62 , since there is no symmetry possible in the equations.
It would also be interesting to investigate wether there is any regularity in the appearance of
zeros in the coefficient rows.

Points for further research The first point which would be interesting for some further
research, which has been mentioned in Subsection 2.3, is looking at the coefficients ani,i+x.
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A small beginning has been made in this thesis only this was not the focus of this thesis.

The second point of discussion is that when one has a ‘cheap’ test to determine
whether something is equal to zero, it is possible to determine σnn−1 and σnn−2 without any
multiplications. It might be possible that this also holds for other σni ’s, but we did not do
further research on this topic.

Figure 6: Code to determine σnn−1

Figure 6 shows the code which can determine σnn−1 without any multiplications. A similar
code can be written for determining σnn−2.

19



References
[1] Stefano Barbero, Umberto Cerruti, and Nadir Murru, Transforming recurrent sequences

by using the binomial and invert operators, Journal of Integer Sequences 13 (2010),
Article 10.7.7.

[2] Joan Boyar and Rene Peralta, Tight bounds for the multiplicative complexity of symmet-
ric functions, (2008), 223 – 246.

[3] Benne de Weger, Algorithmic number theory, discrete mathematics 2, part 1, 0.55 ed.,
October 2012.

[4] N.J.A. Sloane and Paul Barry, The on-line encyclopedia of integer sequences a000749,
June 2008.

[5] Michael Somos and Paul Curtz, The on-line encyclopedia of integer sequences a108520.

20



A Overview of σni for n from 1 to 8
In this section we show an overview of σni for n from 1 to 8.

• n = 1

– σ11 = e11
• n = 2

– σ21 = e21 -2e22
– σ22 = e22

• n = 3

– σ31 = e31 -2e32 +4e33
– σ32 = e32 -2e33
– σ33 = e33

• n = 4

– σ41 = e41 -2e42 +4e43 -8e44
– σ42 = e42 -2e43 +2e44
– σ43 = e43 -4e44
– σ44 = e44

• n = 5

– σ51 = e51 -2e52 +4e53 -8e54 +16e55
– σ52 = e52 -2e53 +2e54 -0e55
– σ53 = e53 -4e54 +10e55
– σ54 = e54 -4e55
– σ55 = e55

• n = 6

– σ61 = e61 -2e62 +4e63 -8e64 +16e65 -32e66
– σ62 = e62 -2e63 +2e64 +0e65 -4e66
– σ63 = e63 -4e64 +10e65 -20e66
– σ64 = e64 -4e65 +10e66
– σ65 = e65 -6e66
– σ66 = e66

• n = 7

– σ71 = e71 -2e72 +4e73 -8e74 +16e75 -32e76 +64e77
– σ72 = e72 -2e73 +2e74 -0e75 -4e76 -8e77
– σ73 = e73 -4e74 +10e75 -20e76 +36e77
– σ74 = e74 -4e75 +10e76 -20e77
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– σ75 = e75 -6e76 +22e77
– σ76 = e76 -6e77
– σ77 = e77

• n = 8

– σ81 = e81 -2e82 +4e83 -8e84 +16e85 -32e86 +64e87 -128e88
– σ82 = e82 -2e83 +2e84 -0e85 -4e86 +8e87 -8e88
– σ83 = e83 -4e84 +10e85 -20e86 +36e87 -64e88
– σ84 = e84 -4e85 +10e86 -20e87 +34e88
– σ85 = e85 -6e86 +22e87 -64e88
– σ86 = e86 -6e87 +20e88
– σ87 = e87 -8e88
– σ88 = e88

B Mathematica code
This Mathematica code was used in determining multiplications under the assumption that
(xi)

2 equals to xi.
red[w] :=

red[w] =

Fold[PolynomialRemainder[#1,#2[[1]],#2[[2]]]&,

w, {{a2 − a, a}, {b2 − b, b}, {c2 − c, c}, {d2 − d,

d}, {e2 − e, e}, {f2 − f, f}, {g2 − g, g}}]
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C Equations describing σ54
The equations shown in Figure 7 describe σ54 when fitting the guessing polynomial used in
Subsection 4.1.

Figure 7: Equations describing σ5
4
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